?. Random, , vol.10

, ? d = random(0, 650) Limits on the values of those parameters: ? A =, vol.10, p.15

, 3000) ? d = (200, 2000) Obtained values for these parameters: A = 2.47448640 * 10 10 , a = 3.09264468* 10 2 , b = 22.7827200, c = 2999.99668, d = 1999.85146. Signal plus Background Background kernel hyperparameters are kept frozen. The initialization for signal, ? a = (1, 3000) ? b = (0.1, 1000) ? c =

, ? Mean = random(1000, 6000) (GeV)

?. Width and =. Random, GeV) Limits on the values of those parameters: ? Amp = (0, 6000) ? Mean = (1000, vol.100, p.450

=. Width, , vol.100, p.450

S. Weinberg, A Model of Leptons, Phys. Rev. Lett, vol.19, pp.1264-1266, 1967.

S. L. Glashow, Partial Symmetries of Weak Interactions, Nucl. Phys, vol.22, pp.579-588, 1961.

J. Goldstone, A. Salam, and S. Weinberg, Broken Symmetries. Phys. Rev, vol.127, pp.965-970, 1962.

G. Altarelli, The Standard model of particle physics, 2005.

M. Tanabashi, Review of Particle Physics, Phys. Rev. D, vol.98, p.30001, 2018.
URL : https://hal.archives-ouvertes.fr/in2p3-00309035

F. Halzen, A. D. Martin, and . Leptons, AN INTRODUCTORY COURSE IN MODERN PARTICLE PHYSICS ISBN: 0471887412, p.9780471887416, 1984.

, Introduction to High Energy Physics, vol.4, 2000.

C. Wu, E. Ambler, R. Hayward, D. Hoppes, and R. P. Hudson, Experimental test of parity conservation in beta decay, Physical review, vol.105, p.1413, 1957.

A. Salam, Weak and Electromagnetic Interactions, Conf. Proc, vol.680519, pp.367-377, 1968.

N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett, vol.10, pp.531-533, 1963.

M. Kobayashi and T. Maskawa, CP-Violation in the Renormalizable Theory of Weak Interaction, Progress of Theoretical Physics, vol.49, pp.33-068, 1973.

F. Abe, Observation of top quark production inpp collisions, Phys. Rev. Lett, vol.74, pp.2626-2631, 1995.

S. Abachi, Search for high mass top quark production in pp collisions at ? s = 1.8 TeV, Phys. Rev. Lett, vol.74, pp.2422-2426, 1995.

G. Aad, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett, vol.716, pp.1-29, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00722246

S. Chatrchyan, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett, vol.716, pp.30-61, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00722244

D. Hanneke, S. F. Hoogerheide, and G. Gabrielse, Cavity Control of a Single-Electron Quantum Cyclotron: Measuring the Electron Magnetic Moment, Phys. Rev, vol.83, p.52122, 2011.

L. Canetti, M. Drewes, and M. Shaposhnikov, Matter and Antimatter in the Universe, New J. Phys, vol.14, p.95012, 2012.

G. Bertone, D. Hooper, and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept, vol.405, pp.279-390, 2005.

J. L. Feng, Dark Matter Candidates from Particle Physics and Methods of Detection, Ann. Rev. Astron. Astrophys, vol.48, pp.495-545, 2010.

G. Bertone and D. Hooper, History of dark matter, Rev. Mod. Phys, vol.90, p.45002, 2018.

Y. Fukuda, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett, vol.81, pp.1562-1567, 1998.

J. Schechter and J. W. Valle, Neutrino masses in SU(2) U(1) theories, Phys. Rev. D, vol.22, pp.2227-2235, 1980.

S. P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys, vol.18, pp.1-98, 1997.

J. C. Pati and A. Salam, Lepton number as the fourth "color, Phys. Rev. D, vol.10, pp.275-289, 1974.

G. Senjanovic and R. N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D, vol.12, pp.1502-1505, 1975.

R. N. Mohapatra, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D, vol.23, pp.165-180, 1981.

J. F. Gunion, S. Dawson, H. E. Haber, and G. L. Kane, The Higgs hunter's guide In the second printing (1990) by Perseus Books in the collection Frontiers in physics, vol.80, 1989.

