J. W. Ady, V. Snider-desir, R. I. Thayanithy, . Vogel, L. André et al., Intercellular Communication in Malignant Pleural Mesothelioma: Properties of Tunneling Nanotubes, Frontiers in Physiology, vol.5, p.400, 2014.

A. Wafa, T. , and K. Kostarelos, Liposomes: From a Clinically Established Drug Delivery System to a Nanoparticle Platform for Theranostic Nanomedicine, Accounts of Chemical Research, vol.44, issue.10, pp.1094-1104, 2011.

C. Alifieris and D. T. Trafalis, Glioblastoma Multiforme: Pathogenesis and Treatment, Pharmacology and Therapeutics, vol.152, pp.63-82, 2015.

,

. Bandiera, R. C. Sébastien, S. Sousa, B. Auffret, B. Rodmacq et al., Enhancement of Perpendicular Magnetic Anisotropy Thanks to Pt Insertions in Synthetic Antiferromagnets, Applied Physics Letters, vol.101, issue.7, 2012.

. Bandiera, R. C. Sébastien, Y. Sousa, C. Dahmane, C. Ducruet et al., Comparison of Synthetic Antiferromagnets and Hard Ferromagnets as Reference Layer in Magnetic Tunnel Junctions with Perpendicular Magnetic Anisotropy, IEEE Magnetics Letters, vol.1, pp.1-4, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01683843

,

. Bañobre-lópez, A. Manuel, J. Teijeiro, and . Rivas, Magnetic Nanoparticle-Based Hyperthermia for Cancer Treatment, Reports of Practical Oncology and Radiotherapy, vol.18, issue.6, pp.397-400, 2013.

C. P. Bean and J. D. Livingston, Superparamagnetism, Journal of Applied Physics, vol.30, issue.4, pp.120-149, 1959.

M. J. Bent, M. Van-den, P. Y. Weller, J. M. Wen, K. Kros et al., A Clinical Perspective on the 2016 WHO Brain Tumor Classification and Routine Molecular Diagnostics, Neuro-Oncology, vol.19, issue.5, pp.614-638, 2017.

,

S. Besse, Ecoulement et Transport Convectif Lors d'injections Locales Dans Le Tissu Cérébral Sain et Tumoral : Quantifications Par Imagerie et Développements Prédictifs, 2010.

S. Bhattacharjee, DLS and Zeta Potential -What They Are and What They Are Not?, Journal of Controlled Release, vol.235, pp.337-51, 2016.

I. Bodhinayake, M. Ottenhausen, and J. A. Boockvar, Targeting a Heterogeneous Tumor: The Promise of the Interleukin-13 Receptor ?2, Neurosurgery, vol.75, issue.2, pp.18-19, 2014.

T. Boissenot, A. Bordat, E. Fattal, and N. Tsapis, Ultrasound-Triggered Drug Delivery for Cancer Treatment Using Drug Delivery Systems: From Theoretical Considerations to Practical Applications, Journal of Controlled Release, vol.241, pp.144-63, 2016.

E. Bree, J. De, D. D. Romanos, and . Tsiftsis, Hyperthermia in Anticancer Treatment, European Journal of Surgical Oncology, vol.28, issue.1, p.95, 2002.

,

R. Brossel, A. Yahi, S. David, L. M. Velasquez, and J. Guinebretière, Mechanical Signals Inhibit Growth of a Grafted Tumor In Vivo: Proof of Concept, PLOS ONE, vol.11, issue.4, 2016.

J. Brouland, A. F. Philippe, and . Hottinger, Nouvelle Classification OMS 2016 Des Gliomes : Quels Changements ?, Revue Medicale Suisse, vol.13, issue.579, pp.1805-1814, 2017.

P. Bruno and C. Chappert, Ruderman-Kittel Theory of Oscillatory Interlayer Exchange Coupling, Physical Review B, vol.46, issue.1, 1992.

K. S. Buchanan, P. E. Roy, Y. Frank, K. Y. Fradin, M. Guslienko et al., Vortex Dynamics in Patterned Ferromagnetic Ellipses, Journal of Applied Physics, vol.99, issue.8, pp.8-707, 2006.

K. S. Buchanan, P. E. Roy, M. Grimsditch, Y. Frank, K. Y. Fradin et al., Magnetic-Field Tunability of the Vortex Translational Mode in Micron-Sized Permalloy Ellipses: Experiment and Micromagnetic Modeling, Physical Review B -Condensed Matter and Materials Physics, vol.74, issue.6, pp.1-5, 2006.

M. C. Burger, S. Breuer, H. C. Cieplik, P. N. Harter, K. Franz et al., Bevacizumab for Patients with Recurrent Multifocal Glioblastomas, International Journal of Molecular Sciences, vol.18, issue.11, pp.1-11, 2017.

S. H. Burri, V. Gondi, P. D. Brown, and M. P. Mehta, The Evolving Role of Tumor Treating Fields in Managing Glioblastoma: Guide for Oncologists, American Journal of Clinical Oncology: Cancer Clinical Trials, vol.41, issue.2, pp.191-96, 2018.

,

. Butoescu, C. A. Nicoleta, M. Seemayer, O. Foti, E. Jordan et al., Dexamethasone-Containing PLGA Superparamagnetic Microparticles as Carriers for the Local Treatment of Arthritis, Biomaterials, vol.30, issue.9, pp.1772-80, 2009.

,

F. Carrat, V. Mallet, and . Morice, Biostatistique, pp.1-179, 2007.

J. Carrey, V. Connord, and M. Respaud, Ultrasound Generation and High-Frequency Motion of Magnetic Nanoparticles in an Alternating Magnetic Field: Toward Intracellular Ultrasound Therapy?, Applied Physics Letters, vol.102, issue.23, 2013.

J. Carrey and N. Hallali, Torque Undergone by Assemblies of Single-Domain Magnetic Nanoparticles Submitted to a Rotating Magnetic Field, Physical Review B, vol.94, issue.18, p.184420, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01952252

J. Carrey, B. Mehdaoui, and M. Respaud, Simple Models for Dynamic Hysteresis Loop Calculations of Magnetic Single-Domain Nanoparticles: Application to Magnetic Hyperthermia Optimization, Journal of Applied Physics, vol.109, issue.8, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01952248

M. Chen, R. R. Lonser, P. Morrison, L. Governale, and E. Oldfield, Variables Affecting Convection-Enhanced Delivery to the Striatum: A Systematic Examination of Rate of Infusion, Cannula Size, Infusate Concentration, and Tissue-Cannula Sealing Time, Journal of Neurosurgery, vol.90, issue.2, pp.315-335, 1999.

D. Cheng, X. Li, G. Zhang, and H. Shi, Morphological Effect of Oscillating Magnetic Nanoparticles in Killing Tumor Cells, Nanoscale Research Letters, vol.9, issue.1, pp.1-8, 2014.

G. Cheng, J. Tse, K. Rakesh, L. L. Jain, and . Munn, Micro-Environmental Mechanical Stress Controls Tumor Spheroid Size and Morphology by Suppressing Proliferation and Inducing Apoptosis in Cancer Cells, PLoS ONE, vol.4, issue.2, 2009.

Y. Cheng, R. A. Morshed, B. Auffinger, A. L. Tobias, and M. Lesniak, Multifunctional Nanoparticles for Brain Tumor Imaging and Therapy, Advanced Drug Delivery Reviews, vol.66, pp.42-57, 2014.

Y. Cheng, M. E. Muroski, C. M. Dorothée, R. Petit, T. Mansell et al., Rotating Magnetic Field Induced Oscillation of Magnetic Particles for in Vivo Mechanical Destruction of Malignant Glioma, Journal of Controlled Release, vol.223, pp.75-84, 2015.

