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soirées vins et fromages !

Je continue mon tour de France avec Toulouse. J’ai passé moins d’un an là-bas, mais les
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Introduction

The energy produced in nuclear reactors is released by interactions between neutrons and heavy
nuclei contained in the fuel. One of the main issues for the study of a reactor behaviour is to
model the propagation of the neutrons, described by the Boltzmann transport equation, in the
presence of multi-physics phenomena, such as the coupling between neutron transport, thermal-
hydraulics and thermomecanics. Pressurized water reactors (PWRs) are designed so as to ensure
that the different feedback effects involved are negative: the feedbacks in the fuel and the mod-
erator for example induce a decrease of the neutron flux in case of an initial increase in the
reactivity of the neutron population. Operators are bound to prove safety authorities that any
operation does not jeopardize the safety and stability of the reactor. For this purpose, design
and safety analysis of nuclear reactors are performed with multi-physics simulation tools. Mod-
eling the multi-physics behaviour is in fact highly challenging because of the vast number of
unknowns, as well as the large size of the system, which implies simultaneously taking into ac-
count nuclear interactions as well as macroscopic fluid motions and mechanical deformations.
Most often, simulation tools for multi-physics are built by coupling separate simulation tools for
each subfield of physics. This has the advantages of separating the concerns of the development
of the different simulation tools and making the simulation more modular.

Concerning the Boltzmann neutron transport equation, two types of strategies are commonly
applied. Deterministic methods numerically solve the equation by discretizing the phase space,
at the expense of introducing approximations. Stochastic methods, called “Monte Carlo” meth-
ods, are based on the random sampling of a large number of neutron trajectories. A mean value
and an associated statistical uncertainty are determined for each observable of interest by tak-
ing the ensemble averages over the simulated histories. Monte Carlo methods allow for an exact
resolution of the transport equation, at the expense of a slow convergence of the statistical uncer-
tainty on the results, which goes as 1/

√
N, N being the number of histories. In order to reduce

the uncertainty, the most natural solution is to increase the statistics, i.e., the number of simu-
lated trajectories. However, the slow convergence rate makes Monte Carlo a time-consuming
method, even if it is well-suited for parallel calculations by nature. The computation time and
memory footprint necessary for simulating real-size systems are very large and represent a seri-
ous limitation of stochastic methods.

Because of these considerations, Monte Carlo methods are today almost exclusively devoted
to criticality and fixed-source calculations, where the system is supposed to be at equilibrium
(so that there is no time dependence) and thermal-hydraulics and thermomechanics quantities
are supposed to be constant throughout the whole simulation. For such stationary calculations,
Monte Carlo methods serve as reference tools for the verification of deterministic methods.
Non-stationary scenarios such as transient accidents have been handled by deterministic codes
only (Downar et al., 2002; Dulla et al., 2008; D’Auria et al., 2008; Gomez-Torres et al., 2012;
Laureau et al., 2015; Knebel et al., 2016), until recent years. In order to extend Monte Carlo
methods to non-stationary configurations so as to provide reference results for deterministic
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tools for time-dependent problems, two paths must be explored. First, the so-called “kinetic”
Monte Carlo shall explicitly take into account the time dependence in neutron transport, in-
cluding the delayed neutrons. Second, the so-called “dynamic” Monte Carlo shall combine the
kinetic methods with the physical feedbacks, such as thermal-hydraulics and thermomechanics.

Thermal-hydraulics concerns hydraulic flows in thermal fluids. This problem is described
by non-linear equations, and there are different approaches to its solution. In nuclear reactors,
it is customary to consider simplified versions of the problem by introducing different “scales”
in relation to the size of the system under analysis: a global scale with system codes, a com-
ponent scale with sub-channel codes or a local scale with computational fluid dynamics (CFD)
codes. CFD codes solve fluid flow problems through turbulence models. They finely model the
physical exchanges, at the expense of strong requirements of computation time and memory.
This contrasts with sub-channel codes, which solve the equations on a coarser mesh, and pro-
vide reliable (although approximate) and fast-running tools for the prediction of fluid flows in
steady-state and transient configurations.

The development of reliable and fast numerical tools for the multi-physics simulation of
reactor cores (coupling of neutron flux with thermal-hydraulics and thermomechanical feed-
backs, in stationary and non-stationary regimes) has undergone intensive research efforts in re-
cent years. This is witnessed by the innovation agendas SNETP, NUGENIA and H2020, and in
particular the European projects NURESIM (2005-2008), NURISP (2009-2012), NURESAFE
(2013-2015), HPMC (2011-2014) and McSAFE (2017-2020)1. Similar initiatives have been
undertaken in China and in the USA (for instance, the CESAR2 project or the CASL3 consor-
tium). The final goal of these efforts is to pave the way towards a full “digital reactor core”,
allowing even extreme (i.e., inaccessible to experimental evidence) conditions to be probed and
the associated uncertainties to be quantified.

In order to understand the context of the work done in this field, in the following we provide
a non-exhaustive list of the coupling efforts that have been conducted between Monte Carlo
neutron transport and thermal-hydraulics codes, as well as of the development of kinetic Monte
Carlo methods.

One of the first attempts at coupling a Monte Carlo and a thermal-hydraulics code appears to
have been performed with the Monte Carlo code MCNP (X-5 Monte Carlo Team, 2003). Sev-
eral couplings were set up, all in stationary conditions, i.e., without taking into account the time-
dependence, and with thermal-hydraulics at different scales. The first used CFD codes, with the
very first attempt (Mori et al., 2003) between MCNP4C (Briesmeister, 2000) and SIMMER-
III (Yamano et al., 2003). However, because of the computation time limitation, only a one-set
coupling was implemented: SIMMER-III was run as a first step, and the resulting temperatures
and densities were introduced in the MCNP4C model, without any other thermal-hydraulics up-
date. The first real couplings were later performed (Seker et al., 2007; Cardoni, 2011) between
MCNP5 and the CFD codes STAR-CD (CD-adapco, 2005) and STAR-CCM+ (CD-adapco,
2009). Test cases were limited to small systems: up to a 3x3 array of pin cells.

Sub-channel codes have been also considered: an internal coupling between MCNP5 and
the thermal-hydraulics sub-channel code COBRA-TF (Avramova and Salko, 2016) was imple-

1cordis.europa.eu/projects
2cesar.mcs.anl.gov
3www.casl.gov
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mented by Sanchez and Al-Hamry (2009). This enabled for stationary coupled calculations for
a fuel assembly. In order to further increase the size of the simulated systems, MCNP5 was then
coupled to the thermal-hydraulics system code ATHLET (Lerchl and Austregesilo, 1998) at as-
sembly level (Bernnat et al., 2012). The speed of the system code made it possible to perform
stationary coupled calculations on a full PWR core, in the context of the PURDUE bench-
mark (Kozlowski and Downar, 2007). On-the-fly Doppler broadening was later introduced in
MCNP to take into account the temperature dependence of the cross sections (Yesilyurt et al.,
2012).

Intensive efforts were also made for multi-physics calculations with the Monte Carlo code
Serpent 2 (Leppänen et al., 2015). A multi-physics interface was implemented (Leppänen et al.,
2012), including internal solvers for the resolution of the heat transfer equation in the fuel and
of thermal-hydraulics in the moderator. Serpent 2 can be also coupled with an external thermal-
hydraulics solver. The temperature dependence of the cross sections was taken into account
with the target motion sampling method (TMS) (Viitanen and Leppänen, 2012, 2014).

Serpent 2 was internally coupled to the sub-channel code SUBCHANFLOW (Imke and
Sanchez, 2012), using the multi-physics interface (Daeubler et al., 2015). This coupling was
verified by code-to-code comparison on two 3x3 mini cores: against the coupling between the
Monte Carlo code TRIPOLI-4® (Brun et al., 2015) and SUBCHANFLOW (Sjenitzer et al.,
2015), and against the coupling between MCNP5 and SUBCHANFLOW (Ivanov et al., 2013a).
The coupling work between Serpent 2 and SUBCHANFLOW also made it possible to perform
coupled calculations on the full PWR benchmark mentioned above (Kozlowski and Downar,
2007). All the simulations concerned the stationary state of the reactor.

An external coupling between Serpent 2 and the thermal-hydraulics CFD code OpenFOAM (Open-
FOAM Foundation, 2017) was then implemented through the multi-physics interface by Tuomi-
nen et al. (2016) using external files. This work provided a new coupling between a Monte Carlo
code and thermal-hydraulics at the CFD scale. Stationary calculations were performed on a fuel
assembly with 4x4 pins (for this reduced test case, about 2 millions cells were used). However,
extending these calculations to larger systems using this coupled tool seems hardly feasible,
given the large number of cells required by CFD. Other couplings were recently performed with
CFD codes, over small systems such as a pin cell (Wang et al., 2018), and even a TRIGA reac-
tor (Henry et al., 2017).

All these works concerned stationary coupled calculations: up to full cores with sub-channel
or system codes, or small systems with CFD codes. For the resolution of transient problems, the
coupling infrastructure and the methods need to be adapted. For this purpose, the first step was
the investigation of kinetic Monte Carlo methods: a summary of recent developments is given
in the following.

Sjenitzer and Hoogenboom (2013) and Hoogenboom and Sjenitzer (2014) were the first
to probe kinetic methods in a Monte Carlo code, for both TRIPOLI-4 and MCNP5, by tak-
ing into account the precursors, and using critical source sampling. Specific variance-reduction
techniques for kinetic Monte Carlo were tested, such as forced precursor decay (Légrády and
Hoogenboom, 2008) and branchless collisions. Russian roulette and splitting and combing (Booth,
1996) were also implemented as population control techniques. Their work enabled the first
Monte Carlo kinetic calculations for production neutron transport codes. Due to the high com-
puter cost, kinetic simulations have been performed so far at the scale of fuel assemblies.

13



INTRODUCTION

Kinetic methods were also implemented in the Monte Carlo code Serpent 2 by Leppänen
(2013). As a first step, delayed neutron emission was neglected and only prompt neutrons were
considered. The new methods were verified by comparison to MCNP5 calculations on two small
systems: Flattop-Pu and STACY-30 benchmarks (OECD Nuclear Energy Agency, 1995). This
work was later extended to the treatment of delayed neutrons by Valtavirta et al. (2016).

Mylonakis et al. (2017) developed a transient module with kinetic methods for the Monte
Carlo code OpenMC, including the generation of the critical source and the handling of one
precursor group. The Russian roulette was also implemented as a population control method.
The development of these methods made it possible to perform kinetic simulations of simplified
systems.

In order to perform low computational cost kinetic calculations, (Laureau et al., 2015, 2017)
has set up a time-dependent version of the fission matrix method. The matrices are computed
once with a preliminary Monte Carlo criticality calculation, and are discretized in time. Then,
the time evolution of the system is solved using the matrices.

GUARDYAN, a new Monte Carlo code for time-dependent calculations, was recently de-
veloped (Molnar et al., 2019), using Graphics Processing Units (GPUs) for accelerated calcu-
lations. Kinetic simulations of a whole core transient were performed on the Training Reactor
at Budapest University of Technology and Economics, and validated against experimental data.
A good agreement was obtained between simulation results and experimental data, showing an
attractive application of GPUs for Monte Carlo simulations.

Finally, Sjenitzer et al. (2015) were the first to combine the kinetic methods with thermal-
hydraulics. An external coupling was performed between TRIPOLI-4 and the sub-channel
code SUBCHANFLOW. This work resulted in the first coupling between a Monte Carlo code
and a thermal-hydraulics code in non-stationary conditions. Transient calculations were per-
formed on a mini-core with 3x3 assemblies, and were compared to the results obtained by
DYNSUB (Gomez-Torres et al., 2012), the coupling scheme between the deterministic code
DYN3D (Grundmann et al., 2005) and the thermal-hydraulics sub-channel code FLICA (Toumi
et al., 2000).

All these investigations reveal that, thanks to the growing computer power, it is now feasible
to apply Monte Carlo methods to the calculation of non-stationary configurations. However,
much progress must still be achieved for the kinetic Monte Carlo methods, which require spe-
cific variance-reduction techniques in order to reduce the computational time. Moreover, kinetic
methods and the coupling with thermal-hydraulics are most often handled separately. Also, the
feedbacks are mostly dealt with by using sub-channel codes. In order to improve the accuracy
of thermal-hydraulics modeling, attempts at coupling Monte Carlo neutron transport with CFD
codes have been considered; however, further investigations are necessary in order to meet the
different challenges listed above: computer time and memory handling.

The work performed in the present Ph. D. thesis provides some advances in the context of
the coupled simulations of non-stationary neutron transport with thermal-hydraulics feedbacks.
In particular, the goal of this Ph. D. thesis is to develop, verify and test a non-stationary coupling
scheme between the Monte Carlo code TRIPOLI-4 and the thermal-hydraulics sub-channel code
SUBCHANFLOW, so as to provide a reference tool for the simulation of reactivity-induced

14



INTRODUCTION

transients in PWRs. The coupling is intended to be generic in scope, in order to simplify future
couplings with thermomechanics and thermal-hydraulics codes via integration in the SALOME
platform (Bergeaud and Lefebvre, 2010; SALOME, 2019). The stability and the robustness of
the proposed algorithms are extensively analysed.
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Plan of the thesis

This work is divided in three parts: first, the development of kinetic methods in TRIPOLI-
4 is investigated, i.e., solving the time dependent neutron-precursor coupled problem without
thermal-hydraulics feedbacks, with special focus on variance-reduction techniques for the time
variable. Second, “dynamic” methods are adressed with the combination of kinetic methods
with thermal-hydraulics via the development of a coupling scheme between TRIPOLI-4 and
SUBCHANFLOW and the investigation of the resulting algorithms. Finally, a preliminary work
for the stability analysis of the coupling scheme is presented. The detailed plan of the thesis is
the following.

The physical mechanisms involved in a nuclear reactor are briefly recalled in Chapter 1. The
basis of nuclear interactions is presented, as well as the two different approaches to solve the
neutron transport equation: deterministic and Monte Carlo methods. The intimate coupling be-
tween neutron transport, thermal-hydraulics and thermomechanics in PWRs is also introduced.

In Chapter 2, we illustrate the necessary methodology for kinetic simulations in TRIPOLI-
4, without taking into account thermal-hydraulics feedbacks. The required algorithms are de-
scribed, such as the time dependence, the sampling of the source, but also the population-control
and variance-reduction techniques, which are necessary for kinetic calculations. A critique of
the proposed methods is presented, which is essential to select the most suitable algorithms
based on the characteristics of the system. We will focus in particular on the development of a
new variance-reduction method carried out during the thesis. This new algorithm is well suited
to fast kinetic configurations, where other methods fail to improve the statistics. The description
of the method was published in Faucher et al. (2018), and its efficiency was assessed in Faucher
et al. (2019a). Another key contribution is also presented: the capacity of TRIPOLI-4 to handle
different input geometries within the same simulation, which is essential in order to update the
system configuration during the time evolution, such as for the insertion or extraction of the
control rods.

In Chapter 3, we will then verify the capacity of TRIPOLI-4 to perform kinetic simulations
on realistic systems. Several simulations will be performed on the experimental reactor SPERT
III E-core in different configurations: critical, control rod extraction and rod drop. The calcu-
lations have been published in (Faucher et al., 2018) mentioned above. Other calculations are
presented, on a mini-core based on the TMI-1 (Three Mile Island) reactor, and were published
in a verification work through a comparison with the Monte Carlo code Serpent 2 for different
reactivity insertions (?). We will also present our preliminary investigation of the correlations
between time steps. The dependency of the relative uncertainty on the discretization of the ki-
netic scoring mesh will be also examined.

The following step is to develop the coupling scheme between TRIPOLI-4 and SUBCHAN-
FLOW: materials and methods are provided in Chapter 4. For this purpose, we have set up
a multi-physics interface for TRIPOLI-4 through the development of an application program-
ming interface (API) combined with an external supervisor that is able to control the TRIPOLI-4
simulation. Then, in order to couple TRIPOLI-4 and SUBCHANFLOW, we adhered to the spec-
ifications of the SALOME platform, such as the ICoCo API for the coupling interface and the
MEDCoupling library for the data exchange between the two codes. The architecture of the
coupling scheme was published in Faucher et al. (2019b).

The work described in Chapter 5 aims at verifying the capacity of the coupling scheme to
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perform criticality calculations with thermal-hydraulics feedbacks, so as to provide the initial
steady-state for coupled transients. As a verification test, we will perform a coupled calculation
of an assembly based on the TMI-1 reactor, and we perform a code-to-code comparison with
respect to the coupling scheme between Serpent 2 and SUBCHANFLOW. This work was de-
scribed in the publication (Faucher et al., 2019b) mentioned above.

Then, in Chapter 6, we demonstrate the coupling scheme capability to simulate transients
with thermal-hydraulics feedbacks. Calculations will be performed on the mini-core benchmark
based on the TMI-1 reactor: first the system will be simulated at steady state so as to verify its
stability; then we will introduce reactivity in the system so as to probe the effects of the thermal-
hydraulics feedbacks.

Due to the stochastic nature of the outputs produced by TRIPOLI-4, uncertainties are in-
herent to our coupling scheme and propagate along the coupling iterations. Moreover, thermal-
hydraulics equations are non linear, so the prediction of the propagation of the uncertainties is
not straightforward. The stability analysis of the coupling scheme is investigated in Chapters 7
(description of a simplified model) and 8 (analysis of the simplified model), in order to assess
its convergence. This is a preliminary study aimed at quantifying the uncertainties in dynamic
calculations.
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Chapter 1

Description of the physical
mechanisms in a nuclear reactor

In this chapter we recall the key features of neutron transport with special emphasis on the time-
dependent aspects, which are a key issue for understanding the different challenges encountered
in this work. We also detail how nuclear reactor physics, thermal-hydraulics and thermome-
chanics are intimately coupled.

1.1 Nuclear interaction probability

1.1.1 Microscopic cross sections

Neutron transport is characterized by the different types of nuclear interactions that can take
place between an incident neutron and a target nucleus: for example, scattering, capture, or
fission (Bell and Glasstone, 1970). All nuclear interactions are described by microscopic cross
sections, which carry the dimensions of an area, usually expressed in units of barns (1 barn =

10−24 cm2). This value is roughly proportional to the cross-sectional area of the nucleus (the
typical radius of a nucleus is about 10−12 cm) and corresponds to the apparent area of the target
particle as seen by the incident particle. Partial cross sections are also related to the probability
of occurence of a given interaction: the higher the cross section for a given reaction type, the
more likely is the interaction to occur.

Cross sections depend on the nature of the interaction but also on the nature of the incident
and target particles, as well as on their energies. Cross sections can be experimentally measured
at particular energies. Experimental data, often completed with the help of models, are evalu-
ated and compiled into nuclear data libraries in standard format that can be read by transport
codes. Examples of nuclear data librairies are JEFF-3.1 (Santamarina et al., 2009) or ENDF/B-
VII (Chadwick et al., 2006).

At each collision, the probability of interaction is determined based on the partial cross sec-
tion for each type of reaction, evaluated at the energy of the incident particle. For example,
when an incident neutron collides with a heavy fissile nucleus, the fission probability is char-
acterized by the ratio between the fission and the total cross sections. Figure 1.1 shows the
microscopic fission cross section for uranium-235 (blue line), plotted against the energy of the
incident neutron, for a range between 10−5 eV and 30 MeV. The dependency on the neutron
energy is clearly visible: the fission cross section is much larger at low (thermal) energies. The
cross section for uranium-238 is also plotted (orange line): it is smaller than for uranium-235.
In PWRs, water is used as moderator, and thermalizes neutrons through multiple collisions. In
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Figure 1.1 – Fission cross section for uranium-235 (blue line) and uranium-238 (orange line),
as a function of the energy of the incident neutron. Data come from the JEFF-3.3 library (table
MT=18).

order to increase the probability of thermal fissions in PWRs, isotopes with high thermal fission
cross sections must be used: this is why natural uranium, mainly consisting of uranium-238, is
enriched in uranium-235.

1.1.2 Macroscopic cross sections

Macroscopic cross sections Σ are related to microscopic cross sections σ through the target
particle density N [cm−3]:

Σ = Nσ, (1.1.1)

and are expressed in cm−1. Macroscopic cross sections describe the probability for a neutron
to interact with a material per unit length. For a material with k nuclei, the macroscopic cross
section is given by

Σ = N1σ1 + N2σ2 + ... + Nkσk. (1.1.2)

1.2 Equations for neutron and precursor evolution

1.2.1 Transport equation for neutrons coupled with equation for precursors

The angular neutron flux ϕ(r, 3, t) fully characterizes the system behaviour. It is defined by

ϕ(r, 3, t) = 3n(r, 3, t), (1.2.1)

with r the position vector, 3 the velocity, t the time, 3 = 3 ·Ω the neutron speed, Ω the angular
direction vector and n the neutron density.

The evolution of the neutron flux is described by the time-dependent Boltzmann equation,
coupled with the equations for the precursors concentrations ci, j (with i the isotope and j its
precursor family), which read (Bell and Glasstone, 1970)

1
3

∂

∂t
ϕ(r, 3, t) + Lϕ(r, 3, t) = Fp ϕ(r, 3, t) +

∑
i, j

χ
i, j
d (r, 3)λi, jci, j(r, t) + S(r, 3, t) (1.2.2)
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and
∂

∂t
ci, j(r, t) =

∫
ν

i, j
d (3′)Σi

f (r, 3
′)ϕ(r, 3′, t) d3′ − λi, jci, j(r, t), (1.2.3)

with the net disappearance operator

L f = Ω · ∇ f + Σt(r, 3) f −
∫

Σs(r, 3′ → 3) f (r, 3′) d3′, (1.2.4)

and the prompt fission operator

Fp f =
∑

i

χi
p(r, 3)

∫
νi

p(3′)Σi
f (r, 3

′) f (r, 3′) d3′. (1.2.5)

Notation is as follows: Σt is the total macroscopic cross section, Σs is the differential scattering
macroscopic cross section, χi

p is the normalized spectrum for prompt fission neutrons of isotope
i, νi

p is the average number of prompt fission neutrons of isotope i, Σ f is the fission cross section,
χ

i, j
d is the normalized spectrum of delayed neutrons emitted from precursor family j of isotope i,
λi, j is the decay constant of precursor family j of isotope i, νi, j

d is the average number of delayed
fission neutrons of precursor family j of isotope i, and the double sum is extended over all fissile
isotopes i and over all precursor families j for each fissile isotope.

The equations above are completed by assigning the proper initial and boundary conditions
for ϕ and ci, j. The quantity S(r, 3, t) represents the contribution due to an external source. We
have assumed here that all physical parameters (such as cross sections, velocity spectra, and so
on) are time-independent (Keepin, 1965; Akcasu et al., 1971). If N fissile isotopes are present,
each associated to M precursors families, Eqs. (1.2.2) and (1.2.3) form a system of 1 + N × M
equations to be solved simultaneously. In order to keep notation simple in the following, we
will only consider one isotope, so we drop the index i on the isotopes.

1.2.2 Eigenmode decomposition

k-eigenmodes

We consider the system without external source, i.e. S(r, 3, t) = 0. By replacing the precursor
Eq. (1.2.3) into Eq. (1.2.2) for the neutron flux, we get

1
3

∂

∂t
ϕ(r, 3, t) + Lϕ(r, 3, t) = Fp ϕ(r, 3, t) +

∑
j

χ
j
d(r, 3)

∫
ν

j
d(3′)Σ f (r, 3′)ϕ(r, 3′, t) d3′

−
∑

j

χ
j
d(r, 3)

∂

∂t
c j(r, t).

(1.2.6)

Now if we seek a stationary solution of Eq. (1.2.6), we get

Lϕ(r, 3) = Fp ϕ(r, 3) +
∑

j

χ
j
d(r, 3)

∫
ν

j
d(3′)Σ f (r, 3′)ϕ(r, 3′) d3′. (1.2.7)

By defining the total fission operator F = Fp + Fd, including the prompt fission operator, as
defined by Eq. (1.2.5), and the delayed fission operator

Fd f =
∑

j

χ
j
d(r, 3)

∫
ν

j
d(3′)Σ f (r, 3′) f (r, 3′) d3′, (1.2.8)
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Eq. (1.2.7) can be rewritten as
Lϕ(r, 3) = F ϕ. (1.2.9)

The k-eigenmodes ϕk associated to the Boltzmann equation Eq. (1.2.2) emerge by imposing that
the system should be exactly critical without external sources and asking by which factor k the
fission terms should be rescaled in order to make the time derivative vanish (Bell and Glasstone,
1970; Cullen et al., 2003):

Lϕk(r, 3) =
1
k

F ϕk(r, 3). (1.2.10)

α-eigenmodes

For bounded domains, using the separation of variables, an exponential relaxation of the kind

ϕ(r, 3, t) = ϕα(r, 3)eαt (1.2.11)

and
c j(r, t) = c j

α(r)eαt (1.2.12)

may be postulated for both the neutron flux and the precursors concentrations. Here the value
α represents the relaxation frequency (Bell and Glasstone, 1970; Duderstadt and Martin, 1979).
Eqs. (1.2.11) and (1.2.12) can be more rigorously justified by resorting to Laplace transform
or equivalently to spectral analysis (Duderstadt and Martin, 1979). Yet, proving the feasibility
of such a relaxation is highly non-trivial in general, and precise (although not very restrictive)
conditions are required on the geometry of the domain and on the material cross sections (Bell
and Glasstone, 1970; Larsen and Zweifel, 1974; Duderstadt and Martin, 1979). Here, for the
sake of simplicity, we will assume that such conditions are met (which is typically the case for
almost all systems of practical interest) and that separation of variables is allowed.

Then, substituting Eqs. (1.2.11) and (1.2.12) into Eqs. (1.2.2) and (1.2.3), respectively, yields
the (coupled) natural eigenmode equations

α

3
ϕα(r, 3) + Lϕα(r, 3) = Fp ϕα(r, 3) +

∑
j

χ
j
d(r, 3)λ jc

j
α(r) (1.2.13)

and
αc j

α(r) =

∫
ν

j
d(3′)Σ f (r, 3′)ϕα(r, 3′) d3′ − λ jc

j
α(r), (1.2.14)

which formally represent a system of eigenvalue equations for the flux ϕα and the precursors c j
α,

the eigenvalues being α.

It is customary to formally solve Eq. (1.2.14) for the precursor concentration and to replace
the resulting c j

α into Eq. (1.2.13). This yields the eigenvalue problem for ϕα (Weinberg, 1952;
Cohen, 1958; Henry, 1964; Bell and Glasstone, 1970)

α

3
ϕα(r, 3) + Lϕα(r, 3) = Fp ϕα(r, 3) +

∑
j

λ j

λ j + α
F j

d ϕα(r, 3). (1.2.15)

The inverse of the largest eigenvalue α0 for this equation is commonly referred to as the “re-
actor period” (Cohen, 1958; Henry, 1964; Kaper, 1967; Bell and Glasstone, 1970). It provides
information on the asymptotic time behaviour of the system in any regime. For an example of
application of the dominant natural eigenvalue in reactor physics, see, e.g., Zoia et al. (2014a,
2015).
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Observe that, if α = 0 is an admissible dominant eigenvalue of Eq. (1.2.15), then Eq. (1.2.10)
admits a solution with k = 1 and ϕα = ϕk. Contrary to the k-eigenmodes Eq. (1.2.10), the
natural eigenmode Eqs. (1.2.13) and (1.2.14) are well defined also for non-multiplying systems,
in which case we have

α

3
ϕα(r, 3) + Lϕα(r, 3) = 0. (1.2.16)

1.2.3 Point-kinetics via the k-eigenmodes

The so-called point-kinetics equations are introduced in reactor physics so as to condense the
behaviour of the neutron and precursor population to a model where only the time dependence
is left (Bell and Glasstone, 1970). The equations are formally obtained from the exact time-
dependent Boltzmann equation weighted by the adjoint flux. The equation adjoint to Eq. (1.2.10)
is

L† ϕ†k(r, 3) =
1
k

F† ϕ†k(r, 3). (1.2.17)

where ϕ†k denotes the adjoint critical eigenmode for the neutron flux, and the adjoint of a linear
operator L is defined as customary via the relation

〈L f , g〉 = 〈 f ,L†g〉, (1.2.18)

with 〈 f , g〉 the scalar product between functions f and g.

The first step consists in multiplying the time-dependent Eq. (1.2.2) by the fundamental
adjoint k eigenmode and by multiplying the equation for the adjoint k eigenmode by the time-
dependent neutron flux ϕ(r, 3, t). The resulting equations are then integrated over space, energy
and angle, which yields

∂

∂t
〈ϕ†k(r, 3),

1
3
ϕ(r, 3, t)〉 + 〈ϕ†k(r, 3), Lϕ(r, 3, t)〉

= 〈ϕ†k(r, 3), Fp ϕ(r, 3, t)〉 +
∑

j

λ j〈ϕ
†

k(r, 3), χ j
d(r, 3)c j(r, t)〉 (1.2.19)

and
〈ϕ(r, 3, t), L† ϕ†k(r, 3)〉 =

1
k
〈ϕ(r, 3, t), F† ϕ†k(r, 3)〉. (1.2.20)

By subtracting these equations from each other and using Eq. (1.2.18), we get

∂

∂t
〈ϕ†k ,

1
3
ϕ〉 +

1
k
〈ϕ†k , F ϕ〉 = 〈ϕ†k , Fp ϕ〉 +

∑
j

λ j〈ϕ
†

k , χ
j
dc j〉, (1.2.21)

which we can rewrite as

∂

∂t
〈ϕ†k ,

1
3
ϕ〉 =

k − 1
k
〈ϕ†k , F ϕ〉 − 〈ϕ†k , Fd ϕ〉 +

∑
j

λ j〈ϕ
†

k , χ
j
dc j〉. (1.2.22)

Now, suppose that the time-dependent neutron flux can be factorized as ϕ(r, 3, t) ' ñ(t)ϕk(r, 3),
i.e., the product of the fundamental k eigenmode (acting as a position- and velocity-dependent
shape factor) times an amplitude factor ñ(t) that depends only on time. This approximation is
assumed to be valid for small departures from the critical point, i.e., when k ' 1. By replac-
ing this flux decomposition into Eq. (1.2.22) we obtain an equation for the neutron population
amplitude ñ(t), namely,

∂

∂t
ñ(t) =

ρ − βeff

Λeff

ñ(t) +
∑

j

λ jc̃ j(t), (1.2.23)
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where we have defined the so-called static reactivity

ρ =
k − 1

k
, (1.2.24)

the effective delayed neutron fraction

βeff =
〈ϕ†k , Fd ϕk〉

〈ϕ†k , F ϕk〉
, (1.2.25)

the effective mean generation time

Λeff =
〈ϕ†k ,

1
3
ϕk〉

〈ϕ†k , F ϕk〉
, (1.2.26)

and the effective precursor concentrations

c̃ j(t) =
〈ϕ†k , χ

j
dc j〉

〈ϕ†k ,
1
3
ϕk〉

. (1.2.27)

The kinetics parameters βeff and Λeff appearing in Eq. (1.2.23) are called “effective” because
they have been weighted by the adjoint eigenmode, which physically represents the asymptotic
importance of the neutron population in a multiplying system (Keepin, 1965; Bell and Glas-
stone, 1970).

Eq. (1.2.23) yields the time evolution of the neutron population, under the approximations
introduced above. The neutron evolution must be coupled to the equations for the effective
precursor concentrations, which can be derived by following the same arguments as above, and
read

∂

∂t
c̃ j(t) =

β j,eff

Λeff

ñ(t) − λ jc̃ j(t), (1.2.28)

where we have defined the effective delayed neutron fractions pertaining to each family j, i.e.,

β j,eff =
〈ϕ†k , F

j
d ϕk〉

〈ϕ†k , F ϕk〉
. (1.2.29)

Other useful formulas for point-kinetics analysis are provided in Sec. A.1.

1.3 Fission chains

After a fission reaction with the incident neutron, the fissile nucleus typically splits in two lighter
nuclei, called fission products. Other particles are also emitted, including new neutrons, which
may trigger new fissions. This branching process, where neutrons give birth to other neutrons, is
called a “fission chain”, the control of which is essential for the operation of a reactor. A fission
chain ends when there are no more neutrons to induce new fissions, i.e., when all neutrons from
the fission chain got captured or leaked out of the system.
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1.3.1 Multiplication factor

To define the sustainability of a fission chain, the effective neutron multiplication factor keff is de-
fined as the average ratio between the number of neutrons in successive generations. When each
fission causes one fission on average, the effective neutron multiplication factor keff is equal to
1 and the system is called “critical” (Keepin, 1965). In this case, the reaction is self-sustaining.
Such stable chain is the basis for energy production in a nuclear reactor. If keff it larger than 1,
the system is “supercritical”; in the absence of feedback effects, there is an exponential growth
of the neutron population. Conversely, if is is smaller than 1, the system is “subcritical” and the
population eventually dies out.

Another quantity commonly used to characterize the sustainability of the fission chains is
called the “reactivity”, which is defined as

ρ =
keff − 1

keff

. (1.3.1)

It is usually measured in pcm (1 pcm = 10−5), or in dollars (1 $ = βeff, with βeff the effective
delayed neutron fraction defined by Eq. (1.2.25)). The reactivity expresses the deviation from
the system with respect to criticality.

1.3.2 Neutrons and precursors

Two types of neutrons are released by fission, as illustrated in Fig. 1.2: prompt neutrons, emitted
almost instantaneously after fission, and delayed neutrons, coming from the β− decay of unsta-
ble fission products, called “precursors” (Keepin, 1965). Precursors are characterized by their
decay constant λ [s−1], i.e., the average decay time for a fission product to give rise to a delayed
neutron by β− decay. In nuclear data librairies, the different precursors are regrouped in families
depending on their decay time (e.g., there are 8 families in the JEFF-3.1 library (Santamarina
et al., 2009)).

Prompt and delayed neutrons have very different characteristics, as detailed below and sum-
marized in Table 1.1. Here, λ is the typical decay constant of the precursors (each precursor
family j has its own decay constant λ j). All the parameters depend on the fuel composition and
the configuration of the reactor core.

The prompt multiplication factor kp and the delayed multiplication factor kd can be defined
as

kp = (1 − βeff) × keff, (1.3.2)

kd = βeff × keff, (1.3.3)

keff = kp + kd. (1.3.4)

Energy

Prompt neutrons are emitted with an average kinetic energy around 2 MeV. Yet, as mentioned
in Sec. 1.1, fission is more likely to happen when the energy of the incident neutron falls below
1 eV. Because of their large emission energy, prompt neutrons have to slow down before in-
ducing fission. In contrast, delayed neutrons are created with a lower energy (around 400 keV),
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prompt neutrons delayed neutrons

emission energy 2 MeV 400 keV
associated time scale Λeff ≈ 20 µs λ−1 ≈ 1 s
average number per fission νp ≈ 2.4 νd ≈ 0.017

Table 1.1 – Different characteristics of prompt and delayed neutrons (typical values for uranium-
235 are given, with βeff ≈ 700 pcm).

and therefore are less likely to disappear by leakage or capture, before inducing fission. Essen-
tially, delayed neutrons have a higher probability to induce a thermal fission (Duderstadt and
Hamilton, 1976).

The delay of delayed neutrons

Neutrons and precursors have very different typical time scales; the generation time for prompt
neutrons is about Λeff ≈ 20 µs, while the precursors decay time is about λ−1 ≈ 10 s (these are
typical values for a PWR). Because of this difference of scale, delayed neutrons slow down the
time evolution of the system due to a change in reactivity. This is the reason why delayed neu-
trons play a major role in nuclear reactor control.

In a critical system (keff = 1), there are (1 − βeff) prompt neutrons and βeff delayed neutrons.
Thus, the neutron effective lifetime leff, combining prompt and delayed neutrons lifetime, is
defined as (Duderstadt and Hamilton, 1976)

leff = (1 − βeff) × Λeff +
∑

j

βeff, j(
1
λ j

+ Λeff) (1.3.5)

= Λeff +
∑

j

βeff, j

λ j
. (1.3.6)

Unbalanced ratio

The quantities βeff/Λeff and λ provide the rates at which a neutron is converted into a precursor,
and conversely. The typical ratio βeff/(λ × Λeff) is of the order of 104 for water-moderated
reactors. This implies that, when the neutron and precursor populations are in equilibrium,
precursors are considerably more abundant than neutrons within the core. This suggests that
the Monte Carlo simulation of such unbalanced populations (in terms of size and time scale)
requires strategies and variance-reduction techniques that are distinct from those of stationary
simulations.

1.3.3 Fission chain length

When kp < 1, prompt fission chains are finite and eventually die out. Criticality is ensured by
the presence of delayed neutrons. Indeed, each fission chain produces on average one precursor,
which emits a delayed neutron after a decay time larger than the chain lifetime, thus after the
prompt fission chain has died. Therefore, the delayed neutron does not participate in the fission
chain that created it but starts a new one instead. In such cases (kp < 1), the average length n̄ of
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neutron

fissile nucleus

precursor

prompt neutrons

fission product

fission product

delayed neutron

Figure 1.2 – Schematic depicture of neutron-induced fission with the different particles pro-
duced. After the fission, prompt neutrons and precursors are emitted almost instantaneously
while delayed neutrons are emitted after precursors decay.

the fission chain is given by (Sjenitzer and Hoogenboom, 2011a):

n̄ =
1

1 − kp
. (1.3.7)

For instance, if the system is exactly critical, kp = 1 − βeff, and the average fission chain length
is n̄ = 1/βeff.

When the system is prompt critical or supercritical (i.e., kp ≥ 1), however, prompt neutrons
alone are sufficient to maintain the chains, and some chains grow indefinitely. Some neutrons
might get prematurely captured or leak, thus terminating the chain, but on average the fission
chains are infinite.

1.4 Deterministic methods for solving transport equation

Deterministic methods solve the Boltzmann transport equation by discretizing the phase space:
space, energy, time and angle (for instance, SN for the decomposition on discrete directions, PN

for an expansion on the spherical harmonics and SPN , simplified PN). The advantage of such
methods is a reasonable computation time, obtained at the expense of discretization errors.

Until very recently, the simulation of neutron transport in non-stationary conditions was
entirely based on deterministic methods (which are usually fast for stationary conditions). For
transient regimes, due to the very large number of unknowns (∼ 1014) resulting from a fine
discretization of phase space variables (space, angle, velocity and time), current state-of-the-art
industrial codes employ a two-step approach: a detailed transport calculation at the lattice scale
in stationary conditions in two dimensions is followed by a time evolution calculation for the
neutron flux at the core scale, based on the cross sections determined in the course of the first
step. The time-dependent step is typically carried out in simplified transport models (diffusion
or SPN , for instance) with a coarse energy discretization (Smith, 1979; D’Auria et al., 2004;
Dulla et al., 2008; Larsen, 2011; Zhu, 2015).
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Since the approximations introduced in the deterministic approach are problem-dependent
(i.e., specific to each reactor type), the validity of the results thus obtained, as well as the as-
sessment of the associated uncertainties, depend on the configuration under analysis (D’Auria
et al., 2004; Dulla et al., 2008; Larsen, 2011). Thus, in order to relax these constraints and
to consolidate the validation of deterministic codes, it is mandatory to develop a best estimate
method (IAEA, 2003). This is especially true in view of the small number of experimental
measurements available for transient reactor operation or accidents (IAEA, 2015).

1.5 Monte Carlo particle transport

1.5.1 Principle

Monte Carlo simulation is based on the realization of a large number of stochastic neutron
trajectories, whose probability laws are determined in agreement with the underlying physical
properties (the probability of particle-matter interaction, energy and angle distributions after
collision, and so on). The transport simulation follows a random walk from one interaction to
the next. The distance to the next collision is sampled according to the total macroscopic cross
section; the particle is transported to this point and finally the interaction is sampled depending
on the nucleus at the collision site. Monte Carlo methods allow for an exact treatment of the re-
actor geometry (Lux and Koblinger, 1991). Accordingly, Monte Carlo simulation is considered
as the “golden standard” for neutron transport calculations (Bell and Glasstone, 1970; Lux and
Koblinger, 1991).

