H. Nmr, 400 MHz, DMSO-d 6 ) ? 9.30 (d, J = 8.0 Hz, 1H, H 5 ), 7.47 (d, J = 7.9 Hz, 1H, H 4 ), 6.91 -6.77 (m, 1H, H Ph ), 6.71 -6.62 (m, 3H, H Ph ), vol.6

C. Ph, 120.1 (C Ph ), 119.5 (C Ph ), vol.113

, MS (ESI) m/z: Calcd for

H. Nmr, 300 MHz, DMSO-d 6 ) ? 12.88 (s, 1H, NH), 7.60 (d, J = 7.3 Hz, 1H), 7.48 (d, J = 7.2 Hz, 1H), 7.23 -7.15 (m, 2H)

1. Hz and . Oh),

, -(Hydroxymethyl)furan-2-yl)-1H-benzo, MS (ESI) m/z: Calcd for

H. Nmr, 58 (d, J = 3.4 Hz, 1H, H 3 ), 6.45 (d, J = 3.2 Hz, 1H, H 3'' ), 6.20 (d, J = 3.2 Hz, 1H, H 4'' ), 5.74 (s, 2H, 400 MHz, DMSO-d 6 ) ? 7.77 -7.72 (m, 1H, H Ph ), 7.66 -7.61 (m, 1H, H Ph ), 7.34 -7.22 (m, 2H, H Ph ), 7.18 (d, J = 3.4 Hz, 1H, H 4 ), vol.6

, MS (ESI) m/z: Calcd for

P. T. Anastas and J. C. Warner, Green Chemistry: Theory and Practice, 1998.

N. Brun, P. Hesemann, and D. Esposito, Expanding the biomass derived chemical space, Chem. Sci, vol.8, issue.7, pp.4724-4738, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01625841

A. Corma, S. Iborra, and A. Velty, Chemical Routes for the Transformation of Biomass into Chemicals, Chem. Rev, issue.6, pp.2411-2502, 2007.

P. Gallezot, Conversion of biomass to selected chemical products, Chem. Soc. Rev, vol.41, issue.4, pp.1538-1558, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00700173

L. T. Mika, E. Csefalvay, and A. Nemeth, Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability, Chem. Rev, vol.118, issue.2, pp.505-613, 2018.

R. A. Sheldon, Green and sustainable manufacture of chemicals from biomass: state of the art, Green Chem, vol.16, issue.3, pp.950-963, 2014.

L. Wu, T. Moteki, A. A. Gokhale, D. W. Flaherty, and F. D. Toste, Production of Fuels and Chemicals from Biomass: Condensation Reactions and Beyond. Chem, pp.32-58, 2016.

Z. Zhang, J. Song, and B. Han, Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids, Chem. Rev, issue.10, pp.6834-6880, 2017.

J. J. Bozell and G. R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited, Green Chem, vol.12, issue.4, pp.539-554, 2010.

G. Düll, Chem. Ztg, vol.19, pp.216-220, 1895.

J. Kiermayer, Über ein furfurol derivat aus laevulose, Chem. Ztg, vol.19, pp.1003-1006, 1895.

J. A. Middendorp, Sur l'oxymé thylfurfurol, Recl. Trav. Chim. Pays-Bas, vol.38, issue.1, pp.1-71, 1919.

J. Lewkowski, Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives, ARKIVOC, pp.17-54, 2001.

A. A. Rosatella, S. P. Simeonov, R. F. Frade, and C. A. Afonso, 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications, Green Chem, vol.13, issue.4, pp.754-793, 2011.

,. Van-putten, J. C. Van-der-waal, E. De-jong, C. B. Rasrendra, H. J. Heeres et al., A Versatile Platform Chemical Made from Renewable Resources, Chem. Rev, vol.113, issue.3, pp.1499-1597, 2013.

F. A. Kucherov, L. V. Romashov, K. I. Galkin, and V. P. Ananikov, Chemical Transformations of Biomass-Derived C6-Furanic Platform Chemicals for Sustainable Energy Research, Materials Science, and Synthetic Building Blocks, ACS Sustainable Chem. Eng, vol.6, issue.7, pp.8064-8092, 2018.

K. Abraham, R. Gurtler, K. Berg, G. Heinemeyer, A. Lampen et al., Toxicology and risk assessment of 5-Hydroxymethylfurfural in food, Mol Nutr Food Res, vol.55, issue.5, pp.667-678, 2011.

B. Girisuta, L. P. Janssen, and H. J. Heeres, A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid, Green Chem, vol.8, issue.8, pp.701-709, 2006.

S. Subbiah, S. P. Simeonov, J. M. Esperanca, L. P. Rebelo, and C. A. Afonso, Direct transformation of 5-hydroxymethylfurfural to the building blocks 2,5-dihydroxymethylfurfural (DHMF) and 5-hydroxymethyl furanoic acid (HMFA) via Cannizzaro reaction, Green Chem, issue.10, pp.2849-2853, 2013.

K. I. Galkin, E. A. Krivodaeva, L. V. Romashov, S. S. Zalesskiy, V. V. Kachala et al., Critical Influence of 5-Hydroxymethylfurfural Aging and Decomposition on the Utility of Biomass Conversion in Organic Synthesis, Angew. Chem. Int. Ed, vol.55, issue.29, pp.8338-8342, 2016.

R. F. Gomes, Y. N. Mitrev, S. P. Simeonov, and C. A. Afonso, Going Beyond the Limits of the Biorenewable Platform: Sodium Dithionite-Promoted Stabilization of 5-Hydroxymethylfurfural, ChemSusChem, vol.11, issue.10, pp.1612-1616, 2018.

A. Sanborn, E. Hagberg, S. Howard, and E. M. Rockafellon, Process for making hydroxymethylfurfural from sugars with reduced byproduct formation, and improved stability of hydroxymethylfurfural compositions. WO2014158554A1, 2014.

F. Menegazzo, E. Ghedini, and M. Signoretto, 5-Hydroxymethylfurfural (HMF) Production from Real Biomasses, Molecules, issue.9, p.23, 2018.

H. J. Brownlee and C. S. Miner, Industrial Development of Furfural. Ind. Eng. Chem, vol.40, issue.2, pp.201-204, 1948.

B. Saha and M. M. Abu-omar, Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents, Green Chem, vol.16, issue.1, pp.24-38, 2014.

A. Chinnappan, C. Baskar, and H. Kim, Biomass into chemicals: green chemical conversion of carbohydrates into 5-hydroxymethylfurfural in ionic liquids, RSC Adv, vol.6, issue.68, pp.63991-64002, 2016.

M. E. Zakrzewska and E. Bogel-?ukasik, Bogel-?ukasik, R. Ionic Liquid-Mediated Formation of 5-Hydroxymethylfurfural-A Promising Biomass-Derived Building Block, Chem. Rev, vol.111, issue.2, pp.397-417, 2011.

S. P. Teong, G. Yi, and Y. Zhang, Hydroxymethylfurfural production from bioresources: past, present and future, Green Chem, vol.16, issue.4, pp.2015-2026, 2014.

M. Dashtban, A. Gilbert, and P. Fatehi, Recent advancements in the production of hydroxymethylfurfural, RSC Adv, vol.4, issue.4, pp.2037-2050, 2014.

K. Gupta, R. K. Rai, and S. K. Singh, Metal Catalysts for the Efficient Transformation of Biomass-derived HMF and Furfural to Value Added Chemicals, ChemCatChem, vol.10, issue.11, pp.2326-2349, 2018.

L. Hu, L. Lin, Z. Wu, S. Zhou, and S. Liu, Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals, Renew. Sust. Energ. Rev, pp.230-257, 2017.

J. G. De-vries, Chapter Eight -Green Syntheses of Heterocycles of Industrial Importance. 5-Hydroxymethylfurfural as a Platform Chemical, Adv. Heterocycl. Chem, vol.121, pp.247-293, 2017.

Z. Zhang and K. Deng, Recent Advances in the Catalytic Synthesis of 2,5-Furandicarboxylic Acid and Its Derivatives, ACS Catal, vol.5, issue.11, pp.6529-6544, 2015.

M. Sajid, X. Zhao, and D. Liu, Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes, Green Chem, issue.24, pp.5427-5453, 2018.

L. Hu, J. Xu, S. Zhou, A. He, X. Tang et al., Catalytic Advances in the Production and Application of Biomass-Derived 2,5-Dihydroxymethylfuran, ACS Catal, vol.8, issue.4, pp.2959-2980, 2018.

D. Zhang and M. Dumont, Advances in polymer precursors and bio-based polymers synthesized from 5-hydroxymethylfurfural, J. Polym. Sci., Part A: Polym. Chem, vol.55, issue.9, pp.1478-1492, 2017.

M. C. Victor, A. K. Oleg, and P. A. Valentine, Conversion of plant biomass to furan derivatives and sustainable access to the new generation of polymers, functional materials and fuels, Russ. Chem. Rev, vol.86, issue.5, p.357, 2017.

H. Quiroz-florentino, R. Aguilar, B. M. Santoyo, F. Dí-az, and J. Tamariz, Total Syntheses of Natural Furan Derivatives Rehmanones A, B, and C, Synthesis, issue.7, pp.1023-1028, 2008.

K. Pupovac and R. Palkovits, Cu/MgAl2O4 as Bifunctional Catalyst for Aldol Condensation of 5-Hydroxymethylfurfural and Selective Transfer Hydrogenation, ChemSusChem, issue.6, pp.2103-2110, 2013.

J. D. Lewis, S. Van-de-vyver, and Y. Romá-n-leshkov, Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization, Angew. Chem. Int. Ed, vol.54, issue.34, pp.9835-9838, 2015.

R. Lee, J. R. Vanderveen, P. Champagne, and P. Jessop, CO2-Catalysed aldol condensation of 5-hydroxymethylfurfural and acetone to a jet fuel precursor, Green Chem, vol.18, issue.19, pp.5118-5121, 2016.

T. Yutthalekha, D. Suttipat, S. Salakhum, A. Thivasasith, S. Nokbin et al., Aldol condensation of biomass-derived platform molecules over aminegrafted hierarchical FAU-type zeolite nanosheets (Zeolean) featuring basic sites, Chem. Commun, issue.90, pp.12185-12188, 2017.

A. Bohre, B. Saha, and M. M. Abu-omar, Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts, ChemSusChem, vol.8, issue.23, pp.4022-4029, 2015.

R. Skowronski, G. Grabowski, J. Lewkowski, G. Descotes, L. Cottier et al., New chemical conversions of 5-hydroxymethylfurfural and the electrochemical oxidation of its derivatives, Org. Prep. Proced. Int, vol.25, issue.3, pp.353-355, 1993.