H. Chiriac, E. Radu, M. ?ibu, G. Stoian, G. Ababei et al., Fe-Cr-Nb-B Ferromagnetic Particles with Shape Anisotropy for Cancer Cell Destruction by Magneto-Mechanical Actuation, Scientific Reports, vol.8, issue.1, p.11538, 2018.

M. Cho, E. J. Hyeon, M. Lee, J. H. Son, D. Lee et al., A Magnetic Switch for the Control of Cell Death Signalling in in Vitro and in Vivo Systems, Nature Materials, vol.11, issue.12, pp.1038-1081, 2012.

D. Chow, P. Chang, B. D. Weinberg, D. A. Bota, J. Grinband et al., Imaging Genetic Heterogeneity in Glioblastoma and Other Glial Tumors: Review of Current Methods and Future Directions, American Journal of Roentgenology, vol.210, issue.1, pp.30-38, 2018.

P. Clerc, P. Jeanjean, N. Hallali, M. Gougeon, B. Pipy et al., Targeted Magnetic Intra-Lysosomal Hyperthermia Produces Lysosomal Reactive Oxygen Species and Causes Caspase-1 Dependent Cell Death, Journal of Controlled Release, vol.270, pp.120-154, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02319530

,

M. Contreras, . Sougrat, . Zaher, J. Ravasi, and . Kosel, Non-Chemotoxic Induction of Cancer Cell Death Using Magnetic Nanowires, International Journal of Nanomedicine, vol.10, pp.2141-53, 2015.

J. Corchero, A. Luis, and . Villaverde, Biomedical Applications of Distally Controlled Magnetic Nanoparticles, Trends in Biotechnology, vol.27, issue.8, pp.468-76, 2009.

,

E. C. Costa, F. André, . Moreira, V. M. Duarte-de-melo-diogo, M. P. Gaspar et al., 3D Tumor Spheroids: An Overview on the Tools and Techniques Used for Their Analysis, Biotechnology Advances, vol.34, issue.8, pp.1427-1468, 2016.

,

T. Courcier, P. Hélène-joisten, S. Sabon, T. Leulmi, J. Dietsch et al., Tumbling Motion Yielding Fast Displacements of Synthetic Antiferromagnetic Nanoparticles for Biological Applications, Applied Physics Letters, vol.99, issue.9, pp.9-11, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02021876

R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland, and D. M. Tricker, Single-Domain Circular Nanomagnets, Physical Review Letters, vol.83, issue.5, pp.1042-1087, 1999.

L. Cuchet, B. Rodmacq, S. Auffret, R. C. Sousa, L. Ioan et al., Perpendicular Magnetic Tunnel Junctions with a Synthetic Storage or Reference Layer: A New Route towards Pt-and Pd-Free Junctions, Scientific Reports, vol.6, pp.1-9, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02131668

M. Cunningham, H. M. Gregory, R. A. Ames, F. M. Donalds, and . Benes, Construction and Implantation of a Microinfusion System for Sustained Delivery of Neuroactive Agents, Journal of Neuroscience Methods, vol.167, issue.2, pp.213-233, 2008.

G. H. Daalderop, P. J. Kelly, and M. F. Schuurmans, First-Principles Calculation of the Magnetic Anisotropy Energy of (Co)n/(X)m Multilayers, Physical Review B, vol.42, issue.11, pp.7270-73, 1990.

P. Decuzzi, B. Godin, T. Tanaka, S. Y. Lee, C. Chiappini et al., Size and Shape Effects in the Biodistribution of Intravascularly Injected Particles, Journal of Controlled Release, vol.141, issue.3, pp.320-347, 2010.

G. Defossez, S. L. Guyader-peyrou, Z. Uhry, P. Grosclaude, L. Remontet et al., Estimation Nationale de l'incidence et de La Mortalité Par Cancer En France Entre 1990 et 2018. Etude à Partir Des Registres Des Cancers Du Réseau Francim. Résultats Préliminaires. Synthèse, 2019.

B. Dieny and M. Chshiev, Perpendicular Magnetic Anisotropy at Transition Metal/Oxide Interfaces and Applications, Reviews of Modern Physics, vol.89, issue.2, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01576312

,

. Ding, K. G. Mei, A. Haglid, and . Hamberger, Quantitative Immunochemistry on Neuronal Loss, Reactive Gliosis and BBB Damage in Cortex/Striatum and Hippocampus/Amygdala after Systemic Kainic Acid Administration, Neurochemistry International, vol.36, issue.4-5, pp.313-331, 2000.

J. P. Dobson, Remote Control of Cellular Behaviour with Magnetic Nanoparticles, Nature Nanotechnology, vol.3, issue.3, pp.139-182, 2008.

M. Domenech, I. Marrero-berrios, M. Torres-lugo, and C. Rinaldi, Lysosomal Membrane Permeabilization by Targeted Magnetic Nanoparticles in Alternating Magnetic Fields, ACS Nano, vol.7, issue.6, pp.5091-5101, 2013.

E. C. Dreaden, M. Alaaldin, X. Alkilany, C. J. Huang, M. A. Murphy et al., The Golden Age: Gold Nanoparticles for Biomedicine, Chemical Society Reviews, vol.41, issue.7, pp.2740-79, 2012.

S. Dutz and R. Hergt, Magnetic Particle Hyperthermia -A Promising Tumour Therapy?, Nanotechnology, vol.25, issue.45, 2014.

M. Ermolli, C. Menné, G. Pozzi, M. Ángel-serra, and L. A. Clerici, Nickel, Cobalt and Chromium-Induced Cytotoxicity and Intracellular Accumulation in Human Hacat Keratinocytes, Toxicology, vol.159, issue.1-2, pp.373-378, 2001.

S. Felton, . Gunnarsson, E. Pierre, P. Roy, A. Svedlindh et al., MFM Imaging of Micron-Sized Permalloy Ellipses, Journal of Magnetism and Magnetic Materials, vol.280, issue.2-3, pp.202-209, 2004.

S. Felton, . Warnicke, P. E. Gunnarsson, H. Roy, P. Lidbaum et al., Domain Configuration of Permalloy Ellipses in a Rotating Magnetic Field, Journal of Physics D: Applied Physics, vol.39, issue.4, pp.610-624, 2006.

R. L. Ferris, J. Fayette, S. Kasper, M. Tahara, L. Licitra et al., Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck, New England Journal of Medicine, vol.375, pp.1856-67, 2016.

A. C. Filley, M. Henriquez, and M. Dey, Recurrent Glioma Clinical Trial, CheckMate-143: The Game Is Not over Yet, Oncotarget, vol.8, issue.53, pp.91779-94, 2017.

O. Fruchart, Lecture Notes on Nanomagnetism, 2015.

A. O. Fung, E. Kapadia, D. Pierstorff, Y. Ho, and . Chen, Induction of Cell Death by Magnetic Actuation of Nickel Nanowires Internalized by Fibroblasts, Journal of Physical Chemistry C, vol.112, issue.39, pp.15085-88, 2008.

F. B. Furnari, T. Fenton, R. M. Bachoo, A. Mukasa, J. M. Stommel et al., Malignant Astrocytic Glioma: Genetics, Biology, and Paths to Treatment, Genes and Development, vol.21, issue.21, pp.2683-2710, 2007.

Y. Gao, J. Lim, . Swee-hin, C. Teoh, and . Xu, Emerging Translational Research on Magnetic Nanoparticles for Regenerative Medicine, Chem. Soc. Rev, vol.44, issue.17, pp.6306-6335, 2015.

J. García-pérez, V. Lope, G. López-abente, M. González-sánchez, and P. Fernández-navarro, Ovarian Cancer Mortality and Industrial Pollution, Environmental Pollution, vol.205, pp.103-113, 2015.

