E. Becquerel, Mémoire sur les effets électriques produits sous l'influence des rayons solaires, Comptes Rendus des Séances Hebd, vol.9, pp.561-567, 1839.

W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. Appl. Phys, vol.32, issue.3, pp.510-519, 1961.

M. Wolf, Limitations and Possibilities for Improvement of Photovoltaic Solar Energy Converters, Proc. IRE, vol.18, pp.1246-1263, 1960.

R. Scheer and H. W. Schock, Chalcogenide photovoltaics: Physics, Technologies, and Thin Film Devices, 2011.

M. A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi et al., Solar cell efficiency tables (version 50), Prog. Photovoltaics Res. Appl, vol.25, pp.668-676, 2017.

M. A. Green and S. P. Bremner, Energy conversion approaches and materials for high-efficiency photovoltaics, Nat. Mater, vol.16, issue.1, pp.23-34, 2016.

M. A. Green, Radiative efficiency of state-of-the-art photovoltaic cells, Prog. Photovolt Res. Appl, vol.20, pp.472-476, 2011.

M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda et al., Effects of Internal Luminescence and Internal Optics on Voc and Jsc of III-V Solar Cells, IEEE J. Photovoltaics, vol.3, issue.4, pp.1437-1442, 2013.

O. D. Miller, E. Yablonovitch, and S. R. Kurtz, Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit, IEEE J. Photovoltaics, vol.2, issue.3, pp.303-311, 2012.

R. T. Ross, Some Thermodynamics of Photochemical Systems, J. Chem. Phys, vol.46, issue.12, pp.4590-4593, 1967.

A. Richter, S. W. Glunz, A. Richter, M. Hermle, and S. W. Glunz, Crystalline Silicon Solar Cells Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells, IEEE J. Photovoltaics, vol.3, issue.4, pp.1184-1191, 2013.

I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures, Appl. Phys. Lett, vol.62, issue.2, pp.131-133, 1993.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, The thermodynamic limits of light concentrators, Sol. Energy Mater, vol.21, issue.2-3, pp.99-111, 1990.

R. B. Wehrspohn, U. Rau, and A. Gombert, Photon Management in Solar Cells, 2015.

V. Ganapati, M. A. Steiner, and E. Yablonovitch, The voltage boost enabled by luminescence extraction in solar cells, IEEE J. Photovoltaics, vol.6, issue.4, pp.801-809, 2016.

E. D. Kosten, B. K. Newman, J. V. Lloyd, A. Polman, and H. A. Atwater, Limiting light escape angle in silicon photovoltaics: Ideal and realistic cells, IEEE J. Photovoltaics, vol.5, issue.1, pp.61-69, 2015.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, Highly efficient GaAs solar cells by limiting light emission angle, Light Sci. Appl, vol.2, issue.e45, pp.1-6, 2013.

Y. Takeda and T. Motohiro, Intermediate-band-assisted hot-carrier solar cells using indirectbandgap absorbers, Prog. Photovolt Res. Appl, vol.21, pp.1308-1318, 2013.

F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher et al., Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficienc, Prog. Photovolt Res. Appl, vol.22, pp.277-282, 2014.

A. Luque and A. Martí, Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels, Phys. Rev. Lett, vol.78, issue.26, pp.5014-5017, 1997.

A. Luque and A. Martí, The intermediate band solar cell: Progress toward the realization of an attractive concept, Adv. Mater, vol.22, issue.2, pp.160-174, 2010.

Y. Okada, T. Morioka, K. Yoshida, R. Oshima, Y. Shoji et al., Increase in photocurrent by optical transitions via intermediate quantum states in direct-doped InAs/GaNAs straincompensated quantum dot solar cell, J. Appl. Phys, vol.109, issue.2, 2011.

E. López, A. Datas, I. Ramiro, P. G. Linares, E. Antolín et al., Demonstration of the operation principles of intermediate band solar cells at room temperature, Sol. Energy Mater. Sol. Cells, vol.149, pp.15-18, 2016.

T. Trupke, M. A. Green, and P. Würfel, Improving solar cell efficiencies by up-conversion of subband-gap light, J. Appl. Phys, vol.92, issue.7, pp.4117-4122, 2002.

S. Deb and H. Saha, Secondary ionisation and its possible bearing on the performance of a solar cell, Solid State Electron, vol.15, issue.12, pp.1389-1391, 1972.

A. J. Nozik, Multiple exciton generation in semiconductor quantum dots, Chem. Phys. Lett, vol.457, pp.3-11, 2008.

M. C. Beard, J. M. Luther, O. E. Semonin, and A. J. Nozik, Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors, Acc. Chem. Res, vol.46, issue.6, pp.1252-1260, 2013.

N. J. Davis, M. L. Böhm, M. Tabachnyk, F. Wisnivesky-rocca-rivarola, T. C. Jellicoe et al., Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%, Nat. Commun, vol.6, issue.8259, pp.1-7, 2015.

Y. Takeda and T. Motohiro, Requisites to realize high conversion efficiency of solar cells utilizing carrier multiplication, Sol. Energy Mater. Sol. Cells, vol.94, issue.8, pp.1399-1405, 2010.

T. Trupke, M. A. Green, and P. Würfel, Improving solar cell efficiencies by down-conversion of highenergy photons, J. Appl. Phys, vol.92, issue.3, pp.1668-1674, 2002.

R. T. Ross and A. J. Nozik, Efficiency of hot-carrier solar energy converters, J. Appl. Phys, vol.53, issue.5, pp.3813-3818, 1982.

P. Würfel, Solar energy conversion with hot electrons from impact ionisation, Sol. Energy Mater. Sol. Cells, vol.46, issue.1, pp.43-52, 1997.

A. Luque and A. Martí, Electron-phonon energy transfer in hot-carrier solar cells, Sol. Energy Mater. Sol. Cells, vol.94, issue.2, pp.287-296, 2010.

G. Conibeer, S. Shrestha, S. Huang, R. Patterson, H. Xia et al., Hot carrier solar cell absorber prerequisites and candidate material systems, Sol. Energy Mater. Sol. Cells, vol.135, pp.124-129, 2015.

G. Conibeer, N. Ekins-daukes, J. F. Guillemoles, D. Konig, E. C. Cho et al., Progress on hot carrier cells, Sol. Energy Mater. Sol. Cells, vol.93, pp.713-719, 2009.

Y. Takeda and T. Motohiro, Highly efficient solar cells using hot carriers generated by two-step excitation, Sol. Energy Mater. Sol. Cells, vol.95, pp.2638-2644, 2011.

Y. Takeda and T. Motohiro, Hot-Carrier Extraction from Intermediate-Band Absorbers through Quantum-Well Energy-Selective Contacts, Jpn. J. Appl. Phys, vol.51, issue.10ND03, pp.1-6, 2012.

S. Saeed, E. M. Jong, K. Dohnalova, and T. Gregorkiewicz, Efficient optical extraction of hotcarrier energy, Nat. Commun, vol.5, issue.4665, pp.1-5, 2014.

E. M. Jong, S. Saeed, W. C. Sinke, and T. Gregorkiewicz, Generation of hot carriers for photon management in future photovoltaics, Sol. Energy Mater. Sol. Cells, vol.135, pp.67-71, 2015.