K. S. Arias, M. J. Climent, A. Corma, and S. Iborra, Chemicals from Biomass: Synthesis of Biologically Active Furanochalcones by Claisen-Schmidt Condensation of Biomass-Derived 5-hydroxymethylfurfural (HMF) with Acetophenones, Top. Catal, issue.13, pp.1257-1265, 2016.

F. Zhao, Q. Zhao, J. Zhao, D. Zhang, Q. Wu et al., Synthesis and cdc25B inhibitory activity evaluation of chalcones, Chem. Nat. Compd, vol.49, issue.2, pp.206-214, 2013.

Y. Wang, H. Dong, F. Zhao, J. Wang, F. Yan et al., The synthesis and synergistic antifungal effects of chalcones against drug resistant Candida albicans, Bioorg. Med. Chem. Lett, vol.26, issue.13, pp.3098-3102, 2016.

S. N. Suryawanshi, N. Chandra, P. Kumar, J. Porwal, and S. Gupta, Chemotherapy of leishmaniasis part-VIII: Synthesis and bioevaluation of novel chalcones, Eur. J. Med. Chem, issue.11, pp.2473-2478, 2008.

G. Mugunthan, K. Ramakrishna, D. Sriram, P. Yogeeswari, and K. P. Ravindranathan-kartha, Synthesis and screening of (E)-1-(?-d-galactopyranosyl)-4-(aryl)but-3-ene-2-one against Mycobacterium tuberculosis, Bioorg. Med. Chem. Lett, vol.21, issue.13, pp.3947-3950, 2011.

K. Muthusamy, K. Lalitha, Y. S. Prasad, A. Thamizhanban, V. Sridharan et al., Lipase-Catalyzed Synthesis of Furan-Based Oligoesters and their Self-Assembly-Assisted Polymerization, ChemSusChem, vol.11, issue.14, pp.2453-2463, 2018.

J. W. Lockman, M. D. Reeder, K. Suzuki, K. Ostanin, R. Hoff et al., Inhibition of eEF2-K by thieno[2,3-b]pyridine analogues, Bioorg. Med. Chem. Lett, issue.7, pp.2283-2286, 2010.

A. Meguellati, A. Ahmed-belkacem, W. Yi, R. Haudecoeur, M. Crouillè-re et al., B-ring modified aurones as promising allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase, Eur. J. Med. Chem, vol.80, pp.579-592, 2014.

K. M. Taylor, Z. E. Taylor, and S. T. Handy, Rapid synthesis of aurones under mild conditions using a combination of microwaves and deep eutectic solvents, Tetrahedron Lett, vol.58, issue.3, pp.240-241, 2017.

Z. J. Witczak, R. Bielski, and D. E. Mencer, Concise and efficient synthesis of Estereoisomers of exo-cyclic carbohydrate enones. Aldol condensation of dihydrolevoglucosenone with five-membered aromatic aldehydes Part 1, Tetrahedron Lett, vol.58, issue.43, pp.4069-4072, 2017.

F. Zhao, H. Dong, Y. Wang, T. Wang, Z. Yan et al., Synthesis and synergistic antifungal effects of monoketone derivatives of curcumin against fluconazole-resistant Candida spp, MedChemComm, vol.8, issue.5, pp.1093-1102, 2017.

Q. Liu, C. Zhang, N. Shi, X. Zhang, C. Wang et al., Production of renewable longchained cycloalkanes from biomass-derived furfurals and cyclic ketones, RSC Adv, vol.8, issue.25, pp.13686-13696, 2018.

A. S. Amarasekara, T. B. Singh, E. Larkin, M. A. Hasan, and H. Fan, NaOH catalyzed condensation reactions between levulinic acid and biomass derived furan-aldehydes in water, Ind. Crops Prod, vol.65, pp.546-549, 2015.

J. Keskivä-li, P. Wrigstedt, K. Lagerblom, and T. Repo, One-step Pd/C and Eu(OTf)3 catalyzed hydrodeoxygenation of branched C11 and C12 biomass-based furans to the corresponding alkanes, Appl. Catal. A: Gen, vol.534, pp.40-45, 2017.

L. Lin, Q. Shi, A. K. Nyarko, K. F. Bastow, C. Wu et al., Antitumor Agents. 250. Design and Synthesis of New Curcumin Analogues as Potential Anti-Prostate Cancer Agents, J. Med. Chem, issue.13, pp.3963-3972, 2006.

V. V. Martichonok, P. K. Chiang, P. J. Dornbush, and K. M. Land, On Regioselectivity of Aldol Condensation of Aromatic Aldehydes with Borate Complex of Acetylacetone, Synth. Commun, vol.44, issue.9, pp.1245-1250, 2014.

W. Shao, Y. Cao, Z. Yu, W. Pan, X. Qiu et al., Facile preparation of new unsymmetrical curcumin derivatives by solid-phase synthesis strategy, Tetrahedron Lett, issue.24, pp.4085-4089, 2006.

M. Tarleton, L. Dyson, J. Gilbert, J. A. Sakoff, and A. Mccluskey, Focused library development of 2-phenylacrylamides as broad spectrum cytotoxic agents, Biorg. Med. Chem, vol.21, issue.1, pp.333-347, 2013.

M. Tarleton, J. Gilbert, J. A. Sakoff, and A. Mccluskey, Cytotoxic 2-phenyacrylnitriles, the importance of the cyanide moiety and discovery of potent broad spectrum cytotoxic agents, Eur. J. Med. Chem, vol.57, pp.65-73, 2012.

Z. Feng, J. Jia, Y. Liu, Z. Wang, and X. Zhao, 3-furyl-2-cyano-2-acrylamide derivative, preparation method therefor, pharmaceutical composition and use thereof US20160272604A1, 2016.

W. Hanefeld, M. Schlitzer, N. Debski, and H. Euler, 3-(2,5-Dioxopyrrolidin-1-yl), 3-(2,6-dioxopiperidin-1-yl), and 3-(1,3-dioxoisoindolin-2-yl)rhodanines. a novel type of rhodanine derivatives, J. Heterocycl. Chem, vol.33, issue.4, pp.1143-1146, 1996.

B. T. Gregg, K. C. Golden, J. F. Quinn, D. O. Tymoshenko, W. G. Earley et al., Expedient Lewis Acid Catalyzed Synthesis of a 3-Substituted 5-Arylidene-1-methyl-2-thiohydantoin Library, J. Comb. Chem, vol.9, issue.6, pp.1036-1040, 2007.

E. Lukevics, L. Ignatovich, and I. Shestakova, Synthesis, psychotropic and anticancer activity of 2,2-dimethyl-5-[5?-trialkylgermyl(silyl)-2?-hetarylidene]-1,3-dioxane-4,6-diones and their analogues, Appl. Organomet. Chem, vol.17, issue.12, pp.898-905, 2003.

R. F. Gomes, J. A. Coelho, and C. A. Afonso, Direct Conversion of Activated 5-Hydroxymethylfurfural into delta-Lactone-Fused Cyclopentenones, ChemSusChem, vol.12, issue.2, pp.420-425, 2019.

M. N. Nikolov and M. V. Poneva, Spectral Determination of the Structure of 5-Hydroxymethylfurfurylidene Barbituric Acid, Spectrosc. Lett, issue.10, pp.821-834, 1987.

M. Mercep, I. Malnar, A. Filipovic-sucic, and M. Mesic, Preparation of antiinflammatory conjugates of erythromycin macrolides and coumarins. WO2006092739A1, 2006.

J. Van-schijndel, L. A. Canalle, D. Molendijk, and J. Meuldijk, Exploration of the Role of Double Schiff Bases as Catalytic Intermediates in the Knoevenagel Reaction of Furanic Aldehydes: Mechanistic Considerations, Synlett, vol.29, issue.15, pp.1983-1988, 2018.

R. T. Cummings, J. P. Dizio, and G. A. Krafft, Photoactivable fluorophores. 2. Synthesis and photoactivation of functionalized 3-aroyl-2-(2-furyl)-chromones, Tetrahedron Lett, vol.29, issue.1, pp.69-72, 1988.

C. Yu, B. Liu, and L. Hu, Efficient Baylis?Hillman Reaction Using Stoichiometric Base Catalyst and an Aqueous Medium, J. Org. Chem, issue.16, pp.5413-5418, 2001.

C. Yu and L. Hu, Successful Baylis?Hillman Reaction of Acrylamide with Aromatic Aldehydes, J. Org. Chem, vol.67, issue.1, pp.219-223, 2002.

J. Tan, M. Ahmar, and Y. Queneau, HMF derivatives as platform molecules: aqueous Baylis-Hillman reaction of glucosyloxymethyl-furfural towards new biobased acrylates, RSC Adv, issue.3, pp.17649-17653, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02194216

J. Tan, M. Ahmar, and Y. Queneau, Bio-based solvents for the Baylis-Hillman reaction of HMF, RSC Adv, vol.5, issue.85, pp.69238-69242, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02193230

R. Miller, Synthesis and Stereochemistry of (E)-5-(3,4,5,6-Tetrahydropyrid-3-ylidenemethyl)-2-furanmethanol, a Product of the Reaction between D-Glucose and L-Lysine, Acta Chem. Scand. B, vol.41, pp.208-209, 1987.

X. Shao, Z. Li, X. Qian, and X. Xu, Design, Synthesis, and Insecticidal Activities of Novel Analogues of Neonicotinoids: Replacement of Nitromethylene with Nitroconjugated System, J. Agric. Food Chem, vol.57, issue.3, pp.951-957, 2009.

J. A. Coelho, A. F. Trindade, V. Andre, M. Teresa-duarte, L. F. Veiros et al., Trienamines derived from 5-substituted furfurals: remote ?-functionalization of 2,4-dienals, Org. Biomol. Chem, issue.46, pp.9324-9328, 2014.

J. Lee, N. Kang, Y. K. Kim, A. Samanta, S. Feng et al., Synthesis of a BODIPY Library and Its Application to the Development of Live Cell Glucagon Imaging Probe, J. Am. Chem. Soc, issue.29, pp.10077-10082, 2009.

I. Karaguni, K. Glüsenkamp, A. Langerak, C. Geisen, V. Ullrich et al., New indene-derivatives with anti-proliferative properties, Bioorg. Med. Chem. Lett, vol.12, issue.4, pp.709-713, 2002.

Z. Mouloungui, M. Delmas, and A. Gaset, Synthesis of ?,? Unsaturated Esters Using a Solid-Liquid Phase Transfer in a Slightly Hydrated Aprotic Medium, Synth. Commun, issue.8, pp.701-706, 1984.

