{. Goal and . Name=,

{. Goal and . Name=, ContGate" Voltage= -0.75 } Goal { Name= "substrate" Voltage= _Vbg_ }

. Gt-ayele, Ultrahigh-Sensitive CMOS pH Sensor Developed in the BEOL of Standard 28 nm UTBB FDSOI, IEEE Journal of the Electron Devices Society, vol.6, pp.1026-1032, 2018.

L. Rahhal and . Ayele, High sensitivity pH sensing on the BEOL of industrial FDSOI transistors, Solid-State Electronics, vol.134, pp.22-29, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01987313

, Conference Proceedings

. Gt-ayele, Highly Performant Integrated pH-Sensor Using the Gate Protection Diode in the BEOL of Industrial FDSOI, IEEE International Electron Devices Meeting, 2018.

. Gt-ayele, Ultrahigh-sensitive and CMOS compatible ISFET developed in BEOL of industrial UTBB FDSOI, IEEE Symposium on VLSI Technology. IEEE, 2018.

. Gt-ayele, Development of ultrasensitive extended-gate Ion-sensitive-field-effect-transistor based on industrial UTBB FDSOI transistor, 2017.

. Gt-ayele, Developing Ultrasensitive and CMOS Compatible pH-Sensing ISFETs in the BEOL of Industrial UTBB FDSOI Transistors, IEEE NANO, 2018.

. Gt-ayele, Ion-sensitive field-effect transistor (isfet) having higher sensitivity in response to dynamic biasing, LN2 Colloque, vol.1, 2018.

S. Gt-ayele and . Monfray, Detection device, in particular incorporated in a ph meter, and corresponding production process

, Design Principles, Challenges, and the Future, Cleverism, vol.16, p.25, 2017.

F. Shrouf, J. Ordieres, and G. Miragliotta, Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm, 2014 IEEE International Conference on Industrial Engineering and Engineering Management, pp.697-701, 2014.

J. Wan, Software-Defined Industrial Internet of Things in the Context of Industry 4.0, IEEE Sens. J, vol.16, issue.20, pp.7373-7380, 2016.

M. Wollschlaeger, T. Sauter, and J. Jasperneite, The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0, IEEE Ind. Electron. Mag, vol.11, issue.1, pp.17-27, 2017.

D. E. O'leary, Artificial Intelligence and Big Data, IEEE Intell. Syst, vol.28, issue.2, pp.96-99, 2013.

X. Wu, X. Zhu, G. Wu, and W. Ding, Data mining with big data, IEEE Trans. Knowl. Data Eng, vol.26, issue.1, pp.97-107, 2014.

R. Bogue, Towards the trillion sensors market, Sens. Rev, vol.34, issue.2, pp.137-142, 2014.

, Sensor Market by Type -Global Opportunity Analysis and Industry Forecast, p.20, 2014.

F. Banica, Chemical sensors and biosensors: fundamentals and applications, 2012.

C. Hsu, J. , and C. Lin, An empirical examination of consumer adoption of Internet of Things services: Network externalities and concern for information privacy perspectives, Comput. Hum. Behav, vol.62, pp.516-527, 2016.

D. Lund, V. Turner, C. Macgillivray, and M. Morales, Worldwide and Regional Internet of Things (IoT) 2014-2020 Forecast: A Virtuous Circle of Proven Value and Demand, p.29

, Petr Vanysek, The glass pH electrode.pdf

T. P. Jones and M. D. Porter, Optical pH sensor based on the chemical modification of a porous polymer film, Anal. Chem, vol.60, issue.5, pp.404-406, 1988.

U. Grummt, A. Pron, M. Zagorska, and S. Lefrant, Polyaniline based optical pH sensor, Anal. Chim. Acta, vol.357, issue.3, pp.253-259, 1997.

Z. Jin, Y. Su, and Y. Duan, An improved optical pH sensor based on polyaniline, Sens. Actuators B Chem, vol.71, issue.1-2, pp.118-122, 2000.

A. Safavi and M. Bagheri, Novel optical pH sensor for high and low pH values, Sens. Actuators B Chem, vol.90, issue.1-3, pp.143-150, 2003.

H. Oh, K. J. Lee, J. Baek, S. S. Yang, and K. Lee, Development of a high sensitive pH sensor based on shear horizontal surface acoustic wave with ZnO nanoparticles, Microelectron. Eng, vol.111, pp.154-159, 2013.

Q. Y. Cai and C. A. Grimes, A remote query magnetoelastic pH sensor, Sens. Actuators B Chem, vol.71, issue.1, pp.112-117, 2000.

C. Ruan, K. G. Ong, C. Mungle, M. Paulose, N. J. Nickl et al., A wireless pH sensor based on the use of salt-independent micro-scale polymer spheres, Sens. Actuators B Chem, vol.96, issue.1, pp.61-69, 2003.

J. Z. Hilt, A. K. Gupta, R. Bashir, and N. A. Peppas, Ultrasensitive Biomems Sensors Based on Microcantilevers Patterned with Environmentally Responsive Hydrogels, Biomed. Microdevices, vol.5, issue.3, pp.177-184, 2003.

D. G. Hafeman, J. W. Parce, and H. M. Mcconnell, Light-addressable potentiometric sensor for biochemical systems, Science, vol.240, issue.4856, pp.1182-1185, 1988.

J. C. Owicki, The light-addressable potentiometric sensor: principles and biological applications, Annu. Rev. Biophys. Biomol. Struct, vol.23, issue.1, pp.87-114, 1994.

A. Seki, S. Ikeda, I. Kubo, and I. Karube, Biosensors based on light-addressable potentiometric sensors for urea, penicillin and glucose, Anal. Chim. Acta, vol.373, issue.1, pp.9-13, 1998.

