C. B. Carter and M. G. Norton, Ceramic Materials: Science and Engineering, 2007.

R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A, vol.32, pp.751-767, 1976.

D. De-faoite, D. J. Browne, F. R. Chang-díaz, and K. T. Stanton, A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics, J. Mater. Sci, vol.47, pp.4211-4235, 2012.

G. Fantozzi, S. L. Gallet, and J. Nièpce, Science & Technologies Céramiques, 2009.

. Alumine--cerafast,

G. Fantozzi, J. Niepce, and G. Bonnefont, Les céramiques industrielles: Propriétés, mise en forme et applications, Dunod, 2013.

N. Roussel, Optimisation du dopage d'alumines nanométriques et frittage par SPS : application aux céramiques transparentes, phd, 2013.

, Céramiques techniques, usinage des céramiques

M. Gábor, Étude du rôle des défauts ponctuels dans la thermoluminescence de monocristaux d'alumine-alpha. Effets des traitements thermiques, phdthesis

I. Ganesh, A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications, Int. Mater. Rev, vol.58, pp.63-112, 2013.

N. Benameur, Élaboration et caractérisations d'un spinelle polycristallin à grains fins transparent dans le visible et l'infrarouge, 2009.

C. Warner, T. Hartnett, and D. Fisher, SPIE Proceedings "Window and Dome Technologies and Materials IX, vol.5786, 2005.

N. Corbin, Aluminium Oxynitride Spinel : A review, J. Eur. Ceram. Soc, vol.5, pp.143-154, 1989.

X. Liu, F. Chen, and F. Zhang, Hard Transparent AlON Ceramic for visible/IR windows, Int. J. of Refractory Metals and Hard Materials, vol.39, pp.38-43, 2013.

D. Harris, Materials for Infrared Windows and Domes : Properties and Performance, 1999.

, Références Bibliographiques

G. Yttrium-aluminium, YAG) Optical Material

A. Ikesue, I. Furusato, and K. Kamata, Fabrication of Polycrystal line, Transparent YAG Ceramics by a Solid-State Reaction Method, J. Am. Ceram. Soc, vol.78, pp.225-228, 1995.

S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang et al., Transparent ceramics: Processing, materials and applications, vol.41, pp.20-54, 2013.

. Saphir--cristaux, Céramique industriels et Verre -Goodfellow-Ceramics

A. Goldstein, Correlation between MgAl2O4-spinel structure, processing factors and functional properties of transparent parts (progress review), J. Eur. Ceram. Soc, vol.32, pp.2869-2886, 2012.

F. A. Kröger and H. J. Vink, Relations between the concentrations of imperfections in solids, J. Phys. Chem. Solids, vol.5, pp.208-223, 1958.

C. Ting and H. Lu, Defect Reactions and the Controlling Mechanism in the Sintering of Magnesium Aluminate Spinel, J. Am. Ceram. Soc, vol.82, pp.841-848, 1999.

J. A. Ball, S. T. Murphy, R. W. Grimes, D. Bacorisen, R. Smith et al., Defect processes in MgAl2O4 spinel, Solid State Sci, vol.10, pp.717-724, 2008.

R. Apetz and M. P. Van-bruggen, Transparent Alumina: A Light-Scattering Model, J. Am. Ceram. Soc, vol.86, pp.480-486, 2003.

A. Krell, J. Klimke, and T. Hutzler, Transparent compact ceramics: Inherent physical issues, Opt. Mater, vol.31, pp.1144-1150, 2009.

G. Bonnefont, G. Fantozzi, S. Trombert, and L. Bonneau, Fine-grained transparent MgAl2O4 spinel obtained by spark plasma sintering of commercially available nanopowders, Ceram. Int, vol.38, pp.131-140, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01834904

G. Cizéron, Le frittage sous son aspect physico-chimique, Ind. Céramique, 1968.

D. Bernache-assollant, Chimie-physique du frittage, Hermès, 1993.

, Frittage : aspects physico-chimiques -Partie 2 : frittage en phase liquide -Les différentes étapes du frittage en phase liquide

J. Haussonne, Références Bibliographiques, Céramiques et verres: principes et techniques d'élaboration, PPUR presses polytechniques, 2005.