Consider the time-independent version of Eq. (1.2.2)

Lϕ(r, 3) = Fp ϕ(r, 3) +
∑

j

χ
j
d(r, 3)λ jc j(r) + S(r, 3), (1.5.1)

where
c j(r) =

1
λ j

∫
ν

j
d(3′)Σi

f (r, 3
′)ϕ(r, 3′) d3′. (1.5.2)

This equation describes a so-called “fixed-source” problem; in the following we will show how
the problem is adressed with a Monte Carlo simulation. A source and a detector must be defined
in the phase space. The purpose of the simulation is to estimate the response in the detec-
tor, meaning collecting the contributions of neutrons reaching a given phase-space region. In
practice, N neutrons are emitted from the source and are transported through the phase space.
Assuming that the simulated system is made of a homogeneous medium characterized by a total
macroscopic cross section Σt, the exponentially distributed distance x between two interactions,
travelled by a neutron with an energy E, is sampled from the equation

x = −
1

Σt(E)
ln(1 − ξ), (1.5.3)

with ξ a random number, uniformly distributed in the interval [0,1]. Note that, if the space is not
homogeneous, the flight has to be split in different volumes, and, if x is larger than the distance
to the boundary of the particle initial volume, the particle is first stopped at the volume boundary
and the next flight length is then sampled.

At the new sampled position, the interacting nucleus k is chosen with probability

pk =
Σk,t(E)
Σt(E)

, (1.5.4)
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with Σk,t(E) the total macroscopic cross section for nucleus k.

Finally, the interaction l on nucleus k is sampled using the probability

pk,l =
σk,l(E)
σk,t(E)

, (1.5.5)

with σk,l(E) the microscopic cross section for nucleus k associated to the interaction l.

After the interaction, if the neutron is still alive (it can be absorbed, or killed by the Russian
roulette presented in Sec. 1.5.2), the distance to the next collision is sampled, and so on, until
the particle is killed or the simulation stops. Neutron contributions are collected if they reach the
detector. The whole process of transporting N particles is repeated M times (i.e., the statistical
ensemble) with a different random seed each time.

The contributions being averaged over M independent replicas, the result comes with a
statistical uncertainty on the ensemble average, which is inversely proportional to square root of
the number of histories. Thus, the only reason for fluctuations in the results is the limited number
of simulated trajectories. In order to accumulate significant statistics, Monte Carlo codes must
simulate a large amount of particles. The order of magnitude is problem-dependent but it is
usually very large. Hence, Monte Carlo simulations are very time-consuming. Fortunately,
Monte Carlo particle transport codes generally have excellent parallel scalability, and are even
sometimes “embarrassingly” parallel (Rosenthal, 1999). Indeed, since neutron histories are
independent, each processor can follow its own set of particles. Parallel simulation allows for
a considerable speed-up, in principle of the order of the number of available processors. When
all processors have completed the simulation of particle histories, the final results are collected.

1.5.2 Variance-reduction and population-control techniques

The convergence of Monte Carlo simulations directly depends on the number of simulated par-
ticles, which also governs the computation time. In order to improve the convergence without
slowing down the computation time, physical laws are not systematically enforced; it is possible
to alter the physical processes as long as a compensation is applied elsewhere to keep the results
unbiased. For this purpose, a so-called “statistical weight” is assigned to each particle at the be-
ginning of the simulation, and evolves along the simulation so as to compensate the introduced
changes in the sampling rules. However, the “variance-reduction” techniques require to control
the statistical weights and size of the population in order to ensure that they do not vary too
much. Such Monte Carlo simulations are called “non-analog”, as opposed to those preserving
the regular sampling laws, which are called “analog”. The most representative examples of a
variance-reduction technique, implicit capture, and of a population-control technique, Russian
roulette and splitting, are presented below.

Implicit capture

In the absence of fission, a neutron having a collision can be either scattered or captured. In the
second case, it is “killed”, meaning it is removed from the simulation. The probability pa for a
neutron having a collision to be absorbed is

pa =
σa

σt
, (1.5.6)

and the complementary probability ps not to be absorbed (i.e., to be scattered) is

ps = 1 −
σa

σt
, (1.5.7)
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with σa the microscopic absorption cross section and σt the microscopic total cross section.
Implicit capture allows the particles to explore the phase space rather than being absorbed. In
other words, particles are forced to scatter. In order to preserve a fair Monte Carlo game, the
particle weights are multiplied by a factor ps < 1. This way, the neutron weight decreases at
each collision.

Russian roulette and splitting

At some point in the simulation, particle weights may become very low (for instance because
of implicit capture). In that case, particles slow down the calculation without contributing much
to the statistics. With implicit capture preventing particles to be absorbed, only leakage can kill
particles. Thus, implicit capture has to be combined with other methods. The Russian roulette
method helps to terminate particle histories. If the particle weight drops below a predefined
threshold (usually 0.8), then a random number is generated. If it is below the initial weight, the
particle is killed. Otherwise, its weight is set to a predefined value (usually 1). On the contrary,
if the particle weight is above another predefined threshold (usually 2), it is split into several
particles, each carrying a fraction of the original weight.

1.5.3 TRIPOLI-4

TRIPOLI-4 is a 3D continuous-energy Monte Carlo particle transport code devoted to shielding,
reactor physics, criticality-safety and nuclear instrumentation. It can solve both fixed-source
transport and eigenvalue problems. The code has been developed at CEA Saclay since the mid
90s in C++, with a few parts in C and Fortran. It uses nuclear data evaluation files written in
ENDF format. For the temperature dependence of the cross sections, stochastic interpolation
was implemented. TRIPOLI-4 supports execution in parallel mode. More details on this code
can be found in Brun et al. (2015). The work presented in this thesis was performed within a
development version of TRIPOLI-4.

1.6 Coupling between neutron transport, thermal-hydraulics and
thermomechanics

A nuclear reactor is a complex system whose behaviour depends on the strong coupling between
neutron transport, thermal-hydraulics and thermomechanics. The feedback effects involved are
essential to the reactor stability. Indeed, a PWR is designed so as to ensure that the feedback
effects are negative: any increase or decrease in the neutron power causes thermal-hydraulics
and thermomechanics feedbacks that counter-react these variations and thus keep the reactor
power stable. The main feedback effects are listed below.

1.6.1 Description of the feedback effects

As discussed above, microscopic cross sections strongly depend on the energy of the incident
neutron. As a consequence, microscopic cross sections are also temperature-dependent, because
of thermal motion of the collided nuclei, mainly via the Doppler effect. Moreover, macroscopic
cross sections depend on the temperature also via the density effect, which affects the concen-
trations of the nuclei per unit volume.

Fuel temperature

When the fission power increases, the fuel temperature also increases, inducing modifications of
cross sections. The most visible effect is the so-called “Doppler broadening” of the resonances in
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the radiative capture cross section of uranium-238. The thermal motion of target nuclei changes
the shape of the resonances: they become wider and flatter. With Doppler effect, neutrons are
more likely to be captured on uranium-238 and less likely to induce fission on uranium-235,
which leads to a decrease in fission power, thereby stabilizing the system. In a typical PWR, the
Doppler coefficient αF

T , is defined as

αF
T =

1
keff

dk
dTF

, (1.6.1)

with TF the fuel temperature, and ranges from −1 pcm/K to −4 pcm/K (Duderstadt and Hamil-
ton, 1976).

Moderator temperature and density

When the moderator temperature increases, neutrons are less slowed down, and the neutron
spectrum is hardened. This results in a reduction of absorption in uranium-235 as compared to
absorption in uranium-238. Therefore, the power decreases.

The main moderator effect occurs from changes in the density. When the moderator density
decreases, the macroscopic cross section decreases and the moderator becomes less efficient to
slow down the neutrons. Therefore, neutrons are less efficient at inducing fission, the power
decreases and the reactivity decreases. The two feedback effects in the moderator improve
reactor stability. The moderator coefficient αM

T , is defined as

αM
T =

1
keff

dk
dTM

, (1.6.2)

with TM the moderator temperature, and ranges from −8 pcm/K to −50 pcm/K (Duderstadt and
Hamilton, 1976).

Thermomechanics

The heating in the reactor core induces thermal expansion and deformation of the different
elements. For example, the fuel pellets expand at the expense of the gas gap, whose width
decreases. As a result, the heat transfer between the fuel pellet and the cladding increases.

1.6.2 Thermal-hydraulics solvers

Fluid dynamics is described by non-linear conservation equations, and different approaches exist
for their solution. For example, CFD codes finely model the physical exchanges, at the expense
of strong requirements in terms of computation time and memory. Sub-channel codes are faster
but make some approximations and solve the equations on a coarser mesh. Even if they provide
approximate solutions, they are reliable tools and are often used to study thermal-hydraulics
phenomena in nuclear reactor cores. System codes rely on an even less detailed description
of the physics and provide the response of the components under consideration in the form of
global averages. In the following, we focus on the sub-channel approach, which is used in this
work.

A sub-channel is the flow area delimited by adjacent fuel rods. Sub-channel codes only
consider two directions of the flow through sub-channels: axial and lateral (lateral covers all
directions orthogonal to axial direction). The axial length of each sub-channel is divided in
slices, and the flow is transmitted through these axial volumes. The axial flow is usually treated
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as the dominant one-dimensional flow, and the lateral flow is simplified. Lateral flow is assumed
to enter a sub-channel volume through “gaps”, formed by adjacent fuel rods. Examples of sub-
channel codes are COBRA-TF (Avramova and Salko, 2016), FLICA (Toumi et al., 2000) and
SUBCHANFLOW (Imke and Sanchez, 2012).

1.6.3 Conservation equations

Fluid dynamics is based on three fundamental equations, which are conservation equations for
mass

∂ρ

∂t
+ ∇ · (ρ

−→
V ) = 0, (1.6.3)

momentum
∂(ρ
−→
V )
∂t

+ ∇ · (
−→
V ⊗ ρ

−→
V ) − ∇ · τ + ∇P = ρ−→g , (1.6.4)

and energy

∂ρ

∂t
(ρ(e +

|
−→
V |2

2
)) + ∇ · (ρ(e +

−→
V 2

2
)
−→
V ) − ∇ · −→ϕ = ∇ · (τ ·

−→
V ) + ρ−→g ·

−→
V − ∇ · (P

−→
V ), (1.6.5)

with ρ the density,
−→
V the field velocity, ⊗ the outer product, τ the stress vector, P the pressure,

−→g the gravity acceleration vector, e the internal energy and −→ϕ the conductive heat flux vector.

Because of the limitation of the flow to two directions for sub-channel solvers, approx-
imations are introduced in the conservation equations. For instance, for mass conservation,
Eq. (1.6.3) becomes

∂ρ

∂t
+
∂(ρVx)
∂x

+
1
A

wk = 0, (1.6.6)

with Vx the axial speed, A the sub-channel flow area and wk the linear mass flow rate (kg m−1 s−1)
through the k-th gap.

Then, mass, momentum and energy conservation equations are discretized over the cells
of the mesh with a finite difference scheme. The resulting equations simultaneously solved by
SUBCHANFLOW in each cell are presented below (Imke and Sanchez, 2012).

Mass conservation

Ai, j
∆X j

∆t
(ρi, j − ρ

old
i, j ) + (mi, j − mi, j−1) + ∆X j

∑
k

wk, j = 0. (1.6.7)

Momentum conservation

The momentum conservation equation is decomposed in two equations: axial momentum

∆X j

∆t
(mi, j − mold

i, j ) + mi, jU′i, j + ∆X j

∑
k

wk, jU′k, j = −Ai, j(pi, j − pi, j−1) − gAi, j∆X jρi, j

−
1
2

(
∆X fφ2

Dhρl
+ Kv′)i, j|mi, j|

mi, j

Ai, j
− ∆X j

∑
k

w′k, j(U
′
i, j − U′n(k), j), (1.6.8)

and lateral momentum (where convective transport is neglected)

∆X j

∆t
(wk, j − wold

k, j ) + (Ū′k, jwk, j − Ū′k, j−1wk, j−1) =
sk

lk
∆X j∆pk, j−1 − (KG

∆Xv′k
sklk

) j|wk, j|wk, j. (1.6.9)
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Energy conservation

Ai, j

∆t
[ρ′′i, j(hi, j − hold

i, j ) + hi, j(ρi, j − ρ
old
i, j )] +

1
∆X j

(mi, jhi, j − mi, j−1hi, j−1) (1.6.10)

+
∑

k

wk, jhk, j = Qi, j −
∑

k

w′k, j(hi, j − hn(k), j). (1.6.11)

Notation in the previous expressions is as follows:

i : channel index,

j : slice index,

k : gap,

n(k) : channel neighbor belonging to gap k,

A : cross-sectional area of the sub-channel,

∆X : axial cell length (m),

∆t : time step (s),

m : axial mass flow rate (kg s−1),

h : specific mixture enthalpy (J K−1),

hfg : evaporation enthalpy (J K−1),

Q : linear power released to the sub-channel (W m−1),

w′ : turbulent cross-flow (kg m−1 s−1),

p : pressure at axial boundary (Pa),

f : single-phase friction coefficient,

g : gravity (m/s2),

φ2 : two-phase friction multiplier,

Dh : hydraulic diameter (m),

K : axial pressure loss coefficient,

KG : lateral gap pressure loss coefficient,

s : gap width between two neighboring rods (m),

l : distance of neighboring sub-channels midpoints (m),

ρ′′ = ρold − hfg
∂ψ

∂h
,

ψ = ρliqx(1 − α) − ρvap(1 − x),

x : steam quality,

α : void fraction,

v′ =
x2

αρvap
+

(1 − x)2

(1 − α)ρliq
,

U′ =
m
A

v′,

liq : liquid,

vap : vapor,

old : value at previous time step.
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1.6.4 Presentation of SUBCHANFLOW

SUBCHANFLOW is a sub-channel code developed at KIT (Karlsruhe Institute of Technology,
Germany) and based on the COBRA family of solvers (D. Basile and Brega, 1999; Rowe, 1973;
Wheeler et al., 1976). It solves the 3 conservation equations detailed in Sec. 1.6.3, as well as the
constitutive equations (e.g., to compute axial and lateral flow rates, pressure, enthalpy and void
fraction), with the fluid being modeled as a homogeneous two-phase liquid-vapor mixture. The
system is solved axially, layer by layer, with an implicit scheme. The code can solve transients
and steady-state problems.

SUBCHANFLOW also solves heat transfer in the fuel. In order to compute the fuel rod
temperature, each axial slice of the fuel is divided into radial rings and a finite-volume method
is applied. The fraction of the power that is directly put in the coolant must be defined. The
fuel rod temperature is then computed depending on the power deposited in the rod and on the
cladding-to-coolant heat transfer properties.

Different empirical correlations for pressure drop, heat transfer and void generation are
available. The physical models were validated with experimental data from the NUPEC PWR
Subchannel and Bundle Tests (Imke and Sanchez, 2012). For the boundary conditions, the tem-
perature at the inlet and the pressure at the outlet must be assigned.

One two-dimensional and two three-dimensional input meshes (one for the coolant and one
for the fuel) are required for the calculation. For the coolant, the mesh can be either cooolant-
or fuel-centered. Figure 1.3 shows the two different options to model a channel. A preprocessor
allows generating the meshes for complex geometries (squared or hexagonal) at different levels:
pin, assembly or core level.

1 2

3 4

1 2

3 4

fuel-centered sub-channel coolant-centered sub-channel

Figure 1.3 – Two different ways to model a sub-channel: either the cell is centered on the fuel
rod (in red), or it is centered on the coolant (in blue).
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Part I

Kinetic Monte Carlo: time-dependent
Monte Carlo neutron transport
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Chapter 2

Description of kinetic methods for
TRIPOLI-4

In this chapter, we detail the strategy adopted in TRIPOLI-4 to implement the kinetic Monte
Carlo methods. In this thesis, we have implemented a new variance-reduction technique for the
specific needs of kinetic simulations. The efficiency of the different techniques is investigated
in this chapter.

2.1 Challenges

Monte Carlo stationary calculations, such as those that solve criticality or fixed-source problems,
do not take time into account. Precursors are not explicitly simulated, and their contributions
are integrated into the total fission operator, cumulating the prompt and the delayed fission op-
erators defined in Eqs. (1.2.5) and (1.2.8). The Boltzmann equation (Eq. 1.2.2) is solved under
the assumption that the time derivative of the flux vanishes (e.g., solving Eq. (1.2.10)).

To this day, Monte Carlo methods have been almost exclusively applied to the solution of
stationary problems, due to the very high computational cost (in terms of both memory and
CPU time) required to generate the particle trajectories (Lux and Koblinger, 1991). However,
thanks to the growing available computer power and efficient variance-reduction techniques,
Monte Carlo methods can now be also applied to the solution of non-stationary transport prob-
lems, as witnessed by the increasing number of scientific publications on this subject (Légrády
and Hoogenboom, 2008; Sjenitzer and Hoogenboom, 2011a, 2013; Hoogenboom and Sjenitzer,
2014; Leppänen, 2013; Valtavirta et al., 2016; Mylonakis et al., 2017; Trahan, 2018; Molnar
et al., 2019).

The goal of “kinetic” (i.e., time-dependent) Monte Carlo methods is to address the solution
of the full time-dependent Boltzmann equation, coupled to the precursor equation (Eq. 1.2.3).
The first attempts at solving these equations were proposed by Kaplan (1958) in the 1950s,
soon somewhat neglected because of limitations in computer power, and later reconsidered
by Légrády and Hoogenboom (2008) and further improved by Sjenitzer and Hoogenboom
(2011a, 2013).

A few key issues have to be taken into account when dealing with time-dependent Monte
Carlo transport:

1. the phase space must be extended so as to accommodate the time variable;
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2.2. TIME DEPENDENCE

2. if the initial conditions correspond to a critical (i.e., equilibrium) regime, the particle
source must be prepared in the equilibrium state before running the kinetic Monte Carlo
simulation for the time-dependent transport;

3. population control should be enforced to prevent the neutron and precursor populations
to die out or to grow unbounded;

4. the quantities βeff/Λeff and λ provide the average rates at which a neutron is converted
into a precursor, and conversely. The typical ratio βeff/(λ ×Λeff) is of the order of 104 for
light-water-moderated reactors. This implies that at the critical regime, when the neutron
and precursor populations are in equilibrium, precursors are considerably more abundant
than neutrons within the core;

5. the code must be able to simulate real transient scenarios, hence the geometry should also
be time-dependent.

The purpose of this chapter is to address each issue and show which strategies have been chosen
for TRIPOLI-4.

2.2 Time dependence

2.2.1 Extending the phase space

In kinetic simulations, the precursor population is considered in addition to the neutron pop-
ulation. A new precursor particle type has been thus defined for TRIPOLI-4. Precursors are
regrouped in families depending on their decay time, as defined by the nuclear data library. Pre-
cursors are not transported, but serve as a “buffer” for delayed neutron emission.

In stationary Monte Carlo simulations, the phase space explored by the neutrons is described
by space, energy and angle coordinates: time is not explicitly considered. In kinetic simulations,
the time-dependent behaviour of the particles (both neutrons and precursors) is simply taken into
account by assigning each particle a “time label” t that is set to t = 0 s at the beginning of the
simulation and progressively updated in the course of the simulated history on the basis of the
particle position and speed.

2.2.2 Scoring time grid

Statistical events in stationary Monte Carlo simulations are recorded independently of their
time of occurrence, since time is not explicitly considered. In order to collect events in time-
dependent transport, a scoring time grid must be defined: when collisions or track lengths are to
be recorded so as to estimate the particle flux or other tallies, events are partitioned into the time
bins. By construction, the contents of each bin [tq, tq+1] at the end of the simulation represent
the ensemble-averaged time integral of the corresponding Monte Carlo score, between times tq
and tq+1.

The scoring time mesh is arbitrary, and the bins [tq, tq+1] can be irregularly spaced and have
any size: contrary to deterministic methods, which require the time mesh to be sufficiently fine
in order for the calculation to converge, the Monte Carlo bins provide the exact integral over the
phase space elements.
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CHAPTER 2. DESCRIPTION OF KINETIC METHODS FOR TRIPOLI-4

2.2.3 Simulation time grid

Specific variance-reduction and population-control techniques implemented in TRIPOLI-4 for
kinetic capabilities share a common requirement: they must be applied on the basis of a time
mesh. For convenience, in TRIPOLI-4, one single simulation time grid is defined by the user
for the different techniques. The available population-control techniques in TRIPOLI-4 are Rus-
sian roulette and splitting and combing (see Sec. 2.5); for variance reduction, we can use forced
decay (see Sec. 2.4), branchless collisions (see Sec. 2.6.1) and population importance sampling
(see Sec. 2.7).

It is important to note that the simulation time grid does not incur any discretization error.
The simulation time steps are in principle be arbitrary. Later we will detail why the system
reactivity in practice imposes some constraints on their size.

2.3 Critical source

2.3.1 Sampling the neutrons and precursors

Sampling equations

The typical configuration at the initial time for a kinetic Monte Carlo simulation is either a sys-
tem containing only a neutron source (e.g., for reactor start-up calculations), or a system in a
critical state (e.g., for the departure from a stationary regime). The former case does not re-
quire extra calculations before the kinetic simulation: the kinetic simulation starts directly with
the specified neutron source. The latter deserves instead a special treatment on specific points,
which will be detailed here.

The simplest way to prepare a reactor configuration on the critical state is to apply the power
iteration algorithm starting from an arbitrary source. This formally corresponds to solving the
critical k eigenvalue Eq. (1.2.10) for the dominant eigenpair {keff, ϕkeff

}, and thus inferring the
initial neutron and precursor population at equilibrium on the basis of the fundamental eigen-
mode ϕkeff

(r, 3). More precisely, the number of starting neutrons corresponding to the critical
condition is given by (Sjenitzer and Hoogenboom, 2013)

Neq(r, 3) =
ψkeff

(r, 3)
3Σt(r, 3)

, (2.3.1)

where ψkeff
= Σtϕkeff

is the critical collision density that can be estimated at each collision dur-
ing the power iteration, provided that the fission sources have converged to their asymptotic
shape. Observe that the distribution of the neutron population Neq(r, 3) is not given by the fis-
sion sources computed by the power iteration, namely, Neq(r, 3) , Fp ϕk(r, 3) + Fd ϕk(r, 3).

Practically, the neutron source is sampled over all collisions occuring during the last power
iteration, and the weight weq

n of each source neutron n is

weq
n =

wn

3Σt(r, 3)
, (2.3.2)

with wn the weight of the neutron at collision.

Concerning the precursor population at the initial time, by imposing the steady state condi-
tion in Eq. (1.2.3) we get

ceq
j (r) =

1
λ j

∫
ν

j
d(3′)

Σ f

Σt
(r, 3′)ψkeff

(r, 3′) d3′. (2.3.3)

38
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Following Sjenitzer and Hoogenboom (2013), all possible precursors associated to a given fis-
sion event are combined into a single representative precursor particle carrying the total statisti-
cal weight. For this combined precursor particle for a single nuclide we get

ceq(r) =
∑

j

ceq
j (r), (2.3.4)

thus

ceq(r) =
1
λ̄

∫
νd(3′)

Σ f (r, 3′)
Σt(r, 3′)

ψkeff
(r, 3′) d3′, (2.3.5)

where
νd(3′) =

∑
j

ν
j
d(3′), (2.3.6)

and
λ̄ =

β∑
j
β j
λ j

(2.3.7)

is the family-averaged decay rate of the combined precursor (Sjenitzer and Hoogenboom, 2013),
with β j the fraction of fission neutrons which are emitted by the j-th family, and β =

∑
j β j.

Note that β and β j are not the effective parameters (i.e., adjoint-weighted parameters), but the
unweighted kinetics parameters.

Similarly as Eq. (2.3.2), the weight of each source precursor weq
c is sampled over all colli-

sions according to

weq
c =

1
λ̄

wnνd(3′)
Σ f (r, 3)
Σt(r, 3)

. (2.3.8)

In order to select the proper family for the decay of the combined precursor, care must be
taken since the family repartition in the critical regime is different from that at the fission events.
Indeed, the probability of choosing the j-th family at time t, for precursors created at time t0, is
given by

p( j, t|t0) =
λ j f j

d e−λ j(t−t0)∑
k λk f k

d e−λk(t−t0)
, (2.3.9)

with f j
d the fraction of delayed neutrons of the j-th family. At equilibrium it is given by

f j
d =

λ̄

λ j

β j

β
, (2.3.10)

whereas, at fission events, it is given by

f j
d =

β j

β
. (2.3.11)

At equilibrium, the decay time probability density of a precursor particle generated at t0 is

Peq(t|t0) =
∑

j

λ̄
β j

β
e−λ j(t−t0), (2.3.12)

and the statistical weight of a delayed neutron emitted upon decay by a precursor particle origi-
nating from the equilibrium condition is given by

W
eq
delayed(t|t0) = Peq(t|t0)wC , (2.3.13)
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with wC the initial precursor weight. The energy of the delayed neutron must be chosen by sam-
pling the delayed neutron spectra corresponding to the sampled family. Finally, the statistical
weight of a precursor coming from the equilibrium source is

W
eq
c (t|t0) = wC

∑
j

λ̄

λ j

β j

β
e−λ j(t−t0). (2.3.14)

At fission events, the decay time probability density at a time t for precursors generated at
time t0 is given by

P(t|t0) =
∑

j

λ j
β j

β
e−λ j(t−t0), (2.3.15)

and the physical weight of the precursor at a time t is given by

W(t|t0) = wC

∑
j

β j

β
e−λ j(t−t0). (2.3.16)

The different precursor types described by Eqs. (2.3.14) and (2.3.16) are practically imple-
mented by storing the distribution over families in the precursor particle.

Fission source and critical source

For an illustration of the difference between the fission source transferred from one power iter-
ation to another and the critical source sampled for the kinetic simulation, we have performed a
criticality calculation followed by the sampling of the critical source on a simple test case. The
configuration is a 2x2 array of pin cells and we have simulated 200 batches with 4 × 104 neu-
trons per batch. The histograms of the particle weights for both fission and critical sources are
presented in Fig. 2.1. The weight of fission neutrons sampled during the last power iteration are
represented on the left: neutrons are located in the fuel only. Neutrons (resp. precursors) sam-
pled for the critical source are represented in the middle (resp. right). Particles are sampled over
all collisions occuring in the last power iteration according to Eqs. (2.3.2) and (2.3.8). Neutrons
can be found anywhere in the cells, including in the moderator; actually, there are even more
neutrons in the moderator than in the fuel. On the contrary, precursors are created at the fission
source locations. This is why precursors are located in the fuel only. Moreover, precursors are
not transported during the kinetic simulation, so they will not move from their initial location in
the fuel.

Also, the unbalanced ratio between neutrons and precursors in the critical source is clearly
visible: precursor weights are much higher than neutron weights. Quantitatively, the ratio be-
tween the total weight of precursors and the total weight of neutrons is about 104. In fact, as
mentioned above, precursors are considerably more abundant than neutrons at equilibrium.

2.3.2 Normalization between criticality and kinetic calculations

It is interesting to notice that the neutron and precursor weights sampled for the kinetic calcula-
tion according to Eqs. (2.3.2) and (2.3.8) have the dimensions of a time. This is unusual, since
Russian roulette and splitting need dimensionless weights to act upon. Therefore, the weights
must be normalized for the kinetic calculation in such a way that they become dimensionless.
The most natural choice is to normalize the weights by dividing them by the total neutron and
precursor weight. The normalization factor q that must be applied is

q =

∑
n

weq
n +

∑
c

weq
c

N
, (2.3.17)
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Figure 2.1 – Histogram of the particle weights in a 2x2 array of pin cells. Left: fission neutrons
sampled during the last power iteration are located in the fuel only. Middle: neutrons sampled
for the critical source can be found anywhere in the cells. Right: precursors for the critical
source are created at the fission source locations.

with weq
n defined by Eq. (2.3.2), weq

c defined by Eq. (2.3.8) and N being the intensity of the
fission source. Actually, q is a close estimator of the neutron effective lifetime. Indeed,∑

n
weq

n

N
≈

!
1
vϕkeff

(r, 3) drd3
1

keff

!
F ϕkeff

(r, 3) drd3
, (2.3.18)

which is the unweighted analog of keff × Λeff, according to the definition of the generation time
(the formula was given by Eq. (1.2.26) for the “effective” parameter, which is weighted by the
adjoint eigenmode). Similarly,

∑
c

weq
c

N
≈

∑
j

1
λ j

∫
ν

j
d(3)Σ f (r, 3)ϕkeff

(r, 3) drd3

1
k

!
F ϕkeff

(r, 3) drd3
(2.3.19)

≈

∑
j

1
λ j

!
F j

d ϕkeff
(r, 3) drd3

1
keff

!
F ϕkeff

(r, 3) drd3
, (2.3.20)

which is the unweighted analog of keff ×
∑
j
βeff,j/λ j (one can refer to Eq. (1.2.25) for a definition

of the effective parameter). Finally, we get

q ≈ keff × l0, (2.3.21)

with l0 being an unweighted analog of the neutron effective lifetime defined by Eq. (1.3.6).

2.3.3 Optimizing the use of criticality cycles

The TRIPOLI-4 implementation of the sampling of the neutron and precursor population for a
critical system proceeds by first running a regular power iteration over a large number of inac-
tive cycles, with neutrons alone. During this convergence phase, the (arbitrary) neutron source
relaxes to the dominant k eigenmode of the system (Sec. 1.2.2). Fission neutrons are transferred
from one cycle to the next one. During the last inactive cycle, neutron and precursor sources for
the kinetic phase are sampled at each collision, according to Eqs. (2.3.1) and (2.3.5), in order
to convert the critical flux ϕkeff

(r, 3) into neutron and precursor particle densities. The kinetic
sources are then injected at t = 0 s and are followed until the stopping time is reached.
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We must now consider that TRIPOLI-4 averages the calculation results over consecutive
“batches” (or replicas). In the implementation proposed by Sjenitzer (2013), each batch rep-
resented a genuine independent replica of the full calculation, namely a source-convergence
phase followed by a kinetic phase. This solution however is time-consuming. We have set a
new scheme in order to reduce the number of inactive cycles: the fission neutrons generated
in the last inactive cycle of the first batch are injected in the inactive cycles of the following
one. This reduces the overhead of inactive cycles, at the cost of introducing correlations among
batches (the estimation of the statistical uncertainty over the calculation results can be thus af-
fected). Note, however, that this is essentially the same difficulty that one faces in conventional
criticality calculations. A scheme of the process is illustrated in Fig. 2.2. The user can assess
the impact of such correlations by increasing the number of inactive cycles for each replica.

Batch 1

criticality source computation
kinetic simulation

fission neutrons
kinetic source particles

all neutrons transfer
fission neutrons transfer

inactive cycles (power iteration) time steps

Batch 2

Batch 3

. . . . . . . . .

Batch M

Figure 2.2 – Kinetic TRIPOLI-4 simulation process with M batches. A complete power iteration
is performed once by the first batch. During the final inactive cycle, precursors are sampled so
that the kinetic simulation can begin while the generated fission neutrons are transferred to
the second batch, which runs a few additional power iterations in order to ensure reasonable
decorrelation. The third batch gets the fission neutrons generated by the second one, and so on.
In a parallel run, each processor would apply this scheme.

2.3.4 Readjustment of the emitted number of neutrons

The simulation of a nuclear reactor is necessarily affected by uncertainties at different levels:
geometry, technological details such as the compositions, and nuclear data. For this reason,
the effective multiplication factor for nominally critical conditions may fail to be equal to 1.
The associated stationary flux ϕkeff

will also in general be distorted with respect to the actual
stationary flux. Even small deviations from 1 may be important in kinetic Monte Carlo simula-
tions, because the system will drift away from the stationary state during the kinetic simulation.
Therefore, some adjustments have to be made in order to minimize the deviations from the crit-
ical conditions.

For example, uncertainties on the geometry can be mitigated by adjusting control-rods po-
sitions. It is also possible to compensate the lack of precision on the compositions by adjusting
the boron concentration in the moderator. Finally, regarding uncertainties on nuclear data, in
TRIPOLI-4, it is possible to rescale the number of neutrons ν produced by fission by the multi-
plication factor keff (obtained by a preliminary criticality calculation), similarly to what is done
for kinetic simulations in deterministic solvers. By modifying the production term, the devia-
tion from criticality can thus be mitigated. The residual deviation is typically of the order of the
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2.4. PRECURSORS FORCED DECAY

statistical uncertainty over the keff value that was used for the correction. The other corrections
(adjusting control-rod positions or boron concentration) have a more direct physical meaning.
However, the search for the critical parameter values is iterative and requires a large number of
calculations (Mancusi and Zoia, 2018), whereas rescaling the number of fission neutrons only
requires one extra calculation. At any rate, the physical impact of this choice deserves further
investigation.

2.4 Precursors forced decay

In principle, it would be possible to explicitly simulate prompt and delayed neutrons at fission
events by closely following the laws of physics: prompt neutrons (on average νp) would be in-
stantaneously emitted and would inherit the time label t f of the parent particle at birth (i.e., at
fission); precursors would not be directly taken into account: instead, their decay time τ would
be sampled from the corresponding exponential probability P j(τ) = λ je−λ jτ ( j being the index
of the precursor family). Delayed neutrons (on average νd) would then be injected into the sim-
ulation at a time t f + τ, precisely at the fission site associated to the parent particle (we neglect
precursor migration), and with energy and angle determined by the delayed fission distribution.

However, in an almost critical system, each neutron chain will on average induce a single
precursor, which will in turn induce a neutron chain by decaying to a delayed neutron. The life-
time of the neutron chain is of the order of 10 ms, while the decay takes a few seconds (Keepin,
1965). Due to this large separation between the neutron and precursor time scales, in an analog
Monte Carlo simulation no particle would be produced during the time between the creation
of a precursor and its decay to a delayed neutron (Légrády and Hoogenboom, 2008). In a real
system at full power the number of fission events per unit time is so large (∼ 1019 s−1) that
fission chains will thoroughly superpose by the mere effect of statistics (Sjenitzer, 2013). In
Monte Carlo simulations the number of simulated chains is however much smaller than in real
reactors because of limitations on CPU time and memory. Hence, ingenuous algorithms must
be conceived so as to handle the presence of the two time scales.

A possible strategy to overcome this issue has been proposed by Légrády and Hoogenboom
(2008) and consists in considering two separate populations, namely neutrons and precursors,
and applying variance-reduction techniques to the precursor population. The precursor particles
do not directly contribute to Monte Carlo scores during the simulation: their role is to provide
a “buffer” for delayed neutrons and regulate the statistical weight of the neutron population that
is transported and thus directly contributes to Monte Carlo scores. Precursors can be created at
fission events and can possibly also be present at the beginning of the simulation in the case of
a critical source, as detailed in Sec. 2.3.

However, the introduction of the precursor particles does not solve the problem of the under-
sampling of neutrons between the creation of a precursor and its decay into a delayed neutron,
as illustrated in Fig. 2.3. Moreover, because of the very unbalanced ratio between neutrons and
precursors, it is not possible to indefinitely increase the number of neutrons: the permanent stor-
age of 104 precursors per neutron would induce memory issues.

One solution consists in forcing the decay of the precursor population into delayed neutrons,
which ensures a larger fraction of neutrons in the fission chains and thus a reduced variance in
the total population per unit time, as illustrated in Fig. 2.4. The idea is to modify the decay
probability of the precursor particles, and yet preserve an unbiased Monte Carlo game by corre-
spondingly modifying the statistical weight of the delayed neutrons emitted upon decay. Several
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∆t ∆t ∆t ∆t ∆t

precursor
1/λ ∼ 10 s

delayed
neutron

precursor

Figure 2.3 – Scheme of the analog process of precursor decay with one precursor. When the
precursor finally decays, only one time bin is filled with a delayed neutron: this leads to variance
jumps in the different time bins.

∆t ∆t ∆t ∆t ∆t

precursor

Figure 2.4 – Scheme of the forced decay with one precursor. The precursor is forced to decay
in each time bin ∆t, so that each time bin is filled with neutrons.

choices are possible, the simplest being to introduce an arbitrary time mesh t0 < t1 < ... < tN

and force decay in each bin of the mesh (Légrády and Hoogenboom, 2008): this is the simu-
lation time mesh introduced in Sec. 2.2.3. Stochastic neutron transport formally corresponds
to branching exponential flights, which ensures the Markovian nature of the process: as such,
the particle trajectories can be stopped and restarted at each time bin crossing without altering
the statistical features of the underlying transport process (Sjenitzer and Hoogenboom, 2013).
Thus, TRIPOLI-4 was modified so as to stop particles whenever they reach the end of a bin of
the time mesh. The time of the forced decay can be taken, e.g., to be uniformly distributed in
each bin [tq, tq+1], i.e.,

pdecay(t) =
1

tq+1 − tq
χ(tq, tq+1), (2.4.1)

where χ(a, b) is the marker function of the interval [a, b]. In order for the emitted delayed
neutron to undergo a fair Monte Carlo game, its statistical weight must be taken as

Wdelayed(t|t0) = (tq+1 − tq)
∑

j

λ j
β j

β
e−λ j(t−t0)wC , (2.4.2)

where wC is the initial weight of the emitting precursor.

Once the delayed neutron has been created during the time step [tq, tq+1], the precursor is
not killed, but just added to the buffer of particles that are to begin the following time step
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[tq+1, tq+2], with a weight given by Eq. (2.3.16)

W(tq+1|t0) = wC

∑
j

β j

β
e−λ j(tq+1−t0).

The delayed neutrons, once emitted, are transported during the current time step, and may pos-
sibly initiate new fission chains. The process is illustrated in Fig. 2.5.

time stepstq tq+1 tq+2

W

Wdelayed

W′

W′
delayed

W′′

...

...

Figure 2.5 – Scheme of delayed neutron emission with forced decay algorithm. Precursors
(black circles) are forced to decay in each bin of the simulation time grid, in order to produce a
delayed neutron (red disks), and then survive for the next time step.

2.5 Population control

During kinetic simulations, the standard Russian roulette and splitting is applied at each colli-
sion but this is most often not enough to control the population size. Depending on the reactivity
of the system, the population size (number of neutrons and precursors) may shrink to zero (sub-
critical case) or grow without bounds (supercritical case) during the time steps. Both scenarios
are problematic from the point of view of Monte Carlo simulation; for this reason, TRIPOLI-4
applies some control mechanisms to the population size during the calculation: Russian roulette
and splitting or combing, detailed below. In principle these mechanisms could be applied at
every change of the population size, but this would incur a large CPU overhead. A weaker
control can be applied by defining in advance at which times population control will be ap-
plied. This is one of the purposes of the simulation time grid defined in Sec. 2.2.3. When the
time labels of the particles reach the end of a time step of this grid, population control is applied.

While the simulation time steps are in principle arbitrary, in practice population control re-
stricts the choice of the interval boundaries. If the system is super-critical, the population might
still diverge within a step if is is not small enough; conversely, if the system is sub-critical the
population might disappear before the regularizing mechanisms of population control get the
opportunity to act. Moreover, since precursors are forced to decay in each time step and then
survive for the following time step, the weight of the delayed neutrons that are emitted decreases
as a function of time. At the same time, the number of precursors typically increases over time,
and population control should be effectively applied.