G. Güttler and H. J. Queisser, Impurity Photovoltaic Effect in Silicon, Energy Convers, vol.10, pp.51-55, 1970.

K. W. Barnham and G. Duggan, A new approach to high-efficiency multi-band-gap solar cells, J. Appl. Phys, vol.67, issue.7, pp.3490-3493, 1990.

M. A. Green, Multiple band and impurity photovoltaic solar cells: General theory and comparison to tandem cells, Prog. Photovoltaics Res. Appl, vol.9, issue.2, pp.137-144, 2001.

A. S. Brown and M. A. Green, Intermediate band solar cell with many bands: Ideal performance, J. Appl. Phys, vol.94, issue.9, pp.6150-6158, 2003.

M. Yoshida, N. J. Ekins-daukes, D. J. Farrell, and C. C. Phillips, Photon ratchet intermediate band solar cells, Appl. Phys. Lett, vol.100, issue.26, 2012.

O. J. Curtin, M. Yoshida, A. Pusch, N. P. Hylton, N. J. Ekins-daukes et al., Quantum cascade photon ratchets for intermediate-band solar cells, IEEE J. Photovoltaics, vol.6, issue.3, pp.673-678, 2016.

Y. Okada, S. Yagi, and R. Oshima, High-efficiency solar cells based on quantum dot superlattice, OYO BUTURI, vol.79, issue.3, p.206, 2010.

M. J. Sher, C. B. Simmons, J. J. Krich, A. J. Akey, M. T. Winkler et al., Picosecond carrier recombination dynamics in chalcogen-hyperdoped silicon, Appl. Phys. Lett, vol.105, issue.5, 2014.

J. T. Sullivan, C. B. Simmons, T. Buonassisi, and J. J. Krich, Targeted Search for Effective Intermediate Band Solar Cell Materials, IEEE J. Photovoltaics, vol.5, issue.1, pp.212-218, 2015.

M. Yoshida, H. Amrania, D. J. Farrell, B. Browne, E. Yoxall et al., Progress toward realizing an intermediate band solar cell-Sequential absorption of photons in a quantum well solar cell, IEEE J. Photovoltaics, vol.4, issue.2, pp.634-638, 2014.

Y. Okada, N. J. Ekins-daukes, T. Kita, R. Tamaki, M. Yoshida et al., Intermediate band solar cells: Recent progress and future directions, Appl. Phys. Rev, vol.2, issue.21302, pp.1-48, 2015.

W. Shan, W. Walukiewicz, J. W. Ager, I. , E. E. Haller et al., Band Anticrossing in GaInNAs Alloys, Phys. Rev. Lett, vol.82, issue.6, pp.1221-1224, 1999.

J. Wu, W. Shan, and W. Walukiewicz, Band anticrossing in highly mismatched III -V semiconductor alloys, Semicond. Sci. Technol, vol.17, pp.860-869, 2002.

N. López, K. M. Yu, T. Tanaka, and W. Walukiewicz, Multicolor Electroluminescence from Intermediate Band Solar Cell Structures, Adv. Energy Mater, vol.6, issue.1501820, pp.1-5, 2015.

N. Ahsan, N. Miyashita, K. M. Yu, W. Walukiewicz, and Y. Okada, Multiband modification of III-V dilute nitrides for IBSC application, Proc. SPIE, vol.10099, p.8, 2017.

I. Ramiro, A. Mart?, E. Antol?n, and A. Luque, Review of experimental results related to the operation of intermediate band solar cells, IEEE J. Photovoltaics, vol.4, issue.2, pp.736-748, 2014.

P. G. Linares, A. Marti, E. Antolin, C. D. Farmer, I. Ramiro et al., Voltage recovery in intermediate band solar cells, Sol. Energy Mater. Sol. Cells, vol.98, pp.240-244, 2012.

A. Luque, A. Martí, and L. Cuadra, Thermodynamic consistency of sub-bandgap absorbing solar cell proposals, IEEE Trans. Electron Devices, vol.48, issue.9, pp.2118-2124, 2001.

R. Tamaki, Y. Shoji, T. Sugaya, and Y. Okada, Universal linear relationship on two-step photon absorption processes in In(Ga)As quantum dot solar cells, Photovoltaic Specialists Conference (PVSC), pp.1-4, 2016.

F. K. Tutu, P. Lam, J. Wu, N. Miyashita, Y. Okada et al., InAs/GaAs quantum dot solar cell with an AlAs cap layer, Appl. Phys. Lett, vol.102, issue.163907, pp.1-4, 2013.

A. Varghese, M. Yakimov, V. Tokranov, V. Mitin, K. Sablon et al., Complete voltage recovery in quantum dot solar cells due to suppression of electron capture, Nanoscale, vol.8, pp.7248-7256, 2016.

X. Yang, K. Wang, Y. Gu, H. Ni, X. Wang et al., Improved efficiency of InAs/GaAs quantum dots solar cells by Si-doping, Sol. Energy Mater. Sol. Cells, vol.113, pp.144-147, 2013.

P. Lam, S. Hatch, J. Wu, M. Tang, V. G. Dorogan et al., Voltage recovery in charged InAs/GaAs quantum dot solar cells, Nano Energy, vol.6, pp.159-166, 2014.

S. J. Polly, D. V. Forbes, K. Driscoll, S. Hellstrom, and S. M. Hubbard, Delta-doping effects on quantum-dot solar cells, IEEE J. Photovoltaics, vol.4, issue.4, pp.1079-1085, 2014.

F. Cappelluti, M. Gioannini, and A. Khalili, Impact of doping on InAs/GaAs quantum-dot solar cells: A numerical study on photovoltaic and photoluminescence behavior, Sol. Energy Mater. Sol. Cells, vol.157, pp.209-220, 2016.

M. Kaniewska, O. Engström, A. Barcz, and M. Pacholak-cybulska, Electrical activity of deep levels in the presence of InAs/GaAs quantum dots, Mater. Sci. Semicond. Process, vol.9, pp.36-40, 2006.

M. Kaniewska, O. Engström, A. Barcz, and M. Pacholak-cybulska, Deep levels induced by InAs/GaAs quantum dots, Mater. Sci. Eng. C, vol.26, pp.871-875, 2006.

J. S. Kim, E. K. Kim, S. J. Lee, and S. K. Noh, Study on defects and confined energy level of InAs/GaAs quantum dot system, Phys. B Condens. Matter, pp.877-880, 2006.

C. J. Park, H. B. Kim, Y. H. Lee, D. Y. Kim, T. W. Kang et al., Deep level defects of InAs quantum dots grown on GaAs by molecular beam epitaxy, J. Cryst. Growth, pp.1057-1061, 2001.

S. V. Kondratenko, O. V. Vakulenko, Y. I. Mazur, V. G. Dorogan, E. Marega et al., Deep level centers and their role in photoconductivity transients of InGaAs/GaAs quantum dot chains, J. Appl. Phys, vol.116, pp.1-11, 2014.

S. Kondratenko, S. A. Iliash, O. Vakulenko, Y. I. Mazur, M. Benamara et al., Photoconductivity Relaxation Mechanisms of InGaAs / GaAs Quantum Dot Chain Structures, Nanoscale Res. Lett, vol.12, issue.183, pp.1-7, 2017.