J. Gillet, S. Varma, and M. M. Gottesman, The Clinical Relevance of Cancer Cell Lines, p.105, 2013.

N. Goffart, J. Kroonen, and B. Rogister, Glioblastoma-Initiating Cells: Relationship with Neural Stem Cells and the Micro-Environment, Cancers, vol.5, issue.3, pp.1049-71, 2013.

. Goiriena-goikoetxea, A. Maite, M. García-arribas, A. V. Rouco, J. M. Svalov et al., High-Yield Fabrication of 60 Nm Permalloy Nanodiscs in Well-Defined Magnetic Vortex State for Biomedical Applications, Nanotechnology, vol.27, issue.17, p.175302, 2016.

Y. I. Golovin, L. Natalia, A. G. Klyachko, M. Majouga, A. V. Sokolsky et al., Theranostic Multimodal Potential of Magnetic Nanoparticles Actuated by Non-Heating Low Frequency Magnetic Field in the New-Generation Nanomedicine, Journal of Nanoparticle Research, vol.19, issue.2, p.63, 2017.

N. Guha, K. Straif, L. Galichet, B. Lauby-secretan, F. E. Ghissassi et al., Carcinogenicity of Radiofrequency Electromagnetic Fields, The Lancet Oncology, vol.12, issue.7, pp.624-650, 2011.
URL : https://hal.archives-ouvertes.fr/ineris-00969545

K. Guslienko, V. Yu, Y. Novosad, H. Otani, K. Shima et al., Field Evolution of Magnetic Vortex State in Ferromagnetic Disks, Applied Physics Letters, 2001.

C. G. Hadjipanayis, M. Revaz-machaidze, L. Kaluzova, A. J. Wang, H. Schuette et al., EGFRvIII Antibody-Conjugated Iron Oxide Nanoparticles for Magnetic Resonance Imaging-Guided Convection-Enhanced Delivery and Targeted Therapy of Glioblastoma, Cancer Research, vol.70, issue.15, pp.6303-6315, 2010.

N. Hai, N. Hoang, N. Hoang-luong, N. Chau, and . Tai, Preparation of Magnetic Nanoparticles Embedded in Polystyrene Microspheres, Journal of Physics: Conference Series, vol.187, 2009.

L. Hamard, D. Ratel, L. Selek, and F. Berger, The Brain Tissue Response to Surgical Injury and Its Possible Contribution to Glioma Recurrence, Journal of Neuro-Oncology, vol.128, issue.1, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01342471

D. Hanahan and R. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.100, issue.5, pp.646-74, 2000.

S. Hapuarachchige, Y. Kato, E. J. Ngen, B. Smith, M. Delannoy et al., Non-Temperature Induced Effects of Magnetized Iron Oxide Nanoparticles in Alternating Magnetic Field in Cancer Cells, PLoS ONE, vol.11, issue.5, pp.1-12, 2016.

H. Harrington, P. Cato, F. Salazar, M. Wilkinson, A. Knox et al., Immunocompetent 3D Model of Human Upper Airway for Disease Modeling and in Vitro Drug Evaluation, Molecular Pharmaceutics, vol.11, issue.7, pp.2082-91, 2014.

H. Hartmann and R. Krastev, Biofunctionalization of Surfaces Using Polyelectrolyte Multilayers, BioNanoMaterials, vol.18, issue.1-2, 2017.

O. Hellwig, A. Berger, B. Jeffrey, E. E. Kortright, and . Fullerton, Domain Structure and Magnetization Reversal of Antiferromagnetically Coupled Perpendicular Anisotropy Films, Journal of Magnetism and Magnetic Materials, vol.319, issue.1-2, pp.13-55, 2007.

,

H. L. Herd, T. Kristopher, J. A. Bartlett, L. D. Gustafson, H. Mcgill et al., Macrophage Silica Nanoparticle Response Is Phenotypically Dependent, Biomaterials, vol.53, pp.574-82, 2015.

A. Hervault and N. Thanh, Magnetic Nanoparticle-Based Therapeutic Agents for Thermo-Chemotherapy Treatment of Cancer, Nanoscale, vol.6, issue.20, pp.11553-73, 2014.

B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa et al., The Cellular and Molecular Basis of Hyperthermia, Critical Reviews in Oncology/Hematology, vol.43, issue.1, pp.179-181, 2002.

S. K. Hobbs, L. Wayne, F. Monsky, W. G. Yuan, L. Roberts et al., Regulation of Transport Pathways in Tumor Vessels: Role of Tumor Type and Microenvironment, Proceedings of the National Academy of Sciences of the U.S.A, vol.95, pp.4607-4619, 1998.

S. Hu, X. Hsiu, and . Gao, Nanocomposites with Spatially Separated Functionalities for Combined Imaging and Magnetolytic Therapy, Journal of the American Chemical Society, vol.132, issue.21, pp.7234-7271, 2010.

. Hu, R. J. Wei, A. Wilson, A. Koh, A. Z. Fu et al., High-Moment Antiferromagnetic Nanoparticles with Tunable Magnetic Properties, Advanced Materials, vol.20, issue.8, pp.1479-83, 2008.

,

S. Hughes, S. Mcbain, J. P. Dobson, and A. J. Haj, Selective Activation of Mechanosensitive Ion Channels Using Magnetic Particles, Journal of the Royal Society Interface, vol.5, issue.25, pp.855-63, 2008.

Y. P. Ivanov, M. Vázquez, and O. Chubykalo-fesenko, Magnetic Reversal Modes in Cylindrical Nanowires, Journal of Physics D: Applied Physics, vol.46, issue.48, 2013.

K. K. Jain, A Critical Overview of Targeted Therapies for Glioblastoma, Frontiers in Oncology, vol.8, pp.1-19, 2018.

S. Jin, X. Ma, H. Ma, K. Zheng, J. Liu et al., Surface Chemistry-Mediated Penetration and Gold Nanorod Thermotherapy in Multicellular Tumor Spheroids, Nanoscale, vol.5, issue.1, pp.143-189, 2013.

M. T. Johnson, R. Jungblut, P. J. Kelly, and F. J. Broeder, Perpendicular Magnetic Anisotropy of Multilayers: Recent Insights, Journal of Magnetism and Magnetic Materials, vol.148, issue.1-2, pp.118-142, 1995.

H. Joisten, T. Courcier, P. Balint, P. Sabon, J. Faure-vincent et al., Self-Polarization Phenomenon and Control of Dispersion of Synthetic Antiferromagnetic Nanoparticles for Biological Applications, Applied Physics Letters, vol.97, issue.25, pp.2-4, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02021872

S. S. Joshi, B. Steven, D. V. Maron, and . Catenacci, Pembrolizumab for Treatment of Advanced Gastric and Gastroesophageal Junction Adenocarcinoma, Future Oncology, vol.14, issue.5, pp.417-447, 2018.

H. Ju, Y. Cui, Z. Chen, Q. Fu, M. Sun et al., Effects of Combined Delivery of Extremely Low Frequency Electromagnetic Field and Magnetic Fe3O4nanoparticles on Hepatic Cell Lines, American Journal of Translational Research, vol.8, issue.4, pp.1838-1885, 2016.

L. Kafrouni and O. Savadogo, Recent Progress on Magnetic Nanoparticles for Magnetic Hyperthermia, Progress in Biomaterials, vol.5, issue.3-4, pp.147-60, 2016.

,

T. Kasuya, A Theory of Metallic Ferro-and Antiferromagnetism on Zener's Model, Progress of Theoretical Physics, vol.16, issue.1, pp.45-57, 1956.

. Kaur, M. L. Punit, A. S. Aliru, A. Chadha, S. Asea et al., Hyperthermia Using Nanoparticles -Promises and Pitfalls, International Journal of Hyperthermia, vol.32, issue.1, pp.76-88, 2016.