As explained in Sec. 2.2.3, for the sake of simplicity, we choose to apply population control
at the end of the time intervals selected for forced decay. This has two advantages: i) the user
only needs to input one time grid, and ii) it does not introduce additional stopping times for
the precursors. However, in some cases it may be advantageous to apply population control
independently of forced decay.
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2.5.1 Russian roulette and splitting

The Russian roulette and splitting, as introduced in Sec. 1.5.2, can be separately applied to the
neutron and precursor populations banked at the end of each time step. The roulette would
be straightforward for neutrons, but it would have a negligible effect since neutrons are already
submitted to Russian roulette and splitting at every collision, so that their weight has in principle
already been regulated. Therefore, in TRIPOLI-4, it is not applied to neutrons. Concerning
precursors, the roulette is applied on the basis of the expected delayed neutron weight that can
be emitted during the following time step (Sjenitzer and Hoogenboom, 2011a). The expected
delayed neutron weight during time step [tq, tq+1] is given using Eq. (2.4.2) by

W̄delayed(tq, tq+1|t0) =
1

tq+1 − tq
×

∫ tq+1

tq
Wdelayed(t|t0)dt (2.5.1)

= wC

∑
j

β j

β
(e−λ j(tq−t0) − e−λ j(tq+1−t0)), (2.5.2)

where tq+1 is the starting time of the following time interval. For precursors generated by the
equilibrium source, Eq. (2.3.13) gives

W̄
eq
delayed(tq, tq+1|t0) =

1
tq+1 − tq

×

∫ tq+1

tq
W

eq
delayed(t|t0)dt (2.5.3)

= wC

∑
j

λ̄

λ j

β j

β
(e−λ j(tq−t0) − e−λ j(tq+1−t0)). (2.5.4)

2.5.2 Combing

The combing method (Booth, 1996) is a population-control technique that can be used at the
end of each time step in kinetic Monte Carlo, as an alternative to roulette and splitting. The aim
of combing, as initially proposed by T. E. Booth for stationary Monte Carlo transport problems,
is to normalize the number of transported particles while preserving their total weight and pos-
sibly the proportion of respective weights in the case of multiple particle species. For kinetic
simulations, combing can achieve variance reduction and save computer time by keeping the
population size approximately constant over time steps. Indeed, combing prevents the popula-
tion from growing without bounds for a super-critical system, and from dying for a sub-critical
system. It should be stressed that combing might also prove useful for critical conditions, in
that it prevents the occurrence of the so-called “critical catastrophe”, i.e., the divergence of the
variance of the population due to fluctuations of fission chains (De Mulatier et al., 2015).

Suppose that at the end of a time step the population is composed of K individuals, which
are to be combed to M individuals. We define W to be the length of the comb, i.e., the total
weight of the K individuals to be combed, namely,

W =

K∑
i=1

wi. (2.5.5)

The idea behind the comb is to sample with replacement M particles among the K by using
an equally spaced weight interval over the total available weight. It has been shown that this
algorithm is unbiased provided that a random offset is imposed at the beginning of the comb,
when selecting the first particle. More precisely, the positions of the comb teeth are defined as

Tm = ξ
W
M

+ (m − 1)
W
M

; m = 1, . . . ,M, (2.5.6)
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where ξ is a uniform random number ξ ∼ U(0, 1] needed for determining the starting position
of the comb (see Fig. 2.6).

Depending on ξ, either j or j + 1 teeth hit an interval of length wi, with

j ≤ wi
M
W
≤ j + 1. (2.5.7)

This means that
pi, j = j + 1 − wi

M
W

(2.5.8)

yields the probability that j teeth fall in the interval i, and

pi, j+1 = wi
M
W
− j (2.5.9)

yields the probability that j + 1 teeth fall in the interval i. The expected weight for a single
particle after combing is

w̄′i = pi, j j
W
M

+ pi, j+1( j + 1)
W
M

= wi
M
W

W
M

= wi. (2.5.10)

Each new particle (out of M) is then assigned a weight

w′i =
W
M
. (2.5.11)

This way, the total expected weight after combing is preserved:

W′ =

M∑
i=1

w′i = W. (2.5.12)

In the more general case of several populations, as for the neutrons and precursors, the comb is
independently applied to each population.

w1 w2 w3 w4 w5 w6

W
4

W
4

W
4

ξ ×
W
4

Figure 2.6 – An application of the combing method (Booth, 1996) with 6 particles with total
weight W being combed into M = 4 particles. Particle 1 is copied once with weight W/M. Par-
ticle 3 is copied twice with weight W/M. Particle 5 is copied once with weight W/M. Particles
2, 4 and 6 are not copied. One should note that the total weight after combing remains equal to
W.

In addition to the population-control method (either Russian roulette and splitting or comb-
ing) that is applied at the end of each time step of the simulation, combing is applied at the very
beginning of the kinetic simulation, just after the sampling of the critical neutron and precursor
populations. This has two goals. First, as explained in Sec. 2.3.2, after the critical sampling,
weights carry an additional factor having the dimension of a time and they must be normalized
so that they represent a proper statistical weight. Second, the total number of particles at t = 0 s
will be equal to the number of particles N chosen by the user.
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configuration nominal critical subcritical supercritical

keff 1.255690 ± 2.9 × 10−5 0.999995 ± 2.2 × 10−5 0.965595 ± 2.0 × 10−5 1.007246 ± 2.1 × 10−5

Λeff [µs] 13.2655 ± 0.0016 16.6591 ± 0.0019 16.4866 ± 0.0018 16.6964 ± 0.0018
βeff [pcm] 701.40 ± 0.88 699.53 ± 0.85 699.37 ± 0.81 700.70 ± 0.80
βeff,1 [pcm] 20.48 ± 0.15 20.42 ± 0.15 20.31 ± 0.14 20.65 ± 0.14
βeff,2 [pcm] 102.38 ± 0.34 102.60 ± 0.33 101.81 ± 0.31 102.29 ± 0.31
βeff,3 [pcm] 59.56 ± 0.26 59.58 ± 0.25 59.29 ± 0.24 56.56 ± 0.23
βeff,4 [pcm] 131.93 ± 0.38 132.05 ± 0.37 131.96 ± 0.35 132.24 ± 0.35
βeff,5 [pcm] 226.48 ± 0.50 225.60 ± 0.48 225.64 ± 0.46 226.17 ± 0.45
βeff,6 [pcm] 74.62 ± 0.29 74.04 ± 0.28 74.74 ± 0.27 74.20 ± 0.26
βeff,7 [pcm] 62.67 ± 0.26 62.08 ± 0.25 62.21 ± 0.24 62.24 ± 0.24
βeff,8 [pcm] 23.10 ± 0.16 23.17 ± 0.16 23.41 ± 0.15 23.37 ± 0.15
ρ [$] ∼ 29 ∼ 0 ∼ −5 ∼ 1
D [cm2] 30.6673 ± 0.0038 30.6681 ± 0.0040 30.6084 ± 0.038 30.6801 ± 0.037

Table 2.1 – Multiplication factor, adjoint-weighted kinetics parameters and migration area D
for the TMI assembly in different configurations, as computed with the JEFF-3.1.1 nuclear data
library. Precursors are regrouped into 8 families.

2.5.3 Evaluating the efficiency of the two population-control methods

We have tested the two population-control methods in different kinetic simulations. For their
comparison, we have considered the figure of merit, defined as

FOM =
1

σ2T
, (2.5.13)

where σ is the estimate of the standard error on the score of interest and T is the simulation
time. For this analysis, the score of interest for the comparison of the FOM is the total neutron
flux in each time bin.

As a benchmark configuration, we have selected an un-rodded assembly from the TMI-1
reactor core, whose specifications can be found in Ivanov et al. (2013b). A short description
is also provided in Sec. A.4. The assembly is a realistic system, yet allowing for a reasonable
computational cost. We have studied different scenarios (critical, subcritical and supercritical
configurations) in order to evaluate the impact of the population-control methods depending on
the state of the system.

The multiplication factor and the adjoint-weighted kinetics parameters for the benchmark
have been obtained by running a regular power iteration calculation with 50 inactive cycles and
21000 active cycles, each with 8 × 104 neutrons. The configuration is adjusted to be critical
by rescaling the mean number of neutrons produced by fission, ν, by the multiplication factor
keff obtained by the previous criticality calculation, as described in Sec. 2.3.4. Results for the
nominal (before rescaling ν) and critical configurations (after rescaling ν) are displayed in the
second and third columns of Table 2.1. The decay constants are displayed in Table 2.2. Nuclear
data for this configuration are taken from the JEFF-3.1.1 library (Santamarina et al., 2009).

For the kinetic simulations, results were averaged over 2000 batches of 8000 particles.

Critical configuration

For a first comparison of the two population-control methods, we have prepared the assembly
on the critical state described in Table 2.1 (critical configuration) with the power iteration al-
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λ1 0.01246670
λ2 0.02829170
λ3 0.04252440
λ4 0.1330420
λ5 0.2924672
λ6 0.6664877
λ7 1.634781
λ8 3.554600
λ̄ 0.08165179

Table 2.2 – Decay constants, in s−1, as given by the JEFF-3.1.1 nuclear data library. Precursors
are regrouped into 8 families. The average β-weighted decay constant λ̄ [s−1] is also provided.
Statistical fluctuations on λ̄ are negligible.

gorithm. Then we have followed the kinetic evolution of the neutron flux over 10 s with 100
regularly spaced intervals by increments of ∆t = 0.1 s. Population control is applied at the
end of each time interval, using either Russian roulette and splitting or combing. We have also
performed the simulation without any population control. Since the interval between popula-
tion control events is longer than the average fission chain length, essentially all prompt neu-
trons chains die within a time step. Therefore, the simulation mostly evaluates the efficiency of
population-control methods on the precursor population.

The ratios between the FOM with and without population control are shown in Fig. 2.7
and are close to 1 (note that the computational time of each simulation was about 800 CPU
hours). For this configuration, population control is not necessary because the variations on
the precursor population size are small. In principle, population control is necessary even for
critical configurations, because of the “critical catastrophe” (De Mulatier et al., 2015). However,
in our example, on a short time scale, the simulation does not suffer from fluctuations on the
population size.

When looking at the standard error on the total precursor weight, Russian roulette and split-
ting leads to an increased variance as compared to the simulation without population control. It
is interesting to notice that the large variance on the precursors weight does not affect the FOM.
This can be explained by the fact that the roulette, as a population-control method, is actually
applied on precursors and not on neutrons. Thus, the roulette induces direct fluctuations on the
precursor population, but not on the neutron population.

The same Figure shows steps on precursor weights, which are probably due to the decay
time of the different precursor families. Indeed, precursors are rouletted on the basis of the
expected delayed neutron weight, given by Eq. (2.4.2), which has an exponential decay ruled by
the decay times λ j. When the neutron weight drops below the roulette threshold, the precursor
get rouletted. Hence, the frequency at which precursors get rouletted is directly related to the
families decay time.

Subcritical configuration

In order to emphasize the differences between the two methods, we have then studied a subcrit-
ical configuration so as to capture larger variations of the precursor population size. As with the
critical configuration, the problem has been prepared in a critical state with the power iteration
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Figure 2.7 – Time evolution of the total neutron flux in the TMI assembly. The source is pre-
pared in a critical state. Population control is performed every ∆t = 0.1 s. Green: combing.
Red: Russian roulette and splitting. Black: no population control. Top: total neutron flux. Mid-
dle: FOM ratios with respect to the calculation without population control. Bottom: absolute
uncertainty on the total precursor weight.
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algorithm, and then, at the beginning of the kinetic simulation (i.e., at t = 0 s), we have increased
the boron concentration in the moderator. The extra 500 ppm of boron introduce about −5 $ in
the system: see Table 2.1 (subcritical configuration). As above, the flux behaviour is monitored
over 10 s partitioned into 100 regularly spaced intervals by increments of ∆t = 0.1 s. At the
end of each time interval, Russian roulette and splitting or combing is used as the population-
control method. Similarly as in the previous configuration, the simulation mostly evaluates the
efficiency of population-control methods on the precursor population.

Results are shown in Fig. 2.8. The FOM ratio between Russian roulette and no population
control is close to 1. However, in this configuration, combing improves the FOM by about a
factor of 5. Regarding the uncertainty on the total precursor weight, the steps for the Russian
roulette appear at the same times as for the previous configuration.

Supercritical configuration

We have finally considered a supercritical configuration, for which we have prepared the critical
state and at the beginning of the kinetic simulation (i.e., at t=0 s), we have reduced the boron
concentration. The extracted 100 ppm of boron introduced about 1 $ in the system: see Table 2.1
(supercritical configuration). Since the variations of the systems are fast, we apply population
control more often than for the previous configuration. The flux behaviour is monitored over
0.1 s being partitioned into 100 regularly spaced intervals by increments of ∆t=1 ms.

Results are shown in Fig. 2.9. For this supercritical configuration observed over small time
steps, the FOM ratio between Russian roulette and splitting and no population control is about
1, even if combing seems to become more and more efficient as the population size increases.

Conclusion

In conclusion, we have found that combing is more efficient than the Russian roulette and split-
ting as a population-control method, especially when the population size varies dramatically.
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Figure 2.8 – Time evolution of the total neutron flux in the TMI assembly. The source is prepared
in a critical state. At the beginning of the kinetic simulation, a reactivity of −5 $ is introduced.
Population control is performed every ∆t = 0.1 s. Green: combing. Red: Russian roulette and
splitting. Black: no population control. Top: total neutron flux. Middle: FOM ratios with
respect to the calculation without population control. Bottom: absolute uncertainty on the total
precursor weight.
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Figure 2.9 – Time evolution of the total neutron flux in the TMI assembly. The source is prepared
in a critical state. At the beginning of the kinetic simulation, we reduce the boron concentration,
introducing 1 $ reactivity. Population control is performed every ∆t=1 ms. Green: combing.
Red: Russian roulette and splitting. Black: no population control. Top: total neutron flux. Mid-
dle: FOM ratios with respect to the calculation without population control. Bottom: absolute
uncertainty on the total precursor weight.
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2.6 Branchless collisions

2.6.1 Description of the algorithm

The fission chains in Monte Carlo transport are responsible for increased variance and spatial
correlations in multiplying media with respect to the case of purely diffusing and absorbing
configurations (Zoia et al., 2014b; Dumonteil et al., 2014; De Mulatier et al., 2015). These
fluctuations, whose origin lies in the fission-induced spatial correlations between successive
generations, might globally hinder the convergence of the kinetic Monte Carlo calculations. In
TRIPOLI-4 we have chosen to cope with the variance associated to fission chains by implement-
ing the branchless collisions method (Lux and Koblinger, 1991). The idea behind this algorithm
is to suppress the variability due to the simultaneous propagation of the several branches associ-
ated to a fission event (i.e., the histories of all the neutrons descending from a common ancestor)
and to collapse all the contributions into a single history carrying the average weight of all the
descendants. In principle, the branchless transport has been shown to be quite effective in re-
ducing the variance in multiplying systems (Sjenitzer and Hoogenboom, 2013).

The branchless method uses analog scattering combined with forced fission so that after
each collision, the neutron is either a scattering neutron or a fission neutron. In order to impose
that exacly one particle emerge from each collision, even after fission, the following statistical
weight correction is applied:

w′ = w
νpΣ f + Σs

Σt
. (2.6.1)

Note that in a non-multiplying medium, the branchless method behaves as implicit capture.

The probability that the collision corresponds to scattering is

Pscattering =
Σs

νpΣ f + Σs
, (2.6.2)

and therefore we choose the final state of the neutron from the scattering kernel. The comple-
mentary probability that the collision corresponds to fission is

Pfission =
νpΣ f

νpΣ f + Σs
, (2.6.3)

and therefore we choose the final state of the neutron from the fission kernel.

2.6.2 Evaluating the efficiency of the method

The branchless method produces exactly one particle after each collision, by applying a correc-
tion weight defined by Eq. (2.6.1). If the correction weight is larger than 1, the exiting particle
might get split. In that case, the benefit of the branchless method would be lost because of the
creation of correlated particles. For a critical system, however, the weight correction is on aver-
age close to 1. In this case, branchless should be efficient and produce only one particle after a
collision. We have selected a critical and a supercritical configuration to study the efficiency of
the method.

Critical configuration

We have prepared again the TMI assembly on the critical state with the power iteration algo-
rithm. Then we have followed the kinetic evolution of the neutron flux over 10 s. The use of the
branchless method improves the FOM by about a factor of 6, as shown in Fig. 2.10.
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Figure 2.10 – Time evolution of the total neutron flux in TMI assembly with and without branch-
less method. The source is prepared in a critical state. Left: Total neutron flux. Right: FOM
ratio between simulations with/without branchless collisions.

Supercritical configuration

We have then considered the supercritical configuration introduced in Sec. 2.5.3, with the ex-
tracted 100 ppm of boron introducing about 1 $ in the system. The flux behaviour is scored
over 0.1 s being partitioned into 100 regularly spaced intervals by increments of ∆t = 1 ms.
Results are shown in Fig. 2.11. The difference between the kinetic evolution resulting from the
two simulations might look surprising, but there is actually no bias in either simulation. The
time steps are strongly correlated (particles are transferred from one step to the nex one) and
large fluctuations in one time step directly impact the following time steps: the interpretation of
kinetic results is much more challenging than for stationary calculations. One solution would
be to increase the statistics to reduce fluctuations. In the time interval between t = 0 s and
t = 0.06 s, where the flux from the two simulations are in reasonable agreement, the use of
branchless collisions improves the FOM by about a factor of 4. Beyond this time limit, it is
not possible to draw any conclusions on the efficiency of the branchless method. Correlations
between time steps will be inverstigated in Sec. 3.3.
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Figure 2.11 – Time evolution of the total neutron flux in TMI assembly with and without branch-
less method. The source is prepared in a critical state. At the beginning of the kinetic simulation,
a reactivity of 1 $ is introduced. Left: Total neutron flux. Right: FOM ratio between simulations
with/without branchless collisions.

2.7 Development of a population importance method for fast ki-
netic configurations

2.7.1 Description of the algorithm

The kinetic simulation of fast transients requires a finely discretized time mesh in order to cap-
ture the rapid time variations of the population. However, if the simulation time steps are too
small, ordinary roulette will kill most of the delayed neutrons, even when forced decay is ap-
plied. Indeed, the statistical weight of delayed neutrons is proportional to the time interval
tq+1 − tq, as given by Eq. (2.4.2), which is rewritten here for the convenience of the reader:

Wdelayed(t|t0) = (tq+1 − tq)
∑

j

λ j
β j

β
e−λ j(t−t0)wC .

Thus, for small time intervals,Wdelayed is also small and particles will not survive the roulette.
With no delayed neutrons to initiate new fission chains, the simulation will then suffer from
severe under-sampling issues.

In order to increase the number of simulated neutrons and therefore improve the efficiency of
simulations over short time scales, we have thus implemented a new time-dependent importance
sampling scheme in the development version of TRIPOLI-4. The key principle of importance
sampling methods is to modify the particle weights, by preserving the physical weights, in such
a way that

W = W′ × I, (2.7.1)

with W the initial weight, W′ the new weight and I the (positive) importance factor. For our
method, one single importance value is associated to each species (i.e., population), meaning
that all neutrons share the same importance value, and the same applies for precursors.

In order to observe both fast and slow transients, one needs a non-uniform simulation time
grid and importance factors. On one hand, fast transients can exclusively be observed over very
short times (time steps might be of the order of the mean generation time); on the other hand,
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delayed neutrons need a few seconds to be emitted. Hence, short time grids should be associated
with the application of an importance factor to favour the forced decay of delayed neutrons. On
the contrary, importance is not necessary for widely spaced time grids, since delayed neutrons
will be typically emitted with a large statistical weight. Therefore, we have implemented our
method in such a way that the importance values can be modified along the simulation time
steps, depending on the size of each step.

For each time step i, the user may provide an importance ratio Ri = IN,i/IC,i. At the beginning
of a time step, including the first one, TRIPOLI-4 uses the current particle weights to define a
global neutron importance IN,i and a global precursor importance IC,i, in such a way that the
physical weights are preserved:

WN,iIN,i = WN,i+1IN,i+1,

WC,iIC,i = WC,i+1IC,i+1,

WN,i + WC,i = WN,i+1 + WC,i+1,

with WN,i the total neutron population weight and WC,i the total precursor population weight at
the end of time step i. The meaning of the importance factor IN,i (IC,i) is that a simulated neutron
(precursor) actually represents IN,i (IC,i) physical neutrons (precursors). Note that the population
weights are only adjusted if the importance ratio changes (nothing needs to be done if Ri+1 = Ri).

When neutrons produce precursors or precursors decay into neutrons, particle weights need
to be adjusted to take into account the population importance factors: the weight of a delayed
neutron created by a precursor decay is divided by Ri; similarly, when a neutron creates a pre-
cursor through fission, the precursor weight is multiplied by Ri. Finally, in order to keep the
result unbiased, neutron (precursor) scores are multiplied by the importance factor IN,i (IC,i).

Figure 2.12 illustrates how the importance is applied along the simulation with realistic
simulation data. For simplicity, only one time step is considered, so we drop index i. At the
end of the critical source calculation, the sampled total neutron weight is much lower than
the total precursor weight (WN = 10−1 and WC = 103), leading to a very unbalanced ratio:
WC/WN = 104. The importance method is applied with a factor R = 10−2. With this factor, the
global neutron and precursor importance values can be computed:

IN = XN + R × XC , (2.7.2)

IC = XC +
1
R
× XN , (2.7.3)

with

XN =
WN

WN + WC
, (2.7.4)

XC =
WC

WN + WC
. (2.7.5)

Therefore, we obtain IN ≈ 10−2 and IC ≈ 1. All neutrons weights are divided by IN , mak-
ing the population ratio more balanced: W′C/W

′
N = 102. Then, during the kinetic simulation,

when a neutron produces a precursor, the precursor weight is multiplied by R; conversely, when
a precursor decays into a delayed neutron, the neutron weight is divided by R. Thus, delayed
neutron weights are increased by a factor 102 and are more likely to survive the Russian roulette.
Finally, during the scoring phase, all neutron scores are multiplied by IN .
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inactive cycles (power iteration) time step

Figure 2.12 – Schematic representation of the importance method during a kinetic simulation
with one time step. The method operates at three different steps, represented in red: at the end
of the critical source calculation, within the time steps and during the scoring phase.

2.7.2 Evaluating the efficiency of the method

As a first verification test for this method, we have performed a kinetic simulation of Flattop-Pu
(PU-MET-FAST-006) (OECD Nuclear Energy Agency, 1995), which is a benchmark configu-
ration consisting of a plutonium sphere with a natural uranium reflector. For a description of
the system, we refer the reader to Sec. A.2. Nuclear data for this configuration are taken from
the ENDF/B-VII library (Chadwick et al., 2006). Flattop-Pu is a fast system, characterized by
a small delayed neutron fraction, as compared to PWRs (βeff ≈ 279 pcm) and also a very short
generation time (Λeff ≈ 13 ns). Because of the specificity of the Flattop-Pu kinetics parameters,
the delayed neutron undersampling issue is amplified, and Flattop-Pu is an interesting configu-
ration to assess our importance sampling method.

After the system has been prepared on the critical state, its kinetic evolution is followed up
to 1 ms with an observation time partitioned into 50 regularly spaced intervals of ∆t = 20 µs.
Population control is enforced by performing combing at the end of each time step. Since the
time step is short compared to precursors decay times (and very long as compared to the average
fission chain length), the use of the importance algorithm is necessary to favour neutron produc-
tion from precursor decay. The total neutron flux displayed in Fig. 2.13 was computed using the
track length estimator with (red curve) and without (blue curve) the importance algorithm. CPU
times were similar for the two calculations and of the order of 1300 CPU hours. The use of a
constant population importance ratio R = 10−4 produces a gain of figure of merit of about 63.
The flux does not exhibit any drift, as expected since keff ≈ 1, while the behaviour of the flux
computed without importance is difficult to interpret because of the large statistical uncertainty
on the results. An example of a kinetic simulation with varying time steps and importance fac-
tors will be shown in Chapter 3.

2.7.3 Choice of the optimal importance ratio

Intuitively, it is easy to understand that at some point decreasing the neutron importance can not
indefinitely improve the FOM. Indeed, neutrons will end up originating mostly from splitting
and thus will be strongly correlated. Hence, there must exist an optimal value for the importance
ratio.
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Figure 2.13 – Time evolution of the total neutron flux in Flattop-Pu at its critical state computed
with TRIPOLI-4. The system is prepared on the critical state and its kinetic evolution is followed
up to 1 ms. Blue curve: simulation without importance factor. Orange curve: simulation with
a population importance ratio of R = 10−4. The two calculations were performed with similar
CPU times. The use of an importance enables to improve the figure of merit by a factor 63.

The choice of the importance ratio depends on a set of parameters, including the simulation
time grid, the inserted reactivity and the kinetics parameters. We attempt here to characterize
the optimal value, or at least its dependence on the kinetics parameters of the system and the
time step length. To this end, we have performed several simulations on the TMI-1 assembly
with different values of the importance ratio. We have chosen ratios starting from 1 (i.e., no
importance sampling applied) to 10−7. For each ratio, the number of particles and batches is
adapted so that the estimated standard error on the total neutron flux is below 10%. The flux
is collected over three time intervals having different sizes (0.001 s, 0.01 s and 0.1 s), so as to
assess the impact of the time step size on the efficiency of the importance method.

Figure 2.14 shows the integral of the total neutron flux over each scoring time bin, with the
associated standard error, for the different ratios. In all cases, scores are well converged on a
common value. Hence, it makes sense to compare the associated FOM.

The FOM are presented in Fig. 2.15 for the different simulations, after normalization to the
FOM obtained when no importance sampling is applied. For the three time steps, an optimal
plateau is reached, which suggests that there exists a wide optimal range for the choice of the
importance ratio. At smaller values of the importance ratio, the FOM decreases: if the neutron
importance is too small, the time spent in the simulation of extra neutrons worsens the FOM be-
cause the extra sampled neutrons will mostly originate from splitting and thus will be strongly
correlated. Another observation is that the importance method becomes more efficient as the
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Figure 2.14 – Integral of the total neutron flux over the scoring time bin, with their standard
error for different importance ratios and sizes of the scoring time bin.

time step gets smaller. Indeed, for ∆t = 0.001 s, the optimal FOM gain is about 110, while it is
only 19 for ∆t = 0.01 s and 5 for ∆t = 0.1 s. In fact, the smaller the time step, the less efficient
forced decay becomes at creating delayed neutrons with weights large enough to survive the
Russian roulette. The importance method compensates the lack of delayed neutrons with more
neutrons at the beginning of the kinetic calculation, and more neutrons created within the time
bins. The upper limit of the plateau decreases when the time step decreases because stronger
importance sampling is needed to cope with the lack of delayed neutrons.

In conclusion, the gain of figure of merit strongly depends on the size of the time bin: the
smaller the time step, the higher the gain. On the contrary, the optimal population importance
ratio does not depend much on the size of the time bin. Indeed, for the different sizes that we
have studied, there exists a wide optimal range for the choice of the importance ratio, and 10−3

seems to be a good generic choice for a system with kinetics parameters similar to that of TMI-1
(which are typical of a PWR).
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Figure 2.15 – Gains of figures of merit with respect to the calculations without importance
sampling, as a function of the importance ratios.

2.8 Development of the capability to handle time-dependent geom-
etry

In order to simulate transients with moving reactor parts, in the frame of this thesis we have
implemented a new option in the development version of TRIPOLI-4 that makes it possible
to modify the geometry and material compositions at each time step. This new option, which
for the moment is only available for ROOT geometries, paves the way for all types of time-
dependent simulations: different geometries can be defined for the criticality calculation and for
each time step of the kinetic simulation. At the beginning of each step of the simulation time
grid, the geometry of the previous step is replaced by the new one. As long as the geometries
have the same bounding box, there is no constraint on their internal structure (number of vol-
umes, composition of volumes, etc.). Note that the change on the geometry is only discrete:
for now, TRIPOLI-4 does not handle continuous changes. Various examples will be presented
through this work.

It should be noted that this development contains a limitation regarding moving volumes
containing fissile material. Indeed, precursors are created in the fissile materials. If the geom-
etry change concerns one of these materials, and since precursors do not move, they might be
later found in non-fissile materials. To avoid that, strategies could be developed, such as shifting
the precursor position by the same distance as the fuel shift. Anyway, this problem seems to
deserve a specific strategy for each configuration depending on the location of the change in the
geometry.

With this implementation of the time-dependent geometry, every change in the geometry
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requires to define a new geometry as input. Therefore, the memory use grows as the number
of the geometries. In order to reduce the memory footprint, we have done some cleaning in
the TRIPOLI-4 classes in charge of the geometry. Notwithstanding this optimization work, the
memory requirements for handling each geometry in TRIPOLI-4 are still large. Moreover, most
of the time, the changes in the geometry will be slight: e.g., the control rod insertion depth varies
but the number of volumes and the composition do not change. Considering such slight changes,
the implementation could be improved in order to reduce the memory occupation: for example,
one single geometry could be given as input, and modified along the simulation depending on a
varying parameter (e.g., the rod insertion depth).

2.9 Conclusion

We have detailed the algorithms that are necessary to pave the way for Monte Carlo kinetic sim-
ulations with TRIPOLI-4, including the algorithms that were recently proposed in the literature
and our original contributions.

In order to assess the efficiency of the different methods, we have considered an assembly
based on the TMI-1 reactor, in different configurations. We have found that combing is more
efficient than the Russian roulette and splitting as a population-control method, especially when
the population size varies dramatically; the branchless collisions method has proved to be effec-
tive in reducing the variance.

Our first new contribution to kinetic algorithms in TRIPOLI-4 was also detailed: a time-
dependent population importance sampling scheme for variance reduction. For the assessment
of its efficiency, we have again considered the assembly based on the TMI-1 reactor, in differ-
ent configurations. The importance method has been tested and proved to be very efficient for
simulations with small time steps, where forced decay fails to produce delayed neutrons with
weights large enough to survive the Russian roulette. The choice of an optimal importance ratio
has been also examined: as the time step decreases, the optimal importance ratio also decreases.
The figure of merit reaches an optimal plateau, and is thus weakly dependent on the choice of
the ratio.

We have finally detailed another contribution to extending TRIPOLI-4 capabilities: time-
dependent geometries are now handled, which makes it possible to simulate all types of tran-
sients.

The description of the different kinetic methods was published in Faucher et al. (2018),
and the evaluation of the variance-reduction and population-control techniques was published
in Faucher et al. (2019a).
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Chapter 3

Extensive tests of the kinetic methods

Kinetic capabilities have been implemented in TRIPOLI-4 as a first step towards the simulation
of reactor transients with physical feedbacks due to thermal-hydraulics and thermomechanics
couplings. The algorithms that have been chosen are those described in Chapter 2. A few
relevant verification tests on two complex systems are presented in this chapter in order to
illustrate the capabilities of the extended code. Correlations between time steps, as well as
the impact of the spatial discretization of the kinetic scores, are also investigated.

3.1 Verification tests on SPERT III E-core

3.1.1 Presentation of SPERT III E-core

The Special Power Excursion Reactor Test III (SPERT-III) is a small pressurized-water research
reactor. It was built in the United States in the 1960s (Heffner and Wilson, 1961; Houghtaling
et al., 1965; McCardell et al., 1969) in order to investigate transient behaviour of nuclear reac-
tors. The E-core type consists of a pressurized light-water-moderated core with 4.8%-enriched
UO2 fuel pellets arranged in a regular lattice of cylindrical pins. It contains 60 assemblies, in-
cluding 48 fuel assemblies with 25 (5x5) pin-cells, 4 assemblies with 16 (4x4) pin-cells, and
8 control rods moving pairwise. The control rods contain fuel in the lower section and a neu-
tron absorber (18-8 stainless steel with 1.35 weight percent of 10B) in the upper section. In
our model, as described in the following, we will move the control rods in order to increase or
decrease the core reactivity. The full insertion of the control rods into the core corresponds to
the shutdown configuration. At the center of the core, a transient cruciform rod is made of the
same neutron absorber as in the control rods in the lower part and of 18-8 stainless steel in the
upper part. A detailed description of the system is provided in Sec. A.3. In the experimental
campaign that was carried out in the 1960s, the transient rod was rapidly ejected from the core
to initiate power excursions: the lower absorber part is located outside the core during the tran-
sient (Heffner and Wilson, 1961; Houghtaling et al., 1965; McCardell et al., 1969). The results
of the reactivity insertion experiments carried out in the SPERT III E-core are extensively doc-
umented in McCardell et al. (1969).

In recent years, several calculations have been performed on the SPERT III E-core config-
urations in order to validate dynamic reactor simulations in steady and transient states. Most
were carried out with deterministic codes, coupled with thermal-hydraulics codes, which how-
ever suffer from various approximations (Kosaka et al., 1988; Ikeda and Takeda, 2001; Aoki
et al., 2009; Grandi and Moberg, 2012; Wang et al., 2013; Yamaji et al., 2014; Grandi, 2014).
More recently, Monte Carlo models for MCNP (Olson, 2013a,b), KENO (Cao et al., 2015),
TRIPOLI-4 (Zoia and Brun, 2016) and Serpent 2 (Knebel et al., 2016; Levinsky et al., 2019)
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have been also proposed, and specifications for an international benchmark have been collected
at IAEA (Olson, 2013a,b,c; IAEA, 2015).

The geometry of SPERT III E-core has been modelled for TRIPOLI-4 with ROOT according
to the technical description found in Heffner and Wilson (1961); Dugone (1965); Houghtaling
et al. (1965). A radial and two axial views of the model are illustrated in Fig. 3.1. The first axial
view shows the control rods at their critical height, while the second one shows the shutdown
configuration with the control rods fully inserted into the core. The validation of the model for
static conditions was detailed by Zoia and Brun (2016). The kinetic methods implemented in
TRIPOLI-4 were tested on this model (Faucher et al., 2018).

3.1.2 Preliminary criticality calculations

For the purpose of the investigations carried out in this thesis, the multiplication factor and the
adjoint-weighted kinetics parameters for the cold zero power configuration have been obtained
by running a regular power iteration calculation with 500 inactive cycles and 2500 active cycles,
each with 4 × 105 neutrons. Results for the nominally critical configuration are displayed in
Table 3.1 (nominal configuration). Nuclear data for this configuration are taken from the JEFF-
3.1.1 library (Santamarina et al., 2009), for which the decay constants were already displayed
in Table 2.2. The average β-weighted decay constant λ̄ (Eq. (2.3.7)) computed by TRIPOLI-4
was also provided.

Knowledge of these parameters allows estimating the asymptotic inverse reactor period via
the approximated formula

ω =
λ̄ρ

βeff − ρ
, (3.1.1)

obtained by resorting to the point-kinetics approximation (Keepin, 1965). Because of the slight
bias in the reactivity due to uncertainties in the nuclear data and in the geometrical model
(ρ ∼ 0.2 $), we get ω ∼ 0.015 s−1, which would lead to a deviation of approximately 15%
after 10 seconds. In order to avoid such spurious drift, we have rescaled the number of fission
neutrons ν by the obtained value of keff as explained in Sec. 2.3.4. The new multiplication factor
and adjoint-weighted kinetics parameters are displayed in Table 3.1 (critical configuration). As
expected, the rescaled TRIPOLI-4 calculation is roughly within 10 pcm of an exactly critical
state. The kinetics parameters are stable between the two configurations. The value for the
rescaled asymptotic period is ω ∼ 6.3 ms−1, leading to a negligible deviation from criticality of
about 0.63% after 10 seconds.

3.1.3 Steady state

Prior to scoring the time evolution of the reactor in stationary conditions, the system has been
prepared on the critical configuration according to the algorithm described in Sec. 2.3. Then,
its kinetic evolution is monitored over 10 s, partitioned into 100 regularly spaced intervals by
increments of ∆t = 0.1 s. At the end of each time interval, combing is used as the population
control method (as for all the following simulations). The aim of the simulation is to present
a first example of a kinetic Monte Carlo simulation of a realistic core at steady state observed
over a few seconds with control of the population size.

The neutron flux displayed in Fig. 3.2 was computed using the track length estimator with
a computational cost of about 3000 CPU hours. The total neutron flux does not exhibit any
drift (orange line), as expected for a system close to the critical state. As a comparison, we also
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Figure 3.1 – Top: radial cut of the TRIPOLI-4 model for the operational loading of the SPERT
III E-core at mid-plane. Middle: axial cut of the TRIPOLI-4 model, passing through two control
rods. The lower portion of the control rod is a fuel follower, and the upper portion (orange) is the
absorbing section. In between lies a flux suppressor. Bottom: axial cut of the TRIPOLI-4 model,
passing through two fully inserted control rods, corresponding to the shutdown configuration.
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Table 3.1 – Multiplication factor and adjoint-weighted kinetics parameters for SPERT III E-core
in different configurations, as computed with the JEFF-3.1.1 nuclear data library. Precursors are
regrouped into 8 families. Error bars are not given for the reactivity expressed in dollars because
we did not measure correlations between keff and βeff. See the text for the precise meaning of
the configurations.

present the flux computed without rescaling the number of fission neutrons (Table 3.1, nominal
configuration). Without this adjustment, the flux reveals a clear drift (blue line). The impact of
the extra 116 pcm on the kinetic behaviour of the system proves that the rescaling of the number
of fission neutrons is essential in order to reproduce the steady state.
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At the time of the simulation, we had little experience on the use of the population im-
portance sampling method described in Sec. 2.7, and we had supposed that the time intervals
were long enough to allow for the emission of delayed neutrons with sufficiently large statistical
weights. Now, regarding the study conducted in Sec. 2.7.3, it appears that the variance-reduction
method would be efficient in this configuration, with ∆t = 0.1 s.
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Figure 3.2 – Time evolution of the total neutron flux in SPERT III E-core computed with
TRIPOLI-4 at nominal conditions, with (orange line) and without (blue line) rescaling the num-
ber of fission neutrons ν by keff.

3.1.4 Reactivity insertion

Starting from the critical configuration considered in previous Sec. 3.1.3, we have then analysed
a departure from the stationary state initiated by the simultaneous movement of the 8 control
rods. For this purpose, we have used the new capability of TRIPOLI-4 to handle time-dependent
geometries, introduced in Sec. 2.8. At t = 1 s, the rods are extracted from the core by 0.8 cm,
introducing a reactivity worth of approximately 0.5 $. At t = 6 s, the control rods are brought
back to their initial position and the system returns to a steady state (different from that of the
initial stationary condition). In practice, TRIPOLI-4 takes two different geometries as inputs.
The first one, corresponding to control rods at nominal height, is used for sampling the critical
source, then between t = 0 s and t = 1 s and finally between t = 6 s and t = 10 s. The second
one, corresponding to control rods extracted by 0.8 cm, is used between t = 1 s and t = 6 s. The
kinetics parameters for both critical and supercritical configurations are reported in Table 3.1
(critical and supercritical configurations); they do not vary significantly. The simulation time
grid and the scoring time grid cover the range from t = 0 s to t = 10 s by time steps of ∆t = 0.1 s.
The importance sampling method is not used, similarly to Sec. 3.1.3.
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The total neutron flux computed during the TRIPOLI-4 simulation is displayed in Fig. 3.3.
The flux remains stationary between t = 0 s and t = 1 s, until the control rods are extracted. At
t = 1 s, a prompt jump is visible before the delayed-neutron excursion sets in. The excursion
follows an exponential behaviour with a best-fit time constant of 0.25 s−1. This value should
be compared to the value of the delayed asymptotic reactor period, αd = (0.426 ± 0.019) s−1,
which we have computed by a reactor period calculation, as presented in Sec.1.2.2, and de-
scribed in (Zoia et al., 2014a, 2015), with 5000 inactive cycles and 20000 active cycles of 104

neutrons. The time constant of kinetics is smaller than the asymptotic period since the system
does not have enough time to relax onto the asymptotic α-eigenstate. Then, at t = 6 s, when the
control rods revert to their initial position, there is a prompt drop and the system relaxes back to
steady-state conditions.