H. Fujii, K. Toprasertpong, K. Watanabe, M. Sugiyama, and Y. Nakano, Evaluation of Carrier Collection Efficiency in Multiple Quantum Well Solar Cells, IEEE J. Photovoltaics, vol.4, issue.1, pp.237-243, 2014.

H. Sodabanlu, S. Ma, K. Watanabe, M. Sugiyama, and Y. Nakano, Impact of strain accumulation on InGaAs/GaAsP multiple-quantum-well solar cells: direct correlation between in situ strain measurement and cell performances, Jpn. J. Appl. Phys, vol.51, pp.1-4, 2012.

A. Takahashi, T. Ueda, Y. Bessho, Y. Harada, T. Kita et al., One-dimensional miniband formation in closely stacked InAs/GaAs quantum dots, Phys. Rev. B -Condens. Matter Mater. Phys, vol.87, issue.23, pp.1-6, 2013.

M. Sugiyama, H. Fujii, T. Katoh, K. Toprasertpong, H. Sodabanlu et al., Quantum wire-on-well (WoW) cell with long carrier lifetime for efficient carrier transport, Prog. Photovoltaics Res. Appl, vol.24, issue.12, pp.1606-1614, 2016.

A. Luque and A. Martí, A metallic intermediate band high efficiency solar cell, Prog. Photovoltaics Res. Appl, vol.9, issue.2, pp.73-86, 2001.

R. Strandberg and T. W. Reenaas, Photofilling of intermediate bands, J. Appl. Phys, vol.105, issue.124512, pp.1-8, 2009.

A. Goetzberger, Optical confinement in thin Si solar cells by diffuse back reflectors, Proc. 15th IEEE Photovolt. Spec. Conf, pp.867-870, 1981.

E. Yablonovitch, Statistical ray optics, J. Opt. Soc. Am, vol.72, pp.899-907, 1982.

M. A. Green, Lambertian light trapping in textured solar cells and light-emitting diodes: Analytical solutions, Prog. Photovoltaics Res. Appl, vol.10, issue.4, pp.235-241, 2002.

Z. Yu, A. Raman, and S. Fan, Fundamental limit of nanophotonic light trapping in solar cells, Proc. Natl. Acad. Sci, vol.107, pp.17491-17496, 2010.

S. Collin, Nanostructure arrays in free-space: optical properties and applications, Rep. Prog. Phys, vol.77, issue.126402, pp.1-33, 2014.

N. Vandamme, Nanostructured ultrathin GaAs solar cells, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01249595

I. Massiot, Design and fabrication of nanostructures for light-trapping in ultra-thin solar cells, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00986262

C. Colin, Metallic nanostructures for light-trapping in ultra-thin GaAs and CIGS solar cells, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00998396

P. Spinelli, V. E. Ferry, J. Van-de-groep, M. Van-lare, M. A. Verschuuren et al., Plasmonic light trapping in thin-film Si solar cells, J. Opt, vol.14, issue.24002, pp.1-11, 2012.

T. K. Chong, J. Wilson, S. Mokkapati, and K. R. Catchpole, Optimal wavelength scale diffraction gratings for light trapping in solar cells, J. Opt, vol.14, issue.24012, pp.1-9, 2012.

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu et al., Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays, Adv. Energy Mater, vol.2, issue.10, pp.1254-1260, 2012.

S. Sandhu, Z. Yu, and S. Fan, Detailed balance analysis of nanophotonic solar cells, Opt. Express, vol.21, issue.1, pp.1209-1217, 2013.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. Atwater, Enhancement using whispering gallery modes of dielectric nanospheres, IEEE J. Photovoltaics, vol.2, issue.2, pp.123-128, 2012.

H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater, vol.9, pp.205-213, 2010.

M. Van-lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells, Appl. Phys. Lett, vol.101, issue.22, 2012.

M. L. Brongersma, Y. Cui, and S. Fan, Light management for photovoltaics using high-index nanostructures, Nat. Mater, vol.13, issue.5, pp.451-60, 2014.

S. Collin, J. Goffard, A. Cattoni, C. Colin, C. Sauvan et al., Multi-resonant light trapping: New paradigm, new limits, IEEE 42nd Photovolt. Spec. Conf. PVSC 2015, pp.1-3, 2015.

D. M. Callahan, J. N. Munday, and H. A. Atwater, Solar cell light trapping beyond the ray optic limit, Nano Lett, vol.12, issue.1, pp.214-218, 2012.

E. A. Schiff, Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals, J. Appl. Phys, vol.110, issue.10, 2011.

Z. Yu, A. Raman, and S. Fan, Thermodynamic upper bound on broadband light coupling with photonic structures, Phys. Rev. Lett, vol.109, issue.17, pp.1-5, 2012.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître et al., Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers, ACS Photonics, vol.1, issue.9, pp.878-884, 2014.

S. Collin, F. Pardo, N. Bardou, A. Lemaître, S. Averin et al., Harvesting light at the nanoscale by GaAs-gold nanowire arrays, Opt. Express, vol.19, issue.18, pp.17293-17297, 2011.

K. Tanabe, K. Watanabe, and Y. Arakawa, Flexible thin-film InAs/GaAs quantum dot solar cells, Appl. Phys. Lett, vol.100, pp.1-4, 2012.

M. F. Bennett, Z. S. Bittner, D. Forbes, S. R. Tatavarti, S. P. Ahrenkiel et al., Epitaxial lift-off of quantum dot enhanced GaAs single junction solar cells, Appl. Phys. Lett, vol.103, issue.213902, pp.1-4, 2013.

B. Behaghel, P. Rale, Y. Shoji, R. Tamaki, N. Vandamme et al., Strong absorption exaltation in ultrathin QDs and MQWs for intermediate band solar cells, Proceedings of the 6th World Conference on Photovoltaic Energy Conversion (Kyoto), 2014.

T. Sogabe, Y. Shoji, P. Mulder, J. Schermer, E. Tamayo et al., Enhancement of current collection in epitaxial lift-off InAs/GaAs quantum dot thin film solar cell and concentrated photovoltaic study, IEEE 40th Photovolt. Spec. Conf. PVSC 2014, pp.3485-3487, 2014.

D. C. Johnson, I. Ballard, K. W. Barnham, D. B. Bishnell, J. P. Connolly et al., Advances in Bragg stack quantum well solar cells, Sol. Energy Mater. Sol. Cells, vol.87, issue.1-4, pp.169-179, 2005.

C. O. Mcpheeters, C. J. Hill, S. H. Lim, D. Derkacs, D. Z. Ting et al., Improved performance of In(Ga)As/GaAs quantum dot solar cells via light scattering by nanoparticles, J. Appl. Phys, vol.106, issue.56101, pp.1-3, 2009.

X. H. Li, P. C. Li, D. Z. Hu, D. M. Schaadt, and E. T. Yu, Light trapping in thin-film solar cells via scattering by nanostructured antireflection coatings, J. Appl. Phys, vol.114, issue.44310, pp.1-7, 2013.

S. Turner, S. Mokkapati, G. Jolley, L. Fu, H. H. Tan et al., Periodic dielectric structures for light-trapping in InGaAs/GaAs quantum well solar cells, Opt. Express, vol.21, issue.S3, pp.324-335, 2013.

