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1.1 Introduction

Le progres scientifique a pour but d’améliorer notre quotidien et nos condi-
tions de vie en répondant aux besoins actuels. Du mobile multifonction au
véhicule autonome en passant par l'intelligence artificielle, la détection des
défauts, de méme que la commande tolérante aux défauts des systeémes dy-
namiques, sont devenus des problemes dont la résolution constitue des défis
a relever par les chercheurs en Automatique.

En effet, les défauts doivent étre pris en compte pour que le systéme
puisse fonctionner de facon acceptable dans le but d’éviter son arrét ou des
conséquences potentiellement catastrophiques sur son état. Ceci est possible
en considérant, par exemple, la commande par retour d’état qui, par défini-
tion, compare une valeur mesurée de 1'état (s’il est connu) avec une valeur
désirée pour changer I'entrée du systeme en conséquence. Si I’état n’est pas
connu, il doit étre estimé. C’est pour cette raison que l'estimation d’état est
une étape primordiale avant I’élaboration d’une loi de commande.

Les variables d’état sont des grandeurs ayant une signification physique
et qui peuvent entierement décrire la dynamique du systeme. Ainsi, le but
de cette these est de se concentrer sur les avancements dans le domaine de
I’estimation d’état en Automatique.

L’estimation d’état n’est pas une discipline récente. Durant des siecles,
les marins devaient par exemple estimer la position de leurs navires. Pour ce
faire, des outils ont été progressivement inventés afin de mesurer la position,
I’orientation, la latitude et la longitude des navires. Toutefois, ce n’est qu’au
19e siecle que Gauss introduit une nouvelle classe de techniques d’estimation
d’état (approche stochastique) fondée sur I'hypothese que les erreurs ont une
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distribution statistique connue. Un siecle apres, le filtre de Kalman classique
est introduit pour des systémes linéaires invariants dans le temps soumis a
des perturbations et des bruits de mesure ayant une distribution gaussienne.
Aussitot, le filtre de Kalman devient la technique d’estimation la plus utilisée
dans les mondes académique et industriel.

Alternativement, les approches déterministes considerent des hypotheses
plus réalistes : des perturbations et bruits de mesure inconnus mais bornés.
Dans cette these, nous nous intéressons plus a ces approches d’estimation
d’état ensembliste ou I’état appartient a un ensemble géométrique tel qu’un
polytope, les ellipsoide, zonotope etc. La Figure 1.1 résume les différentes
approches d’estimation d’état.

Estimation d’état

Approches stochastiques Approches déterministes
’ Filtre de Kalman ‘ / \4
Approches Observateurs
/ ensemblistes par intervalles

Extensions du
filtre de Kalman

Zonotopes | | ellipsoides | | Polytopes

Filtre de Kalman

. ellipsoides et zonotopes
zonotopique

Figure 1.1 — Différentes approches d’estimation d’état

Dans cet esprit, les contributions de cette these se divisent en deux
grandes parties :

e La premiere partie a comme point de départ une technique d’estimation
d’état a base d’ellipsoides qui existe dans la littérature. Cette ap-
proche est appliquée a un modele d’octorotor utilisé dans un contexte
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d’imagerie radar. Ensuite, cette approche est étendue au cas des sys-
temes descripteurs.

e La deuxieme partie propose une technique d’estimation d’état fondée
sur la minimisation du P-rayon d’un zonotope, appliquée au méme
modele d’octorotor. Cette technique est étendue par la suite pour
traiter un cas particulier des systemes affines par morceaux. Reprenant
les techniques précédemment développées, un nouveau filtre de Kalman
sous contraintes zonotopiques est ensuite proposé.

Cette these est structurée comme suit. Le Chapitre 2 introduit le con-
texte, les motivations, les contributions et les publications issues des résultats
obtenus pendant cette theése. Le Chapitre 3 présente les outils mathéma-
tiques nécessaires a la formulation des théoremes présents dans ce mémoire,
ainsi que la représentation des incertitudes dans le contexte des systémes
linéaires. Dans le Chapitre 4, une technique d’estimation d’état ellipsoidale
est étendue pour prendre en considération les entrées de commande, puis
comparée au filtre de Kalman classique en termes de complexité et préci-
sion. La précision apportée par cette technique est utilisée pour estimer des
bornes garanties pour la position d'un octorotor utilisé dans un contexte
radar. Le Chapitre 5 propose cinq techniques ellipsoidales pour des systémes
descripteurs linéaires. Les trois premieres méthodes consistent a minimiser
le “rayon” de l'ellipsoide contenant I’état estimé pour des systemes descrip-
teurs linéaires invariants dans le temps, tandis que les méthodes 4 et 5 se
concentrent sur les systemes descripteurs linéaires variants dans le temps.
Le Chapitre 6 porte sur I'estimation ensembliste fondée sur des zonotopes.
Ce chapitre commence avec une technique d’estimation zonotopique fondée
sur la minimisation du P-rayon appliquée a un modele d’octorotor, puis
étend cette méthode pour traiter le cas des systemes affines par morceaux.
Dans la continuité des approches précédentes, un nouveau filtre de Kalman
sous contraintes zonotopiques (ZCKF) est proposé dans le Chapitre 7. En
utilisant la forme duale d’'un probléeme d’optimisation, 1’algorithme ZCKF
projette 'état sur ’ensemble des contraintes (auxquelles I'état est soumis)
formant un zonotope. La complexité de 'algorithme est ensuite améliorée en
réduisant le nombre de générateurs du zonotope initial.

Dans ce qui suit, le résumé de chaque chapitre est proposé.

4
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1.2 Chapitre 3 : Outils pour estimation d’état
ensembliste

Les systemes dynamiques sont généralement représentés par un ensemble
d’équations décrivant I’évolution du systeme. Cette représentation est utilisée
pour la modélisation et ’élaboration des lois de commande en Automatique.

Dans cette these, nous considérons des systemes standards, linéaires, vari-
ants ou invariants dans le temps, soumis a des perturbations, des bruits
de mesure et des incertitudes inconnus, mais bornés. Toutefois, ces sys-
temes standards ne sont pas toujours suffisants pour donner une description
complete du systeme a cause des simplifications considérées qui peuvent in-
fluencer la validité des modeles mathématiques ou négliger la signification
physique du systeme. Les systemes descripteurs, eux, combinent des équa-
tions différentielles et algébriques pour prendre en considération, par exem-
ple, les lois de conservations de la physique (masse, volume, énergie etc.). Une
autre classe de systemes qui est détaillée dans cette these est celle des sys-
temes affines par morceaux. Ce systeme partitionne ’espace d’état en régions
selon des contraintes linéaires et associe a chaque région une représentation
linéaire du systeme.

En général, le modele mathématique ne reprend pas exactement le com-
portement du systeme. Ainsi, nous considérons des incertitudes sur le sys-
teme, des perturbations et des bruits de mesure. Deux approches existent
dans la littérature pour modéliser les incertitudes :

e Approche stochastique : Les perturbations et les bruits de mesure
ont une distribution stochastique (moyenne, covariance, etc.) supposée
connue.

e Approche déterministe : Les perturbations et les bruits de mesure
sont supposés inconnus, mais bornés par des ensembles convexes (ellip-
soides, polytopes, zonotopes, intervalles etc.).

Ce chapitre présente des définitions et des propriétés nécessaires pour la
compréhension des résultats proposés dans cette these et résume certains
ensembles utilisés dans la littérature pour représenter les incertitudes.

1.2.1 Définitions et propriétés

Dans cette section, nous rappelons les définitions et les propriétés les plus
importantes utilisées dans le Chapitre 3.
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Définition 1.1. Une Inégalité Matricielle Linéaire (LMI) s’écrit sous la
forme : .
F(z) 2 Fo+ Y #,F; - 0, (1.1)
i=1
avec les matrices F; = F] € R™™ = 0,..., n, et le vecteur de variables de
T
décision x = {[L’l To ... xn} € R", ayant comme composantess z; € R,
1 =1,...,n, les variables scalaires de décision.

Définition 1.2. Complément de Schur. [Boyd et al., 1994], [Scherer and
Weiland, 2007] Soit la LMI suivante :
[Q(«’B) S(x)

ST(z) R(z)| ™" (12)

avec Q(x), R(x) des matrices symétriques et Q(x), R(x) et S(x) affines en
x. Cette LMI est équivalente a :

Q(z) = 0,
{ Q) — S(x)R ()8 (x) = 0. (1.3)

ou

R(x) -0,
{ R(z) — ST (2)Q '(x)S(zx) > 0. (1.4)

1.2.2 Ensembles convexes pour ’estimation d’état

Dans la suite, les principaux ensembles convexes utilisés dans le domaine
de D'estimation d’état ensembliste sont présentés. En fonction de la com-
plexité et de la précision, I’ensemble pour représenter 1’état est choisi parmi
différentes formes géométriques : intervalle, ellipsoide, polytope, parallélo-
tope ou zonotope. Les deux ensembles les plus utilisés dans cette these sont
exposés dans la suite.

1.2.2.1 ellipsoides

De par leur simplicité, les ellipsoides sont largement utilisés dans plusieurs do-
maines de I’Automatique : I'identification, le diagnostic et surtout 1’estimation
ensembliste.

Définition 1.3. ellipsoide. Soit une matrice strictement définie positive

P = P" = 0, un vecteur réel & € R" et un scalaire strictement positif
p € R L'ellipsoide £(P, &, p) est défini par I'ensemble :

6
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avec P une matrice qui caractérise la taille et 'orientation de l’ellipsoide, &
son centre et p son rayon.

1.2.2.2 Zonotopes

Grace a la flexibilité et la simplicité de calcul qu’ils apportent, les zonotopes
sont utilisés dans la deuxieme partie de cette these. Le zonotope est un
polytope symétrique et peut donc étre représenté par des demi-espaces ou
des sommets. De plus, il peut étre représenté par ses générateurs ou par
une transformation linéaire d'un hypercube. Cette derniere représentation
est plus convenable dans le contexte de I'estimation d’état ensembliste et les
approches proposées dans cette these. De ce fait, on la présente ici.

Définition 1.4. Projection linéaire d’un hypercube. Un zonotope d’ordre m
dans R™ (m > n) est la translation de centre p € R de I'image d’un hyper-
cube unitaire de dimension m dans R™ par une transformation linéaire. Soit
une matrice H € R™ représentant la transformation linéaire, le zonotope
Z est défini par :

Z = (p;H) = p® HB™, (1.6)

Le P-rayon d’un zonotope est défini comme suit :

Définition 1.5. Le P-rayon d'un zonotope Z = p® HB™ peut s’écrire sous
la forme :

_ 2
r = max(|z — pl}3). (17)
avec P une matrice symétrique strictement définie positive P = P7 > 0.

Cette notation offre un critére pour évaluer la taille d’un zonotope, c’est-
a-dire, pour une méme valeur de la matrice P, une valeur de P-rayon élevée
implique un zonotope de taille importante.

1.2.3 Optimisation convexe

Dans le contexte de l'estimation d’état, certaines informations sur ’état du
systeme ne peuvent pas étre intégrées directement dans le filtre de Kalman
classique. Ces contraintes sont issues de la solution d’un probléme d’optimisation
convexe traité dans le Chapitre 7.
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Dans cette these, nous considérons un probleme d’optimisation de la
forme :

: 1 2
ettt e L) ALE) F 5 Ju o

sous contraintes Awv = b,
Rv = s,
u=",

avec A e R beR", ce R", R € R et D € R™*™,
La forme duale de ce probléme est :

Rv —s 1
max <:c, Av—-b > — Jo(u) — Jip(s) — §||u —cll3.

uel,veR™ scR™
v—Uu

Les problemes d’optimisation convexe sont résolus en utilisant des méth-
odes standards comme les algorithmes du gradient [Fletcher, 1976], [Nes-
terov, 2013]. En particulier, 'algorithme du gradient a direction de descente
est destiné a minimiser une fonction réelle différentiable. Cet algorithme est
itératif et cherche a améliorer successivement 1’objectif du probleme. Ceci
est fait en effectuant un déplacement dans la direction opposée au gradient,
de maniere a faire décroitre la valeur de la fonction de cofit.

1.3 Chapitre 4 : Estimation d’état ellipsoi-
dale pour les systémes linéaires

Ce chapitre reprend des notions et des approches présentes dans la littéra-
ture pour étendre une technique d’estimation d’état ellipsoidale [Ben Cha-
bane et al., 2014b] en prenant en considération les entrées du systeme. La
formulation du probleme est présentée ci-dessous.

1.3.1 Formulation du probleme d’estimation

Soit le systeéme standard linéaire invariant dans le temps (LTI) suivant :

{ LTe+r1 — Azck + B’U,k + Ewk, (1 8)

v, = Cxi+ Fwy.