J. Kerr, C. Anderson, and S. M. Lippman, Physical Activity, Sedentary Behaviour, Diet, and Cancer: An Update and Emerging New Evidence, The Lancet Oncology, vol.18, issue.8, pp.457-71, 2017.

D. Kilinc, A. Lesniak, A. Suad, D. Rashdan, A. Gandhi et al., Mechanochemical Stimulation of MCF7 Cells with Rod-Shaped Fe-Au Janus Particles Induces Cell Death Through Paradoxical Hyperactivation of ERK, Advanced Healthcare Materials, vol.4, issue.3, pp.395-404, 2015.

D. Kim, E. A. Rozhkova, V. Ilya, . Ulasov, D. Samuel et al., Biofunctionalized Magnetic-Vortex Microdiscs for Targeted Cancer-Cell Destruction, Nature Materials, vol.9, issue.2, pp.165-71, 2010.

,

D. Kim, P. Hyun, E. A. Karavayev, J. Rozhkova, V. Pearson et al., Mechanoresponsive System Based on Sub-Micron Chitosan-Functionalized Ferromagnetic Disks, Journal of Materials Chemistry, vol.21, issue.23, pp.8422-8448, 2011.

L. C. Kimlin, G. Casagrande, and V. M. Virador, In Vitro Three-Dimensional (3D) Models in Cancer Research: An Update, Molecular Carcinogenesis, vol.52, issue.3, pp.167-82, 2013.

T. Klei, F. Souza, M. P. Nucci, J. B. Mamani, R. Silva et al., Image and Motor Behavior for Monitoring Tumor Growth in C6 Glioma Model, PLoS ONE, vol.13, issue.7, pp.1-21, 2018.

,

. Koutros, D. T. Stella, M. Silverman, G. Cr-alavanja, C. C. Andreotti et al., Occupational Exposure to Pesticides and Bladder Cancer Risk, International Journal of Epidemiology, vol.45, issue.3, pp.792-805, 2016.

S. Kralj and D. Makovec, Magnetic Assembly of Superparamagnetic Iron Oxide Nanoparticle Clusters into Nanochains and Nanobundles, ACS Nano, vol.9, issue.10, pp.9700-9707, 2015.

K. M. Krishnan, A. B. Pakhomov, Y. Bao, P. Blomqvist, Y. Chun et al., Nanomagnetism and Spin Electronics: Materials, Microstructure and Novel Properties, Journal of Materials Science, vol.41, issue.3, pp.793-815, 2006.

A. Kroll, M. H. Pillukat, D. Hahn, and J. Schnekenburger, Interference of Engineered Nanoparticles with in Vitro Toxicity Assays, Archives of Toxicology, vol.86, issue.7, pp.1123-1159, 2012.

M. Laprise-pelletier, Y. Ma, J. Lagueux, M. F. Côté, L. Beaulieu et al., Intratumoral Injection of Low-Energy Photon-Emitting Gold Nanoparticles: A Microdosimetric Monte Carlo-Based Model, ACS Nano, vol.12, issue.3, pp.2482-97, 2018.

C. Lemarchand, S. Tual, M. Boulanger, N. Levêque-morlais, S. Perrier et al., Prostate Cancer Risk among French Farmers in the AGRICAN Cohort, Scandinavian Journal of Work, Environment and Health, vol.42, issue.2, pp.144-52, 2016.

S. Leulmi, X. Chauchet, M. Morcrette, G. Ortiz, H. Joisten et al., Triggering the Apoptosis of Targeted Human Renal Cancer Cells by the Vibration of Anisotropic Magnetic Particles Attached to the Cell Membrane, Nanoscale, vol.7, issue.38, pp.15904-15918, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01615206

S. Leulmi, H. Joisten, T. Dietsch, C. Iss, M. Morcrette et al., Comparison of Dispersion and Actuation Properties of Vortex and Synthetic Antiferromagnetic Particles for Biotechnological Applications, Applied Physics Letters, vol.103, issue.13, pp.8-13, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02021883

W. Li, Y. Liu, Z. Qian, and Y. Yang, Evaluation of Tumor Treatment of Magnetic Nanoparticles Driven by Extremely Low Frequency Magnetic Field, Scientific Reports, vol.7, issue.1, p.46287, 2017.

M. K. Lima-tenório, A. G. Edgardo, . Pineda, M. Nasir, H. Ahmad et al., Magnetic Nanoparticles: In Vivo Cancer Diagnosis and Therapy, International Journal of Pharmaceutics, vol.493, issue.1-2, pp.313-340, 2015.

C. Lin, . Kuan, Y. Huei, D. C. Hung, F. Christiani et al., Lung Cancer Mortality of Residents Living near Petrochemical Industrial Complexes: A Meta-Analysis, Environmental Health: A Global Access Science Source, vol.16, issue.1, pp.1-11, 2017.

X. Lin, F. Wei, P. Major, K. Al-nedawi, H. A. Saleh et al., Microvesicles Contribute to the Bystander Effect of DNA Damage, International Journal of Molecular Sciences, vol.18, issue.4, p.788, 2017.

D. Ling and T. Hyeon, Chemical Design of Biocompatible Iron Oxide Nanoparticles for Medical Applications, Small, vol.9, issue.9, pp.1450-66, 2013.

,

D. Liu, L. Wang, Z. Wang, and A. Cuschieri, Magnetoporation and Magnetolysis of Cancer Cells via Carbon Nanotubes Induced by Rotating Magnetic Fields, Nano Letters, vol.12, issue.10, pp.5117-5138, 2012.

J. Lynes, A. Nwankwo, G. Dominah, V. Sanchez, and E. Nduom, Current Options and Future Directions in Immune Therapy for Glioblastoma, Frontiers in Oncology, vol.8, pp.1-22, 2018.

G. Maele-fabry, L. Van, D. Gamet-payrastre, and . Lison, Residential Exposure to Pesticides as Risk Factor for Childhood and Young Adult Brain Tumors: A Systematic Review and Meta-Analysis, Environment International, vol.106, pp.69-90, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01602578

,

S. Maenosono and S. Saita, Theoretical Assessment of FePt Nanoparticles as Heating Elements for Magnetic Hyperthermia, IEEE Transactions on Magnetics, vol.42, issue.6, pp.1638-1680, 2006.

K. Maier-hauff, F. Ulrich, D. Nestler, H. Niehoff, P. Wust et al., Efficacy and Safety of Intratumoral Thermotherapy Using Magnetic Iron-Oxide Nanoparticles Combined with External Beam Radiotherapy on Patients with Recurrent Glioblastoma Multiforme, Journal of Neuro-Oncology, vol.103, issue.2, pp.317-341, 2011.

R. J. Mannix, S. Kumar, F. Cassiola, M. Montoya-zavala, E. Feinstein et al., Nanomagnetic Actuation of Receptor-Mediated Signal Transduction, Nature Nanotechnology, vol.3, issue.1, pp.36-40, 2008.

R. Mansell, T. Vemulkar, C. M. Dorotheé, Y. Petit, J. Cheng et al., Magnetic Particles with Perpendicular Anisotropy for Mechanical Cancer Cell Destruction, Scientific Reports, vol.7, issue.1, pp.1-7, 2017.

M. Maredziak, D. Lewandowski, A. Krzysztof, K. Tomaszewski, K. Kubiak et al., The Effect of Low-Magnitude Low-Frequency Vibrations (LMLF) on Osteogenic Differentiation Potential of Human Adipose Derived Mesenchymal Stem Cells, Cellular and Molecular Bioengineering, vol.10, issue.6, pp.549-62, 2017.

