K. M. Christian, H. Song, and G. Ming, Functions and dysfunctions of adult hippocampal neurogenesis. Annual review of neuroscience, vol.37, pp.243-262, 2014.

M. K. Lehtinen, M. W. Zappaterra, X. Chen, Y. J. Yang, A. D. Hill et al., The cerebrospinal fluid provides a proliferative niche for neural progenitor cells, Neuron, vol.69, issue.5, pp.893-905, 2011.

V. Silva-vargas, A. R. Maldonado-soto, D. Mizrak, P. Codega, and F. Doetsch, Age-dependent niche signals from the choroid plexus regulate adult neural stem cells, Cell stem cell, vol.19, issue.5, pp.643-652, 2016.

C. Grassi, M. D'ascenzo, A. Torsello, G. Martinotti, F. Wolf et al., Effects of 50Hz electromagnetic fields on voltage-gated Ca 2+ channels and their role in modulation of neuroendocrine cell proliferation and death, Cell Calcium, vol.35, issue.4, pp.307-315, 2004.

J. T. Gonçalves, S. T. Schafer, and F. H. Gage, Adult neurogenesis in the hippocampus: From stem cells to behavior, Cell, vol.167, issue.4, pp.897-914, 2016.

M. A. Bonaguidi, M. A. Wheeler, J. S. Shapiro, R. P. Stadel, G. J. Sun et al., In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics, Cell, vol.145, issue.7, pp.1142-1155, 2011.

F. Calzolari, J. Michel, E. V. Baumgart, F. Theis, M. Götz et al., Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone, Nature neuroscience, vol.18, issue.4, pp.490-492, 2015.

M. Yamaguchi, T. Seki, I. Imayoshi, N. Tamamaki, Y. Hayashi et al., Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain, The Journal of Physiological Sciences, vol.66, issue.3, pp.197-206, 2016.

D. A. Lim and A. Alvarez-buylla, The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis. Cold Spring Harbor perspectives in biology, vol.8, p.18820, 2016.

F. T. Merkle, Z. Mirzadeh, and A. Alvarez-buylla, Mosaic organization of neural stem cells in the adult brain, Science, issue.5836, pp.381-384, 2007.

N. A. Decarolis, M. Mechanic, D. Petrik, A. Carlton, J. L. Ables et al., In vivo contribution of nestin-and GLAST-lineage cells to adult hippocampal neurogenesis, Hippocampus, vol.2013, issue.8, pp.708-719

W. Deng, J. B. Aimone, and F. H. Gage, New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?, Nature Reviews Neuroscience, vol.11, issue.5, pp.339-350, 2010.

A. Sahay, K. N. Scobie, A. S. Hill, C. M. O'carroll, M. A. Kheirbek et al., Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation, Nature, issue.7344, pp.466-470, 2011.

J. B. Aimone, W. Deng, and F. H. Gage, Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation, Neuron, vol.70, issue.4, pp.589-596, 2011.

E. Butti, M. Cusimano, M. Bacigaluppi, and G. Martino, Neurogenic and non-neurogenic functions of endogenous neural stem cells. Adult neurogenesis twenty years later: physiological function versus brain repair, p.75, 2015.

Y. Qin, W. Zhang, and P. Yang, Current states of endogenous stem cells in adult spinal cord, Journal of neuroscience research, vol.93, issue.3, pp.391-398, 2015.

M. Götz, M. Nakafuku, and D. Petrik, Neurogenesis in the Developing and Adult Brain-Similarities and Key Differences. Cold Spring Harbor perspectives in biology, vol.8, p.18853, 2016.

O. V. Und-halbach, Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus, Cell and tissue research, vol.345, issue.1, pp.1-19, 2011.

D. N. Abrous, M. Koehl, and M. Le-moal, Adult neurogenesis: from precursors to network and physiology, Physiological reviews, vol.85, issue.2, pp.523-569, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02326180

Z. Chaker, P. Codega, and F. Doetsch, A mosaic world: puzzles revealed by adult neural stem cell heterogeneity, Wiley Interdisciplinary Reviews: Developmental Biology, vol.5, issue.6, pp.640-658, 2016.

U. Lendahl, L. B. Zimmerman, and R. D. Mckay, CNS stem cells express a new class of intermediate filament protein, Cell, vol.60, issue.4, pp.585-595, 1990.

A. J. Roskams, X. Cai, and G. V. Ronnett, Expression of neuron-specific beta-III tubulin during olfactory neurogenesis in the embryonic and adult rat, Neuroscience, vol.83, issue.1, pp.191-200, 1998.

M. S. Rao and A. K. Shetty, Efficacy of doublecortin as a marker to analyse the absolute number anddendritic growth of newly generated neurons in the adult dentate gyrus, European Journal of Neuroscience, vol.19, issue.2, pp.234-246, 2004.

T. Seki, Expression patterns of immature neuronal markers PSA-NCAM, CRMP-4 and NeuroD in the hippocampus of young adult and aged rodents, Journal of neuroscience research, vol.70, issue.3, pp.327-334, 2002.

F. H. Gage, P. W. Coates, T. D. Palmer, H. G. Kuhn, L. J. Fisher et al., Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain, Proceedings of the National Academy of Sciences, pp.11879-11883, 1995.

A. Weyer and K. Schilling, Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum, Journal of neuroscience research, vol.73, issue.3, pp.400-409, 2003.

W. Liedtke, W. Edelmann, P. L. Bieri, F. C. Chiu, N. J. Cowan et al., GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination, Neuron, vol.17, issue.4, pp.607-615, 1996.

M. S. Ghandour, O. K. Langley, G. Labourdette, G. Vincendon, and G. Gombos, Specific and artefactual cellular localizations of S100 protein: an astrocyte marker in rat cerebellum, Developmental neuroscience, vol.4, issue.1, pp.66-78, 1981.

C. Brunner, H. Lassmann, T. V. Waehneldt, J. Matthieu, and C. Linington, Differential ultrastructural localization of myelin basic protein, myelin/oligodendroglial glycoprotein, and 2'-, 3'-cyclic nucleotide 3'-phosphodiesterase in the CNS of adult rats, Journal of neurochemistry, vol.52, issue.1, pp.296-304, 1989.

P. Ellis, B. M. Fagan, S. T. Magness, S. Hutton, O. Taranova et al., SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult, Developmental neuroscience, vol.26, issue.2-4, pp.148-165, 2005.

Y. Kanemura, M. Yamasaki, K. Mori, H. Fujikawa, H. Hayashi et al., Musashi1, an evolutionarily conserved neural RNA-binding protein, is a versatile marker of human glioma cells in determining their cellular origin, malignancy, and proliferative activity, Differentiation, vol.68, issue.2-3, pp.141-152, 2001.

S. N. Sansom, D. S. Griffiths, A. Faedo, D. J. Kleinjan, Y. Ruan et al., The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis, PLoS Genet, vol.5, issue.6, p.1000511, 2009.

A. Lee, J. D. Kessler, T. A. Read, C. Kaiser, D. Corbeil et al., Isolation of neural stem cells from the postnatal cerebellum, Nature neuroscience, vol.8, issue.6, pp.723-729, 2005.

L. Dimou and V. Gallo, NG2-glia and their functions in the central nervous system, Glia, vol.63, issue.8, pp.1429-1451, 2015.

A. I. Sayegh and R. C. Ritter, Morphology and distribution of nitric oxide synthase-, neurokinin-1 receptor-, calretinin-, calbindin-, and neurofilament-M-immunoreactive neurons in the myenteric and submucosal plexuses of the rat small intestine, The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, vol.271, issue.1, pp.209-216, 2003.