Z. Mouloungui, M. Delmas, and A. Gaset, Synthesis of ?, ?-Ethylenic Esters in a Heterogenous Solid-Liquid Medium. II -A Transesterification Reaction Linked to a Wittig-Horner Reaction in a Protic Medium, Synth. Commun, issue.6, pp.491-494, 1985.

S. N. Goodman and E. N. Jacobsen, A Practical Synthesis of ?,?-Unsaturated Imides, Useful Substrates For Asymmetric Conjugate Addition Reactions, Adv. Synth. Catal, vol.344, issue.9, pp.953-956, 2002.

N. Almirante, A. Cerri, G. Fedrizzi, G. Marazzi, and M. Santagostino, )-substituted pyrazoles from aldehydes, Tetrahedron Lett, vol.3, issue.5, pp.3287-3290, 1998.

T. Fumagalli, G. Sello, and F. Orsini, One-Pot, Fluoride-Promoted Wittig Reaction, Synth. Commun, issue.12, pp.2178-2195, 2009.

N. Yoshida, N. Kasuya, N. Haga, and K. Fukuda, Brand-new Biomass-based Vinyl Polymers from 5-Hydroxymethylfurfural, Polym. J, vol.40, pp.1164-1169, 2008.

M. Han, X. Liu, X. Zhang, Y. Pang, P. Xu et al., 5-Hydroxymethyl-2-vinylfuran: a biomass-based solvent-free adhesive, Green Chem, vol.19, issue.3, pp.722-728, 2017.

L. V. Romashov and V. P. Ananikov, Alkynylation of Bio-Based 5-Hydroxymethylfurfural to Connect Biomass Processing with Conjugated Polymers and Furanic Pharmaceuticals, Chem. Asian J, issue.20, pp.2652-2655, 2017.

R. F. Gomes, J. A. Coelho, R. F. Frade, A. F. Trindade, and C. A. Afonso, Synthesis of Symmetric Bis(N-alkylaniline)triarylmethanes via Friedel-Crafts-Catalyzed Reaction between Secondary Anilines and Aldehydes, J. Org. Chem, issue.20, pp.10404-10411, 2015.

D. Liu, Y. Zhang, and E. Y. Chen, Organocatalytic upgrading of the key biorefining building block by a catalytic ionic liquid and N-heterocyclic carbenes, Green Chem, vol.14, issue.10, pp.2738-2746, 2012.

D. Liu and E. Y. Chen, Integrated Catalytic Process for Biomass Conversion and Upgrading to C12 Furoin and Alkane Fuel, ACS Catal, vol.4, issue.5, pp.1302-1310, 2014.

D. Liu and E. Y. Chen, Diesel and Alkane Fuels From Biomass by Organocatalysis and Metal-Acid Tandem Catalysis, ChemSusChem, issue.6, pp.2236-2239, 2013.

L. Wang and E. Y. Chen, Recyclable Supported Carbene Catalysts for High-Yielding Self-Condensation of Furaldehydes into C10 and C12 Furoins, ACS Catal, vol.5, issue.11, pp.6907-6917, 2015.

B. Yan, H. Zang, Y. Jiang, S. Yu, and E. Y. Chen, Recyclable montmorillonitesupported thiazolium ionic liquids for high-yielding and solvent-free upgrading of furfural and 5-hydroxymethylfurfural to C10 and C12 furoins, RSC Adv, vol.6, issue.80, pp.76707-76715, 2016.

H. Zang and E. Y. Chen, Organocatalytic Upgrading of Furfural and 5-Hydroxymethyl Furfural to C10 and C12 Furoins with Quantitative Yield and Atom-Efficiency, Int. J. Mol. Sci, vol.16, issue.4, pp.7143-7158, 2015.

J. Donnelly, C. R. Muller, L. Wiermans, C. J. Chuck, and P. Dominguez-de-maria, Upgrading biogenic furans: blended C10-C12 platform chemicals via lyase-catalyzed carboligations and formation of novel C12 -choline chloride-based deep-eutecticsolvents, Green Chem, vol.17, issue.5, pp.2714-2718, 2015.

U. K. Sharma, H. P. Gemoets, F. Schröder, T. Noë-l, and E. V. Van-der-eycken, Merger of Visible-Light Photoredox Catalysis and C-H Activation for the Room-Temperature C-2 Acylation of Indoles in Batch and Flow, ACS Catal, vol.7, issue.6, pp.3818-3823, 2017.

J. Ramonczai and L. Vargha, Studies on Furan Compounds. III. A New Synthesis of Furyl Ketones, J. Am. Chem. Soc, issue.6, pp.2737-2737, 1950.

C. M. Nicklaus, A. J. Minnaard, B. L. Feringa, and J. G. De-vries, Synthesis of renewable fine-chemical building blocks by reductive coupling between furfural derivatives and terpenes, ChemSusChem, issue.6, pp.1631-1635, 2013.

P. Hirapara, D. Riemer, N. Hazra, J. Gajera, M. Finger et al., CO2-assisted synthesis of non-symmetric ?-diketones directly from aldehydes via C-C bond formation, Green Chem, vol.19, issue.22, pp.5356-5360, 2017.

W. F. Cooper, W. H. Nuttall, and . Cxii, Furan-2 : 5-dialdehyde, J. Chem. Soc., Trans, vol.101, pp.1074-1081, 1912.

L. Cottier, G. Descotes, J. Lewkowski, and R. Skowro?ski, Synthesis and its stereochemistry of aminophosphonic acids derived from 5-hydroxymethylfurfural. Phosphorus, Sulfur Silicon Relat. Elem, vol.116, issue.1, pp.93-100, 1996.

A. Amarasekara, S. Edigin, O. Hernandez, and W. , Cycloaddition Reactions of 5-Hydroxymethyl-Furan-2-Nitrileoxide, Lett. Org. Chem, vol.4, issue.5, pp.306-308, 2007.

E. Wang, Y. Zhou, Q. Huang, L. Pang, H. Qiao et al., 5-Hydroxymethylfurfural modified rhodamine B dual-function derivative: Highly sensitive and selective optical detection of pH and Cu2+, Spectrochim. Acta A, vol.152, pp.327-335, 2016.

H. S. Alsaeedi, N. A. Aljaber, and I. Ara, Synthesis and Investigation of Antimicrobial Activity of Some Nifuroxazide Analogues, Asian J. Chem, issue.10, pp.3639-3646, 2015.

M. L. Brown, M. Cheung, S. H. Dickerson, D. H. Drewry, K. E. Lackey et al., Preparation of pyrazolopyrimidines as kinase inhibitors for the treatment of type 2 diabetes. WO2004009596A2, 2004.

A. S. Alturiqi, A. M. Alaghaz, R. A. Ammar, M. E. Zayed, and . Synthesis, Cu(II), and Zn(II) Complexes of Schiff Base Derived from 5-Hydroxymethylfuran-2-carbaldehyde, Spectral Characterization, and Thermal and Cytotoxicity Studies of Cr(III), Ru(III), pp.1-17, 2018.

O. G. Mohamed, Z. G. Khalil, and R. J. Capon, Prolinimines: N-Amino-l-Pro-methyl Ester (Hydrazine) Schiff Bases from a Fish Gastrointestinal Tract-Derived Fungus, Trichoderma sp. CMB-F563, Org. Lett, vol.20, issue.2, pp.377-380, 2018.

L. Cisneros, P. Serna, and A. Corma, Selective Reductive Coupling of Nitro Compounds with Aldehydes to Nitrones in H2 Using Carbon-Supported and -Decorated Platinum Nanoparticles, Angew. Chem. Int. Ed, issue.35, pp.9306-9310, 2014.

C. Pezzetta, L. F. Veiros, J. Oble, and G. Poli, Murai Reaction on Furfural Derivatives Enabled by Removable N,N?-Bidentate Directing Groups, Chem. Eur. J, issue.35, pp.8385-8389, 2017.

F. Siopa, V. Ramis-cladera, C. A. Afonso, J. Oble, and G. Poli, Ruthenium-Catalyzed C-H Arylation and Alkenylation of Furfural Imines with Boronates, Eur. J. Org. Chem, issue.44, pp.6101-6106, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01975395

A. Cukalovic and C. V. Stevens, Production of biobased HMF derivatives by reductive amination, Green Chem, issue.7, pp.1201-1206, 2010.

N. Elming and N. Clauson-kaas, Transformation of 2-(hydroxymethyl)-5-(aminomethyl)-furan into 6-methyl-3-pyridinol, Acta Chem. Scand, vol.10, pp.1603-1605, 1956.

Z. Xu, P. Yan, W. Xu, S. Jia, Z. Xia et al., Direct reductive amination of 5-hydroxymethylfurfural with primary/secondary amines via Ru-complex catalyzed hydrogenation, RSC Adv, vol.4, issue.103, pp.59083-59087, 2014.

M. Chatterjee, T. Ishizaka, and H. Kawanami, Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: an environmentally friendly approach, Green Chem, vol.18, issue.2, pp.487-496, 2016.

T. Komanoya, T. Kinemura, Y. Kita, K. Kamata, and M. Hara, Electronic Effect of Ruthenium Nanoparticles on Efficient Reductive Amination of Carbonyl Compounds, J. Am. Chem. Soc, issue.33, pp.11493-11499, 2017.

D. Chandra, Y. Inoue, M. Sasase, M. Kitano, A. Bhaumik et al., A high performance catalyst of shape-specific ruthenium nanoparticles for production of primary amines by reductive amination of carbonyl compounds, Chem. Sci, vol.9, issue.27, pp.5949-5956, 2018.

R. V. Jagadeesh, K. Murugesan, A. S. Alshammari, H. Neumann, M. Pohl et al., MOF-derived cobalt nanoparticles catalyze a general synthesis of amines, Science, vol.358, issue.6361, pp.326-332, 2017.

M. Zhu, L. Tao, Q. Zhang, J. Dong, Y. Liu et al., Versatile COassisted direct reductive amination of 5-hydroxymethylfurfural catalyzed by a supported gold catalyst, Green Chem, vol.19, issue.16, pp.3880-3887, 2017.

A. I. Carrillo and P. Llanes, Pericà s, M. A. A versatile, immobilized gold catalyst for the reductive amination of aldehydes in batch and flow, React. Chem. Eng, vol.3, issue.5, pp.714-721, 2018.

M. J. Niphakis, B. C. Gay, K. H. Hong, N. P. Bleeker, and G. I. Georg, Synthesis and evaluation of the anti-proliferative and NF-?B activities of a library of simplified tylophorine analogs, Biorg. Med. Chem, vol.20, issue.19, pp.5893-5900, 2012.

K. Kojiri, H. Kondo, H. Arakawa, M. Ohkubo, and H. Suda, Preparation of indolopyrrolocarbazole derivatives having glucopyranosyl group and antitumor agents containing them, vol.6703373, 2004.