K. Watanabe, B. Kim, T. Inoue, H. Sodabanlu, M. Sugiyama et al., Thin-film InGaAs/GaAsP MQWs solar cell with backside nanoimprinted pattern for light trapping, IEEE J. Photovoltaics, vol.4, issue.4, pp.1086-1090, 2014.

C. O. Mcpheeters, D. Hu, D. M. Schaadt, and E. T. Yu, Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells, J. Opt, vol.14, issue.24007, pp.1-11, 2012.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. Yu et al., Nanoparticle-induced light scattering for improved performance of quantum-well solar cells, Appl. Phys. Lett, vol.93, issue.9, pp.10-13, 2008.

B. L. Smith, M. A. Slocum, Z. S. Bittner, Y. Dai, G. T. Nelson et al., Inverted growth evaluation for epitaxial lift off (ELO) quantum dot solar cell and enhanced absorption by back surface texturing, 2016 IEEE 43rd Photovoltaic Specialists Conference, pp.1276-1281, 2016.

K. Watanabe, T. Inoue, K. Toprasertpong, A. Delamarre, H. Sodabanlu et al., Optical analysis of the photon recycling effect in InGaAs / GaAsP multiple quantum well solar cell with light trapping structure, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp.1268-1272, 2016.

M. J. Mendes, A. Luque, I. Tobías, and A. Martí, Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells, Appl. Phys. Lett, vol.95, issue.7, pp.10-13, 2009.

J. Wu, S. C. Mangham, V. R. Reddy, M. O. Manasreh, and B. D. Weaver, Surface plasmon enhanced intermediate band based quantum dots solar cell, Sol. Energy Mater. Sol. Cells, vol.102, pp.44-49, 2012.

S. Foroutan and H. Baghban, Theory of plasmonic quantum-dot-based intermediate band solar cells, Appl. Opt, vol.55, issue.13, p.3405, 2016.

F. Cappelluti, M. Gioannini, G. Ghione, and A. Khalili, Numerical study of thin-film quantum-dot solar cells combining selective doping and light-trapping approaches, Conf. Rec. IEEE Photovolt. Spec. Conf, pp.1282-1286, 2016.

R. S. Ohl, Light-sensitive electric device, 1946.

S. Ma, H. Sodabanlu, K. Watanabe, M. Sugiyama, and Y. Nakano, Strain-compensation measurement and simulation of InGaAs/GaAsP multiple quantum wells by metal organic vapor phase epitaxy using wafer-curvature, J. Appl. Phys, vol.110, issue.113501, pp.1-5, 2011.

M. Sugiyama, Y. Wang, H. Fujii, H. Sodabanlu, K. Watanabe et al., A superlattice solar cell for enhanced current output and minimized drop in open-circuit voltage under sunlight concentration, J. Phys. D. Appl. Phys, vol.46, issue.24001, pp.1-11, 2013.

D. B. Bushnell, N. J. Ekins-daukes, K. W. Barnham, J. P. Connolly, J. S. Roberts et al., Short-circuit current enhancement in Bragg stack multi-quantum-well solar cells for multi-junction space cell applications, Sol. Energy Mater. Sol. Cells, vol.75, issue.1-2, pp.299-305, 2003.

D. C. Johnson, I. M. Ballard, K. W. Barnham, J. P. Connolly, M. Mazzer et al., Observation of photon recycling in strain-balanced quantum well solar cells, Appl. Phys. Lett, vol.90, pp.10-13, 2007.

G. C. Desalvo, W. F. Tseng, and C. James, Etch rates and selectivities of citric acid/Hydrogen peroxide on GaAs , Al0.3Ga0.7As , In0.2Ga0.8As , In0.53Ga0.47As , In0.52Al0.48As , and InP, J. Electrochem. Soc, vol.139, issue.3, pp.831-835, 1992.

C. Carter-coman, R. Bicknell-tassius, R. G. Benz, A. S. Brown, and N. M. Jokerst, Analysis of GaAs substrate removal etching with citric acid:H202 and NH4OH:H202 for application to compliant substrates, J. Electrochem. Soc, vol.144, issue.2, pp.29-31, 1997.

A. R. Clawson, Guide to references on III-V semiconductor chemical etching, Mater. Sci. Eng, vol.31, pp.1-438, 2001.

K. Tanabe, M. Nomura, D. Guimard, and Y. Arakawa, Room temperature continuous wave operation of InAs / GaAs quantum dot photonic crystal nanocavity laser on silicon substrate, vol.17, pp.7036-7042, 2009.

X. Y. Lee, .. K. Verma, C. Q. Wu, M. Goertemiller, E. Yablonovitch et al., Thin film GaAs solar cells on glass substrates by epitaxial liftoff, Conf. Rec. Twenty Fifth IEEE Photovolt. Spec. Conf. -1996, pp.53-55, 1996.

J. J. Schermer, P. Mulder, G. J. Bauhuis, M. M. Voncken, J. Van-deelen et al., Epitaxial Lift-Off for large area thin film III/V devices, Phys. Status Solidi Appl. Mater. Sci, vol.202, issue.4, pp.501-508, 2005.

C. Cheng, K. Shiu, N. Li, S. Han, L. Shi et al., Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics, Nat. Commun, vol.4, p.1577, 2013.

J. Adams, V. Elarde, A. Hains, C. Stender, F. Tuminello et al., Demonstration of multiple substrate reuses for inverted metamorphic solar cells, IEEE J. Photovoltaics, vol.3, issue.2, pp.899-903, 2013.

N. Miyashita, B. Behaghel, J. Guillemoles, and Y. Okada, Enhancement of Photocurrent in Epitaxial Lift-Off Thin Film GaInNAsSb Solar Cells By The Light Confinement Structure, p.26, 2016.

A. Cattoni, J. Chen, D. Decanini, J. Shi, and A. Haghiri-gosnet, Soft UV Nanoimprint Lithography: A Versatile Tool for Nanostructuration at the 20nm Scale, Recent Advances in Nanofabrication Techniques and Applications, 2011.

P. Spinelli, M. A. Verschuuren, and A. Polman, Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators, Nat. Commun, vol.3, p.692, 2012.

Í. Ramiro, E. Antol?n, M. J. Steer, P. G. Linares, E. Hernández et al., InAs / AlGaAs quantum dot intermediate band solar cells with enlarged sub-bandgaps, Photovoltaic Specialists Conference (PVSC), pp.652-656, 2012.

H. M. Ji, B. Liang, P. J. Simmonds, B. C. Juang, T. Yang et al., Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence, Appl. Phys. Lett, vol.106, issue.103104, pp.1-5, 2015.

A. Lemaître, G. Patriarche, and F. Glas, Composition profiling of InAs/GaAs quantum dots, Appl. Phys. Lett, vol.85, issue.17, pp.3717-3719, 2004.

M. A. Migliorato, A. G. Cullis, M. Fearn, and J. H. Jefferson, Atomistic simulation of strain relaxation in InxGa1-xAs/GaAs quantum dots with nonuniform composition, Phys. Rev. B, vol.65, issue.115316, pp.1-5, 2002.

K. Yamanaka, S. Naritsuka, K. Kanamoto, M. Mihara, and M. Ishii, Electron traps in AlGaAs grown by molecular-beam epitaxy, J. Appl. Phys, vol.61, issue.11, pp.5062-5069, 1987.