Nous supposons que I’état initial appartient a ’ensemble Xy supposé suff-
isamment grand par manque de connaissances précises sur le systéme. De
plus, nous supposons que le vecteur w; € R qui contient les perturba-
tions d’état et de mesure est borné par une boite unitaire B+,
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Considérons qu’a Pinstant k Uensemble d’estimation d’état est X (avec
Ty € Q?k), I'objectif de ’estimation d’état est alors de trouver I’ensemble fkﬂ
qui contient I’état ;1 du systéme (1.8) a I'instant k+ 1. Dans la littérature,
ce probleme est traité en trois étapes :

e FEtape de prédiction : L’ensemble de prédiction Xj.; contenant 1'état
est donné par :

Xpr1 € AX, UBuy, UEB™ ", (1.9)

Cet ensemble offre des bornes pour la trajectoire incertaine du systéme
(1.8).

e Ftape de mesure : L’ensemble des états cohérents avec les mesures

Xy, est donné par :
ka+1 = {;’Ek+1 € |an . (yk—l-l — ka+1> € Fanz+ny} (110)

e FEtape de correction : L’ensemble d’estimation d’état garantie ./'\Afkﬂ est
une approximation extérieure de l'intersection entre ’ensemble prédit
et I’ensemble cohérent avec les mesures. Il est donné par :

X1 2 X1 N A,

Yk+1°

(1.11)

L’ensemble d’estimation d’état peut avoir plusieurs formes géométriques.
La Figure 1.2 illustre les trois étapes nécessaires au calcul de l’ensemble
d’estimation garanti en utilisant des ellipsoides.

ka+1 Xk+1

— Xle+1

Tr Xie+1

Figure 1.2 — Illustration de la méthode d’estimation d’état ensembliste
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1.3.2 Technique d’estimation d’état fondée sur des el-
lipsoides
Cette partie décrit et améliore une technique d’estimation d’état ellipsoidale
présente dans la littérature [Ben Chabane, 2015]. Elle prend en considéra-
tion le cas ou les entrées du systeme ne sont pas connues. Considérons le
systéme (1.8) et supposons qu’a 'instatnt k Iellipsoide contenant &, est noté
E(P, xy, pr), avec Ty I'estimation nominale de 'état. L’objectif est de trouver
un ellipsoide de la forme (P, @1, prr1) contenant 1'état @y, a 'instant
k+ 1. L'état x4y est garanti d’appartenir a lellipsoide E(Pyi1, Tii1, prr1)
si, pour les matrices Yy € R"™*" Gy, € R"™*" e vecteur g,,, € R"
et les scalaires fyi1, prr1 > 0, la LMI suivante ([Ben Chabane, 2015], page
113) est vérifiée :
min o
Br+1,Y k4 1,Prt1,06+1,Grt1,95+1,27
sous contraintes

Br+1Py * *
0 Pr+1 = Brv1pr * -0,
PriA - Y C Th+1 Pri
Py = Py,
Prt+1 < apr + 7, (1.12)
0<a<l,
v >0,
Pr+1 > 0,

pour tout wj, € B"= 1" avec la matrice :
Yy = PiLy,
le vecteur :
Tk+1 = (Pk+1A—Yk+1C—Gk+1)‘i‘k‘i‘(PkHE—YkHF)wkH—gk+1+B<uk_ﬂk)>
et I’état nominal estimé :
Zi1 = P (Gei @i + Ye1Yy, + i) + By,
ou u est la commande nominale. La contrainte :
Pr+1 < apg + 7,

avec 0 < a < 1 et v > 0, borne le rayon de l'estimation ellipsoidale
E(Pyi1, Tir1, pry1) a Uinstant k + 1 pour diminuer la taille de 'ensemble.

10
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De la méme fagon que dans [Ben Chabane, 2015], cette technique est
améliorée en considérant des contraintes quadratiques sur la mesure et sur les
perturbations a 'instant £+ 1. Dans ce contexte, en considérant ’estimation
d’état a base d’ellipsoides (P, &1, pr+1) donnée par le probleme d’optimisation
(1.12), un nouvel ensemble ellipsoidal £'(P’, &}, ,, p},, 1) est obtenu si le prob-
leme d’optimisation suivant ([Ben Chabane, 2015], page 118) est vérifié

min Q
Py P bkt 1, HLO, 0y
sous contraintes

T /
m yp; k+1

Ng+ny

M2 3T X M —b,, | =0,

;c—l-l _bk—i-l P?c—i—l
P’ =0,
Ng+ny _
9> 0, (1.13)
0 <1,

Prs1 > Opk+1,

i >0, 1=1,...,n, + ny,
P;ngl > Pk+17

Pr+1 < ap + 7,

v >0,

avec !

bk+1 = P;€+la_3k+17
n, = 6P, + CTHC,
Ub _ef’gﬂpkﬂ - y;HHC +u B 'C'HC,
s = Por — Opier + 0Zaa 3., + e [ + | CBus [ — 2u/ BT C Hy,,,.

Le lecteur remarquera que les termes liés a la commande u;, s’ajoutent a la
formulation proposée par [Ben Chabane, 2015].

1.3.3 Comparaison entre deux techniques d’estimation
d’état pour les systemes LTI

La différence entre la technique d’estimation d’état ellipsoidale présentée dans

la Section 1.3.2 et le filtre de Kalman classique se trouve principalement au

niveau des hypotheses considérées dans la modélisation du systeme. Le filtre
de Kalman classique fonctionne pour des systemes linéaires soumis a des

11
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bruits ayant une distribution stochastique connue, tandis que la technique
ellipsoidale fonctionne pour des systemes linéaires soumis a des perturbations
et bruits de mesure inconnus, mais bornés. Toutefois, le filtre de Kalman
offre une complexité réduite parce qu’il se base sur des opérations d’addition
et de multiplication de matrices. La technique ellipsoidale est fondée sur
la résolution d’un probleme d’optimisation convexe. Ainsi, la complexité
de calcul est plus importante mais cette technique offre une plus grande
précision. La comparaison entre les deux techniques a été publiée au 20eme
congres mondial de I'TFAC 2017.

1.3.4 Application a un modele d’octorotor

Les drones peu cofiteux ont donné aux utilisateurs et aux chercheurs un
énorme potentiel pour tester leurs travaux dans divers domaines scientifiques,
notamment en Automatique. Afin de profiter de la bonne précision que
la technique d’estimation d’état ellipsoidale fournit, celle-ci est appliquée
dans cette these a un modele d’octorotor utilisé dans un contexte d’imagerie
radar. En utilisant le systeme radar intégré au drone, ainsi que les coor-
données estimées du drone, une application de reconstruction d’image est
exposée. De plus, la distance réelle séparant le drone de la cible est garantie
a l'intérieur des bornes calculées par la technique. Ensuite, ’erreur relative
de I'estimation conduit au calcul de la fréquence de fonctionnement du radar.
Le modele de 'octorotor considéré est présenté par la suite.

1.3.4.1 Modele d’octorotor
Partant d’une représentation d’état a temps continu avec 12 états :
e les coordonnées cartésiennes du centre de gravité du drone z, y et z,
e l'orientation du drone ¢, 0 et 1,
e la vitesse linéaire du drone V,, V, et V.,
e la vitesse angulaire du drone w,, w, et w,,

le systeme linéarisé et discrétisé est ensuite divisé en trois sous-systémes pour
réduire la complexité :

12
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e Sous-systeme 1 :

Zk+1 T [ Zk ) 0 0
(L Uy, 0 0]|FF
‘/ZkJrl — A ‘/vZk + % 0 TZ}E + Elwk‘u
o wad L0z 1.14
_ ] (1.14)
2| Py,
’(/1].@_ = C V.Zk + Flwk,
_Wzk_
e Sous-systeme 2 :
Or1 ] [ & ] 0 0
0 0 0 0 R
ML = AR+ o 0 l %1 + Eowy,
wmk+1 ka Iy Tyk
w w 0 L
Yk+14 : yk: Iy (1.15)
_ o
0
d;’“ = C| | +Fawy,
| T
_wyk_
e Sous-systeme 3 :
Lh+1 i I T i 0 0
Ykl | Yk 0 0 (FF
‘/;tk+1 = A V:Tk + % 0 [F;Z +E3wk7
Vv, 1% 0 L
Yi+14 : yk: m (116)
- mk
Tl Yk
[yk_ = C ‘/Zk + Fgwk.
LV
avec les mémes matrices A = (1]2 TEIQ et C = [IQ 02] pour les trois sous-
2 2

systemes. Les perturbations et les bruits de mesure sont modélisés par le
vecteur wy, borné par une boite unitaire B® et les matrices E; = ¢; - [14 04X2],
F, =~ - £04 I4X2}, pour i € {1,2,3}. Les scalaires ¢; et 7; représentent la
précision fournie par les informations des capteurs. La méthode d’estimation

13
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d’état ellipsoidale est appliquée a 1'octorotor utilisé pour la conception du
SAR (Radar a synthese d’ouverture). En testant deux trajectoires, la bonne
précision de la technique ellipsoidale est validée pour trouver la fréquence
optimale de fonctionnement du radar. Ces résultats font partie d’un article de
journal soumis a une édition spéciale "Interval estimation applied to diagnosis
and control" de I'International Journal of Control.

1.4 Chapitre 5 : Estimation d’état ellipsoi-
dale pour des systéemes descripteurs

Un systeme descripteur est utilisé pour modéliser des systemes physiques
complexes. Il peut décrire des processus régis a la fois par des équations
algébriques et différentielles d’ou son avantage par rapport a un systeme
standard. Dans ce chapitre, une extension de la technique d’estimation d’état
ellipsoidale au cas des systemes descripteurs linéaires est proposée.

1.4.1 Formulation de probleme

Soit le systeme descripteur a temps discret linéaire invariant dans le temps :

(1.17)

Esxi1 = Az, + Bug + Ewy,
vy, = Czxp+ Fuwy,

avec xy, € R"* le vecteur d’état, u, € R™ le vecteur de commande et y, € R™
le vecteur de sortie a chaque instant k. Les perturbations sont inconnues,
mais bornées par des boites unitaires telles que wy, € B™. L’état initial
appartient a l’ellipsoide :

E(Po,io,po) = {ZB e R" : (ZB — ZI_,‘())TP()(ZL‘ — ZEQ) S po}, (118)

avec Py = P} = 0 la matrice de taille n, x n,, & le centre et py le rayon de
Iellipsoide £(Py, Zo, po). La matrice E; est une matrice singuliere avec :

rang(Ey) < ng. (1.19)

Pour garantir I'observabilité et la commandabilité du systéme, les conditions
suivantes doivent étre satisfaites :

rang [Eéd] =Ny, (1.20)
rang l)\EdC_ A] =n,, VA € C. (1.21)

14



Chapter 1. Résumé en francais

rang [Ed B] = Ny, (1.22)

rang P\Ed —A B} =n,, VA € C. (1.23)

Ceci permet de trouver deux matrices T et N telles que :
TE;+NC=1,,. (1.24)

Cing méthodes d’estimation d’état ellipsoidales sont déveleoppées pour les
systemes descripteurs linéaires invariants ou variants dans le temps et sont
résumées dans la suite.

1.4.2 Systemes descripteurs linéaires invariants dans
le temps

Ici, les matrices A, B, C, D, E, E; et F de (1.17) sont supposées constantes.

1.4.2.1 Méthode 1

L’estimation ellipsoidale de 1’état du systeme a chaque instant est donnée
par le théoreme qui suit.

Théoréme 1.1. Soit 1'état initial @y et considérons que xy € E(P, &y, px)
A linstant k. Etant donné un scalaire 3 € (0,1), s'il existe une matrice
symétrique strictement définie positive P = PT = 0 dans R"=*"e
trice Y € R™*™ et un scalaire ¢ > 0 pour lesquels 'inégalité matricielle
linéaire (1.25) est vérifiée pour chaque wy € Vpnatny (0U Vpgne+n, représente
les sommets de la boite B ") :

, une ma-

SP * *
0 o * | >0, (1.25)
PTA - YC (PTE - YF)w;, — PNFw;,; P

alors I'état @y, appartient a Uellipsoide @41 € E(P, Zyi1, prr1), avec L =
P~'Y, la séquence &, et le scalaire pj1, calculés & partir des expressions
récursives :

iI_Zk_H = TAka + TB’U,k + NykJrl + L(yk — CZI_Zk), (126)
Prr1 = PBpr+o. (1.27)
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1.4.2.2 Méthode 2

Le probléeme d’optimisation (1.25) de la Méthode 1 est résolu hors ligne.
Une autre approche consiste a obtenir un gain Lj mis a jour a chaque in-
stant k, permettant d’améliorer la rapidité de la convergence de ’estimation.
L’existence de P, L et 3 (calculés avec la Méthode 1) garantit 'existence de
L, vérifiant les contraintes considérées. La LMI a résoudre minimise le rayon
de 'ellipsoide d’estimation p.; a chaque instant de sorte que :

oP * *

PTA — YkC (PTE — YkF)wk — Nka+1 P '

Prt1 < Bpr + o

avec le centre de l'ellipsoide :

1.4.2.3 DMéthode 3

Dans le but de réduire le temps de calcul en résolvant un probleme d’optimisation
a chaque instant, la Méthode 3 évite I’énumération de tous les sommets de
B"=*"v, Cette procédure se base sur une nouvelle scaling technique proposée
par [Ben Chabane et al., 2014] pour les systemes standards.