B. Plitta, E. Adamska, M. Giel-pietraszuk, A. Fedoruk-wyszomirska, M. Naskr?t-barciszewska et al., New cytosine derivatives as inhibitors of DNA methylation, Eur. J. Med. Chem, vol.55, pp.243-254, 2012.

Z. Xu, P. Yan, K. Liu, L. Wan, W. Xu et al., Synthesis of Bis(hydroxylmethylfurfuryl)amine Monomers from 5-Hydroxymethylfurfural

, ChemSusChem, vol.9, issue.11, pp.1255-1258, 2016.

C. Müller, V. Diehl, and F. W. Lichtenthaler, Hydrophilic 3-pyridinols from fructose and isomaltulose, Tetrahedron, vol.54, issue.36, pp.10703-10712, 1998.

R. Villard, F. Robert, I. Blank, G. Bernardinelli, T. Soldo et al., Racemic and Enantiopure Synthesis and Physicochemical Characterization of the Novel Taste Enhancer N-(1-Carboxyethyl)-6-(hydroxymethyl)pyridinium-3-ol Inner Salt, J. Agric. Food Chem, vol.51, issue.14, pp.4040-4045, 2003.

J. Koch, M. Pischetsrieder, K. Polborn, and T. Severin, Formation of pyridinium betaines by reaction of hexoses with primary amines, Carbohydr. Res, issue.2, pp.117-123, 1998.

O. Frank, H. Ottinger, and T. Hofmann, Characterization of an Intense Bitter-Tasting 1H,4H-Quinolizinium-7-olate by Application of the Taste Dilution Analysis, a Novel Bioassay for the Screening and Identification of Taste-Active Compounds in Foods, J. Agric. Food Chem, vol.49, issue.1, pp.231-238, 2001.

T. Soldo and T. Hofmann, Application of Hydrophilic Interaction Liquid Chromatography/Comparative Taste Dilution Analysis for Identification of a Bitter Inhibitor by a Combinatorial Approach Based on Maillard Reaction Chemistry, J. Agric. Food Chem, issue.23, pp.9165-9171, 2005.

S. Sowmiah, L. F. Veiros, J. M. Esperanca, L. P. Rebelo, and C. A. Afonso, Organocatalyzed One-Step Synthesis of Functionalized N-Alkyl-Pyridinium Salts from Biomass Derived 5-Hydroxymethylfurfural, Org. Lett, issue.21, pp.5244-5247, 2015.

A. N. Koehler, E. Stefan, and F. Caballero, Preparation of fused 1,3-azole derivatives useful for the treatment of proliferative diseases. WO2016094688A1, 2016.

L. Sattler, F. W. Zerban, G. L. Clark, and C. Chu, The Reaction of 2-Aminobenzenethiol with Al-doses and with Hydroxymethylfurfural, J. Am. Chem. Soc, issue.12, pp.5908-5910, 1951.

H. Takezawa, M. Hayashi, Y. Iwasawa, M. Hosoi, Y. Iida et al., , 1993.

M. Forster, A. Chaikuad, . Bauer, M. Silke, J. Holstein et al., Selective JAK3 Inhibitors with a Covalent Reversible Binding Mode Targeting a New Induced Fit Binding Pocket, Cell Chem. Biol, vol.23, issue.11, pp.1335-1340, 2016.

M. Forster, A. Chaikuad, T. Dimitrov, E. Döring, J. Holstein et al., Optimization, and Structure-Activity Relationships of Covalent-Reversible JAK3

, 3-b]pyridine Scaffold, J. Med. Chem, vol.2, issue.12, pp.5350-5366, 2018.

M. Hrast, K. Ro?man, M. Juki?, D. Patin, S. Gobec et al., Synthesis and structure-activity relationship study of novel quinazolinone-based inhibitors of MurA, Bioorg. Med. Chem. Lett, issue.15, pp.3529-3533, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02281955

D. S. Snyder, L. Tradtrantip, C. Yao, M. J. Kurth, A. S. Verkman et al., Metabolically Stable Benzopyrimido-pyrrolo-oxazine-dione (BPO) CFTR Inhibitors for Polycystic Kidney Disease, J. Med. Chem, vol.54, issue.15, pp.5468-5477, 2011.

N. Sachdeva, A. V. Dolzhenko, S. J. Lim, W. L. Ong, and W. K. Chui, New J. Chem, issue.6, pp.4796-4804, 2015.

J. P. Antonio, R. F. Frade, F. M. Santos, J. A. Coelho, C. A. Afonso et al., NHC catalysed direct addition of HMF to diazo compounds: synthesis of acyl hydrazones with antitumor activity, RSC Adv, vol.4, issue.55, pp.29352-29356, 2014.

A. Baliani, G. J. Bueno, M. L. Stewart, V. Yardley, R. Brun et al., Design and Synthesis of a Series of Melamine-based Nitroheterocycles with Activity against Trypanosomatid Parasites, J. Med. Chem, issue.17, pp.5570-5579, 2005.

M. Kashiwagi, K. Fuhshuku, and T. Sugai, Control of the nitrile-hydrolyzing enzyme activity in Rhodococcus rhodochrous IFO 15564: preferential action of nitrile hydratase and amidase depending on the reaction condition factors and its application to the one-pot preparation of amides from aldehydes, J. Mol. Catal. B: Enzym, vol.29, issue.1, pp.249-258, 2004.

N. Ambreen and T. Wirth, High-Temperature Synthesis of Amides from Alcohols or Aldehydes by Using Flow Chemistry, Eur. J. Org. Chem, issue.34, pp.7590-7593, 2014.

X. Jia, J. Ma, M. Wang, H. Ma, C. Chen et al., Catalytic conversion of 5-hydroxymethylfurfural into 2,5-furandiamidine dihydrochloride, Green Chem, vol.18, issue.4, pp.974-978, 2016.

J. Zhu, H. M. Bienayme, and . Reactions, , p.468, 2005.

J. Zhu, Q. Wang, and M. Wang, Multicomponent Reactions in Organic Synthesis, 2015.

R. P. Herrera, Marqu é s -L ó pez, E. Multicomponent Reactions: Concepts and Applications for Design and Synthesis, 2015.

L. Levi and T. J. Müller, Multicomponent syntheses of functional chromophores, Chem. Soc. Rev, issue.10, pp.2825-2846, 2016.

A. Strecker, Ueber die künstliche Bildung der Milchsä ure und einen neuen, dem Glycocoll homologen Körper, Justus Liebigs Annalen der Chemie, vol.1850, issue.1, pp.27-45

A. Hantzsch, Condensationsprodukte aus Aldehydammoniak und ketonartigen Verbindungen, Ber. Dtsch. Chem. Ges, vol.1881, issue.2, pp.1637-1638

P. Biginelli, Ueber Aldehyduramide des Acetessigä thers, Ber. Dtsch. Chem. Ges, vol.1891, issue.1, pp.1317-1319

C. Mannich and W. Krösche, Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin, Arch. Pharm, vol.250, issue.1, pp.647-667, 1912.

M. Passerini and L. Simone, Composto del p-isonitril-azobenzolo con acetone ed acido acetico, Gazz. Chim. Ital, pp.126-129, 1921.

I. Ugi, Versuche mit Isonitrilen, Angew. Chem, issue.11, pp.386-386, 1959.

A. Dömling, W. Wang, and K. Wang, Chemistry and Biology Of Multicomponent Reactions, Chem. Rev, vol.112, issue.6, pp.3083-3135, 2012.

T. Zarganes-tzitzikas and A. Dömling, Modern multicomponent reactions for better drug syntheses, Org. Chem. Front, issue.7, pp.834-837, 2014.

R. Kakuchi, Multicomponent Reactions in Polymer Synthesis, Angew. Chem. Int. Ed, vol.53, issue.1, pp.46-48, 2014.

J. J. Matasi, J. P. Caldwell, J. Hao, B. Neustadt, L. Arik et al., The discovery and synthesis of novel adenosine receptor (A2A) antagonists, Bioorg. Med. Chem. Lett, vol.15, issue.5, pp.1333-1336, 2005.

M. L. Bode, A. L. Rousseau, D. Gravestock, S. S. Moleele, and C. W. Van-der-westhuyzen, Imidazopyridines and imidazopyrimidines as HIV-1 reverse transcriptase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of HIV infection, 2010.

A. B. Theberge, E. Mayot, A. El-harrak, F. Kleinschmidt, W. T. Huck et al., Microfluidic platform for combinatorial synthesis in picolitre droplets, Lab on a Chip, vol.12, issue.7, pp.1320-1326, 2012.

Q. Wu, J. Chen, X. Guo, and Y. Xu, Copper(I)-Catalyzed Four-Component Coupling Using Renewable Building Blocks of CO2 and Biomass-Based Aldehydes, Eur. J. Org. Chem, issue.24, pp.3105-3113, 2018.

M. Oikawa, M. Ikoma, and M. Sasaki, Parallel synthesis of tandem Ugi/Diels-Alder reaction products on a soluble polymer support directed toward split-pool realization of a small molecule library, Tetrahedron Lett, vol.46, issue.3, pp.415-418, 2005.

M. M. Lo, C. S. Neumann, S. Nagayama, E. O. Perlstein, and S. L. Schreiber, A Library of Spirooxindoles Based on a Stereoselective Three-Component Coupling Reaction, J. Am. Chem. Soc, issue.49, pp.16077-16086, 2004.

L. Cottier, G. Descotes, and Y. Soro, Synthesis of Acetylated Ranunculin Diastereoisomers and ?-Glucosyloxy-?-Oxo Esters from ? or ? Glucosylmethylfurfural, J. Carbohydr. Chem, vol.24, issue.1, pp.55-71, 2005.

O. Casanova, S. Iborra, and A. Corma, Biomass into chemicals: One pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2,5-dimethylfuroate with gold on nanoparticulated ceria, J. Catal, vol.265, issue.1, pp.109-116, 2009.

S. Kanai, I. Nagahara, Y. Kita, K. Kamata, and M. Hara, A bifunctional cerium phosphate catalyst for chemoselective acetalization, Chem. Sci, vol.8, issue.4, pp.3146-3153, 2017.

M. Kim, Y. Su, A. Fukuoka, E. J. Hensen, and K. Nakajima, Aerobic Oxidation of 5-(Hydroxymethyl)furfural Cyclic Acetal Enables Selective Furan-2,5-dicarboxylic Acid Formation with CeO2-Supported Gold Catalyst, Angew. Chem. Int. Ed, vol.57, issue.27, pp.8235-8239, 2018.