S. Zhang, X. Chen, Y. Hu, J. Wu, Q. Cao et al., All-trans retinoic acid modulates Wnt3A-induced osteogenic differentiation of mesenchymal stem cells via activating the PI3K/AKT/GSK3 signalling pathway, Molecular and cellular endocrinology, vol.422, pp.243-253, 2016.

L. J. Gudas and J. A. Wagner, Retinoids regulate stem cell differentiation, Journal of cellular physiology, vol.226, issue.2, pp.322-330, 2011.

J. Bastien and C. , Nuclear retinoid receptors and the transcription of retinoid-target genes, Gene, vol.328, pp.1-16, 2004.

T. J. Cunningham and G. Duester, Mechanisms of retinoic acid signalling and its roles in organ and limb development, Nature reviews Molecular cell biology, vol.16, pp.110-123, 2015.

K. A. Sharow, B. Temkin, and M. A. Asson-batres, Retinoic acid stability in stem cell cultures, International Journal of Developmental Biology, vol.2012, issue.4, pp.273-278

C. A. Wohl and S. Weiss, Retinoic acid enhances neuronal proliferation and astroglial differentiation in cultures of CNS stem cell-derived precursors, Journal of neurobiology, vol.37, issue.2, pp.281-290, 1998.

J. Muindi, S. Frankel, W. J. Miller, A. Jakubowski, D. A. Scheinberg et al., Continuous treatment with all-trans retinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid" resistance" in patients with acute promyelocytic leukemia, Blood, vol.80, issue.3, pp.299-303, 1992.

R. Ferreira, M. C. Fonseca, T. Santos, J. Sargento-freitas, R. Tjeng et al.,

L. Ferreira and . Bernardino, Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia, Nanoscale, vol.8, pp.8126-8137, 2016.

C. Lange, M. T. Garcia, I. Decimo, F. Bifari, G. Eelen et al., Relief of hypoxia by angiogenesis promotes neural stem cell differentiation by targeting glycolysis, The EMBO journal, vol.2016, issue.9, pp.924-941

B. Cuccurazzu, L. Leone, M. V. Podda, R. Piacentini, E. Riccardi et al., Exposure to extremely low-frequency (50Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice, Experimental neurology, vol.2010, issue.1, pp.173-182

M. V. Podda, L. Leone, S. A. Barbati, A. Mastrodonato, D. D. Li-puma et al., Extremely low-frequency electromagnetic fields enhance the survival of newborn neurons in the mouse hippocampus, European Journal of Neuroscience, vol.39, issue.6, pp.893-903, 2014.

C. C. Wu, C. C. Lien, W. H. Hou, P. M. Chiang, and K. J. Tsai, Gain of BDNF function in engrafted neural stem cells promotes the therapeutic potential for Alzheimer's disease, Scientific Reports, p.6, 2016.

A. M. Lilja, L. Malmsten, J. Röjdner, L. Voytenko, A. Verkhratsky et al., Neural Stem Cell Transplant-Induced Effect on Neurogenesis and Cognition in Alzheimer Tg2576 Mice Is Inhibited by Concomitant Treatment with Amyloid-Lowering or Cholinergic 7 Nicotinic Receptor Drugs, 2015.

B. Chen, X. Wang, Z. Wang, Y. Wang, L. Chen et al., Brain-derived neurotrophic factor stimulates proliferation and differentiation of neural stem cells, possibly by triggering the Wnt/?-catenin signaling pathway, Journal of neuroscience research, vol.2013, issue.1, pp.30-41

E. Allard, Lipid nanocapsules loaded with an organometallic tamoxifen derivative as a novel drug-carrier system for experimental malignant gliomas, Journal of Controlled Release, vol.130, pp.146-153, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00343557

A. Béduneau, Pegylated nanocapsules produced by an organic solvent-free method: Evaluation of their stealth properties, Pharmaceutical research, vol.23, issue.9, pp.2190-2199, 2006.

S. Hirsjärvi, Surface modification of lipid nanocapsules with polysaccharides: from physicochemical characteristics to in vivo aspects, Acta biomaterialia, vol.9, pp.6686-6693, 2013.

J. Balzeau, The effect of functionalizing lipid nanocapsules with NFL-TBS. 40-63 peptide on their uptake by glioblastoma cells, Biomaterials, vol.34, pp.3381-3389, 2013.

S. Hirsjärvi, Tumour targeting of lipid nanocapsules grafted with cRGD peptides, European Journal of Pharmaceutics and Biopharmaceutics, vol.87, pp.152-159, 2014.

A. Groo, Fate of paclitaxel lipid nanocapsules in intestinal mucus in view of their oral delivery, International journal of nanomedicine, vol.8, p.4291, 2013.

S. David, siRNA LNCs-a novel platform of lipid nanocapsules for systemic siRNA administration, European Journal of Pharmaceutics and Biopharmaceutics, vol.81, pp.448-452, 2012.

A. Barras, Formulation and characterization of polyphenol-loaded lipid nanocapsules, International journal of pharmaceutics, vol.379, pp.270-277, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00413224

G. Bastiat, A new tool to ensure the fluorescent dye labeling stability of nanocarriers: a real challenge for fluorescence imaging, Journal of Controlled Release, vol.170, pp.334-342, 2013.

. Ballot and . Sandrine, 99mTc/188Re-labelled lipid nanocapsules as promising radiotracers for imaging and therapy: formulation and biodistribution, European journal of nuclear medicine and molecular imaging, vol.33, issue.5, pp.602-607, 2006.

S. Peltier, Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules, Pharmaceutical research, vol.23, issue.6, pp.1243-1250, 2006.

C. Xu, Morphine Promotes Astrocyte-Preferential Differentiation of Mouse Hippocampal Progenitor Cells via PKC?-Dependent ERK Activation and TRBP Phosphorylation, Stem Cells, vol.33, pp.2762-2772, 2015.

E. Tamariz, A. C. Wan, Y. S. Pek, M. Giordano, G. Hernández-padrón et al., Delivery of chemotropic proteins and improvement of dopaminergic neuron outgrowth through a thixotropic hybrid nano-gel, J. Mater. Sci. Mater. Med, vol.22, pp.2097-2110, 2011.

A. Fattahi, J. Karimi-sabet, A. Keshavarz, A. Golzary, M. Rafiee-tehrani et al., Preparation and characterization of simvastatin nanoparticles using rapid expansion of supercritical solution (RESS) with trifluoromethane, J. Supercrit. Fluids, vol.107, pp.469-478, 2016.

Z. Liu, X. Gao, T. Kang, M. Jiang, D. Miao et al., B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide, J. Chen, Bioconj. Chem, vol.24, pp.997-1007, 2013.

I. Khalin, R. Alyautdin, T. W. Wong, J. Gnanou, G. Kocherga et al., Brain-derived neurotrophic factor delivered to the brain using poly (lactide-co-glycolide) nanoparticles improves neurological and cognitive outcome in mice with traumatic brain injury, Drug Deliv, vol.23, pp.3520-3528, 2016.

N. Kamaly, B. Yameen, J. Wu, and O. C. Farokhzad, Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release, Chem. Rev, vol.116, pp.2602-2663, 2016.

L. Hu, X. Tang, and F. Cui, Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs, J. Pharm. Pharmacol, vol.56, pp.1527-1535, 2004.

H. Hoshyar, S. Gray, H. Han, and G. Bao, The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction, Nanomedicine, vol.11, pp.673-692, 2016.

A. Béduneau, P. Saulnier, F. Hindré, A. Clavreul, J. C. Leroux et al., Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab'fragments, Biomaterials, vol.28, pp.4978-4990, 2007.

J. Kreuter, T. Hekmatara, S. Dreis, T. Vogel, S. Gelperina et al., Covalent attachment of apolipoprotein AI and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain, J. Control. Release, vol.118, pp.54-58, 2007.