Si la contrainte LMI (1.28) est vérifiée, alors il existe un scalaire g € (0, 1)
et une matrice S = ST > 0 de sorte que 'inégalité suivante est vérifiée :

sP s *

PTA — Y, C P "
: B = 0. (1.30)

0 [PTE ~Y,F -PNF| S

La Méthode 3 offre une meilleure précision d’estimation comparée a la
Meéthode 1 avec un gain en termes de temps de calcul par rapport a la Méth-
ode 2.

1.4.3 Systémes descripteurs linéaires variant dans le
temps

En général, il est important de prendre en considération les incertitudes dans

le modele. Le but de cette section est d’étendre 1’approche d’estimation

ellipsoidale pour des systémes descripteurs variant dans le temps (avec une
matrice d’évolution Ay variable).
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1.4.3.1 Meéthode 4

Cette méthode minimise le rayon de I'ellipsoide contenant 1’état du systeme a
chaque instant k& avec une matrice Py variable pour améliorer la précision de
Iestimation. La solution a ce probleme est formulée par le théoréeme suivant.

Théoréme 1.2. Soit le systeme (1.17) avec une matrice intervalle variable
dans le temps Ay, € [A]. Si les hypotheses suivantes sont vérifiées :

o L’état xy, est contenu dans lellipsoide E(Py, @y, pi) ;

e A Dinstant k, les incertitudes sont bornées par un ensemble convexe
Qp, ie. (wg, Ag) € i, avec Vg, 'ensemble des sommets de €, ;

e Il existe deux matrices T et N vérifiant (1.24) ;

e Il existe des matrices Py = P, = 0, avec Py € R Y,y €
R Gy € R™X% e vecteur g, € R™ et les scalaires positifs
Bri1, prr1 > 0 de sorte que la LMI suivante est vérifiée pour tout
(wk,Ak) c VQk :

Br+1 Pk * *
0 Pkl — Beripe  * =0, (1.31)
P, 1 TA, — Y1, C Thil Py

aveC Tip1 = (P Th A=Y 1C— Gyt )2+ (Pt TiE—- Y F)wy —
Gir1 + Neypyy — NeFwygq,

alors, a l'instant k41, le vecteur d’état @1 appartient a Uellipsoide €(Pyy1, i1, Prr1),
avec Ty = P,;il(GkaEk + Y1y, + 9k;+1)~

Dans la section suivante, la Méthode 4 est améliorée en ajoutant des
contraintes quadratiques sur la mesure et sur les perturbations a l'instant
k4 1.

1.4.3.2 Méthode 5

Soit ellipsoide €(Pg1, Txi1, prr1) contenant I'état estimé calculé a partir de
(1.31). Le but de cette méthode est d’améliorer la précision de I'estimation
en ajoutant des contraintes quadratiques en ¥, ; et wi41. En effet, s’il existe
une matrice Py, = P;L; = 0 dans R™>*"= une matrice H = H' > 0 dans
R™>™  un vecteur ), € R" et un scalaire positif réel pj,,; > 0 de sorte
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que les contraintes suivantes soient vérifiées:

’rh * *
Ny +Ny

Ny 73— 21 2% * =0,

/ /
Pk+1 _bk+1 Pk+1

Nz +ny ~
FTHF < 3 T, (1.32)
=1

P,>_07 P2+12Pk+1792076<177>07

Pres1 > Opeirs pry1 < apr+7,
i >0, 1=1,...,n, +ny,

avec :
bk+1 = P;c+13_3§c+1a
n, = 0Py + C'HC,
e, = _95;+1Pk:+1 - y;—i—lHC’
N3 = P;c+1 — Opry1 + HHJ_’kHH%HI + Hyk+1H%{,

(1.33)

alors I'état se trouve dans ellipsoide d’estimation &'(P}, |, &}, 1, 1) Cette
méthode donne une meilleure précision par rapport a la Méthode 4 mais avec
une complexité plus importante. La Méthode 1 a été publiée a la 23eme
International Conference on System Theory, Control and Computing, et les
autres méthodes font partie d’un article qui sera soumis & Automatica.

1.5 Chapitre 6 : Estimation d’état zonotopique

Ce chapitre fait partie de la deuxieme partie de la these qui traite de I’estimation
d’état zonotopique. Ce choix est justifié par la bonne précision offerte par
les zonotopes et par la définition de son P-rayon donnant un critere pour
évaluer la taille du zonotope.

1.5.1 Meéthode d’estimation d’état zonotopique fondée
sur un observateur de Luenberger

Considérons le systeme standard LTT suivant :

vy, = Cxy + Fwy,

Le vecteur wy € B™ contient les perturbations d’état et les bruits de mesure.
La méthode d’estimation d’état a base d’ensembles zonotopiques est formulée
par le théoreme suivant.
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Théoréme 1.3. (fondé sur 'approche proposé par [Wang et al., 2018]) Con-
sidérons que x est I'état initial et que I'état x, appartient au zonotope
Z(py, Hy) = p,, ® HyB™. Etant donné un scalaire 8 € (0, 1), s’il existe une
matrice P = PT = 0 dans R™*™ une matrice Y € R™>*™ et un scalaire
o > 0 pour lesquels la LMI suivante est vérifiée :

6P 0 ATP-CTY’
x '@ E'TP-F'YT| > 0, (1.35)
* * P

alors il est garanti que Détat @y, 1 € Z(®py1, Hiy1), Ywy, € B avec :

:_L'k—&-l = ACI_Zk + B’U,k + L<yk — CCI_Zk), (136)
Hiy = [AfHe 7, (1.37)
T
Y=PL T= [ET FT} A, =A-LCetn=E-LF.
Ce résultat a été publié au Summer Workshop on Interval Methods (SWIM),
2019.

1.5.2 Estimation d’état a base de zonotopes pour les
systemes affines par morceaux

Considérons le systeme bi-modal affine par morceaux :

Az, +Bu, +Ew, sir'z, <d,
Lht1 = .7 (1.38a)
Asx, +Buy + Ew, sir'ax, >d,

L’hyperplan défini par la condition de commutation 7' x;, = d sépare 'espace
d’état du systeme en deux demi-espaces, dans lesquels, a chaque instant k,
une des deux dynamiques est active. Ceci est représenté sur la Figure 1.3.
Nous distinguons deux matrices d’évolution A; et Ay, avec les paires (C, A1)
et (C, As) détectables et les paires (A1, B) et (Ag, B) stabilisables. L’état
initial appartient au zonotope Z(p,, Hy), avec p, le centre du zonotope et
H, la matrice des générateurs.

Ayant une estimation zonotopique pour 'état x; de la forme Z(p,, Hy),
avec T = p;, 1'état estimé, le but de cette technique est de donner une es-
timation zonotopique pour x;41 de la forme Z(p;,;, Hypp1). A partir d'un
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Figure 1.3 — Partitions de l'espace d’état

observateur de Luenberger pour le systéme (1.38), nous proposons la struc-
ture bi-modale suivante [Juloski et al., 2003] :

AT B L — Cx ir'z<d
$k+1={ 1Z; + Buy + Ly (y,, xp) sir x<d, (1.39)

A,y + Buy, + Lo(y, — Czy) sir'z > d.

L’observateur est déterminé pour que 1’état estimé & converge automatique-
ment vers . Le but est de trouver la méme matrice P = P T et les gains
des observateurs L; et Ly afin que les deux LMI représentant les deux condi-
tions sur I’état réel soient vérifiées en méme temps. En supposant connue la
partition dans laquelle I’état réel se trouve et faisant I’hypothese que 'état
estimé se trouve dans cette méme partition de ’espace d’état, les deux LMI
suivantes doivent étre vérifiées :
BP0 AJP-CTY/]
x ©'®@ E'P-F'Y/| =0, (1.40)
* * P

pour i =1, 2.

1.6 Chapitre 7 : Filtre de Kalman a con-
traintes zonotopiques

Dans ce chapitre, le probleme d’estimation d’état ensembliste est traité dif-

féremment. Nous proposons une nouvelle approche qui garantit que ’état, a

chaque instant, se trouve dans un zonotope qui forme I’enveloppe de I’ensemble
de contraintes appliquées sur I’état. Contrairement aux approches classiques,

cette technique n’exige pas le calcul a chaque instant de l'intersection entre

des ensembles. La nouveauté dans ce chapitre est 'introduction d’un al-

gorithme dual efficace pour I'estimation d’état des systemes dont 1’état est

potentiellement soumis a un grand nombre de contraintes.
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1.6.1 Filtre de Kalman zonotopique a contraintes zono-
topiques (ZCKF)

Considérons le systeme standard LTI suivant :

{wkH = Az, + Bu, + wy, (1.41)

vy, = Cxp+ vy,

Ici, w, € R™ et v, € R™ sont des bruits blancs gaussiens avec zéro comme
moyenne et respectivement, G,, et G, comme covariances i.e. wy ~ N(0, G,),
v ~ N(0,G,). L’état est un vecteur Gaussien tel que 1'état initial vérifie
xg ~ N(xo—1, Go|-1). Toutefois, le filtre de Kalman classique ne peut pas
prendre en considération les contraintes sur 1’état. Nous supposons que 1’état
vérifie I'inégalité suivante :

L’état final estimé est obtenu en résolvant le probleme d’optimisation suivant:
min, [
TR (1.42)

sous contraintes Kx; < ¢,

avec W une matrice symétrique définie positive. Dans la méthode présentée
dans ce chapitre, ’état est projeté sur le zonotope formé par les contraintes
auxquelles I’état est soumis.

Motivé par cette discussion, on rapelle qu'un zonotope est un polytope
symétrique. De ce fait, résoudre un probleme d’optimisation convexe con-
traint par un zonotope est équivalent a résoudre un probléme d’optimisation
soumis a des inégalités linéaires.

1.6.1.1 Travail préliminaire

Les problemes d’optimisation peuvent étre vus de deux perspectives, le prob-
léeme primal ou le probleme dual. Dans ce travail, nous considérons un prob-
leme d’optimisation de la forme :
J* =min J,(u)
wetd " (1.43)
s.c. Ru—p=0.

La fonction duale [Nesterov, 2005] peut s’écrire :

fla) = max (o, Ru — p) — Ju(u) (1.44)
et
u(a) = arg IBEEB((Q’ Ru — p) — J,(u). (1.45)

Cette formulation nous permet d’utiliser la propriété suivante.
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Propriété 1.1. [Nesterov, 2005] Supposons que J,(+) est une fonction stricte-
ment convexe ayant pour matrice hessienne :

0% J,(u
au(2) =S >0 (1.46)

et que U est un ensemble convexe. Alors, en utilisant la notation :
u = u(a) = arg max (a, Ru —p) — J,(u), (1.47)
la relation suivante est vérifiée :
fla) < f(@) + (Ru — p, Aat) + ;AaTRS‘lRTAa, (1.48)

avec Aa = a — a.

1.6.1.2 Solution algorithmique
Le probleme d’optimisation du filtre de Kalman contraint est :
min Jow(Z, W)

s.c. z=p+ Huw, (1.49)
[wllo <1,

avec la fonction de colit définie par :

Tw(z,w) = J.(2) + cw w

2
1 R , e - (1.50)
= §||z - mklkHG;l}g + Jw w.
et la matrice hessienne :
S = diag(Gi, L) (1.51)

Le probleme d’optimisation (1.49) peut étre divisé en deux problémes d’optimisation
indépendants tels que :

u(a) = ar = e Tl (1.52)
g max —(a, Hw) — fw w
l[wlloo<1

La variable z soumise aux inégalités linéaires formant le zonotope en mode
primal, appartient a I’ensemble des nombres réels en mode dual. En d’autres
termes, le nombre de variables de décision ne dépend plus du nombre des con-
traintes, mais plutot de la dimension de I'espace d’état qui est généralement
plus petite.
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1.6.1.3 Détails de calcul

En résolvant le premier probleme d’optimisation du premier ordre de I’équation
(1.52), nous obtenons :
zZ; = Gk|kOCJ + CACMk (153)

De plus, nous considérons la notation suivante :
-
w; = w(ey) = | wi(1) w;(2) ... wim)]| . (1.54)

En considérant la contrainte |w;(i)| < 1 pour chaque composante de w avec
1=1,...,m, nous avons :

—%ochhi, si ]%a}rhﬂ <1

—1 si —Lajh; < -1
En utilisant la Propriété 1.1, la valeur de Ay, a chaque itération j est donnée
par 'expression :

Aaj = (RS_lRT)_l(p + H'LUJ — Zj). (156)

Cette norme fournit une condition de sortie pour l'algorithme. En effet, si
la norme de p + Hw,_; — z;_; est petite, la paire (w,_1,2;_1) est proche
de 'optimalité car le gradient au point a;j_; est presque nul. Les équations
(1.53)-(1.56) sont indispensables pour la conception des algorithmes du filtre
de Kalman a contraintes zonotopiques.

1.6.2 Algorithme ISTA

La particularisation de 'algorithme Iterative Shrinkage Threshholding Algo-
rithm (ISTA) pour le probléeme d’optimisation dual adapté dans ce chapitre
est donnée ci-dessous.

Algorithme 1 ISTA appliqué a (1.49)
Entrée : @]dk,H,p
Sortie : p + Hw;_;.