, Effect of Change of Scale on Sintering Phenomena, J. Appl. Phys, vol.21, pp.301-303, 1950.

C. ,

C. Smith and . Zener, Grains, phases and interfaces : an interpretation of microstructure, Trans. Metall. Soc. AIME, pp.15-51, 1948.

D. Agrawal, J. Cheng, and R. Roy, Microwave reactive sintering to fully transparent aluminum oxynitride (ALON) ceramics, Ceram. Trans, vol.134, pp.587-593, 2002.

Y. Fang, R. Roy, D. K. Agrawal, and D. M. Roy, Transparent mullite ceramics from diphasic aerogels by microwave and conventional processings, Mater. Lett, vol.28, pp.11-15, 1996.

D. Huo, Y. Zheng, X. Sun, X. Li, and S. Liu, Preparation of transparent Y2O3 ceramic by slip casting and vacuum sintering, J. Rare Earths, vol.30, pp.57-62, 2012.

L. Ge, J. Li, Z. Zhou, B. Liu, T. Xie et al., Nd:YAG transparent ceramics fabricated by direct cold isostatic pressing and vacuum sintering, Opt. Mater, vol.50, pp.25-31, 2015.

R. J. Bratton, Translucent Sintered MgAl2O4, J. Am. Ceram. Soc, vol.57, pp.283-286, 1974.

J. Li, T. Ikegami, J. Lee, and T. Mori, Fabrication of Translucent Magnesium Aluminum Spinel Ceramics, J. Am. Ceram. Soc, vol.83, pp.2866-2868, 2000.

K. Hamano and S. Kanzaki, Fabrication of Transparent Spinel Ceramics by Reactive Hotpressing, J. Ceram. Assoc. Jpn, vol.85, pp.225-230, 1977.

L. Esposito, A. Piancastelli, and S. Martelli, Production and characterization of transparent MgAl2O4 prepared by hot pressing, J. Eur. Ceram. Soc, vol.33, pp.737-747, 2013.

S. S. Balabanov, R. P. Yavetskiy, A. V. Belyaev, E. M. Gavrishchuk, V. V. Drobotenko et al.,

A. V. Evdokimov, O. V. Novikova, D. A. Palashov, V. G. Permin, and . Pimenov, Fabrication of transparent MgAl2O4 ceramics by hot-pressing of sol-gel-derived nanopowders, Ceram. Int, vol.41, pp.13366-13371, 2015.

A. Goldstein, J. Raethel, M. Katz, M. Berlin, and E. Galun, Transparent MgAl2O4/LiF ceramics by hot-pressing: Host-additive interaction mechanisms issue revisited, J. Eur. Ceram. Soc, vol.36, pp.1731-1742, 2016.

K. Waetzig and T. Hutzler, Highest UV-vis transparency of MgAl2O4 spinel ceramics prepared by hot pressing with LiF, J. Eur. Ceram. Soc, vol.37, pp.2259-2263, 2017.

D. ,

C. Tsai,

S. Wang,

S. Yang,

. Hsu, Hot isostatic pressing of MgAl2O4 spinel infrared windows, pp.709-719, 1994.

, Références Bibliographiques

G. Gilde, P. Patel, J. Sands, P. Patterson, D. Blodgett et al., Evaluation of Hot Isostatic Pressing Parameters on the Optical and Ballistic Properties of Spinel for Transparent Armor, 2006.

K. Tsukuma, Transparent MgAl2O4 spinel ceramics produced by HIP post-sintering, J. Ceram. Soc. Jpn, vol.114, pp.802-806, 2006.

A. Krell, T. Hutzler, and J. Klimke, Fine-grained transparent spinel windows by the processing of different nanopowders, J. Am. Ceram. Soc, vol.93, pp.2656-2666, 2010.

A. Goldstein, A. Goldenberg, and M. Hefetz, Transparent polycrystalline MgAl2O4 spinel with submicron grains, by low temperature sintering, J. Ceram. Soc. Jpn, vol.1371, pp.1281-1283, 2009.

N. Frage, S. Cohen, S. Meir, S. Kalabukhov, and M. P. Dariel, Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel, J. Mater. Sci, vol.42, pp.3273-3275, 2007.