H. Godwin, C. Nameth, D. Avery, L. L. Bergeson, D. Bernard et al., Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making, ACS Nano, vol.9, pp.3409-3417, 2015.

V. Iswarya, J. Manivannan, A. De, S. Paul, R. Roy et al.,

A. Mukherjee and . Mukherjee, Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels, Environ. Sci. Pollu.t Res. Int, vol.23, pp.4844-4858, 2016.

M. A. Dobrovolskaia, M. Shurin, and A. A. Shvedova, Current understanding of interactions between nanoparticles and the immune system, Toxicol. Appl. Pharmacol, vol.15, pp.78-89, 2016.

Q. Jiao, L. Li, Q. Mu, and Q. Zhang, Immunomodulation of nanoparticles in nanomedicine applications, Biomed. Res. Int, p.426028, 2014.

J. Landers, J. T. Turner, G. Heden, A. L. Carlson, N. K. Bennett et al., Carbon nanotube composites as multifunctional substrates for in situ actuation of differentiation of human neural stem cells, Adv. Healthc. Mater, vol.3, pp.1745-1752, 2014.

E. Hoveizi, S. Ebrahimi-barough, S. Tavakol, and K. Sanamiri, Vitro Differentiation of Human iPS Cells into Neural like Cells on a Biomimetic Polyurea, pp.1-7, 2016.

A. Raspa, A. Marchini, R. Pugliese, M. Mauri, M. Maleki et al., A biocompatibility study of new nanofibrous scaffolds for nervous system regeneration, vol.8, pp.253-265, 2016.

J. Maia, T. Santos, S. Aday, F. Agasse, L. Cortes et al., Controlling the neuronal differentiation of stem cells by the intracellular delivery of retinoic acid-loaded nanoparticles, ACS Nano, vol.5, pp.97-106, 2010.

T. Santos, R. Ferreira, J. Maia, F. Agasse, S. Xapelli et al., Polymeric nanoparticles to control the differentiation of neural stem cells in the subventricular zone of the brain, ACS Nano, vol.6, pp.10463-10474, 2012.

M. Esteves, A. C. Cristóvão, T. Saraiva, S. M. Rocha, G. Baltazar et al., Retinoic acidloaded polymeric nanoparticles induce neuroprotection in a mouse model for Parkinson's disease, Front, Aging Neurosci, vol.7, 2015.

T. Santos, Blue light potentiates neurogenesis induced by retinoic acid-loaded responsive nanoparticles, Acta Biomaterialia, 2017.

S. K. Tiwari, S. Agarwal, B. Seth, A. Yadav, S. Nair et al.,

D. K. Chauhan, V. Patel, D. Srivastava, S. K. Singh, A. Gupta et al., Curcuminloaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer's disease model via canonical Wnt/?-catenin pathway, ACS Nano, vol.8, pp.76-103, 2013.

S. A. Papadimitriou, M. P. Robin, D. Ceric, R. K. O'reilly, S. Marino et al., Fluorescent polymeric nanovehicles for neural stem cell modulation, Nanoscale, vol.8, pp.17340-17349, 2016.

Y. K. Choi, D. H. Lee, Y. K. Seo, H. Jung, J. K. Park et al., Stimulation of Neural Differentiation in Human Bone Marrow Mesenchymal Stem Cells by Extremely Low-Frequency Electromagnetic Fields Incorporated with MNPs, Appl. Biochem. Biotechnol, vol.174, pp.1233-1245, 2014.

O. Akhavan, E. Ghaderi, S. A. Shirazian, and R. Rahighi, Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells, Carbon, vol.97, pp.71-77, 2016.

T. H. Huang, Y. Pei, D. Zhang, Y. Li, and K. A. Kilian, Patterned porous silicon photonic crystals with modular surface chemistry for spatial control of neural stem cell differentiation, Nanoscale, vol.8, pp.10891-10895, 2016.

N. L. Francis, N. K. Bennett, A. Halikere, Z. P. Pang, and P. V. Moghe, Self-Assembling Peptide Nanofiber Scaffolds for 3-D Reprogramming and Transplantation of Human Pluripotent Stem Cell-Derived Neurons, ACS Biomater. Sci. Eng, vol.2, pp.1030-1038, 2016.

J. Arulmoli, H. J. Wright, D. T. Phan, U. Sheth, R. A. Que et al., Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering, Acta Biomaterialia, vol.43, pp.122-138, 2016.

F. J. Nicholls, M. W. Rotz, H. Ghuman, K. W. Macrenaris, T. J. Meade et al., DNA-gadolinium-gold nanoparticles for in vivo T1 MR imaging of transplanted human neural stem cells, Biomaterials, vol.77, pp.291-306, 2016.

T. H. Kim, K. B. Lee, and J. W. Choi, 3D graphene oxide-encapsulated gold nanoparticles to detect neural stem cell differentiation, Biomaterials, vol.34, pp.8660-8670, 2013.

K. Baranes, Gold nanoparticle-decorated scaffolds promote neuronal differentiation and maturation, Nano letters, vol.16, pp.2916-2920, 2015.

B. Xu, A Dual Functional Scaffold Tethered with EGFR Antibody Promotes Neural Stem Cell Retention and Neuronal Differentiation for Spinal Cord Injury Repair, Advanced Healthcare Materials, 2017.

L. E. Sperling, Influence of random and oriented electrospun fibrous poly (lactic-co-glycolic acid) scaffolds on neural differentiation of mouse embryonic stem cells, Journal of Biomedical Materials Research Part A, 2017.

J. -. Chang and . Hsuan, Dual Delivery of siRNA and Plasmid DNA using Mesoporous Silica Nanoparticles to Differentiate Induced Pluripotent Stem Cells into Dopaminergic Neurons, Journal of Materials Chemistry B, 2017.

L. N. Zamproni, Injection of SDF-1 loaded nanoparticles following traumatic brain injury stimulates neural stem cell recruitment, International journal of pharmaceutics, vol.519, pp.323-331, 2017.

M. Mohammadi, Biocompatible polymersomes-based cancer theranostics: Towards multifunctional nanomedicine, International journal of pharmaceutics, 2017.

Y. Kuo and C. Chen, Neuroregeneration of Induced Pluripotent Stem Cells in Polyacrylamide-Chitosan Inverted Colloidal Crystal Scaffolds with Poly (lactide-co-glycolide) Nanoparticles and Transactivator of Transcription von Hippel-Lindau Peptide, Tissue Engineering Part A, 2017.

G. Elvira, B. Moreno, I. D. Valle, J. A. Garcia-sanz, M. Canillas et al., Targeting neural stem cells with titanium dioxide nanoparticles coupled to specific monoclonal antibodies, J. Biomater. App, vol.26, pp.1069-1089, 2011.

C. Lépinoux-chambaud, K. Barreau, and J. Eyer, The Neurofilament-Derived Peptide NFL-TBS. 40-63 Targets Neural Stem Cells and Affects Their Properties, Stem cells translational medicine, vol.5, pp.901-913, 2016.

R. Berges, Structure-function analysis of the glioma targeting NFL-TBS. 40-63 peptide corresponding to the tubulin-binding site on the light neurofilament subunit, PloS one, vol.7, issue.11, p.49436, 2012.

C. Lépinoux-chambaud and J. Eyer, The NFL-TBS. 40-63 anti-glioblastoma peptide enters selectively in glioma cells by endocytosis, International journal of pharmaceutics, vol.454, pp.738-747, 2013.

R. Rivalin, The NFL-TBS. 40-63 anti-glioblastoma peptide disrupts microtubule and mitochondrial networks in the T98G glioma cell line, PloS one, vol.9, p.98473, 2014.

H. E. Shenghui, D. Nakada, and S. J. Morrison, Mechanisms of stem cell self-renewal, Annual Review of Cell and Developmental, vol.25, pp.377-406, 2009.