R. Barbier, R-parity violating supersymmetry, Physical Review, vol.420, pp.1-202, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00022113

C. Lefèvre, The CERN accelerator complex, Complexe des accélérateurs du CERN, 2008.

L. Evans, P. Bryant, and . Machine, Journal of instrumentation, vol.3, p.8001, 2008.

T. A. Collaboration, ATLAS Luminosity public results webpage, 2019.

J. Pequenao, Computer generated image of the whole ATLAS detector, 2008.

, ATLAS magnet system, 1997.

J. J. Goodson, Search for supersymmetry in states with large missing transverse momentum and three leptons including a Z-boson PhD thesis (SUNY, 2012.

J. Pequenao, Computer generated image of the ATLAS inner detector, 2008.

M. Capeans, ATLAS Insertable B-Layer, 2010.

N. Garelli, Performance of the ATLAS Detector in Run-2, EPJ Web Conf. 164, 01021. 10 p, 2017.

J. Pequenao, Computer Generated image of the ATLAS calorimeter, 2008.

G. Aad, The ATLAS Experiment at the CERN Large Hadron Collider, JINST, vol.3, p.8003, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00315956

G. Aad, Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons, Eur. Phys. J, vol.70, pp.755-785, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00459480

, Collaboration, A. Technical Design Report for the Phase-II Upgrade of the ATLAS Tile Calorimeter tech. rep. CERN-LHCC-2017-019, 2017.

G. Aad, Commissioning of the ATLAS Muon Spectrometer with Cosmic Rays, Eur. Phys. J, vol.70, pp.875-916, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00495276

I. Bird, Update of the Computing Models of the WLCG and the LHC Experiments tech, 2014.

G. Sabato, ATLAS fast physics monitoring: TADA, Journal of Physics: Conference Series, vol.898, p.92015, 2017.

M. Aaboud, A strategy for a general search for new phenomena using data-derived signal regions and its application within the ATLAS experiment, Eur. Phys. J, vol.79, p.120, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01861928

M. Elsing, M. Goossens, . Nairz, and G. Negri, The ATLAS Tier-0: Overview and operational experience, J. Phys.: Conf. Ser, vol.219, p.72011, 2010.

M. Aaboud, Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton-proton collision data at ? s = 13
URL : https://hal.archives-ouvertes.fr/hal-02051581

. Tev, Submitted to: Eur, 2019.

G. Aad, Muon reconstruction performance of the ATLAS detector in protonproton collision data at ? s =13 TeV, Eur. Phys. J, vol.76, p.292, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01290447

M. Aaboud, Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data, Eur. Phys. J, vol.76, p.666, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01327788

M. Cacciari, G. P. Salam, and G. Soyez, The anti-k t jet clustering algorithm, JHEP, vol.04, p.63, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00345768

, Optimisation of the ATLAS b-tagging performance for the 2016 LHC Run tech. rep, 2016.

, Energy Calibration, and Identification of Hadronically Decaying Tau Leptons in the ATLAS Experiment for Run-2 of the LHC tech. rep, 2015.

S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, Journal of High Energy Physics, pp.1029-8479, 2010.

S. Frixione, P. Nason, and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP, vol.11, p.70, 2007.

T. Sjostrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP, vol.05, p.26, 2006.

T. Sjostrand, S. Mrenna, and P. Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun, vol.178, pp.852-867, 2008.

, ATLAS Run 1 Pythia8 tunes tech. rep, 2014.

R. D. Ball, Parton distributions for the LHC Run II, JHEP, vol.04, p.40, 2015.

D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth, vol.462, pp.152-155, 2001.