T. Yoshinobu, The light-addressable potentiometric sensor for multi-ion sensing and imaging, Methods, vol.37, issue.1, pp.94-102, 2005.

P. Bergveld, Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements, IEEE Trans. Biomed. Eng, vol.17, issue.1, pp.70-71, 1970.

T. Matsuo and K. D. Wise, An integrated field-effect electrode for biopotential recording, IEEE Trans. Biomed. Eng, issue.6, pp.485-487, 1974.

S. D. Moss, C. C. Johnson, and J. Janata, Hydrogen, Calcium, and Potassium Ion-Sensitive FET Transducers: A Preliminary Report, IEEE Trans. Biomed. Eng, issue.1, pp.49-54, 1978.

P. A. Comte and J. Janata, A field effect transistor as a solid-state reference electrode, Anal. Chim. Acta, vol.101, issue.2, pp.247-252, 1978.

E. H. Nicollian, J. R. Brews, E. H. Nicollian, and ;. , MOS (metal oxide semiconductor) physics and technology, 1982.

, INSA Lyon, tous droits réservés [30] "pH Sensor Market Report -Forecast to 2023 | MRFR, p.20, 2018.

J. Colinge, Reduction of floating substrate effect in thin-film SOI MOSFETs, Electron. Lett, vol.22, issue.4, pp.187-188, 1986.

J. G. Fossum, R. Sundaresan, and M. Matloubian, Anomalous subthreshold current-Voltage characteristics of n-channel SOI MOSFET's, IEEE Electron Device Lett, vol.8, issue.11, pp.544-546, 1987.

J. Colinge, Silicon-on-insulator technology: materials to VLSI: materials to Vlsi, 2004.

C. G. Jakobson and Y. Nemirovsky, 1/f noise in ion sensitive field effect transistors from subthreshold to saturation, IEEE Trans. Electron Devices, vol.46, issue.1, pp.259-261, 1999.

V. K. Khanna, Remedial and adaptive solutions of ISFET non-ideal behaviour, Sens. Rev, vol.33, issue.3, pp.228-237, 2013.

K. Park, S. Choi, M. Lee, B. Sohn, and S. Choi, ISFET glucose sensor system with fast recovery characteristics by employing electrolysis, Sens. Actuators B Chem, vol.83, issue.1, pp.90-97, 2002.

R. E. Van-hal, P. Bergveld, J. F. Engbersen, and D. N. Reinhoudt, Characterization and testing of polymer-oxide adhesion to improve the packaging reliability of ISFETs, Sens. Actuators B Chem, vol.23, issue.1, pp.17-26, 1995.

G. T. Ayele, Ultrahigh-Sensitive CMOS pH Sensor Developed in the BEOL of Standard 28 nm UTBB FDSOI, IEEE J. Electron Devices Soc, vol.6, pp.1026-1032, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01895308

H. Abe, M. Esashi, and T. Matsuo, ISFET's using inorganic gate thin films, IEEE Trans. Electron Devices, vol.26, issue.12, pp.1939-1944, 1979.

J. Chiang, S. Jan, J. Chou, and Y. Chen, Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide, Sens. Actuators B Chem, vol.76, issue.1, pp.624-628, 2001.

P. Bergveld, Development, Operation, and Application of the Ion-Sensitive Field-Effect Transistor as a Tool for Electrophysiology, IEEE Trans. Biomed. Eng, vol.19, issue.5, pp.342-351, 1972.

J. N. Zemel, Ion-sensitive field effect transistors and related devices, Anal. Chem, vol.47, issue.2, pp.255-268, 1975.

D. E. Yates, The structure of the oxide/aqueous electrolyte interface, 1975.

S. D. Moss, J. Janata, and C. C. Johnson, Potassium ion-sensitive field effect transistor, Anal. Chem, vol.47, issue.13, pp.2238-2243, 1975.

T. Matsuo and M. Esashi, Methods of ISFET fabrication, Sens. Actuators, vol.1, pp.77-96, 1981.

R. M. Cohen, R. J. Huber, J. Janata, R. W. Ure, and S. D. Moss, A study of insulator materials used in ISFET gates, Thin Solid Films, vol.53, issue.2, pp.169-173, 1978.

J. W. Perram, R. J. Hunter, and H. J. Wright, The oxide-solution interface, Aust. J. Chem, vol.27, issue.3, pp.461-475, 1974.

R. G. Kelly and A. E. Owen, Microelectronic ion sensors: A critical survey, IEE Proc. -Solid-State Electron Devices, vol.132, pp.227-236, 1985.

A. K. Covington and A. Sibbald, Offset-gate chemical-sensitive field-effect transistors (OG-CHEMFETS) with electrolytically-programmable selectivity, vol.4437969, 1984.

A. K. Covington and A. Sibbald, Offset-gate chemical-sensitive field-effect transistors (OG-CHEMFETS) with electrolytically-programmable selectivity, US4437969 A, 1984.

J. Van-der-spiegel, I. Lauks, P. Chan, and D. Babic, The extended gate chemically sensitive field effect transistor as multi-species microprobe, Sens. Actuators, vol.4, pp.291-298, 1983.

L. Bousse, J. Shott, and J. D. Meindl, A process for the combined fabrication of ion sensors and CMOS circuits, IEEE Electron Device Lett, vol.9, issue.1, pp.44-46, 1988.

J. Bausells, J. Carrabina, A. Errachid, and A. Merlos, Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology, Sens. Actuators B Chem, vol.57, issue.1-3, pp.56-62, 1999.

N. Y. Shen, Z. Liu, B. A. Minch, and E. C. Ken, The chemoreceptive neuron MOS transistors (C/spl nu/MOS): a novel floating-gate device for molecular and chemical sensing, TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, vol.1, pp.69-72, 2003.