For comparison, we have performed the numerical integration of the adjoint-weighted point-
kinetics equations, presented in Sec. 1.2.3 (Eqs. (1.2.23) and (1.2.28)), considering the 8 precur-
sor families from JEFF-3.1.1 nuclear data library, with the kinetics parameters reported in Ta-
bles 3.1 (critical and supercritical configurations) and 2.2. The point-kinetics solution is shown
in Fig. 3.3 and is in good agreement with the TRIPOLI-4 simulation result. The delayed con-
stant of the point-kinetics excursion is in better agreement with TRIPOLI-4 best-fit constant
than the delayed asymptotic reactor period, because TRIPOLI-4 and point-kinetics take the full
time evolution into account, while the reactor period calculation gives the value associated to
the long-time dominant precursor family, which is the largest one.

3.1.5 The role of precursors

Precursors drive the behaviour of slow kinetics because of their long decay constants. It is per-
haps less obvious that their influence needs to be taken into account whenever the precursor
population is initially at equilibrium with the neutrons, even if the time evolution of the sys-
tem is expected to be chiefly prompt-neutron-driven. Here, we want to show that they are also
important for fast kinetics simulations, such as reactivity insertion accidents, and thus need to
be accounted for. As an illustration, we present the simulation results of a transient computed
on the SPERT III E-core with and without precursors. The system was initially prepared on
the critical configuration. Then, at t = 0 ms, the 8 control rods are extracted from the core by
3.2 cm, introducing a positive reactivity worth of about 2 $. The kinetic evolution of the core
is monitored over 1 ms by time steps of ∆t = 200 µs. Similarly to Sec. 3.1.4, TRIPOLI-4 takes
two geometries as inputs: one with the control rods at critical height, and one with the control
rods extracted by 3.2 cm. The kinetics parameters for the second configuration are reported in
Table 3.1 (prompt supercritical configuration).

When precursors are taken into account, each fission results on average in ν = νp + νd neu-
trons, among which νd delayed neutrons appear after the decay time. If precursors are neglected,
there is no decay and therefore all neutrons must be instantaneously emitted at fission. This begs
the question of how many neutrons should then be created. There are two reasonable options:
either ν or νp neutrons. The simulation results with both options are presented in Fig. 3.4. A
third calculation, taking precursors into account, serves as a reference.

Clearly, neither simplified simulation scheme agrees with the reference flux, even though
the system is prompt supercritical. The population grows too quickly when fissions produce
ν neutrons on average, and too slowly when they produce only νp neutrons. The latter choice
should asymptotically provide a very good approximation of the reactor period in prompt super-
critical conditions. However, the simulation with precursors is in a transient state considering
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Figure 3.3 – Time evolution of the total neutron flux in SPERT III E-core. The critical configu-
ration receives a reactivity insertion at t = 1 s with a 0.8 cm withdrawal of the control rods. The
system returns to critical state at t = 6 s when the control rods go back to their initial position.
The red line is the solution of the TRIPOLI-4 simulation while the green lines are the solutions
of the point-kinetics models for the critical and the reactivity insertion configurations. The Best-
fit exponential time constants for the excursion between t = 1 s and t = 6 s and for t > 6 s are
0.25 s−1 and −0.65 s−1 respectively.

the simulation time. To observe the asymptotic state, we should follow the kinetic behaviour
over a longer time; only then would the red and green fluxes evolve with the same period. For
the present choice of time interval, precursors are essential to the simulation in order to reveal
the transient part. Treating the delayed neutrons as prompt, as it is done in the blue calculation,
results in the right behaviour over very short time scales, but asymptotically diverges away from
the reference calculation.

Therefore, neglecting the precursors in kinetic simulations, even in prompt supercritical
conditions, seems inappropriate if precursors are very abundant in the initial state, which is
precisely the case of excursions from criticality.

3.1.6 Rod drop

We now illustrate the feasibility of kinetic Monte Carlo simulations involving the observation
of both prompt and delayed neutron evolution. For this purpose, we have prepared the critical
state with the power iteration algorithm on the configuration presented in Table 3.1 (nominal
configuration), and we have assumed that the 8 control rods are moved to the shutdown position
at the beginning of the kinetic simulation. Hence, the rods are fully inserted into the core, intro-
ducing about −19 $ static reactivity worth in the system: see Table 3.1 (rod-drop configuration)
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Figure 3.4 – Time evolution of the total neutron flux in SPERT III E-core. The system is pre-
pared on the critical condition and is perturbed at t = 0 s with a reactivity insertion of approx-
imately 2 $. Its kinetic evolution is followed up to 1 ms. Red: TRIPOLI-4 simulation with
precursors. Blue: TRIPOLI-4 simulation without precursors and ν neutrons created at each fis-
sion on average. Green: TRIPOLI-4 simulation without precursors and νp neutrons created at
each fission on average.

for the kinetics parameters. We have also computed the prompt and delayed alpha eigenvalues
for this configuration by two reactor period calculations with 5000 inactive cycles and 20000
active cycles of 104 neutrons.

For the kinetic simulation, we have used a time-dependent population importance ratio so as
to observe the two time scales of the system due to both prompt and delayed neutrons. Indeed,
in order to properly observe the prompt drop, combing must be frequently performed to prevent
the population from dying away. Hence, the simulation begins with a time grid from t = 0 ms
to t = 1 ms with ∆t = 200 µs time intervals for the combing. A population importance ratio of
R = 10−3 has been used in order to increase the number of neutrons since the time intervals are
too small to allow for delayed neutron emission. The delayed behaviour was captured over a
larger time interval, 0.1 s ≤ t ≤ 500 s, in steps of ∆t = 0.1 s. No importance factor was applied
over this interval.

The TRIPOLI-4 simulation results are displayed in Fig. 3.5. Two distinct behaviours can
be clearly identified: i) a prompt drop and ii) a slow decay due to delayed neutrons. To get a
better view of the prompt drop, Fig. 3.6 zooms on the time interval 0 ms ≤ t ≤ 1 ms. Here, the
flux tends to decrease exponentially with a best-fit time constant of −7300 s−1, which is differ-
ent from the value of prompt alpha αp = (−5074 ± 79) s−1 since the system has not reached its
asymptotic state. After the prompt drop, the flux approaches an exponential decay with a best-fit
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Figure 3.5 – Time evolution of the total neutron flux in SPERT III E-core. The source is prepared
in a critical state. At the beginning of the kinetic simulation (t = 0 s), the control rods are fully
lowered into the core, introducing 19 $ anti-reactivity. The figure shows the prompt drop but
also the slow decay due to delayed neutrons. An exponential fit for this decay part yields a time
constant of 14 ms−1. It was possible to simulate the two time scales through a change in the
importance factor along the kinetic simulation.

time constant of −14 ms−1, which is in good agreement with the calculated value of the asymp-
totic reaction period, αd = (−12.20 ± 0.51) ms−1. Hence, the TRIPOLI-4 simulation result is in
agreement with the alpha eigenvalue calculations for the delayed regime.

This kinetic simulation can also be used to assess the anti-reactivity insertion, expressed in
dollars, by resorting to an integral-count technique (Keepin, 1965). When applying the Laplace
transform to the point-kinetics equation, the reactivity can be expressed as

ρ [$] ∼
n0

βeff

×

∑
i
βeff,i
λi∫ ∞

0 n(t)dt
, (3.1.2)

with n0 the integral of neutron count before the rod drop, and
∫ ∞

0 n(t)dt the total neutron count
after the drop. Using the effective delayed neutron fraction presented in Table 3.1 (rod-drop
configuration), the decay constants and the results of the kinetic simulation, we obtain ρ ∼

−17 $, which is in reasonable agreement with the −19 $ obtained by the static keff calculation.

71



CHAPTER 3. EXTENSIVE TESTS OF THE KINETIC METHODS

0.0 0.2 0.4 0.6 0.8 1.0
Time [ms]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
eu

tr
on

flu
x

[a
rb

it
ra

ry
un

it
s]

×109

Figure 3.6 – Same as Fig. 3.5, for 0 ms < t < 1 ms.

3.2 Verification tests on the TMI 3x3 mini-core

In this section, we present a second set of kinetic simulations performed on the transient bench-
mark described by the NEA (Ivanov et al., 2013b), from which the assembly studied in the
previous chapter was extracted. The system is a 3x3-assembly mini-core based on the full core
geometry of the TMI-1 reactor. This work was performed within the framework of the Euro-
pean project McSAFE, as a joint work with KIT (Karlsruher Institut für Technologie) and VTT
(Technical Research Centre of Finland). Four different transient scenarios have been defined and
simulations were performed with TRIPOLI-4 and Serpent 2 for code-to-code comparisons. KIT
and VTT teams were in charge of Serpent 2 calculations, while we were in charge of TRIPOLI-4
calculations. The long-term goal of this benchmark problem is to compare transients simula-
tions, taking into account thermal-hydraulics feedbacks; the kinetic simulations presented here
represent a first step towards this goal. The benchmark results were published in ?.

3.2.1 The TMI 3x3 mini-core

The 3x3 mini-core is based on the TMI-1 reactor. Each of the 9 fuel assemblies consists of 15x15
rods, made of 4.12% enriched UOX. Each fuel assembly also contains four (Gd2O3+UO2)
burnable poison pins. The active fuel length is 353.06 cm, and the width of each assembly
is 21.64 cm. An instrumentation tube is located in the center of each assembly. Assemblies are
surrounded by a reflector (whose width is 21.64 cm), made of borated water and stainless steel.
The central assembly contains 16 extra control rods composed of a Ag-In-Cd core and Inconel
cladding. For the critical hot zero power configuration, control rods are fully inserted, meaning
that the insertion depth is 353.06 cm. The core active height is divided in 10 axial slices, and
there is no radial discretization. A more detailed description of the system is given in Sec. A.4.
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For our code-to-code comparisons, we have defined an axial gradient for the temperatures
and densities: coolant temperatures range from 563 K to 572 K, and fuel temperatures range
from 900 K to 979 K, as described in Table 3.2. Material compositions were taken from Ivanov
et al. (2013b) and are presented in Table A.6. We have implemented the geometry with ROOT.
A radial view and an axial view of the geometry are illustrated in Fig. 3.7.

axial slice fuel temperature coolant temperature coolant density
[K] [K] [g/cm3]

1 (bottom) 900 563 0.745
2 909 564 0.743
3 918 565 0.740
4 926 566 0.738
5 935 567 0.736
6 944 568 0.733
7 953 569 0.731
8 962 570 0.729
9 971 571 0.727
10 (top) 979 572 0.725

Table 3.2 – Fuel temperatures, coolant temperatures and coolant densities in the ten axial slices
in the mini-core benchmark.

3.2.2 Preliminary criticality calculations

Kinetics parameters for the nominal configuration were computed with a criticality calcula-
tion and are displayed in Table 3.3 (nominal configuration). The multiplication factor keff =

1.00124 ± 1.7 × 10−4 is close to 1. However, as mentioned earlier, even such small deviation
will cause the system to drift away from the stationary state during a kinetic simulation. For
this reason, in order to minimize these deviations, we have determined the boron concentration
leading to keff ≈ 1 by using the critical boron search functionality available in TRIPOLI-4. The
critical concentration was found to be 1493 ppm, meaning that the 13 ppm of boron account
for 128 pcm, resulting in a differential boron worth of about 9 pcm/ppm, which is a realistic
value. We have performed our simulations with this adjusted value. Kinetics parameters for this
critical configuration are displayed in Table 3.3 (critical configuration).

In order to characterize the control rods worth, we have made several static criticality cal-
culations, for different extraction heights, ranging from 0 cm (rods are fully inserted and the
system is critical at critical depth) to 353.06 cm (full extraction of the rods). The reactivity val-
ues (see Fig. 3.8) obtained with TRIPOLI-4 were compared to the results of Serpent 2 for the
same configurations, and are in good agreement.

3.2.3 Reactivity insertions

The four reactivity excursion transients presented in the following have been computed on the
Cobalt CEA supercomputer from the TGCC (Très Grand Centre de Calcul, Bruyères-le-Châtel,
France), during about 16000 CPU hours, in order to attain a small standard error on the global
integrated neutron flux (0.5% at most in each time step).
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Figure 3.7 – Views of the ROOT implementation of the TMI-1 mini-core geometry. Each color
defines one composition. Left: radial cut with the central assembly with control rods (in blue).
The burnable poison pins are represented in green. Right: axial cut.

Scenario A

The system has been initially prepared on the critical state with the power iteration algorithm.
Then, the 8 control rods located in the central assembly have been extracted by 40 cm between
t = 0.3 s and t = 1.3 s: the insertion depth varies from hc = 353.06 cm to h10 = 313.06 cm.
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Figure 3.8 – Static reactivity as a function of control rod extraction for the TMI-1 mini-core.
Criticality calculations were performed for several configurations: starting from critical config-
uration with complete insertion of the control rods in the core, up to complete extraction. Red:
TRIPOLI-4 simulation results. Black: Serpent 2 simulation results. Error bars are plotted but
they are not visible because of the graph scale (standard errors are below 10 pcm).

configuration nominal critical supercritical

boron [ppm] 1480 1493 1493
keff 1.00124 ± 1.7 × 10−4 0.99995 ± 5.3 × 10−5 1.00413 ± 5.3 × 10−5

Λeff [µs] 16.568 ± 0.015 16.5529 ± 0.0050 16.5519 ± 0.0049
βeff [pcm] 756.5 ± 6.8 755.5 ± 2.2 757.8 ± 2.2
βeff,1 [pcm] 22.09 ± 1.1 24.72 ± 0.38 22.38 ± 0.78
βeff,2 [pcm] 108.0 ± 2.6 106.68 ± 0.82 107.9 ± 1.8
βeff,3 [pcm] 63.7 ± 2.0 67.31 ± 0.64 66.3 ± 1.4
βeff,4 [pcm] 142.5 ± 2.9 145.75 ± 0.94 141.4 ± 2.1
βeff,5 [pcm] 245.8 ± 3.8 245.91 ± 1.23 243.4 ± 2.5
βeff,6 [pcm] 83.0 ± 2.2 82.69 ± 0.71 83.4 ± 1.6
βeff,7 [pcm] 65.8 ± 2.0 66.80 ± 0.64 67.9 ± 1.4
βeff,8 [pcm] 25.62 ± 1.3 26.07 ± 0.39 25.16 ± 0.84
ρ [pcm] 124 ± 17 −5 ± 11 411.4 ± 5.3
ρ [$] ∼ 0.2 ∼ 0 ∼ 0.5

Table 3.3 – Multiplication factor and adjoint-weighted kinetics parameters for the mini-core in
different configurations, as computed with the JEFF-3.1.1 nuclear data library. Precursors are
regrouped into 8 families. Error bars are not given for the reactivity expressed in dollars because
we did not measure correlations between keff and βeff. See the text for the precise meaning of
the configurations.
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Thus, the velocity for rod extraction is 40 cm s−1. At the end of the movement, this perturbation
makes the system supercritical with ∆ρ ∼ 0.5 $. The control rods depth progressively goes back
to the critical value hc, at the same speed of 40 cm s−1, between t = 1.3 s and t = 2.2 s. The
kinetic evolution of the system is monitored over t = 5 s by increments of ∆t = 0.1 s. In order
to describe this scenario consistently with Serpent 2, we have used 11 different geometries as
inputs: that is, we have discretised the control rod ramp in 10 steps, with the control rod position
at each step n being given by

hn = hc − n × 4 cm. (3.2.1)

The first geometry with hc = 353.06 cm is used for the preparation of the critical source, and
for the kinetic simulation, up to t = 0.3 s. The second one with h1 = 349.06 cm is used be-
tween t = 0.3 s and t = 0.4 s, the third one with h2 = 345.06 cm is used between t = 0.4 s and
t = 0.5 s, and so on. The multiplication factor and adjoint-weighted kinetics parameters for the
supercritical configuration with control rods insertion depth h10 are displayed in Table 3.3 (su-
percritical configuration). Results of the kinetic simulation are displayed in Fig. 3.9 (scenario
A). TRIPOLI-4 and Serpent 2 are in good agreement, and point-kinetics yields a good approxi-
mation of the flux evolution.

Simulation results for the score at the fuel pin-cell level are also presented in Fig. 3.10,
for three different time bins. The neutron flux is presented with the associated absolute and
relative uncertainty. It is interesting to notice that the relative uncertainty in a cell for a given
time step is roughly constant (between 0.5% and 0.7% depending on the time step), and is
roughly equivalent to the relative uncertainty on the global integrated score (about 0.5%). This
outcome is at first surprising since one would have naively expected the relative uncertainty to
be proportional to the volume, and therefore the relative uncertainty to be larger for the score at
pin-cell level than for the integrated score. This issue will be further investigated in Sec. 3.4.

Effect of the geometry discretization We have made a code-to-code comparison on a tran-
sient scenario with a non-continuous modeling of the rod extraction movement: as explained,
to be consistent with Serpent 2 simulation, we have used a discretized extraction of the control
rods with 11 different geometries. We have verified that TRIPOLI-4 and Serpent 2 were in good
agreement, and we want now to that assess the capability of the 10-step discretization to repre-
sent a continuous ramp movement. In order to analyse the impact of the discretization, we have
performed three additional TRIPOLI-4 simulations with finer discretizations. The first one uses
32 steps for the 40 cm extraction: rods are extracted from the core by 1.25 cm every 0.03125 s;
the second one uses 100 geometries: rods are extracted from the core by 0.4 cm every 0.01 s;
the third one uses 200 geometries: rods are extracted from the core by 0.2 cm every 0.01 s.

Figure 3.11 shows the relative difference on the total neutron flux, with respect to the sim-
ulation with 200 extraction steps. Results show a clear deviation at the peak: the flux peaks at
higher values when the discretization is coarser, showing that a 10-step discretization is not fine
enough to represent a continuous ramp movement. 32-step discretization results are in better
agreement with the 200-step, and 100-step discretization results are even slightly better. Fi-
nally, we can conclude that 100 steps in 100 s is a fine enough discretization to capture the flux
variations during the 40 cm rod extraction.

Scenario B

Transient scenario B begins in the same way as scenario A: rods are extracted by 40 cm and
are then reinserted between t = 1.3 s and t = 2.2 s. The same pattern is then repeated between
t = 2.5 s and t = 4.4 s. The time evolution of the total neutron flux is presented in Fig. 3.9
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Figure 3.9 – Time evolution of the total neutron flux in the mini-core during the 4 different
transient scenarios A, B, C and D. The system is first prepared on the critical state, then its
kinetic evolution is monitored over 5 s. The system receives about a 0.5$ reactivity insertion
with a progressive extraction of the control rods, up to 40 cm and returns to critical state when the
control rods return to their critical height (except for scenario D, where rods are not reinserted).
The red line shows the result of TRIPOLI-4 simulation, the black line shows the result obtained
with Serpent 2 and the dashed green line is the approximation from point-kinetics.

(scenario B). TRIPOLI-4 and Serpent 2 are in good agreement, and point-kinetics gives a fairly
good approximation of the flux behaviour.

Scenario C

For scenario C, control rods are again extracted between t = 0.3 s and t = 1.3 s, and the super-
critical configuration is maintained up to t = 3.1 s in order to observe the flux excursion. Rods
are later reinserted to the initial height between t = 3.1 s and t = 4 s. The time evolution of the
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Figure 3.10 – Neutron flux at pin cell resolution, with the associated absolute and relative un-
certainty, during scenario A transient, for the third slice, and at three different time steps: t = 0 s
(steady state), t = 1.2 s (power peak) and t = 5 s (back to steady state).
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Figure 3.11 – TRIPOLI-4 simulation of transient A, with 4 different discretizations of the rods
extraction: 10, 32, 100 and 200 steps. Black: relative difference between 200 and 10 steps.
Green: relative difference between 200 and 32 steps. Red: relative difference between 200 and
100 steps.

total neutron flux is presented in Fig. 3.9 (scenario C). TRIPOLI-4 and Serpent 2 are in good
agreement, up to the flux excursion, where Serpent 2 results seem to attain higher flux values
than TRIPOLI-4 results. In fact, the strong correlation between time steps is the reason for this
systematic deviation. Correlations between time steps in a kinetic calculation make the analysis
much more challenging than for a criticality calculation, and will be investigated in Sec. 3.3.

Point-kinetics overestimates the flux excursion for this scenario. In fact, the agreement be-
tween point-kinetics and TRIPOLI-4 is significantly worse than for the 0.5$ reactivity insertion
scenario simulated with SPERT III E-core (Fig. 3.3). There are actually differences between
the two transient simulations that might explain this deviation. First, the TMI-1 mini-core has a
preferential direction (the active height is 353.06 cm for a width of about 60 cm). Point-kinetics
might be more suited for SPERT III E-core, whose dimensions are more homogeneous (the
active height is about 1 m for for a width of about 50 cm). Second, the movement of the rod ex-
traction is discretized for the mini-core, while it is instantaneous for SPERT III E-core; this may
induce differences in the flux excursion. The two differences are for the moment only hypothesis
to explain the difference of behaviour of the point-kinetics and deserve further investigation.

Scenario D

Transient scenario D depicts rod extraction without further reinsertion of the rods. Because
the simulation does not take into account the thermal-hydraulics feedbacks, the power keeps
increasing until the end of the simulation. Results are presented in Fig. 3.9 (scenario D). As
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for scenario C, Serpent 2 and TRIPOLI-4 are in agreement even if correlations between time
steps induce a deviation during the flux excursion. Also, point-kinetics overestimates again the
flux profile. This last scenario is of interest for further investigations with thermal-hydraulics
coupling, for the observation of the flux decrease due to feedbacks.

3.3 Investigating the correlations between time steps

In a kinetic TRIPOLI-4 calculation, particles are transferred from one time step to the next one.
Therefore, scores collected in two different time steps are not independent. As it was observed
in Secs. 2.6.2 and 3.2.3, scores are actually strongly correlated. This makes it quite difficult to
assess for example the statistical significance of fluctuations.

The aim of the kinetic simulations presented below on SPERT III E-core is to characterize
the correlations, due to fission chains, between the scores in different time steps. Such correla-
tions have a short time range; thus, we have monitored the flux over small time intervals. Also,
since correlations may depend on the inserted reactivity, we have performed the study on two
different configurations: critical (ρ ≈ 0 $) and subcritical (ρ ≈ −19 $). Both configurations were
already presented in Sec. 3.1.

3.3.1 Critical configuration

The system is prepared on the critical configuration. The kinetics parameters were reported in
Tables 3.1 and 2.2 (critical configuration). The kinetic evolution is monitored over a total ob-
servation time of 10 ms, partitioned into 500 intervals of ∆t = 20 µs. The time step is therefore
approximately equal to the mean generation time (the mean generation time Λeff is about 17 µs):
∆t ≈ Λeff.

We have simulated 3000 batches with 12000 particles per batch, and we do not use any
population-control method. The total neutron flux was collected over the time intervals using
the track length estimator. We have then computed the two-time correlation function for the
total neutron flux ξ(t0, t).
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Figure 3.12 – Two-time correlation function for a critical configuration. The total neutron flux
was collected over 500 time steps with TRIPOLI-4.
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Figure 3.12a presents the correlation matrix, and shows the progressive decorrelation of the
score at a time step from the previous time steps. Figure 3.12b presents the correlation function
as a function of the final time t, for different initial times t0. The plot reveals two parts. For
small values of |t− t0|, correlations quickly drop off with time. Then, after about 200 time steps,
correlations stop decreasing and remain stable around a low value. Also, the decay constant
seems to depend on the initial time t0. Indeed, the decay goes faster for small values of t0. Then,
new fission chains begin and bring additional dependency among particles sharing a common
parent. As of t0 = 100 × ∆t, the decay seems to be stable for different values of t0. In fact, for
t0 < 100 × ∆t, correlations are not yet representative of the total correlations of the system.

3.3.2 Subcritical configuration

As mentioned above, the variance on the neutron flux may depend on the kinetic of the system.
Therefore, after examining the critical configuration, we have also considered the rod drop con-
figuration: control rods are fully inserted in the core, introducing about −19 $ static reactivity
worth in the system. The kinetics parameters were reported in Table 3.1 (rod drop configura-
tion). As for the previous simulation, the kinetic evolution is monitored over a total observation
time of 10 ms, partitioned into 500 intervals of ∆t = 20 µs. Again, the time step is approximately
equal to Λeff, and 3000 batches have been simulated with 12000 particles per batch. A popula-
tion importance ratio of R = 10−3 has been used in order to increase the number of neutrons.
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Figure 3.13 – Two-time correlation function for the rod drop subcritical configuration (ρ ≈
−19 $). The total neutron flux was collected over 500 time steps with TRIPOLI-4.

Simulation results are presented in Fig. 3.13. Correlations drop drastically, reaching a low
asymptotic value after a few steps only. The decay is much faster than for the critical configu-
ration presented in Sec. 3.3.1. Fission chain length can explain this difference, as discussed in
Sec. 3.3.3.

3.3.3 Fission chains length and impact on correlations

In order to explain the difference of behaviour between the correlations decay in the critical
and the subcritical configurations, we have analyzed the properties of the fission chains. As
explained in Sec. 1.3.3, for prompt-subcritical configurations (i.e., kp < 1), the mean number n̄
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of fissions per fission chain is given by

n̄ =
1

1 − (1 − βeff) × keff

, (3.3.1)

We investigate the consequences of this formula for the two configurations.

Critical configuration

For the critical configuration illustrated in Fig. 3.12b, Eq. (3.3.1) evaluated with parameters from
Table 3.1 yields n̄ = 130 and the fission chain lifetime is n̄ ×Λeff ≈ 2 ms. When considering the
initial time t0 = 100 × ∆t, correlations follow an exponential decay with a best-fit time constant
of α = 0.009/∆t (cf. Fig. 3.14a for the fit). Thus, the decay time is 1/α ≈ 2 ms, which is about
the fission chain lifetime. In fact, within a fission chain, particles are correlated because they
share a common parent. When the fission chain ends, the creation of correlated particles stops.
Hence, as expected, correlations decay time is closely connected to fission chain lifetime.
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(b) Subcritical configuration

Figure 3.14 – Fitting of the correlations decay for critical and subcritical configurations pre-
sented in Figs 3.12b and 3.13b with initial time t0 = 100 × ∆t.

Subcritical configuration

For the subcritical configuration illustrated in Fig. 3.13b, Eq. 3.3.1 evaluated with kinetics pa-
rameters from Table 3.1 yields n̄ = 7, so the fission chain lifetime is n̄ × Λeff ≈ 0.1 ms. Fission
chains are on average much shorter than in the critical configuration. When considering the
initial time t0 = 100 × ∆t, the best-fit time constant is α = 0.18/∆t (cf. Fig. 3.14b for the fit).
Here again, the decay time 1/α ≈ 0.1 ms is in good agreement with the fission chain lifetime.

3.3.4 Conclusion

We have studied short-time correlations for the total neutron flux on two configurations, and we
have found that correlation decay is driven by the fission chains lifetime. This conclusion was
expected since the end of a fission chain kills the short-time correlations. Correlations drop be-
low 10% after approximately 100 ×Λeff for the critical configuration, and after 20×Λeff for the
subcritical configuration. More precisely, the decay constant is about 2 ms for the critical config-
uration and 0.1 ms for the subcritical rod drop configuration. Correlations decay more quickly
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in the critical configuration than in the subcritical configuration because the fission chains are
much shorter in the subcritical configuration.

This investigation shows the quick decay of correlations due to fission chains. But fission
chains are not the only mechanism that can generate correlations. Indeed, precursors survive for
a long time, compared to typical simulation time intervals (∆t ≤ 0.1 s). Forced decay creates
correlated delayed neutrons. The correlations due to precursors are left for future investigation.

Finally, population-control methods reduce correlations. Thus, the impact of the simulation
time mesh should be further investigated as well.

3.4 Investigating the impact of the scoring mesh spatial discretiza-
tion

The simulation scores (e.g., neutron flux and power) are often computed on a spatial mesh super-
imposed to the geometry for the purpose of coupling neutron transport and thermal-hydraulics.
The statistics collected in each mesh cell improves with the number of neutrons reaching it,
which is roughly proportional to the volume of the cell (whose size is adjusted depending on
the level of spatial detail needed for the simulation). Therefore, one would naively expect that
the relative uncertainty in a cell is proportional to its volume. In Sec. 3.2.3 however, for the
kinetic simulation of transient A scenario, results at pin-cell level were presented in Fig. 3.10
and the associated relative uncertainties were about the same as for the global integrated score.
We investigate here the scaling of the variance for kinetic simulations as a function of the spatial
mesh size and compare our results to the case of static eigenvalue calculations, for the same con-
figuration. For this study, we do not consider the full TMI-1 mini-core but the same assembly as
in Chapter 2 to achieve a reasonable computational cost of the simulations. This investigation
work was part of a publication (Faucher et al., 2019a).

3.4.1 Difference between kinetic and criticality calculations

We have performed a criticality and a kinetic calculation with two different spatial scoring
meshes: in the first one, the flux is integrated over the whole assembly; in the second one,
the flux is radially discretized at pin-cell level and axially discretized in 10 slices (the mesh
consists of N = 15 × 15 × 10 cells). For the spatially resolved results, we have furthermore
computed the mean score and the mean relative uncertainty σm

rel, which we have defined as

σm
rel =

√
1
N

∑
i, j,k

σ2
i, j,k

1
N

∑
i, j,k

ϕi, j,k
, (3.4.1)

with σi, j,k the absolute standard error in cell (i, j, k) and ϕi, j,k the flux in cell (i, j, k). For the
kinetic calculation, we have simulated a single time step of ∆t = 10−1 s. Results are presented
in Table 3.4. As expected, for both criticality and kinetic simulations, the mean score on a cell
is a factor of N smaller than the global score. In the criticality calculation, as one would naively
expect, the relative uncertainty is roughly multiplied by a factor

√
N; on the other hand, in the

kinetic calculation, the obtained result is less intuitive: the relative uncertainty on a cell turns
out to be roughly the same as the global relative uncertainty.
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configuration criticality kinetic (∆t = 10−1 s)
quantity flux [a.u.] relative uncertainty (%) flux [a.u.] relative uncertainty (%)
assembly 5.20 × 102 1.83 × 10−2 5.85 × 102 7.03 × 10−1

1/10 pin cell 5.20 × 102 0.47 × 100 5.85 × 102 7.13 × 10−1

ratio 1 0.04 1 0.99

Table 3.4 – Neutron flux and relative mean squared standard error for a criticality and a kinetic
simulation of the TMI assembly in a critical configuration.

3.4.2 Dependence on the time step

The difference between the criticality and the kinetic simulations lies in the different ways the
lifetime of the neutrons is taken into account. For the criticality calculation, scores are collected
over power iteration cycles, which simulate a single generation (the generation time Λeff being
about 17 µs). The migration area computed by TRIPOLI-4 is D ≈ 31 cm2, which covers a few
cells; thus a neutron can explore only a few cells on average within a cycle. For the kinetic
calculation, however, scores are collected over ∆t = 10−1 s, which is larger than the lifetime of
a fission chain (on average Λeff/βeff ≈ 2 × 10−3 s, as explained in Sec. 1.3.3). Consequently, in
the time bin, the different neutrons from a fission chain make strongly correlated contributions
to several cells of the assembly. Correlations make the variance on the global (integrated) score
increase because of the additive covariance terms.

We can assume that the distance travelled by neutrons from a same fission chain during a
time ∆t increases as the square root of the time. Thus, assuming that ∆t < Λeff/βeff, the distance
can be estimated by

l∆t =
√

6 × D × ∆t/Λeff, (3.4.2)

and the travelled length during ∆t = 10−3 s is found to be about 1 m, which is of the order of
the size of the system. Now, for shorter values of ∆t, the explored length also decreases. Below
∆t = 10−3 s, we can guess that the fission chains will not have time to explore all the cells of
the assembly, and that the relative uncertainty on the cells will be larger than on the global score.

In order to verify this conjecture, we have scored the neutron flux in time intervals of several
sizes. The ratio between the relative uncertainty on the score at cell-level and integrated over
the whole assembly are displayed in Fig. 3.15. For ∆t = 10−2 s and ∆t = 10−3 s, the relative
uncertainty is found to be roughly the same between the two scoring meshes. However, below
∆t = 10−4 s, the relative uncertainty at pin-cell level becomes sensibly larger than the integrated
one, although the ratio observed in the criticality calculation is not attained. As a matter of fact,
the ratio between the two relative uncertainties reaches a plateau at ∆t = 10−5 s, which is about
the generation time. The reason for this plateau requires further investigation.

For larger systems (whose typical size is larger than 1 m), the exploration of all the cells
requires more time. For the TMI-1 3x3 mini-core for example (as a reminder, it consists of
9 fuel assemblies and the active height is 353.06 cm), the time required to explore the whole
system, as given by Eq. 3.4.2, is about ∆t = 10−2 s, which is larger than the average fission
chain lifetime. Therefore, cells should be less correlated than for the assembly: regarding the
size of the system, neutrons from a same fission chain can not explore the whole mini-core. In
order to verify this assumption, we have computed the ratio between the relative uncertainty on
the global score and on the score at cell-level (the mesh consists of N = 45×45×10 cells), over
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Figure 3.15 – Ratio between the relative uncertainty on the score integrated over the whole
assembly and at cell-level. The red line denotes the criticality calculation reference value for
the assembly. The black line denotes the results of the kinetic calculations on the assembly for
the different sizes of time step. The ratio decreases as the time step decreases, but it reaches a
plateau before reaching the value of the criticality calculation. The blue cross presents the result
of the kinetic calculation on the 3x3 mini-core for ∆t = 0.1 s.

∆t = 10−1 s (see Fig. 3.15). As expected, the ratio is smaller than 1.
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3.5 Conclusion

We have numerically tested the kinetic Monte Carlo methods implemented in TRIPOLI-4, and
detailed in Chapter 2, on two realistic configurations by examining the response of both prompt
and delayed neutrons to different types of reactivity insertions. The first configuration was
SPERT III E-core, a research reactor composed of 60 assemblies. The kinetic simulation of the
reactor at steady state was presented. We have stressed the importance of taking into account
precursors, even within a prompt supercritical excursion, and finally we have demonstrated the
value of a time-dependent importance sampling scheme for observing both prompt and delayed
regimes when simulating a rod drop. This work was published in Faucher et al. (2018).

The second configuration was a mini-core based on the TMI-1 reactor with 3x3 assemblies.
Different transients were simulated and benchmarked against the Monte Carlo code Serpent
2. Results were satisfactory and encourage the application of the new kinetic capabilities that
are now available in TRIPOLI-4 to the simulation of reactor transients with thermal-hydraulics
feedbacks, which is the purpose of Part II. I co-authored a publication on the code-to-code com-
parison (?).

In the different kinetic simulations that we have performed, we have noticed that the scores
are strongly correlated between time steps. Therefore, we have performed a numerical investi-
gation of the correlations. Correlations due to fission chains have an exponential decay, and the
decay time depends on the fission chain lifetime.

Finally, we have highlighted an interesting behaviour regarding the dependency of the rela-
tive uncertainty on the discretization of the scoring grid of a kinetic calculation. The contribution
of the different neutrons from the same fission chain within a time step increases the variance
on the total neutron flux due to the presence of correlations.
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Chapter 4

Development of a coupling between
TRIPOLI-4 and thermal-hydraulics

The purpose of this chapter is to present the new multi-physics interface for TRIPOLI-4, part of
which has been developed in the frame of this thesis. More specifically, we present the coupling
scheme between TRIPOLI-4 and the thermal-hydraulics sub-channel code SUBCHANFLOW.

4.1 Development of a multi-physics interface for TRIPOLI-4

In order to be able to perform multi-physics calculations with TRIPOLI-4 and thermal-hydraulics,
we have developed a supervisor, i.e., an external program, whose aim is to orchestrate data ex-
change between the coupled codes. The implementation and the role of the supervisor are
detailed below.

4.1.1 Development of a supervisor

In the latest version of TRIPOLI-4 (v11.0, released in December 2018), there is no multi-physics
interface. The calculation parameters (geometry, compositions, scores, simulation options, etc.)
are defined using the traditional TRIPOLI-4 input file. TRIPOLI-4 parses the file and creates an
in-memory representation of the input file, which is subsequently processed to start the actual
calculation. The input file-based approach is however unsuitable for a multi-physics calcula-
tion, which requires frequent updates of the material compositions. Therefore, we have chosen
to split the parsing and the initialization of the different classes: this led to the development of
an Application Programming Interface (API) for the TRIPOLI-4 library. The aim of the API
objects is to permit the programmatic initialization of TRIPOLI-4 classes, bypassing input-file
parsing.

Nonetheless, even with the API objects, all of the TRIPOLI-4 classes are exposed to the
user, and setting up a calculation requires to be familiar with the code architecture. In order to
simplify the use of the API, we have implemented an in-between class: T4 Facade, which can
be called by the supervisor. T4 Facade provides a single entry point for the TRIPOLI-4 API,
reduces the contact surface between TRIPOLI-4 and the supervisor and, in a nutshell, acts as an
in-between layer between TRIPOLI-4 and the supervisor.

The development of the supervisor was performed within the frame of this thesis: we have
developed the supervisor as a C++ program and we have then performed a verification work
on simple test cases in order to make sure that a supervisor-driven calculation gives the same
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results as a standalone TRIPOLI-4 calculation.

The supervisor can drive a TRIPOLI-4 calculation step by step, but the main benefit of the
supervisor is that it can also drive other codes. The coupling between TRIPOLI-4 and thermal-
hydraulics is intended to be generic in scope, in order to simplify future coupling schemes with
other codes: for instance, thermomechanics feedbacks could be taken into account, or thermal-
hydraulics could be solved at different scales with CFD or system codes. In this regard, the
SALOME platform (Bergeaud and Lefebvre, 2010; SALOME, 2019) has been chosen as the
tool for the development of coupling schemes within the McSAFE project. We have used two
SALOME components in the supervisor: the MEDCoupling library and the ICoCo API. ICoCo
serves as interface to facilitate the coupling, and MEDCoupling is used for the data transfer, as
illustrated in Fig. 4.1, which gives a schematic representation of the coupling between TRIPOLI-
4 and another code. The SALOME platform, as well as its tools, will be presented in detail in
Sec. 4.1.4.
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Figure 4.1 – Architecture of the supervisor-driven calculations performed using T4 Facade
class, the ICoCo API and the MEDCoupling library.

In conclusion, the role of the supervisor is to initialize the solvers, launch the calculations
and manipulate the fields, such as for performing data exchange, or remapping the fields from
one mesh to another.

4.1.2 Exchanging data from the mesh to the geometry

A TRIPOLI-4 calculation takes as input a geometry composed of volumes, and material com-
positions are assigned to the volumes. During the coupled calculation, the supervisor receives
temperature and density fields from the thermal-hydraulics code on a mesh, but TRIPOLI-4
only allows one temperature and density value per volume, and compositions must be updated
in the volumes and not in the cells of the mesh. In general, the supervisor has the non-trivial
task of projecting the temperature and density fields obtained from thermal-hydraulics onto the
volumes of the TRIPOLI-4 geometry. One can distinguish two scenarios, depending on the size
of the mesh cells relative to the volumes: when the cells are larger than the volumes, it makes
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sense to assign the temperature and density values in the cell to all the volumes it encompasses.
On the other hand, when several cells fit within a single volume, a suitable averaging strategy
needs to be devised. For the moment, we have worked aroung this difficulty by constructing the
TRIPOLI-4 geometry in such a way that such averaging is never necessary: cells and volumes
coincide. In the long run, it is essential to extend the capabilities of the TRIPOLI-4 tracking
algorithms to support continuously changing density or temperature fields. This could be done,
for instance, using a variant of Woodcock’s delta-tracking algorithm (Woodcock et al., 1965) as
done in Serpent 2 (Leppänen, 2010).