P. Z. Skands, Tuning Monte Carlo Generators: The Perugia Tunes, Phys. Rev, vol.82, p.74018, 2010.

T. Gleisberg, Event generation with SHERPA 1.1, JHEP, vol.02, p.7, 2009.

M. Guzzi, CT10 parton distributions and other developments in the global QCD analysis, 2011.

G. Aad, Search for New Phenomena in Dijet Angular Distributions in Proton-Proton Collisions at ? s = 8 TeV Measured with the ATLAS Detector
URL : https://hal.archives-ouvertes.fr/in2p3-01138911

, Phys. Rev. Lett, vol.114, p.221802, 2015.

Z. Nagy, Three-Jet Cross Sections in Hadron-Hadron Collisions at Next-To-Leading Order, Phys. Rev. Lett, vol.88, p.122003, 2002.

Z. Nagy, Next-to-leading order calculation of three-jet observables in hadronhadron collisions, Phys. Rev. D, vol.68, p.94002, 2003.

S. Catani and M. H. Seymour, A General algorithm for calculating jet crosssections in NLO QCD. Nucl. Phys. B485. [Erratum: Nucl. Phys, vol.510, pp.291-419, 1997.

S. D. Jones, The ATLAS Electron and Photon Trigger tech. rep, 2017.

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2009.

B. Settles, Active learning literature survey tech, 2010.

X. Zhu, Semi-Supervised Learning Literature Survey tech, 2005.

M. Paganini, L. De-oliveira, B. Nachman, and . Calogan, Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks, Phys. Rev, vol.97, p.14021, 2018.

D. Sipio, R. Faucci-giannelli, M. Ketabchi-haghighat, S. Palazzo, and S. Di-jetgan, A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC, 2019.

C. Collaboration, Search for new resonances in the diphoton final state in the mass range between 80 and 115 GeV in pp collisions at ? s = 8 TeV, 2015.

P. Baldi, P. Sadowski, and D. Whiteson, Searching for Exotic Particles in High-Energy Physics with Deep Learning, Nature Commun, vol.5, p.4308, 2014.

Y. Lecun, Y. Bengio, and G. E. Hinton, Deep learning, Nature, vol.521, pp.436-444, 2015.

B. H. Denby, Neural Networks and Cellular Automata in Experimental Highenergy Physics, Comput. Phys. Commun, vol.49, pp.429-448, 1988.

B. P. Roe, Boosted decision trees, an alternative to artificial neural networks, Nucl. Instrum. Meth, vol.543, pp.577-584, 2005.

P. C. Bhat and . Multivariate, Analysis Methods in Particle Physics, Ann. Rev. Nucl. Part. Sci, vol.61, pp.281-309, 2011.

P. C. Bhat, H. B. Prosper, and S. S. Snyder, Bayesian analysis of multi-source data, Physics Letters B, vol.407, pp.73-78, 1997.

K. Albertsson, Machine Learning in High Energy Physics Community White Paper, J. Phys. Conf. Ser, vol.1085, p.22008, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01846718

K. Cranmer, Practical Statistics for the LHC in Proceedings, Cheile Gradistei, pp.267-308, 2011.

K. P. Murphy, Machine Learning: A Probabilistic Perspective ISBN: 0262018020, 9780262018029, 2012.

T. Hastie, R. Tibshirani, and J. H. Friedman, The elements of statistical learning: data mining, inference, and prediction, 2009.

C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) ISBN: 026218253X, 2005.

G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning: With Applications in R ISBN: 1461471370, 9781461471370, 2014.

A. Hoecker, TMVA: Toolkit for Multivariate Data Analysis, PoS, vol.ACAT, p.40, 2007.

L. Breiman, Bias, Variance , And Arcing Classifiers, Statistics Department, 2000.

Y. Freund and R. E. Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, Journal of Computer and System Sciences, vol.55, pp.119-139, 1997.