A. Cohen, M. E. Spira, S. Yitshaik, G. Borghs, O. Shwartzglass et al., Depletion type floating gate p-channel MOS transistor for recording action potentials generated by cultured neurons, Biosens. Bioelectron, vol.19, issue.12, pp.1703-1709, 2004.

P. A. Hammond, D. Ali, and D. R. Cumming, Design of a single-chip pH sensor using a conventional 0.6-/spl mu/m CMOS process, IEEE Sens. J, vol.4, issue.6, pp.706-712, 2004.

M. J. Milgrew, M. O. Riehle, and D. R. Cumming, A large transistor-based sensor array chip for direct extracellular imaging, Sens. Actuators B Chem, vol.111, pp.347-353, 2005.

M. J. Milgrew, D. R. Cumming, and P. A. Hammond, The fabrication of scalable multi-sensor arrays using standard CMOS technology [chemical sensors], Custom Integrated Circuits Conference, pp.513-516, 2003.

J. M. Rothberg, An integrated semiconductor device enabling non-optical genome sequencing, Nature, vol.475, issue.7356, pp.348-352, 2011.

J. Bausells, J. Carrabina, A. Errachid, and A. Merlos, Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology, Sens. Actuators B Chem, vol.57, issue.1-3, pp.56-62, 1999.

L. Chi, J. Chou, W. Chung, T. Sun, and S. Hsiung, Study on extended gate field effect transistor with tin oxide sensing membrane, Mater. Chem. Phys, vol.63, issue.1, pp.19-23, 2000.

L. Yin, J. Chou, W. Chung, T. Sun, and S. Hsiung, Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate, Sens. Actuators B Chem, vol.71, issue.1-2, pp.106-111, 2000.

Y. Chin, J. Chou, Z. Lei, T. Sun, W. Chung et al., Titanium nitride membrane application to extended gate field effect transistor pH sensor using VLSI technology, Jpn. J. Appl. Phys, vol.40, issue.11R, p.6311, 2001.

Y. Chin, J. Chou, T. Sun, W. Chung, and S. Hsiung, A novel pH sensitive ISFET with on chip temperature sensing using CMOS standard process, Sens. Actuators B Chem, vol.76, issue.1-3, pp.582-593, 2001.

Y. Chin, J. Chou, T. Sun, H. Liao, W. Chung et al., A novel SnO2/Al discrete gate ISFET pH sensor with CMOS standard process, Sens. Actuators B Chem, vol.75, issue.1-2, pp.36-42, 2001.

L. Yin, J. Chou, W. Chung, T. Sun, and S. Hsiung, Study of indium tin oxide thin film for separative extended gate ISFET, Mater. Chem. Phys, vol.70, issue.1, pp.12-16, 2001.

J. Chen, J. Chou, T. Sun, and S. Hsiung, Portable urea biosensor based on the extended-gate field effect transistor, Sens. Actuators B Chem, vol.91, issue.1-3, pp.180-186, 2003.

J. Chou, P. Kwan, and Z. Chen, SnO2 separative structure extended gate H+-ion sensitive field effect transistor by the sol-gel technology and the readout circuit developed by source follower, Jpn. J. Appl. Phys, vol.42, issue.11R, p.6790, 2003.

P. D. Batista and M. Mulato, ZnO extended-gate field-effect transistors as p H sensors, Appl. Phys. Lett, vol.87, issue.14, p.143508, 2005.

R. Zeng, J. Zhang, C. Sun, M. Xu, S. Zhang et al., A reference-less semiconductor ion sensor, Sens. Actuators B Chem, vol.254, pp.102-109, 2018.

B. Zhao, T. Sai, A. Rahman, and K. Levon, Floating-Gate Ion Sensitive Field-Effect Transistor for Chemical and Biological Sensing, MRS Online Proc. Libr. Arch, vol.828, 2004.

Y. Jiang, A 512$\times$ 576 65-nm CMOS ISFET sensor for food safety screening with 123.8 mV/pH sensitivity and 0.01 pH resolution, VLSI Technology, 2016 IEEE Symposium on, pp.1-2, 2016.

X. Huang, F. Wang, J. Guo, M. Yan, Y. Hao et al., A 64$\times$ 64 1200fps CMOS ionimage sensor with suppressed fixed-pattern-noise for accurate high-throughput DNA sequencing, VLSI Circuits Digest of Technical Papers, pp.1-2, 2014.

K. B. Parizi, A. J. Yeh, A. S. Poon, and H. S. Wong, Exceeding Nernst limit (59mV/pH): CMOS-based pH sensor for autonomous applications, 2012 International Electron Devices Meeting, 2012.

J. Lee, A novel SiNW/CMOS hybrid biosensor for high sensitivity/low noise, Electron Devices Meeting (IEDM), pp.14-19, 2013.

M. Spijkman, E. C. Smits, J. F. Cillessen, F. Biscarini, P. W. Blom et al., Beyond the Nernst-limit with dual-gate ZnO ion-sensitive field-effect transistors, Appl. Phys. Lett, vol.98, issue.4, p.43502, 2011.

H. Jang and W. Cho, Performance Enhancement of Capacitive-Coupling Dual-gate Ion-Sensitive Field-Effect Transistor in Ultra-Thin-Body, Sci. Rep, vol.4, 2014.

Y. Huang, High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SoC, Electron Devices Meeting (IEDM), pp.29-31, 2015.

A. and C. Toumazou, High gain ISFET based ?MOS chemical inverter, Sens. Actuators B Chem, vol.171, pp.110-117, 2012.

L. , High sensitivity pH sensing on the BEOL of industrial FDSOI transistors, Solid-State Electron, vol.134, pp.22-29, 2017.