1: Initialisation : j = 1, a; = 0, 29 = &y, wo = 0.

2. Tant que ||z;_1 — p — Hw;_4|| > p faire

3: Calcul de z; et wj, a partir de (1.53) et (1.55), respectivement.
4 Calcul de Aqy; a partir de (1.56).
5 (Ij+1 = aj + Aa]‘.

6: Jj=J+1L

7: retourner p + Hw;_;.
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L’avantage de cet algorithme est sa simplicité. Toutefois, il est reconnu
dans la littérature comme étant lent.

1.6.3 FISTA

Fast Iterative Shrinkage Threshholding Algorithm (FISTA) est une version
plus rapide de 'algorithme ISTA. Sa simplicité et sa rapidité font de lui un
algorithme convenable pour les applications réelles en ligne. La différence
entre les deux algorithmes se trouve au niveau du calcul du gradient de
la fonction duale. Dans l'algorithme FISTA, a1 est calculé comme une
combinaison linéaire entre deux valeurs d’une variable auxiliaire n; [Beck
and Teboulle, 2009]. De plus, la vitesse de convergence de 1’algorithme ISTA
est évaluée a (’)(%) tandis que la vitesse de convergence de FISTA est (’)(]%)

[Beck and Teboulle, 2009].

Algorithme 2 FISTA appliqué a (1.49)
Entrée : z;, H, p.
Sortie : p + Hw;_;.

Initialisation : j = 1,a; = 0,29 = Zy, wo = 0,1, = 0,¢; = 1.
Tant que ||z;,_1 — p — Hw;_4|| > u faire
Calcul de z; et w; a partir de (1.53) et (1.55), respectivement.
Calcul de Aq; a partir de (1.56).
n; = a; + Aa;.

tj+1 - 05(1 + \/1 + 4t§)

t:—1
(77]' _"7]'—1)‘

J

72 aj+1 — T’] +
o tisa
8: J=7+1L

9: retourner p + Hw,_;.

La vitesse de cet algorithme peut étre améliorée en proposant une étape
supplémentaire au ZCKF qui réduit la taille du zonotope initial. Cette étape
supplémentaire est proposée dans l’extension du filtre de Kalman a con-
traintes zonotopiques.

1.6.4 Extension du filtre de Kalman a contraintes zono-
topiques (EZCKF)

Quand le probléeme d’optimisation convexe (1.49) est appliqué sur un systeme
de grande taille, le nombre de variables de décision sera grand. Le but de
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cette méthode est de réduire le temps de calcul de l'algorithme présenté
en utilisant au début un zonotope réduit, c’est a dire un zonotope avec un
nombre réduit de générateurs. En effet, il est plus convenable pour le temps
de calcul d’itérer 'algorithme sur un zonotope réduit que sur le zonotope
initial.

Dans ce contexte, ’algorithme doit trouver un zonotope réduit que nous
appelons par la suite zonotope non fixe. Par conséquent, on divise le zonotope
en deux zonotopes indépendents selon une classification de sa matrice de
générateurs H. Le premier zonotope est un zonotope qui est fixe tandis que
le deuxieme est un zonotope non fixe sur lequel ’algorithme est appliqué. En
détails, les générateurs de la matrice H sont classés selon cet ordre :

H=[h hy ... hy ]|,

de sorte que :

1 1 1
|—ajTh1| < |—ajTh2| <. < |—a;hm|.
€ € €

Le nouveau zonotope non fize est Z(p,,,, Hnf) avec :

Hy=|h hy ... h], (1.57)

wnf:{wl wy ... wl}, (1.58)

formé par les | premiers générateurs (I < m), avec un nouveau centre p,,.,,,
obtenu par une simple translation de I’ancien centre du zonotope tel que :

pnew :p+waf7 (159)

avec :
Hy =l by oo by |, (1.60)
wy = { Wi 1 Wig ... Wy, } . (1.61)

Une fois le zonotope choisi, 'algorithme itere sur le nouveau zonotope Z(p,,..,, Hyy)
pour trouver une solution. L’algorithme devient :
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Algorithme 3 FISTA réduit appliqué a (1.49)
Entrée : zxaman, H, P
Sortie : ¢

1: Initialisation : k=1, a; =0
Décomposer le zonotope initial Z(p, H) et trouver Hy, w;, H,f, w,s, en
utilisant (1.60),(1.61), (1.57), (1.58), respectivement.

N

3: Si Hy n’est pas vide alors
4 Puew =P+ Hywy
5. Tant que ||z;_1 — P,e, — Hwj_1|| > p faire
6: Calcul de z; et w; en utilisant (1.53) et (1.55), respectivement.
7 Calcul de Aca; a partir de (1.56).
8: n; = a; + Aa;.
9:  tjy1 = 0.5(1+ /14 423).
10: Q1 =1+ . (77j - 77]'—1)-
Jj+1

11: j = j + 1.
12: retourner p + Hw;_;.

Les algorithmes précédents ont été testés sur des systemes académiques
avec un nombre important de contraintes. Le ZCKF a été présenté a la
57¢me Conférence on Decision and Control (CDC), 2018. L’extension du
filtre de Kalman a contraintes zonotopiques fera partie d’'un article de journal
a soumettre a Automatica.

1.7 Chapitre 8 : Conclusion et perspectives

Dans cette these, le probleme d’estimation d’état, en particulier ’estimation
d’état ensembliste, est traité. Dans ce contexte, nous proposons de nouvelles
approches ellipsoidales et zonotopiques pour l'estimation d’état pour dif-
férentes classes de systémes linéaires. Les principales contributions de cette
these peuvent étre divisées en deux parties :

e Dans la premiere partie, une extension d’'une technique d’estimation
d’état ellipsoidale existant dans la littérature est proposée pour étre
appliquée sur modele d’octorotor dans un contexte radar. Une exten-
sion de cette approche ellipsoidale d’estimation d’état est proposée pour
des systemes descripteurs.

e Dans la deuxieme partie, une méthode fondée sur la minimisation du
P-rayon d’un zonotope est proposée, puis étendue pour traiter un cas
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particulier des systéemes affines par morceaux. De plus, dans le dernier
chapitre, le probleme de 'estimation d’état ensembliste est traité dif-
féremment des approches classiques. Un nouveau filtre de Kalman a
contraintes zonotopiques qui combine la bonne précision de ’estimation
d’état zonotopique et la complexité réduite du filtre de Kalman clas-
sique est présenté. La complexité du filtre est ensuite améliorée en
remplacant le zonotope initial par un zonotope réduit.

Ce travail peut étre étendu en considérant plusieurs propositions. Une per-
spective intéressante de la premiere partie sera de considérer que le vecteur
de perturbations dans la premiere partie appartient a un ellipsoide pour
éviter ’énumération des sommets. Une deuxieme perspective sera d’étendre
la méthode zonotopique fondée sur un observateur de Luenberger pour une
représentation générale des systemes affines par morceaux. D’autre part,
le filtre de Kalman a contraintes zonotopiques représente une étape initiale
prometteuse pour 'estimation d’état des systémes de grande taille. Il sera
intéressant de valider les méthodes d’estimation et les algorithmes sur un
systeme réel.
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Chapter 2

Introduction

2.1 Context and motivations

Today, people have a better life thanks, in large part, to the advances in
technology. The impact of new technologies in numerous fields is apparent in
the way people lead their lives, understand the world and run their businesses.
From smart-phones to smart houses and autonomous vehicles, the control
of industrial processes became a need to increase reliability, efficiency, and
security while reducing design and production’s costs.

Tremendous scientific advances have been made in numerous directions
including drones, rovers exploring Mars, smart houses, smartphones, artifi-
cial intelligence, etc. However, in most of these applications, common issues
can occur in particular in fault detection and control related aspects. Indeed,
malfunctions should be taken into account to avoid a potentially disastrous
impact on the evolution of any system. This is done by finding a control
law such that the system can operate in a tolerable way in such cases. By
definition, a state feedback controller compares a measured value of a system
state (when the entire state is available) with a desired value, and processes
the resulting error signal to change the system’s input, in such a way that
the system maintains its set-point despite possible disturbances and mea-
surement noises coming from different sources. If (part of) the system state
is not measurable, then it has to be estimated. Thus, the process of state
estimation becomes a primordial step before dealing with the control law.
However, the importance and challenges of state estimation are often under-
rated in research and industry, therefore it is crucial to put it on an equal
footing with control problems.

The state of a system is a set of quantities (e.g. position, velocity, and
orientation) that, if known, fully describe the system’s dynamics over time.
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Therefore the goal of this thesis is to focus on the advancements done in the
field of state estimation in control engineering.

The state estimation theory is not recent. Centuries ago, sailors were
faced to the problem of estimating the ship’s position while sailing. The
advent of estimation tools later on, in particular the compass, allowed to
have measurements for the sake of navigation. Gradually, instruments were
invented to measure angles, latitudes and so on.

However, it was not until the nineteenth century that the German mathe-
matician Gauss set the grounds for a new class of state estimation techniques
[Sorenson, 1970]. Gauss proved that his least-squares technique [Gauss, 1857]
is optimal under the assumption of normally distributed errors. Later on,
in 1960, Kalman revolutionized the state estimation field by introducing a
filter [Kalman, 1960] suitable for the state estimation of linear systems as-
suming the knowledge of the characteristics (i.e. Gaussian distribution) of
perturbations and noises governing the state and the measurements. Due
to its accuracy and easy implementation, the Kalman filter has been the
main technique of estimation in various industrial fields suchlike navigation
[Hoshino et al., 1996], finance [Manoliu and Tompaidis, 2002], pharmaceuti-
cal applications [Hassan et al., 1999], radar imaging [Chevet et al., 2017] and
many more. It was used for the first time by the National Aeronautics and
Space Administration (NASA), in its Apollo program for accurate position
estimation above the lunar surface, taking into account possible disturbances
and noisy radar measurements [Smith and Schmidt, 1961]. Many incremental
improvements were then done on the classical Kalman filter to deal with real
time systems, thus the introduction of the extended Kalman filter [Schmidt,
1966], [McElhoe, 1966], the unscented Kalman filter [Wan and Merwe, 2000],
Bucy-Kalman filter [Kalman and Bucy, 1961] etc. Theses techniques belong
to the class of stochastic approaches for state estimation, since they tend
to assume the knowledge of the characteristics of noises and perturbations
[Kalman, 1960].

Alternatively, the deterministic approaches [Schweppe, 1968] seem more
realistic, by considering unknown but bounded perturbations and measure-
ment noises. In this context, several approaches were elaborated, like inter-
val observers [Efimov et al., 2013], [Raissi et al., 2011], [Pourasghar et al.,
2016] where the state estimation set is approximated by its interval hull.
In these approaches, no statistical assumptions needed, the evolution of the
system state is described by a set. Extensively, the set-membership state
estimation approaches [Alamo et al., 2008a], [Bertsekas and Rhodes, 1971a]
find at each time instant an estimated set containing all the possible states
consistent with the model, the measurements, the possible perturbations
and uncertainties that the system is subject to. Among the geometrical
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sets used in the implementation of these approaches are parallelotopes [Kos-
tousova, 2011], [Chisci et al., 1996], polytopes [Walter and Piet-Lahanier,
1989], [Barmish and Sankaran, 1979], zonotopes [Combastel, 2003], [Alamo
et al., 2005], [Le et al., 2013b], [Combastel, 2006], ellipsoids [Kurzhanski and
Valyi, 1996], [Durieu et al., 2001], [Polyak et al., 2004], [Daryin et al., 2006],
[Daryin and Kurzhanski, 2012] and many more. Later on, to benefit from
the set advantages, a combined technique between zonotopes and ellipsoids
[Ben Chabane et al., 2014b] was proposed. Furthermore, a Gaussian and a
zonotopic Kalman filters (ZGKF') are merged to have a robust state estimator
for fault detection under noisy measurements that can be efficiently designed
[Combastel, 2015b]. The non exhaustive workflow in Figure 2.1 summarizes
the overall state estimation work in literature. It also highlights the major
contributions made to combine the advantages of either two sets (i.e. the
technique combining zonotopes and ellipsoids in red) or two approaches (i.e.
the zonotopic Kalman filter (ZKF) merging between the stochastic and the
deterministic approaches).

’ State estimation ‘

J

Stochastic approaches Deterministic approaches

/

N

’ Kalman filter ‘ Set-membership Interval observers

/.

Zonotopes || Ellipsoids || Polytopes

RN

Zonotopic Ellipsoids & zonotopes
Kalman filter

/

Extensions of
Kalman filter

Figure 2.1 — State estimation approaches

The goal of this thesis is to answer to a significant problem in the auto-
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matic control field: the state estimation for uncertain systems in the presence
of perturbations, measurements noises and state constraints, based on the
set-membership approach. Uncertainties acting on the system are considered
unknown but bounded by known sets in particular zonotopes or ellipsoids.