The scores in TRIPOLI-4 can be computed either on volumes or on a spatial mesh super-
imposed on the geometry. We have chosen to score the power on a mesh, because the required
tallies can be directly generated in MED format. The discretization of the scoring mesh is in
principle independent of the one used for receiving temperature and density fields. In practice,
the thermal-hydraulics fields should not be computed on a mesh finer than the power mesh; on
the contrary, there is no need for a fine spatial discretization of TRIPOLI-4 results if the thermal-
hydraulics is solved on a coarser mesh. Therefore, we have chosen to use the same mesh for
scoring the power and receiving temperature and density fields.

4.1.3 Coupling between TRIPOLI-4 and SUBCHANFLOW

Two types of calculations can be performed with the new multi-physics interface of TRIPOLI-4:
criticality calculations with feedback and transient (i.e., dynamic) calculations. Their architec-
ture is described in Secs. 4.2 and 4.3, for execution in sequential mode first. The specificities of
parallel calculations will be provided in Sec. 4.4.

In the following, we focus on the specific case of the coupling between TRIPOLI-4 and
SUBCHANFLOW.

Interpolation between the meshes

A fuel-centered mesh is defined for TRIPOLI-4 to score the power. For SUBCHANFLOW,
two meshes are defined: a fuel-centered mesh is defined to receive the power distribution from
TRIPOLI-4, and a coolant-centered mesh is defined for the resolution of the conservation equa-
tions presented in Sec. 1.6.3. Note that the TRIPOLI-4 and SUBCHANFLOW meshes must
have the same bounding box, but they do not need to be exactly superimposed or to be num-
bered the same way, as long as a spatial interpolation is performed between them.

TRIPOLI-4 computes the power distribution over the cells of the mesh. Then, the distri-
bution is transferred to SUBCHANFLOW as a MEDCoupling input field. For the projection
between the TRIPOLI-4 mesh and the SUBCHANFLOW mesh, the MEDCouplingRemapper
tool is used to assign the power coming from TRIPOLI-4 to the correct cell in the fuel-centered
SUBCHANFLOW mesh. The sub-channel code then computes the updated properties of the
fuel (temperatures) and the moderator (temperatures and densities), which are then transferred
to TRIPOLI-4. Again, the MEDCouplingRemapper tool is used to transfer the SUBCHAN-
FLOW results (temperatures and densities) to the corresponding cells in TRIPOLI-4 mesh.

Temperature dependence of the cross sections

There are two distinct methods to take into account the temperature dependence of the cross
sections. The first uses pre-broadened cross sections: such methods are fast, but they have a
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large memory footprint due to the storing of cross sections for each nuclide on a tight tempera-
ture grid. The second concerns the so-called “on-the-fly” methods. Such methods only require
the cross sections at one temperature, but they involve additional calculations for the Doppler
broadening at each required temperature.

For the tabulated methods, the least expensive and also least accurate option to compute
the cross section at a temperature T that is not tabulated is to use the closest available cross
section as a replacement. Better accuracy is provided by stochastic interpolation. As a compro-
mise between accuracy, computational cost and memory footprint, stochastic interpolation was
introduced in TRIPOLI-4. The algorithm is the following. Assume that the temperature T is
bracketed by Tinf and Tsup. For each flight, we randomly choose Tinf or Tsup, depending on how
close T is to the end of the interval. The probability to choose the cross section associated to
Tinf for T is

p(T ) =
Tsup

µ − T µ

Tsup
µ − Tinf

µ , (4.1.1)

and the probability to choose the cross section associated to Tsup is 1 − p(T ). The coefficient µ
depends on the selected option: either linear (µ = 1) or square root (µ = 1/2) interpolation are
available in TRIPOLI-4. As an example for the fuel, temperatures typically range from 600 K
to 2000 K, and are tabulated over 15 values in the CEAV512 nuclear data library delivered with
TRIPOLI-4, with smaller intervals for lower temperatures, where variations of nuclear data are
larger.

The best-known Doppler broadening method is the SIGMA1 algorithm developed by Cullen
(1979). However, the on-the-fly broadening of the cross sections with this method is a pro-
hibitive time-intensive process. The target motion sampling method (TMS) (Viitanen and Leppänen,
2012, 2014), which has been developed in Serpent 2, lends itself to on-the-fly calculations of
the broadened sections: the target velocity is first sampled, and then collisions are handled in
the target-at-rest frame.

4.1.4 Presentation of SALOME tools

SALOME is an open-source software that provides a generic platform integrating numerical
solvers from various fields of physics. The platform integrates computer-aided-design modules,
meshing algorithms, and advanced 3D visualization functionalities (with the use of ParaView).
SALOME is developed by CEA, EDF and OpenCascade (Bergeaud and Lefebvre, 2010; SA-
LOME, 2019).

MEDCoupling library for data exchange

MEDCoupling (Bergeaud and Lefebvre, 2010; SALOME, 2019) is a C++ library provided by
the SALOME platform. It defines a format (the “MED” format) of data structures, describing
spatially discretized scalar, vector or tensor fields. The data structures are easy to manipulate, to
serialize and to exchange through parallel units. A MED field is characterized by two elements:
the mesh, which is the spatial discretization of the geometric domain, and the field, which rep-
resents the physical data on the mesh. Fields can be carried by the mesh nodes, cells, etc. The
library also provides powerful tools for algebraic manipulation. For instance, the MEDCouplin-
gRemapper class allows to interpolate a field from one mesh to another.

In this work we have used the MEDCoupling library in order to perform in-memory ex-
change of the fields between TRIPOLI-4 and SUBCHANFLOW. Version 7.8.0 of the library
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was used, with version 3.2.0 of MEDFile library, which is a prerequisite for MEDCoupling.
Note that TRIPOLI-4 has the capability to provide outputs in MED format.

ICoCo for the coupling interface

ICoCo (Deville and Perdu, 2012) is a C++ API defining a standard interface for code integra-
tion and coupling. It was developed at CEA (DEN/DANS/DM2S/STMF) in the framework of
the European NURISP project. The main “Problem” class defines a common interface for all
solvers (neutron transport, thermal-hydraulics, thermomechanics, etc.) and abstracts away the
solver-specific details. The goal of Problem is to simplify the implementation of solver-agnostic
coupling schemes, and facilitate the substitution of one solver for another in an existing scheme.
The class provides several methods, for initialization, solving, or field exchange for example.
Figure 4.2 gives the common call order to the main methods and shows that the search for
steady states or the computation of transients is easily achieved thanks to the generic interface.
Moreover, MEDCoupling fields are compliant with ICoCo, and the combination of the two tools
allow performing in-memory exchanges between codes in a simple way.

// Instantiate pb object from the SCFProblem class

SCFProblem *pb = new SCFProblem();

// Set the input file

pb->setDataFile("filename");

// Initialize pb with parameters from the input file

pb->initialize();

// Calculate the steady state

bool converged;

pb->solveSteadyState(converged);

// Calculate the transient over 0.1 s

double dt = 0.1;

pb->initTimeStep(dt);

pb->solveTimeStep();

pb->validateTimeStep();

// Terminate the calculation

pb->terminate();

Figure 4.2 – Example of call order of the main methods from the SCFProblem class imple-
mented in ICoCo. First, an instance of the Problem class is initialized. Then, the steady state is
computed, followed by a transient computed over 0.1 s. Finally, the computation is terminated
to free the memory.

4.2 Criticality calculations with feedback

4.2.1 Description

The coupling scheme for criticality calculations with feedback is divided into iterations; for each
iteration n, TRIPOLI-4 computes a power distribution P̂n

fuel over a few power iteration cycles.
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The TRIPOLI-4 cycles are called “inner” iterations. In contrast, we call the coupling iterations
“outer” iterations. Figure 4.3 gives a simple representation of one outer iteration.
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Figure 4.3 – Scheme of one outer iteration for the criticality coupling scheme. TRIPOLI-4
computes a power distribution P̂n

fuel over a few power iteration cycles. A relaxation scheme is
imposed on the power distribution. The relaxed distribution Pn

fuel is then transferred to SUB-
CHANFLOW, which computes the corresponding steady-state configuration. The updated tem-
peratures in the fuel rods and the coolant as well as the new densities in the coolant are trans-
ferred to the next iteration and will be used by TRIPOLI-4.

The criticality problem solved by TRIPOLI-4 is Eq. (1.2.10), which is linear in ϕk. Thus,
the normalization of ϕk can not be determined by TRIPOLI-4 and must be imposed from the
outside. One way to fix the normalization is to request that the total power deposited in the core
is equal to some assigned value P0 in watts. To this end, any score value must be multiplied by

rs =
P0∑

i, j,k
P̂n

i, j,k

, (4.2.1)

with P̂n
i, j,k the power integrated over the (i, j, k) cell at iteration n. The factor rs physically

corresponds to the source intensity. The normalized distribution is then transferred to SUB-
CHANFLOW, which computes the corresponding steady-state temperatures and densities. The
updated temperatures in the fuel rods and the coolant, as well as the new densities in the coolant,
are transferred to TRIPOLI-4 and applied to the corresponding material composition.

In order to achieve a smooth convergence, a relaxation is imposed on the power distribution,
as defined by the following equation

Pn+1
i, j,k = (1 − α)Pn

i, j,k + αP̂n+1
i, j,k , (4.2.2)

with α the relaxation coefficient. We choose α = 1/2, which has been found to be an optimal
value in other coupling works (Daeubler et al., 2014; Gill et al., 2017). More sophisticated al-
gorithms exist, such as the one proposed by Dufek and Gudowski (2006), where the number
of neutron histories can grow along the iterations. Investigations of such techniques is left for
future work.

The progress of the whole steady-state calculation from the first to the last outer iteration is
illustrated in Fig. 4.4. We consider that convergence has been reached if the changes in the fuel
temperature, coolant temperature, coolant density and multiplication factor from an iteration
to the next one lie below some user-defined threshold. Quantitatively, we define the `2-norm
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residual as the convergence criterion for the coupling scheme:

∆Xn =

√
Σi, j,k(Xn

i, j,k − Xn−1
i, j,k )2

√
C

< εX , (4.2.3)

for the different physical properties X, with C the total number of cells (C = 1 for the multipli-
cation factor).
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Figure 4.4 – Architecture of the outer iterations of the criticality coupling scheme. We iterate
between TRIPOLI-4 and thermal-hydraulics (TH) until we satisfy some convergence criteria
on the fuel temperature, coolant temperature, coolant density and multiplication factor. After
convergence, additional iterations are performed, over which scores are collected.

Once convergence has been reached, we perform additional outer iterations, over which
we score the power, temperatures, densities and the multiplication factor. At the end of the
iterations, the different results (power, temperature and density fields) are averaged over the
outer iterations. The calculation of the statistical uncertainties is however not straightforward,
since the outer iterations are not independent. Indeed, correlations between iterations come
from two sources. First, fission neutrons are transferred from one iteration to another. This
is the same kind of correlations that exists in criticality calculations. Second, iterations are
correlated through the thermal-hydraulics fields. Because of these correlations, the statistical
uncertainty of the results is difficult to estimate. In fact, the only rigorous way to determine
the real uncertainty would be to perform independent replicas of the coupling scheme, but this
would induce very large computational times. Alternatively, we could preserve this scheme and
combine it with the “blocking” (or “block-averaging”) method (Flyvbjerg and Petersen, 1989).
With the blocking method, consecutive values are replaced by their average, so that correlations
between samples are reduced, at the expense of reducing the sample size.
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4.2.2 Storing source capability

In TRIPOLI-4, it is possible to store the fission sources in a file after the power iteration cycles:
the position, energy, direction and weight of each particle are stored and can be used as the
initial state for another calculation. This capability is especially valuable for dynamic calcula-
tions. Indeed, the source might be common to several transient scenarios and the convergence
calculation need to be performed only once. Moreover, as we will explain in Sec. 4.4, criticality
coupled calculations have poor parallel scalability.

4.2.3 Discussion on the choice of the simulation parameters

In the coupling scheme that we have developed for criticality calculations with feedback, the
user must set the values of several simulation parameters, mainly the number of inner and outer
iterations. The choice of the two parameters is discussed below.

Number of inner iterations

The data exchange process between TRIPOLI-4 and SUBCHANFLOW has a substantial com-
putational cost, and it is better to ensure that the neutron source has converged on the new
fondamental mode before performing the next outer iteration. Indeed, in order to minimize the
number of rendez-vous points, we recommend to perform enough inner iterations to allow the
fission source to converge to the fundamental mode corresponding to the updated temperature
and density distributions.

The fission-source convergence actually depends on the convergence of the outer iterations
(convergence of the thermal-hydraulics fields). Therefore, the number of inner iterations could
be adapted along the outer iterations. However, in our work, for the sake of simplicity, we have
chosen a constant number of inner cycles of 10, except for the first outer iteration, where 50
inner cycles are performed.

Number of outer iterations

The number of outer iterations for the convergence phase must be large enough to ensure con-
vergence of the thermal-hydraulics fields. Typically, for most of our calculations, we have used
100 outer iterations, but we observed a posteriori that a smaller number would have been suf-
ficient. For instance, as it will be shown later in Chapter 5 (see Fig. 5.2), convergence for the
criticality calculation with feedback of the TMI-1 assembly was reached after about 10 outer
iterations, which is consistent with the observations for deterministic coupled calculations on
systems of similar size (Gomez-Torres et al., 2012).

4.3 Transient calculations

4.3.1 Description

Once the source has converged by means of the criticality calculation described in Sec. 4.2, the
dynamic calculation can start. The scheme is similar to the one used for kinetic calculations,
illustrated in Fig. 2.2, with SUBCHANFLOW calculations intercalated. The time-dependent
coupling is illustrated in Fig. 4.5: we are formally applying the explicit Euler discretized scheme
for the system of coupled neutron transport and thermal-hydraulics equations. This scheme is
the simplest implementation of a time integration with external updates, and we could improve
on it in order to speed up the convergence and enhance the stability of the scheme. However, we
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must also keep in mind that the stochastic nature of TRIPOLI-4 makes it challenging to adapt
higher-order deterministic schemes (for instance, the application of fixed-point algorithms be-
comes complex due to the presence of random fluctuations in the Monte Carlo calculations).

It should be emphasized that the dynamic scheme is performed successively to the criticality
calculation with feedback. If TRIPOLI-4 fission sources are stored during a previous criticality
calculation, it is possible to use them to start the dynamic calculations. For this purpose, an
additional power iteration is performed before the first time step, during which neutrons and
precursors are sampled according to Eqs. (2.3.2) and (2.3.8).
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Figure 4.5 – Architecture of the dynamic coupling scheme. After the source has reached conver-
gence during the criticality calculation illustrated in Fig. 4.4, TRIPOLI-4 computes the power
distribution Pt

fuel for each time step t. The distribution is transferred to SUBCHANFLOW,
which computes the corresponding transient state after the same time interval. The updated
temperatures in the fuel rods and the coolant, as well as the new densities in the coolant, are
transferred to TRIPOLI-4, which uses them as initial conditions for the following time step.
The convergence phase can be skipped if source files have been previously generated.

4.3.2 Normalization between criticality and transient calculations

For the normalization factor between the criticality and the transient calculations, we use the
source intensity normalization coefficient that was computed in the criticality calculation, ac-
cording to Eq. (4.2.1). We also take into account the relative norm q, defined by Eq. (2.3.17),
between the criticality and the kinetic calculations, which is computed during the sampling
of neutrons and precursors. Also, the thermal-hydraulics solver needs a power as input, but
TRIPOLI-4 kinetic scores are integrated over a time interval ∆t. Hence, scores must be divided
by the length of the time interval to obtain rates. Thus, the conversion factor rt applied to the
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scores at the end of each time step of the transient calculation is

rt =
rs × q

∆t
. (4.3.1)

4.4 Parallel calculations

The size of the systems that we want to simulate is such that coupled calculations are very time-
consuming. Therefore, it was necessary to implement the capability for parallel execution in the
supervisor. We describe here the architecture of the calculations in parallel mode.

4.4.1 Thermal-hydraulics “rendez-vous” point

As discussed in deeper detail in Chapter 7, thermal-hydraulics equations are non-linear and we
do not have much knowledge about the way the statistical fluctuations stemming from TRIPOLI-
4 will propagate along the outer iterations. Moreover, the result of the coupling scheme might
be biased, as witnessed by the Jensen’s inequality:

f (E(X)) ≤ E[ f (X)], (4.4.1)

with f a convex function representing the solution of the thermal-hydraulics problem and X a
random variable representing the power field calculated by TRIPOLI-41. The symbol E denotes
the ensemble average. For these reasons, we have decided to minimize the statistical fluctuations
on the input to the thermal-hydraulics solver. To this end, we have chosen to run SUBCHAN-
FLOW once for all the processors, so that the stochastic results of the different parallel units are
averaged. The statistics of the power distribution given to SUBCHANFLOW is increased and
thus the possible bias minimized.

The results obtained by the different parallel units are correlated via the thermal-hydraulics
fields, which are shared by all the simulators. Again, this complicates the assessment of the
real statistical uncertainty. This situation contrasts with the typical “embarrassingly” parallel
nature of the Monte Carlo calculations, in which the parallel units are truly independent, and
the assessment of the uncertainty is straightforward. As discussed above, we prefer to increase
the statistics given to the non-linear solver even if it comes at the expense of extra correlations.
One way of improving our scheme would be to average the Monte Carlo results over packets
of simulators. This ways, we would get truly independent results, while averaging at the same
time TRIPOLI-4 results over several simulators.

4.4.2 Role of the different parallel units

In the native parallel scheme of TRIPOLI-4, there are three types of parallel units. The “moni-
tor” directs the parallel units; the “simulators” are in charge of the particle transport; finally, the
“scorer” collects the scores sampled by the simulators.

We have adapted this scheme to the supervisor. One parallel unit, the monitor, is in charge
of orchestrating the other TRIPOLI-4 parallel units, of running the supervisor and SUBCHAN-
FLOW. Another parallel unit (the scorer) is in charge of collecting the scores. The simulators are
in charge of the TRIPOLI-4 simulation. When all simulators have completed the inner cycles (in
the case of a criticality calculation with feedback) or a time step (in the case of a transient calcu-
lation), the scorer collects the results and sends the averages to the monitor. The monitor casts

1The sign of the inequality is reversed for concave f .

97



CHAPTER 4. DEVELOPMENT OF A COUPLING BETWEEN TRIPOLI-4 AND
THERMAL-HYDRAULICS

the simulation results in the form of MED fields, manipulates them (e.g., applies the appropri-
ate normalization factor, performs the remapping between TRIPOLI-4 and SUBCHANFLOW
meshes) and sends the power distribution to SUBCHANFLOW, before finally launching the
SUBCHANFLOW calculation. We emphasize the fact that the SUBCHANFLOW run can only
start when all the simulators have completed their task.

For parallel calculations with a large number of processors, fluctuations on the population
size induce large fluctuations on the computational cost of the simulators. This is problematic,
since the monitor must wait for all the simulators to finish; hence, the calculation is hampered
by the slowest simulator.

When the SUBCHANFLOW calculation is over, the monitor receives the resulting temper-
ature and density distributions in MED format. Again, the monitor manipulates the data (e.g.,
remaps them from SUBCHANFLOW to TRIPOLI-4 meshes and projects them to the TRIPOLI-
4 volumes). With the new temperatures, the monitor loads the new cross sections, if needed.
New compositions (with updated temperatures and densities) are serialized to the scorer and
to the simulators, which in turn load the new cross sections. A new cycle (or time step) can
then begin. The architecture of a parallel criticality calculation with feedback is illustrated in
Fig. 4.6 for four simulators. In this example, simulator 3 is slower than the others and slows
down the simulation. On the contrary, simulator 2 finishes first and stays inactive until the other
simulators have finished their task.
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Figure 4.6 – Architecture of the coupled iteration, in parallel mode with four simulators. When
all the simulators have completed their task, the scorer collects the results and transfers the
average to the monitor. After manipulating the fields (normalization and remapping), the mon-
itor launches the SUBCHANFLOW calculation. Hence, SUBCHANFLOW is run once for all
simulators so as to reduce the statistical fluctuations on its input data. With SUBCHANFLOW
results, the monitor updates the compositions and sends them to the scorer and the simulators.
All the parallel units then load new cross sections, if necessary.
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Note that, as in usual criticality calculations, each simulator must independently achieve
convergence of the fission sources. The required work scales as the number of simulators, and
therefore the convergence phase does not benefit from parallelization. In contrast, during the
scoring phase, the calculation results are averaged and the statistics collected in a given wall-
clock time scales with the number of processors, provided that the simulation is efficient.

Also, in a criticality calculation run in parallel mode, each simulator stores its own fission
sources. Therefore, for an optimal use, the dynamic calculation should be launched with the
same number of simulators, each using a different source file.

4.4.3 Memory footprint

Dynamic calculations require a large amount of memory, mainly for nuclear data and compo-
sitions. Since compositions are associated to volumes in TRIPOLI-4, the geometries generally
consist of a large number of volumes and are also memory-consuming (about 105 volumes for
a single geometry of the TMI-1 3x3 mini-core described in Sec. 3.2). Moreover, as explained
in Sec. 2.8, the capability of TRIPOLI-4 to handle time-dependent geometries is not optimal:
TRIPOLI-4 requires as many geometries as discretization steps.

Most of the memory is allocated during the initialization phase (mainly TRIPOLI-4 and
SUBCHANFLOW initialization). After that, the memory use is roughly stable. Indeed, the dif-
ferent geometries and nuclear data corresponding to the initial state are loaded at the beginning.
Some new nuclear data may be loaded in the following, but the calculation generally covers a
large range of temperatures as of the initialization phase. Nonetheless, the initialization is per-
formed by each parallel unit, which results in a large total memory occupation; no memory is
shared among parallel units within the same node.

To conclude, the memory footprint represents a limitation for massively parallel dynamic
calculations with TRIPOLI-4, although future improvements on the management of the geome-
try could allow to mitigate this issue.

4.5 Conclusion

The external coupling between TRIPOLI-4 and SUBCHANFLOW is now operational, thanks
to the development of a multi-physics interface for TRIPOLI-4, which allows a supervisor to
control TRIPOLI-4 via an ICoCo API. Data exchange between the two codes is performed in
memory using the MEDCoupling library. The development of the supervisor was performed
within the frame of this thesis.

For criticality calculations with feedback, care must taken regarding the simulation param-
eters (for instance, the number of outer iterations and the number of inner iterations). For
transient calculations, care must be taken regarding the memory footprint, especially in the case
of a massively parallel execution.

Verification tests of the TRIPOLI-4 multi-physics capabilities will be presented in Chapter 5,
with a criticality calculation. Examples of dynamic calculations will be presented in Chapter 6.
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Chapter 5

Verification of the coupling for
criticality simulations with feedback

We have set up a benchmark configuration within the McSAFE project, in a joint work with the
Serpent and the SUBCHANFLOW development teams, in order to assess the recently developed
multi-physics capabilities of Monte Carlo codes. In this chapter we probe the multi-physics
capabilities of TRIPOLI-4 for criticality calculations with thermal-hydraulics feedbacks. Cal-
culation results on the TMI-1 assembly were published in Faucher et al. (2019b). The present
work, combined with the kinetic method described in the first part of this thesis, is a stepping
stone towards the analysis of operational and accidental transients, discussed in Chapter 6.

5.1 Introduction on the benchmark work

The idea behind the McSAFE benchmark is to develop a comparison for global and detailed
parameters using independent calculations stemming from different approaches, calculation
schemes and neutron transport codes, with a given thermal-hydraulics code. The objective is
to perform a criticality calculation with feedback on the fuel assembly based on the TMI-1 reac-
tor, with a pin-by-pin description. For this purpose, we have considered the couplings between
two Monte Carlo neutron-transport codes, TRIPOLI-4 and Serpent 2, and the sub-channel code
SUBCHANFLOW.

In the following, the coupling scheme between TRIPOLI-4 and SUBCHANFLOW is re-
ferred to as “T4/SCF” and the coupling scheme between Serpent 2 and SUBCHANFLOW is
referred to as “SSS2/SCF”.

5.2 Description of the models used by the different codes

5.2.1 TRIPOLI-4 and Serpent 2 models

Geometry

The TMI-1 fuel assembly models used by T4 and SSS2 are very similar. The axial length
of 353.06 cm is divided into 20 slices. Radial reflective boundary conditions are applied. All
compositions have the same temperature at the beginning of the simulation: 900 K for the 204
enriched UOX pins and the 4 burnable poison pins, and 563 K for the coolant channels, the guide
tubes and the instrumentation tubes. All the fuel and coolant compositions are individualized in
the T4 geometry, so as to be able to independently update their temperatures and densities.
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The critical boron concentration for the TMI-1 3x3 mini-core, detailed in Sec. 3.2.2, has
been used. Since we consider in this chapter the reflected central assembly only, which does
not contain control rods, the 1480 ppm of boron do not lead to a critical configuration and the
multiplication factor is larger than 1.

Scores

T4 computes fission rates, while SSS2 computes a deposited fission energy. Both are converted
to a power and normalized. There is a slight difference between the SSS2 score and the fission
rate computed by T4. Indeed, in SSS2 for each fission the deposited energy is scaled with
the fission Q-value for the fissioning isotope (Tuominen et al., 2019). Since our system only
contains uranium-235 and uranium-238, and since the T4 and SSS2 power maps are normalized
to the same integral value, the relative difference in power due to the different scoring strategy
is thus of the order of the relative difference between the fission Q-values for uranium 235 and
uranium-238 (about 3%) multiplied by the fraction of fissions on uranium-238 (also about 3%),
which is equal in total to about 1‰.

5.2.2 SUBCHANFLOW model

Geometry

The SCF preprocessor generates complex geometries for SCF at different levels: pin, assembly
or core level. We have used the preprocessor to generate the geometry of the assembly with a
pin-by-pin description. Two meshes are generated: a fuel-centered mesh for receiving the power,
and a coolant-centered mesh for the resolution of the equations. Both meshes are divided into
20 axial slices, thus the total number of cells for the fuel-centered mesh is 15 × 15 × 20 and
16 × 16 × 20 for the coolant-centered mesh (for illustration, see Fig. 5.1). The preprocessor
produces the meshes in MED format to be used by the T4/SCF coupling scheme.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

3x3 array of pin cells TMI-1 assembly

Figure 5.1 – Coolant-centered channels for the SCF model of the TMI-1 assembly. Left: ex-
ample of numbering of a coolant-centered mesh for a 3x3 array of pin cells (the total number
of cells per slice is 4 × 4). Right: the TMI-1 assembly (the total number of cells per slice is
16× 16). Rods 1 are fuel rods, rods 2 are guide tubes, rod 3 is the instrumentation tube and rods
4 are burnable poison pins.
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coupling scheme T4/SCF SSS2/SCF

coolant inlet temperature [K] 565 565
outlet pressure [Pa] 15.5132 15.5132
mass flow rate [kg s−1] 85.96 85.96
number of axial slices 20 20
fuel temperature model volume averaged volume averaged
total power [MW] 15.66 15.66
temperature dependence of the cross sections stochastic interpolation target motion sampling
number of particles per cycle 7 × 104 105

number of inactive cycles 50 50
number of inner iterations before convergence (M) 10 3000
number of inner iterations after convergence (M′) 100 N.A.
number of outer iterations before convergence (n) 100 11
number of outer iterations after convergence (n′) 100 0
data exchange in memory (MED) external files
simulation time (CPU.h) 210 820

Table 5.1 – Operating conditions of the TMI-1 assembly, and simulation parameters for the two
coupling schemes, T4/SCF and SSS2/SCF.

Simulation parameters

The coolant inlet temperature is set to 565 K, the outlet pressure is 15.51 MPa and the inlet mass
flow rate is 85.96 kg s−1. The power is normalized to 15.66 MW. The operating conditions are
summarized in Table 5.1.

We assume that all the power is deposited in the fuel. In order to compute the fuel rod
temperature, each axial slice of the fuel is divided into ten radial rings and the heat diffusion
equation is solved with a finite-volume method. The fuel temperature returned by SCF is the
the volume average over the radial nodes.

5.3 Comparison between TRIPOLI-4 and Serpent 2 without feed-
back

As a preliminary step, we have performed criticality calculations with the two Monte Carlo
codes without feedback, in order to verify the equivalence of the neutronics models before in-
dependently coupling them to SCF. Results for the multiplication factor are in good agreement:
we have obtained keff = 1.24140 ± 2 × 10−5 for T4 and keff = 1.24102 ± 3 × 10−5 for SSS2,
respectively (see Table 5.2). The discrepancy is less than 40 pcm and is statistically significant
(about 12 σ).

We have singled out three main differences in the models used by T4 and SSS2. First, the
temperature dependence of the cross sections is not accounted for in the same way: stochastic
square-root interpolation is used in T4, while SSS2 uses target motion sampling (see Sec. 4.1.3).
However, this probably does not entirely explain the 40 pcm discrepancy, considering the 50 K
intervals used by T4 for the tabulated data. Indeed, if we had taken the closest temperature
(which is at 25 K at maximum), the deviation would be less than 50 pcm, assuming an aver-
age Doppler effect of 2 pcm/K. Since we have used stochastic interpolation, the deviation due

102



5.4. DESCRIPTION OF THE COUPLING SCHEMES

T4 SSS2 ∆keff Monte Carlo

without SCF 1.24140 ± 2 × 10−5 1.24102 ± 3 × 10−5 +38 pcm

with SCF 1.23754 ± 5 × 10−5 1.23664 ± 3 × 10−5 +90 pcm

∆keff SCF -386 pcm -438 pcm

Table 5.2 – Multiplication factor for the calculations without and with feedback for the two
schemes, for the TMI-1 assembly.

to the temperature dependence of the cross sections should be in principle smaller. Second,
the geometries for T4 and SSS2 were built independently, and there might be slightly differ-
ent modeling choices between them. Finally, it should be noted that the standard error on the
multiplication factor computed by the codes is underestimated because of correlations between
batches, so the true error bar might be considerably larger than 2 pcm for T4 and 3 pcm for SSS2.

The axial power profile is displayed in Fig. 5.9 (dashed lines) for one rod (the rod is identi-
fied in Fig. 5.6), showing that T4 and SSS2 calculations are in very good agreement.

After this verification, we can now examine the coupling of the two Monte Carlo codes with
the same thermal-hydraulics code, SCF.

5.4 Description of the coupling schemes

5.4.1 Architecture

For a precise description of the coupling scheme between T4 and SCF, we refer the reader to
Sec. 4.2. At the time of this work, the T4 supervisor capability for parallel running was not fully
implemented yet: in the following, we will thus present results from a sequential run of T4/SCF,
while SSS2/SCF calculation was run in parallel.

The initial guess for the source has an axial cosine distribution. The T4 calculation begins
with 50 extra inactive cycles. Then, coupling iterations begin and SCF is run every M = 10
neutron transport cycles (the “inner” iterations) in order to reach the fundamental mode. The
SSS2/SCF scheme is similar, except that no extra cycles are discarded at the beginning of the
simulation and M = 3000 cycles are run per outer iteration.

In SSS2/SCF scheme, unlike in T4/SCF, relaxation is performed on the temperatures and
densities, with the same coefficient α = 1/2 (see Eq. (4.2.2)).

5.4.2 Convergence criteria

The outer iterations stop when convergence criteria, presented in Eq. (4.2.3), are met. For the
residual value introduced in Eq. (4.2.3), we have chosen a convergence criterion εT f uel = 5 K for
the rod temperature, εTcoolant = 1 K for the coolant temperature, εdcoolant = 1 g/m3 for the coolant
density and εkeff

= 10 pcm for the multiplication factor. Once the convergence criteria were
met, we have averaged the simulation over n′ = 100 extra outer iterations with T4/SCF, while
the SSS2/SCF calculation was terminated. Thus, the reported SSS2/SCF uncertainties are not
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representative of the fluctuations in the thermal-hydraulics fields, and surely underestimate the
actual uncertainty. The different coupling parameters are specified in Table 5.1.

5.5 Benchmark results with feedback

5.5.1 Convergence

The convergence criteria, as defined by Sec. 5.4.2, were met for the fuel rod temperatures, the
coolant temperatures and densities and the multiplication factor. Figure 5.2 shows the evolution
of the residual for the fuel temperature, which has the slowest convergence rate as compared
to coolant temperature, coolant density and multiplication factor. The residual value quickly
converges: it gets below 5 K within about 10 iterations for both schemes, which is consistent
with the values used by deterministic coupled schemes (Gomez-Torres et al., 2012).

5.5.2 Coolant temperatures and densities

The map for the radial (i.e., axially-averaged) temperatures obtained for the coolant with T4/SCF
is presented in Fig. 5.3. On this map, six channels are labelled A to F. Figure 5.4 presents the
axial coolant temperature and density profiles for the different channels. Coolant temperatures
range from 565 to 600 K and densities range from 660 to 743 kg/m3. We have also computed
the standard error over the active iterations for all the channels. The standard error obtained
is about 0.02 K on average for the coolant temperatures, and about 0.1 kg/m3 for the coolant
densities, suggesting a good convergence of the coolant fields.

The results obtained with SSS2/SCF are also presented. The two coupling schemes are
in very good agreement, as confirmed also by Fig. 5.5, which presents the difference between
the coolant temperatures coming from the two coupling schemes divided by the standard error
obtained with T4/SCF calculation. The difference is larger at the top of the assembly because
the inlet temperature is imposed (cf. Table 5.1). The standard error computed for T4/SCF
calculation might be underestimated, as expected because of the correlations (see Sec. 4.2).
Still, the difference between the two coupling schemes is small.

5.5.3 Fuel temperatures

The map for the axially-averaged fuel temperature of the 225 rods obtained with T4/SCF is pre-
sented in Fig. 5.6. The minimum value is reached in the guide tubes and the instrumentation
tube, where there is no fission. The 4 burnable poison pins also have low temperatures because
of the neutron captures in gadolinium, leading to a lower fission rate. The standard error is
about 2 K on average for the fuel temperature, which converges more slowly than the coolant
temperature. Four rods are identified on the map: rods number 1, 3 and 4 are fuel pins, with
temperatures ranging from 630 to 1150 K while rod number 2 is a burnable poison pin, with
temperatures ranging from 600 to 730 K. For this calculation, cross sections were loaded for 15
different fuel temperatures.

The axial temperature profiles obtained with the two coupling schemes in these rods is
presented in Fig. 5.7, and their difference divided by the standard error from T4/SCF calculation
is plotted in Fig. 5.8. The two coupling schemes are in good agreement. As for the coolant fields,
the standard error might be underestimated because of correlations between the iterations.

104



5.5. BENCHMARK RESULTS WITH FEEDBACK

0 50 100 150 200
Iteration k

10−2

10−1

100

101

102

R
es

id
ua

lv
al

ue
∆
T
k fu

el T4/SCF
convergence criterion

2 4 6 8 10
Iteration k

100

101

102

103

R
es

id
ua

lv
al

ue
∆
T
k fu

el SSS2/SCF
convergence criterion

T4/SCF SSS2/SCF

Figure 5.2 – Evolution of the fuel temperature convergence for the TMI-1 assembly, for the two
coupled calculations. SSS2/SCF performs fewer outer iterations than T4/SCF, with more inner
iterations (3000 instead of 10 for T4/SCF).
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bly, averaged across all axial slices.
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in Fig. 5.3, at the inlet of each slice. Slice number 1 is located at the bottom of the assembly.
Top: coolant temperature profiles in 6 channels. Bottom: coolant density profiles in 6 channels.
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Figure 5.5 – Difference between axial coolant temperature profiles obtained with T4/SCF and
SSS2/SCF divided by the estimated standard error for T4/SCF calculation.

5.5.4 Comparison between calculations with and without feedback

In order to illustrate the effects of thermal-hydraulics feedbacks on neutron transport, we have
compared the coupled simulations with the Monte Carlo codes and SCF to the simulations with
the Monte Carlo codes only. Table 5.2 details the values of the multiplication factor obtained
with the two types of calculations; it is lower for the coupled calculations: 252 pcm for T4/SCF
and 285 pcm lower for SSS2/SCF. The discrepancy between T4/SCF and SSS2/SCF is about 90
pcm, which is larger than the 38 pcm obtained without feedback, but still in the same order of
magnitude.

Figure 5.9 shows the axial power profile for the rod number 1 (as defined in Fig. 5.6), with
and without feedback. The T4 and SSS2 calculations, with and without coupling are in very
good agreement. It is interesting to see that the shape of the power profile is flatter in the
calculation with feedback, which was expected on physical grounds.
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Figure 5.6 – Fuel temperature map (in kelvins) obtained with T4/SCF for the TMI-1 assembly,
averaged across all axial slices.
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(dashed lines).
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Figure 5.8 – Difference between axial fuel temperature profiles obtained with T4/SCF and
SSS2/SCF divided by the estimated standard error for T4/SCF calculation.
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Figure 5.9 – Axial power profile for rod 1 of the TMI-1 assembly computed by T4 with an
isothermal calculation without feedback (dashed line) and with SCF feedback (solid lines).
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5.6 Conclusion

In this chapter we have verified the capabilities of TRIPOLI-4 for the multi-physics calculation
of an assembly based on the TMI-1 core: this was achieved by proposing a benchmark work in
collaboration with the Serpent and SUBCHANFLOW development teams. The power, temper-
ature and density profiles are in very good agreement between the two schemes, and encourage
further simulations with the new coupling scheme between TRIPOLI-4 and SUBCHANFLOW.
The results of the benchmark were published in Faucher et al. (2019b).

The aim of this work was to perform a comparison between two coupling schemes with
given simulation parameters. For further physical analysis of the system, these parameters
should be subject to investigation, such as the number of axial slices, or the radial discretization
of the fuel rods. Also, power deposition in the fuel and the coolant could be distinguished. In
general, the spatial discretization choices should be carefully examined.

The next step will consists in combining the multi-physics capabilities with the kinetic
Monte Carlo methods in order to perform time-dependent coupled calculations and simulate
transients with thermal-hydraulics feedbacks.
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Chapter 6

Testing the coupling with dynamic
simulations

Now that we have verified the multi-physics capabilities of TRIPOLI-4 in Chapter 5, with a
criticality calculation with thermal-hydraulics feedback, we present dynamic calculations, per-
formed on the TMI-1 3x3 mini-core for different scenarios.

6.1 Preliminary criticality calculations with feedback

The preliminary step prior to any dynamic calculation on the TMI-1 3x3 mini-core introduced
in Sec. 3.2 is to compute the initial state. For this purpose, the same scheme as the one used
for the TMI-1 assembly in Chapter 5 is used. For the mini-core consisting of 9 fuel assemblies
considered here, the power is normalized to 140.94 MW. Also, we have increased the number
of axial slices from 20 to 30, in light of the long active height of 353.06 cm. The aim of the
criticality calculation with feedback is to provide the source for dynamic calculations. Thus,
the system must be prepared on a critical state. Therefore, we have performed an additional
preliminary calculation, in order to compute the critical boron concentration.

6.1.1 Critical boron search

To compute the critical boron concentration, we have performed a criticality calculation with
feedback, starting from the boron concentration of the isothermal calculation, 1480 ppm. In this
calculation, we have used the critical boron search option implemented in T4 which is exposed
to the supervisor via the T4 Facade class. The resulting critical boron concentration is (1305.5±
5.1) ppm (the standard error was estimated over 10 independent simulators), which is smaller
than the “isothermal” concentration, as expected. Indeed, as already observed in Table 5.2 for
the assembly, the thermal-hydraulics feedback absorb some reactivity, thus less boron is needed
to ensure a critical configuration. Here, the difference accounts for about (1400± 40) pcm if we
consider a differential boron worth of about 8 pcm/ppm.