A. J. Wagers and I. L. Weissman, Plasticity of adult stem cells, Cell, vol.116, issue.5, pp.639-648, 2004.

U. Bissels, D. Eckardt, and A. Bosio, Characterization and classification of stem cells, Regenerative Medicine: From Protocol to Patient, pp.155-176, 2013.

E. D. Mariano, M. J. Teixeira, S. K. Marie, and G. Lepski, Adult stem cells in neural repair: Current options, limitations and perspectives, World journal of stem cells, vol.7, issue.2, p.477, 2015.

S. J. Morrison and A. C. Spradling, Stem cells and niches: mechanisms that promote stem cell maintenance throughout life, Cell, vol.132, issue.4, pp.598-611, 2008.

F. H. Gage, Mammalian neural stem cells, Science, vol.287, issue.5457, pp.1433-1438, 2000.

L. C. Fuentealba, K. Obernier, and A. Alvarez-buylla, Adult neural stem cells bridge their niche, Cell stem cell, vol.10, issue.6, pp.698-708, 2012.

H. Sabelström, M. Stenudd, and J. Frisén, Neural stem cells in the adult spinal cord, Experimental neurology, vol.260, pp.44-49, 2014.

A. M. Bond, G. L. Ming, and H. Song, Adult mammalian neural stem cells and neurogenesis: five decades later, Cell stem cell, vol.17, issue.4, pp.385-395, 2015.

S. Gil-perotín, M. Duran-moreno, A. Cebrián-silla, M. Ramírez, P. García-belda et al., Adult neural stem cells from the subventricular zone: a review of the neurosphere assay, The Anatomical Record, vol.296, issue.9, pp.1435-1452, 2013.

K. Hinsch and G. K. Zupanc, Isolation, cultivation, and differentiation of neural stem cells from adult fish brain, Journal of neuroscience methods, vol.158, issue.1, pp.75-88, 2006.

A. M. Bond, G. L. Ming, and H. Song, Adult mammalian neural stem cells and neurogenesis: five decades later, Cell stem cell, vol.17, issue.4, pp.385-395, 2015.

S. Suksuphew and P. Noisa, Neural stem cells could serve as a therapeutic material for age-related neurodegenerative diseases, World journal of stem cells, vol.7, issue.2, p.502, 2015.

L. S. Mendonça, C. Nóbrega, H. Hirai, B. K. Kaspar, and L. P. De-almeida, Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice, Brain, vol.138, issue.2, pp.320-335, 2015.

H. Iwai, H. Shimada, S. Nishimura, Y. Kobayashi, G. Itakura et al., Allogeneic Neural Stem/Progenitor Cells Derived From Embryonic Stem Cells Promote Functional Recovery After Transplantation Into Injured Spinal Cord of Nonhuman Primates, Stem cells translational medicine, p.2014, 2015.

W. Zhang, G. J. Gu, X. Shen, Q. Zhang, G. M. Wang et al., Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer's disease-like pathology, Neurobiology of aging, vol.36, issue.3, pp.1282-1292, 2015.

O. Lindvall, Treatment of Parkinson's disease using cell transplantation, Philosophical Transactions of the Royal Society B, vol.370, 1680.

J. A. Kim, S. Ha, K. Y. Shin, S. Kim, K. J. Lee et al., Neural stem cell transplantation at critical period improves learning and memory through restoring synaptic impairment in Alzheimer's disease mouse model, Cell death & disease, vol.6, issue.6, p.1789, 2015.

C. A. Herberts, M. S. Kwa, and H. P. Hermsen, Risk factors in the development of stem cell therapy, Journal of Translational Medicine, vol.9, issue.1, p.29, 2011.

B. Lo and L. Parham, Ethical issues in stem cell research, 2013.

C. Rochette-egly, Retinoic acid signaling and mouse embryonic stem cell differentiation: Cross talk between genomic and non-genomic effects of RA, Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, issue.1, pp.66-75, 2015.

S. M. Chambers, Y. Mica, G. Lee, L. Studer, and M. J. Tomishima, Dual-SMAD inhibition/WNT activation-based methods to induce neural crest and derivatives from human pluripotent stem cells, Human Embryonic Stem Cell Protocols, pp.329-343, 2016.

A. Bocquet, R. Berges, R. Frank, P. Robert, A. C. Peterson et al., Neurofilaments bind tubulin and modulate its polymerization, Journal of Neuroscience, vol.29, pp.11043-11054, 2009.

C. Lépinoux-chambaud, K. Barreau, and J. Eyer, The neurofilament-derived peptide NFL-TBS.40-63 targets neural stem cells and affects their properties, Stem Cells Transl Med, 2016.

R. Berges, J. Balzeau, A. C. Peterson, and J. Eyer, A tubulin binding peptide targets glioma cells disrupting their microtubules, blocking migration, and inducing apoptosis, Molecular Therapy, vol.20, issue.7, pp.1367-1377, 2012.

C. Lépinoux-chambaud and J. Eyer, The NFL-TBS. 40-63 anti-glioblastoma peptide enters selectively in glioma cells by endocytosis, International journal of pharmaceutics, vol.454, issue.2, pp.738-747, 2013.

J. Balzeau, M. Pinier, R. Berges, P. Saulnier, J. P. Benoit et al., The effect of functionalizing lipid nanocapsules with NFL-TBS. 40-63 peptide on their uptake by glioblastoma cells, Biomaterials, vol.34, issue.13, pp.3381-3389, 2013.

R. Rivalin, C. Lepinoux-chambaud, J. Eyer, and F. Savagner, The NFL-TBS. 40-63 antiglioblastoma peptide disrupts microtubule and mitochondrial networks in the T98G glioma cell line, PloS ONE, vol.9, issue.6, p.98473, 2014.

C. Fressinaud and J. Eyer, Neurofilaments and NFL-TBS. 40-63 peptide penetrate oligodendrocytes through clathrin-dependent endocytosis to promote their growth and survival in vitro, Neuroscience, vol.298, pp.42-51, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392420

C. Fressinaud and J. Eyer, Neurofilament-tubulin binding site peptide NFL-TBS. 40-63 increases the differentiation of oligodendrocytes in vitro and partially prevents them from lysophosphatidyl choline toxiciy, Journal of neuroscience research, vol.92, issue.2, pp.243-253, 2014.

R. Berges, J. Balzeau, M. Takahashi, C. Prevost, and J. Eyer, Structure-function analysis of the glioma targeting NFL-TBS. 40-63 peptide corresponding to the tubulin-binding site on the light neurofilament subunit, PLoS ONE, vol.7, issue.11, p.49436, 2012.

B. Heurtault, P. Saulnier, B. Pech, J. E. Proust, J. Richard et al., Lipidic nanocapsules: preparation process and use as Drug Delivery Systems

I. Minkov, T. Ivanova, I. Panaiotov, J. Proust, and P. Saulnier, Reorganization of lipid nanocapsules at air-water interface: Part 2. Properties of the formed surface film, Colloids and Surfaces B: Biointerfaces, vol.44, issue.4, pp.197-203, 2005.

K. Shinoda and H. Saito, The stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers: the emulsification by PIT-method, Journal of Colloid and Interface Science, vol.30, issue.2, pp.258-263, 1969.

N. T. Huynh, C. Passirani, P. Saulnier, and J. P. Benoit, Lipid nanocapsules: A new platform for nanomedicine, International Journal of Pharmaceutics, vol.379, pp.201-209, 2009.

N. Anton, P. Saulnier, C. Gaillard, E. Porcher, S. Vrignaud et al., Aqueous-core lipid nanocapsules for encapsulating fragile hydrophilic and/or lipophilic molecules, Langmuir, vol.25, issue.19, pp.11413-11419, 2009.