This thesis builds upon previous results on the ellipsoidal [Ben Chabane,
2015] and zonotopic [Le et al., 2013a] set-membership state estimation tech-
niques. Firstly, a comparison between two state estimation techniques in
the literature in terms of accuracy and computation complexity is made: an
ellipsoidal set-membership state estimation technique [Ben Chabane et al.,
2014a] and the classical Kalman filter [Kalman, 1960]. Moreover, the ellip-
soidal technique developed in [Ben Chabane, 2015] is further developed to
consider the system inputs, then applied to a model of an octorotor used
for radar applications [Makarov et al., 2015], [Makarov et al., 2016]. Then,
a new class of systems is further analyzed. A new ellipsoidal approach, ex-
tended from previous work [Ben Chabane et al., 2014a], is proposed for lin-
ear time invariant descriptor systems where physical equality constraints are
considered in the system’s dynamics. Alternatively, the thesis details a new
zonotopic set-membership state estimation technique for piecewise affine sys-
tems (PWA) with bounded perturbations and bounded measurement noises.
Finally, a combined method between the stochastic approach and the deter-
ministic approach is presented to highlight the advantages of both techniques.
A zonotopic constrained Kalman filter is designed to guarantee that the state
estimate belongs at each time instant to a defined zonotope. This zonotope
is no other than the envelope of the set of inequality constraints applied on
the system state at each time instant. To resume, the thesis deals with dif-
ferent class of systems (standard and descriptor systems) and two main sets
used in state estimation (zonotopes and ellipsoids). Additionally, the set of
equality /inequality constraints applied on the system state are treated in this
thesis, either by considering descriptor systems or by using zonotopes as a
form of envelope of these constraints.

2.2 Contribution

The thesis is made up of seven chapters in total illustrated in Figure 2.2. The
main contributions of the remaining chapters are highlighted in this section.

e Chapter 3: This chapter starts with a brief summary of the determin-
istic and stochastic approaches in terms of uncertainties, disturbances
and noises representations. Then, some basic definitions and properties
needed to manipulate matrices and important operations for sets are
given. Additionally, the chapter analyzes the most used convex sets
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to represent uncertainties in deterministic approaches, with their main
properties, advantages and limits. Due to their convenience, zonotopes
and ellipsoids are used in this thesis. Finally, a brief summary of con-
vex optimization techniques is presented along with some results of
Nesterov that will be further employed in the thesis.

Part I

e Chapter 4: In this chapter, an existing ellipsoidal set-membership
state estimation technique, along with the classical Kalman filter are
summarized, then compared in terms of computational complexity,
number of operations per iteration and accuracy. The main advan-
tage of the Kalman filter is its simplicity and low complexity while the
technique based on ellipsoids offers better estimation accuracy, with
guaranteed bounds. This result has been published to the 20th IFAC
World Congress 2017. That being exposed, the set-membership state
estimation technique based on ellipsoids is extended and then applied
on a model of an octorotor used for radar applications in collaboration
with SONDRA laboratory. Using ellipsoidal representations, the pro-
posed technique computes the set of states that are consistent with the
drone model in a first phase and with the measurements provided by
the sensors in a second phase such that the drone’s position is guar-
anteed to belong to this set. Using the accurate estimation, an image
reconstruction of the target is done and the relative error is used to
find the operating frequency of the considered Unmanned Aerial Vehi-
cle (UAV). These results have been submitted to the special issue on
"Interval estimation applied to diagnosis and control" of the Interna-
tional Journal of Control.

e Chapter 5: In this chapter, several guaranteed ellipsoidal set-mem-
bership state estimation techniques are proposed for descriptor systems
with bounded perturbations and measurement noises. These methods
extend previous ellipsoidal set-membership state estimation techniques
for linear time invariant (LTI) standard systems. For this, four meth-
ods are derived. In the context of uncertain descriptor systems, the first
technique considers a constant observer gain that can be found by solv-
ing one linear matrix inequality (LMI) problem. This result has been
published in the proceedings of the 23rd International Conference on
System Theory, Control and Computing (ICSTCC) 2019. The second
technique updates the observer gain at each time instant by online solv-
ing a LMI. In the third technique, a trade-off between complexity and
accuracy is done by considering a vector scaling technique. This allows
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us to reduce the computation time while keeping a good estimation ac-
curacy. Finally, a fourth technique is revisited for uncertain linear time
invariant descriptor systems, where the model of the system is subject
to bounded uncertainties. This technique is further improved by tak-
ing into consideration the measurement strip at the next time instant,
and applying quadratic constraints on the perturbation vector. These
results are currently ongoing work to be submitted to Automatica.

Part 11

Chapter 6: In this chapter, zonotopic sets will be used due to their
flexibility and low-complexity. The chapter starts by proposing a zono-
topic set-membership state estimation technique for linear time invari-
ant systems subject to unknown but bounded perturbations and mea-
surements noises. The technique builds upon previous results in the
literature on state estimation based on a Luenberger observer for de-
scriptor systems. The P-radius of the estimated zonotopic set is mini-
mized to guarantee its non-increasing at each time instant. Next, this
technique is applied to the same model of the octorotor detailed in
Chapter 4. This work has been presented to Summer Workshop on
Interval Methods (SWIM) 2019. In a second part, the chapter pro-
poses a new zonotopic set-membership state estimation technique for
a particular class of piecewise affine systems (PWA). The considered
PWA systems are defined by partitioning the state-space into regions
via state conditions and associating with each region a different ob-
server and/or state update equation. Assuming the knowledge of the
partition in which the system state is located and considering the as-
sumption that the state estimation belongs to the same partition as
the real state, the state estimation technique ensures that the state is
guaranteed to belong to a zonotopic set despite the existence of per-
turbations and measurement noises. This is done by solving two LMIs
in the case of bi-modal PWA systems.

Chapter 7: Building upon the contributions in the previous chap-
ters and considering the advantages and weak points of the proposed
techniques, this chapter treats the set-membership state estimation ap-
proaches from a different perspective. A new zonotopic constrained
Kalman filter (ZCKF) is proposed to guarantee that the state estima-
tion belongs to a zonotope, which is no other than the envelope of
the constraints applied on the system state. This filter combines the
advantages of the stochastic and the deterministic approaches. It is
different from the classical deterministic approaches because it doesn’t
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require the intersection between sets that usually causes high complex-
ity. The new filter relies on an efficient optimization strategy that takes
advantage of the special structure of the problem. The developed algo-
rithm finds a better solution at each iteration, by advancing a step in
the direction of the gradient of the dual function of the original opti-
mization problem. The algorithm is a particularization of the iterative
shrinkage-thresholding algorithm (ISTA). A faster version of the ISTA
algorithm called FISTA is then used to reduce the simulation time
which can be practical in large scale systems, when the system state is
constrained by a large number of constraints. This work has been pre-
sented to the 57th IEEE Conference on Decision and Control (CDC)
2018. Next, a new step is introduced to reach faster convergence lead-
ing to an Extended Zonotopic Constrained Kalman Filter (EZCKF).
Indeed, in the proposed EZCKF technique, the complexity reduction
step leads to approximate the given zonotope by a lower order one,
by limiting the number of generators at each time instant. Compared
to classical optimization techniques and deterministic approaches, the
proposed algorithm is faster and simpler to implement on large scale
systems and real applications. This is the object of current work that
will be submitted to Automatica.

e Chapter 8: Conclusion and future perspectives are presented in this
chapter.
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2.3 Publications

The thesis contributions resulted in several accepted/submitted/in progress
publications to prestigious international conferences and journals.

Journal paper:

e D. Merhy, C. Stoica Maniu, T. Alamo, E. F. Camacho, S. Ben Cha-
bane, T. Chevet, M. Makarov, and I. Hinostroza. Guaranteed set-
membership state estimation of an octorotor’s position for radar ap-
plications. 2nd submission to International Journal of Control, special
issue on "Interval estimation applied to diagnosis and control", 2019.

Conference and workshop papers:

e D. Merhy, C. Stoica Maniu, T. Alamo, E. F. Camacho and S. Ben
Chabane. Comparison between two state estimation techniques for lin-
ear systems. Preprints of the 20th World Congress of the International
Federation of Automatic Control, Toulouse, France, pp. 4855-4859,
July 9-14, 2017.

e D. Merhy, T. Alamo, C. Stoica Maniu and E. F. Camacho. Zonotopic
constrained Kalman filter based on a dual formulation. Proceedings of
the 57th IEEE Conference on Decision and Control, Miami, Florida,
USA, pp. 6396-6401, December 17-19, 2018.

e D. Merhy, C. Stoica Maniu, T. Alamo, E. F. Camacho, T. Chevet,
M. Makarov, and I. Hinostroza. Zonotopic set-membership state esti-
mation applied to an octorotor model. Proceedings of the 12th Summer
Workshop on Interval Methods, ENSTA Paristech, Palaiseau, France,
July 23-26, 2019.

e D. Merhy, C. Stoica Maniu, T. Alamo and E. F. Camacho. Ellip-
soidal set-membership state estimation for descriptor systems. Proceed-
ings of the 23rd International Conference on System Theory, Control

and Computing, Sinaia, Romania, October 9-11, 2019, Best Paper
Award.

Oral presentations:

e D. Merhy, C. Stoica Maniu, T. Alamo and E. F. Camacho. Estima-
tion d’état a base d’un nouveau filtre de Kalman sous contraintes zono-

topiques, Journées de I’Automatique du GdR MACS, Nantes, France,
November 15-16, 2018.
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e D. Merhy, C. Stoica Maniu, T. Alamo, E. F. Camacho, S. Ben Cha-
bane, T. Chevet, M. Makarov, and I. Hinostroza. Set-membership
state estimation of an octorotor applied to radar imaging, Colloque de
Recherche Inter-Ecoles Centrales, Nantes, France, June 26, 2018.

Work in progress:

e D. Merhy, C. Stoica Maniu, T. Alamo and E. F. Camacho. Zonotopic
constrained Kalman filter for large-scale systems. to be submitted to
Automatica.

e D. Merhy, C. Stoica Maniu, T. Alamo and E. F. Camacho. Ellipsoidal
set-membership state estimation for descriptor systems. to be submitted
to Automatica.

e S. Ben Chabane, D. Merhy, C. Stoica Maniu, T. Alamo and E. F.
Camacho. Guaranteed ellipsoidal set-membership state estimation for
linear time-variant systems. to be submitted to Systems & Control Let-
ters.

e D. Merhy, C. Stoica Maniu, T. Alamo and E. F. Camacho. Zonotopic
set-membership state estimation for piecewise affine systems. to be
submitted as a journal paper.
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Mathematical tools for
set-membership state

estimation
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3.3.2 Ellipsoidalset . . . . . .. ... ... ... ... 48
3.3.3 Polyhedralset . ... ................ 50
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3.4 Convex optimization . ............... 57
3.4.1 Duality principle in convex optimization . . . . . . 59

3.4.2 Gradient-based methods for solving convex opti-
mization problems . . . .. ... ... 60

3.5 Conclusion . ... ... ..o, 61

3.1 Introduction

Dynamical systems are usually represented with a set of a mathematical
equations that represents the dynamics of the system as properly as possible.
Based on the basic Physics laws, these models are used for analysis and

39



Chapter 3. Mathematical tools for set-membership state estimation

design of control systems. When modeling a system, a trade-off between
the accuracy of the results of the analysis and the simplicity of the model is
necessary.

In general, it is recommended to build a simplified model of a new sys-
tem to get a general feeling of the solution when solving a new problem.
Therefore, in this thesis, we mainly address systems belonging to the class
of linear, finite dimensional, deterministic, multivariable, time-variant and
time-invariant systems. Even though this class of systems seems restricted,
it can model a large number of real time systems that we encounter in our
daily life. Therefore, linearization techniques and identification procedures
attracted more research attention from the scientific community to achieve
good results, in simpler ways. However, sometimes standard linear systems
are not enough to provide a complete representation of the linear system
since for many physical systems, conservation laws (mass, volume, energy
etc.) should be taken into account. This is done by employing a combina-
tion of differential and algebraic equations. In this thesis, we will refer to
these systems by descriptor systems, that we will be detailing later. An-
other class of linear systems that will be detailed throughout this thesis is
the piecewise affine systems (PWA). This category of systems partitions the
state-space into regions using linear constraints and associates to each region
a different linear (more generally affine) system.

No matter what type of linear model is chosen, the crucial problem is that
the ideal mathematical model of the system does not match the behavior of
the real system due to several reasons. In this context, one of the possible
approaches on how to overcome this challenge is the use uncertain models.
Uncertainties have been a central theme in the development of the automatic
control field. Two ways exist in the literature to represent uncertainties:
stochastic (statistical) approaches and deterministic approaches.

Stochastic approach: Uncertainties are represented by a random pro-
cess assuming the knowledge of the statistical characteristics such as average,
covariance, etc. [Kalman, 1960]. This applies to a large number of scientific
fields like economy [Manoliu and Tompaidis, 2002], chemistry [Hassan et al.,
1999], engineering [Chevet et al., 2017], [De Marina et al., 2011], [Salameh
et al., 2018] and many more. However, for real systems, these assumptions
tend to be sometimes unrealistic since the probability distribution of uncer-
tain variables can not be known.