C. Heitzinger and G. Klimeck, Computational aspects of the three-dimensional feature-scale simulation of silicon-nanowire field-effect sensors for DNA detection, J. Comput. Electron, vol.6, issue.1-3, pp.387-390, 2007.

P. R. Nair and M. A. Alam, Design considerations of silicon nanowire biosensors, IEEE Trans. Electron Devices, vol.54, issue.12, pp.3400-3408, 2007.

E. Stern, A. Vacic, and M. A. Reed, Semiconducting nanowire field-effect transistor biomolecular sensors, IEEE Trans. Electron Devices, vol.55, issue.11, pp.3119-3130, 2008.

X. P. Gao, G. Zheng, and C. M. Lieber, Subthreshold regime has the optimal sensitivity for nanowire FET biosensors, Nano Lett, vol.10, issue.2, pp.547-552, 2009.

O. Knopfmacher, D. Keller, M. Calame, and C. Schönenberger, Dual gated silicon nanowire field effect transistors, Procedia Chem, vol.1, issue.1, pp.678-681, 2009.

T. Kudo, Fabrication of Si nanowire field-effect transistor for highly sensitive, label-free biosensing, Jpn. J. Appl. Phys, vol.48, issue.6S, pp.6-10, 2009.

K. Nishiguchi, N. Clement, T. Yamaguchi, and A. Fujiwara, Si nanowire ion-sensitive field-effect transistors with a shared floating gate, Appl. Phys. Lett, vol.94, issue.16, p.163106, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00472768

O. Knopfmacher, Nernst limit in dual-gated Si-nanowire FET sensors, Nano Lett, vol.10, issue.6, pp.2268-2274, 2010.

N. Clément, K. Nishiguchi, J. F. Dufreche, D. Guerin, A. Fujiwara et al., A silicon nanowire ion-sensitive field-effect transistor with elementary charge sensitivity, Appl. Phys. Lett, vol.98, issue.1, p.14104, 2011.

S. Kim, Silicon nanowire ion sensitive field effect transistor with integrated Ag/AgCl electrode: pH sensing and noise characteristics, Analyst, vol.136, issue.23, pp.5012-5016, 2011.

J. Y. Oh, H. Jang, W. Cho, and M. S. Islam, Highly sensitive electrolyte-insulatorsemiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane, Sens. Actuators B Chem, vol.171, pp.238-243, 2012.

M. Zaborowski, D. Tomaszewski, P. Dumania, and P. Grabiec, From FinFET to nanowire ISFET, Solid-State Device Research Conference (ESSDERC), 2012 Proceedings of the European, pp.165-168, 2012.

V. Pachauri, K. Kern, and K. Balasubramanian, Field-effect-based chemical sensing using nanowire-nanoparticle hybrids: The ion-sensitive metal-semiconductor field-effect transistor, Appl. Phys. Lett, vol.102, issue.2, p.23501, 2013.

T. Rim, Improved electrical characteristics of honeycomb nanowire ISFETs, IEEE Electron Device Lett, vol.34, issue.8, pp.1059-1061, 2013.

K. Kim, T. Rim, C. Park, D. Kim, M. Meyyappan et al., Suspended honeycomb nanowire ISFETs for improved stiction-free performance, Nanotechnology, vol.25, issue.34, p.345501, 2014.

D. Nozaki, J. Kunstmann, F. Zörgiebel, and G. Cuniberti, Influence of surface charge on the transport characteristics of nanowire-field effect transistors in liquid environments, Appl. Phys. Lett, vol.106, issue.20, p.203104, 2015.

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science, vol.293, issue.5533, pp.1289-1292, 2001.

D. Sarkar and K. Banerjee, Proposal for tunnel-field-effect-transistor as ultra-sensitive and labelfree biosensors, Appl. Phys. Lett, vol.100, issue.14, p.143108, 2012.

D. Sarkar, W. Liu, X. Xie, A. C. Anselmo, S. Mitragotri et al., MoS2 field-effect transistor for next-generation label-free biosensors, ACS Nano, vol.8, issue.4, pp.3992-4003, 2014.

R. Narang, M. Saxena, and M. Gupta, Comparative analysis of dielectric-modulated FET and TFET-based biosensor, IEEE Trans Nanotechnol, vol.14, issue.3, pp.427-435, 2015.

A. Gao, N. Lu, Y. Wang, and T. Li, Robust ultrasensitive tunneling-FET biosensor for point-ofcare diagnostics, Sci. Rep, vol.6, p.22554, 2016.

P. Dwivedi and A. Kranti, Applicability of Transconductance-to-Current ratio (gm/Ids) as a Sensing Metric for Tunnel FET Biosensors, IEEE Sens. J, vol.17, issue.4, pp.1030-1036, 2017.

R. Lee, D. W. Kwon, S. Kim, D. H. Kim, and B. Park, Investigation of Feasibility of Tunneling Field Effect Transistor (TFET) as Highly Sensitive and Multi-sensing Biosensors, J. Semicond

, Technol. Sci, vol.17, issue.1, pp.141-146, 2017.

Z. Lu, Realizing super-steep subthreshold slope with conventional FDSOI CMOS at low-bias voltages, Electron Devices Meeting (IEDM), pp.16-22, 2010.

K. Gopalakrishnan, P. B. Griffin, and J. D. Plummer, I-MOS: A novel semiconductor device with a subthreshold slope lower than kT/q, Electron Devices Meeting, 2002. IEDM'02. International, pp.289-292, 2002.

E. Toh, Impact ionization nanowire transistor with multiple-gates, silicon-germanium impact ionization region, and sub-5 mV/decade subtheshold swing, Electron Devices Meeting, pp.195-198, 2007.