A. Martínez-banderas, A. Isaac, F. J. Aires, J. E. Teran, J. F. Perez et al., Functionalized Magnetic Nanowires for Chemical and Magneto-Mechanical Induction of Cancer Cell Death, Scientific Reports, vol.6, pp.1-11, 2016.

A. M. Master, N. Philise, N. Williams, R. Pothayee, . Zhang et al., Remote Actuation of Magnetic Nanoparticles for Cancer Cell Selective Treatment Through Cytoskeletal Disruption, Scientific Reports, vol.1, issue.919, pp.1-13, 2015.

B. Mehdaoui, A. Meffre, L. M. Lacroix, J. Carrey, S. Lachaize et al., Large Specific Absorption Rates in the Magnetic Hyperthermia Properties of Metallic Iron Nanocubes, Journal of Magnetism and Magnetic Materials, vol.322, pp.49-52, 2010.

K. Messaoudi, A. Clavreul, and F. Lagarce, Toward an Effective Strategy in Glioblastoma Treatment. Part I: Resistance Mechanisms and Strategies to Overcome Resistance of Glioblastoma to Temozolomide, Drug Discovery Today, vol.20, issue.7, pp.899-905, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392441

C. Mierke and . Tanja, The Fundamental Role of Mechanical Properties in the Progression of Cancer Disease and Inflammation, Reports on Progress in Physics, vol.77, issue.7, 2014.

,

A. C. Miller, R. Rivas, L. Tesoro, G. Kovalenko, N. Kovaric et al., Radiation Exposure from Depleted Uranium : The Radiation Bystander Effect, Toxicology and Applied Pharmacology, vol.331, pp.135-176, 2017.

,

L. Mohammed, H. G. Gomaa, D. Ragab, and J. Zhu, Magnetic Nanoparticles for Environmental and Biomedical Applications: A Review, Particuology, vol.30, pp.1-14, 2017.

M. Morcrette, Micro et Nanoparticules Pour Des Applications Biotechnologiques : Fabrication de Nanoparticules Par Copolymère Dibloc Pour l'imagerie Médicale ; Destruction de Cellules Cancéreuses Par Vibrations Magnéto-Mécaniques de Microparticules Magnétiques, 2016.

M. Morcrette, G. Ortiz, S. Tallegas, H. Joisten, R. Tiron et al., Fabrication of Monodisperse Magnetic Nanoparticles Released in Solution Using a Block Copolymer Template, Journal of Physics D: Applied Physics, vol.50, issue.29, p.295001, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01585374

L. Morgan, A. B. Lloyd, A. Miller, D. Sasco, and . Davis, Mobile Phone Radiation Causes Brain Tumors and Should Be Classified as a Probable Human Carcinogen (2A) (Review), International Journal of Oncology, vol.46, issue.5, pp.1865-71, 2015.

,

M. E. Muroski, A. Ramin, Y. Morshed, T. Cheng, R. Vemulkar et al., Controlled Payload Release by Magnetic Field Triggered Neural Stem Cell Destruction for Malignant Glioma Treatment, PLoS ONE, vol.11, issue.1, pp.4-15, 2016.

L. Néel, Anisotropie Magnétique Superficielle et Surstructures d'orientation, Journal de Physique et Le Radium, vol.15, issue.4, pp.225-264, 1954.

Y. Negishi, Y. Endo-takahashi, and K. Maruyama, Gene Delivery Systems by the Combination of Lipid Bubbles and Ultrasound, Drug Discoveries & Therapeutics, vol.10, issue.5, pp.248-55, 2016.

G. Nelson, O. Kucheryavenko, J. Wordsworth, and T. Von-zglinicki, The Senescent Bystander Effect Is Caused by ROS-Activated NF-?B Signalling, Mechanisms of Ageing and Development, vol.170, pp.30-36, 2017.

D. Nørøxe, . Schou, U. Hans-skovgaard-poulsen, and . Lassen, Hallmarks of Glioblastoma: A Systematic Review, ESMO Open, vol.1, issue.6, pp.1-9, 2016.

N. Oh and J. Park, Endocytosis and Exocytosis of Nanoparticles in Mammalian Cells, International Journal of Nanomedicine, vol.9, issue.1, pp.51-63, 2014.

T. A. Okhai and C. J. Smith, Principles and Application of RF System for Hyperthermia Therapy, Hyperthermia, vol.2, p.64, 2013.

O. Alblazi, K. Mohamed, and C. Siar, Cellular Protrusions -Lamellipodia, Filopodia, Invadopodia and Podosomes -and Their Roles in Progression of Orofacial Tumours: Current Understanding, Asian Pacific Journal of Cancer Prevention, vol.16, issue.6, pp.2187-91, 2015.

K. J. Ong, T. J. Maccormack, R. J. Clark, J. D. Ede, A. Van et al., Widespread Nanoparticle-Assay Interference: Implications for Nanotoxicity Testing, PLoS ONE, vol.9, issue.3, p.90650, 2014.

Q. Pankhurst, S. Connolly, J. P. Jones, and . Dobson, Applications of Magnetic Nanoparticles in Biomedicine, Journal of Physics D: Applied Physics, vol.36, issue.03, pp.167-81, 2003.

A. S. Park, B. Ritz, C. Ling, M. Cockburn, and J. E. Heck, Exposure to Ambient Dichloromethane in Pregnancy and Infancy from Industrial Sources and Childhood Cancers in California, International Journal of Hygiene and Environmental Health, vol.220, issue.7, pp.1133-1173, 2017.

S. Parkin, N. S-p, K. P. More, and . Roche, Oscillations in Exchange Coupling and Magnetoresistance in Metallic Superlattice Structures: Co/Ru, Co/Cr, and Fe/Cr, Physical Review Letters, vol.64, pp.2304-2311, 1990.

A. Parodi, S. G. Haddix, N. Taghipour, S. Scaria, F. Taraballi et al., Bromelain Surface Modification Increases the Diffusion of Silica Nanoparticles in the Tumor Extracellular Matrix, ACS Nano, vol.8, issue.10, pp.9874-83, 2014.

T. Patiño, C. Nogués, E. Ibáñez, and L. Barrios, Enhancing Microparticle Internalization by Nonphagocytic Cells through the Use of Noncovalently Conjugated Polyethyleneimine, International Journal of Nanomedicine, vol.7, pp.5671-82, 2012.

,

B. Perlstein, Z. Ram, D. Daniels, A. Ocherashvilli, Y. Roth et al., Convection-Enhanced Delivery of Maghemite Nanoparticles: Increased Efficacy and MRI Monitoring, Neuro-Oncology, vol.10, issue.2, pp.153-61, 2008.

,

J. Polivka, J. Jr, L. Polivka, T. Holubec, V. Kubikova et al., Advances in Experimental Targeted Therapy and Immunotherapy for Patients with Glioblastoma Multiforme, Anticancer Research, vol.37, issue.1, pp.21-33, 2017.

R. Pomfret, G. Miranpuri, and K. Sillay, The Substitute Brain and the Potential of the Gel Model, Annals of Neurosciences, vol.20, issue.3, pp.118-140, 2013.

,

S. Pongkitwitoon, E. M. Weinheimer-haus, T. J. Koh, and S. Judex, Low-Intensity Vibrations Accelerate Proliferation and Alter Macrophage Phenotype in Vitro, Journal of Biomechanics, vol.49, issue.5, pp.793-96, 2016.

E. Prats-alfonso and F. Albericio, Functionalization of Gold Surfaces: Recent Developments and Applications, Journal of Materials Science, vol.46, issue.24, pp.7643-7691, 2011.

I. Prejbeanu, S. Lucian, . Bandiera, R. C. Alvarez-hérault, B. Sousa et al., Thermally Assisted MRAMs: Ultimate Scalability and Logic Functionalities, Journal of Physics D: Applied Physics, vol.46, issue.8, 2013.