K. S. Arias, A. Garcia-ortiz, M. J. Climent, A. Corma, and S. Iborra, Mutual Valorization of 5-Hydroxymethylfurfural and Glycerol into Valuable Diol Monomers with Solid Acid Catalysts, ACS Sustainable Chem. Eng, vol.6, issue.3, pp.4239-4245, 2018.

B. Mallesham, P. Sudarsanam, G. Raju, and B. M. Reddy, Design of highly efficient Mo and W-promoted SnO2 solid acids for heterogeneous catalysis: acetalization of bioglycerol, Green Chem, vol.15, issue.2, pp.478-489, 2013.

A. Garcia-ortiz, K. S. Arias, M. J. Climent, A. Corma, and S. Iborra, One-Pot Synthesis of Biomass-Derived Surfactants by Reacting Hydroxymethylfurfural, Glycerol, and Fatty Alcohols on Solid Acid Catalysts, ChemSusChem, vol.11, issue.17, pp.2870-2880, 2018.

H. Li, T. Yang, A. Riisager, S. Saravanamurugan, and S. Yang, Chemoselective Synthesis of Dithioacetals from Bio-aldehydes with Zeolites under Ambient and Solvent-free Conditions, ChemCatChem, vol.9, issue.6, pp.1097-1104, 2017.

Q. Zhao, Y. Zou, C. Huang, P. Lan, J. Zheng et al., Formation of a Hydroxymethylfurfural-Cysteine Adduct and Its Absorption and Cytotoxicity in Caco-2 Cells, J. Agric. Food Chem, issue.45, pp.9902-9908, 2017.

L. Cottier, G. Descotes, L. Eymard, and K. Rapp, Syntheses of ?-Oxo Acids or ?-Oxo Esters by Photooxygenation of Furanic Compounds and Reduction Under Ultrasound: Application to the Synthesis of 5-Aminolevulinic Acid Hydrochloride, Synthesis, issue.03, pp.303-306, 1995.

M. Jogia, V. Vakamoce, and R. Weavers, Synthesis of Some Furfural and Syringic Acid Derivatives, Aust. J. Chem, vol.38, issue.7, pp.1009-1016, 1985.

R. Bogná-r, P. Herczegh, M. Zsé-ly, and G. Batta, Synthesis of 3,4-dideoxy-dl-hex-3-enopyranosides from 5-hydroxymethyl-2-furaldehyde, Carbohydr. Res, vol.164, pp.465-469, 1987.

L. A. Bakholdina, A. I. Khlebnikov, and V. P. Sevodin, Mild reaction of primary alcohols with ferulic acid, Russ. J. Org. Chem, vol.52, issue.3, pp.441-443, 2016.

H. Zhou, W. Liu, C. Sun, C. Peng, J. Wang et al., Synthesis of Novel Coumarin Derivatives and in vitro Biological Evaluation as Potential PTP 1B Inhibitors, Heterocycles, vol.87, issue.8, p.1711, 2013.

H. Quiroz-florentino, A. Garcí-a, E. Burgueño-tapia, and J. Tamariz, Total synthesis of the natural succinate derivative of 5-(hydroxymethyl)furfural isolated from the Noni fruit (Morinda citrifolia), Nat. Prod. Res, issue.14, pp.1355-1362, 2009.

H. Sugimura, M. Kikuchi, S. Kato, W. Sekita, and I. Sasaki, Practical synthesis of mumefural, a component of Japanese apricot juice concentrate, Tetrahedron, vol.72, issue.47, pp.7638-7641, 2016.

M. Krystof and M. Pé-rez-sá-nchez, Domí nguez de Marí a, P. Lipase-Catalyzed (Trans)esterification of 5-Hydroxy-methylfurfural and Separation from HMF Esters using Deep-Eutectic Solvents, ChemSusChem, issue.6, pp.630-634, 2013.

Y. Qin, M. Zong, W. Lou, and N. Li, Biocatalytic Upgrading of 5-Hydroxymethylfurfural (HMF) with Levulinic Acid to HMF Levulinate in Biomass-Derived Solvents, ACS Sustainable Chem. Eng, vol.4, issue.7, pp.4050-4054, 2016.

D. Chundury and H. H. Szmant, Preparation of polymeric building blocks from 5-hydroxymethyl-and 5-chloromethylfurfuraldehyde, Ind. Eng. Chem. Prod. Res. Dev, vol.20, issue.1, pp.158-163, 1981.

C. Larousse, L. Rigal, and A. Gaset, Synthesis of 5,5'-oxydimethylenebis(2-furfural) by thermal dehydration of 5-hydroxymethyl-2-furfural in the presence of dimethylsulfoxide, J. Chem. Technol. Biotechnol, vol.53, issue.1, pp.111-116, 1992.

A. Pá-ez, H. A. Rojas, O. Portilla, G. Sathicq, C. A. Afonso et al., Preyssler Heteropolyacids in the Self-Etherification of 5-Hydroxymethylfurfural to 5,5?-[Oxybis(methylene)]bis-2-furfural Under Mild Reaction Conditions, ChemCatChem, vol.9, issue.17, pp.3322-3329, 2017.

O. Casanova, S. Iborra, and A. Corma, Chemicals from biomass: Etherification of 5-hydroxymethyl-2-furfural (HMF) into 5,5?(oxy-bis(methylene))bis-2-furfural (OBMF) with solid catalysts, J. Catal, issue.2, pp.236-242, 2010.

H. Wang, Y. Wang, T. Deng, C. Chen, Y. Zhu et al., Carbocatalyst in biorefinery: Selective etherification of 5-hydroxymethylfurfural to 5,5 ?(oxy-bis(methylene)bis-2-furfural over graphene oxide, Catal. Commun, vol.59, pp.127-130, 2015.

S. Shinde and C. Rode, Selective self-etherification of 5-(hydroxymethyl)furfural over Sn-Mont catalyst, Catal. Commun, vol.88, pp.77-80, 2017.

R. Wen, F. Yu, X. Dong, Y. Miao, P. Zhou et al., , 2003.

H. Wang, T. Deng, Y. Wang, X. Cui, Y. Qi et al., Graphene oxide as a facile acid catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural, Green Chem, vol.15, issue.9, p.2379, 2013.

R. S. Thombal and V. H. Jadhav, Application of glucose derived magnetic solid acid for etherification of 5-HMF to 5-EMF, dehydration of sorbitol to isosorbide, and esterification of fatty acids, Tetrahedron Lett, vol.57, issue.39, pp.4398-4400, 2016.

H. Quiroz-florentino, R. I. Herná-ndez-benitez, J. A. Aviña, E. Burgueño-tapia, and J. Tamariz, Total Synthesis of Naturally Occurring Furan Compounds 5-{[(4-Hydroxybenzyl)oxy]methyl}-2-furaldehyde and Pichiafuran C, Synthesis, pp.1106-1112, 2011.

V. Ilkei, K. Faragó, Z. Sá-nta, M. Dé-ká-ny, L. Hazai et al., The First Synthesis of Sessiline, Int. J. Org. Chem, vol.4, pp.309-313, 2014.

J. K. Berton, T. S. Heugebaert, W. Debrouwer, and C. V. Stevens, 3-Imidoallenylphosphonates: In Situ Formation and ?-Alkoxylation, Org. Lett, vol.18, issue.2, pp.208-211, 2016.

T. El-hajj, J. Martin, and G. Descotes, Dé rivé s de l'hydroxymé thyl-5 furfural. I. Synthé se de dé rivé s du di-et terfuranne, J. Heterocycl. Chem, vol.20, issue.1, pp.233-235, 1983.

J. R. De-freitas-filho, R. M. Srivastava, Y. Soro, L. Cottier, and G. Descotes, Synthesis of new 2,3-unsaturated O-glycosides through Ferrier rearrangement, J. Carbohydr. Chem, vol.20, issue.7-8, pp.561-568, 2001.

Z. Ding, X. Luo, Y. Ma, H. Chen, S. Qiu et al., Eco-friendly synthesis of 5-hydroxymethylfurfural (HMF) and its application to the Ferrier-rearrangement reaction, J. Carbohydr. Chem, vol.37, issue.2, pp.81-93, 2018.

M. Mascal, Chloromethyl)furfural is the New HMF: Functionally Equivalent But More Practical in Terms of its Production From Biomass, vol.8, pp.3391-3395, 2015.

K. Sanda, L. Rigal, and A. Gaset, Synthè se du 5-bromomé thyl-et du 5-chloromé thyl-2-furannecarboxaldé hyde, Carbohydr. Res, vol.187, issue.1, pp.15-23, 1989.

A. Bredihhin, U. Mä-eorg, and L. Vares, Evaluation of carbohydrates and lignocellulosic biomass from different wood species as raw material for the synthesis of 5-bromomethyfurfural, Carbohydr. Res, vol.375, pp.63-67, 2013.

L. V. Romashov and V. P. Ananikov, Synthesis of HIV-1 capsid protein assembly inhibitor (CAP-1) and its analogues based on a biomass approach, Org. Biomol. Chem, issue.45, pp.10593-10598, 2016.

K. Sanda, L. Rigal, M. Delmas, and A. Gaset, The Vilsmeier Reaction: A New Synthetic Method for 5-(Chloromethyl)-2-furaldehyde, Synthesis, issue.06, pp.541-542, 1992.

F. H. Newth and L. F. Wiggins, The conversion of sucrose into furan compounds. Part III. Some amidino-furans, J. Chem. Soc, issue.0, pp.396-398, 1947.

P. Villain-guillot, M. Gualtieri, L. Bastide, F. Roquet, J. Martinez et al., Structure?Activity Relationships of Phenyl-Furanyl-Rhodanines as Inhibitors of RNA Polymerase with Antibacterial Activity on Biofilms, J. Med. Chem, issue.17, pp.4195-4204, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00258918

K. Bedjeguelal, R. Rabot, E. B. Kaloun, P. Mayer, A. Marchand et al., Preparation of pyrazolopyridine derivatives as ALK kinase inhibitors for treating cancer, 2011.

R. L. Dow, R. C. Kelly, I. Schletter, and W. Wierenga, A Direct Alcohol for Hydrazine Interchange: Scope and Stereochemistry, Synth. Commun, vol.11, issue.1, pp.43-53, 1981.

T. A. Lewis, L. Bayless, J. B. Eckman, J. L. Ellis, G. Grewal et al., 5-Lipoxygenase inhibitors with histamine H1 receptor antagonist activity, Bioorg. Med. Chem. Lett, vol.14, issue.9, pp.2265-2268, 2004.

I. Iovel, K. Mertins, J. Kischel, A. Zapf, and M. Beller, An Efficient and General Iron-Catalyzed Arylation of Benzyl Alcohols and Benzyl Carboxylates, Angew. Chem. Int. Ed, issue.25, pp.3913-3917, 2005.