A. Padilla, C. W. Yeung, C. Shin, C. Hu, and T. K. Liu, Feedback FET: A novel transistor exhibiting steep switching behavior at low bias voltages, Electron Devices Meeting, pp.1-4, 2008.

J. Zhang, M. De-marchi, P. Gaillardon, and G. De-micheli, A Schottky-barrier silicon FinFET with 6.0 mV/dec subthreshold slope over 5 decades of current, Electron Devices Meeting (IEDM), pp.13-17, 2014.

H. Kam, D. T. Lee, R. T. Howe, and T. King, A new nano-electro-mechanical field effect transistor (NEMFET) design for low-power electronics, Electron Devices Meeting, pp.463-466, 2005.

S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller et al., Carbon nanotubes as Schottky barrier transistors, Phys. Rev. Lett, vol.89, issue.10, p.106801, 2002.

S. Rigante, Low power finfet ph-sensor with high-sensitivity voltage readout, Solid-State Device Research Conference (ESSDERC), 2013 Proceedings of the European, pp.350-353, 2013.

S. Rigante, High-k dielectric FinFETs towards sensing integrated circuits, Ultimate Integration on Silicon (ULIS), 2013 14th International Conference on, pp.73-76, 2013.

S. Rigante, Integrated finfet based sensing in a liquid environment, Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on, pp.681-684, 2013.

S. Rigante, M. Wipf, A. Bazigos, K. Bedner, D. Bouvet et al., Finfet with fully PHresponsive HFO 2 as highly stable biochemical sensor, Micro Electro Mechanical Systems (MEMS), pp.1063-1066, 2014.

M. Zaborowski, D. Tomaszewski, P. Dumania, and P. Grabiec, From FinFET to nanowire ISFET, Solid-State Device Research Conference (ESSDERC), 2012 Proceedings of the European, pp.165-168, 2012.

M. J. Schöning and A. Poghossian, Recent advances in biologically sensitive field-effect transistors (BioFETs), Analyst, vol.127, issue.9, pp.1137-1151, 2002.

S. Caras and J. Janata, Field effect transistor sensitive to penicillin, Anal. Chem, vol.52, issue.12, pp.1935-1937, 1980.

A. A. Shul'ga, A. C. Sandrovsky, V. I. Strikha, A. P. Soldatkin, N. F. Starodub et al., Overall characterization of ISFET-based glucose biosensor, Sens. Actuators B Chem, vol.10, issue.1, pp.41-46, 1992.

D. G. Pijanowska and W. Torbicz, pH-ISFET based urea biosensor, Sens. Actuators B Chem, vol.44, issue.1, pp.370-376, 1997.

S. Schütz, An insect-based BioFET as a bioelectronic nose, Sens. Actuators B Chem, vol.65, issue.1-3, pp.291-295, 2000.

A. B. Kharitonov, M. Zayats, L. Alfonta, E. Katz, and I. Willner, A novel ISFET-based NAD+-dependent enzyme sensor for lactate, Sens. Actuators B Chem, vol.76, issue.1, pp.203-210, 2001.

B. H. Van-der-schoot and P. Bergveld, ISFET based enzyme sensors, Biosensors, vol.3, issue.3, pp.161-186, 1987.

A. Neidig, G. Popp, and G. Gilbers, Chemically sensitive field effect transistor having electrode connections, 1980.

H. Van-den and . Vlekkert, A pH-isfet and an integrated ph-pressure sensor with back-side contacts, Sens. Actuators, vol.14, issue.2, pp.165-176, 1988.

T. Sakai, I. Amemiya, S. Uno, and M. Katsura, A Backside contact ISFET with a silicon-insulatorsilicon structure, Sens. Actuators B Chem, vol.1, issue.1-6, pp.341-344, 1990.

P. Bergveld, Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years, Sens. Actuators B Chem, vol.88, issue.1, pp.1-20, 2003.

T. Katsube, I. Lauks, and J. N. Zemel, pH-sensitive sputtered iridium oxide films

, Actuators, vol.2, pp.399-410, 1981.

T. Lu, Non-ideal effects improvement of SF6 plasma treated hafnium oxide film based on electrolyte-insulator-semiconductor structure for pH-sensor application, Microelectron. Reliab, vol.50, issue.5, pp.742-746, 2010.

K. A. Yusof, R. Rahman, M. A. Zulkefle, S. H. Herman, and W. F. Abdullah, EGFET pH Sensor Performance Dependence on Sputtered TiO2 Sensing Membrane Deposition Temperature, J. Sens, vol.2016, 2016.

T. Pan, M. Huang, C. Lin, and M. Wu, Development of high-? HoTiO 3 sensing membrane for pH detection and glucose biosensing, Sens. Actuators B Chem, vol.144, issue.1, pp.139-145, 2010.

T. Pan, J. Lin, M. Wu, and C. Lai, Study of high-k Er2O3 thin layers as ISFET sensitive insulator surface for pH detection, Sens. Actuators B Chem, vol.138, issue.2, pp.619-624, 2009.

T. Pan and K. Liao, Comparison of structural and sensing characteristics of Pr2O3 and PrTiO3 sensing membrane for pH-ISFET application, Sens. Actuators B Chem, vol.133, issue.1, pp.97-104, 2008.

Y. Chin, J. Chou, T. Sun, H. Liao, W. Chung et al., A novel SnO2/Al discrete gate ISFET pH sensor with CMOS standard process, Sens. Actuators B Chem, vol.75, issue.1-2, pp.36-42, 2001.

H. Liao, J. Chou, W. Chung, T. Sun, and S. Hsiung, Study of amorphous tin oxide thin films for ISFET applications, Sens. Actuators B Chem, vol.50, issue.2, pp.104-109, 1998.