P. M. Mooney, Deep donor levels (DX centers) in III-V semiconductors, J. Appl. Phys, vol.67, issue.3, pp.1-26, 1990.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-mohan, Band parameters for III-V compound semiconductors and their alloys, J. Appl. Phys, vol.89, issue.11, pp.5815-5875, 2001.

S. Heckelmann, D. Lackner, C. Karcher, F. Dimroth, and A. W. Bett, Investigations on AlGaAs Solar Cells Grown by MOVPE, IEEE J. Photovoltaics, vol.5, issue.1, pp.446-453, 2015.

D. M. Tex, K. Akahane, and Y. Kanemitsu, Intrinsic Trade-off between Up-Conversion and Trapping Rates in InAs Quantum Dots for Intermediate-Band Solar Cells, Phys. Rev. Appl, vol.6, issue.4, pp.1-10, 2016.

A. Pusch, M. Yoshida, N. P. Hylton, A. Mellor, A. Vaquero-steiner et al., The Purpose of a Photon Ratchet in Intermediate Band Solar Cells, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp.9-12, 2016.

J. Wu, B. Passmore, and M. O. Manasreh, The impact of quantum dot filling on dual-band optical transitions via intermediate quantum states, J. Appl. Phys, vol.118, issue.84501, pp.1-6, 2015.

K. S. Lee, D. U. Lee, E. K. Kim, and W. J. Choi, Effect of space layer doping on photoelectric conversion efficiency of InAs/GaAs quantum dot solar cells, Appl. Phys. Lett, vol.107, issue.203503, pp.1-6, 2015.

S. Naito, K. Yoshida, N. Miyashita, R. Tamaki, T. Hoshii et al., Effect of Si doping and sunlight concentration on the performance of InAs / GaAs quantum dot solar cells, J. Photonics Energy, vol.7, issue.2, pp.1-9, 2017.

T. Li, H. Lu, L. Fu, H. H. Tan, C. Jagadish et al., Enhanced carrier collection efficiency and reduced quantum state absorption by electron doping in self-assembled quantum dot solar cells, Appl. Phys. Lett, vol.106, issue.53902, pp.1-5, 2015.

D. Kim, M. Tang, J. Wu, S. Hatch, Y. Maidaniuk et al., Si-Doped InAs / GaAs Quantum-Dot Solar Cell, IEEE J. Photovoltaics, vol.6, issue.4, pp.906-911, 2016.

T. Inoue, S. Kido, K. Sasayama, T. Kita, and O. Wada, Impurity doping in self-assembled InAs/GaAs quantum dots by selection of growth steps, J. Appl. Phys, vol.108, issue.63524, pp.1-5, 2010.

D. G. Sellers, E. Y. Chen, S. J. Polly, S. M. Hubbard, and M. F. Doty, Effect of doping on room temperature carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells, J. Appl. Phys, vol.119, pp.1-6, 2016.

D. Zhou, P. E. Vullum, G. Sharma, S. F. Thomassen, R. Holmestad et al., Positioning effects on quantum dot solar cells grown by molecular beam epitaxy, Appl. Phys. Lett, vol.96, issue.8, pp.2010-2012, 2010.

A. Kechiantz, A. Afanasev, and J. Lazzari, Impact of spatial separation of type-II GaSb quantum dots from the depletion region on the conversion efficiency limit of GaAs solar cells, Prog. Photovolt Res. Appl, vol.23, pp.1003-1016, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01176908

K. Driscoll, M. F. Bennett, S. J. Polly, D. V. Forbes, and S. M. Hubbard, Effect of quantum dot position and background doping on the performance of quantum dot enhanced GaAs solar cells, Appl. Phys. Lett, vol.104, issue.23119, pp.1-5, 2014.

E. Martí, E. Antolín, N. Cánovas, P. G. López, . Linares et al., Elements of the design and analysis of quantum-dot intermediate band solar cells, Thin Solid Films, vol.516, pp.6716-6722, 2008.

J. Nelson, I. Ballard, K. Barnham, J. P. Connolly, J. S. Roberts et al., Effect of quantum well location on single quantum well p-i-n photodiode dark currents, J. Appl. Phys, vol.86, issue.10, pp.5898-5905, 1999.

Y. X. Gu, X. G. Yang, H. M. Ji, P. F. Xu, and T. Yang, Theoretical study of the effects of InAs/GaAs quantum dot layer's position in i-region on current-voltage characteristic in intermediate band solar cells, Appl. Phys. Lett, vol.101, issue.81118, pp.1-5, 2012.

I. V. Markov, Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy, 1995.

I. N. Stranski and L. Krastanow, Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander, Abhandlungen der Math. Klasse IIb. Akad. der Wissenschaften Wien, vol.146, pp.797-810, 1938.

T. Kudo, T. Inoue, T. Kita, and O. Wada, Real time analysis of self-assembled InAs/GaAs quantum dot growth by probing reflection high-energy electron diffraction chevron image, J. Appl. Phys, vol.104, issue.74305, pp.1-5, 2008.

M. C. Xu, Y. Temko, T. Suzuki, and K. Jacobi, Shape transition of InAs quantum dots on GaAs(001), J. Appl. Phys, vol.98, issue.83525, pp.1-8, 2005.

A. M. Andrews, M. Schramböck, T. Roch, W. Schrenk, E. Gornik et al., Independent control of InAs quantum dot density and size on AlxGa1-xAs surfaces, J. Mater. Sci. Mater. Electron, vol.19, issue.8-9, pp.714-719, 2007.

H. Z. Song, Y. Tanaka, T. Yamamoto, N. Yokoyama, M. Sugawara et al., AlGaAs capping effect on InAs quantum dots self-assembled on GaAs, Phys. Lett. Sect. A Gen. At. Solid State Phys, vol.375, issue.40, pp.3517-3520, 2011.

D. S. Sizov, Y. B. Samsonenko, G. E. Tsyrlin, N. K. Polyakov, V. A. Egorov et al., Structural and optical properties of InAs quantum dots in AlGaAs matrix, Semiconductors, vol.37, issue.5, pp.559-563, 2003.

Q. Gong, P. Offermans, R. Nötzel, P. M. Koenraad, and J. H. Wolter, Capping process of InAs/GaAs quantum dots studied by cross-sectional scanning tunneling microscopy, Appl. Phys. Lett, vol.85, issue.23, pp.5697-5699, 2004.

D. González, D. F. Reyes, A. D. Utrilla, T. Ben, V. Braza et al., General route for the decomposition of InAs quantum dots during the capping process, Nanotechnology, vol.27, issue.12, p.125703, 2016.

T. Kada, S. Asahi, T. Kaizu, Y. Harada, T. Kita et al., Two-step photon absorption in InAs/GaAs quantum-dot superlattice solar cells, Phys. Rev. B -Condens. Matter Mater. Phys, vol.91, issue.201303, pp.1-6, 2015.

D. M. Tex, I. Kamiya, and Y. Kanemitsu, Control of hot-carrier relaxation for realizing ideal quantumdot intermediate-band solar cells, Sci. Rep, vol.4, issue.4125, pp.1-6, 2014.

D. M. Tex, I. Kamiya, and Y. Kanemitsu, Efficient upconverted photocurrent through an Auger process in disklike InAs quantum structures for intermediate-band solar cells, Phys. Rev. B -Condens. Matter Mater. Phys, vol.87, issue.245305, pp.1-7, 2013.