6.1.2 Source for the dynamic calculations

Now that the critical boron concentration has been found, we have performed another criticality
calculation with feedback, with the new concentration of 1305.5 ppm in order to compute the
equilibrium thermal-hydraulics fields and the fission sources for the dynamic calculations. Sup-
port for parallelism in the supervisor was developed at the time of this work and the calculation
was performed using 1000 processors on the Cobalt cluster at the TGCC (Très Grand Centre de
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Calcul, Bruyères-le-Châtel, France). The multiplication factor is keff = 1.00018±8×10−5, show-
ing that the system is close to a critical state. We have stored the resulting thermal-hydraulics
fields: fuel temperatures, coolant temperatures and coolant densities. The fields are presented
below. The fission sources (position, energy, direction and weight of the fission neutrons) were
also stored at the end of the calculation.

Coolant temperatures and densities
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Figure 6.1 – Coolant temperature map (in kelvins) obtained with T4/SCF for the critical state of
the TMI-1 3x3 mini-core, averaged across all axial slices. The temperatures are used as initial
values for the dynamic calculations. Four cells are identified on the map for later analysis of
simulation results.

The radial map for the axially-averaged temperatures obtained for the coolant is shown in
Fig. 6.1. Temperatures range from 565 K to 608 K and are higher in the unrodded assemblies, as
expected. Four cells (A to D) are identified on the map for later analysis of simulation results.
The radial map for the axially-averaged coolant densities is shown in Fig. 6.2. Coolant densities
range from 635 kg/m3 to 743 kg/m3.

Fuel temperatures

The map for the axially-averaged fuel temperatures is shown in Fig. 6.3. Temperatures range
from 565 K to 1590 K. Again, temperatures are higher in the unrodded assemblies. The control
rods, guide tubes and burnable poison pins are easy to recognize because of their low tempera-
ture. Four rods (1 to 4) are identified on the map for later analysis of simulation results.

Neutron power

Figure 6.4 presents the axial power profile for the rod 1 identified in Fig. 6.3 obtained without
(dashed line) and with feedback (solid line). The profile obtained with the calculation with
feedback is very asymmetric: the power peak is shifted towards the bottom of the mini-core.
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Figure 6.2 – Coolant density map (in kg/m3) obtained with T4/SCF for the TMI-1 3x3 mini-
core, averaged across all axial slices. The densities are used as initial values for the dynamic
calculations.
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Figure 6.3 – Fuel temperature map (in kelvins) obtained with T4/SCF for the TMI-1 3x3 mini-
core, averaged across all axial slices. The temperatures are used as initial values for the dynamic
calculations. Four rods are identified on the map for later analysis of simulation results.
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Figure 6.4 – Axial power profile (in watts) for the rod 1 obtained without (dashed line) and with
feedback (solid line) for the TMI-1 3x3 mini-core.
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6.2 Steady state

As a first verification test of the dynamic capabilities of TRIPOLI-4, we have performed a
steady-state calculation. Starting from the stored source (fission sources and thermal-hydraulics
fields) presented in Sec. 6.1, we have followed the time evolution of the power during 5 s with
50 regularly spaced intervals by increments of ∆t = 0.1 s. At the end of each time interval, the
neutron power is averaged over all simulators and transferred to SUBCHANFLOW, which then
runs and solves the thermal-hydraulics equations for the time step. The next time step begins
with the updated temperatures and densities. The purpose of the simulation is to present a first
example of a dynamic Monte Carlo simulation of a realistic system at steady state observed over
a few seconds, with thermal-hydraulics feedback. We have used 1000 parallel units during 24 h,
each simulator has performed six complete batches. Therefore, the power was averaged over
6000 batches, and the computational cost of the simulation was 24000 h.

In order to reduce correlations between batches, we have chosen to perform ten additional
power iterations at the beginning of each batch, starting from the fission sources and thermal-
hydraulics fields of the previous batch. SUCHANFLOW is called with the new power distri-
bution and the compositions are updated. This way, for each batch, the dynamic simulation
begins with different fission sources, temperature and density fields: the batches being weakly
correlated, they should provide a reliable estimation of the standard deviation. This process was
used for all the different dynamic calculations presented below (Secs. 6.2 to 6.3.2).

As expected, the total fission power integrated over the mini-core is roughly constant with
time, as shown in Fig. 6.5. The total power fluctuates around a value close to 140.94 MW, which
is the normalization value used of for the stationary calculation (Sec. 6.1). We can conclude that
the dynamic normalization factor defined in Eq. (4.3.1) correctly rescales the power scored in
the dynamic phase to the power level of the criticality calculation with feedback; if this were
not the case, the thermal-hydraulics fields would be out of equilibrium with the power field and
a drift would appear.
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Figure 6.5 – Time evolution of the total power (in watts) in the TMI-1 3x3 mini-core com-
puted with T4/SCF in steady-state conditions. The total power is stable and fluctuates around
140.94 MW.

6.3 Transients

Now that we have verified the capabilities of the T4/SCF coupling scheme to compute the dy-
namic evolution of a system in steady-state conditions, we turn our attention to some of the
scenarios that were presented in Sec. 3.2.3 and solved without thermal-hydraulics feedback. We
focus in particular on scenarios C and D. The purpose of the following simulations is to analyse
the impact of thermal-hydraulics feedback on power excursions. The different calculations have
been run on the CEA Cobalt supercomputer using 1000 parallel units for 24 hours. We also
present the comparison between our results and the SSS2/SCF results published in Ferraro et al.
(2019b).

40 cm rod extraction 30 cm rod extraction

T4/SCF SSS2/SCF T4/SCF SSS2/SCF

keff 1.00966 ± 11 × 10−5 1.00967 ± 7 × 10−5 1.00382 ± 11 × 10−5 1.00355 ± 7 × 10−5

ρ [$] ∼ 1.3 ∼ 1.3 ∼ 0.5 ∼ 0.5

Table 6.1 – Multiplication factor and reactivity for the TMI-1 3x3 mini-core with the control
rods extracted by 40 cm and 30 cm, obtained with T4/SCF and SSS2/SCF.
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(a) 30 cm rod extraction
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Figure 6.6 – Time evolution of the total power (in watts) in the TMI-1 3x3 mini-core computed
with T4/SCF (red line) and SSS2/SCF (black line) with the control rods progressively extracted
between t = 0.3 s and t = 1.3 s. Top: 30 cm rod extraction. Bottom: 40 cm rod extraction.
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(a) 30 cm rod extraction
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(b) 40 cm rod extraction

Figure 6.7 – Difference between total power obtained with T4/SCF and SSS2/SCF divided by
the estimated standard error. Top: 30 cm rod extraction. Bottom: 40 cm rod extraction.
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(a) 30 cm rod extraction
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Figure 6.8 – Time evolution of the average fuel rod temperature (in kelvins) in the TMI-1 3x3
mini-core computed with T4/SCF (red line) and SSS2/SCF (black line) with the control rods
progressively extracted between t = 0.3 s and t = 1.3 s. Top: 30 cm rod extraction. Bottom:
40 cm rod extraction. 119
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6.3.1 Control-rod extraction

As a reminder of scenario D, the control rods are progressively extracted by 40 cm between
t = 0.3 s and t = 1.3 s. It should be noted that the critical configuration is very different
from the configuration of Sec. 3.2; this is due to the temperature and density fields, which
are now determined by thermal-hydraulics feedback, but also the difference in boron concen-
tration (1305 ppm vs. 1493 ppm). We have computed the induced reactivity with a criticality
calculation with thermal-hydraulics feedback. For this new configuration, extracting the rods
by 40 cm makes the system prompt supercritical with ∆ρ ≈ 1.3 $: the multiplication factor
is keff = 1.00966 ± 11 × 10−5. We have also performed another simulation with a less se-
vere extraction, extracting the rods by 30 cm. The multiplication factor for this configuration
is keff = 1.00382 ± 11 × 10−5, which corresponds to a reactivity insertion of about ∆ρ ≈ 0.5 $.
The multiplication factors are summarized in Table 6.1, which also presents the multiplication
factors coming from SSS2/SCF calculations. The two coupling schemes are in good agreement.

As in Sec. 3.2, the rod extraction is discretized in 10 steps. The memory allocation for the
initialization of the dynamic calculation, using 11 geometries for TRIPOLI-4 part, is about 7
GB per processor, which exceeds the memory per core limitation of the cluster. Thus, we had to
use two cores per parallel unit. Each simulator completed six full batches in 24 h for the 30 cm
scenario and three full batches for the 40 cm scenario. The time evolution of the total power for
both scenarios is shown in Fig. 6.6, and the difference between T4/SCF and SSS2/SCF divided
by the estimated standard error is plotted in Fig. 6.7.

We analyse the 30 cm scenario first. The impact of the thermal-hydraulics feedback is clearly
visible. First, the power is stable around 140.94 MW. Then, the power increases up to about
220 MW, before decreasing because of the thermal-hydraulics feedback, and reaches a new
equilibrium with an asymptotic value of about 150 MW, which is higher than initial power. The
results obtained with SSS2/SCF are also presented (Ferraro et al., 2019b). There is a very good
agreement between T4/SCF and SSS2/SCF.

For the 40 cm extraction, the power is also initially centered around 140.94 MW, as ex-
pected. Then, the power increases up to 1100 MW: the power increases by a factor 8. During
the last time step of the rod extraction (between t = 1.2 s and t = 1.3 s), the error bars for both
calculations are very large due to large fluctuations on the population size. Then, the power
decreases because of the thermal-hydraulics feedback, and reaches an asymptotic value that is
similar to the one that is reached in the 30 cm extraction. Here, however, the power rise and
drop are much sharper. Again, T4/SCF and SSS2/SCF are in very good agreement. The time
evolution of power presented here can be compared to the one in Fig. 3.9 for the same scenario,
but without thermal-hydraulics feedback. It is interesting to notice that the agreement between
T4/SCF and SSS2/SCF is actually better than the agreement between T4 and SSS2 for the ki-
netic calculations presented in Sec. 3.2.3, where there was a deviation between the Monte Carlo
codes during the flux excursion (see Fig. 3.9). The thermal-hydraulics feedback absorbs most
of the reactivity difference between T4 and SSS2 and drives the system towards the same equi-
librium configuration around 150 MW.

The time evolution of the fuel temperature averaged over all the rods of the mini-core is
presented in Fig. 6.8. Error bars from SSS2/SCF were not available, which limits our compari-
son analysis. As the reactivity increases, the average fuel temperature increases, then it remains
stable after about 2 s. The equilibrium state is defined by higher temperatures for the 40 cm
scenario than for the 30 cm. At the same time, the coolant temperature increases and the coolant
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density decreases as shown by Figs. 6.9 and 6.10.

The axial profile in the four rods identified in Fig. 6.1 is also provided in Fig. 6.11 for the
time step between t = 1.1 s and t = 1.2 s (during the rod extraction). For the coolant, the temper-
ature and density axial profiles in the four cells identified in Fig. 6.1 are provided in Figs. 6.12
and 6.13 for the same time step. Note that for technical reasons, the coolant temperature and
density values for T4/SCF are actually taken from one of the pin cells around the channels, as
shown in Fig. 6.1, while SSS2/SCF values are taken from the channels. This may explain the
small differences between T4/SCF and SSS2/SCF, which is anyway of the order of 1 K. For this
reason, we will focus on the fuel properties to avoid any ambiguity. Overall, there is a good
agreement for all the observables presented.

The increase in the fuel temperature with time for the 40 cm scenario is shown in Sec. A.6.1
for three slices (Fig. A.2). The slice 3 is located at the bottom of the mini-core, where the
reactivity is actually inserted through the rod extraction; the slices 10 and 15 are located above
the rod extraction. For this reason, the increase is much larger for the slice 3: the temperature
increases up to 900 K at the center of the mini-core. For the slices 10 and 15, the temperature
mainly increases in the surrounding assemblies, since at these heights, the center of the mini-
core still contains control rods. For an extensive comparison between T4/SCF and SSS2/SCF
results for the 40 cm scenario, color maps of the difference between the two coupling scheme
are provided in Sec. A.6.2 for three time steps (Fig. A.3). In some rods, the difference can reach
large values (up to 60 K); this might be due to statistical fluctuations in the neutron population.
Overall, the difference is small.

Discussion on the efficiency of the simulation

In order to evaluate the efficiency of the parallelism scheme, we study the distribution of the
calculation time, defined as the time interval between the beginning of the first history and the
end of the last history in a given time step, for a given simulator. Our sample consists of the
calculation times of all the simulators, collected over all the complete batches. Figure 6.14
presents histograms of the simulation time for the 30 cm scenario (red bars) and the 40 cm sce-
nario (green bars), for two different time steps. The first time step ranges from t = 0.2 s to
t = 0.3 s, where the two scenarios are identical. As expected, the computation times are similar
for the two scenarios. The fastest simulators have completed the calculation in about 100 s and
had to wait for the slowest ones, up to 380 s (for the 40 cm scenario) or 250 s (for the 30 cm sce-
nario). The difference between the fastest and the slowest simulators may seem large: it implies
that 50% of the simulators were inactive for about 170 s (120 s for the 30 cm scenario). The
situation, however, is much more serious for the last time step of the rod extraction (between
t = 1.2 s and t = 1.3 s), especially for the 40 cm extraction scenario. Actually, there are large
variations on the population size and therefore also large fluctuations among the simulators.
Consequently, the calculation was slowed by one simulator who suffered from severe positive
fluctuations during the rod extraction. The median time step is 130 s, the fastest simulators com-
pleted the calculation in 110 s and had to wait for the slowest simulator, which completed the
calculation in 6700 s. Half of the simulators were thus inactive for almost two hours because
of one single simulator. The large fluctuations in calculation time probably reflect fluctuations
in neutron population, which grow with the size of the neutron population itself and are am-
plified by the branching nature of the fission process. In order to reduce the total waiting time
and increase the simulation efficiency, we have tried to enforce population control on a tight
grid during this time step, but no improvement was observed. It may be worth it to use branch-
less collisions, as shown by the test case performed on a supercritical configuration in Sec. 2.6.2.
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Figure 6.9 – Time evolution of the coolant fields in the TMI-1 3x3 mini-core computed with
T4/SCF (red line) and SSS2/SCF (black line) with the control rods progressively extracted by
30 cm between t = 0.3 s and t = 1.3 s. Top: average coolant temperature (in kelvins). Bottom:
average coolant density (in kg/m3).
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Figure 6.10 – Time evolution of the coolant fields in the TMI-1 3x3 mini-core computed with
T4/SCF (red line) and SSS2/SCF (black line) with the control rods progressively extracted by
40 cm between t = 0.3 s and t = 1.3 s. Top: average coolant temperature (in kelvins). Bottom:
average coolant density (in kg/m3).
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(a) 30 cm rod extraction
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(b) 40 cm rod extraction

Figure 6.11 – Axial fuel temperature profiles (in kelvins) for rods 1 to 4 in the TMI-1 3x3 mini-
core computed with T4/SCF (solid line) and SSS2/SCF (dashed line) between t = 1.1 s and
t = 1.2 s. Top: 30 cm rod extraction. Bottom: 40 cm rod extraction.
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Figure 6.12 – Axial coolant temperature profiles (in kelvins) for cells A to D in the TMI-1 3x3
mini-core computed with T4/SCF (solid line) and SSS2/SCF (dashed line) between t = 1.1 s
and t = 1.2 s. Note that the coolant temperature and density values for SSS2/SCF values are
taken from one of the neighbouring channels. Top: 30 cm rod extraction. Bottom: 40 cm rod
extraction.
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Figure 6.13 – Axial coolant density profiles (in kg/m3) for cells A to D in the TMI-1 3x3 mini-
core computed with T4/SCF (solid line) and SSS2/SCF (dashed line) between t = 1.1 s and t =

1.2 s. Note that the coolant temperature and density values for SSS2/SCF values are taken from
one of the neighbouring channels. Top: 30 cm rod extraction. Bottom: 40 cm rod extraction.
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Figure 6.14 – Histograms of the simulation computation times for the 30 cm (red bars) and
40 cm (green bars) extraction scenarios. Top: third time step (between t = 0.2 s and t = 0.3 s).
The simulation times are similar between the two scenarios, and relatively homogeneous among
the simulators. Bottom: last time step of the rod extraction (between t = 1.2 s and t = 1.3 s).
The 40 cm scenario is hampered by large fluctuations on the population size: half of the simu-
lators completed the simulation in 130 s and had to wait until 6700 s for the slowest one. The
discrepancy is much smaller and does not represent a severe issue for the 30 cm scenario.
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Our coupling scheme exacerbates the negative impact of the fluctuations, because the super-
visor needs to wait for all the simulators to complete their histories before calling the thermal-
hydraulics solver. One way to improve the efficiency of the simulation would be to split the
calculation into smaller, truly independent replicas, with independent couplings to thermal-
hydraulics. When all simulators of the same packet have completed the time step, SUBCHAN-
FLOW could be run without waiting for the other packets, and at least these simulators could
start the next time step. Therefore, we would still be waiting for some packets, but fewer simu-
lators would stay inactive during this time.

6.3.2 Control-rod extraction and reinsertion

In addition to the comparisons with SSS2/SCF for scenario D, we have also simulated scenario C
with the T4/SCF coupling scheme. In this scenario, control rods are extracted between t = 0.3 s
and t = 1.3 s, and later reinserted to the initial height between t = 3.1 s and t = 4 s. The total
power as a function of time is shown in Fig. 6.15 and can be compared to the one presented
in Fig. 3.9, for the same scenario without thermal-hydraulics feedback. The power is stable at
first, then it increases by a factor 8 before starting to decrease, similarly to scenario D. Then, at
t = 3.1 s, when the control rods are reinserted, the power decreases to a new equilibrium value
around 90 MW. Each simulator completed four full batches in 24 h.

The time evolution of the fuel temperature is presented in Fig. 6.16. The time evolution
of the coolant temperature and coolant density is presented in Fig. 6.17. It appears that the
thermal-hydraulics fields have not reached yet the asymptotic state at the end of the 5 s.
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Figure 6.15 – Time evolution of the total power (in watts) in the TMI-1 3x3 mini-core computed
with T4/SCF during scenario C transient, where control rods are progressively extracted by
40 cm between t = 0.3 s and t = 1.3 s and reinserted back to their initial position between
t = 3.1 s and t = 4.1 s.
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Figure 6.16 – Time evolution of the average fuel rod temperature (in kelvins) in the TMI-1 3x3
mini-core computed with T4/SCF during transient scenario C.
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Figure 6.17 – Time evolution of the coolant fields in the TMI-1 3x3 mini-core computed with
T4/SCF during scenario C. Top: average coolant temperature (in kelvins). Bottom: average
coolant density (in kg/m3).
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6.4 Conclusion

We have performed the first dynamic simulations of the TMI-1 3x3 mini-core with TRIPOLI-4,
starting from an initial state that we calculated once with a criticality calculation with feedback.
We reused it for the different dynamic calculations, which saved significant computational time.
In order to reduce correlations between the batches, we performed additional power iterations
for each batch on the fission sources of the previous batch, and ran SUBCHANFLOW to update
the thermal-hydraulics fields.

We have first verified the capability for dynamic simulations with a steady-state calculation.
The power remains stable with time. We have then studied the same reactivity-insertion scenario
(scenario D) as in Sec. 3.2.3, with the rods being extracted by 30 cm and 40 cm. The simulation
of the peak power is very challenging because of the large variations on the population size,
which cause large variations among the simulators. The 40 cm rod extraction especially induces
a very large reactivity insertion (the system becomes prompt supercritical), and fluctuations on
the population size lead to fluctuations in CPU time among the simulators. In particular, one
simulator was about 50 times slower than the average. Because of our implementation of the
coupling scheme, and more specifically because of the thermal-hydraulics rendez-vous points,
the simulation was hampered by few slow simulators that sampled rare events. Actually, the
40 cm rod extraction is much more challenging than the 30 cm extraction. Indeed, for the 30 cm
scenario, the discrepancy among simulators was not such an issue because the reactivity in-
sertion was much lower (0.5 $ against 1.3 $). For the two scenarios, the feedback mechanisms
make the power decrease an reach a new equilibrium state. We generally found good agreement
between the T4/SCF and SSS2/SCF results. We have also simulated scenario C, where the rods
are later reinserted. Similarly, the power reaches a new equilibrium state. Within the 5 s of the
simulation, the thermal-hydraulics fields do not reach a new equilibrium.

There are different perspectives for the improvement of our dynamic calculations. In the
40 cm rod extraction scenario, it seems necessary to reduce the waiting time due to the thermal-
hydraulics rendez-vous points. In order to mitigate the impact of fluctuations in CPU time
among simulators, the simulation could be split up in independent replicas. However, such
solution is in tension with the need to minimize the statistical fluctuations resulting from the
Monte Carlo simulation, as explained in Sec. 4.4.1. Substantial profits would be also obtained
by improving the handling of the geometry by TRIPOLI-4. Indeed, the definition of a single
geometry for transient calculations would greatly reduce the memory use, and each parallel
unit would not end up having to use the memory of two cores. Finally, the convergence of the
selected explicit Euler scheme deserves further investigation.
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Part III

Preliminary analysis of the coupled
system stability
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Chapter 7

Description of a simple model
representative of the coupled system

7.1 Description of the problem

The coupling between Monte Carlo neutron transport and thermal-hydraulics is intended as a
reference for coupled deterministic calculations. For this purpose, it is essential to be able to
assess the uncertainty stemming from the reference Monte Carlo coupled calculations. In order
to study the convergence over the coupling iterations, two aspects must be examined. First,
the output of a Monte Carlo code is characterized by statistical fluctuations. Second, thermal-
hydraulics equations are non-linear. The combination of these two aspects raises the following
questions: how do the statistical fluctuations coming from Monte Carlo transport propagate
along the coupling iterations? Thermal-hydraulics feedback effects have a stabilizing effect in a
PWR. Notwithstanding, is it possible that, despite the feedbacks, and because of amplification
of the noise through the iterations, the system does not return to equilibrium?

The work presented in this chapter aims at providing a preliminary basis for further analy-
sis of noise propagation in the neutron-transport-thermal-hydraulics coupled scheme. For this
purpose, we propose a simplified model to conduct both numerical and analytical investigation.

7.2 The reference model

In order to model the coupling between a stochastic neutron transport code and thermal-hydraulics
without having to deal with the complex models present in production codes such as TRIPOLI-
4 and SUBCHANFLOW, we will consider a simplified model originally proposed by March-
Leuba (1986). The model consists of five deterministic coupled equations, describing the multi-
physics behaviour of a boiling water reactor (BWR), including neutron transport and thermal-
hydraulics. In order to mimic the stochastic behaviour of Monte Carlo transport in the model,
we add noise on the neutron concentration equation, and we study the propagation of such noise
through the system and over the coupling iterations. In the following sections, we will describe
the five-equation system. All the notations will be recalled in Sec. A.5.3.

7.2.1 Presentation of the deterministic coupled system

March-Leuba (1986) proposed a system of five coupled equations to model the coupling be-
tween neutron transport and thermal-hydraulics in a BWR. The model describes the evolution
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of the following deterministic variables:

Nt is the excess neutron concentration normalized to the steady-state neutron concentration,

Ct is the excess precursors concentration normalized to the steady-state neutron concentration,

Tt is the excess fuel temperature, expressed in kelvin,

Pαt is the excess void reactivity,

Pt is the total excess reactivity over zero.

The model variables can be expressed as a function of the steady state quantities N′0, C′0, T ′0,
P
′α
0 as follows

Nt =
N′t − N′0

N′0
,

Ct =
C′t −C′0

N′0
,

Tt = T ′t − T ′0,

Pαt = Pα
′

t − Pα
′

0 ,

where N′t , C′t , T ′t , P
′α
t are the absolute quantities.

For our analysis, we make the assumption that we start from the equilibrium, meaning that

N0 = C0 = T0 = Pα0 = (dPαt /dt)0 = P0 = 0. (7.2.1)

The deterministic system reads then:

dNt =

(
Pt − βeff

Λeff

Nt + λCt +
Pt

Λeff

)
dt, (7.2.2)

dCt =

(
βeff

Λeff

Nt − λCt

)
dt, (7.2.3)

dTt = (a1Nt − a2Tt)dt, (7.2.4)

dPαt =

(
−a3Pαt − a4

∫ t

0
Pαs ds − k

∫ t

0
Tsds

)
dt, (7.2.5)

Pt = Pαt − DTt, (7.2.6)

with a1, a2, a3, a4, k being model parameters and D the Doppler coefficient. Their numerical
values are given in Table 7.1. As a reminder of the parameters defined in Chapter 1, λ is the
typical precursor decay constant, Λeff is the neutron effective mean generation time and βeff is
the effective delayed neutron fraction. The order of magnitude of the kinetics parameters is
given in Table 7.2.

The first two equations of the system, namely Eqs. (7.2.2) and (7.2.3), describe the time-
evolution of the neutron concentration Nt and the precursor concentration Ct, as given by the
point-kinetics model (see Sec. 1.2.3) for excess and normalized quantities. They are related
to the thermal-hydraulics Eqs. (7.2.4) and (7.2.5) via the reactivity Pt, defined by Eq. (7.2.6).
More precisely, the Doppler effect on the fuel temperature Tt is modeled by Eq. (7.2.6), with
a Doppler coefficient D = 2.52 pcm K−1. The void excess reactivity is defined by the second
order differential Eq. (7.2.5), controlled by the fuel temperature. Finally, there is a non-linearity
in Eq. (7.2.2) because of the term Pt × Nt, where Pt depends on Nt. The difficulty in solving
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reactor type a1 [K−1 s−1] a2 [s−1] a3 [s−1] a4 [s−2] k [K−1s−2] D [K−1]

BWR 25.04 0.23 2.25 6.82 3.7 × 10−3 2.52 × 10−5

PWR 25.04 0.23 6 6.82 3.7 × 10−5 2.52 × 10−5

Table 7.1 – Values for the parameters of the coupled system, as given by March-Leuba (1986)
for a BWR (a2

3 − 4 × a4 < 0), and adapted for a PWR (a2
3 − 4 × a4 > 0 for stability, and k is

reduced to take into account the high pressure in the reactor).

analytically the system stems from this non-linearity.

It is interesting to notice that the system models the behaviour of a BWR, but it may actually
also be used to describe a PWR, provided that we make slight modifications in the parameters
a3 and k. Indeed, the moderator always has a stabilizing effect on the reactivity in a PWR,
while this is not always true in a BWR. To ensure the stability of the system, there must be
no oscillations in the void excess reactivity Eq. (7.2.5), meaning that the discriminant must be
positive, i.e., a2

3−4×a4 > 0. Moreover, the effect of the fuel temperature on the void fraction in
a PWR should be smaller than in a BWR, because of the very high pressure in the reactor. For
example, we can choose a3 = 6 s−1 and k = 3.7 × 10−5 K−1s−2 to model the feedback effects in
a PWR. In the following we keep the modified values for a3 and k, since our primary goal is the
investigation of PWRs.

λ [s−1] Λeff [s] βeff

0.08 1.73 × 10−5 763 × 10−5

Table 7.2 – Typical values of the kinetics parameters for a PWR (values are given for the SPERT
III E-core).

The solution of Eq. (7.2.3) gives an explicit representation of the precursor concentration

Ct = C0e−λt +
βeff

Λeff

e−λt
∫ t

0
Ns eλs ds

=
βeff

Λeff

e−λt
∫ t

0
Ns eλs ds since C0 = 0. (7.2.7)

We get a similar expression for the fuel temperature using Eq. (7.2.4):

Tt = T0e−a2t + a1 e−a2t
∫ t

0
Ns ea2 s ds

= a1 e−a2t
∫ t

0
Ns ea2 s ds since T0 = 0. (7.2.8)

7.3 From a deterministic to a stochastic system

7.3.1 Adding Brownian noise

We begin by considering the two deterministic neutron transport Eqs. (7.2.2) and (7.2.3), for
Nt and Ct. In order to “mimic” the stochastic behaviour of the Monte Carlo transport, we have
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added a noise term to the equation for Nt. The noise should have the same characteristics as the
statistical fluctuations coming from a Monte Carlo simulation, which can be reasonably approxi-
mated by a Gaussian noise (Lapeyre et al., 1997). For time-dependent Monte Carlo simulations,
the Gaussian random variables are correlated between the time steps: Sec. 3.3 showed that cor-
relations have an exponential decay. These considerations suggest that in our model we should
add a Gaussian noise with correlations between the time steps having an exponential decay.

In order to simplify the problem, we have decided at first to add a Brownian noise term Wt to
the equation for Nt, scaling the mean generation time Λeff. A Brownian motion is a continuous-
time stochastic process (Wt)t≥0 such that

• W0 = 0,

• for 0 ≤ s ≤ t,Wt −Ws ∼ N(0, t − s).

• Wt has independent increments.

This is clearly not a faithful representation of Monte Carlo fluctuations, since a Brownian noise
is uncorrelated with respect to the previous time steps; this choice can be interpreteted as if the
Gaussian random fluctuations in a Monte Carlo simulation were introduced at the beginning of
each step without any dependency to the previous steps. This is not true in the Monte Carlo sim-
ulations discussed in the previous chapters (samples are recycled from one iteration to another),
but represents a preliminary step to simplify the mathematical analysis. With this modeling
choice, we get the following stochastic system for Nt and Ct

dNt =

(
Pt − βeff

Λeff

Nt + λCt +
Pt

Λeff

)
dt + cW,N(Λeff)dWt, (7.3.1)

dCt =

(
βeff

Λeff

Nt − λCt

)
dt, (7.3.2)

with cW,N(Λeff) the amplitude of the Brownian noise, expressed in s−1/2. The term −βeff/Λeff×Nt

in Eq. (7.3.1) represents a strong mean reversion process and should induce a decorrelation
between the time intervals. Hence, the neutron concentration Nt should not behave as a simple
Brownian motion, but should present a mean reversion behaviour. It should be noted that we
should also add a Brownian noise term to the equation for Ct being correlated to the noise on
Nt, but for simplicity we add it only to the equation for Nt.

7.3.2 Reparametrization

Since the neutron transport variables Nt and Ct are related to each other, we introduce the vector
Zt defined by

Zt =

(
Nt

Ct

)
, (7.3.3)

and we keep the three thermal-hydraulics Eqs. (7.2.4), (7.2.5) and (7.2.6) in their initial form.

Based on Eqs. (7.3.1) and (7.3.2), Zt satisfies the following vector-valued stochastic differ-
ential equation

dZt =

(
AtZt +

Pt

Λeff

e(1)
)

dt + −→cW(Λeff)dWt, (7.3.4)

with the matrix

At =


Pt − βeff

Λeff

λ

β

Λeff

−λ

 , (7.3.5)
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the vector
−→cW(Λeff) =

(
cW,N(Λeff)

0

)
, (7.3.6)

and e(i) the vector of the canonical basis, so that

e(1) =

(
1
0

)
.

In order to simplify the calculations, we choose the following notations

τ =
Λeff

βeff

,

r =
λΛeff

βeff

.

According to Table 7.2, the parameter τ has dimension of a time, and is very small: τ ≈
10−3 s. The parameter r is dimensionless and represents the ratio between neutron and precursor
concentrations at equilibrium. This ratio is also very small: of the order of r ≈ 10−4. To
summarize, we have

τ � 1 s,

r � 1.

7.3.3 Limitations of the modeling choices

We have made several approximations in order to simplify the study of the system. The different
assumptions are discussed below.

• For simplicity, we have chosen a Brownian noise to mimic the noise coming from Monte
Carlo simulations. However, Brownian increments are independent, which is not the case
for the random fluctuations coming from Monte Carlo transport. Indeed, particles are
transferred from one step to another, so that steps are not independent. For a more faithful
representation of the fluctuations, the Brownian noise should be replaced by a Gaussian
noise with correlations between the time steps.

• A Brownian noise should also be added to the equation of the precursor concentration.
Furthermore, this noise should be correlated to the noise on Nt.

• We have assumed that the system is starting from the equilibrium state, i.e., with the
initial conditions N0 = C0 = T0 = Pα0 = (dPαt /dt)0 = 0. This is a restrictive hypothesis
which limits the following analysis to systems close to the critical state. For more general
results, the system should be studied with different initial conditions.

We will carry out our analysis with these hypotheses at first.

7.4 Preliminary results on Zt

7.4.1 Linear equation

One may be tempted to solve the stochastic differential Eq. (7.3.4) for Zt, which is a linear
equation with a perturbative term, in the following way. Assume (Mt)0≤t≤T is a 2 × 2 matrix-
valued function of time, continuously differentiable, satisfying the following systemdMt = At Mtdt,

M0 = I2,
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with I2 the 2x2 identity matrix and At defined by Eq. (7.3.5). The existence of such a system
is ensured because this is a linear ordinary differential equation, with bounded and continuous
coefficient At. We can easily demonstrate that the matrix M−1

t exists and satisfiesdM−1
t = −At M−1

t dt,
M−1

0 = I2.

We can use the Itô product rule on the product M−1
t Zt (see Revuz and Yor (2004), Chapter IV,

Exercise 3.9):

d(M−1
t Zt) = M−1

t dZt + dM−1
t Zt

= M−1
t

(
AtZt +

Pt

Λeff

e(1)
)

dt + M−1
t
−→cW(Λeff)dWt − M−1

t AtZtdt

= M−1
t

(
Pt

Λeff

e(1)
)

dt + M−1
t
−→cW(Λeff)dWt.

Finally, we get the following expression for Zt

Zt = Mt

[∫ t

0
M−1

s
Ps

Λeff

(
UZs + e(1)

)
ds +

∫ t

0
M−1

s
−→cW(Λeff)dWs

]
, (7.4.1)

with the matrix

U =

(
1 0
0 0

)
.

For further analysis of the vector Zt, we need to have an explicit representation of the matrix
Mt. As a first step, we verify wether the matrices At and As commute. Indeed, if they commute,
Eq. (A.5.6) would give the following expression for Mt: Mt = exp(

∫ t
0 Asds).

7.4.2 Commutation of At and As

The matrix At defined by Eq. (7.3.5) is stochastic and depends on time. For our analysis, we
decompose At into a constant matrix and a time-dependent matrix:

At =
A

τ
+ PtU, (7.4.2)

with the matrix

A =

(
−1 r
1 −r

)
(7.4.3)

.

The matrices At and As commute if and only if At × As = As × At. However we have

At × As − As × At =

(
A

τ
× U − U ×

A

τ

)
(Ps − Pt) .

Thus, At and As commute if and only ifA× U = U ×A. However,

A× U =

(
−1 0
1 0

)
and U ×A =

(
−1 r
0 0

)
.

Therefore, the matrices At and As do not commute and we cannot use the result of Eq. (A.5.6).
Since we do not have an explicit representation of Mt, Eq. (7.4.1) might not be the good starting
point for the study of Zt. Instead, we derive an alternative representation using the Itô lemma.
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7.4.3 Alternative representation

Using the notations introduced above, we have the following stochastic differential equation for
the vector Zt, which is an Itô process

dZt =

(
A

τ
Zt +

Pt

Λeff

(
UZt + e(1)

))
dt + −→cW(Λeff)dWt. (7.4.4)

Note that:

UZs =

(
Ns

0

)
.

When applying the Itô lemma, recalled by Eq. (A.5.3), to Zt, with the function f defined by
f (t, x) = e−At/τ x, we obtain the following proposition.

Proposition 7.4.1
Zt = ZW

t + ZP
t , (7.4.5)

with

ZW
t =

∫ t

0
e
A
τ (t−s) −→cW(Λeff)dWs, (7.4.6)

ZP
t =

∫ t

0
e
A
τ (t−s) Ps

Λeff

(
UZs + e(1)

)
ds. (7.4.7)

The first term, ZW
t , defined in Prop. (7.4.1) is due to the noise coming from the Monte Carlo

transport. The second term, ZP
t , comes from the coupling between thermal-hydraulics (through

the perturbative reactivity Ps) and neutron transport (through the neutron concentration in UZs).
At equilibrium, the total excess reactivity is null: Pt = 0. Therefore, we consider Pt as a
perturbation and ZW

t represents the unperturbed stochastic system.

7.5 Conclusion

In order to better understand the propagation of the noise along the coupling iterations of Monte
Carlo transport/thermal-hydraulics calculations, we have selected a simple model of five equa-
tions representing the interactions between neutron transport and thermal-hydraulics. In order
to mimic the stochastic behaviour of a Monte Carlo code, we have added a Brownian noise term
on the equation for the neutron concentration.

For further analysis, a noise term should also be added on the equation on the precursor
concentration. Moreover, correlations between time steps should be taken into account. Hence,
Brownian noise is not a faithful representation of the noise due to Monte Carlo transport. We
have also made the restrictive hypothesis that the system starts from the equilibrium.

The key result of our preliminary analysis is that we have decomposed the contributions
related to neutron transport in two parts. The first part comes from the Brownian noise; the
second part comes from the coupling with the thermal-hydraulics. Both contributions will be
investigated in Chapter 8. The objective will be to study the variance-covariance matrix of the
full system.
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Chapter 8

Analytical and numerical analysis of
the model

In this chapter, we consider the system of five equations presented in Chapter 7, and we provide
a preliminary basis for further analytical investigation of the system. More specifically, we will
analyse the probability distribution of ZW

t in Sec. 8.1 and the probability distribution of ZP
t in

Sec. 8.2. Numerical simulations will be also presented in order to assess the validity of the
different hypotheses that we make. As mentioned in Chapter 7, we start from the equilibrium,
i.e., from the critical state.

8.1 Analysis of the Brownian term

8.1.1 Gaussian process

In this section, we examine ZW
t , the part of Zt due to the Brownian noise, as if the neutron

transport system were not coupled to the thermal-hydraulics (i.e., when the excess reactivity
is null: Pt = 0). The objective is to investigate the variance-covariance matrix ΣW

t of ZW
t (the

element (i, j) of the matrix ΣW
t is the covariance between the i-th and j-th elements of ZW

t ). As
a reminder of Eq. (7.4.6), ZW

t is defined by

ZW
t = e

At
τ ×

∫ t

0
e−
As
τ
−→cW(Λeff)dWs.

Therefore, ZW
t is the product of e

At
τ and a Wiener integral (see Revuz and Yor (2004), Chapter

IV, Exercise 2.16), thus ZW is a Gaussian process and its characteristics are known.

Proposition 8.1.1 ZW is a Gaussian process, centered, and its marginal distribution at time t is

N

(
0, τ

∫ t
τ

0 eAs −→cW(Λeff)−→cW(Λeff)>(eAs)>ds
)
. Its covariance function (between two marginals) is

∀t ≥ s, Cov(ZW
t ,Z

W
s ) = e

A
τ (t−s) Var(ZW

s ). (8.1.1)

For a proof of Prop. (8.1.1), see Sec. A.5.5.

8.1.2 Properties of the matrixA

The matrixA defined by Eq. (7.4.3) satisfies the following properties. The proof of the different
statements are provided in Sec. A.5.4.
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Proposition 8.1.2 1. ∀k ≥ 1, Ak = [−(1 + r)]k−1 ×A.

2. The spectrum ofA is Sp(A) = {0,−(1 + r)}.

3. ∀s, eAs = Id +A× J(s), with

J(s) =
1 − e−(1+r)s

1 + r
.

Thus, ∀s,

eAs =


r + e−(1+r)s

1 + r
r ×

1 − e−(1+r)s

1 + r
1 − e−(1+r)s

1 + r
1 + r e−(1+r)s

1 + r

 . (8.1.2)

4. The matrix eAs is invertible and e−As = Id +A× J(−s).

8.1.3 Analysis of the covariance matrix

Using Props. (8.1.2) and (8.1.1), we can compute the variance-covariance matrix ΣW
t of ZW

t

ΣW
t = c2

W,N × τ ×


∫ t

τ

0
[1 − J(s)]2 ds

∫ t
τ

0
[1 − J(s)] × J(s)ds∫ t

τ

0
[1 − J(s)] × J(s)ds

∫ t
τ

0
J(s)2ds

 .
Proposition 8.1.3

ΣW
t = c2

W,N × τ × Mr

( t
τ

)
, (8.1.3)

when defining the matrix function

Mr(t) =


∫ t

0

(
r + e−(1+r)s

1 + r

)2

ds
∫ t

0

(
r + e−(1+r)s

1 + r

)
×

(
1 − e−(1+r)s

1 + r

)
ds∫ t

0

(
r + e−(1+r)s

1 + r

)
×

(
1 − e−(1+r)s

1 + r

)
ds

∫ t

0

(
1 − e−(1+r)s

1 + r

)2

ds

 .