Deterministic approach: Uncertainties are assumed to be unknown
but bounded. In general, they can be represented by convex sets: ellipsoids,
polytopes, zonotopes, intervals and many more. The choice between the
different families of classical sets depends on the accuracy and the complexity
needed for each specific application. In this thesis, we only consider convex
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sets because of their advantages in the theory of optimization, which we will
briefly discuss in this chapter.

In the following parts, some of the useful tools for the deterministic esti-
mation framework are detailed. First, some matrix and set related operations
which are used in this thesis are introduced in the next section. Addition-
ally, Section 3.3 highlights some popular convex sets in state estimation with
their advantages and weaknesses. Section 3.4 presents some preliminaries for
convex optimization. Finally, the last section draws the conclusion of the
chapter.

3.2 Matrices: definitions and properties

Before going into the work details, we present in this section some of the
basic matrix definitions and properties that will be used along the thesis in
the design and development of set-membership state estimation techniques.

Definition 3.1. A singular matriz P is a square matrix that does not have
an inverse. In other terms, a matrix is singular if and only if its determinant
is equal to 0.

Definition 3.2. A matrix P = P € R™" is called a strictly negative
definite matriz (respectively strictly positive definite matriz), denoted by
P <0 (resp. P> 0),if 2"Pz < 0 (resp. 2" Pz > 0) for all non-zero vectors
z with real entries (z € R"\{0,}).

Definition 3.3. A matrix P = PT € R™" is called a negative definite
matriz (respectively positive definite matriz), denoted by P < 0 (resp. P
0), if z"Pz < 0 (resp. 2" Pz > 0) for all non-zero vectors z with real entries

(z € R"\{0,,}).

Definition 3.4. The Euclidean norm denoted by ||z||% is defined to be the
quantity Pz, with x € R*, P e R"*" and P =P ' > 0.

Definition 3.5. A Linear Matriz Inequality (LMI) is defined by the follow-
ing formulation:

n
A
F(x) = Fo+ > z,F; > 0, (3.1)
i=1
with the given matrices F; = F] € R™™ i = 0,...,n, and the vector
T
of decision variables * = {:Bl To ... $n} € R™. The components z;,
1 =1,...,n, of this vector are called scalar decision variables.

41



Chapter 3. Mathematical tools for set-membership state estimation

Remark 3.1. The LMI F(x) > 0 can be rewritten as a set of scalar linear
inequalities when the matrices F;, with : = 0,..., m, are diagonal.

Remark 3.2. The vector x is constrained by the convex LMI (3.1), which
means that the set {x € R" : F(x) > 0} is convex (see Definition 3.7 of
convexity).

Two main problems related to LMIs are considered in this thesis:

1. Feasibility problem: Does a solution & € R™ exist such that the LMI
F(x) > 0 is feasible?

2. Figenvalue optimization problem: 1t consists on minimizing the max-
imum eigenvalue of a matrix that depends on a variable in an affine
way, subject to LMI constraints:

min \
x,\

subject to A, — A(x) > 0, (32)
B(x) >~ 0,

where A € R™*"™ and B € R™™™ are two symmetric matrices affinely de-
pendent on the optimization variable . This problem can be rewritten
in an equivalent form:

min A
@A (3.3)
subject to C(x, A) = 0,

where C is affine both in & and A. The problem (3.3) is a LMI opti-
mization problem.

Remark 3.3. Any LMI problem can be solved numerically by using the
appropriate LMI solver. The Matlab/Robust Control Toolbox”* software
has a special computational engine for LMI with two main solvers: feasp for
feasibility problems and mincx for general optimization problems. On the
market there exist several modeling tools for optimization problems among
which CVX [Grant and Boyd, 2014] and YALMIP [Lofberg, 2004]. Among
the toolboxes relying on YALMIP is the Multi-Parametric Toolbox (MPT),
an open source toolbox that can be used for parametric optimization. The
latter toolbox contains also a modeling of dynamical systems module, that
features a powerful geometric library used in various problems from estima-
tion to control [Herceg et al., 2013].
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Property 3.1. Schur complement. [Boyd et al., 1994], [Scherer and Weiland,
2007] Consider the following LMI:

[Q(fv) S(z)

S () R(:p)] = 0, (3.4)

where Q(x), R(x) are symmetric matrices and Q(x), R(x) and S(x) are
affine in . Then this LMI is equivalent to:

Q(z) » 0,
{ Q(z) — S(z)R'(x)S T (x) = 0, (3.5)

or

R(x) >~ 0, (3.6)

R(z) — ST (z)Q (x)S(x) = 0. '
Definition 3.6. A Bilinear Matriz Inequality (BMI) is defined by the fol-
lowing expression:

n n
F(z) =Fo+ Z z ¥ + Z Z xiwiFi; =0, (3.7)

i=1 i=1 j=1

where @ is the vector of decision variables and Fo, F;, F;; € R*! with
t=1,...,nand 5 =1,...,[, are given symmetric matrices.

Remark 3.4. When it comes to solving BMIs, the computational complex-
ity grows in an ascending order when the bilinearity concerns the product
between:

1. two scalar decision variables;
2. a scalar decision variable and a matrix decision variable;

3. two matrices decision variables.

Remark 3.5. A BMI can be solved numerically by calling the solver penbmi
of PENOPT. Together with the YALMIP parser, penbmi provides an efficient
tool for solving many problems of optimal control. The first two cases of the
previous remark can be solved easily with Matlab, however for the third case
the penbmi solver is needed. Despite the efficiency of these solvers, more
powerful BMI solvers are still needed in research.

Remark 3.6. With the definition of the Schur complement, the nonlinear
matrix inequalities (3.5) or (3.6) can be converted to a LMI problem (3.4).
This is then one of the techniques making the conversion of BMIs to LMIs
possible.
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Property 3.2. S-procedure. [Boyd et al., 1994] Let Fy, ..., F, be quadratic
functions of variable ¢ € R™:

Fi(€) 2 ¢'Ti¢+ 2p; ¢ + v,

with i =0,...,p, v; € Rand T; =T, € RV, If

p
31 >0, i=1,...,p, suchthat Fp(¢) — > nF() >0 (3.8)
i=0
then
Fy(¢) > 0 for all ¢ such that F;(¢)>0,i=1,...,p. (3.9)
When p = 1, there exists a ¢, such that Fy(¢,) > 0.

If the functions F; are affine in ¢, then (3.9) and (3.8) are equivalent
(see the affine form of the Farkas lemma [Haar, 1924]). In the following
chapters, the S-procedure will be used to formulate the LMI problems in the
set-membership state estimation techniques proposed.

Remark 3.7. In general, the S-procedure expresses some quadratic con-
straints as LMIs. In some cases, these LMIs can be more conservative than
the initial constraints but some useful approximations can be done.

3.3 Set-theory preliminaries

Research on set-based state estimation has been quite active for the last
decades. The different approaches can be classified according to which type
of set they choose to represent uncertainties. Since the main contributions of
this thesis fall in the category of set-membership state estimation, it is impor-
tant to discuss the most used sets in the literature and their main properties.
Among the sets used are intervals, polytopes, zonotopes, parallelotopes and
ellipsoids. Before detailing these sets, we start by introducing some basic set
definitions and operations.

Definition 3.7. A set S C R" is called a conver set if for any element

k
T1,%o, ..., T €S, with k > 2, and any aq, o, ..., a; € RT such that > «; =
i=1

k
1, the element > «a;x; belong to S.
i=1
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Definition 3.8. A function f is called a convex function if it is defined in
a convex set S and for all z,y € S and all A € [0, 1] the following property
holds:

FOz+ (1 =Ny) <Af(z)+ (1 =N F(y).

This definition is illustrated in Figure 3.1.

A

a T xp4+(1-Ny Y b

Figure 3.1 — Illustration of the definition of a convex function

Definition 3.9. Given a set S, the convex hull of S, denoted by conv(S) is
the smallest convex set containing S.

Definition 3.10. A set X is included in a set ), i.e. X C ), if and only if
r €)Y, Vo e X. In others terms, X is a subset of ).

Definition 3.11. The intersection of two sets X and ) is defined as XNY =
{z:2z€ X and z € V}.

Definition 3.12. The Minkowski sum of two sets X and ) is defined by
XeY={r+y:xeX yecl}

Example 3.1. Figure 3.2 illustrates the convex hull (in red lines) of the
convex set X formed by the black dots.
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Figure 3.2 — Illustration of the convex hull of a convex set X

3.3.1 Interval set

A trivial way to define uncertainties when no distribution is known is us-
ing interval sets. The idea is to enclose numerical errors into an interval
by setting an upper and a lower bound. Simplifying most of the standard
operations [Hansen, 1965], the interval analysis became famous and widely
used since its appearance in a book of Moore [Moore, 1966] back in 1966.

Definition 3.13. An interval denoted by [a, b] is the set {z € R: a < x < b}.
Definition 3.14. A unitary interval is defined as B = [—1, 1].
Definition 3.15. The center of an interval Z = [a, b] is defined as mid(Z) =

ot 'its radius as rad(Z) = 52
Definition 3.16. An interval vector is a box ([ay,bi], ..., [an, b,])", with
a; < b fori=1,... n.

Definition 3.17. A unitary box B" is composed by n unitary intervals given
by {z € ([a1,b1],...,[an,bn))" 1a;=—-1,b;=1,i=1,...,n} CR™

Definition 3.18. An interval matriz [M] is a matrix whose elements are
intervals. The notations mid([M]);; = “43% and rad([M]);; = %3% define
the center and the radius of the interval matrix [M], respectively with a;; <
my; S bij7 1= ]_, .., n, and ] = ]_7 .., m.
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Definition 3.19. In the matrix space, the interval matrix is a hyper-rectangle
and hence a convex set. A set Vg defines the set of all vertices of the interval
matrix [M].

The interval matrix [M] can be rewritten as:
IM] = mid[M] + AM, (3.10)

AM being the uncertain part of the interval matrix [M]. Consider ns to be
the number of the uncertain scalar terms d; of AM, with §; € B, then AM
can be decomposed as:
ng
AM = 3" M;,4; (3.11)
i=1
where the matrices My, ¢ = 1, ..., ns, have only one non-zero element corre-
sponding to the coefficient of d;. Example 3.2 illustrates this decomposition

. . . [ 3 —14046
Ezxzample 3.2. Consider the interval matrix [M] = ll .+ 0.36, 4 ] ,
. 31 [0 048
with 01,09 € [—1, 1]. Then, we compute mid[M] = [1 _4] ,AM = [0'352 0 ],
0 04 0 0
Ms, = [0 ol’M@_ [0.3 0]'
Given two intervals [z] = [z, 2] and [y] = [y,y]. An operation o between
the two intervals [z] and [y] can be formalized as:
[z]ofy] ={zoy:zez],y €[y} (3.12)

The four basic operations of interval analysis [Moore, 1979] can be defined
as follows:

Lofa] + [yl = [z +y 7+,
2. [w] =yl =z -9,z -y,
3. [a]* [yl = [min(z -y, z-§,2-y,2-y), max(z -y, §,2 -y, T 7)),
4. [2]/ly] = ]+ [1/y,1/y], if 0 ¢ [y].
Definition 3.20. A strip is defined by the following set
S(y,d,o)={x cR": |y —d'z| <o}, (3.13)

where y € R, d € R" and 0 € RY.
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Despite its efficiency and simplicity, two main drawbacks of interval arith-
metic can be mentioned: the dependency effect in which a variable that oc-
curs more than once in the same function is treated independently, and the
wrapping effect that overestimates the image of an interval vector at each
sampling time [Moore, 1966], [Kithn, 1998|, [Jaulin et al., 2001]. Next, the
ellipsoidal sets are detailed. The presented properties will be further used
along this thesis to develop ellipsoidal state estimation techniques.

3.3.2 Ellipsoidal set

Ellipsoids are popular sets widely used in control system applications due to
their low complexity [Schweppe, 1968] and the resulting estimation stability
properties [Hu and Lin, 2003]. For instance, they are used in identifica-
tion [Polyak et al., 2004], [Norton, 1987], diagnosis [Durieu et al., 2001],
[Chernousko, 1994], [Kurzhanskiy and Varaiya, 2007] etc. In particular, the
ellipsoidal set knows an immense success in the field of set-membership state
estimation. It is one of the main sets used in this thesis, thus in this section
several useful properties and definitions will be detailed.

Definition 3.21. Ellipsoidal set. Given a strictly positive symmetric def-
inite matrix P = P > 0, a real vector & € R" and a strictly positive real
scalar p € R%, the bounded ellipsoid E(P, &, p) is defined by the set:

EP,z,p)={xcR": (x—x) P(x—x) <p}, (3.14)

where P is the shape matriz of the ellipsoid, @ its center and p its so called
radius.

Remark 3.8. A normalized ellipsoid is defined by:
EP,z,1)=EP,z)={xcR": (z—z) Plx—=z) <1}, (3.15)

where the matrix P = P" = 0 denotes its shape and size and Z its center.

Notice that for the normalized ellipsoid, the radius p = 1 can be omit-
ted from the notation leading to a simplified notation £(P,&). Thus, the
normalized ellipsoid £(P~!, &), which is used largely in literature, has the
following form:

EPLz)={xcR": (z—z) P x—x) <1} (3.16)

Example 3.3. Figure 3.3 proposes an example of an ellipsoidal set in a

3 11 and p = 1.