P. D. Batista, M. Mulato, C. Graeff, F. J. Fernandez, F. Das et al., SnO2 extended gate field-effect transistor as pH sensor, Braz. J. Phys, vol.36, issue.2A, pp.478-481, 2006.

K. R. Williams, K. Gupta, and M. Wasilik, Etch rates for micromachining processing-Part II, J. Microelectromechanical Syst, vol.12, issue.6, pp.761-778, 2003.

J. Chou and C. Weng, Sensitivity and hysteresis effect in Al 2 O 3 gate pH-ISFET, Mater. Chem. Phys, vol.71, issue.2, pp.120-124, 2001.

L. Bousse, D. Hafeman, and N. Tran, Time-dependence of the chemical response of silicon nitride surfaces, Sens. Actuators B Chem, vol.1, issue.1-6, pp.361-367, 1990.

P. Hein and P. Egger, Drift behaviour of ISFETs with Si3N4-SiO2 gate insulator, Sens. Actuators B Chem, vol.14, issue.1-3, pp.655-656, 1993.

R. P. Buck, Kinetics and drift of gate voltages for electrolyte-bathed chemically sensitive semiconductor devices, Ieee Trans. Electron Devices, vol.29, issue.1, pp.108-115, 1982.

S. Jamasb, S. D. Collins, and R. L. Smith, A physical model for threshold voltage instability in Si/sub 3/N/sub 4/-gate H/sup+/-sensitive FET's (pH ISFET's), IEEE Trans. Electron Devices, vol.45, issue.6, pp.1239-1245, 1998.

S. Jamasb, S. D. Collins, and R. L. Smith, A physically-based model for drift in Al/sub 2/O/sub 3/-gate pH ISFET's," in Solid State Sensors and Actuators, 1997. TRANSDUCERS'97 Chicago, vol.2, pp.1379-1382, 1997.

L. Bousse, S. Mostarshed, B. Van-der-schoot, and N. F. De-rooij, Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators, Sens. Actuators B Chem, vol.17, issue.2, pp.157-164, 1994.

S. Jamasb, S. Collins, and R. L. Smith, A physical model for drift in pH ISFETs, Sens. Actuators B Chem, vol.49, issue.1, pp.146-155, 1998.

R. G. Kelly, Microelectronic approaches to solid state ion selective electrodes, Electrochimica Acta, vol.22, issue.1, pp.1-8, 1977.

J. Janata, Historical review. Twenty years of ion-selective field-effect transistors, Analyst, vol.119, issue.11, pp.2275-2278, 1994.

M. Yano, K. Shimada, K. Shibatani, and T. Makimoto, Reference electrode of insulated gate field effect transistor, 1981.

S. Tahara, M. Yoshii, and S. Oka, Electrochemical reference electrode for the ion-selective field effect transistor, Chem. Lett, vol.11, issue.3, pp.307-310, 1982.

P. Bergveld, The impact of MOSFET-based sensors, Sens. Actuators, vol.8, issue.2, pp.109-127, 1985.

A. Van-den, P. Berg, D. N. Bergveld, E. J. Reinhoudt, and . Sudhölter, Sensitivity control of ISFETs by chemical surface modification, Sens. Actuators, vol.8, issue.2, pp.129-148, 1985.

M. Chudy, W. Wroblewski, and Z. Brzózka, Towards REFET, Sens. Actuators B Chem, vol.57, issue.1-3, pp.47-50, 1999.

L. Shepherd, P. Georgiou, and C. Toumazou, A novel voltage-clamped CMOS ISFET sensor interface, 2007 IEEE International Symposium on Circuits and Systems, pp.3331-3334, 2007.

P. Bergveld, A. Van-den, P. D. Berg, M. Van-der-wal, E. J. Skowronska-ptasinska et al., How electrical and chemical requirements for refets may coincide

. Actuators, , vol.18, pp.309-327, 1989.

P. A. Hammond, D. Ali, and D. R. Cumming, Design of a single-chip pH sensor using a conventional 0.6-/spl mu/m CMOS process, IEEE Sens. J, vol.4, issue.6, pp.706-712, 2004.

M. J. Milgrew, D. R. Cumming, and P. A. Hammond, The fabrication of scalable multi-sensor arrays using standard CMOS technology, 2003.

, Custom Integrated Circuits Conference, pp.513-516, 2003.

Y. H. Ghallab, W. Badawy, and K. V. Kaler, A novel pH sensor using differential ISFET current mode read-out circuit, Proceedings International Conference on MEMS, NANO and Smart Systems, pp.255-258, 2003.

E. Salm, Electrical detection of nucleic acid amplification using an on-chip quasi-reference electrode and a PVC REFET, Anal. Chem, vol.86, issue.14, pp.6968-6975, 2014.

A. Morgenshtein, L. Sudakov-boreysha, U. Dinnar, C. G. Jakobson, and Y. Nemirovsky, Wheatstone-Bridge readout interface for ISFET/REFET applications, Sens. Actuators B Chem, vol.98, issue.1, pp.18-27, 2004.

T. Matsuo, H. Nakajima, T. Osa, and J. Anzai, Parylene-gate isfet and chemical modification of its surface with crown ether compounds, Sens. Actuators, vol.9, issue.2, pp.115-123, 1986.

H. H. Van-den, N. F. Vlekkert, A. De-rooij, . Van-den, A. Berg et al., Multi-ion sensing system based on glass-encapsulated pH-ISFETs and a pseudo-REFET, Sens. Actuators B Chem, vol.1, issue.1, pp.395-400, 1990.

Q. Zhang, Surface functionalization of ion-sensitive floating-gate field-effect transistors with organic electronics, IEEE Trans. Electron Devices, vol.62, issue.4, pp.1291-1298, 2015.