X. Zhou and T. B. Rauchfuss, Production of Hybrid Diesel Fuel Precursors from Carbohydrates and Petrochemicals Using Formic Acid as a Reactive Solvent, ChemSusChem, issue.6, pp.383-388, 2013.

L. Bering, K. Jeyakumar, and A. P. Antonchick, Metal-Free C-O Bond Functionalization: Catalytic Intramolecular and Intermolecular Benzylation of Arenes, Org. Lett, issue.13, pp.3911-3914, 2018.

A. Onorato, C. Pavlik, M. A. Invernale, I. D. Berghorn, G. A. Sotzing et al., Polymer-mediated cyclodehydration of alditols and ketohexoses, Carbohydr. Res, issue.13, pp.1662-1670, 2011.

S. D. Nale and V. H. Jadhav, Synthesis of Fuel Intermediates from HMF/Fructose, Catal. Lett, issue.10, pp.1984-1990, 2016.

D. S. Ryabukhin, D. N. Zakusilo, M. O. Kompanets, A. Tarakanov, I. A. Boyarskaya et al., Superelectrophilic activation of 5-hydroxymethylfurfural and 2,5-diformylfuran: organic synthesis based on biomass-derived products, Beilstein J. Org. Chem, vol.12, pp.2125-2135, 2016.

H. P. Teunissen, Velocity measurements on the opening of the furane ring in hydroxymethylfurfuraldehyde, Recl. Trav. Chim. Pays-Bas, vol.49, issue.9, pp.784-826, 1930.

G. C. Luijkx, F. Van-rantwijk, and H. Van-bekkum, Hydrothermal formation of 1,2,4-benzenetriol from 5-hydroxymethyl-2-furaldehyde and d-fructose, Carbohydr. Res, vol.242, pp.131-139, 1993.

S. T?upova, F. Rominger, M. Rudolph, and A. S. Hashmi, Synthesis of phenols from hydroxymethylfurfural (HMF), Green Chem, vol.18, issue.21, pp.5800-5805, 2016.

J. J. Roylance and K. Choi, Electrochemical reductive biomass conversion: direct conversion of 5-hydroxymethylfurfural (HMF) to 2,5-hexanedione (HD) via reductive ring-opening, Green Chem, vol.18, issue.10, pp.2956-2960, 2016.

D. Ren, Z. Song, L. Li, Y. Liu, F. Jin et al., Production of 2,5-hexanedione and 3-methyl-2-cyclopenten-1-one from 5-hydroxymethylfurfural, Green Chem, vol.18, issue.10, pp.3075-3081, 2016.

W. Wu, Y. Xu, R. Zhu, M. Cui, X. Li et al., Selective Conversion of 5-Hydroxymethylfuraldehyde Using Cp*Ir Catalysts in Aqueous Formate Buffer Solution, ChemSusChem, vol.9, issue.10, pp.1209-1215, 2016.

Z. Xu, P. Yan, H. Li, K. Liu, X. Liu et al., Active Cp*Iridium(III) Complex with ortho-Hydroxyl Group Functionalized Bipyridine Ligand Containing an Electron-Donating Group for the Production of Diketone from 5-HMF, ACS Catal, vol.6, issue.6, pp.3784-3788, 2016.

B. Wozniak, Y. H. Li, S. Hinze, S. Tin, and J. G. De-vries, Efficient Synthesis of Biomass-Derived N-Substituted 2-Hydroxymethyl-5-Methyl-Pyrroles in Two Steps from 5-Hydroxymethylfurfural, Eur. J. Org. Chem, issue.17, pp.2009-2012, 2018.

E. R. Sacia, M. H. Deaner, Y. L. Louie, and A. T. Bell, Synthesis of biomass-derived methylcyclopentane as a gasoline additive via aldol condensation/hydrodeoxygenation of 2,5-hexanedione, Green Chem, vol.17, issue.4, pp.2393-2397, 2015.

Y. Duan, M. Zheng, D. Li, D. Deng, L. Ma et al., Conversion of HMF to methyl cyclopentenolone using Pd/Nb2O5 and Ca-Al catalysts via a two-step procedure, Green Chem, vol.19, issue.21, pp.5103-5113, 2017.

B. Wozniak, A. Spannenberg, Y. Li, S. Hinze, and J. G. De-vries, Cyclopentanone Derivatives from 5-Hydroxymethylfurfural via 1-Hydroxyhexane-2,5-dione as Intermediate, ChemSusChem, vol.11, issue.2, pp.356-359, 2018.

J. Ohyama, R. Kanao, Y. Ohira, and A. Satsuma, The effect of heterogeneous acid-base catalysis on conversion of 5-hydroxymethylfurfural into a cyclopentanone derivative, Green Chem, vol.18, issue.3, pp.676-680, 2016.

J. Ohyama, R. Kanao, A. Esaki, and A. Satsuma, Conversion of 5-hydroxymethylfurfural to a cyclopentanone derivative by ring rearrangement over supported Au nanoparticles, Chem. Commun, issue.42, pp.5633-5636, 2014.

C. Verrier, S. Moebs-sanchez, Y. Queneau, and F. Popowycz, The Piancatelli reaction and its variants: recent applications to high added-value chemicals and biomass valorization, Org. Biomol. Chem, vol.16, issue.5, pp.676-687, 2018.

F. W. Lichtenthaler, A. Brust, and E. Cuny, Sugar-derived building blocks. Part 26. Hydrophilic pyrroles, pyridazines and diazepinones from -fructose and isomaltulose, Green Chem, vol.3, issue.5, pp.201-209, 2001.

T. S. Heugebaert, C. V. Stevens, and C. O. Kappe, Singlet-Oxygen Oxidation of 5-Hydroxymethylfurfural in Continuous Flow, ChemSusChem, vol.8, issue.10, pp.1648-1651, 2015.

F. A. Kucherov, K. I. Galkin, E. G. Gordeev, and V. P. Ananikov, Efficient route for the construction of polycyclic systems from bioderived HMF, Green Chem, vol.19, issue.20, pp.4858-4864, 2017.

K. I. Galkin, F. A. Kucherov, O. N. Markov, K. S. Egorova, A. V. Posvyatenko et al., Facile Chemical Access to Biologically Active Norcantharidin Derivatives from Biomass, Molecules, vol.22, issue.12, p.2210, 2017.

S. Higson, F. Subrizi, T. D. Sheppard, and H. C. Hailes, Chemical cascades in water for the synthesis of functionalized aromatics from furfurals, Green Chem, vol.18, issue.7, pp.1855-1858, 2016.

Z. Lin, M. Ierapetritou, and V. Nikolakis, Aromatics from Lignocellulosic Biomass: Economic Analysis of the Production of p-Xylene from 5-Hydroxymethylfurfural, AlChE J, issue.6, pp.2079-2087, 2013.

L. Ni, J. Xin, H. Dong, X. Lu, X. Liu et al., A Simple and Mild Approach for the Synthesis of p-Xylene from Bio-Based 2,5-Dimethyfuran by Using Metal Triflates, ChemSusChem, vol.10, issue.11, pp.2394-2401, 2017.

M. Shiramizu and F. D. Toste, On the Diels-Alder Approach to Solely Biomass-Derived Polyethylene Terephthalate (PET): Conversion of 2,5-Dimethylfuran and Acrolein into p-Xylene, Chem. Eur. J, issue.44, pp.12452-12457, 2011.

E. M. Serum, S. Sermadurai, N. Zimmermann, and M. P. Sibi, Valorization of 2,5-Furandicarboxylic Acid. Diels-Alder Reactions with Benzyne, Green Chem, issue.7, pp.1448-1454, 2018.

J. J. Pacheco, J. A. Labinger, A. L. Sessions, and M. E. Davis, Route to Renewable PET: Reaction Pathways and Energetics of Diels-Alder and Dehydrative Aromatization Reactions Between Ethylene and Biomass-Derived Furans Catalyzed by Lewis Acid Molecular Sieves, ACS Catal, vol.5, issue.10, pp.5904-5913, 2015.

C. Chang, H. Cho, J. Yu, R. J. Gorte, J. Gulbinski et al., Lewis acid zeolites for tandem Diels-Alder cycloaddition and dehydration of biomassderived dimethylfuran and ethylene to renewable p-xylene, Green Chem, vol.18, issue.5, pp.1368-1376, 2016.

S. Song, G. Wu, W. Dai, N. Guan, and L. Li, Diels-Alder and dehydration reactions of furan derivatives with ethylene catalyzed by liquid Brønsted acids and Lewis acids, J. Mol. Catal. A: Chem, vol.420, pp.134-141, 2016.

P. T. Do, J. R. Mcatee, D. A. Watson, and R. F. Lobo, Elucidation of Diels-Alder Reaction Network of 2,5-Dimethylfuran and Ethylene on HY Zeolite Catalyst, ACS Catal, vol.3, issue.1, pp.41-46, 2013.

J. J. Pacheco and M. E. Davis, Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural, Proc. Natl. Acad. Sci. U. S. A, issue.23, pp.8363-8367, 2014.

B. J. Mcnelis, D. D. Sternbach, and A. T. Macphail, Synthetic and kinetic studies of substituent effects in the furan intramolecular Diels-Alder reaction, Tetrahedron, vol.50, issue.23, pp.6767-6782, 1994.

S. Sun and W. V. Murray, Solid Phase Diels?Alder Reactions of Amino Acid Derived Trienes, J. Org. Chem, vol.64, issue.16, pp.5941-5945, 1999.

D. Schinzer, E. Bourguet, and S. Ducki, Synthesis of Furano-Epothilone D, Chem. Eur. J, vol.10, issue.13, pp.3217-3224, 2004.

P. F. Koh and T. P. Loh, Synthesis of biologically active natural products, aspergillides A and B, entirely from biomass derived platform chemicals, Green Chem, issue.7, pp.3746-3750, 2015.

T. J. Connolly, J. L. Considine, Z. Ding, B. Forsatz, M. N. Jennings et al., Efficient Synthesis of 8-Oxa-3-aza-bicyclo[3.2.1]octane Hydrochloride, Org. Process Res. Dev, vol.14, issue.2, pp.459-465, 2010.

P. Gupta, S. K. Singh, A. Pathak, and B. Kundu, Template-directed approach to solid-phase combinatorial synthesis of furan-based libraries, Tetrahedron, vol.58, issue.52, pp.10469-10474, 2002.

R. Rajmohan, S. Gayathri, and P. Vairaprakash, Facile synthesis of 5-hydroxymethylfurfural: a sustainable raw material for the synthesis of key intermediates toward 21,23-dioxaporphyrins, RSC Adv, vol.5, issue.121, pp.100401-100407, 2015.