- T
two-dimensional space with bitx = {2 1} , P = [1 3
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Al

Figure 3.3 — Ellipsoidal set £(P, x)

To keep a simplified formulation, all the following properties are given to
the normalized representation of an ellipsoid (3.16) but they can be extended
to the generalized form.

Definition 3.22. The support function of the ellipsoid £(P~!, ) in a di-
rection I is F(E(P~!, &)|l) given by:

{ FEP &)W upper = (LE) + (L P17, (3.17)

FEP™, @) Diower = (L, &) — (1, P1)?,
where F(E(P™1, &) 1) upper and F(E(P ™, &)|1)iower are the upper and the

lower bounds, respectively.

Property 3.3. Affine transformation of an ellipsoid. Given a normalized
ellipsoidal set £(P~!, &) C R", a matrix A € R"™*" and a vector b € R", the
affine transformation of this ellipsoid by the matrix A and the vector b is
defined by:

AP L z)+b=E((APAT)' Az + D). (3.18)

Property 3.4. Outer ellipsoidal approximation of the union of two ellip-
soids. [Durieu et al., 2001] Given two normalized ellipsoids & (P;*, &),

E (P53, &y) and a vector ¢ € R?, with ¢ = {gbl qbgr and ¢1 + ¢ = 1, then
the following expression holds:

E((PTH ) U&E(Py ) CEP T 2), (3.19)
with & = &1 + &, and P = ¢ P + ¢ 'Py.
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Property 3.5. Intersection between an ellipsoid and a strip. [Fogel and
Huang, 1982] Given a normalized ellipsoid £(P~!, ) and a normalized strip
S(y,d,1) = S8(y,d), then the intersection between £(P~!, z) and S(y, d) is
outer bounded by the following ellipsoid:

EP 1, z)NS(y,d) CEP T, (3.20)
with
P @)={zecR: (x—2)P ax—2) <1},
T =+ d Pd,
1+ @/}g@m2 .

P =(1+7— P— Pdd'P), 21

( wHw)( 1+ g ) (3.21)
Y >0,
g=d'Pd,

—y—d'z.

In set-membership state estimation techniques, the main goal is to find
the smallest guaranteed estimation set containing the state at each time
instant. To minimize the size of an ellipsoidal set £(P~!,¢) two criteria
[Durieu et al., 2001] are mainly used in the open literature:

e the minimization of the volume of the ellipsoid that leads to the mini-
mization of the determinant of the shape matrix P,

e the minimization of the sum of the semi-axes that leads to the mini-
mization of the trace of the size matrix P.

Next, we present the polyhedral set which is widely used in literature to
represent uncertainties.

3.3.3 Polyhedral set

Polyhedral sets represent one of the most popular form of geometrical sets
used in optimization and control. They appear for instance when linear
constraints are applied on the state of a system. It can be defined as the
intersection of finitely many closed half-spaces [Bronstein, 2008] in a finite
dimensional euclidean space. Several representations and their related prop-
erties are further discussed.
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Definition 3.23. Half-space representation or H-representation. A polyhe-
dral set P € R™ in a finite-dimensional euclidean space is the intersection of
a finite number of closed half-spaces as follows:

P={xeR": Ax < b}, (3.22)
with A € R™*"™ and b € R".

Moreover, a specific widely used form of polyhedral set in automatic con-
trol is a polytope.

Definition 3.24. A polytope is a bounded polyhedral set.

Ezxample 3.4. Figure 3.4 shows the half-space representation of a polytope
-1 01 =2 05

5
) T
with A = 1 10 -1 _11 and b=1|0 -5 —12 6 11| .

10

)

-10 1

-2 0 2 4 6 8 10 12 14
Figure 3.4 — Half-space representation of a polytope

Polytopes offer flexibility, thus they provide a good approximation of
any convex set. Additionally, they are closed under some operations such
as Minkowski sum, inclusion and intersection. Another main advantage of
polytopes are their dual representation. Indeed, beside the half-space rep-
resentation defined by Definition 3.23, polytopes can be represented in a
vertex representation which allows us to choose the most suitable form for
any particular problem.
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Definition 3.25. (Vertex representation or V-polytope) For a finite set of
points V = {vy,v9,...,v,} € R", a polytope P can be defined as the convex
hull of the set V:

P = conv(V) = {a1v1 + asvs + ... + vyt a; € RT,D oy =1} (3.23)
i—1

Example 3.5. Figure 3.5 shows the vertex representation of a polytope with

v={3 [ 1515 )

€2

-10
-2 0 2 4 6 8 10 12
T

Figure 3.5 — Vertex representation of a polytope

The following theorem shows the equivalence between the representations
of a polytope detailed in Definition 3.23 and Definition 3.25.

Theorem 3.1. Equivalence of the two polytopic representations. [Ziegler,
1995] A subset P € R" is the convex hull of a finite point set (a V-polytope)
if and only if it is a bounded intersection of half-spaces (a H-polytope).

Remark 3.9. The H-representation in Figure 3.4, and the V-representation
in Figure 3.5 are two different representations for the same polytope.

In other terms, any polytope represented in H-representation can be
transformed to the V-representation and vice versa. The transformations
are well known in the literature as the facet enumeration problem for the
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transformation of a H-polytope to a V-polytope, and the vertezr enumera-
tion problem for the transformation to a H-polytope. The existing algorithms
to do the transformations can be time consuming [Dantzig, 1972], [Fukuda,
1997], however they permit to choose a suitable representation depending
on the problem. For instance, it is trivial to use the V-representation when
proving that the polytopic set is closed under the Minkowski addition. Nev-
ertheless, the critical disadvantage of polytopes are their complexity that de-
pends on the number of vertices and not on the space dimension. Therefore,
even in low space dimension, the complexity of the polytope, approximating
the convex set accurately, can quickly increase. In this context, another spe-
cial class of convex polytopes are presented to offer a good trade-off between
complexity and flexibility.

3.3.4 Zonotopic set

Due to their flexibility and simplicity in computation, zonotopes will be fur-
ther used in this thesis. Zonotopes are a particular class of convex polytopes
which exhibit symmetry with respect to their center. Similar to polytopes,
zonotopes can be represented by the half-space representation and the vertex
representation. Additionally, zonotopes can be also defined by the generator
representation and the hypercube linear transformation.

Definition 3.26. Generators representation. Given a vector p € R" and a
set of vectors G = {g1,92,-..,gm} C R, with m > n, a zonotope Z of order
m (also called m-zonotope) is defined as follows:

Z=(p;g1.92, - gm) ={Z €R":x=p+ > wg;|a;] <1}.  (3.24)

=1

The vector p is the center of the zonotope Z. The set of vectors G =
{91, 92, ..., gm} are the generators. The order of a zonotope is defined by the
number of its generators (m in this case). This definition is equivalent to
the definition of zonotopes by the Minskowski sum of a finite number of line
segments defined by:

Z=(p;g1,92,.-,9m) =PSB ® ... & gnB". (3.25)

The following alternative definition of a zonotope is more convenient for the
estimation approaches proposed in the thesis.

Definition 3.27. Hypercube linear projection representation. A zonotope
of order m in R™ (m > n) is the translation by the center p € R" of the
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image of an unitary hypercube of dimension m in R” under a linear transfor-
mation. Given a matrix H € R™™ representing the linear transformation,
the zonotope Z is defined by:

Z=(p;H)=poHB™ (3.26)

Remark 3.10. Both of the definitions of the zonotope 3.26 and 3.27 are
equivalent if the matrix H = {gl gz ... gm]

From now on, the zonotope Z will be described by Z(p; H), to simplify
the manuscript, with p being the center of the zonotope and H its matrix of
generators.

-
Example 3.6. Using the notation Z(p;H), with p = {0 0] and H =

1 5 3
each vertex of the zonotope vz, € Vz, with i = 1,...,2% can be found by

this formula vz, = p+ Hu; such that v; € Vgs (i.e. v; € {{il +1 j:lr}).

l4 7 1] , we can plot the zonotope of order 3 in Figure 3.6. In this context,

(=] NS] BN =)}
T T T T

i)

-10 -5 0 5 10
€1

Figure 3.6 — Third order zonotope in a two-dimensional space

Remark 3.11. There exist conversion algorithms between different zono-
topic representations: generator representation, H-representation and V-
representation [Gritzmann and Sturmfels, 1993], [Seymour, 1994], [Fukuda,
2004], [Schon and Kutterer, 2005], [Althoff et al., 2010].
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Remark 3.12. A significant advantage of the hypercube linear projection
representation of a zonotope in a set-membership state estimation context
is the ability to represent a zonotope using one vector and a matrix, or a
matrix in the case of a centered zonotope (i.e. the p = 0,1).

Definition 3.28. The P-radius of a zonotope Z = p ® HB™ is defined by
the following expression:

_ 2
r=max(||lz - plp), (3.27)

where P is a strictly symmetric and positive definite matrix P = P7 = 0.

This notation provides a criterion to evaluate the size of a zonotope. For
the same value of the matrix P, a larger value of the P-radius leads to a
larger zonotope.

Example 3.7. The P-radius definition is illustrated in Figure 3.7. In red
the ellipsoid (see Definition 3.21) related to the P-radius of the zonotope
Z=paHB" withp=[0 0] ,H= ‘11 g 21)’ and P = T,. The P-radius
is 71 = 225. In blue, the ellipsoid related to the P-radius of the zonotope
Z = p@HB" withp = [0 0] , H = [‘11 57) ?j and P — 0.2 -1I,. The
P-radius is ry = 45.

This criterion will be used in Chapter 6 to present a new zonotopic set-
membership state estimation technique based on the Luenberger observer for
piecewise affine systems.

In what follows, several important properties of zonotopes [Le, 2012] that
will be further used in this this, are synthesized below.

Property 3.6. Sum of two zonotopes. Given two zonotopes Z; = p; @
H,B™ € R" and Z5; = p,&H,B™? € R", the Minkowski sum of two zonotopes
is also a zonotope defined by:

Z=202Z=(p +p,) & [H H|B""™ (3.28)

Property 3.7. Affine transformation of a zonotope. Given a zonotope Z =
p ® HB™ and a matrix A € R™", the linear transformation of Z by the
matrix A is:

A-Z=(A-p @A HB" (3.20)
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-10 -5 0 5 10 15
Figure 3.7 — Ellipsoid related to the P-radius of a zonotope

The following properties discuss few of the techniques employed in lit-
erature to reduce the complexity of a zonotope. It is well known that
when a problem of a set-membership state estimation is addressed using
m-zonotopes, the complexity of the zonotope grows up due to the computa-
tion of linear transformation or the Minkowski sum operation for example.
The goal of any reduction technique is to approximate a high order zonotope
by a lower order one.

Property 3.8. Interval hull method. [Kithn, 1998] Considering a zonotope
Z =p @ HB™ € R", the smallest box containing this zonotope is computed
by:

box(Z) =p @ rs(H)B", (3.30)

with rs(H) a diagonal matrix such that rs(H); = 372, [Hyl, i = 1,...,n.

Property 3.9. Criterion-based reduction. [Combastel, 2003], [Alamo et al.,
2005] Given a zonotope Z = p @ HB™, an integer s, with n < s < m, and

denote by H= {le hy ... ﬁm} the matrix resulting from the reordering
of the columns of H in decreasing order of the euclidean norm which is
equivalent to reordering the segments of zonotope from the longest to the
shortest. The following expression holds:

Zc<po |[Hy Q|B, (3.31)
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where Hy is composed by the first s — n columns of the matrix H and Q €
R™*™ is a diagonal matrix satisfying Q;; = f ) |ﬂij|, withi=1,...,n.
j=s—n+

The quality of approximation mainly depends on the value of s that limits
the complexity, or the criterion used to split the zonotope Z or the approx-
imation method used. In Chapter 7, a criterion based reduction technique
will be detailed to limit the complexity of a zonotope incorporating the linear
constraints applied on the system state.

The notations presented thus far in this chapter cover the definition and
the properties of some of the convex sets in literature along with convex
functions. In the next section, we use these notations to discuss a particu-
lar class of optimization problems called convexr optimization. The section
will give some basic definitions along with a famous standard technique to
solve convex optimization problems that will be further used and extended
in Chapter 7 of the thesis.

3.4 Convex optimization

State estimators are a key enabler for process control. An unreliable estimate
can lead to poor system performance. As mentioned earlier, state estimation
techniques fall under two main categories. In particular, the Kalman filter
became a standard technique widely used in industry. However, some prior
information are impossible to incorporate in the classical filter framework.
Some of these information, known as constraints, can be considered as convex
optimization problems to solve. This problem is treated in Chapter 7 of this
thesis. In this section, a very brief introduction to convex optimization is
given along with some of the preliminaries and main properties that will be
further used in the following chapters.

Definition 3.29. A convex optimization problem is a problem consisting of
minimizing a convex function over a convex set.