G. Bastiat, C. O. Pritz, C. Roider, F. Fouchet, E. Lignières et al., A new tool to ensure the fluorescent dye labeling stability of nanocarriers: a real challenge for fluorescence imaging, Journal of Controlled Release, vol.170, issue.3, pp.334-342, 2013.

D. Carradori, K. Barreau, and J. Eyer, The carbocyanine dye DiD labels in vitro and in vivo neural stem cells of the subventricular zone as well as myelinated structures following in vivo injection in the lateral ventricle, Journal of neuroscience research, vol.94, issue.2, pp.139-148, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01412578

J. D. Ramsey and N. H. Flynn, Cell-penetrating peptides transport therapeutics into cells, Pharmacology & therapeutics, vol.154, pp.78-86, 2015.

S. M. Farkhani, A. Valizadeh, H. Karami, S. Mohammadi, N. Sohrabi et al., Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules, Peptides, vol.57, pp.78-94, 2014.

D. Lee, S. Pacheco, and M. Liu, Biological effects of Tat cell-penetrating peptide: a multifunctional Trojan horse?, Nanomedicine, vol.9, issue.1, pp.5-7, 2014.

J. Balzeau, A. Peterson, and J. Eyer, The vimentin-tubulin binding site peptide (Vim-TBS. 58-81) crosses the plasma membrane and enters the nuclei of human glioma cells, International journal of pharmaceutics, vol.423, issue.1, pp.77-83, 2012.

W. Guo, N. E. Patzlaff, E. M. Jobe, and X. Zhao, Isolation of multipotent neural stem or progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse, Nature protocols, vol.7, issue.11, pp.2005-2012, 2012.

J. P. Hugnot, Isolate and culture neural stem cells from the mouse adult spinal cord, Neural Progenitor Cells, pp.53-63, 2013.

M. Rizzuti, M. Nizzardo, C. Zanetta, A. Ramirez, and S. Corti, Therapeutic applications of the cellpenetrating HIV-1 Tat peptide. Drug discovery today, vol.20, pp.76-85, 2015.

A. Saini, R. Jaswal, R. Negi, R. , &. S. Nandel et al., Insights on the structural characteristics of Vim-TBS (58-81) peptide for future applications as a cell penetrating peptide, Bioscience trends, vol.7, issue.5, pp.209-220, 2013.

N. Mody and I. , Establishing a physiological environment for visualized in vitro brain slice recordings by increasing oxygen supply and modifying aCSF content, Synthetic aCSF was prepared according to Hájos, vol.183, pp.107-113, 2009.

R. A. Sperling and W. J. Parak, Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.368, pp.1333-1383, 1915.

B. Langelier, A. Linard, C. Bordat, M. Lavialle, and C. Heberden, Long chain-polyunsaturated fatty acids modulate membrane phospholipid composition and protein localization in lipid rafts of neural stem cell cultures, Journal of cellular biochemistry, vol.110, issue.6, pp.1356-1364, 2010.

S. Hirsjärvi, C. Belloche, F. Hindré, E. Garcion, and J. P. Benoit, Tumour targeting of lipid nanocapsules grafted with cRGD peptides, European Journal of Pharmaceutics and Biopharmaceutics, vol.87, issue.1, pp.152-159, 2014.

A. Clavreul, A. Montagu, A. L. Lainé, C. Tétaud, N. Lautram et al., Targeting and treatment of glioblastomas with human mesenchymal stem cells carrying ferrociphenol lipid nanocapsules, International journal of nanomedicine, vol.10, p.1259, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392451

L. Kou, J. Sun, Y. Zhai, and Z. He, The endocytosis and intracellular fate of nanomedicines: Implication for rational design, Asian Journal of Pharmaceutical Sciences, vol.8, issue.1, pp.1-10, 2013.

T. Fujimoto, H. Kogo, R. Nomura, and T. Une, Isoforms of caveolin-1 and caveolar structure, Journal of Cell Science, vol.113, issue.19, pp.3509-3517, 2000.

V. Capilla-gonzalez, A. Cebrian-silla, H. Guerrero-cazares, J. M. Garcia-verdugo, and A. Quiñones-hinojosa, Age-related changes in astrocytic and ependymal cells of the subventricular zone, Glia, vol.62, issue.5, pp.790-803, 2014.

W. Murrell, Expansion of multipotent stem cells from the adult human brain, PloS one, vol.8, p.71334, 2013.

A. M. Bond, M. Guo-li, and H. Song, Adult mammalian neural stem cells and neurogenesis: five decades later, Cell Stem Cell, vol.17, pp.385-395, 2015.

A. Arvidsson, Neuronal replacement from endogenous precursors in the adult brain after stroke, Nature medicine, vol.8, pp.963-970, 2002.

D. Giuliani, NDP-?-MSH induces intense neurogenesis and cognitive recovery in Alzheimer transgenic mice through activation of melanocortin MC 4 receptors, Molecular and Cellular Neuroscience, vol.67, pp.13-21, 2015.

S. U. Kim, J. Hong, Y. B. Lee, and . Kim, Neural stem cell-based treatment for neurodegenerative diseases, Neuropathology, vol.33, pp.491-504, 2013.

D. Carradori, The therapeutic contribution of nanomedicine to treat neurodegenerative diseases via neural stem cell differentiation, Biomaterials, vol.123, pp.77-91, 2017.

C. A. Herberts, S. G. Marcel, . Kwa, P. H. Harm, and . Hermsen, Risk factors in the development of stem cell therapy, Journal of translational medicine, vol.9, p.29, 2011.

O. E. Simonson, The safety of human pluripotent stem cells in clinical treatment, Annals of medicine, vol.47, pp.370-380, 2015.

C. Xie, The effect of simvastatin treatment on proliferation and differentiation of neural stem cells after traumatic brain injury, Brain research, vol.1602, pp.1-8, 2015.

C. Saraiva, MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson's disease, Journal of Controlled Release, vol.235, pp.291-305, 2016.

K. Barreau, C. Lépinoux-chambaud, and E. Joël, Review of Clinical Trials Using Neural Stem Cells, JSM Biotechnology & Biomedical Engineering, vol.3, issue.3, 2016.

A. Bocquet, Neurofilaments bind tubulin and modulate its polymerization, Journal of Neuroscience, vol.29, pp.11043-11054, 2009.

C. Lépinoux-chambaud, K. Barreau, and J. Eyer, The Neurofilament-Derived Peptide NFL-TBS. 40-63 Targets Neural Stem Cells and Affects Their Properties, Stem cells translational medicine, vol.5, pp.901-913, 2016.

R. Berges, A tubulin binding peptide targets glioma cells disrupting their microtubules, blocking migration, and inducing apoptosis, Molecular Therapy, vol.20, pp.1367-1377, 2012.

C. Lépinoux-chambaud and J. Eyer, The NFL-TBS. 40-63 anti-glioblastoma peptide enters selectively in glioma cells by endocytosis, International journal of pharmaceutics, vol.454, pp.738-747, 2013.

J. Balzeau, The effect of functionalizing lipid nanocapsules with NFL-TBS. 40-63 peptide on their uptake by glioblastoma cells, Biomaterials, vol.34, pp.3381-3389, 2013.

R. Rivalin, The NFL-TBS. 40-63 anti-glioblastoma peptide disrupts microtubule and mitochondrial networks in the T98G glioma cell line, PloS one, vol.9, p.98473, 2014.

C. Fressinaud and J. Eyer, Neurofilaments and NFL-TBS. 40-63 peptide penetrate oligodendrocytes through clathrin-dependent endocytosis to promote their growth and survival in vitro, Neuroscience, vol.298, pp.42-51, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392420

J. D. Ramsey and N. H. Flynn, Cell-penetrating peptides transport therapeutics into cells, Pharmacology & therapeutics, vol.154, pp.78-86, 2015.