P. J. Mcdermott and R. A. Stockman, Combining Two-Directional Synthesis and Tandem Reactions: Synthesis of Trioxadispiroketals, Org. Lett, vol.7, issue.1, pp.27-29, 2005.

C. Zhu, B. Yang, Y. Zhao, C. Fu, L. Tao et al., A new insight into the Biginelli reaction: the dawn of multicomponent click chemistry?, Polym. Chem, issue.4, pp.5395-5400, 2013.

C. O. Kappe, 100 years of the biginelli dihydropyrimidine synthesis, Tetrahedron, issue.32, pp.6937-6963, 1993.

C. O. Kappe, Recent Advances in the Biginelli Dihydropyrimidine Synthesis, Acc. Chem. Res, issue.12, pp.879-888, 2000.

C. O. Kappe and A. Stadler, The Biginelli Dihydropyrimidine Synthesis, Organic Reactions, pp.1-116, 2004.

C. O. Kappe, The Biginelli Reaction, 2005.

K. Singh and K. Singh, Chapter 3 -Biginelli Condensation: Synthesis and Structure Diversification of 3,4-Dihydropyrimidin-2(1H)-one Derivatives, Adv. Heterocycl. Chem, vol.105, pp.223-308, 2012.

. Suresh,

J. S. Sandhu, Past, present and future of the Biginelli reaction: a critical perspective, Arkivoc, issue.1, pp.66-133, 2012.

H. Nagarajaiah, A. Mukhopadhyay, and J. N. Moorthy, Biginelli reaction: an overview, Tetrahedron Lett, vol.57, issue.47, pp.5135-5149, 2016.

G. C. Tron, A. Minassi, G. P. Appendino, and . Biginelli, The Man Behind the Reaction, Eur. J. Org. Chem, pp.5541-5550, 2011.

H. G. Alvim, E. N. Da-silva-junior, and B. A. Neto, What do we know about multicomponent reactions? Mechanisms and trends for the Biginelli, Hantzsch, Mannich, Passerini and Ugi MCRs, RSC Adv, vol.4, issue.97, pp.54282-54299, 2014.

F. Sweet and J. D. Fissekis, Synthesis of 3,4-dihydro-2(1H)-pyrimidinones and the mechanism of the Biginelli reaction, J. Am. Chem. Soc, issue.26, pp.8741-8749, 1973.

C. O. Kappe, A Reexamination of the Mechanism of the Biginelli Dihydropyrimidine Synthesis. Support for an N-Acyliminium Ion Intermediate1, J. Org. Chem, vol.62, issue.21, pp.7201-7204, 1997.

K. Folkers and T. B. Johnson, Researches on Pyrimidines. CXXXVI. The Mechanism of Formation of Tetrahydropyrimidines by the Biginelli Reaction1, J. Am. Chem. Soc, vol.55, issue.9, pp.3784-3791, 1933.

I. Cepanec, M. Litvi?, M. Filipan-litvi?, and I. Grüngold, Antimony(III) chloride-catalysed Biginelli reaction: a versatile method for the synthesis of dihydropyrimidinones through a different reaction mechanism, Tetrahedron, vol.63, issue.48, pp.11822-11827, 2007.

M. Puripat, R. Ramozzi, M. Hatanaka, W. Parasuk, V. Parasuk et al., The Biginelli Reaction Is a Urea-Catalyzed Organocatalytic Multicomponent Reaction, J. Org. Chem, issue.14, pp.6959-6967, 2015.

C. O. Kappe, Biologically active dihydropyrimidones of the Biginelli-type -a literature survey, Eur. J. Med. Chem, issue.12, pp.1043-1052, 2000.

Â. De-fá-tima, T. C. Braga, L. D. Neto, B. S. Terra, B. G. Oliveira et al., A mini-review on Biginelli adducts with notable pharmacological properties, J. Adv. Res, vol.6, issue.3, pp.363-373, 2015.

R. Kaur, S. Chaudhary, K. Kumar, M. K. Gupta, and R. K. Rawal, Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review, Eur. J. Med. Chem, pp.108-134, 2017.

L. H. Matos, F. T. Masson, L. A. Simeoni, and M. Homem-de-mello, Biological activity of dihydropyrimidinone (DHPM) derivatives: A systematic review, Eur. J. Med. Chem, vol.143, pp.1779-1789, 2018.

S. S. Panda, P. Khanna, and L. Khanna, Biginelli Reaction: A Green Perspective, Curr. Org. Chem, vol.16, issue.4, pp.507-520, 2012.

A. Kumar and R. A. Maurya, An efficient bakers' yeast catalyzed synthesis of 3,4-dihydropyrimidin-2-(1H)-ones, Tetrahedron Lett, issue.26, pp.4569-4571, 2007.

Z. Le, Z. Xie, L. Fu, J. Lan, L. Liu et al., Biginelli Reaction of Aliphatic Aldehydes Catalyzed by ?-Chymotrypsin: One-Pot Biocatalytic Synthesis of Dihydropyrimidinones, Heterocycles, issue.10, p.1808, 2018.

H. G. Alvim, T. B. Lima, A. L. De-oliveira, H. C. De-oliveira, F. M. Silva et al., Facts, Presumptions, and Myths on the Solvent-Free and Catalyst-Free Biginelli Reaction. What is Catalysis for?, J. Org. Chem, issue.8, pp.3383-3397, 2014.

M. H. Majid, G. Mahdieh, and H. Bahareh, Microwave-Assisted Biginelli Reaction: An Old Reaction, a New Perspective, Curr. Org. Synth, vol.13, issue.4, pp.569-600, 2016.

K. A. Dilmaghani, B. Zeynizadeh, and M. Amirpoor, Ultrasound-Mediated Synthesis of 3,4-Dihydropyrimidin-2-(1H)-Ones (or Thiones) with NaHSO4· H2O. Phosphorus, Sulfur Silicon Relat. Elem, vol.188, issue.11, pp.1634-1642, 2013.

L. Gong, X. Chen, and X. Xu, Asymmetric Organocatalytic Biginelli Reactions: A New Approach To Quickly Access Optically Active 3,4-Dihydropyrimidin-2-(1H)-ones, Chem. Eur. J, issue.32, pp.8920-8926, 2007.

M. M. Heravi, R. Moradi, L. Mohammadkhani, and B. Moradi, Current progress in asymmetric Biginelli reaction: an update, Mol Divers, vol.22, issue.3, pp.751-767, 2018.

C. O. Kappe, Isolation, Conformational Analysis and X-Ray Structure Determination of a Trifluoromethyl-stabilized Hexahydropyrimidine -An Intermediate in the Biginelli Reaction, Heterocycles, vol.51, issue.1, p.77, 1999.

Á. G. Sathicq, D. M. Ruiz, T. Constantieux, J. Rodriguez, and G. P. Romanelli, Preyssler Heteropoly Acids Encapsulated in a Silica Framework for an ­Efficient Preparation of Fluorinated Hexahydropyrimidine Derivatives under Solvent-Free Conditions, Synlett, vol.25, issue.06, pp.881-883, 2014.

V. Palermo, Á. Sathicq, T. Constantieux, J. Rodrí-guez, P. Vá-zquez et al., New Vanadium Keggin Heteropolyacids Encapsulated in a Silica Framework: Recyclable Catalysts for the Synthesis of Highly Substituted Hexahydropyrimidines Under Suitable Conditions, Catal. Lett, vol.145, issue.4, pp.1022-1032, 2015.

A. Stadler and C. O. Kappe, Microwave-mediated Biginelli reactions revisited. On the nature of rate and yield enhancements, J. Chem. Soc. Perk. Trans. 2, issue.7, pp.1363-1368, 2000.

M. Li, W. Guo, L. Wen, Y. Li, and H. Yang, One-pot synthesis of Biginelli and Hantzsch products catalyzed by non-toxic ionic liquid (BMImSac) and structural determination of two products, J. Mol. Catal. A: Chem, vol.258, issue.1-2, pp.133-138, 2006.

F. Tamaddon and S. Moradi, Controllable selectivity in Biginelli and Hantzsch reactions using nanoZnO as a structure base catalyst, J. Mol. Catal. A: Chem, vol.370, pp.117-122, 2013.

J. Tan, Carbohydrate chemistry in auqeous and bio-based solvents: Exploring the use of glycosyloxymethyl furfural (GMF) and analogues in the Baylis-Hillman reaction, 2015.

F. W. Lichtenthaler, D. Martin, T. Weber, and H. Schiweck, Studies on Ketoses, 7 -5-(?-D-Glucosyloxymethyl)furfural: Preparation from Isomaltulose and Exploration of Its Ensuing Chemistry, Liebigs Ann. Chem, issue.9, pp.967-974, 1993.

R. A. Cherkasov and V. I. Galkin, The Kabachnik -Fields reaction: synthetic potential and the problem of the mechanism, Russ. Chem. Rev, p.857, 1998.

N. S. Zefirov and E. D. Matveeva, Catalytic Kabachnik-Fields reaction: new horizons for old reaction, ARKIVOC, issue.1, pp.1-17, 2008.

G. Keglevich, Bá lint, E. The Kabachnik-Fields Reaction: Mechanism and Synthetic Use, Molecules, vol.17, issue.11, p.12821, 2012.

P. Kafarski, M. G. Gorniak, and I. Andrasiak, Kabachnik-Fields Reaction Under Green Conditions -A Critical Overview, Current Green Chemistry, vol.2, issue.3, pp.218-222, 2015.

S. O. Duke and S. B. Powles, Glyphosate: a once-in-a-century herbicide, Pest Manag. Sci, vol.64, issue.4, pp.319-325, 2008.

Z. Chen, M. J. Zeng, B. A. Song, C. R. Hou, D. Y. Hu et al., Dufulin Activates HrBP1 to Produce Antiviral Responses in Tobacco, Plos One, vol.7, issue.5, p.17, 2012.

Y. Li, M. Ye, R. Huang, G. Yao, Y. Pan et al., Coumarin-containing aminophosphonates bridged with chiral side chain: synthesis and influence of chirality on cytotoxicity and DNA binding, Med. Chem. Res, issue.6, pp.3144-3156, 2014.

A. K. Bhattacharya, D. S. Raut, K. C. Rana, I. K. Polanki, M. S. Khan et al., Diversity-oriented synthesis of ?-aminophosphonates: A new class of potential anticancer agents, Eur. J. Med. Chem, vol.66, pp.146-152, 2013.

N. A. Ali, S. Zakir, M. Patel, and M. Farooqui, Synthesis of new ?-aminophosphonate system bearing Indazole moiety and their biological activity, Eur. J. Med. Chem, vol.50, pp.39-43, 2012.