We first detail the matrix Mr

( t
τ

)
:

Mr

( t
τ

)
=

1
(1 + r)2×

r2 ×
t
τ

+
1 − e−2(1+r) t

τ

2(1 + r)
+ 2r ×

1 − e−(1+r) t
τ

1 + r
r ×

t
τ

+
(1 − r) × (1 − e−(1+r) t

τ )
1 + r

+
e−2(1+r) t

τ −1
2(1 + r)

r ×
t
τ

+
(1 − r) × (1 − e−(1+r) t

τ )
1 + r

+
e−2(1+r) t

τ −1
2(1 + r)

t
τ

+
1 − e−2(1+r) t

τ

2(1 + r)
+ 2 ×

e−(1+r) t
τ −1

1 + r

 .
(8.1.4)

The matrix function Mr only depends on the time t. We can identify three regimes: short
time (t � τ), long-time (τ � t � τ/r) and very long-time (t � τ/r). Note that τ is the duration
of the fission chain and τ/r = 1/λ is the typical precursor decay constant.
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short-time approximation reference

Var[NW
t ] 1.00 × 10−4 1.00 × 10−4

Var[CW
t ] 6.42 × 10−12 6.48 × 10−12

Cor[NW
t ,C

W
t ] 8.66 × 10−1 8.66 × 10−1

Table 8.1 – Verification of the short-time analytical approximation for the variance of NW
t , CW

t
and their correlation, at short-time range (t = 10−6 s).

Short-time approximation (t � τ)

In the short-time approximation (t � τ, i.e., t � 2 ms for the chosen model parameters), the time
is much shorter than the duration of the fission chain. Thus, we can expect that the behaviour is
driven by neutrons and not precursors. When we look at the short-time dynamics of the matrix
Mr, using the fact that r � 1, we get

ΣW
t ≈

t�τ
c2

W,N × τ ×


t
τ

1
2
× (

t
τ

)2

1
2
× (

t
τ

)2 1
3
× (

t
τ

)3

 . (8.1.5)

Similarly as we have defined ZW
t , we can define NW

t and CW
t :

ZW
t =

(
NW

t
CW

t

)
, (8.1.6)

for which we have, according to Eq. (8.1.5):

Var[NW
t ] ≈

t�τ
c2

W,N × t, (8.1.7)

Var[CW
t ] ≈

t�τ

c2
W,N

3
×

t3

τ2 , (8.1.8)

Cov[NW
t ,C

W
t ] ≈

t�τ

c2
W,N

2
×

t2

τ
. (8.1.9)

In this regime, the variance of NW
t increases linearly with time. On the contrary, the correlation

between NW
t and CW

t does not depend much on time:

Cor[NW
t ,C

W
t ] ≈

t�τ

√
3

2
.

The evaluation of the coefficients of the matrix Mr detailed in Eq. (8.1.4) substantiates the
short-time approximation introduced here. For example, with t = 10−6 s and cW,N = 10 s−1/2

(the choice of cW,N will be motivated in the long-time approximation), we have obtained the
numerical results presented in Table 8.1, which support our theoretical findings.

Long-time approximation (τ � t � τ/r)

Now we look at the long-time dynamics of ΣW
t (τ � t � τ/r, i.e., 2 ms � t � 12 s), where

neutrons are locally in equilibrium with the precursors. Using the fact that e−(1+r) t
τ →

t�τ
0 and

r × e−(1+r) t
τ →

t�τ
0, we get

Mr

( t
τ

)
≈


r2 ×

t
τ

+
1

2(1 + r)
+ 2r ×

1
1 + r

r ×
t
τ

+
1 − r
1 + r

−
1

2(1 + r)

r ×
t
τ

+
1 − r
1 + r

−
1

2(1 + r)
t
τ

+
1

2(1 + r)
− 2 ×

1
1 + r

 . (8.1.10)
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long-time approximation reference

Var[NW
t ] 1.13 × 10−1 1.13 × 10−1

Var[CW
t ] 5.00 × 102 5.00 × 102

Cor[NW
t ,C

W
t ] 3.01 × 10−2 3.01 × 10−2

Table 8.2 – Verification of the long-time analytical approximation for the variance of NW
t , CW

t
and their correlation, at long-time range (t = 5 s).

We also have

r � 1,
t
τ
� 1,

r ×
t
τ
� 1,

so we get the following approximation

Mr

( t
τ

)
≈

τ�t�τ/r


1
2

1
2

1
2

t
τ

 . (8.1.11)

From this we can deduce that

Var[NW
t ] ≈

τ�t�τ/r

c2
W,N × τ

2
, (8.1.12)

Var[CW
t ] ≈

τ�t�τ/r
c2

W,N × t, (8.1.13)

Cov[NW
t ,C

W
t ] ≈

τ�t�τ/r

c2
W,N × τ

2
. (8.1.14)

Within the long-time approximation, it is interesting to notice that the variance of NW
t does

not depend much on time. The variance is proportional to the square of cW,N , which is a free
parameter in our model. In order to model a standard deviation of about 0.1 (which corresponds
to a standard deviation of 10% on N′t ), we set cW,N = 10 s−1/2.

In this regime, however, the correlation between NW
t and CW

t is time-dependent:

Cor[NW
t ,C

W
t ] ≈

τ�t�τ/r

τ
2√
τ
2 × t

≈
τ�t�τ/r

√
τ

2t
.

The exact numerical calculation of the coefficients of the matrix Mr confirms the long-
time approximation. For example, the results are compared in Table 8.2, with t = 5 s and
cW,N = 10 s−1/2.

Since the variance of NW
t does not depend on time, for two time steps t and s we have

Var(NW
t ) ≈

τ�t�τ/r
Var(NW

s ), (8.1.15)

and using Eq. (A.5.12), Prop. (8.1.1) gives the following result.
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Proposition 8.1.4 ∀t, s : τ � t − s � τ/r,

Cor(NW
t ,N

W
s ) ≈ e−

(1+r)(t−s)
τ .

Proposition (8.1.4) shows an interesting result: the correlations between the neutron con-
centration at two times s and t decrease exponentially with the difference t − s, with a decay
constant αW defined by

αW =
1 + r
τ

, (8.1.16)

which is equivalent to

αW =
βeff

Λeff

+ λ (8.1.17)

≈
βeff

Λeff

. (8.1.18)

This analytical value is very close to the inverse of the fission chain average length, for critical
configurations (keff ≈ 1). Indeed, in the case of a critical configuration, the average fission chain
length is precisely Λeff/βeff (cf. Eq. (3.3.1)).

In the simulations discussed in the previous chapters (see e.g., Sec. 3.1), we have noticed
that, for a given system, the values of βeff and Λeff do not depend much on the reactivity inser-
tion. Thus, the correlation decay time that we have found in Eq. (8.1.17) will be approximatively
constant for different configurations of a same system. However, one should keep in mind that
all the analysis developed in this work is valid only for configurations close to the critical state.

It is interesting to compare the analytical value in Eq. (8.1.17) with the decay time that we
have numerically found in Sec. 3.3 with TRIPOLI-4 simulations. For the critical configuration,
1/αW ≈ 2 ms is in good agreement with the best-fit time constant found in Fig. 3.14a. For the
subcritical configuration however, the decay time given by 1/αW is much longer than the 0.1 ms
obtained with the best-fit time constant in Fig. 3.14b: using the kinetics parameters of the rod-
drop configuration for the calculation of 1/αW is not sufficient to get a good estimation of the
decay constant. In fact, the rod-drop configuration is very far from this equilibrium state, thus
the analytical analysis developed in this section can not be used.

Very long-time approximation (t � τ/r)

Since we usually do not simulate more than a few seconds for the typical reactor transients
considered in the previous chapters, we will not consider this case, where t would be longer
than τ/r, which is about 12 s. It should be noted however that in this case the variance of NW

t is
no longer constant. Indeed, when looking at Eq. (8.1.10), the term r2 × t/τ can not be neglected
anymore. Thus, the variance increases linearly with time. This is coherent with the findings
in Williams (1971); Houchmandzadeh et al. (2015).

8.1.4 Numerical simulations of the sytem

We have performed numerical simulations of NW
t and CW

t (cf. Fig. 8.1) in order to monitor the
evolution of Var[NW

t ], Var[CW
t ] and Cor[NW

t ,C
W
t ] over time, as presented in Fig. 8.1. We have

performed 104 independent replicas using fourth-order Runge-Kutta integration, according to
the following algorithm:

yn+1 = yn +
h
6

(k1 + 2k2 + 2k3 + k4) ,
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with

k1 = f (tn, yn) ,

k2 = f
(
tn +

h
2
, yn +

h
2

k1

)
,

k3 = f
(
tn +

h
2
, yn +

h
2

k2

)
,

k4 = f (tn + h, yn + hk3) ,

tn = tn + h,

where h is the integration time step. At the end of each integration time step, a Brownian motion
is added to the deterministic solution for NW

t . In practice, we have generated a normal distribu-
tion with standard deviation

√
h. We have observed that the integration time step necessary to

achieve convergence of the solution with the Brownian term is much smaller than the time step
necessary to achieve convergence of the deterministic system (i.e., with cW,N = 0). The retained
simulation parameters are the following: the step-size is h = 10−4 s, the initial time is t0 = 0 s,
and the total simulation time is 5 s (the number of steps is n = 5 × 104). For more clarity on
the plot, only one realization is presented for NW

t and CW
t (red lines). The sample variances

over all the realizations are plotted (blue lines). For comparison, the analytical expression that
we obtained for the variances are also plotted (green lines) and are in good agreement with the
simulations.

In Figs. 8.1a and 8.1c, it is clearly visible that the neutron time scale is much shorter than the
precursor time scale. The variances of both NW

t and CW
t (Figs 8.1b and 8.1d) behave as expected:

the one of NW
t varies rapidly, and after a very short time, the variance fluctuates around 0.11,

as expected. The variance of CW
t increases linearly with time, as it would be the case for a

Brownian motion, and we find Var[CW
t ] ≈ 500 at the final time t = 5 s, as found in Table 8.2.

We have also plotted the time evolution of the correlation between Nt and Ct in Fig. 8.1f: the
correlation decreases with time towards a constant value around 0.03, which is coherent with
the analytical result obtained using the long-time approximation (cf. Table 8.2).

8.1.5 Numerical simulations with TRIPOLI-4

We want now to verify the findings that we have obtained with our analytical study with respect
to the TRIPOLI-4 kinetic simulations presented in Sec. 3.3.1. Figure 8.2 shows the time evo-
lution of the variance of the total statistical weight of the neutron population as simulated by
TRIPOLI-4. It is interesting to see that the plot is divided in two parts. First, the variance in-
creases linearly with time up to t = 1 ms. Then, the variance remains stable. This observation is
in good agreement with the analytical results that we have derived in this section: in particular,
at short-time range the variance seems to obey Eq. (8.1.7) and at long-time range Eq. (8.1.12),
which is consistent with our theoretical prediction.

Moreover, we can deduce an order of magnitude for cW,N : the linear fit as well as the con-
stant value provide a value of about 0.1 s−1 for c2

W,N . However, the coefficient depends on the
convergence of the TRIPOLI-4 simulation. Here, the simulation was well-converged: the rel-
ative standard error is about 1% in each time step. For consistency with dynamic simulations,
which are much more time-consuming, we can target an uncertainty of about 10%, which would
lead to cW,N = 1 s−1/2, which is relatively close to the value of cW,N = 10 s−1/2 that we have set
up for our simplified model.
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Figure 8.1 – 104 independent simulations of the neutron transport equations with Pt = 0 (with-
out coupling with the thermal-hydraulics) were performed using the fourth-order Runge-Kutta
method. The step for numerical integration is 10−4 s. The red lines show the time evolution of
the neutron population NW

t and the precursor population CW
t (one realization only is presented

for more clarity). The blue lines show sample estimates of Var[NW
t ], Var[CW

t ], Cov[NW
t ,C

W
t ]

and Cor[NW
t ,C

W
t ], while the green lines show the analytical results, which are in good agree-

ment with the simulations.
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Figure 8.2 – Time evolution of the variance on the neutron population, for the TRIPOLI-4
simulation presented in Sec. 3.3.1. The plot is divided in two parts: the variance of Nt depends
linearly on time up to t ≈ 1 ms, then it reaches a plateau.

8.1.6 Conclusion

In this section, we have examined the propagation of the Brownian noise that we added on Nt for
a critical system, without the coupling with the thermal-hydraulics (i.e., Pt = 0). More specifi-
cally, we have investigated the covariance matrix ΣW

t of ZW
t . Three regimes were identified. At

short-time range, (t � τ), Var[NW
t ] linearly depends on time, while there is a cubic dependency

for Var[CW
t ]. At long-time range (τ � t � τ/r), Var[NW

t ] does not depend on time, while
Var[CW

t ] depends linearly on it. The very long-time regime (t � τ/r) is not of interest for the
Monte Carlo simulations that we target, and was not considered.

We have found that correlations between the neutron concentration at two times, s and t,
decrease exponentially with time, with a decay constant αW = βeff/Λeff + λ, which is about the
inverse of the average duration of the fission chain.

Numerical calculations of the variance of NW
t and CW

t , as well as their correlation were per-
formed in order to confirm the approximations and to plot the evolution of the correlation along
time. The variance of NW

t is characteristic of the mean reversion process. On the contrary, the
variance of CW

t increases linearly with time, as expected for a Brownian motion. The correlation
between NW

t and CW
t exponentially decreases with time. It should be recalled that the analysis

that was developed here and the conclusions that were drawn only apply to configurations close
to the critical state.
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8.2 Analysis of the thermal-hydraulics coupling term

We now estimate the covariance matrix of ZP
t , ΣP

t , which represents the contribution to the
variance due to the coupling with thermal-hydraulics.

8.2.1 Preliminary analysis

After investigating ZW
t , we study ZP

t , the other component of Zt. As a reminder, Eq. (7.4.7)
stipulates that

ZP
t =

∫ t

0
e
A
τ (t−s) Ps

Λeff

(
UZs + e(1)

)
ds,

which can be expanded to yield

ZP
t =

∫ t

0

Ps

Λeff

×
1 + Ns

1 + r

r + e−
(1+r)(t−s)

τ

1 − e−
(1+r)(t−s)

τ

 ds. (8.2.1)

This term is non-linear in Ns, since Ps depends on Ns. We can define NP
t and CP

t :

ZP
t =

(
NP

t
CP

t

)
(8.2.2)

and rewrite the first component of Eq. (8.2.1) as

NP
t =

∫ t

0

Ps

Λeff

×
1 + Ns

1 + r
×

(
r + e−

(1+r)(t−s)
τ

)
ds, (8.2.3)

which is not exactly integrable because of the non linearity, even if we consider the deterministic
system only (i.e., cW,N = 0). We can simplify the expression of NP

t when looking at short-time
and long-time scales, namely

NP
t →t�τ

∫ t

0

Ps

Λeff

× (1 + Ns) ds,

NP
t →t�τ

∫ t

0

Ps

Λeff

×
r

1 + r
× (1 + Ns) ds.

Similarly, the second component of the vector ZP
t is CP

t and reads

CP
t =

∫ t

0

Ps

Λeff

×
1 + Ns

1 + r
×

(
1 − e−

(1+r)(t−s)
τ

)
ds, (8.2.4)

and looking at short-time and long-time regimes we get

CP
t →t�τ

0,

CP
t →t�τ

∫ t

0

Ps

Λeff

×
1 + Ns

1 + r
ds.

When looking at NP
t and CP

t in the long-time range, we find the equilibrium ratio:

NP
t

CP
t

=
t�τ

r. (8.2.5)
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8.2.2 Numerical simulations of the full system

Given the difficulty of solving analytically the nonlinear coupled system of five equations, we
have solved it numerically. We have chosen to follow the time evolution over 5 s, with time
intervals of 10−4 s. We have performed 104 independent simulations using the fourth-order
Runge-Kutta method introduced above and the same Brownian noise as for the uncoupled simu-
lations. By setting the total reactivity Pt to zero at each coupling iteration, we have first checked
that we obtained the same solutions as in Sec. 8.1.4. Then, we have taken into account the vari-
ations of Pt.

The time evolution of Nt, Ct (red lines) and their variance (blue lines) are presented in
Fig. 8.3. The neutron population still reveals a mean reversion process. Surprisingly, the vari-
ance reaches the same plateau as for the uncoupled system, presented in Fig. 8.1a: the variance
fluctuates around 0.11. Actually, it seems that with our simulation parameters the contribution
to the variance due to the coupling is small as compared to the one due to the Brownian mo-
tion. On the contrary, the behaviour of the variance of the precursor population differs from the
uncoupled behaviour: the variance does not increase linearly with time anymore: the feedbacks
“bend” the linear trend (for comparison the linear trend is plotted in green). The time evolu-
tion of one realization of Tt, Pαt and Pt is presented in Fig. 8.4. As expected, the behaviour of
the fuel temperature is very similar to the behaviour of the precursor concentration, since their
equations, Eqs. (7.2.7) and (7.2.8), have the same shape.
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Figure 8.3 – Time evolution of the neutron population Nt and the precursor population Ct for
the complete system of five equations Eqs. (7.2.2) - (7.2.6). 104 independent simulations using
the fourth-order Runge-Kutta method were performed, but one realization only is presented for
more clarity (red lines). Sample estimates of Var[Nt], Var[Ct], Cov[Nt,Ct] and Cor[Nt,Ct] are
also plotted (blue lines). The time step for integration is 10−4 s. A linear trend is plotted in green
for comparison with Var[Ct].
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Figure 8.4 – Time evolution of the fuel temperature Tt, the void reactivity Pαt and the total
reactivity Pt (red lines). Sample estimates of the variance of the three physical quantities are
also plotted (blue lines). Results come from the same simulations as in Fig. 8.3.

152



8.3. SIMPLIFIED MODEL

8.3 Simplified model

8.3.1 Hypothesis

In this section, we make two assumptions in order to be able to advance in the analytical study
of the coupled term. First, we notice that the coefficients a3, a4 and k in Eq. (7.2.5) for Pαt are
small. Thus, for t � τ/r, we make the assumption that Pαt = 0; that is, we neglect the void
reactivity which is a reasonable approximation for a PWR system. Thus, the system of five
equations reduces to a system of three equations:

dNt =

(
−DTt − βeff

Λeff

Nt + λCt −
DTt

Λ

)
dt + cW,N(Λeff)dWt, (8.3.1)

dCt =

(
βeff

Λeff

Nt − λCt

)
dt, (8.3.2)

dTt = (a1Nt − a2Tt)dt. (8.3.3)

8.3.2 Verification of the hypothesis

In order to assess the validity of the hypothesis that we have introduced, we have performed
some numerical simulations of the simplified system Eqs. (8.3.1) - (8.3.3) in order to verify
that they are in good agreement with the full system Eqs. (7.2.2) - (7.2.6). The simulation time
is 5 s, with integration time steps of 10−4 s. We have performed 104 independent simulations
using the fourth-order Runge-Kutta method and we have used the same sample of Brownian
increments as for the resolution of the full model presented in Figs. 8.3 and 8.4. Results are
presented in Fig. 8.5. The behaviour of Nt and Ct , as well as their variance, is very similar to
the one obtained with the full model. We can conclude that the full model can be reasonably
well represented by the simplified model, Eqs. (8.3.1) - (8.3.3).

8.3.3 Discussion on the non linearity

The analytical study of the variance of NP
t seems to be very challenging because of the non

linearity. It could be tempting to consider that the variations on the neutron population are small
and to assume that Ns � 1, in order to suppress the non linearity in Eq. (8.2.3). However, we are
precisely interested in transient configurations where the neutron population varies drastically.
Therefore, we can not afford such hypothesis, and we have no choice but to deal with the non-
linearity. However, the assumptions that we have made have allow for a simplification of the
system: the system of five equations has been reduced to a system of three equations, which is
much more convenient.
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Figure 8.5 – Same as Fig.8.3, but for the simplified system (Pαt = 0). The results are very similar
to the ones obtained with the complete system.
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8.4 Conclusion

8.4.1 Brownian term

As a first step towards the analysis of the noise induced by the Monte Carlo transport, we
have studied the neutron and precursor equations at fixed reactivity. More specifically, we have
studied the covariance matrix ΣW

t . The neutron concentration reveals a strong mean reversion
process, while the precursor concentration behaves as a Brownian motion. Two characteristic
times have been found: Λeff/βeff, which is the duration of the fission chain for a critical system,
and 1/λ, which is the typical precursor decay constant. In the short-time regime (t � Λeff/βeff),
the variance of NW

t increases linearly with time. In the long-time regime (Λeff/βeff � t � 1/λ,
the variance of NW

t is constant. The short-time and long-time approximations of the variance of
the neutron and the precursor populations were verified against numerical simulations.

8.4.2 Full system

We have then performed numerical simulations of the full system, including the coupling with
thermal-hydraulics, and we have noticed that the contribution to the variance on the neutron
population due to the coupling is small in comparison to the variance due to the Brownian term.
This finding deserves further investigation, although an analytical analysis of the full system
does not seem to be feasible. Indeed, the analysis of the covariance matrix ΣP

t , coming from
the coupling, is much more challenging than the analysis of ΣW

t , because of the non-linearity
in the neutron concentration equation. In order to simplify the system, we have neglected the
void excess reactivity Pαt , which is a reasonable approximation for PWRs. This way, we have
reduced the five-equations model into a three-equations model. Even if the non-linearity can
still not be neglected, the analysis of the reduced model is simpler.

8.4.3 Discussion

The analytical study of the stability of the 5-equations simplified model is a highly non-trivial
task. We have made several assumptions in order to simplify the system and numerical simu-
lations gave us some intuition on the behaviour of the different physical quantities involved in
the propagation of the noise induced by the Monte Carlo transport in coupled simulations. It
appears that the non-linearity, which is the major component of the coupling model, seriously
hinders the full analytical analysis of the system. For further analysis, the linearization of the
neutron equation seems necessary. An alternative approach would be to consider the moment
equations Akcasu and Williams (2004); Sjenitzer and Hoogenboom (2011b).

Our investigation has been carried out by using a Brownian motion, which is not represen-
tative of the full complexity branching processes occuring in the Monte Carlo simulation. For
further analysis, other types of noises must be considered. Also, the analysis that we have devel-
oped is valid only for small departures from the critical state. The system should be also studied
with different initial conditions.
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Conclusions

The purpose of this Ph. D. thesis was to develop a non-stationary coupling scheme between the
Monte Carlo code TRIPOLI-4 and thermal-hydraulics, so as to provide a reference tool for the
simulation of reactivity-induced transients in PWRs. This purpose includes the extensive verifi-
cation of the coupling scheme, as well as the characterization of its stability. In short, this work
aims at identifying the roadblocks to the simulation of a realistic reactor core in non-stationary
conditions with Monte Carlo neutron transport and thermal-hydraulics feedback.

The first part of the work is devoted to testing the kinetic capabilities of TRIPOLI-4 (i.e.,
time dependent without thermal-hydraulics feedback), evaluating the different existing methods
and implementing a new variance-reduction technique.

In Chapter 2, we have described the algorithms implemented in TRIPOLI-4 for kinetic cal-
culations, namely those related to the explicit handling of the precursors. We have also pre-
sented the existing population-control methods (Russian roulette and splitting and combing)
and variance-reduction techniques (forced decay and branchless collisions), which are neces-
sary for kinetic calculations. We assessed the efficiency of the different methods on an assembly
based on the TMI-1 reactor, in different configurations. Forced decay was systematically ap-
plied, while other methods were separately applied; future work may concern the impact of the
combination of different methods. We have found that combing is more efficient than the Rus-
sian roulette and splitting as a population-control method, especially when the population size
varies dramatically; the branchless collisions method has also proved to be effective in reducing
the variance.

We also described a new time-dependent population importance sampling scheme for vari-
ance reduction. For the assessment of its efficiency, the method has been tested on the TMI-1
assembly and proved to be very efficient for simulations with small time steps, where forced de-
cay fails to produce delayed neutrons with weights large enough to survive the Russian roulette.
The choice of an optimal importance ratio was also examined: as the simulation time step de-
creases, the optimal importance ratio also decreases. The figure of merit reaches an optimal
plateau, and is thus weakly dependent on the choice of the ratio. We have finally detailed an-
other contribution to extending the TRIPOLI-4 capabilities: time-dependent geometries are now
handled, which makes it possible to simulate all types of transients, such as rod extraction sce-
narios. Our implementation relies on the definition of duplicated geometries and needs to be
optimized in order to reduce the memory occupation, which currently impedes massively paral-
lel calculations.

In Chapter 3, we have numerically tested the kinetic Monte Carlo methods implemented
in TRIPOLI-4 on two realistic configurations by examining the response of both prompt and
delayed neutrons to different types of reactivity insertions. Several simulations have been per-
formed on the experimental reactor SPERT III E-core in different configurations: critical, con-
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trol rod extraction and rod drop. We have stressed the importance of taking into account precur-
sors, even within a prompt supercritical excursion. We have also demonstrated the value of our
time-dependent importance sampling scheme for observing both prompt and delayed regimes
when simulating a rod drop. Simulations were also performed on a 3x3 mini-core based on the
TMI-1 reactor, and benchmarked against the Monte Carlo code Serpent 2 with four different
reactivity insertions. Results were satisfactory and encourage further application of the new ki-
netic capabilities of TRIPOLI-4. Simulations of two of these scenarios with thermal-hydraulics
feedbacks are also presented in Chapter 6.

We have also presented our preliminary characterization of the correlations between the sim-
ulation time steps. Correlations due to fission chains have an exponential decay, and the decay
time was empirically found to be close to the fission chain average lifetime. We have verified
this hypothesis with a simple analytical model in Chapter 8. The dependency of the relative un-
certainty on the spatial discretization of the kinetic scoring mesh has been also examined. This
study stems from the observation that, within a time step, the relative uncertainty in a cell is not
proportional to its volume, as one would naively expect. In particular, we have observed that for
time steps larger than the average fission chain lifetime, the relative uncertainty on the global
integrated score is roughly the same as the relative uncertainty in a cell at pin level. In fact,
neutrons from the same fission chain are correlated; when they explore the system, they make
strongly correlated contributions to several cells of the scoring mesh. Therefore, the variance on
the global integrated score increases because of these correlations.

The second part of this work concerns the development of a multi-physics interface for
TRIPOLI-4, and more specifically the development of a coupling scheme between TRIPOLI-4
and the thermal-hydraulics sub-channel code SUBCHANFLOW.

We have detailed our implementation choices in Chapter 4, namely the multi-physics inter-
face for TRIPOLI-4 based on the development of an API combined with an external supervisor
that drives TRIPOLI-4 and an external code. We have used tools from the SALOME platform:
the ICoCo API for the coupling interface and the MEDCoupling library for data exchange be-
tween the two codes. TRIPOLI-4 computes the power distribution, which is transferred to
SUBCHANFLOW. The thermal-hydraulics code computes the updated properties of the fuel
(temperatures) and of the moderator (temperatures and densities). The temperature dependence
of the cross sections is taken into account in TRIPOLI-4 with stochastic interpolation. We have
side-stepped the problem of projecting the thermal-hydraulics fields onto the volumes of the
TRIPOLI-4 geometry by making cells of the mesh coincide with the volumes.

Two types of calculations can be performed with the supervisor: criticality calculations with
feedback and transient (i.e., dynamic) calculations. Criticality calculations with feedback are
divided into outer iterations between calls to thermal-hydraulics (for the convergence of temper-
ature and density fields) and inner iterations between calls to TRIPOLI-4 (for the convergence
of fission sources). Relaxation of the power distribution is used in order to suppress oscillations
between successive iterations. Transient calculations start from an initial source obtained with a
preliminary criticality calculation and are integrated in time steps with an Euler explicit scheme.
The criticality source (thermal-hydraulics fields and fission sources) can be stored at the end of
the criticality calculation and reused for different transient simulations.

The large computing requirements of dynamic calculations made it necessary to implement
the capability of the supervisor to run in parallel mode. In order to reduce the statistical fluctu-
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ations of the input given to the non-linear thermal-hydraulics solver, the neutron power distri-
bution is averaged over all the available parallel units and SUBCHANFLOW is run once. The
interdependency of the simulators through the thermal-hydraulics fields makes it difficult to as-
sess the uncertainty on the coupling results. Splitting up the whole simulation into independent
replicas would produce truly independent results. It would have the additional benefit of reduc-
ing the waiting times between fast and slow simulators (see Chapter 6). However, at the same
time, it would amplify the noise transferred to the thermal-hydraulics solver.

In Chapter 5, we have verified the capabilities of TRIPOLI-4 for criticality calculations
with feedback. This was achieved in the framework of a benchmark established in collabo-
ration with the Serpent and SUBCHANFLOW development teams, within the context of the
McSAFE European project. The selected configuration was the TMI-1 assembly, with a pin-
by-pin description. The resulting power, temperature and density distributions are in very good
agreement between the TRIPOLI-4/SUBCHANFLOW and the Serpent 2/SUBCHANFLOW
coupling schemes, and encourage further simulations with the new coupling scheme between
TRIPOLI-4 and SUBCHANFLOW. There are several avenues to explore in order to improve
the coupling scheme. For example, one could define the thermal-hydraulics simulation parame-
ters in view of the comparison with experimental data; such parameters include the number of
axial slices and the number of radial rings in the discretization of fuel pins (the latter point is
especially important for future burnup calculations). Also, we could refine the coupling scheme
by introducing a more realistic evaluation of the energy deposition (energy from fission, but also
from scattering and capture), possibly distinguishing between power deposition in the fuel and
the coolant. In any case, refining the thermal-hydraulics model requires the development of new
algorithms to handle continous space-dependent temperatures and densities.

In Chapter 6 we have presented transient simulations with thermal-hydraulics feedbacks.
Calculations were performed on the TMI-1 mini-core benchmark: first the system was simu-
lated at steady state to verify its stability; then we have introduced reactivity in the system to
probe the effects of the thermal-hydraulics feedbacks. Two different rod extraction scenarios
were simulated: 30 cm and 40 cm. We have benchmarked our results against the coupling be-
tween Serpent 2 and SUBCHANFLOW, and a good agreement was found. The 40 cm scenario
is very challenging because of the large fluctuations on the population size, which induce large
fluctuations in CPU times between the parallel units. Therefore, the calculation efficiency seri-
ously suffers from few rogue parallel units. This simulation pointed out the necessity to harden
the coupling scheme against population fluctuations. Also, averaging the power distribution
over packets of parallel units would allow to reduce the waiting times between simulators. In
addition to the spatial discretization choices discussed in Chapter 5, dynamic calculations raise
the question of the choice of the time discretization, and in particular of the convergence of our
Euler explicit scheme. Additionally, when the transient is initiated by a moving reactor part
(such as a control rod), the motion must be sufficiently finely discretized.

The third part of this work consists of a preliminary study for quantifying the statistical un-
certainties stemming from a dynamic calculation.

In Chapter 7, we have selected a simplified deterministic model representing the coupling
between neutron transport and thermal-hydraulics in a BWR and we have extended it to ac-
commodate a noise term, so as to conduct both numerical and analytical analysis of the noise
propagation along the coupling iterations. The deterministic model consists of five ordinary
differential equations for the neutron concentration, the precursor concentration, the fuel tem-
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perature, the void reactivity and the total reactivity. Several hypothesis have been made in order
to simplify the study. First, we have modified two input parameters in order to adapt the model
to the description of a PWR. Also, the stochastic behaviour of TRIPOLI-4 has been modeled to
a first approximation as a Brownian noise term on the neutron concentration equation. This is
not a faithful representation of Monte Carlo fluctuations, since a Brownian noise is uncorrelated
with respect to the previous time steps. For further investigation, the Brownian noise should be
replaced by a Gaussian noise with correlations between the time steps.

We have presented a preliminary analysis of the system of five stochastic differential equa-
tions in Chapter 8. As a first step, we have studied the impact of the Brownian term on the
neutron and precursor concentrations in the absence of feedback. The neutron concentration
reveals a strong mean reversion process. We have found three different regimes: times shorter
than the average duration of the fission chains, times longer than the typical precursor lifetime,
and intermediate times. The variance on the neutron concentration varies rapidly in the short-
time regime, and then varies linearly with time with a large time constant. The conclusions that
we have obtained with our analytical study were verified against numerical simulations.

The analysis of the full system is much more challenging, because of the non-linearity in
the neutron concentration equation. In order to simplify the system, we have neglected the void
excess reactivity, which is a reasonable assumption for a PWR. We have thus reduced the five-
equation model to a three-equation model. Even if the analysis of this model is simpler, an
analytical study seems hardly feasible because of the remaining non-linear term. Thus, we have
performed numerical simulations of the full system in order to characterize its behaviour. To
conclude, the analytical study of the stability of the five-equation model is difficult and requires
either a linearization of the feedback mechanism. An approach based on the moment equations
may also prove fruitful.

Perspectives

The coupling scheme between TRIPOLI-4 and thermal-hydraulics is operational and allows
to perform both stationary and non-stationary calculations with feedback, for different types
of scenarios. We have tested it on short transients on a mini-core consisting of nine fuel as-
semblies with a rather roughly discretized thermal-hydraulics feedback. These calculations are
close to the limit of what is feasible in the current state of affairs, both in terms of time and
memory requirements. As far as calculation time is concerned, increasing the number of simu-
lators is not yet an option because it would also increase the waiting times due to the thermal-
hydraulics rendez-vous points, which are already a hindrance with 1000 processors. As a short-
term workaround, a reorganization of the parallel execution scheme could be envisaged. In the
long-term, it seems necessary to perform tight population control in order to avoid large fluc-
tuations on the population size. New variance-reduction techniques could also help to achieve
this goal. Concerning the memory limitations, this issue could be dealt with by modifying the
representation of the temperature and density fields in TRIPOLI-4. Up to now, the fields are
represented in a discrete way using the volumes of the geometry as a support. Therefore, a fine
representation requires geometries consisting of a very large number of volumes (already more
than 100 000 for the mini-core). If the temperatures and densities were continuously repre-
sentable, independently of the volumes, the memory requirements would be much lower. These
modifications, both in terms of time and memory, should achieve valuable improvements and
unlock the simulation of systems of larger size.
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It should be emphasized that this thesis led to a benchmark work with another existing
stochastic scheme, with a given thermal-hydraulics solver. A simple model and coupling scheme
were chosen, the only purpose being the comparison of the two multi-physics tools. For vali-
dation purposes however, improvements to the models and the coupling scheme should be con-
sidered. Convergence studies should be performed for both TRIPOLI-4 and thermal-hydraulics
models (e.g., the spatial discretization of the resolution mesh, such as the number of axial slices).
The coarseness of the time discretization is also of paramount importance for convergence. The
time step should be carefully chosen, with an adaptive method if necessary, in order to refine
the calculation where the system is changing rapidly.
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Appendix

A.1 Useful formulas for the point kinetics

The derivation of the point-kinetics equations was detailed in Sec. 1.2.3. The system of equa-
tions, for neutrons and M groups of precursors, is the following

∂

∂t
ñ(t) =

ρ − βeff

Λeff

ñ(t) +

M∑
j=1

λ jc̃ j(t),

∂

∂t
c̃ j(t) =

β j,eff

Λeff

ñ(t) − λ jc̃ j(t).

The system can be written in matrix form as

ṗ(t) = Ap(t), (A.1.1)

with

p(t) =


ñ(t)
c̃1(t)
...

c̃M(t)

 ,

A =



(ρ − βeff)/Λeff λ1 ... λM

β1,eff/Λeff −λ1 ... 0
... ... ... ...

β j,eff/Λeff 0 −λ j 0
... ... ... ...

βM,eff/Λeff 0 ... −λM


.

For simplicity, we consider the system for one family of precursors with time constant λeff,
and we solve it by diagonalizing A. The caracteristic equation is

(ρ − βeff − Λeffω) (λeff + ω) + βeffλ = 0, (A.1.2)

which can be rewritten as

Λeffω
2 + (βeff − ρ + λΛeff)ω − ρλ = 0. (A.1.3)

Equation (A.1.3) admits real solutions if

∆ = (βeff − ρ + λΛeff)2 + 4ρλΛeff > 0. (A.1.4)
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Such condition is trivially satisfied if ρ ≥ 0 (i.e., critical or supercritical configurations). In a
subcritical configuration, the condition reads

βeff > −
( √
|ρ| −

√
λΛeff

)2
, (A.1.5)

which is also trivially true. Therefore, we shall assume that Eq. (A.1.3) always admit real
solutions. Its eigenvalues are

ω± =
ρ − βeff − λΛeff ±

√
∆

2Λeff

. (A.1.6)

It is instructive to consider the condition

λΛeff

βeff

� 1 −
ρ

βeff

, (A.1.7)

which is typically satisfied in PWRs. Equation (A.1.4) can be rewritten to make the ratio
λΛeff/βeff explicit:

∆ = β2
eff

(1 − ρ

βeff

+
λΛeff

βeff

)2

+ 4
ρ

βeff

λΛeff

βeff

 .

Therefore, to first order in λΛeff/βeff, one has

∆ = (βeff − ρ)2 + 2(βeff + ρ)λΛeff + o

(λΛeff

βeff

)2 ,
and

√
∆ = |βeff − ρ| +

(βeff + ρ)
|βeff − ρ|

λΛeff + o

(λΛeff

βeff

)2 .

There are two distinct regimes: prompt subcritical (ρ < β) and prompt supercritical (ρ > β).

For prompt subcritical (ρ < βeff), to first order in λΛeff/βeff, the eigenvalues are

ω+ = λ
ρ

βeff − ρ

ω− =
ρ − βeff

Λeff

.

For prompt supercritical (ρ > βeff), to first order in λΛeff/βeff, the eigenvalues are

ω+ =
ρ − βeff

Λeff

ω− = λ
ρ

βeff − ρ
.

We can cast these results in a unified form by defining the prompt and delayed eigenvalues

ωp =
ρ − βeff

Λeff

, (A.1.8)

ωd = λ
ρ

βeff − ρ
. (A.1.9)
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A.2 Flattop-Pu

The Flattop-Pu benchmark (OECD Nuclear Energy Agency, 1995) has a simple spherical ge-
ometry. It is made of an inner plutonium sphere with an outer natural uranium reflector, as
shown by Fig. A.1. The inner radius is R1 = 4.53 cm and the outer radius is R2 = 24.14 cm. The
description of the compositions is detailed in Table A.1.

The multiplication factor and the adjoint-weighted kinetics parameters have been obtained
with TRIPOLI-4 by running a regular power iteration calculation with 100 inactive cycles and
1000 active cycles, each with 2 × 105 neutrons. Nuclear data for this configuration are taken
from the ENDF/B-VII library. Results are displayed in Table A.2. The decay constants have also
been extracted during the power iteration and are displayed in Table A.3; the average β-weighted
decay constant λ̄ computed by TRIPOLI-4 is also provided.