J. H. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, vol.29, p.905364, 2001.

T. Chen, C. Guestrin, and . Xgboost, A Scalable Tree Boosting System. arXiv eprints, 2016.

C. Adam-bourdarios, The Higgs Machine Learning Challenge, J. Phys. Conf. Ser, vol.664, p.72015, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01154176

V. Nair and G. E. Hinton, Rectified Linear Units Improve Restricted Boltzmann Machines in, Proceedings of the 27th International Conference on International Conference on Machine Learning, 2010.

A. Radovic, Machine learning at the energy and intensity frontiers of particle physics, Nature, vol.560, pp.41-48, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01861984

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, Commun. ACM, vol.60, pp.1-0782, 2017.

K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators, Neural Networks, vol.2, pp.893-6080, 1989.

H. W. Lin, M. Tegmark, and D. Rolnick, Why Does Deep and Cheap Learning Work So Well, Journal of Statistical Physics, vol.168, pp.1223-1247, 2017.

Z. Ghahramani, Unsupervised learning in Summer School on, Machine Learning, pp.72-112, 2003.

D. J. Mackay, Information Theory, Inference & Learning Algorithms ISBN: 0521642981, 2002.

M. Ester, H. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise in, pp.226-231, 1996.

S. Catani, Y. L. Dokshitzer, M. H. Seymour, and B. R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys, vol.406, pp.187-224, 1993.

Y. L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber, Better jet clustering algorithms, JHEP, vol.08, p.1, 1997.

M. Cacciari, G. P. Salam, and G. Soyez, The anti-ktjet clustering algorithm, Journal of High Energy Physics, pp.63-063, 2008.

E. Keogh and A. Mueen, Encyclopedia of Machine Learning and Data Mining, pp.314-315, 2017.

L. Van-der-maaten and G. Hinton, Visualizing Data using t-SNE, Journal of Machine Learning Research, vol.9, pp.2579-2605, 2008.

O. Chapelle, B. Schlkopf, and A. Zien, Semi-Supervised Learning, 2010.

T. Vatanen, Semi-supervised detection of collective anomalies with an application in high energy particle physics, The 2012 International Joint Conference on Neural Networks (IJCNN), pp.1-8, 2012.

K. Muandet and B. Schölkopf, One-class support measure machines for group anomaly detection, 2013.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, Commun. ACM, vol.60, pp.84-90, 2017.

R. Collobert, Natural Language Processing (Almost) from Scratch, J. Mach. Learn. Res, vol.12, pp.1532-4435, 2011.

J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, Deep Neural Nets as a Method for Quantitative Structure and Activity Relationships, Journal of Chemical Information and Modeling, vol.55, pp.263-274, 2015.

K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, Biological Cybernetics, vol.36, pp.1432-0770, 1980.

Y. Lecun, Advances in Neural Information Processing Systems, vol.2, pp.396-404, 1990.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks in Proceedings of the 25th International Conference on Neural Information Processing Systems, vol.1, pp.1097-1105, 2012.

W. Commons, typical CNN architecture File: Typical cnn

J. J. Hopfield, Neural Networks and Physical Systems with Emergent Collective Computational Abilities, Proceedings of the National Academy of Sciences of the United States of America, vol.79, p.278424, 1982.

S. Hochreiter and J. Schmidhuber, Long Short-Term Memory, Neural Comput, vol.9, pp.899-7667, 1997.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv e-prints, 2014.

W. Commons, From bottom to top : input state, hidden state, output state. U, V, W are the weights of the network. Compressed diagram on the left and the unfold version of it on the right. File: Recurrent neural network unfold

J. Alwall, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP, vol.07, p.79, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00986880

J. De-favereau, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP, vol.02, p.57, 2014.

D. Guest, K. Cranmer, and D. Whiteson, Deep Learning and its Application to LHC Physics, Ann. Rev. Nucl. Part. Sci, vol.68, pp.161-181, 2018.