S. A. Mulla, M. Y. Pathan, S. S. Chavan, S. P. Gample, and D. Sarkar, Highly efficient one-pot multi-component synthesis of ?-aminophosphonates and bis-?aminophosphonates catalyzed by heterogeneous reusable silica supported dodecatungstophosphoric acid (DTP/SiO2) at ambient temperature and their antitubercular evaluation against Mycobactrium Tuberculosis, RSC Adv, vol.4, issue.15, pp.7666-7672, 2014.

T. E. Ali and S. M. Abdel-kariem, Methods for the synthesis of ?-heterocyclic/heteroaryl-?aminophosphonic acids and their esters, Arkivoc, issue.6, p.246, 2015.

Z. Wang, . Reagents, Z. Wang, and . Ed, Pudovik Reaction, Comprehensive Organic Name Reactions and, pp.2280-2283, 2010.

S. L. Mcdonald and Q. Wang, Copper-Catalyzed ?-Amination of Phosphonates and Phosphine Oxides: A Direct Approach to ?-Amino Phosphonic Acids and Derivatives, Angew. Chem. Int. Ed, issue.7, pp.1867-1871, 2014.

K. Ramakrishna, J. M. Thomas, and C. Sivasankar, A Green Approach to the Synthesis of ?-Amino Phosphonate in Water Medium: Carbene Insertion into the N-H Bond by Cu(I) Catalyst, J. Org. Chem, issue.20, pp.9826-9835, 2016.

M. I. Kabachnik and T. Y. Medved, New synthesis of aminophosphonic acids, Dokl. Akad. Nauk SSSR, vol.83, pp.689-692, 1952.

E. K. Fields, The Synthesis of Esters of Substituted Amino Phosphonic Acids, J. Am. Chem. Soc, vol.74, issue.6, pp.1528-1531, 1952.

D. H. Wan, M. S. Wu, and J. Y. Ma, Recent Progress in Asymmetric Synthesis of Kabachnik-Fields Reaction. Chin, J. Org. Chem, vol.32, issue.1, pp.13-18, 2012.

M. Ordóñez, H. Rojas-cabrera, and C. Cativiela, An overview of stereoselective synthesis of ?-aminophosphonic acids and derivatives, Tetrahedron, vol.65, issue.1, pp.17-49, 2009.

X. Cheng, R. Goddard, G. Buth, and B. List, Direct Catalytic Asymmetric Three-Component Kabachnik-Fields Reaction, Angew. Chem. Int. Ed, issue.27, pp.5079-5081, 2008.

P. S. Reddy, M. V. Reddy, and P. V. Reddy, Camphor-derived thioureas: Synthesis and application in asymmetric Kabachnik-Fields reaction, Chin. Chem. Lett, issue.6, pp.943-947, 2016.

M. Ohara, S. Nakamura, and N. Shibata, Direct Enantioselective Three-Component Kabachnik-Fields Reaction Catalyzed by Chiral Bis(imidazoline)-Zinc(II) Catalysts, Adv. Synth. Catal, issue.18, pp.3285-3289, 2011.

X. Zhou, D. Shang, Q. Zhang, L. Lin, X. Liu et al., Enantioselective Three-Component Kabachnik?Fields Reaction Catalyzed by Chiral Scandium(III)?N,N ? -Dioxide Complexes, Org. Lett, issue.6, pp.1401-1404, 2009.

A. Y. Rulev, Recent advances in Michael addition of H-phosphonates, RSC Adv, vol.4, issue.49, pp.26002-26012, 2014.

A. Kraszewski, J. Stawinski, and . H-phosphonates, Versatile synthetic precursors to biologically active phosphorus compounds, In Pure Appl. Chem, vol.79, p.2217, 2007.

E. D. Matveeva and N. S. Zefirov, On the mechanism of the Kabachnik-Fields reaction: Does a mechanism of nucleophilic amination of ?-hydroxyphosphonates exist?, Dokl. Chem, vol.420, issue.2, pp.137-140, 2008.

G. Keglevich, N. Z. Kiss, and D. K. Menyhá-rd, Fehé rvá ri, A.; Csontos, I. A study on the kabachnik--fields reaction of benzaldehyde, cyclohexylamine, and dialkyl phosphites, Heteroat. Chem, vol.23, issue.2, pp.171-178, 2012.

R. Gancarz, I. Gancarz, and U. Walkowiak, On the Reversibility of Hydroxyphosphonate Formation in the Kabachnik-Fields Reaction. Phosphorus, Sulfur Silicon Relat. Elem, vol.104, issue.1-4, pp.45-52, 1995.

R. Gancarz and I. Gancarz, Failure of aminophosphonate synthesis due to facile hydroxyphosphonate -phosphate rearrangement, Tetrahedron Lett, vol.34, issue.1, pp.145-148, 1993.

N. Zsuzsa-kiss, A. Kaszá-s, L. Drahos, Z. Mucsi, and G. Keglevich, A neighbouring group effect leading to enhanced nucleophilic substitution of amines at the hindered ?-carbon atom of an ?-hydroxyphosphonate, Tetrahedron Lett, vol.53, issue.2, pp.207-209, 2012.

B. Kaboudin, A convenient synthesis of 1-aminophosphonates from 1-hydroxyphosphonates, Tetrahedron Lett, vol.44, issue.5, pp.1051-1053, 2003.

E. D. Matveeva, T. A. Podrugina, E. V. Tishkovskaya, L. G. Tomilova, and N. S. Zefirov, A Novel Catalytic Three-Component Synthesis (Kabachnick-Fields Reaction) of ?-Aminophosphonates from Ketones, Synlett, issue.15, pp.2321-2324, 2003.

E. Mollashahi, H. Gholami, M. Kangani, M. Lashkari, and M. T. Maghsoodlou, A Quick and Clean Procedure for Synthesis of ?-Aminophosphonates in Aqueous Media, Heteroat. Chem, vol.26, issue.5, pp.322-328, 2015.

D. Xu and Y. Yu, A Simple and Green Procedure for the One-Pot Synthesis of ?-Aminophosphonates with Quaternary Ammonium Salts as Efficient and Recyclable Reaction Media, Synthesis, vol.47, issue.13, pp.1869-1876, 2015.

G. Keglevich, E. Bá-lint, R. Kangyal, M. Bá-lint, and M. Milen, A Critical Overview of the Kabachnik-Fields Reactions Utilizing Trialkyl Phosphites in Water as the Reaction Medium: A Study of the Benzaldehyde-Benzylamine Triethyl Phosphite/Diethyl Phosphite Models, Heteroat. Chem, vol.25, issue.4, pp.282-289, 2014.

Y. Ren, C. Cai, and R. Yang, Molecular iodine-catalyzed multicomponent reactions: an efficient catalyst for organic synthesis, RSC Adv, issue.3, pp.7182-7204, 2013.

A. Dandia, S. L. Gupta, and S. Maheshwari, Molecular Iodine: Mild, Green, and Nontoxic Lewis Acid Catalyst for the Synthesis of Heterocyclic Compounds, Green Chemistry: Synthesis of Bioactive Heterocycles, pp.277-327, 2014.

J. Wu, W. Sun, H. Xia, and X. Sun, A facile and highly efficient route to [small alpha]-amino phosphonates via three-component reactions catalyzed by Mg(ClO4)2 or molecular iodine, Org. Biomol. Chem, vol.4, issue.9, pp.1663-1666, 2006.

V. Pace, P. Hoyos, and L. Castoldi, Domí nguez de Marí a, P.; Alcá ntara, A. R. 2-Methyltetrahydrofuran (2-MeTHF): A Biomass-Derived Solvent with Broad Application in Organic Chemistry, ChemSusChem, vol.5, issue.8, pp.1369-1379, 2012.

F. Moldenhauer, R. Kakuchi, and P. Theato, Synthesis of Polymers via Kabachnik-Fields Polycondensation, ACS Macro Lett, vol.5, issue.1, pp.10-13, 2016.

R. Gallardo-macias and K. Nakayama, Tin(II) Compounds as Catalysts for the Kabachnik-Fields Reaction under Solvent-Free Conditions: Facile Synthesis of ?-Aminophosphonates, Synthesis, issue.01, pp.57-62, 2010.

Y. Yu, An Efficient and Convenient Procedure for the One-Pot Synthesis of ?-Aminophosphonates from Aryl Azides under Solvent-Free Conditions, Synthesis, issue.18, pp.2545-2550, 2013.

B. S. Lee, S. Mahajan, and K. D. Janda, Molecular Iodine-Catalyzed Imine Activation for Three-Component Nucleophilic Addition Reactions, Synlett, issue.08, pp.1325-1327, 2005.

X. Lin, S. Cui, and Y. Wang, Molecular iodine-catalyzed one-pot synthesis of substituted quinolines from imines and aldehydes, Tetrahedron Lett, issue.18, pp.3127-3130, 2006.

M. Xia and Y. Lu, Novel and Efficient Approach to Fluorinated ?-Aminobutanones Catalyzed by Molecular Iodine, Synth. Commun, vol.37, issue.5, pp.725-735, 2007.

F. Epifano, S. Genovese, O. Rosati, S. Tagliapietra, C. Pelucchini et al., Ytterbium triflate catalyzed synthesis of ?-functionalized indole derivatives, Tetrahedron Lett, vol.52, issue.5, pp.568-571, 2011.

Y. Oikawa, H. Hirasawa, and O. Yonemitsu, Meldrum's acid in organic synthesis. 1. A convenient one-pot synthesis of ethyl indolepropionates, Tetrahedron Lett, vol.19, issue.20, pp.1759-1762, 1978.

J. Yang, F. Mei, S. Fu, and Y. Gu, Facile synthesis of 1,4-diketones via three-component reactions of ?-ketoaldehyde, 1,3-dicarbonyl compound, and a nucleophile in water, Green Chem, issue.6, pp.1367-1374, 2018.

S. Ahamad, R. Kant, and K. Mohanan, Metal-Free Three-Component Domino Approach to Phosphonylated Triazolines and Triazoles, Org. Lett, vol.18, issue.2, pp.280-283, 2016.

F. Fuchs, D. Gilbert, C. Koch, R. Maskey, S. Steinbrink et al., Preparation of tricyclic pyrimidine derivatives for use as Wnt antagonists. EP2266985A1, 2010.

Q. Liu, M. Li, R. Xiong, and F. Mo, Direct Carboxylation of the Diazo Group ipso-C(sp2)-H bond with Carbon Dioxide: Access to Unsymmetrical Diazomalonates and Derivatives, Org. Lett, vol.19, issue.24, pp.6756-6759, 2017.