K. Morita, B. Kim, K. Hiraga, and H. Yoshida, Fabrication of transparent MgAl2O4 spinel polycrystal by spark plasma sintering processing, Scr. Mater, vol.58, pp.1114-1117, 2008.

K. Morita, B. Kim, H. Yoshida, K. Hiraga, and Y. Sakka, Influence of pre-and post-annealing on discoloration of MgAl2O4 spinel fabricated by spark-plasma-sintering (SPS), J. Eur. Ceram. Soc, vol.36, pp.2961-2968, 2016.

M. Sokol, M. Halabi, S. Kalabukhov, and N. Frage, Nano-structured MgAl2O4 spinel consolidated by high pressure spark plasma sintering (HPSPS), J. Eur. Ceram. Soc, vol.37, 2017.

A. Goldstein, L. Giefman, and S. B. Ziv, Susceptor Assisted Microwave Sintering of Mgalo Powder at 2.45 Ghz, J. Mater. Sci. Lett, vol.17, pp.977-979, 1998.

J. Thuéry, Les micro-ondes et leurs effets sur la matière, 1989.

C. Dielectrique,

, Propriétés diélectriques des matériaux pour l'électrotechnique: ferroélectricité, isolateur, vol.4

D. , Microwave sintering of metal powders, Adv. Powder Metall, pp.361-379, 2013.

P. Chen and I. Chen, Sintering of Fine Oxide Powders: II, Sintering Mechanisms, J. Am. Ceram. Soc, vol.80, pp.637-645, 1997.

J. Prado-gonjal, R. Schmidt, and E. Morán, Microwave-Assisted Routes for the Synthesis of Complex Functional Oxides, Inorganics, vol.3, pp.101-117, 2015.

E. Savary, F. Gascoin, and S. Marinel, Fast synthesis of nanocrystalline Mg2Si by microwave heating: a new route to nano-structured thermoelectric materials, Dalton Trans. 39, pp.11074-11080, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00623191

F. Molinari, A. Maignan, S. Marinel, and E. Savary, Fast synthesis of SrFe12O19 hexaferrite in a single-mode microwave cavity, Ceram. Int, vol.43, pp.4229-4234, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02175413

D. , Microwave Sintering of Ceramics, Composites and Metallic Materials, and Melting of Glasses, Trans. Indian Ceram. Soc, vol.65, pp.129-144, 2006.

P. Colomban and J. C. Badot, Elaboration de ceramiques superconductrices anisotropes (Na + ? Al2O3) par chauffage microondes, Mater. Res. Bull, vol.13, pp.135-139, 1978.

J. Croquesel, D. Bouvard, J. Chaix, C. P. Carry, S. Saunier et al., Direct microwave sintering of pure alumina in a single mode cavity: Grain size and phase transformation effects, Acta Mater, vol.116, pp.53-62, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01446360

F. Zuo, A. Badev, S. Saunier, D. Goeuriot, R. Heuguet et al., Microwave versus conventional sintering: Estimate of the apparent activation energy for densification of ?-alumina and zinc oxide, J. Eur. Ceram. Soc, vol.34, pp.3103-3110, 2014.
URL : https://hal.archives-ouvertes.fr/emse-01063729

C. E. Holcombe, T. T. Meek, and N. L. Dykes, Unusual properties of microwave-sintered yttria-2wt% zirconia, J. Mater. Sci. Lett, vol.7, pp.881-884, 1988.

J. Wilson and S. M. Kunz, Microwave Sintering of Partially Stabilized Zirconia, J. Am. Ceram. Soc, vol.71, p.40, 1988.

H. D. Kimrey, J. O. Kiggans, M. A. Janney, and R. L. Beatty, Microwave Sintering of Zirconia-Toughened Alumina Composites, Oak Ridge National Lab, TN (USA), 1990.

M. A. Janney and H. D. Kimrey, Microwave sintering of alumina at 28 GHz, 1988.

D. Zymelka, S. Saunier, J. Molimard, and D. Goeuriot, Contactless Monitoring of Shrinkage and Temperature Distribution during Hybrid Microwave Sintering, Adv. Eng. Mater, vol.13, pp.901-905, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00838035

J. Croquesel, Etude des spécificités du frittage par micro-ondes de poudres d'alumine alpha et gamma, 2015.

F. Zuo, Etude thermodynamique et cinétique du frittage par micro-ondes de l'alumine: influence des paramètres de la poudre, École nationale supérieure des mines, 2014.