A. Aurisano, A Convolutional Neural Network Neutrino Event Classifier, JINST, vol.11, p.9001, 2016.

D. Guest, Jet Flavor Classification in High-Energy Physics with Deep Neural Networks, Phys. Rev, vol.94, p.112002, 2016.

B. Abbott, Search for new physics in eµX data at DØ using Sherlock: A quasi model independent search strategy for new physics, Phys. Rev, vol.62, p.92004, 2000.

V. M. Abazov, A Quasi model independent search for new physics at large transverse momentum, Phys. Rev, vol.64, p.12004, 2001.

B. Abbott, A quasi-model-independent search for new high p T physics at DØ, Phys. Rev. Lett, vol.86, pp.3712-3717, 2001.

V. M. Abazov, Model independent search for new phenomena in pp collisions at ? s = 1.96 TeV, Phys. Rev, vol.85, p.92015, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00617664

T. Aaltonen, Model-Independent and Quasi-Model-Independent Search for New Physics at CDF, Phys. Rev, vol.78, p.12002, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00195480

T. Aaltonen, Global Search for New Physics with 2.0 fb ?1 at CDF, Phys. Rev, vol.79, p.11101, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00323736

A. Aktas, A General search for new phenomena in ep scattering at, HERA. Phys. Lett, vol.602, pp.14-30, 2004.

F. D. Aaron, A General Search for New Phenomena at, HERA. Phys. Lett, vol.674, pp.257-268, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00350241

, A general search for new phenomena with the ATLAS detector in pp collisions at sort(s)=7 TeV. tech. rep, 2012.

, A general search for new phenomena with the ATLAS detector in pp collisions at ? s = 8 TeV tech. rep, 2014.

, Model Unspecific Search for New Physics in pp Collisions at sqrt(s) = 7 TeV tech. rep, 2011.

C. Collaboration and . Music, Model Unspecific Search for New Physics, 2017.

T. Hebbeker, A Global Comparison between L3 Data and Standard Model Monte Carlo Note, 1998.

E. W. Weisstein and . Voronoi-diagram, From MathWorld-A Wolfram Web Resource

W. Commons, . Voronoi, and . Diagram, File: Euclidean Voronoi diagram

E. Gross and O. Vitells, Trial factors for the look elsewhere effect in high energy physics, Eur. Phys. J, vol.70, pp.525-530, 2010.

O. Cerri, T. Q. Nguyen, M. Pierini, M. Spiropulu, and J. Vlimant, Variational Autoencoders for New Physics Mining at the Large Hadron Collider, 2018.

A. De-simone and T. Jacques, Guiding New Physics Searches with Unsupervised Learning, 2018.

R. T. D'agnolo and A. Wulzer, Learning New Physics from a Machine, 2018.

E. M. Metodiev, B. Nachman, and J. Thaler, Classification without labels: Learning from mixed samples in high energy physics, JHEP, vol.10, p.174, 2017.

G. Choudalakis, On hypothesis testing, trials factor, hypertests and the BumpHunter in Proceedings, PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, 2011.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the royal statistical society. Series B, pp.1-38, 1977.

G. J. Mclachlan and D. Peel, Finite mixture models (Wiley Series in Probability and Statistics, 2000.

W. Pan and X. Shen, Penalized model-based clustering with application to variable selection, Journal of Machine Learning Research, vol.8, pp.1145-1164, 2007.

B. Xie, W. Pan, and X. Shen, Variable Selection in Penalized Model-Based Clustering Via Regularization on Grouped Parameters, Biometrics, vol.64, pp.921-930, 2008.

B. Xie, Variable selection in penalized model-based clustering, 2008.

, Report on a Statistical Learning Method for Model-Independent Searches for New Physics tech. rep. Work, 2017.

G. Schwarz, Estimating the Dimension of a Model, Ann. Statist, vol.6, pp.461-464, 1978.

B. Fuks, Beyond the Minimal Supersymmetric Standard Model: from theory to phenomenology, International Journal of Modern Physics, vol.27, p.1230007, 2012.