D. M. Tex, T. Ihara, I. Kamiya, and Y. Kanemitsu, Temperature and light-intensity dependence of upconverted photocurrent generation in shallow InAs quantum structures Temperature and lightintensity dependence of upconverted photocurrent generation in shallow InAs quantum structures, Jpn. J. Appl. Phys, vol.53, issue.05FV01, pp.1-4, 2014.

S. Adachi, GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties, 1994.

A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. C. Main, Temperature dependence of the optical properties of InAs / AlyGa1-yAs self-organized quantum dots, Phys. Rev. B, vol.59, issue.7, pp.5064-5068, 1999.

R. Heitz, I. Mukhametzhanov, . Madhukar, D. Hoffmann, and . Bimberg, Temperature dependent optical properties of self-organized InAs/GaAs quantum dots, J. Electron. Mater, vol.28, issue.5, pp.520-527, 1999.

S. Sanguinetti, M. Henini, M. Grassi-alessi, M. Capizzi, P. Frigeri et al., Carrier thermal escape and retrapping in self-assembled quantum dots, Phys. Rev. B, vol.60, issue.11, pp.8276-8283, 1999.

G. Muñoz-matutano, I. Suárez, J. Canet-ferrer, B. Alén, D. Rivas et al., Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots, J. Appl. Phys, vol.111, issue.123522, pp.1-8, 2012.

M. Kaniewska and O. Engström, Deep traps at GaAs/GaAs interface grown by MBE-interruption growth technique, Mater. Sci. Eng. C, vol.27, pp.1069-1073, 2007.

Y. P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica, vol.34, issue.1, pp.149-154, 1967.

A. Cedola, F. Cappelluti, and M. Gioannini, Dependence of quantum dot photocurrent on the carrier escape nature in InAs/GaAs quantum dot solar cells, Semicond. Sci. Technol, vol.31, issue.25018, pp.1-12, 2016.

S. Khatsevich, D. H. Rich, E. T. Kim, and A. Madhukar, Cathodoluminescence imaging and spectroscopy of excited states in InAs self-assembled quantum dots, J. Appl. Phys, vol.97, issue.123520, pp.1-8, 2005.

Y. Dai, S. J. Polly, S. Hellstroem, M. A. Slocum, Z. S. Bittner et al., Effect of electric field on carrier escape mechanisms in quantum dot intermediate band, J. Appl. Phys, vol.121, issue.13101, pp.1-8, 2017.

Y. Dai, M. A. Slocum, Z. Bittner, S. Hellstroem, D. Forbes et al., Optimization in wide-band-gap quantum dot solar cells, Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd, 2016.

V. Tasco, A. Cretì, A. Taurino, A. Cola, M. Catalano et al., Inter-level carrier dynamics and photocurrent generation in large band gap quantum dot solar cell by multistep growth, Sol. Energy Mater. Sol. Cells, vol.171, pp.142-147, 2017.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 2007.

O. Breitenstein, J. Bauer, A. Lotnyk, and J. M. Wagner, Defect induced non-ideal dark I-V characteristics of solar cells, Superlattices Microstruct, vol.45, issue.4-5, pp.182-189, 2009.

H. Kim, M. H. Park, S. J. Park, H. S. Kim, J. D. Song et al., Influence of InAs quantum dots on the transport properties of GaAs-based solar cell devices, Curr. Appl. Phys, vol.14, issue.2, pp.192-195, 2014.

F. A. Padovani and R. Stratton, Field and thermionic-field emission in schottky barriers, Solid. State. Electron, vol.9, pp.695-707, 1966.

Y. Dai, S. Polly, S. Hellstroem, D. V. Forbes, and S. M. Hubbard, Electric field effect on carrier escape from InAs/GaAs quantum dots solar cells, IEEE 40th Photovolt. Spec. Conf, pp.3492-3497, 2014.

S. Hardikar, M. K. Hudait, P. Modak, S. B. Krupanidhi, and N. Padha, Anomalous current transport in Au/low-doped n-GaAs Schottky barrier diodes at low temperatures, Appl. Phys. A Mater. Sci. Process, vol.68, issue.1, pp.49-55, 1999.

C. D. Santi, M. Meneghini, M. L. Grassa, B. Galler, R. Zeisel et al., Role of defects in the thermal droop of InGaN-based light emitting diodes, J. Appl. Phys, vol.119, issue.94501, pp.1-9, 2016.

S. M. Willis, J. A. Dimmock, F. Tutu, H. Y. Liu, M. G. Peinado et al., Defect mediated extraction in InAs/GaAs quantum dot solar cells, Sol. Energy Mater. Sol. Cells, vol.102, pp.142-147, 2012.

Y. Cheng, M. Fukuda, V. R. Whiteside, M. C. Debnath, P. J. Vallely et al., Investigation of InAs/GaAs1-xSbx quantum dots for applications in intermediate band solar cells, Sol. Energy Mater. Sol. Cells, vol.147, pp.94-100, 2016.

S. L. Chuang, Physics of Optoelectronic Devices, 1995.

S. Tomi?, T. S. Jones, and N. M. Harrison, Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design, Appl. Phys. Lett, vol.93, issue.263105, pp.1-3, 2008.

S. Tomi?, Intermediate-band solar cells: Influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays, Phys. Rev. B, vol.82, pp.1-15, 2010.

S. Tomi?, A. Marti, E. Antolin, and A. Luque, On inhibiting Auger intraband relaxation in InAs/GaAs quantum dot intermediate band solar cells, Appl. Phys. Lett, vol.99, issue.53504, pp.1-3, 2011.

S. Tomic, T. Sogabe, and Y. Okada, In-plane coupling effect on absorption coefficients of InAs/GaAs quantum dots arrays for intermediate band solar cell, Prog. Photovolt Res. Appl, vol.23, pp.546-558, 2014.

A. Luque, A. Marti, E. Antolin, and P. Garcia-linares, Intraband absorption for normal illumination in quantum dot intermediate band solar cells, Sol. Energy Mater. Sol. Cells, vol.94, issue.12, pp.2032-2035, 2010.

A. Luque, A. Martí, E. Antolín, P. G. Linares, I. Tobías et al., New Hamiltonian for a better understanding of the quantum dot intermediate band solar cells, Sol. Energy Mater. Sol. Cells, vol.95, issue.8, pp.2095-2101, 2011.

A. Luque, A. Mellor, I. Ramiro, E. Antolín, I. Tobías et al., Interband absorption of photons by extended states in intermediate band solar cells, Sol. Energy Mater. Sol. Cells, vol.115, pp.138-144, 2013.

A. Luque, A. Panchak, A. Vlasov, A. Martí, and V. Andreev, Four-band Hamiltonian for fast calculations in intermediate-band solar cells, Phys. E Low-Dimensional Syst. Nanostructures, vol.76, pp.127-134, 2016.

T. Kotani, S. Birner, P. Lugli, and C. Hamaguchi, A theoretical analysis of the optical absorption properties in one-dimensional InAs/GaAs quantum dot superlattices, J. Appl. Phys, vol.115, issue.143501, pp.1-15, 2014.

A. Trellakis, T. Zibold, T. Andlauer, S. Birner, R. K. Smith et al., The 3D nanometer device project nextnano: Concepts, methods, results, J. Comput. Electron, vol.5, issue.4, pp.285-289, 2006.