R. Berges, Structure-function analysis of the glioma targeting NFL-TBS. 40-63 peptide corresponding to the tubulin-binding site on the light neurofilament subunit, PloS one, vol.7, issue.11, p.49436, 2012.

N. Huynh and . Trinh, Lipid nanocapsules: a new platform for nanomedicine, International journal of pharmaceutics, vol.379, pp.201-209, 2009.

D. Carradori, NFL-lipid nanocapsules for brain neural stem cell targeting in vitro and in vivo, Journal of Controlled Release, vol.238, pp.253-262, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01392425

B. Langelier, Long chain-polyunsaturated fatty acids modulate membrane phospholipid composition and protein localization in lipid rafts of neural stem cell cultures, Journal of cellular biochemistry, vol.110, pp.1356-1364, 2010.

B. Heurtault, P. Saulnier, B. Pech, J. E. Proust, J. Richard et al., Lipidic nanocapsules: preparation process and use as Drug Delivery Systems

M. J. Hope, Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential, Biochimica et Biophysica Acta (BBA)-Biomembranes, vol.812, pp.55-65, 1985.

G. R. Bartlett, Phosphorus assay in column chromatography, Journal of Biological Chemistry, vol.234, pp.466-468, 1959.

W. Guo, Isolation of multipotent neural stem or progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse, Nature protocols, vol.7, issue.11, pp.2005-2012, 2012.

J. Hugnot, Isolate and culture neural stem cells from the mouse adult spinal cord, Neural progenitor cells: methods and protocols, pp.53-63, 2013.

J. M. Suski, Isolation of plasma membrane-associated membranes from rat liver, nature protocols, vol.9, pp.312-322, 2014.

V. Mutemberezi, Development and validation of an HPLC-MS method for the simultaneous quantification of key oxysterols, endocannabinoids, and ceramides: variations in metabolic syndrome, Analytical and bioanalytical chemistry, vol.408, pp.733-745, 2016.

T. Parasassi, Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence, Biophysical journal, vol.60, pp.179-189, 1991.

Y. Jia, Comparison of cell membrane damage induced by the therapeutic ultrasound on human breast cancer MCF-7 and MCF-7/ADR cells, Ultrason Sonochem, pp.128-163, 2015.

T. P. Etzerodt, A GALA lipopeptide mediates pH-and membrane charge dependent fusion with stable giant unilamellar vesicles, Soft Matter, vol.8, pp.5933-5939, 2012.

A. Cuco, Interaction of the Alzheimer A? (25-35) peptide segment with model membranes, Colloids and Surfaces B: Biointerfaces, vol.141, pp.10-18, 2016.

A. Magarkar, Cholesterol level affects surface charge of lipid membranes in saline solution, Scientific reports, vol.4, p.5005, 2014.

. Van-blitterswijk and J. Wim, Ceramide: second messenger or modulator of membrane structure and dynamics, Biochemical Journal, vol.369, pp.199-211, 2003.

L. Silva, Ceramide-platform formation and-induced biophysical changes in a fluid phospholipid membrane, Molecular membrane biology, vol.23, issue.2, pp.137-148, 2006.

. Van-meer, D. R. Gerrit, G. W. Voelker, and . Feigenson, Membrane lipids: where they are and how they behave, Nature reviews Molecular cell biology, vol.9, pp.112-124, 2008.

J. M. Holopainen, Y. A. Jukka, . Lehtonen, . Paavo, and . Kinnunen, Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes, Chemistry and physics of lipids, vol.88, pp.1-13, 1997.

C. Peetla, S. Vijayaraghavalu, and V. Labhasetwar, Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles, vol.13, pp.1686-1698, 2013.

D. M. Owen, Quantitative imaging of membrane lipid order in cells and organisms, Nature protocols, vol.7, issue.1, pp.24-35, 2012.

L. A. Bagatolli, LAURDAN fluorescence properties in membranes: a journey from the fluorometer to the microscope, pp.3-35, 2012.

E. R. Catapano, Solid character of membrane ceramides: a surface rheology study of their mixtures with sphingomyelin, Biophysical journal, vol.101, pp.2721-2730, 2011.

S. N. Pinto, A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains, Biochimica et Biophysica Acta (BBA)-Biomembranes, vol.1828, pp.2099-2110, 2013.

E. Kovács, Interaction of gentamicin polycation with model and cell membranes, Bioelectrochemistry, vol.87, pp.230-235, 2012.

A. D. Bangham, M. W. Hill, and N. G. Miller, Preparation and use of liposomes as models of biological membranes, pp.1-68, 1974.

J. Kristl, Interactions of solid lipid nanoparticles with model membranes and leukocytes studied by EPR, International journal of pharmaceutics, vol.256, pp.133-140, 2003.

. Van-meer, D. R. Gerrit, G. W. Voelker, and . Feigenson, Membrane lipids: where they are and how they behave, Nature reviews Molecular cell biology, vol.9, pp.112-124, 2008.

F. Madani, Mechanisms of cellular uptake of cell-penetrating peptides, Journal of Biophysics, 2011.

D. Smith, Passive lipoidal diffusion and carrier-mediated cell uptake are both important mechanisms of membrane permeation in drug disposition, Molecular pharmaceutics, vol.11, pp.1727-1738, 2014.

F. Contreras and . -xabier, Sphingosine increases the permeability of model and cell membranes, Biophysical journal, vol.90, issue.11, pp.4085-4092, 2006.

H. D. Herce, Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides, Biophysical journal 97, vol.7, pp.1917-1925, 2009.

J. Pae, Translocation of cell-penetrating peptides across the plasma membrane is controlled by cholesterol and microenvironment created by membranous proteins, Journal of Controlled Release, vol.192, pp.103-113, 2014.

N. Biotinylated, Kolliphor HS®, L-?-Lysolecithin, poly-D-Lysine hydrobromide, retinoic acid and Rhodamine B were purchased from Sigma, Primary antibodies mouse anti-PAN neurofilament and mouse anti-bIII tubulin were purchased from Biolegend

, Secondary antibodyes Alexa 488 anti-mouse, Alexa 488 antirabbit, Alexa 594 anti-mouse and Alexa 594 anti-rabbit were purchased from ThermoFisher Scientific, Primary antibodyes rabbit anti-Nestin and rabbit anti-GFAP were purchased from Abcam

. Dapi, P. /. Hepes, N. Strept, . Pyruvate, and . B27, DNAse and ProLong Gold antifade were purchased from Thermo Fisher Scientific, CellTiter 96® AQueous One Solution Cell Proliferation Assay was purchased from Promega

, The isolation of NSC and in vivo experiments were performed according to Directive 2010/63/EU, to guidelines of the Belgian Government following the approval by the ethical committee for animal care of the faculty of medicine of the, Formaldeyde solution 37% was purchased from Carl Roth

, Preparation of RA-loaded NFL-LNCs NFL-LNCs. Stok-LNCs were prepared following the protocol developed by

K. Briefly and . Hs15®, Labrafac® (1.028 g) and water (2.962 g) were mixed under gentle magnetic stirring at 30°C for 5 min. The solution was progressively heated (90 °C) and cooled (60 °) three times. During the last cooling, cold water (12.5 g at 4 °C) was added at 72-74 °C under high speed stirring, Lipoïd® (0.075 g), NaCl (0.089 g)

K. I. Vadakkan, Neurodegenerative disorders share common features of "loss of function" states of a proposed mechanism of nervous system functions, Biomedicine & Pharmacotherapy, vol.83, pp.412-430, 2016.

K. J. Barnham, C. L. Masters, and A. I. Bush, Neurodegenerative diseases and oxidative stress, Nature reviews Drug discovery, vol.3, pp.205-214, 2004.