P. Bergveld, Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years, Sens. Actuators B Chem, vol.88, issue.1, pp.1-20, 2003.

Y. Wang, Supercapacitor devices based on graphene materials, J. Phys. Chem. C, vol.113, issue.30, pp.13103-13107, 2009.

E. Frackowiak, Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys, vol.9, issue.15, pp.1774-1785, 2007.

L. L. Zhang and X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev, vol.38, issue.9, pp.2520-2531, 2009.

T. M. Squires and M. Z. Bazant, Induced-charge electro-osmosis, J. Fluid Mech, vol.509, pp.217-252, 2004.

E. Garcia-cordero, Three-Dimensional Integrated Ultra-Low Volume Passive Microfluidics With Ion Sensitive Field Effect Transistors For Multi-Parameter Wearable Sweat Analyzers, ACS Nano, 2018.

F. Bellando, E. Garcia-cordero, F. Wildhaber, J. Longo, H. Guérin et al., Lab on skin TM : 3D monolithically integrated zero-energy micro/nanofludics and FD SOI ion sensitive FETs

, INSA Lyon, tous droits réservés for wearable multi-sensing sweat applications, 2017 IEEE International Electron Devices Meeting (IEDM, pp.18-19, 2017.

S. Srinivasan, Electrode/electrolyte interfaces: Structure and kinetics of charge transfer, Fuel Cells, pp.27-92, 2006.

H. Helmholtz, Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche, Ann. Phys, vol.165, issue.7, pp.353-377, 1853.

O. Stern, Zur theorie der elektrolytischen doppelschicht, Z. Für Elektrochem. Angew. Phys. Chem, vol.30, issue.21-22, pp.508-516, 1924.

D. C. Grahame, The Electrical Double Layer and the Theory of Electrocapillarity, Chem. Rev, vol.41, issue.3, pp.441-501, 1947.

D. E. Yates, S. Levine, and T. W. Healy, Site-binding model of the electrical double layer at the oxide/water interface, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol.70, issue.0, pp.1807-1818, 1974.

R. E. Van-hal, J. C. Eijkel, and P. Bergveld, A general model to describe the electrostatic potential at electrolyte oxide interfaces, Adv. Colloid Interface Sci, vol.69, issue.1-3, pp.31-62, 1996.

Y. G. Berube and P. L. De-bruyn, Adsorption at the rutile-solution interface: I. Thermodynamic and experimental study, J. Colloid Interface Sci, vol.27, issue.2, pp.305-318, 1968.

S. Levine and A. L. Smith, Theory of the differential capacity of the oxide/aqueous electrolyte interface, Discuss. Faraday Soc, vol.52, pp.290-301, 1971.

J. W. Perram, R. J. Hunter, and H. J. Wright, Charge and potential at the oxide/solution interface, Chem. Phys. Lett, vol.23, issue.2, pp.265-269, 1973.

D. E. Yates, S. Levine, and T. W. Healy, Site-binding model of the electrical double layer at the oxide/water interface, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol.70, pp.1807-1818, 1974.

J. A. Davis, R. O. James, and J. O. Leckie, Surface ionization and complexation at the oxide/water interface: I. Computation of electrical double layer properties in simple electrolytes, J. Colloid Interface Sci, vol.63, issue.3, pp.480-499, 1978.

G. T. Ayele, Development of ultrasensitive extended-gate Ion-sensitive-field-effect-transistor based on industrial UTBB FDSOI transistor, pp.264-267, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01895310

W. A. Vitale, A Steep-Slope Transistor Combining Phase-Change and Band-to-Band-Tunneling to Achieve a sub-Unity Body Factor, Sci. Rep, vol.7, 2017.

X. P. Gao, G. Zheng, and C. M. Lieber, Subthreshold regime has the optimal sensitivity for nanowire FET biosensors, Nano Lett, vol.10, issue.2, pp.547-552, 2009.

T. Skotnicki and S. Monfray, UTBB FDSOI: Evolution and opportunities, pp.76-79, 2015.

J. Noel, Multi-$ V_ ${$T$}$ $ UTBB FDSOI device architectures for low-power CMOS circuit, IEEE Trans. Electron Devices, vol.58, issue.8, pp.2473-2482, 2011.

L. Grenouillet, UTBB FDSOI transistors with dual STI for a multi-V t strategy at 20nm node and below, Electron Devices Meeting (IEDM), pp.3-6, 2012.

T. Ernst, Ultimately thin double-gate SOI MOSFETs, IEEE Trans. Electron Devices, vol.50, issue.3, pp.830-838, 2003.

H. Jang and W. Cho, Performance enhancement of capacitive-coupling dual-gate ion-sensitive field-effect transistor in ultra-thin-body, Sci. Rep, vol.4, p.5284, 2014.

M. Spijkman, E. C. Smits, J. F. Cillessen, F. Biscarini, P. W. Blom et al., Beyond the Nernst-limit with dual-gate ZnO ion-sensitive field-effect transistors, Appl. Phys. Lett, vol.98, issue.4, p.43502, 2011.

H. Lim and J. G. Fossum, Threshold voltage of thin-film silicon-on-insulator

. Mosfet's, IEEE Trans. Electron Devices, vol.30, issue.10, pp.1244-1251, 1983.

D. Moon, J. Han, and M. Meyyappan, Comparative Study of Field Effect Transistor Based Biosensors, IEEE Trans. Nanotechnol, vol.15, issue.6, pp.956-961, 2016.

C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, A physically based mobility model for numerical simulation of nonplanar devices, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst, vol.7, issue.11, pp.1164-1171, 1988.