S. Marinel, E. Savary, and M. Gomina, Sintering of CuO and ZnO in a single mode microwave cavity with shrinkage control, J. Microw. Power Electromagn. Energy Publ. Int. Microw. Power Inst, vol.44, pp.57-63, 2010.

W. D. Wood, H. W. Deem, and C. F. Lucks, Thermal radiative properties, 1964.

D. Zymelka, Suivi par methode optique du frittage micro-ondes d'oxydes ceramiques, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00821161

J. Croquesel, D. Bouvard, J. Chaix, C. P. Carry, and S. Saunier, Development of an instrumented and automated single mode cavity for ceramic microwave sintering: Application to an alpha pure alumina powder, Mater. Des, vol.88, pp.98-105, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01263552

D. Demirskyi, D. Agrawal, and A. Ragulya, Comparisons of grain size-density trajectory during microwave and conventional sintering of titanium nitride, J. Alloys Compd, vol.581, pp.498-501, 2013.

G. Bernard-granger and C. Guizard, New relationships between relative density and grain size during solid-state sintering of ceramic powders, Acta Mater, vol.56, pp.6273-6282, 2008.

T. Kim, D. Kim, and S. Kang, Effect of additives on the sintering of MgAl2O4, J. Alloys Compd, vol.587, pp.594-599, 2014.

K. Rozenburg, I. E. Reimanis, H. Kleebe, and R. L. Cook, Chemical Interaction Between LiF and MgAl 2 O 4 Spinel During Sintering, J. Am. Ceram. Soc, vol.90, pp.2038-2042, 2007.

K. Rozenburg, I. E. Reimanis, H. Kleebe, and R. L. Cook, Sintering Kinetics of a MgAl2O4 Spinel Doped with LiF, J. Am. Ceram. Soc, vol.91, pp.444-450, 2008.

I. Reimanis and H. Kleebe, A Review on the Sintering and Microstructure Development of Transparent Spinel (MgAl2O4), J. Am. Ceram. Soc, vol.92, pp.1472-1480, 2009.

A. Krell, T. Hutzler, and J. Klimke, Defect strategies for an improved optical quality of transparent ceramics, Opt. Mater, vol.38, pp.61-74, 2014.

L. ,

. Skomorovskaya, Magnesia spinel ceramics alloyed with rare earth oxides, Sci. Ceram. Ind, 1993.

J. M. Perkins, G. D. West, and M. H. Lewis, Analysis and spectroscopy of rare earth doped magnesium aluminate spinel, Adv. Appl. Ceram, vol.104, pp.131-134, 2005.

A. Krell, K. Waetzig, and J. Klimke, Influence of the structure of MgO·nAl2O3 spinel lattices on transparent ceramics processing and properties, J. Eur. Ceram. Soc, vol.32, pp.2887-2898, 2012.

M. Shimada, T. Endo, T. Saito, and T. Sato, Fabrication of transparent spinel polycrystalline materials, Mater. Lett, vol.28, pp.413-415, 1996.

B. Meng, B. D. Klein, J. H. Booske, and R. F. Cooper, Microwave absorption in insulating dielectric ionic crystals including the role of point defects, Phys. Rev. B, vol.53, pp.12777-12785, 1996.

J. H. Lim, B. N. Kim, Y. Kim, S. Kang, R. J. Xie et al., Non-rare earth white emission phosphor: Ti-doped MgAl2O4, Appl. Phys. Lett, vol.102, 2013.

M. Matsui, T. Takahash, and I. Oda, Influence of MgO vaporization on the final-stage sintering of MgO-Al2O3 spinel, Adv. Ceram, 1984.

C. Ting and H. Lu, Deterioration in the Final-Stage Sintering of Magnesium Aluminate Spinel, J. Am. Ceram. Soc, vol.83, pp.1592-1598, 2000.

R. Heuguet, S. Marinel, A. Thuault, and A. Badev, Effects of the Susceptor Dielectric Properties on the Microwave Sintering of Alumina, J. Am. Ceram. Soc, vol.96, pp.3728-3736, 2013.