S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil et al., Nextnano: General purpose 3-D simulations, IEEE Trans. Electron Devices, vol.54, issue.9, pp.2137-2142, 2007.

C. Pryor, Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations, Phys. Rev. B, vol.57, issue.12, pp.7190-7195, 1998.

T. Andlauer, Optoelectronic and spin-related properties of semiconductor nanostructures in magnetic fields, 2009.

M. Fox, Optical Properties of Solids, 2010.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-mohan, Band parameters for III-V compound semiconductors and their alloys, J. Appl. Phys, vol.89, issue.11, pp.5815-5875, 2001.

A. Luque, A. Martí, E. Antolín, P. G. Linares, I. Tobías et al., Radiative thermal escape in intermediate band solar cells, AIP Adv, vol.1, issue.22125, pp.1-6, 2011.

V. Popescu, G. Bester, and A. Zunger, Strain-induced localized states within the matrix continuum of self-assembled quantum dots, Appl. Phys. Lett, vol.95, issue.23108, pp.1-3, 2009.

D. Watanabe, N. Kasamatsu, Y. Harada, and T. Kita, Hot-carrier solar cells using low-dimensional quantum structures, Appl. Phys. Lett, vol.105, issue.171904, pp.1-5, 2014.

J. J. Olivero and R. L. Longbothum, Empirical fits to the Voigt line width: a brief review, J. Quant. Spectrosc. Radiat. Transf, vol.17, pp.233-236, 1977.

G. D. Gillen and S. Guha, Use of Michelson and Fabry-Perot interferometry for independent determination of the refractive index and physical thickness of wafers, Appl. Opt, vol.44, issue.3, pp.344-347, 2005.

H. J. Choi, H. H. Lim, H. S. Moon, T. B. Eom, J. J. Ju et al., Determination of refractive index of transparent plate by Fabry-Perot fringe analysis, Proc. SPIE, vol.7790, pp.1-6, 2010.

E. Steveler, M. Verdun, B. Portier, P. Chevalier, C. Dupuis et al., Optical index measurement of InAs/GaSb type-II superlattice for midinfrared photodetection at cryogenic temperatures, Appl. Phys. Lett, vol.105, issue.141103, pp.1-5, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01623783

A. Datas, E. López, I. Ramiro, E. Antolín, A. Martí et al., Intermediate band solar cell with extreme broadband spectrum quantum efficiency, Phys. Rev. Lett, vol.114, issue.157701, pp.1-4, 2015.

P. Rale, Multi-transitions solar cells with localised states, 2015.

M. Ito, Theoretical and Experimental Investigation of Quantum Well Intermediate Band Solar Cells, 2014.

L. C. West and S. J. Eglash, First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well, Appl. Phys. Lett, vol.46, issue.12, pp.1156-1158, 1985.

P. Lecaruyer, E. Maillart, M. Canva, and J. Rolland, Generalization of the Rouard method to an absorbing thin-film stack and application to surface plasmon resonance, Appl. Opt, vol.45, issue.33, pp.8419-8423, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00664485

C. P. Michael, K. Srinivasan, T. J. Johnson, O. Painter, K. H. Lee et al., Wavelength-and material-dependent absorption in GaAs and AlGaAs microcavities, Appl. Phys. Lett, vol.90, issue.51108, pp.1-4, 2007.

A. Delamarre, Développement de nouvelles méthodes de caractérisation optoélectroniques des cellules solaires, 2013.

H. Chen, Characterization of Quantum-dot Intermediate Band Solar Cells by Photoluminescence, 2015.

T. Kita, T. Maeda, and Y. Harada, Carrier dynamics of the intermediate state in InAs/GaAs quantum dots coupled in a photonic cavity under two-photon excitation, Phys. Rev. B -Condens. Matter Mater. Phys, vol.86, issue.35301, pp.1-7, 2012.

T. Trupke, R. A. Bardos, M. D. Abbott, and J. E. Cotter, Suns-photoluminescence: Contactless determination of current-voltage characteristics of silicon wafers, Appl. Phys. Lett, vol.87, issue.9, pp.7-10, 2005.

T. Tran and &. T. , High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1 eV, Nano Lett, vol.14, pp.3235-3240, 2014.

R. A. Sinton and R. M. Swanson, Recombination in highly injected silicon, IEEE Trans. Electron Devices, vol.34, issue.6, pp.1380-1389, 1987.

T. Kirchartz, B. E. Pieters, J. Kirkpatrick, U. Rau, and J. Nelson, Recombination via tail states in polythiophene:fullerene solar cells, Phys. Rev. B -Condens. Matter Mater. Phys, vol.83, issue.11, pp.1-13, 2011.

N. Vandamme, H. L. Chen, A. Gaucher, B. Behaghel, A. Lemaître et al., Ultrathin GaAs solar cells with a silver back mirror, IEEE J. Photovoltaics, vol.5, issue.2, pp.565-570, 2015.

A. Delamarre, L. Lombez, and J. F. Guillemoles, Contactless mapping of saturation currents of solar cells by photoluminescence, Appl. Phys. Lett, vol.100, issue.13, pp.2012-2015, 2012.

Y. Harada, T. Maeda, and T. Kita, Intraband carrier dynamics in InAs/GaAs quantum dots stimulated by bound-to-continuum excitation, J. Appl. Phys, vol.113, issue.223511, pp.1-5, 2013.

Z. Xu, Y. Zhang, and J. M. Hvam, Long luminescence lifetime in self-assembled InGaAs/GaAs quantum dots at room temperature, Appl. Phys. Lett, vol.93, issue.183116, pp.1-3, 2008.

O. Nasr, N. Chauvin, M. H. Hadj-alouane, H. Maaref, C. Bru-chevallier et al., Carrier dynamics of strain-engineered InAs quantum dots with (In)GaAs surrounding material, J. Opt, vol.19, issue.25401, pp.1-8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01701515

P. A. Dalgarno, J. M. Smith, J. Mcfarlane, B. D. Gerardot, K. Karrai et al., Coulomb interactions in single charged self-assembled quantum dots: Radiative lifetime and recombination energy, Phys. Rev. B -Condens. Matter Mater. Phys, vol.77, issue.245311, pp.1-8, 2008.

S. Asahi, H. Teranishi, N. Kasamatsu, T. Kada, T. Kaizu et al., Saturable Two-Step Photocurrent Generation in Intermediate-Band Solar Cells Including InAs Quantum Dots Embedded in Al0

/. As and . Wells, IEEE J. Photovoltaics, vol.6, issue.2, pp.465-472, 2016.

P. D. Buckle, P. Dawson, S. A. Hall, X. Chen, M. J. Steer et al., Photoluminescence decay time measurements from self-organized InAs/GaAs quantum dots, J. Appl. Phys, vol.86, issue.5, pp.2555-2561, 1999.

A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson et al., Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to thirdgeneration photovoltaic solar cells, Chem. Rev, vol.110, issue.11, pp.6873-6890, 2010.

P. Zhang, Y. Feng, X. Wen, W. Cao, R. Anthony et al., Generation of hot carrier population in colloidal silicon quantum dots for high-efficiency photovoltaics, Sol. Energy Mater. Sol. Cells, vol.145, pp.391-396, 2016.