S. Li, Thickness-Dependent Interfacial Coulomb Scattering in Atomically Thin Field-Effect Transistors, Nano Lett, vol.13, issue.8, pp.3546-3552, 2013.

M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-? insulator: The role of remote phonon scattering, J. Appl. Phys, vol.90, issue.9, pp.4587-4608, 2001.

D. L. Harame, L. J. Bousse, J. D. Shott, and J. D. Meindl, Ion-sensing devices with silicon nitride and borosilicate glass insulators, IEEE Trans. Electron Devices, vol.34, issue.8, pp.1700-1707, 1987.

S. G. Chamberlain and S. Ramanan, Drain-induced barrier-lowering analysis in VSLI MOSFET devices using two-dimensional numerical simulations, IEEE Trans. Electron Devices, vol.33, issue.11, pp.1745-1753, 1986.

N. Arora, Mosfet Modeling for VLSI Simulation: Theory and Practice, 2007.

, SOI device with reduced drain induced barrier lowering, 2004.

A. A. Mutlu and M. Rahman, Two-dimensional analytical model for drain induced barrier lowering (DIBL) in short channel MOSFETs, Proceedings of the IEEE SoutheastCon, pp.340-344, 2000.

R. Koh, Buried Layer Engineering to Reduce the Drain-Induced Barrier Lowering of Sub-0.05 µm SOI-MOSFET, Jpn. J. Appl. Phys, vol.38, issue.4S, p.2294, 1999.

T. Tsuchiya, Y. Sato, and M. Tomizawa, Three mechanisms determining short-channel effects in fully-depleted SOI MOSFETs, IEEE Trans. Electron Devices, vol.45, issue.5, pp.1116-1121, 1998.

C. Chang, D. Day, and S. Chan, An analytical two-dimensional simulation for the GaAs MESFET drain-induced barrier lowering: a short-channel effect, IEEE Trans. Electron Devices, vol.37, issue.5, pp.1182-1186, 1990.

S. G. Chamberlain and S. Ramanan, Drain-induced barrier-lowering analysis in VSLI MOSFET devices using two-dimensional numerical simulations, IEEE Trans. Electron Devices, vol.33, issue.11, pp.1745-1753, 1986.

G. T. Ayele, Ultrahigh-sensitive and CMOS compatible ISFET developed in BEOL of industrial UTBB FDSOI, 2018 IEEE Symposium on VLSI Technology, pp.97-98, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02047342

, HD -4100 SERIES Photodefineable, negative, solvent | HD MicroSystems TM

, Photoresist AZ 1512HS Photoresists MicroChemicals GmbH, p.26, 2018.

K. R. Williams, K. Gupta, and M. Wasilik, Etch rates for micromachining processing-Part II, J. Microelectromechanical Syst, vol.12, issue.6, pp.761-778, 2003.

S. L. Ellison, K. Danzer: Analytical chemistry. Theoretical and metrological fundamentals, Anal. Bioanal. Chem, vol.392, issue.1, pp.23-24, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00006809

H. Loock and P. D. Wentzell, Detection limits of chemical sensors: Applications and misapplications, Sens. Actuators B Chem, vol.173, pp.157-163, 2012.

K. Kalantar-zadeh, Sensors Characteristics, pp.11-28, 2013.

, Analytical Measurement Terminology: Handbook of Terms Used in Quality Assurance of Analytical Measurement | E. Prichard | download, p.15, 2018.

, Uniformity, Repeatability, Stability, and Accuracy, p.15, 2018.

P. J. Potts, A glossary of terms and definitions used in analytical chemistry, Geostand. Newsl, vol.21, issue.1, pp.157-161, 1997.

, Accuracy and Precision | Filament Games, Backyard Engineers -Lesson, vol.3, p.15, 2019.

L. C. Yen, M. T. Tang, C. Y. Tan, T. M. Pan, and T. S. Chao, Effect of Sensing Film Thickness on Sensing Characteristics of Dual-Gate Poly-Si Ion-Sensitive Field-Effect-Transistors, IEEE Electron Device Lett, vol.35, issue.12, pp.1302-1304, 2014.

H. Abe, M. Esashi, and T. Matsuo, ISFET's using inorganic gate thin films, IEEE Trans. Electron Devices, vol.26, issue.12, pp.1939-1944, 1979.

S. Baliga, S. Muglikar, and R. Kale, Salivary pH: A diagnostic biomarker, J. Indian Soc. Periodontol, vol.17, issue.4, pp.461-465, 2013.

Y. Jiang, A 512$\times$ 576 65-nm CMOS ISFET sensor for food safety screening with 123.8 mV/pH sensitivity and 0.01 pH resolution, VLSI Technology, 2016 IEEE Symposium on, pp.1-2, 2016.

X. Huang, F. Wang, J. Guo, M. Yan, Y. Hao et al., A 64$\times$ 64 1200fps CMOS ionimage sensor with suppressed fixed-pattern-noise for accurate high-throughput DNA sequencing, VLSI Circuits Digest of Technical Papers, pp.1-2, 2014.

D. Sarkar and K. Banerjee, Proposal for tunnel-field-effect-transistor as ultra-sensitive and labelfree biosensors, Appl. Phys. Lett, vol.100, issue.14, p.143108, 2012.

L. Bousse, H. H. Van-den, N. F. Vlekkert, and . De-rooij, Hysteresis in Al2O3-gate ISFETs

, Actuators B Chem, vol.2, issue.2, pp.103-110, 1990.

J. Chou and W. Hsia, Study on the characteristics of the measurement system for pH array sensors, Proc World Acad Sci Eng Technol, vol.53, pp.354-361, 2009.

J. C. Chou and Y. F. Wang, Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol-gel method, Sens. Actuators B Chem, vol.86, issue.1, pp.58-62, 2002.