U. Fünfschilling, Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity, Nature, vol.485, pp.517-521, 2012.

B. Ettle, C. M. Johannes, J. Schlachetzki, and . Winkler, Oligodendroglia and myelin in neurodegenerative diseases: more than just bystanders?, Molecular neurobiology, vol.53, pp.3046-3062, 2016.

S. K. Vishwakarma, Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: A review, Journal of advanced research, vol.5, pp.277-294, 2014.

W. Murrell, Expansion of multipotent stem cells from the adult human brain, PloS one, vol.8, p.71334, 2013.

D. Carradori, The therapeutic contribution of nanomedicine to treat neurodegenerative diseases via neural stem cell differentiation, Biomaterials, vol.123, pp.77-91, 2017.

C. A. Herberts, S. G. Marcel, . Kwa, P. H. Harm, and . Hermsen, Risk factors in the development of stem cell therapy, Journal of translational medicine, vol.9, p.29, 2011.

O. E. Simonson, The safety of human pluripotent stem cells in clinical treatment, Annals of medicine, vol.47, pp.370-380, 2015.

A. Bocquet, Neurofilaments bind tubulin and modulate its polymerization, Journal of Neuroscience, vol.29, pp.11043-11054, 2009.

C. Lépinoux-chambaud, K. Barreau, and J. Eyer, The Neurofilament-Derived Peptide NFL-TBS. 40-63 Targets Neural Stem Cells and Affects Their Properties, Stem cells translational medicine, vol.5, pp.901-913, 2016.

R. Berges, Structure-function analysis of the glioma targeting NFL-TBS. 40-63 peptide corresponding to the tubulin-binding site on the light neurofilament subunit, PloS one, vol.7, issue.11, p.49436, 2012.

D. Carradori, NFL-lipid nanocapsules for brain neural stem cell targeting in vitro and in vivo, Journal of Controlled Release, vol.238, pp.253-262, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01392425

N. Huynh and . Trinh, Lipid nanocapsules: a new platform for nanomedicine, International journal of pharmaceutics, vol.379, pp.201-209, 2009.

A. Béduneau, Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab'fragments, Biomaterials, vol.28, pp.4978-4990, 2007.

M. A. Curtis, L. M. Richard, P. S. Faull, and . Eriksson, The effect of neurodegenerative diseases on the subventricular zone, Nature Reviews Neuroscience, vol.8, pp.712-723, 2007.

O. Gonzalez-perez and A. Alvarez-buylla, Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor, Brain research reviews, vol.67, pp.147-156, 2011.

T. Maki, Mechanisms of oligodendrocyte regeneration from ventricular-subventricular zonederived progenitor cells in white matter diseases, Frontiers in cellular neuroscience, vol.7, p.275, 2013.

J. Corcoran and M. Maden, Nerve growth factor acts via retinoic acid synthesis to stimulate neurite outgrowth, Nature neuroscience, vol.2, issue.4, pp.307-308, 1999.

G. Bain, W. J. Ray, M. Yao, and D. I. Gottlieb, Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture. Biochemical and biophysical research communications, vol.223, pp.691-694, 1996.

Y. Okada, T. Shimazaki, G. Sobue, and H. Okano, Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells, Developmental biology, vol.275, issue.1, pp.124-142, 2004.

M. Gong, Y. Bi, W. Jiang, Y. Zhang, L. Chen et al., Retinoic acid receptor beta mediates all-trans retinoic acid facilitation of mesenchymal stem cells neuronal differentiation. The international journal of biochemistry & cell biology, vol.45, pp.866-875, 2013.

S. Zhang, X. Chen, Y. Hu, J. Wu, Q. Cao et al., All-trans retinoic acid modulates Wnt3A-induced osteogenic differentiation of mesenchymal stem cells via activating the PI3K/AKT/GSK3 signalling pathway, Molecular and cellular endocrinology, vol.422, pp.243-253, 2016.

Z. Y. Su, Y. Li, X. Zhao, and M. Zhang, All-trans retinoic acid promotes smooth muscle cell differentiation of rabbit bone marrow-derived mesenchymal stem cells, Journal of Zhejiang University Science B, vol.2010, issue.7, pp.489-496

P. Douvaras, Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells, Stem Cell Reports, vol.3, pp.250-259, 2014.

S. F. Davis, Isolation of adult rhesus neural stem and progenitor cells and differentiation into immature oligodendrocytes, Stem cells and development, vol.15, issue.2, pp.191-199, 2006.

K. A. Sharow, B. Temkin, and M. A. Asson-batres, Retinoic acid stability in stem cell cultures, International Journal of Developmental Biology, vol.2012, issue.4, pp.273-278

H. Huang, Co-delivery of all-trans-retinoic acid enhances the anti-metastasis effect of albuminbound paclitaxel nanoparticles, Chemical Communications, vol.53, pp.212-215, 2017.

R. Ferreira, M. C. Fonseca, T. Santos, J. Sargento-freitas, R. Tjeng et al.,

L. Ferreira and . Bernardino, Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia, Nanoscale, vol.8, pp.8126-8137, 2016.

B. Heurtault, P. Saulnier, B. Pech, J. E. Proust, J. Richard et al., Lipidic nanocapsules: preparation process and use as Drug Delivery Systems

W. Guo, Isolation of multipotent neural stem or progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse, Nature protocols, vol.7, issue.11, pp.2005-2012, 2012.

K. Ito and T. Suda, Metabolic requirements for the maintenance of self-renewing stem cells, Nature reviews Molecular cell biology, vol.15, pp.243-256, 2014.

F. Xiong, Optimal time for passaging neurospheres based on primary neural stem cell cultures, Cytotechnology, vol.63, pp.621-631, 2011.

E. Pastrana, V. Silva-vargas, and F. Doetsch, Eyes wide open: a critical review of sphereformation as an assay for stem cells, Cell stem cell, vol.8, pp.486-498, 2011.

C. B. Johansson, Identification of a neural stem cell in the adult mammalian central nervous system, Cell, vol.96, pp.25-34, 1999.

A. I. Sayegh and R. C. Ritter, Morphology and distribution of nitric oxide synthase-, neurokinin-1 receptor-, calretinin-, calbindin-, and neurofilament-M-immunoreactive neurons in the myenteric and submucosal plexuses of the rat small intestine, The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, vol.271, pp.209-216, 2003.

B. Ranscht, Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside, Proceedings of the National Academy of Sciences, vol.79, pp.2709-2713, 1982.

K. Xu, Glial fibrillary acidic protein is necessary for mature astrocytes to react to ?-amyloid, Glia, vol.25, pp.390-403, 1999.

B. Alghamdi and R. Fern, Phenotype overlap in glial cell populations: astroglia, oligodendroglia and NG-2 (+) cells, Frontiers in neuroanatomy, vol.9, 2015.

V. Mahabadi and . Pirhajati, In Vitro Differentiation of Neural Stem Cells into Noradrenergic-Like Cells, International journal of molecular and cellular medicine, vol.4, p.22, 2015.

T. Santos, R. Ferreira, J. Maia, F. Agasse, S. Xapelli et al., Polymeric nanoparticles to control the differentiation of neural stem cells in the subventricular zone of the brain, ACS Nano, vol.6, pp.10463-10474, 2012.

C. Saraiva, J. Paiva, T. Santos, L. Ferreira, and L. Bernardino, MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson's disease, J. Control. Rel, vol.235, pp.291-305, 2016.

S. K. Tiwari, S. Agarwal, B. Seth, A. Yadav, S. Nair et al., Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer's disease model via canonical Wnt/?-catenin pathway, ACS Nano, vol.8, pp.76-103, 2013.

J. -. Chang and . Hsuan, Dual Delivery of siRNA and Plasmid DNA using Mesoporous Silica Nanoparticles to Differentiate Induced Pluripotent Stem Cells into Dopaminergic Neurons, Journal of Materials Chemistry B, 2017.