J. K. Katahara and H. W. Hillhouse, Quasi-fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence, J. Appl. Phys, vol.116, issue.173504, pp.1-12, 2014.

T. N. Morgan, Broadening of impurity bands in heavily doped semiconductors, Phys. Rev, vol.139, issue.1A, pp.343-348, 1965.

E. M. Conwell, High Field Transport in Semiconductors, 1967.

U. Bockelmann and G. Bastard, Phonon scattering and energy relaxation in two-, one-, and zerodimensional electron gases, Phys. Rev. B, vol.42, issue.14, pp.8947-8951, 1990.

W. Cao, Z. Zhang, R. Patterson, Y. Lin, X. Wen et al., Quantification of hot carrier thermalization in PbS colloidal quantum dots by power and temperature dependent photoluminescence spectroscopy, RSC Adv, vol.6, issue.93, pp.90846-90855, 2016.

J. Rodière, L. Lombez, A. Le-corre, O. Durand, and J. F. Guillemoles, Experimental evidence of hot carriers solar cell operation in multi-quantum wells heterostructures, Appl. Phys. Lett, vol.106, issue.183901, pp.1-4, 2015.

A. L. Bris, L. Lombez, S. Laribi, G. Boissier, P. Christol et al., Thermalisation rate study of GaSb-based heterostructures by continuous wave photoluminescence and their potential as hot carrier solar cell absorbers, Energy Environ. Sci, vol.5, pp.6225-6232, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01620114

Y. Harada, N. Kasamatsu, D. Watanabe, and T. Kita, Nanosecond-scale hot-carrier cooling dynamics in one-dimensional quantum dot superlattices, Phys. Rev. B -Condens. Matter Mater. Phys, vol.93, issue.115303, pp.1-5, 2016.

S. Ren, D. Lu, and G. Qin, Phonon modes in InAs quantum dots, Phys. Rev. B, vol.63, pp.1-9, 2001.

I. Yeo, J. D. Song, and J. Lee, Temperature-dependent energy band gap variation in self-organized InAs quantum dots, vol.99, pp.1-3, 2011.

A. Creti, V. Tasco, A. Cola, G. Montagna, I. Tarantini et al., Role of charge separation on two-step two photon absorption in InAs/GaAs quantum dot intermediate band solar cells, Appl. Phys. Lett, vol.108, issue.63901, pp.1-5, 2016.

P. Wurfel, The chemical potential of radiation, J. Phys. C Solid State Phys, vol.15, issue.18, pp.3967-3985, 1982.

U. Rau, Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells, Phys. Rev. B -Condens. Matter Mater. Phys, vol.76, issue.85303, pp.1-8, 2007.

Y. Dai, C. G. Bailey, C. Kerestes, D. Forbes, and S. M. Hubbard, Investigation of carrier escape mechanism in InAs/GaAs quantum dot solar cells, Photovoltaic Specialists Conference (PVSC), 38th IEEE, pp.39-44, 2012.

V. Van-roosbroeck and H. C. Casey, Transport in relaxation semiconductors, Phys. Rev. B, vol.5, issue.6, pp.2154-2174, 1972.

N. M. Haegel, Relaxation semiconductors : in theory and in practice, Appl. Phys. A, vol.53, pp.1-7, 1991.

B. Liao, E. Naja, H. Li, A. J. Minnich, and A. H. Zewail, Photo-excited hot carrier dynamics in hydrogenated amorphous silicon imaged by 4D electron microscopy, Nat. Nanotechnol, vol.12, issue.9, pp.871-876, 2017.

Y. Harada, T. Maeda, and T. Kita, Intraband carrier dynamics in InAs/GaAs quantum dots stimulated by bound-to-continuum excitation, J. Appl. Phys, vol.113, issue.22, pp.11-16, 2013.

T. Li and M. Dagenais, High saturation intensity in InAs/GaAs quantum dot solar cells and impact on the realization of the intermediate band concept at room-temperature, Appl. Phys. Lett, vol.110, issue.61107, pp.1-5, 2017.

H. Fujii, K. Watanabe, M. Sugiyama, and Y. Nakano, Effect of quantum well on the efficiency of carrier collection in InGaAs/GaAsP multiple quantum well solar cells, Jpn. J. Appl. Phys, vol.51, issue.10S, pp.1-5, 2012.

G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. Huijben, and J. J. Schermer, 26.1% thin-film GaAs solar cell using epitaxial lift-off, Sol. Energy Mater. Sol. Cells, vol.93, issue.9, pp.1488-1491, 2009.

B. E. Saleh and M. C. Teich, Fundamentals of Photonics, 2007.

E. D. Palik, Handbook of Optical Constants of Solids, 1985.

C. J. Sheppard, Approximate calculation of the reflection coefficient from a stratified medium, Pure Appl. Opt. J. Eur. Opt. Soc. Part A, vol.4, issue.5, pp.665-669, 1995.

P. Lalanne and G. M. Morris, Highly improved convergence of the coupled-wave method for TM polarization, J. Opt. Soc. Am. A, vol.13, issue.4, p.779, 1996.

P. Lalanne and M. P. Jurek, Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization, J. Mod. Opt, vol.45, issue.7, pp.1357-1374, 1998.

J. R. Devore, Refractive Indices of Rutile and Sphalerite, J. Opt. Soc. Am, vol.41, issue.6, pp.416-419, 1951.

C. O. Mcpheeters, C. J. Hill, S. H. Lim, D. Derkacs, D. Z. Ting et al., Improved performance of In(Ga)As/GaAs quantum dot solar cells via light scattering by nanoparticles, J. Appl. Phys, vol.106, issue.56101, pp.48-51, 2009.

S. D. Brorson, H. Yokoyama, and E. P. Ippen, Spontaneous emission rate alteration in optical waveguide structures, IEEE J. Quantum Electron, vol.26, issue.9, pp.1492-1499, 1990.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett, vol.69, issue.23, pp.3314-3317, 1992.

T. Nozawa, H. Takagi, K. Watanabe, and Y. Arakawa, Direct observation of two-step photon absorption in an InAs/GaAs single quantum dot for the operation of intermediate-band solar cells, Nano Lett, vol.15, pp.4483-4487, 2015.

S. Asahi, H. Teranishi, K. Kusaki, T. Kaizu, and T. Kita, Two-step photon up-conversion solar cells, Nat. Commun, vol.8, issue.14962, pp.1-9, 2017.

R. Tamaki, Y. Shoji, Y. Okada, K. Miyano, R. Tamaki et al., Spectrally resolved intraband transitions on two-step photon absorption in InGaAs/GaAs quantum dot solar cell, Appl. Phys. Lett, vol.105, issue.73118, pp.1-4, 2014.

S. Mokkapati and K. R. Catchpole, Nanophotonic light trapping in solar cells, J. Appl. Phys, vol.112, issue.10, p.101101, 2012.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, Localized surface plasmon resonances arising from free carriers in doped quantum dots, Nat. Mater, vol.10, issue.5, pp.361-366, 2011.

D. Li and C. Z. Ning, All-semiconductor active plasmonic system in mid-infrared wavelengths, Opt. Express, vol.19, issue.15, pp.14594-14603, 2011.

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, Mid-infrared designer metals, Opt. Express, vol.20, issue.11, pp.12155-12165, 2012.