Y. Rabin, Is Intracellular Hyperthermia Superior to Extracellular Hyperthermia in the Thermal Sense?, International Journal of Hyperthermia : The Official Journal of European Society for Hyperthermic Oncology, vol.18, issue.3, pp.194-202, 2002.

S. Rebouissou, J. Zucman-rossi, R. Moreau, Z. Qiu, and L. Hui, Note of Caution: Contaminations of Hepatocellular Cell Lines, Journal of Hepatology, vol.67, issue.5, pp.896-97, 2017.

T. L. Riss, A. Richard, A. L. Moravec, H. A. Niles, . Benink et al., Cell Viability Assays, Assay Guidance Manual, pp.1-23, 2004.

T. Rodrigues, B. Kundu, J. Silva-correia, S. C. Kundu, J. M. Oliveira et al., Emerging Tumor Spheroids Technologies for 3D in Vitro Cancer Modeling, Pharmacology and Therapeutics, vol.184, pp.201-212, 2017.

,

A. Romagnolo, D. Romagnolo, and O. Selmin, BRCA1 as Target for Breast Cancer Prevention and Therapy, Anti-Cancer Agents in Medicinal Chemistry, vol.15, issue.1, pp.4-14, 2014.

,

R. Roosbroeck, W. Van, T. Van-roy, J. Stakenborg, . Trekker et al., Synthetic Antiferromagnetic Nanoparticles as Potential Contrast Agents in MRI, ACS Nano, vol.8, issue.3, pp.2269-78, 2014.

,

C. Rousset-jablonski and A. Gompel, Screening for Familial Cancer Risk: Focus on Breast Cancer, Maturitas, vol.105, pp.69-77, 2017.

R. Rowe, M. Sheskey, and . Quinn, Handbook of Pharmaceutical Excipients, pp.243-250, 2009.

V. Roy, Introduction Aux Neurosciences Cognitives, Licence 1 Ère Année de Psychologie -S1UE1 I, 2013.

E. A. Rozhkova, V. Novosad, D. Kim, J. Pearson, R. Divan et al., Ferromagnetic Microdisks as Carriers for Biomedical Applications, Journal of Applied Physics, vol.105, issue.7, pp.58-61, 2009.

M. A. Ruderman and C. Kittel, Indirect Exchange Coupling of Nuclear Magnetic Moments, Physical Review, vol.96, issue.1, pp.99-102, 1954.

. Ruiz-ontañon, J. L. Patricia, B. Orgaz, A. Aldaz, J. Elosegui-artola et al., Cellular Plasticity Confers Migratory and Invasive Advantages to a Population of Glioblastoma-Initiating Cells That Infiltrate Peritumoral Tissue, Stem Cells, vol.31, issue.6, pp.1075-85, 2013.

M. Samadishadlou, M. Farshbaf, N. Annabi, T. Kavetskyy, R. Khalilov et al., Magnetic Carbon Nanotubes: Preparation, Physical Properties, and Applications in Biomedicine, Abolfazl Akbarzadeh, and Sepideh Mousavi, vol.46, issue.7, pp.1314-1344, 2018.

,

C. Sanchez, D. El-hajj, V. Diab, P. Connord, E. Clerc et al., Targeting a G-Protein-Coupled Receptor Overexpressed in Endocrine Tumors by Magnetic Nanoparticles to Induce Cell Death, ACS Nano, vol.8, issue.2, pp.1350-63, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01952238

B. Sanden, D. Van-der, and . Ratel, Glioma Recurrence Following Surgery: Peritumoral or Perilesional?, Frontiers in Neurology, vol.7, issue.10, pp.1322-1354, 2016.

S. Sant and P. A. Johnston, The Production of 3D Tumor Spheroids for Cancer Drug Discovery, Drug Discovery Today: Technologies, vol.23, pp.27-36, 2017.

,

M. Saria and S. Kesari, Efficacy and Safety of Treating Glioblastoma With Tumor-Treating Fields Therapy, Clinical Journal of Oncology Nursing, vol.20, issue.5, pp.9-13, 2016.

F. Scherer, . Anton, . Schillinger, C. Henke, . Bergemann et al., Magnetofection: Enhancing and Targeting Gene Delivery by Magnetic Force in Vitro and in Vivo, Gene Therapy, vol.9, issue.2, pp.102-111, 2002.

Y. Shen, C. Wu, Q. P. Taro, G. R. Uyeda, B. Plaza et al., Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic Field, Theranostics, vol.7, issue.6, pp.1735-1783, 2017.

M. A. Shevtsov, P. Boris, . Nikolaev, Y. Ludmila, Y. Y. Yakovleva et al.,

A. L. Dobrodumov, M. G. Mikhrina, O. A. Martynova, I. V. Bystrova, A. M. Yakovenko et al., Superparamagnetic Iron Oxide Nanoparticles Conjugated with Epidermal Growth Factor (SPION-EGF) for Targeting Brain Tumors, International Journal of Nanomedicine, vol.9, issue.1, pp.273-87, 2014.

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde et al., Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate inside the Cellular Compartment: A Microscopic Overview, Langmuir, vol.21, issue.23, pp.10644-54, 2005.

,

S. Sieri and V. Krogh, Dietary Glycemic Index, Glycemic Load and Cancer: An Overview of the Literature, Nutrition, Metabolism and Cardiovascular Diseases, vol.27, issue.1, pp.18-31, 2017.

N. R. Smoll, Z. Brady, K. Scurrah, and J. D. Mathews, Exposure to Ionizing Radiation and Brain Cancer Incidence: The Life Span Study Cohort, Cancer Epidemiology, vol.42, pp.60-65, 2016.

C. W. Song, Effect of Local Hyperthermia on Blood Flow and Microenvironment: A Review, Cancer Research, issue.10, pp.4721-4730, 1984.

S. Spirou, M. Basini, A. Lascialfari, C. Sangregorio, and C. Innocenti, Magnetic Hyperthermia and Radiation Therapy: Radiobiological Principles and Current Practice ?, Nanomaterials, vol.8, issue.6, p.401, 2018.

J. S. Stenehjem, T. E. Robsahm, M. Bråtveit, S. O. Samuelsen, J. Kirkeleit et al., Ultraviolet Radiation and Skin Cancer Risk in Offshore Workers, Occupational Medicine, vol.67, issue.7, pp.569-73, 2017.

R. Stupp, W. P. Massen, M. J. Van-den, M. Bent, B. Weller et al., Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma, The New England Journal of Medicine, vol.352, issue.10, pp.987-96, 2005.

R. Stupp, S. Taillibert, A. Kanner, W. Read, D. M. Steinberg et al., Effect of Tumor-Treating Fields plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients with Glioblastoma a Randomized Clinical Trial, JAMA -Journal of the American Medical Association, vol.318, issue.23, pp.2306-2322, 2017.

A. Tosoni, E. Franceschi, R. Poggi, and A. A. Brandes, Relapsed Glioblastoma: Treatment Strategies for Initial and Subsequent Recurrences, Current Treatment Options in Oncology, vol.17, issue.9, 2016.

N. Tsapis, Agents de Contraste Pour l'imagerie Médicale, Médecine/Sciences, vol.33, issue.1, pp.18-24, 2017.

P. Vavassori, . Zaluzec, V. Metlushko, . Novosad, M. Ilic et al., Magnetization Reversal via Single and Double Vortex States in Submicron Permalloy Ellipses, Physical Review B -Condensed Matter and Materials Physics, vol.69, issue.21, pp.3-8, 2004.

A. Vegerhof, E. A. Barnoy, M. Motiei, D. Malka, Y. Danan et al., Targeted Magnetic Nanoparticles for Mechanical Lysis of Tumor Cells by Low-Amplitude Alternating Magnetic Field, Materials, vol.9, issue.11, 2016.