PuU

R1

R2

Figure A.1 – A 2-D cross-section view of Flattop-Pu, a plutonium sphere with a natural uranium
reflector.

isotop density [1024 atoms.cm−3]

Pu239 3.6697 ×10−2

Pu240 1.8700 ×10−3

Pu241 1.1639 ×10−4

Ga69 8.8692 ×10−5

Ga71 5.8858 ×10−5

U234 2.6438 ×10−6

U235 3.4610 ×10−4

U238 4.7721 ×10−2

Table A.1 – Material compositions for the Flattop-Pu benchmark, expressed as atomic densities.
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configuration critical

keff 1.000081 ± 7.9 × 10−5

Λeff [ns] 13.330 ± 0.017
βeff [pcm] 279.3 ± 2.1
βeff,1 [pcm] 6.73 ± 0.32
βeff,2 [pcm] 58.58 ± 0.97
βeff,3 [pcm] 46.27 ± 0.88
βeff,4 [pcm] 115.0 ± 1.4
βeff,5 [pcm] 43.09 ± 0.82
βeff,6 [pcm] 9.54 ± 0.38
ρ [pcm] 8.1 ± 7.9
ρ [$] ∼ 0

Table A.2 – Multiplication factor and adjoint-weighted kinetics parameters for Flattop-Pu in two
different configurations, as computed by TRIPOLI-4 with the ENDF/B-VII nuclear data library.
Precursors are regrouped into 6 families. Error bars are not given for the reactivity expressed in
dollars because we did not measure correlations between keff and βeff.

λ1 0.01250190
λ2 0.03027633
λ3 0.1131895
λ4 0.3330504
λ5 1.323749
λ6 9.989597
λ̄ 0.105716

Table A.3 – Decay constants, in s−1, for Flattop-Pu at nominal conditions, as given by the
ENDF/B-VII nuclear data library. Precursors are regrouped into 6 families. The average β-
weighted decay constant λ̄ is also provided. Error bars are negligible (about 0.01%).

A.3 SPERT III E-core

The Special Power Excursion Reactor Test III (SPERT-III) is a small pressurized-water research
reactor. It was built in the United States in the 1960s (Heffner and Wilson, 1961; Houghtaling
et al., 1965; McCardell et al., 1969) in order to investigate transient behaviour of nuclear reac-
tors. The E-core type consists of a pressurized light-water-moderated core with 4.8%-enriched
UO2 fuel pellets arranged in a regular lattice of cylindrical pins. It contains 60 assemblies, in-
cluding 48 fuel assemblies with 25 (5x5) pin-cells, 4 assemblies with 16 (4x4) pin-cells, and 8
control rods moving pairwise. The control rods contain fuel in the lower section and a neutron
absorber (18-8 stainless steel with 1.35 weight percent of 10B) in the upper section. The full
insertion of the control rods into the core constitutes the shutdown configuration. At the center
of the core, a transient cruciform rod is made of the same neutron absorber as in the control rods
in the lower part and of 18-8 stainless steel in the upper part. In the experimental campaign that
was carried out in the 1960s, the transient rod was rapidly ejected from the core to initiate power
excursion: the lower absorber part is located outside the core during the transient (Heffner and
Wilson, 1961; Houghtaling et al., 1965; McCardell et al., 1969). The description of the compo-
sitions is provided in Table A.4.
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UOX 4.12%
[% mass.]

d=10.50 g/cm3

U234 3.522×10−4

U235 4.23083×10−2

U236 1.674×10−4

U238 8.385893×10−1

O16 1.185826×10−1

coolant
[% mass.]

d=1.00 g/cm3

H1 H2O 1.11111111×10−1

O16 8.88888889×10−1

304LSS
[% mass.]

d=7.94 g/cm3

C-NAT 1.5×10−4

CR-NAT 1.9×10−1

MN55 1×10−2

N-NAT 5×10−4

NI-NAT 1×10−1

P-NAT 2.25×10−4

SI-NAT 3.75×10−3

S-NAT 1.5×10−4

FE-NAT 6.95225×10−1

348SS
[% mass.]

d=8.00 g/cm3

C-NAT 4 × 10−4

CR-NAT 1.8 × 10−1

MN55 1 × 10−2

NI-NAT 1.1 × 10−1

P-NAT 2.25 × 10−4

SI-NAT 3.75 × 10−3

S-NAT 1.5 × 10−4

NB-NAT 4 × 10−3

TA-NAT 5 × 10−4

CO-NAT 1 × 10−3

FE-NAT 6.89975 × 10−1

348SS water
[% mass.]

d=6.21 g/cm3

H1 H2O 4.451 × 10−3

O 3.5609 × 10−2

C-NAT 3.84 × 10−4

CR-NAT 1.82389 × 10−1

MN55 4.80 × 10−4

N-NAT 8.8794 × 10−2

NI-NAT 2.16 × 10−4

P-NAT 3.600 × 10−3

SI-NAT 1.44 × 10−4

S-NAT 1.5 × 10−4

FE-NAT 6.74334 × 10−1

304SS
[% mass.]

d=7.94 g/cm3

C-NAT 4 × 10−4

CR-NAT 1.9 × 10−1

MN55 1 × 10−2

N-NAT 5 × 10−4

NI-NAT 9.25 × 10−2

P-NAT 2.25 × 10−4

SI-NAT 3.75 × 10−3

S-NAT 1.5 × 10−4

FE-NAT 7.02475 × 10−1

304SSB5
[% mass.]

7.79 g/cm3

B10 1.35 × 10−2

C-NAT 4 × 10−4

CO-NAT 1 × 10−3

CR-NAT 1.9 × 10−1

MN55 1 × 10−2

N-NAT 5 × 10−4

NI-NAT 1.35 × 10−1

P-NAT 2.25 × 10−4

SI-NAT 3.75 × 10−3

S-NAT 1.5 × 10−4

FE-NAT 6.45475 × 10−1

lead
[% mass.]

d=11.37 g/cm3

PB207 9.994 × 10−1

SB121 1 × 10−5

AS75 1 × 10−5

SN119 1 × 10−5

CU65 1.5 × 10−5

AG107 5 × 10−5

zircaloy
[1024 atoms/cm3]

FE54 5.5735 × 10−6

FE56 8.7491 × 10−5

FE57 2.0205E × 10−6

FE58 2.6890 × 10−7

CR50 3.2962 × 10−6

CR52 6.3563 × 10−5

CR53 7.2075 × 10−6

CR54 1.7941 × 10−6

NI58 2.5163 × 10−5

NI60 9.6927 × 10−6

NI61 4.2137 × 10−7

NI62 1.3432 × 10−6

NI64 3.4228 × 10−7

SN114 3.1317 × 10−6

SN115 1.6381 × 10−6

SN116 7.0006 × 10−5

SN117 3.7002 × 10−5

SN118 1.1674 × 10−4

SN119 4.1387 × 10−5

SN120 1.5702 × 10−4

SN122 2.2308 × 10−5

SN124 2.7897 × 10−5

O16 2.958 × 10−4

ZR-NAR 4.2435 × 10−2

vacuum
[1024 atoms/cm3]

HE4 1.6400×10−4

Table A.4 – Material compositions for SPERT III E-core, expressed in mass fractions (% mass.) or in
atomic densities (1024 atoms/cm3).
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A.4 The TMI-1 3x3 mini-core

The TMI-1 3x3 mini-core benchmark, defined by Ivanov et al. (2013b), is made of nine 15x15
assemblies. Each fuel assembly is made of 204 4.12%-enriched UOX with Zircaloy-4 cladding.
There are also 4 burnable poison pins with Gd2O3+UO2 fuel and Zircaloy-4 cladding, and an
instrumentation tube located in the center. Additionally, there are 16 guide tubes which are
filled with borated water, except for the central assembly, where they contain control rods made
of Ag-In-Cd and Inconel cladding. The moderator consists of borated light water. Assemblies
are surrounded by a reflector (width is 21.64 cm), made of stainless steel and borated water.
The critical boron concentration is 1493 ppm for TRIPOLI-4 model. The active fuel length is
353.06 cm, and the width of each assembly is 21.64 cm. For a critical Hot Zero Power config-
uration, the control rods are fully inserted, meaning that the insertion depth is 353.06 cm. The
imensions of the system are provided in Table A.5 and the compositions are listed in Table A.6.

element parameter dimension [cm]

fuel pins
pellet radius 0.4695
gas radius 0.4788
cladding radius 0.5461

instrumentation tube
inner radius 0.56005
outer radius 0.6261

guide tubes
inner radius 0.63245
outer radius 0.6731

control rods
radius 0.56007
cladding radius 0.61722

general
pin pitch 1.4427
assembly width 21.81
water blade thickness 0.1695
active height 353.06

Table A.5 – Dimensions for the TMI-1 3x3 mini-core benchmark (Ivanov et al., 2013b).
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UOX 4.12%
[% mass.]

d=10.283 g/cm3

U234 4.407×10−4

U235 4.275×10−2

U238 8.383×10−1

O16 1.185×10−1

waterb
[1024 atoms/cm3]

H1 H2O 4.53657×10−2

O16 2.26862×10−2

B10 1.11877×10−5

B11 4.53161×10−5

C 2.84597×10−5

MN55 1.55410×10−4

P31 6.89116×10−6

S32 4.00565×10−6

SI29 1.10492×10−4

CR52 1.64379×10−3

NI58 8.84211×10−4

N14 3.04858×10−5

FE56 4.96007×10−3

absorbant
[1024 atoms/cm3]

AG107 0.411
AG109 0.389
IN113 6.328×10−3

IN115 1.437×10−1

CD106 5.888×10−4

CD108 4.272×10−4

CD110 6.106×10−3

CD111 6.314×10−3

CD112 1.201×10−2

CD113 6.137×10−3

CD114 1.456×10−2

CD116 3.861×10−3

coolant
[1024 atoms/cm3]

H1 H2O 4.973×10−2

O16 2.487×10−2

B10 1.227×10−5

B11 4.969×10−5

watert
[1024 atoms/cm3]

H1 H2O 4.41483×10−2

O16 2.20775×10−2

B10 1.08885×10−5

B11 4.41041×10−5

C 2.84649×10−5

MN55 1.55438×10−4

P31 6.89241×10−6

S32 4.00638×10−6

SI29 1.10512×10−4

CR52 1.64409×10−3

NI58 8.84371×10−4

N14 3.04913×10−5

FE56 4.96097×10−3

BP
[% mass.]

d=10.144 g/cm3

U234 4.319×10−4

U235 3.559×10−2

U238 8.278×10−1

GD152 3.353×10−5

GD154 3.703×10−4

GD155 2.530×10−3

GD156 3.522×10−3

GD157 2.710×10−3

GD158 4.329×10−3

GD160 3.858×10−3

O16 1.188×10−1

inconel
[% mass.]

d=2.32 g/cm3

H1 7.5×10−3

C-NAT 5.52×10−2

N14 2.0×10−4

O16 4.849×10−1

NA23 6.3×10−3

MG24 9.744×10−3

MG25 1.285×10−3

MG26 1.471×10−3

AL27 2.17×10−2

SI28 1.424×10−1

SI29 7.489×10−3

SI30 5.107×10−3

S32 1.8×10−3

S33 1.465×10−5

S34 8.474×10−5

S36 4.263×10−7

K39 1.273×10−2

K40 1.638×10−6

K41 9.66×10−4

CA40 2.223×10−1

CA42 1.558×10−3

CA43 3.328×10−4

CA44 5.272×10−3

CA46 2.637×10−6

CA48 5.146×10−4

TI46 7.92×10−5

TI47 7.298×10−5

TI48 7.385×10−4

TI49 5.532×10−5

TI50 5.405×10−5

FE54 5.702×10−4

FE56 9.282×10−3

FE57 2.182×10−4

FE58 2.955×10−5

zircaloy4
[% mass.]

d=6.55 g/cm3

O16 1.25×10−3

CR50 4.174×10−5

CR52 8.37×10−4

CR53 9.674×10−5

CR54 2.453×10−5

FE54 1.186×10−4

FE56 1.93×10−3

FE57 4.537×10−5

FE58 6.143×10−6

ZR90 4.975×10−1

ZR91 1.097×10−1

ZR92 1.695×10−1

ZR94 1.755×10−1

ZR96 2.888×10−2

SN112 1.326×10−4

SN114 9.182×10−5

SN115 4.772×10−5

SN116 2.058×10−3

SN117 1.097×10−3

SN118 3.488×10−3

SN119 1.248×10−3

SN120 4.772×10−3

SN122 6.894×10−4

SN124 8.763×10−4

vacuum
[1024 atoms/cm3]

HE4 1×10−16

Table A.6 – Material compositions for the TMI-1 3x3 mini-core, expressed in mass fractions (% mass.)
or in atomic densities (1024 atoms/cm3). All coolant materials (coolant, waterb and watert) contain
1493 ppm of boron. “Coolant” refers to water inside the core, “waterb” refers to water located at the
bottom of the core, “watert” refers to water located at the top of the core and “BP” refers to burnable
poison. Absorbant is the material inside the control rods.
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A.5 Mathematical tools

A.5.1 Itô process

Definition

An Itô process (Xt)t≥0 is a stochastic process which can be expressed as

Xt = x0 +

∫ t

0
b(s, Xs)ds +

∫ t

0
σ(s, Xs)dWs, (A.5.1)

with x0 the deterministic initial condition, b called the drift coefficient and σ the diffusion coef-
ficient. W is a Wiener process (also called a Brownian motion).

Itô’s lemma

Assume Xt is an Itô process with a drift coefficient b and a diffusion coefficient σ and let f ∈
C1,2(R+ × Rq,R). Itô’s lemma states that the process ( f (t, Xt))0≤t≤T is also an Itô process and
that it satisfies (see (Revuz and Yor, 2004), Chapter IV, Theorem 3.3)

f (t, Xt) = f (0, x0) +

∫ t

0
∂s f (s, Xs)ds +

∫ t

0
∇x f (s, Xs)bsds +

∫ t

0
∇x f (s, Xs)σsdWs (A.5.2)

+
1
2

∫ t

0

q∑
k,l=1

f ′′xk ,xl
(s, Xs)[σsσ

>
s ]k,lds. (A.5.3)

Itô integral

Let Wt be a Wiener process and f a stochastic process. The following integral is also a stochastic
process and is called “Itô integral”:

I( f ) =

∫ ∞

0
f (t)dWt, (A.5.4)

for which we have the following property:

E
(
I2( f )

)
=

∫ t

0
E

(
f 2(t)

)
dt). (A.5.5)

Note: if f is a deterministic function, I( f ) is called “Wiener integral”.

A.5.2 Useful properties on matrices

Commuting matrices

Assume (At)0≤t≤T is a matrix-valued function of time and (Zt)0≤t≤T is vector-valued function of
time, continuously differentiable such that they satisfy the linear ordinary differential equation
Żt = AtZt. If At and As commute for any s and t, then the solution Zt can be represented explicitly
as

Zt = e
∫ t

0 Asds Z0, (A.5.6)

where eA is the exponential of the matrixA defined by

eA =

∞∑
k=0

Ak

k!
. (A.5.7)
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Exponential matrix

A square matrix A is always diagonalizable in C. Plus, we know that Sp(eA) = eSp(A) , 0, hence
the exponential matrix eA has only non-zeros eigenvalues, and is therefore always invertible.
Moreover, e−A is its inverse since eA e−A = eA−A = e0 = Id.

Covariance matrix of a Gaussian random vector

Assume M is a matrix and
−→
G is a Gaussian random vector of i.i.d. centered reduced variables,

i.e., ∀i,Gi ∼ N(0, 1). Then the covariance matrix Σ of the random vector M
−→
G is

Σ = E
(
((M
−→
G)i(M

−→
G) j)i j

)
= E

(
(M
−→
G)(M

−→
G)>

)
= E

(
M
−→
G
−→
G>M>

)
= ME

(
−→
G
−→
G>

)
M>.

It gives
Σ = MM>. (A.5.8)

A.5.3 Nomenclature for the analysis of the March-Leuba system

In the analysis performed in Chapters 7 and 8 and the sections below, we use the following
notations:

Ż : time derivative of Z,
> : transposed matrix,

N′t : neutron concentration,

C′t : precursor concentration,

T ′t : fuel temperature [K],

P
′α
t : void reactivity,

P′t : total reactivity,

λ : typical decay constant of precursors [s−1],

Λeff : effective mean generation time [s],

βeff : effective delayed neutron fraction,

W : Wiener process,
−→cW(Λeff) : vector with two components proportional to a power of Λeff,

cW,N(Λeff) : amplitude of the Brownian noise on Nt [s−1/2],

I2 : 2x2 identity matrix,

Zt : vector with Nt and Ct as components,

ZW
t : part of Zt due to the Brownian motion,

ZP
t : part of Zt due to the coupling with the reactivity Pt,

NW
t : part of Nt due to the Brownian motion,

NP
t : part of Nt due to the coupling with the reactivity Pt,

CW
t : part of Ct due to the Brownian motion,
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CP
t : part of Ct due to the coupling with the reactivity Pt,

τ =
Λeff

βeff

: average time scale for a neutron to be converted into a precursor [s],

r =
λΛeff

βeff

: ratio between the average time scales for a neutron to be converted into a precursor,

and conversely,

Σt : covariance matrix of Zt,

ΣP
t : covariance matrix of ZP

t ,

ΣW
t : covariance matrix of ZW

t .

A.5.4 Properties on the matrixA

Recurrence relation

It is interesting to notice that

A2 =

(
1 + r −r − r2

−1 − r r + r2

)
= −(1 + r) ×A.

Thus, the characteristic polynomial ofA is PA(λ) = λ2 + (1 + r) × λ, and the matrixA has two
eigenvalues:

Sp(A) = {0,−(1 + r)}.

Furthermore, by induction, we deduce the following relation:

∀k ≥ 1, Ak = [−(1 + r)]k−1 ×A. (A.5.9)

Exponential matrix

Using the recurrence relation Eq. (A.5.9), we develop the exponential matrix ofA:

eAs =

∞∑
k=0

Aksk

k!

= Id +

∞∑
k=1

A×
[−(1 + r) × s]k

−(1 + r) × k!

= Id +A× [
e−(1+r)×s −1
−(1 + r)

]

= Id +A× I(s),

with

I(t) =
1 − e−(1+r)t

1 + r
.

Thus, the exponential matrix can be written

eAs =

(
1 − I(s) r × I(s)

I(s) 1 − r × I(s)

)
=

 r+e−(1+r)s

1+r r × 1−e−(1+r)s

1+r
1−e−(1+r)s

1+r
1+r e−(1+r)s

1+r

 . (A.5.10)
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A.5.5 Correlation among time intervals

ZW
t satisfies the following stochastic differential equation

ZW
t = e

A
τ (t−s) ZW

s +

∫ t

s
e
A
τ (t−u) −→cW(Λeff)dWu. (A.5.11)

Therefore, we can compute the covariance matrix between two time steps s and t

Cov(ZW
t ,Z

W
s ) = Cov(e

A
τ (t−s) ZW

s ,Z
W
s ) + Cov(

∫ t

s
e
A
τ (t−u) −→cW(Λeff)dWu,ZW

s ).

Using the fact that increments of a Brownian motion between two steps s and t are independent,
we get

Cov(ZW
t ,Z

W
s ) = Cov(e

A
τ (t−s) ZW

s ,Z
W
s ).

Finally, we have
Cov(ZW

t ,Z
W
s ) = e

A
τ (t−s) ×Var(ZW

s ). (A.5.12)
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A.6 Extended analysis of the TMI-1 3x3 mini-core dynamic simu-
lations

In the following, we provide an extended analysis of the results obtained for the fuel temperature
with T4/SCF for the transient scenario D presented in Sec. 6.3.1, with the rods being extracted
by 40 cm between t = 0.3 s and t = 1.3 s. A comparison with SSS2/SCF results is also provided.

A.6.1 Time evolution of the fuel temperature

Figure A.2 shows the radial map of the increase in the fuel temperature relatively to the first
time step. Three different times are considered: t = 1.3 s (end of the rod extraction), t = 2.1 s
and t = 5 s, as well as three slices: the slice 3 is located at the bottom of the mini-core, where
the reactivity is inserted through the rod extraction, while the slices 10 and 15 are located above
the rod extraction. The time evolution of the fuel temperature is different for the three slices.
For the slice 3, the increase in the temperature is higher at the center of the mini-core, where
the rods are extracted, and reach up to 900 K. The increase is much smaller for the slice 10 (and
even smaller for the slice 15), and can be observed in the surrounding assemblies.

A.6.2 Comparison between T4/SCF and SSS2/SCF

Figure A.3 shows the difference between T4/SCF and SSS2/SCF results for the fuel tempera-
ture, averaged over all axial slices, for the slices 3 and 10. Values are given for three different
times: t = 0.1 s, t = 1.3 s and t = 5 s. The diffence is larger for t = 1.3 s, because of the
large fluctuations on the neutron population size during the power excursion. In some rods, the
difference can be quite high (up to 60 K), here again this might be due to statistical fluctuations.
Overall, we find a reasonable agreement between T4/SCF and SSS2/SCF.
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A.6. EXTENDED ANALYSIS OF THE TMI-1 3X3 MINI-CORE DYNAMIC
SIMULATIONS
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Figure A.2 – Radial map of the increase in the fuel temperature (in kelvins) obtained with
T4/SCF for the TMI-1 3x3 mini-core during transient scenario D, at three different times: t =

1.3 s, t = 2.1 s and t = 5 s, relatively to t = 0.1 s. Three slices are represented: the slice 3 is
located at the bottom of the mini-core, where the reactivity is inserted through the rod extraction,
while the slices 10 and 15 are located above the rod extraction.
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t = 0.1 s t = 1.3 s t = 2.1 s
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Figure A.3 – Difference map (in kelvins) for the fuel temperature obtained with T4/SCF and
SSS2/SCF for the TMI-1 3x3 mini-core during transient scenario D, at three different time
steps: t = 0.1 s, t = 1.3 s and t = 2.1 s. Difference values are given for the average accross all
axial slices, and for the slices 3 and 10. The highest values can be observed for t = 1.3 s, where
there are large fluctuations on the neutron population size.
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Résumé en français

Introduction

L’énergie produite dans un réacteur nucléaire provient des interactions entre les neutrons et
les noyaux lourds présents dans le combustible. L’un des principaux enjeux pour l’étude de
l’évolution d’un réacteur consiste à modéliser la propagation de ces neutrons, décrite par l’équation
de Boltzmann, tout en prenant en compte les phénomènes multiphysiques, c’est-à-dire les inter-
actions entre la neutronique, la thermohydraulique et la thermomécanique. En effet, il existe un
fort couplage entre ces différentes physiques : l’effet modérateur et l’effet Doppler dans le com-
bustible notamment ont un effet stabilisant sur la puissance neutronique. L’étude de ce système
multiphysique est particulièrement complexe en raison du grand nombre de variables, ainsi que
des dimensions du système.

Pour résoudre l’équation du transport, il existe deux types de méthodes. Le premier regroupe
les méthodes déterministes, qui résolvent l’équation numériquement en discrétisant l’espace
des phases. Le second regroupe les méthodes stochastiques, aussi appelées � méthodes Monte-
Carlo �, qui reposent sur le tirage aléatoire d’un grand nombre de trajectoires neutroniques, sur
lesquelles une moyenne et une incertitude sont déterminées. Les méthodes Monte-Carlo offrent
une résolution exacte du système, au prix de cette incertitude statistique sur le résultat. Pour la
réduire, la solution la plus naturelle consiste à augmenter la statistique, c’est-à-dire le nombre de
trajectoires simulées. Ce n’est pas toujours une solution viable car le temps de calcul augmente
plus vite que la convergence ne s’améliore.

C’est pourquoi en général les méthodes déterministes sont utilisées pour la conception et
l’opération des réacteurs commerciaux. Le Monte-Carlo est utilisé ponctuellement comme ou-
til de référence pour les calculs stationnaires, c’est-à-dire sans dépendance temporelle. En re-
vanche, les calculs non stationnaires, comme les transitoires accidentels par exemple, étaient
traités jusqu’à récemment par les codes déterministes uniquement. Pour les configurations non
stationnaires, le développement de méthodes Monte-Carlo qui prennent en compte la dépendance
en temps du système neutronique, mais aussi le couplage avec les autres physiques (méthodes
� dynamiques �), a pour but de servir de référence aux calculs déterministes. Avec l’augmenta-
tion des moyens de calcul, de telles simulations deviennent de plus en plus faisables ; cependant,
les calculs restent très longs et les couplages spécifiques.

C’est dans ce contexte que j’ai effectué mon travail de thèse. Il a consisté à mettre en
place une chaı̂ne de calcul pour la simulation couplée neutronique Monte-Carlo, avec le code
TRIPOLI-4, en conditions non stationnaires et avec prise en compte des contre-réactions ther-
mohydrauliques dans le but de servir de référence aux calculs de transitoires liés à des insertions
de réactivité sur des réacteurs de type REP (Réacteurs à Eau Pressurisée).

Ce travail est organisé en trois parties. Dans un premier temps, nous avons considéré les
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méthodes � cinétiques � dans TRIPOLI-4, c’est-à-dire avec prise en compte du temps mais sans
prise en compte des contre-réactions, en incluant une évaluation des méthodes existantes ainsi
que le développement de nouvelles méthodes. Ensuite, nous avons développé un schéma de cou-
plage entre TRIPOLI-4 et le code de thermohydraulique sous-canal SUBCHANFLOW. Enfin,
nous avons réalisé une analyse préliminaire de la propagation des incertitudes au sein du cal-
cul couplé sur un modèle simplifié. En effet, les fluctuations statistiques sont inhérentes à notre
schéma de par la nature stochastique de TRIPOLI-4. De plus, les équations de la thermohydrau-
lique étant non-linéaires, la propagation des incertitudes au long du calcul doit être étudiée afin
de caractériser la convergence du résultat.

Méthodes cinétiques pour la simulation neutronique Monte-Carlo
avec TRIPOLI-4

Le but des méthodes Monte-Carlo cinétiques est de résoudre l’équation de Boltzmann dépendante
du temps, couplée avec l’équation d’évolution des précurseurs. Le traitement explicite des
précurseurs nécessite d’utiliser des méthodes de contrôle de population et de réduction de va-
riance. Nous avons détaillé et évalué les méthodes existantes dans TRIPOLI-4 : la roulette russe
et le splitting et le combing pour le contrôle de la population, la décroissance forcée et les colli-
sions non branchantes pour la réduction de variance. Pour leur évaluation, nous avons considéré
un assemblage basé sur les spécifications du réacteur TMI-1 (Three Mile Island).

Nous avons également détaillé une nouvelle méthode de réduction de variance, basée sur un
schéma d’échantillonnage préférentiel appliqué sur les populations des neutrons et des précurseurs.
L’efficacité de cette méthode a été démontrée sur l’assemblage de TMI-1, et se montre par-
ticulièrement intéressante lorsque les pas de temps de la simulation sont petits : dans ce cas,
les neutrons retardés sont tués par la roulette russe malgré l’application de l’algorithme de
décroissance forcée des précurseurs. Nous avons examiné le choix optimal du rapport d’im-
portance entre neutrons et précurseurs selon la taille du pas de temps de la grille de simula-
tion : plus ce dernier est petit, plus le rapport d’importance doit l’être également. Le facteur de
mérite est peu dépendent du facteur d’importance autour de la valeur optimale. Nous avons enfin
détaillé une nouvelle contribution à l’extension de TRIPOLI-4 pour les simulations cinétiques :
la géométrie peut désormais varier au cours du temps, et il est ainsi possible de simuler tous
types de transitoires, comme par exemple des extractions de barres de contrôle.

Nous avons testé les méthodes cinétiques sur deux systèmes réalistes. D’abord, le réacteur
expérimental SPERT III E-core a été simulé dans différentes configurations : critique, extrac-
tion des barres de contrôle et chute des barres. Nous avons montré l’importance de la prise
en compte des précurseurs, même lors d’une excursion sur-critique prompte. Nous avons aussi
montré l’intérêt d’adapter le facteur d’importance au cours du temps, afin d’observer l’évolution
prompte et retardée lors d’une chute des barres de contrôle. Quatre scénarios ont été simulés
dans le cadre d’un travail collaboratif de vérification sur un mini-cœur basé sur le réacteur TMI-
1. Les résultats issus de TRIPOLI-4 ont été comparés avec ceux issus du code Monte-Carlo
Serpent 2, et un bon accord a été trouvé entre les deux codes. Deux de ces quatre scénarios ont
été simulés plus tard avec prise en compte des contre-réactions thermohydrauliques.

Dans une simulation cinétique, le temps d’observation est généralement plus long qu’un
temps de génération, ce qui induit des phénomènes de corrélations entre les différents pas de
temps de la grille d’encaissement. D’abord, nous avons étudié la décroissance des corrélations
avec le temps. Nous avons observé que la constante de décroissance est environ égale à la durée
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de vie moyenne des chaı̂nes de fission. Ensuite, nous avons étudié la dépendance de l’incertitude
relative à la discrétisation en temps du maillage des scores, suite à l’observation que cette incerti-
tude ne semblait pas être proportionnelle au volume de la cellule du maillage. Plus précisément,
nous avons remarqué que pour des temps de simulation longs devant la durée de vie de la chaı̂ne
de fission, l’incertitude sur le score global était du même ordre que l’incertitude sur le score à
l’échelle d’une cellule de combustible. En fait, les neutrons issus d’une même chaı̂ne de fission
sont corrélés, et lorsqu’ils explorent le système, ils déposent des contributions corrélées dans
différentes cellules. Ainsi, la variance sur le score global augmente à cause de ces corrélations.

Développement d’un couplage entre la TRIPOLI-4 et la thermohy-
draulique

Une fois les méthodes cinétiques de TRIPOLI-4 extensivement étudiées et vérifiées, nous avons
développé une interface multiphysique pour TRIPOLI-4, et plus spécifiquement un schéma
de couplage entre TRIPOLI-4 et le code de thermohydraulique sous-canal SUBCHANFLOW.
Tout d’abord, nous avons séparé la lecture du jeu de données TRIPOLI-4 de l’initialisation
des différentes classes, grâce au développement d’une interface de programmation (Applica-
tion Programming interface, API). Ensuite, un programme externe, appelé superviseur, a été
mis en place pour piloter le calcul TRIPOLI-4 en même temps qu’un autre calcul (thermohy-
draulique). Le superviseur fait appel aux outils de la plateforme SALOME : l’API ICoCo pour
l’interfaçage entre les codes et la librairie MEDCoupling pour l’échange de données entre les
codes. TRIPOLI-4 calcule la distribution de puissance, qui est transférée à SUBCHANFLOW.
Le solveur thermohydraulique calcule les nouvelles propriétés du combustible (températures) et
du modérateur (températures et densités), qui sont transférées à TRIPOLI-4.

Le schéma de couplage mis en place permet de réaliser deux types de calcul : des calculs cri-
tiques couplés et des transitoires couplés. Les calculs critiques couplés sont divisés en itérations
externes entre les appels à la thermohydraulique (pour que les champs de température et de den-
sités convergent) et itérations internes entre les appels à TRIPOLI-4 (pour que les sources de
fission convergent). Un schéma de relaxation est utilisé dans les calculs critiques couplés afin de
réduire les oscillations entre itérations successives. Les transitoires commencent avec une source
préalablement calculée avec un calcul critique couplé, et sont intégrés en temps avec un schéma
d’Euler explicite. La possibilité de sauvegarder la source (les champs thermohydrauliques et les
sources de fission) à la fin d’un calcul de criticité permet de la réutiliser pour différents transi-
toires.

Le superviseur peut être lancé en exécution parallèle, avec une organisation proche de celle
du schéma parallèle de TRIPOLI-4. L’un des processeurs, le � moniteur �, est chargé de diriger
les autres processeurs, qui réalisent le calcul TRIPOLI-4 ; il exécute aussi le superviseur ainsi
que SUBCHANFLOW. Un autre processeur, le � scoreur � est chargé de collecter les scores.
Les autres, appelés � simulateurs � sont en charge de la simulation TRIPOLI-4. Afin de réduire
les fluctuations statistiques données en entrée au solveur thermohydraulique qui est non linéaire,
la puissance neutronique est moyennée sur les différents processeurs et SUBCHANFLOW est
exécuté une fois. L’interdépendance des simulateurs via les champs de température et de densité
complique l’estimation de l’incertitude sur le résultat du couplage. Diviser la simulation en
répliques indépendantes permettrait d’obtenir des résultats indépendants, mais les fluctuations
statistiques transférées au solveur thermohydraulique serait alors amplifiées.
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Vérification du couplage entre TRIPOLI-4 et SUBCHANFLOW

Une fois le couplage mis en place, nous avons vérifié les capacités de TRIPOLI-4 à faire des
calculs critiques avec contre-réactions thermohydrauliques, au travers d’un travail de collabo-
ration entre les équipes de développement de Serpent 2 et de SUBCHANFLOW, dans le cadre
du projet européen McSAFE. La configuration retenue est l’assemblage de TMI-1, avec une
description crayon par crayon. Les distributions de puissance, température et densité obtenues
sont en très bon accord entre les schémas de couplage TRIPOLI-4/SUBCHANFLOW et Serpent
2/SUBCHANFLOW.

Des simulations de transitoires avec contre-réactions thermohydrauliques ont été ensuite
présentées. Le mini-cœur basé sur le réacteur TMI-1 a d’abord été simulé dans son état station-
naire afin de vérifier sa stabilité. Ensuite, des scénarios d’insertion de réactivité ont été présentés.
Deux scénarios d’extraction de barres ont été simulés : 30 cm and 40 cm. Les résultats du cou-
plage entre TRIPOLI-4 et SUBCHANFLOW ont été comparés avec ceux issus du schéma de
couplage entre Serpent 2 et SUBCHANFLOW, et un bon accord a été trouvé.

L’extraction des barres de 40 cm rend le système sur-critique prompt, et les fortes fluc-
tuations sur la taille de la population induisent des fluctuations sur le temps de calculs des
différents simulateurs. Le calcul est très pénalisé par quelques processeurs qui échantillonnent
des événements rares. Cette simulation montre qu’il faut renforcer le schéma de couplage afin
de le rendre moins sensible aux fluctuations sur la population. Une autre solution pourrait être de
moyenner la puissance neutronique sur moins de simulateurs afin de réduire les temps d’attente
moyen entre les appels à SUBCHANFLOW, mais alors les fluctuations statistiques transmises
au solveur thermo-hdyraulique seraient amplifiées.

Analyse préliminaire de la stabilité du schéma de couplage

Afin de réaliser une première caractérisation de la stabilité de notre schéma de couplage, nous
avons sélectionné un modèle simplifié décrivant le couplage entre la neutronique et la thermohy-
draulique dans un REB (Réacteur à Eau Bouillante). Le modèle est constitué de cinq équations
différentielles déterministes pour l’évolution temporelle de la concentration neutronique (cette
équation est non linéaire), la concentration des précurseurs, la température du combustible, la
réactivité de vide et la réactivité totale.

Nous avons fait plusieurs hypothèses pour simplifier l’étude du modèle. Tout d’abord, nous
avons modifié deux paramètres afin d’adapter le modèle à la description d’un REP. Afin d’imi-
ter le comportement de TRIPOLI-4, nous avons ajouté un terme de bruit sur l’équation des
neutrons, sous la forme d’un terme brownien, même si cette modélisation ne constitue pas
une représentation fidèle des fluctuations issues du code Monte Carlo, puisque les incréments
d’un mouvement brownien sont décorrélés des incréments précédents. Nous avons présenté une
analyse du système stochastique, en commençant par l’étude de l’impact du brownien sur les
concentrations des neutrons et des précurseurs, en l’absence de contre-réactions. Nous avons
identifié trois régimes : celui des temps petits devant la durée de vie d’une chaı̂ne de fission, ce-
lui des temps longs devant le temps de vie des précurseurs, et celui des temps intermédiaires. Les
conclusions issues de notre étude analytique ont été vérifiées à l’aide de simulation numériques.

L’analyse du système complet est compliquée par le terme non linéaire dans l’équation
décrivant l’évolution des neutrons. Afin de simplifier le système, nous avons négligé la réactivité
de vide. Ainsi, nous avons réduit le système initial à un système à trois équations. Même si l’ana-
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lyse du système résultant est plus simple, une étude analytique ne semble pas réalisable en l’état,
à cause du terme non linéaire. C’est pourquoi nous avons réalisé des simulations numériques du
système pour caractériser son comportement.

Conclusions

Finalement, le schéma de couplage entre TRIPOLI-4 et la thermohydraulique est opérationnel
et permet de réaliser des simulations stationnaires et non stationnaires avec prise en compte des
contre-réactions. Les deux types de simulations ont été vérifiés par comparaison avec un schéma
de calcul existant. Une analyse préliminaire de la stabilité du couplage a été réalisée.
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Résumé : Dans le contexte de la physique des
réacteurs, l’analyse du comportement non station-
naire de la population neutronique avec contre-
réactions dans le combustible et dans le modérateur
se rend indispensable afin de caractériser les transi-
toires opérationnels et accidentels dans les systèmes
nucléaires et d’en améliorer par conséquent la
sûreté. Pour ces configurations non stationnaires,
le développement de méthodes Monte-Carlo qui
prennent en compte la dépendance en temps du
système neutronique, mais aussi le couplage avec les
autres physiques, comme la thermohydraulique et la
thermomécanique, a pour but de servir de référence
aux calculs déterministes.
Ce travail de thèse a consisté à mettre en place une
chaı̂ne de calcul pour la simulation couplée neu-
tronique Monte-Carlo, avec le code TRIPOLI-4, en
conditions non stationnaires et avec prise en compte

des contre-réactions thermohydrauliques.
Nous avons d’abord considéré les méthodes
cinétiques dans TRIPOLI-4, c’est-à-dire avec prise
en compte du temps mais sans prise en compte
des contre-réactions, en incluant une évaluation des
méthodes existantes ainsi que le développement de
nouvelles méthodes. Ensuite, nous avons développé
un schéma de couplage entre TRIPOLI-4 et le code
de thermohydraulique sous-canal SUBCHANFLOW.
Enfin, nous avons réalisé une analyse préliminaire
de la propagation des incertitudes au sein du calcul
couplé sur un modèle simplifié. En effet, les fluctua-
tions statistiques sont inhérentes à notre schéma de
par la nature stochastique de TRIPOLI-4. De plus,
les équations de la thermohydraulique étant non-
linéaires, la propagation des incertitudes au long du
calcul doit être étudiée afin de caractériser la conver-
gence du résultat.

Title : Coupling between Monte Carlo neutron transport and thermal-hydraulics for the simulation of transients
due to reactivity insertions

Keywords : Neutron transport, Monte Carlo simulation, thermal-hydraulics, multi-physics, transients, dynamic

Abstract : One of the main issues for the study of
a reactor behaviour is to model the propagation of the
neutrons, described by the Boltzmann transport equa-
tion, in the presence of multi-physics phenomena,
such as the coupling between neutron transport,
thermal-hydraulics and thermomecanics. Thanks to
the growing computer power, it is now feasible to apply
Monte Carlo methods to the solution of non-stationary
transport problems in reactor physics, which play an
instrumental role in producing reference numerical so-
lutions for the analysis of transients occurring during
normal and accidental behaviour.
The goal of this Ph. D. thesis is to develop, verify
and test a coupling scheme between the Monte Carlo
code TRIPOLI-4 and thermal-hydraulics, so as to pro-
vide a reference tool for the simulation of reactivity-

induced transients in PWRs.
We have first tested the kinetic capabilities of
TRIPOLI-4 (i.e., time dependent without thermal-
hydraulics feedback), evaluating the different existing
methods and implementing new techniques. Then, we
have developed a multi-physics interface for TRIPOLI-
4, and more specifically a coupling scheme between
TRIPOLI-4 and the thermal-hydraulics sub-channel
code SUBCHANFLOW. Finally, we have performed
a preliminary analysis of the stability of the coupling
scheme. Indeed, due to the stochastic nature of the
outputs produced by TRIPOLI-4, uncertainties are in-
herent to our coupling scheme and propagate along
the coupling iterations. Moreover, thermal-hydraulics
equations are non linear, so the prediction of the pro-
pagation of the uncertainties is not straightforward.
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