L. N. Zamproni, Injection of SDF-1 loaded nanoparticles following traumatic brain injury stimulates neural stem cell recruitment, International journal of pharmaceutics, vol.519, pp.323-331, 2017.

G. Elvira, B. Moreno, I. D. Valle, J. A. Garcia-sanz, M. Canillas et al., Targeting neural stem cells with titanium dioxide nanoparticles coupled to specific monoclonal antibodies, J. Biomater. App, vol.26, pp.1069-1089, 2011.

A. Béduneau, Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab'fragments, Biomaterials, vol.28, pp.4978-4990, 2007.

D. A. Lim and A. Alvarez-buylla, The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis, Cold Spring Harbor perspectives in biology, vol.8, p.18820, 2016.

M. A. Curtis, L. M. Richard, P. S. Faull, and . Eriksson, The effect of neurodegenerative diseases on the subventricular zone, Nature Reviews Neuroscience, vol.8, pp.712-723, 2007.

J. De-la-serna and . Bernardino, There Is No Simple Model of the Plasma Membrane Organization, Frontiers in Cell and Developmental Biology, vol.4, 2016.

D. A. Los and N. Murata, Membrane fluidity and its roles in the perception of environmental signals, Biochimica et Biophysica Acta (BBA)-Biomembranes, vol.1666, pp.142-157, 2004.

C. Mencarelli and P. Martinez-martinez, Ceramide function in the brain: when a slight tilt is enough, Cellular and Molecular Life Sciences, vol.70, issue.2, pp.181-203, 2013.

S. Garg, Membrane fluidity in cancer cell membranes as a therapeutic target: validation using BPM 31510, Biophysical Journal, vol.108, p.246, 2015.

J. Maia, T. Santos, S. Aday, F. Agasse, L. Cortes et al., Controlling the neuronal differentiation of stem cells by the intracellular delivery of retinoic acid-loaded nanoparticles, ACS Nano, vol.5, pp.97-106, 2010.

S. A. Papadimitriou, M. P. Robin, D. Ceric, R. K. O'reilly, S. Marino et al., Fluorescent polymeric nanovehicles for neural stem cell modulation, Nanoscale, vol.8, pp.17340-17349, 2016.

L. De-hoz and M. Simons, The emerging functions of oligodendrocytes in regulating neuronal network behaviour, Bioessays, vol.37, pp.60-69, 2015.

J. Brettschneider, Axonal damage markers in cerebrospinal fluid are increased in ALS, Neurology, vol.66, issue.6, pp.852-856, 2006.

O. Gartziandia, Chitosan coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration, Colloids and Surfaces B: Biointerfaces, vol.134, pp.304-313, 2015.

A. Vonarbourg, Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake, Journal of biomedical materials research Part A, vol.78, issue.3, pp.620-628, 2006.

E. Nance, Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood? brain barrier using MRI-guided focused ultrasound, Journal of controlled release, vol.189, pp.123-132, 2014.

F. Re, Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model, Nanomedicine: Nanotechnology, Biology and Medicine, vol.7, pp.551-559, 2011.

G. Bastiat, A new tool to ensure the fluorescent dye labeling stability of nanocarriers: a real challenge for fluorescence imaging, Journal of Controlled Release, vol.170, pp.334-342, 2013.

. Ballot and . Sandrine, 99mTc/188Re-labelled lipid nanocapsules as promising radiotracers for imaging and therapy: formulation and biodistribution, European journal of nuclear medicine and molecular imaging, vol.33, issue.5, pp.602-607, 2006.

A. Chattopadhyay and J. Ruysschaert, Membrane proteins occupy a central role in cellular physiology. Introduction, Biochimica et biophysica acta, vol.1848, p.1727, 2015.

Y. Zhao, Proteomic analysis of integral plasma membrane proteins, Analytical chemistry, vol.76, pp.1817-1823, 2004.

G. Jung, Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21 Cip/WAF1 pathway, BMC cell biology, vol.9, p.66, 2008.

N. Kamei, BDNF, NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures, Spine, vol.32, pp.1272-1278, 2007.

D. T. Dexter, Clinically available iron chelators induce neuroprotection in the 6-OHDA model of Parkinson's disease after peripheral administration, Journal of neural transmission, vol.118, pp.223-231, 2011.

W. Brück, The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage, Journal of neurology, vol.252, pp.3-9, 2005.

L. Minghetti, Role of inflammation in neurodegenerative diseases, Current opinion in neurology, vol.18, pp.315-321, 2005.

Z. Xu, Design, synthesis and evaluation of a series of non-steroidal anti-inflammatory drug conjugates as novel neuroinflammatory inhibitors, International immunopharmacology, vol.25, pp.528-537, 2015.

H. Yang, Dopaminergic Neuronal Differentiation from the Forebrain-Derived Human Neural Stem Cells Induced in Cultures by Using a Combination of BMP-7 and Pramipexole with Growth Factors, Frontiers in neural circuits, vol.10, 2016.

Y. Yan, Neurotrophin-3 promotes proliferation and cholinergic neuronal differentiation of bone marrow-derived neural stem cells via notch signaling pathway, Life sciences, vol.166, pp.131-138, 2016.

J. R. Plemel, W. Q. Liu, and V. W. Yong, Remyelination therapies: a new direction and challenge in multiple sclerosis, Nature Reviews Drug Discovery, 2017.

A. G. Atanasov, Discovery and resupply of pharmacologically active plant-derived natural products: A review, Biotechnology advances, vol.33, pp.1582-1614, 2015.

, Avenue des Constellations 1200

, Citizenship: Italian dario.carradori@uclouvain.be

. Dario-carradori-pharmacist, PhD Student EDUCATION/FORMATION 10/2013-present: Double PhD in Life and Health Sciences at Université d'Angers

, New nanoparticle-based drug delivery systems for neural stem cell targeting and difefrentiation" Thesis director: Dr. Joel Eyer. Thesis co-director: Dr. Anne des Rieux. Supervisors : Prof. Patrick Saulnier and Prof. Véronique Préat Research domain: drug delivery, nanomedicine, neural stem cells, neurodegenerative diseases 09/2006-05/2012: Combined Bachelor and Master in Pharmaceutical Chemistry and Technology at Università degli Studi di Camerino, Nanoparticles for brain targeting" Research domain: drug delivery, nanomedicine, neurodegenerative diseases During this period: Stage (6 months) at Institut Galien Paris-Sud, 2013.

, Design and Realization in animal experimentation, Nantes

, Habilitation to the profession of Pharmacist in Italy

, Alzheimer's disease, blood-brain barrier, nanomedicine 2015 (6 months): Traineeship at Camerino Hospital Pharmacy (Camerino, Italy) RESEACRH FIELDS Drug delivery, Neural stem cells, Neurodegenerative diseases JOB-RELATED SKILLS LANGUAGES: Italian (mother tongue), English (Prof. working proficiency)

. Informatics:-office, G. Imagej, and . Prism, Polymeric synthesis (basic), Fluorescence activated cell sorting, Immunocytochemistry, Immunohistochemistry, Analytical chemistry, qPCR, ELISA, Electrophoresis, Purification methods (dialysis, gel filtration, ultracentrifugation), In vivo experiments (biodistribution, pharmacological efficacy, surgery), Scientific writing

, OTHERS: Networking, Team worker, Fast learner, Independent, Problem-solver, Efficient, Rigorous, Selfcritical

. Scholarships/grants,

, NFL-lipid nanocapsules target neural stem cells from the brain in vitro and in vivo, Mechanistic study on the interaction between PtX and neural stem cell cellular membranes, 2015.

, POSTERS -14 th European Symposium on Controlled Drug Delivery, 2016.

, th Nanofar Autumn School, 2015.