T. Vemulkar, R. Mansell, C. M. Dorothée, R. P. Petit, M. S. Cowburn et al., Highly Tunable Perpendicularly Magnetized Synthetic Antiferromagnets for Biotechnology Applications, Applied Physics Letters, vol.107, issue.1, p.12403, 2015.

T. Vemulkar, E. N. Welbourne, R. Mansell, C. M. Dorothée, R. P. Petit et al., The Mechanical Response in a Fluid of Synthetic Antiferromagnetic and Ferrimagnetic Microdiscs with Perpendicular Magnetic Anisotropy, Applied Physics Letters, vol.110, issue.4, p.42402, 2017.

A. Villanueva, P. De-la-presa, J. M. Alonso, T. Rueda, A. Martínez et al., Hyperthermia Hela Cell Treatment with Silica-Coated Manganese Oxide Nanoparticles, Journal of Physical Chemistry C, vol.114, issue.5, pp.1976-81, 2010.

M. Vinci, S. Gowan, F. Boxall, L. Patterson, M. Zimmermann et al., Advances in Establishment and Analysis of Three-Dimensional Tumor Spheroid-Based Functional Assays for Target Validation and Drug Evaluation, BMC Biology, vol.10, 2012.

F. Vinson, M. Merhi, I. Baldi, H. Raynal, and L. Gamet-payrastre, Exposure to Pesticides and Risk of Childhood Cancer: A Meta-Analysis of Recent Epidemiological Studies, Occupational and Environmental Medicine, vol.68, issue.9, pp.694-702, 2011.

D. D. Vo, R. M. Prins, J. L. Begley, T. R. Donahue, L. F. Morris et al., Enhanced Antitumor Activity Induced by Adoptive T-Cell Transfer and Adjunctive Use of the Histone Deacetylase Inhibitor LAQ824, Cancer Research, vol.69, issue.22, pp.8693-99, 2009.

B. Wang, C. Bienvenu, J. Mendez-garza, P. Lançon, A. Madeira et al., Necrosis of HepG2 Cancer Cells Induced by the Vibration of Magnetic Particles, Journal of Magnetism and Magnetic Materials, vol.344, pp.193-201, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00878760

P. Warnicke, Magnetization of Thin-Film Permalloy Ellipses Used for Programmable Motion of Magnetic Particles, International Journal of Chemical and Molecular Engineering, vol.1, issue.11, pp.925-952, 2007.

E. M. Weinheimer-haus, S. Judex, J. William, T. J. Ennis, and . Koh, Low-Intensity Vibration Improves Angiogenesis and Wound Healing in Diabetic Mice, PLoS ONE, vol.9, issue.3, pp.3-10, 2014.

P. Weiss, L'hypothèse Du Champ Moléculaire et La Propriété Ferromagnétique, Journal de Physique Théorique et Appliquée, vol.6, issue.1, pp.661-90, 1907.

,

R. Weissleder, M. Nahrendorf, and M. J. Pittet, Imaging Macrophages with Nanoparticles, Nature Materials, vol.13, issue.2, pp.125-163, 2014.

D. Wong, W. L. Wei, N. Gan, W. Liu, and . Lew, Magneto-Actuated Cell Apoptosis by Biaxial Pulsed Magnetic Field, Scientific Reports, vol.7, issue.1, pp.1-8, 2017.

M. Wyde, M. Cesta, C. Blystone, S. Elmore, P. Foster et al., Report of Partial Findings from the National Toxicology Program Carcinogenesis Studies of Cell Phone Radiofrequency Radiation in Hsd: Sprague Dawley® SD Rats (Whole Body Exposure), BioRXiv, 2018.

Z. Yang and K. K. Wang, Glial Fibrillary Acidic Protein: From Intermediate Filament Assembly and Gliosis to Neurobiomarker, Trends in Neurosciences, vol.38, issue.6, pp.364-74, 2015.

K. Yosida, Magnetic Properties of Cu-Mn Alloys, Physical Rev, vol.106, issue.5, pp.893-98, 1957.

T. N. Zamay, S. Galina, I. V. Zamay, . Belyanina, S. Sergey et al., Noninvasive Microsurgery Using Aptamer-Functionalized Magnetic Microdisks for Tumor Cell Eradication, Nucleic Acid Therapeuthics, vol.27, issue.2, pp.105-119, 2016.

. Zeng, C. C. Fanhua, J. Lerro, H. Lavoué, J. Huang et al., Occupational Exposure to Pesticides and Other Biocides and Risk of Thyroid Cancer, Occupational and Environmental Medicine, vol.74, issue.7, pp.502-512, 2017.

E. Zhang, F. Moritz, M. Kircher, L. Koch, N. Eliasson et al., Dynamic Magnetic Fields Remote-Control Apoptosis via Nanoparticle Rotation, ACS Nano, vol.8, issue.4, pp.3192-3201, 2014.

. Zhang, Z. Hao, F. Li, Q. Yang, X. Zhang et al., Radial Shockwave Treatment Promotes Human Mesenchymal Stem Cell Self-Renewal and Enhances Cartilage Healing, Stem Cell Research & Therapy, vol.9, issue.54, pp.1-13, 2018.

Z. Zhou, X. Liu, D. Zhu, Y. Wang, Z. Zhang et al., Nonviral Cancer Gene Therapy: Delivery Cascade and Vector Nanoproperty Integration, Advanced Drug Delivery Reviews, vol.115, pp.115-54, 2017.

,

P. Zhu and J. Zhu, Tumor Treating Fields: A Novel and Effective Therapy for Glioblastoma: Mechanism, Efficacy, Safety and Future Perspectives, Chinese Clinical Oncology, vol.6, issue.4, pp.41-41, 2017.

X. Zhu, . Grütter, B. Metlushko, and . Ilic, Magnetic Force Microscopy Study of Electron-Beam-Patterned Soft Permalloy Particles: Technique and Magnetization Behavior, Physical Review B -Condensed Matter and Materials Physics, vol.66, issue.2, pp.244231-244268, 2002.

, Ce protocole a été principalement mis au point pendant la thèse de Selma Leulmi avec l'aide de Philippe Sabon. Quelques optimisations ont été réalisées par Mélissa Morcrette et moi-même

, Allumer le MJB4 : ON / Sur la lampe : Power ON puis CP puis START, 30 min de chauffe

, Allumer les plaques chauffantes : une à 90 °C, une à 180 °C. Monter la puissance de chauffe à, pp.90-100

, Allumer la tournette en suivant les instructions, la laver avec de l'acétone, fixer le support adéquat, vérifier que le vide fonctionne, préparer 2 chronomètres sur 5 min Programmer la tournette pour la

, Dès que la tournette s'arrête, désenclencher le vide, récupérer le wafer et le déposer sur la plaque à 180°C. Déclencher de suite le chrono : 5 min

L. Dès-que, . Chrono, and . Fini,

, Programmer la tournette pour la ma-N 2403 : 4000 rotations/minute -30 secondes -2000 accélération

, Positionner le wafer, de manière centrée sur la tournette

, Déposer la ma-N 2403 : ~0,6 ml pour un wafer 2 pouces ou ~1

, Dès que la tournette s'arrête, désenclencher le vide, récupérer le wafer et le déposer sur la plaque à 90 °C. Déclencher de suite le chrono : 1 min 30

L. Dès-que, . Chrono, and . Fini,

, Positionner le masque, face chromée vers le haut, sur le porte-masque en le calant contre les 3 vis. Enclencher le vide, vérifier

, Mettre en place le porte-substrat à la bonne taille et avec le joint, le petit trou vers nous Par sécurité, descendre de 2 la molette