, The Minimal Supersymmetric Standard Model with R-parity violation, 2012.

S. Diglio, L. Feligioni, and G. Moultaka, Stashing the stops in multijet events at the LHC, Phys. Rev, vol.96, p.55032, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01399097

R. D. Ball, Parton distributions with LHC data, Nuclear Physics, vol.867, pp.244-289, 2013.

J. D. Bjorken and S. J. Brodsky, Statistical Model for Electron-Positron Annihilation into Hadrons, Phys. Rev. D, vol.1, pp.1416-1420, 1970.

J. W. Tukey, Exploratory data analysis, 1977.

S. S. Mangiafico, An R companion for the handbook of biological statistics. Available: rcompanion. org/documents/RCompanionBioStatistics. pdf, 2015.

S. S. Shapiro and M. Wilk, An analysis of variance test for normality (complete samples), Biometrika, vol.52, pp.6-3444, 1965.

J. P. Egan, Signal detection theory and ROC analysis, 1975.

M. Frate, K. Cranmer, S. Kalia, A. Vandenberg-rodes, and D. Whiteson, Modeling Smooth Backgrounds and Generic Localized Signals with Gaussian Processes, 2017.

D. Duvenaud, Automatic model construction with Gaussian processes PhD thesis, 2014.

G. Aad, Search for new phenomena in dijet mass and angular distributions from pp collisions at ? s = 13 TeV with the ATLAS detector, Phys. Lett, vol.754, pp.302-322, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01238718

S. Agostinelli, GEANT4: A Simulation toolkit, Nucl. Instrum. Meth, vol.506, pp.250-303, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00020246

M. Aaboud, Search for new phenomena in dijet events using 37 fb ?1 of pp collision data collected at ? s =13 TeV with the ATLAS detector, Phys. Rev
URL : https://hal.archives-ouvertes.fr/in2p3-01497048

M. Aaboud, Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in protonproton collisions at ? s = 13 TeV with the ATLAS detector, Eur. Phys. J, vol.78, p.565, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01797181

C. T. Hill, Topcolor assisted technicolor, Phys. Lett, vol.345, pp.483-489, 1995.

L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett, vol.83, pp.3370-3373, 1999.

K. Agashe, H. Davoudiasl, G. Perez, and A. Soni, Warped Gravitons at the LHC and Beyond, Phys. Rev, vol.76, p.36006, 2007.

A. L. Fitzpatrick, J. Kaplan, L. Randall, and L. Wang, Searching for the Kaluza-Klein Graviton in Bulk RS Models, JHEP, issue.09, p.13, 2007.

G. Choudalakis and D. Casadei, Plotting the differences between data and expectation, European Physical Journal Plus, vol.127, 2012.

L. Wasserman, All of Statistics: A Concise Course in Statistical Inference ISBN: 1441923225, 9781441923226, 2010.

F. James and M. Roos, Minuit -a system for function minimization and analysis of the parameter errors and correlations, Computer Physics Communications, vol.10, pp.343-367, 1975.

T. Hastie and R. Tibshirani, Generalized Additive Models. Statist. Sci, vol.1, pp.297-310, 1986.

T. Hastie and R. Tibshirani, Generalized Additive Models ISBN: 9780412343902, 1990.

T. Hastie and . Gam, Generalized Additive Models R package version 1, p.16, 2018.

S. Wood, Generalized Additive Models: An Introduction with R, 2017.

S. N. Wood, Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models, Journal of the Royal Statistical Society (B), vol.73, pp.3-36, 2011.

D. Servén, C. Brummitt, and . Pygam, Generalized Additive Models in Python Mar, 2018.

A. Buja, T. Hastie, and R. Tibshirani, Linear Smoothers and Additive Models, Ann. Statist, vol.17, pp.453-510, 1989.

Y. Lou, R. Caruana, and J. Gehrke, Intelligible Models for Classification and Regression in, pp.978-979, 2012.