, Passer un coup de soufflette sur le wafer et le positionner selon les marques du porte substrat (côté droit vers nous)

, Sélectionner « WEC settings », suivre les indications. Un réglage suffit pour plusieurs wafers de même

. Desserrer-les-vis, Nettoyer le masque : mettre le bain de « Remover » dans le bac à ultra son, y plonger le masque avec la pince blanche, vérifier que le bac n'est pas en mode chauffage, allumer le bac pour 15-20min

, Sécher le masque avec la soufflette en le tenant par les bords pour ne pas laisser de traces

Q. Le,

, Une fois le process terminé, appuyer sur « LL vent ». Sortir l'échantillon quand le voyant « ATM sas » est allumé. Se débadger ? Lift-off de la ma

, De préférence, le lift-off est à faire dans la même journée que le dépôt

, Des « copeaux » de matériau se détachent, visibles à l'oeil nu. Mettre le cristallisoir dans le bac à ultrasons pour détruire les copeaux. Sortir le wafer tout en l'aspergeant d'isopropanol pour éviter que des morceaux restent accrochés

, ? Mise en suspension des particules -Lift-off de la PMMA

, Si besoin, cleaver les bords s'ils ne sont pas « propres ». Si possible, la mise en suspension doit se faire au maximum un mois après le dépôt de résines. Sinon le lift-off se fera plus difficilement

P. Le and . Dans-un-cristallisoir, Mouiller le wafer avec de l'acétone. Dès que la résine commence à se dissoudre, incliner le cristallisoir et passer le jet d'acétone sur le wafer, de haut en bas. Les particules qui descendent doivent se voir à l'oeil nu

, Le sortir, l'incliner de nouveau et aspirer tout l'acétone avec une pipette, le transvaser dans un tube de 50 ml

. /!\, Le tube n'est pas tout à fait étanche et doit rester vertical : utiliser un portoir et utiliser du parafilme

, Placer le tube Falcon sur un aimant et laisser les particules sédimenter (~30 min)

. Au-choix, Transvaser le tout dans le tube Eppendorf avec la micropipette. (facile mais long) ou Préparer un tube Eppendorf 2 ml. Plonger le cône de la micropipette au fond du Falcon. Au dernier moment, laisser tomber l'aimant et aspirer le fond du Falcon contenant les particules. Transvaser de suite dans le tube Eppendorf, avant que des gouttes ne tombent, Préparer un tube Eppendorf 2 ml

, Ne pas oublier d'annoter le tube, le placer dans le bac à ultrason pour bien disperser les particules. Annexes ? Utilisation des particules

, Pour une utilisation des particules in-vitro ou in-vivo, les étapes suivantes sont à réaliser sous PSM

, Utiliser l'aimant ou un portoir aimanté pour condenser les particules, aspirer tout l'acétone et le jeter

. En, Recommencer une nouvelle fois : condenser les particules avec l'aimant. Aspirer tout l'éthanol et le jeter

, Dans les deux cas, répéter l'opération deux fois est très important pour une bonne dispersion des particules ! Pour une utilisation dans du NaCl, ne faire l'opération qu'une seule fois et ne plus attirer les particules avec l

, Un champ magnétique rotatif à faible fréquence (20 Hz) est appliqué pour faire vibrer des particules magnétiques en contact avec les cellules cancéreuses. Les particules développées sont produites par une approche top-down en salle blanche. Les disques de permalloy utilisés présentent une configuration en vortex avec une faible rémanence et une bonne dispersion en suspension. Des particules multicouches de Co/Pt avec une anisotropie perpendiculaire et des vortex de permalloy en forme d'ellipses sont aussi étudiés. L'efficacité du TEMMP est évaluée in-vitro sur des cellules de glioblastome et les différents paramètres sont optimisés. Une forte diminution du nombre de cellules après traitement est alors observée et le comportement des cellules restantes est affecté, Résumé Le glioblastome est un cancer du cerveau très agressif dont les thérapies actuelles n'augmentent que très peu la durée de vie

, Les tissus sont peu affectés par le TEMMP comparé à une injection de particules, et une faible augmentation de la survie est observée. Pour mimer les propriétés mécaniques du cerveau de manière plus pertinente, un modèle in-vitro 3D est alors développé et validé, Conçu avec des sphéroïdes de cellules pris dans un gel d'agarose

, Mots clés : Particules magnétiques -Cancer -Glioblastome -Effet magnéto-mécanique des particules -Sphéroïde -In-vitro 3D

, Existing therapies improve only slightly the median survival. In this work, we study a new treatment by magneto-mechanical actuation of particles (TMMAP). A low frequency (20 Hz) rotating magnetic field is applied to stimulate magnetic particles localized near cancer cells

, Multilayers of Co/Pt with a perpendicular anisotropy and permalloy vortex particles with an ellipse shape are also studied. TMMAP efficiency is tested in-vitro on glioblastoma cell line and the parameters are optimized. A huge diminution of living cells and an affected behavior of the remaining cells are observed after treatment. TMMAP is then adapted to an in-vivo study on glioblastoma orthotopic model on nude mice and the intratumoral injection of the particles is developed. Few differences are observed between tissues submitted to TMMAP or injected with particles, and survival is slightly increased. To mimic mechanical properties of the brain in a more relevant model, an in-vitro 3D model is proposed and validated

, Keywords: Magnetic particles -Cancer -Glioblastoma -Magneto-mechanical actuation of particles -Spheroid -3D in-vitro

, Un champ magnétique rotatif à faible fréquence (20 Hz) est appliqué pour faire vibrer des particules magnétiques en contact avec les cellules cancéreuses. Les particules développées sont produites par une approche top-down en salle blanche. Les disques de permalloy utilisés présentent une configuration en vortex avec une faible rémanence et une bonne dispersion en suspension. Des particules multicouches de Co/Pt avec une anisotropie perpendiculaire et des vortex de permalloy en forme d'ellipses sont aussi étudiés. L'efficacité du TEMMP est évaluée in-vitro sur des cellules de glioblastome et les différents paramètres sont optimisés. Une forte diminution du nombre de cellules après traitement est alors observée et le comportement des cellules restantes est affecté, Résumé Le glioblastome est un cancer du cerveau très agressif dont les thérapies actuelles n'augmentent que très peu la durée de vie

, Les tissus sont peu affectés par le TEMMP comparé à une injection de particules, et une faible augmentation de la survie est observée. Pour mimer les propriétés mécaniques du cerveau de manière plus pertinente, un modèle in-vitro 3D est alors développé et validé, Conçu avec des sphéroïdes de cellules pris dans un gel d'agarose

, Mots clés : Particules magnétiques -Cancer -Glioblastome -Effet magnéto-mécanique des particules -Sphéroïde -In-vitro 3D

, Existing therapies improve only slightly the median survival. In this work, we study a new treatment by magneto-mechanical actuation of particles (TMMAP). A low frequency (20 Hz) rotating magnetic field is applied to stimulate magnetic particles localized near cancer cells

, Multilayers of Co/Pt with a perpendicular anisotropy and permalloy vortex particles with an ellipse shape are also studied. TMMAP efficiency is tested in-vitro on glioblastoma cell line and the parameters are optimized. A huge diminution of living cells and an affected behavior of the remaining cells are observed after treatment. TMMAP is then adapted to an in-vivo study on glioblastoma orthotopic model on nude mice and the intratumoral injection of the particles is developed. Few differences are observed between tissues submitted to TMMAP or injected with particles, and survival is slightly increased. To mimic mechanical properties of the brain in a more relevant model, an in-vitro 3D model is proposed and validated

, Keywords: Magnetic particles -Cancer -Glioblastoma -Magneto-mechanical actuation of particles -Spheroid -3D in-vitro