Definition 3.30. A general convex optimization problem has the form:
minimize  fo (x)
subject to  fi(x) <0,i=1,...,m, (3.32)
Li(®)=0,j=1,...,m,

where the vector & € R" is called the decision variable of the problem,
fo is the objective or cost convex function, the convex functions f; with
i =1,...,m, (see Definition 3.8) designate inequality constraints while the
convex function [;, with j = 1,...,r designate equality constraints.
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Definition 3.31. An optimal solution denoted by a* of the convex opti-
mization problem has the smallest objective value among all vectors that
satisfy the constraints.

Remark 3.13. If there are no constraints m = 0 and r» = 0, the optimization
problem (3.32) is said unconstrained.

Definition 3.32. A function f defined on an interval Z is called Lipschitz
continuous if there exists a positive constant ¢ such that:

|f(z1) — f(x2)] < c|zy — xs|, for all xy, 25 € T. (3.33)

Definition 3.33. A function f is defined as strictly convex if for all &,y € S
and all A € [0, 1] the following property holds:

fOz+ (1= XNy) <Af(x)+ (1 -2 f(y). (3.34)

Equivalently, a function f is also strictly convex if it is twice continuously
differentiable such that:

VZf(z) - 0. (3.35)

Definition 3.34. A function f is defined as strongly convex if for all x,y €
S, there exists a scalar d > 0 for which:

(Vi) - Vy).z—y) >d|z—yl; (3.36)

Equivalently, a function f is also strongly convex if it is twice continuously
differentiable such that

V2f(x) = dI (3.37)

Remark 3.14. Strong convexity implies strict convexity which implies con-
vexity. However, the converse of neither implication is true.

Definition 3.35. A function f is called smooth function if it has derivatives
of all orders everywhere in its domain.

Example 3.8. Consider the function f : R — R, with f(z) = 4z defined
in R. The function f is continuous and its first derivative f’(z) = 4 is
also a continuous function. Differentiating the first derivative we get that
f@™(z) =0 for n > 1, with f™ the n-th derivative of the function f. Thus,
the function f is a smooth function.
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3.4.1 Duality principle in convex optimization

In mathematical optimization theory, optimization problems can be seen
from two perspectives, the primal and the dual problem (duality principle).
The solution to both problems are interconnected. Generally, the term dual
problem refers to the Lagrangian dual problem but other dual problems exists
and are used in the literature [Boyd and Vandenberghe, 2004], [Nesterov,
2018].

Definition 3.36. Given the primal problem (3.32), we define its Lagrangian
as:

L(z,u,v) = f(x) + iulfl(:c) + i:lvjlj(a:), (3.38)

where u € R™, v € R", and u > 0.

Definition 3.37. Given the Definition 3.36, a Lagrange dual function is
defined as:
g(u,v) = mineig}bize L(z,u,v). (3.39)

Definition 3.38. Given primal problem (3.32), we define its Langrange dual
problem as:
maximize g¢(u,v)
"o (3.40)
subject to u > 0.
Remark 3.15. The dual problem is a convex optimization problem since
the function ¢ is always concave even if the primal problem is not convex.

Property 3.10. The primal and dual optimal values always satisfy weak
duality:

frzg, (3.41)
with f* the optimal solution of the primal problem (3.32) and g* the optimal
solution of the dual problem (3.40).

Property 3.11. Slater’s condition. For the constrained convex primal op-
timization problem (3.32), if there exists a vector & such that fi(z) <
0,...,fm(x) <0and ly(x) =0,...,l.(x) =0, then strong duality holds:

fo=4g" (3.42)

In this thesis, we consider an optimization problem of the form:

1
minimize J,(u) + J(Ru) + §Hu —cl3

uclU
subject to Awu =b.

(3.43)

with A € R b e R",c € R, R € R"*™, under the following assumption.

29



Chapter 3. Mathematical tools for set-membership state estimation

Assumption 3.1. Assume that:

1. J, : R™ — R is a separable strictly convex function,
2. Jp : R — R is a separable strictly convex function,
3. D € R™™ is a diagonal definite positive matrix,

4. U C R™ is a closed convex set containing w.

The considered problem (3.43) can be rewritten as:

L 1 2
G () ¥ o) 5 e el

subject to Av=> (3.44)
Rv=s
uU="v

The dual formulation of this problem consists in solving the following opti-
mization problem:

Rv —s 1
maximize <a:, Av—-b > — Jo(u) — Jip(s) — §Hu —cll;.  (3.45)

ueU ,veR™ scR™
v—u

A particular form of the optimization problem (3.45) will be further used
in Chapter 7 of this thesis. Convex optimization problems can be efficiently
solved using standard methods such as gradient descent algorithms [Fletcher,
1976], [Nesterov, 2013].

3.4.2 Gradient-based methods for solving convex op-
timization problems

In this section we present the gradient descent algorithm for minimizing an
unconstrained convex function of the form:

minimmize f(x). (3.46)

The gradient descent method [Cauchy, 1847] is one of the oldest tech-
niques for convex optimization problems. It starts at an initial point and
then repeatedly takes a step opposite to the gradient direction of the func-
tion at the current point. The gradient descent algorithm to minimizes a
function f(x) and at each iteration the following inequality holds:

f(®r) < f(@r), (3.47)
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until the optimum value x* is reached. This is where the name descent from
the algorithm comes from. Given the description of the algorithm, several
choices have to be made in the implementation phase: the initial point x,
the step size t;, and the exit condition. Ideally, x( is close to the minimum,
however it is not trivial to make such a guess. The stopping criterion is
generally V f(xy) < € where € is a small positive value. For the choice of the
step size ti, two possible approaches can be found in the literature: a fixed
value for t; at each time instant k, or an adaptively adjusted step size on
each iteration.

An entire family of gradient descent algorithms exists, following the same
methodology with different technical details. Among them some concepts
will be covered in later chapters.

3.5 Conclusion

This chapter presented a general representation of uncertainties that will be
used in the next chapters in the context of uncertain linear standard and
descriptor systems. Interval sets are simple and widely used to deal with
uncertainties. However, their applications can be limited due the the depen-
dency and wrapping effects. Polytopes are a strong tool for state estimation
due to their high accuracy, but they can lead to high complexity when a
large number of vertices is considered. Due to their simplicity and interest-
ing properties detailed above, ellipsoids and zonotopes are the most popular
sets in set-membership state estimation. Therefore, both of these geometric
shapes will be employed in this thesis, depending on the considered system
and the required specifications. The remainder of this thesis is divided into
main parts. All the set-membership state estimation techniques presented
in the first part are based on ellipsoids, while those presented in the second
part are based on zonotopes.

In the next chapter, an ellipsoidal set-membership state estimation tech-
nique is compared in terms of accuracy and complexity to the classical
Kalman filter before extending the technique to apply it on a model of an
octorotor.
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Ellipsoidal state estimation for
linear systems
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4.1 Introduction

Generally, process control requires accurate information about the plant.
However, the measured variables do not totally describe the behavior of the
system. Therefore, the entire system state is not always accessible. This
could be possibly due to the difficulty of adding sensors into the plant be-
cause of the topology of the system, the expensive costs or some safety pre-
cautions. This is why it is important to get access to the unknown informa-
tion using available data/knowledge. Various methods for state estimation
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are suggested in the literature and they can be divided into two categories
like mentioned in Section 3.1. Stochastic approaches such as the Kalman
Filter (see [Kalman, 1960]) assume the prior knowledge of the distribution
of the perturbations and the measurement noises (in general Gaussian dis-
tribution) taking into account certain characteristics like the mean and the
covariance. This assumption can be sometimes unrealistic. Thus determin-
istic approaches [Bertsekas and Rhodes, 1971b], [Fogel and Huang, 1982))
that considers unknown but bounded perturbations and bounded noises have
been elaborated. There are several deterministic approaches used for state
estimation, like set-membership state estimation [Schweppe, 1968], interval
observers [Pourasghar et al., 2016], [Petre et al., 2015] or robust filtering
methods [El Ghaoui and Calafiore, 2001]. In the implementation of set-based
deterministic estimation methods, various sets are used: polytopes [Walter
and Piet-Lahanier, 1989], zonotopes [Combastel, 2003], [Alamo et al., 2005],
[Le et al., 2013b],

parallelotopes [Chisci et al., 1996], ellipsoids [Kurzhanski and Vélyi, 1996],
[Durieu et al., 2001], [Polyak et al., 2004}, [Daryin et al., 2006], [Chernousko,
1994]. The low complexity of ellipsoids makes them widely used compared to
polytopes which offer better accuracy of the estimation. [Combastel, 2015a]
proposed a combination between stochastic and deterministic approaches,
more exactly a zonotopic Kalman filter.

Despite the theoretical development of deterministic approaches, there is
an obvious gap between theory and practice, and thus the need to apply
more accurate recent state estimation techniques on real systems. In this
context, the wide use of Unmanned Aerial Vehicles (UAVs) in resource mon-
itoring [Laliberte and Rango, 2009], oil and gas [Hausamann et al., 2005],
mapping [Nex and Remondino, 2014] or even for emergencies like forest fire
surveillance [Casbeer et al., 2005 attracted more research attention from
the scientific community. More specifically, studies related to the need of
an accurate knowledge of linear and angular positions of drones are often
conducted [Kingston and Beard, 2004]. Within this framework, several ap-
proaches have been adopted for the state estimation of a drone. The linear
Kalman filter, as well as its extensions to non-linear systems have been widely
used in industry to estimate the position of UAVs [Kada et al., 2016], [De Ma-
rina et al., 2011], [Teixeira et al., 2011]. Alternatively, attempts have been
made to bridge the gap between set-membership state estimation theory and
practice. For instance, a Zonotopic Extended Kalman Filter (ZEKF) applied
to a quadrotor helicopter is presented in [Wang and Puig, 2016]. Moreover,
in [Garcia et al., 2015], the results of an interval arithmetic based estima-
tion technique applied to a quadrotor are compared with the results of a
set-membership state estimation technique based on zonotopes. With the
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proliferation of moderately low cost UAVs, radar-based techniques can now
be tested on small drones. However, perturbations might cause the deviation
of the drones from their planned trajectories leading to erroneous formation
of radar images. Thereby, the use of set-membership state-estimation ap-
proaches arises from the need of guaranteed estimates of the system state in
the presence of bounded measurement noises and perturbations.

In this chapter, a comparison in terms of accuracy and computation com-
plexity is made between two estimation techniques studied in the literature:
an ellipsoidal set-membership state estimation ([Ben Chabane et al., 2014],
[Ben Chabane et al., 2014a]) and a classical Kalman filter. These results
have been published to the 20th IFAC World Congress 2017. Additionally,
we extend the ellipsoidal estimation technique to deal with system control
signals, and then apply it to a linearized system of an Unmanned Aerial Ve-
hicle (UAV) with eight rotors used for radar applications. This is one of the
contributions of the thesis and was submitted to the special issue on "Interval
estimation applied to diagnosis and control" of the International Journal of
Control.

The remainder of the chapter is organized as follows. Section 4.3 formulates
the state estimation problem for linear time invariant systems. Section 4.4
briefly presents ellipsoidal set-membership state estimation techniques exist-
ing in the literature with a focus on the technique that we will be extend-
ing. Section 4.2 reminds the state estimation problem using the classical
Kalman Filter. Section 4.5 exposes the comparison between the two tech-
niques. Then, Section 4.6 details the application of the ellipsoidal technique
on a model of an octorotor used for radar applications along with the simu-
lation results. Finally, conclusions of this chapter are drawn in Section 4.7.

4.2 Overview of the classical Kalman filter

Let us consider the following discrete-time linear time-invariant (LTT) system
L1 = ACBk + Buk + Ewwk, <4 1)
Y = C"Bk + Fvvka '

where x; € R" is the state vector of the system, w;, € R™ is the input vector,
and y, € R™ is the measured output vector at sample time k£ with the ma-
trices A € R">*" B € R**™ C e R"*" E, € R™*" and F, € R™*",
We consider the assumptions that the pairs (A,B) and (A,C) are stabilizable
and detectable, respectively. For the Kalman filter, the vectors w, € R™ and
v € R™ are random, independent white Gaussian noises, with the covari-
ance matrices denoted by G, and G,, respectively, i.e. wy ~ N (0,Gy)
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and v, ~ N (0,G,). Notice that the state is a random Gaussian vector and
particularly the initial state is represented by xg ~ N (IB0|_1, Go\_1)- The
Kalman filter design is divided into two steps:

e Prediction. A previously estimated state &,_;,—; and the linear nom-
inal model (without any perturbation) are used to predict the value of
the next estimated state &y, as well as the state estimate covariance

Gk|k71:

Trjp—1 = AZp_1p—1 + Bug_y, (4.2)
Gijp—1 = Akal\kflAT + EwGwEI-

e (Correction. The current output measurements and the statistical prop-
erties of the model are used to correct the state estimation, leading to
compute the state estimate covariance:

Si = CGyp1C" + F,G,F,, (4.4)
Ki = Gy1C'S; 1, (4.5)
i = Tijp—1 + Ki(yp — Cipi-1), (4.6)
G = (I - KiC)Gpp1, (4.7)

with K; the Kalman gain and S; the innovation covariance at time instant
k.

4.3 Problem formulation

The aim of this section is to illustrate the problem formulation of a guaran-
teed state estimation set in set-membership state estimation technique. In
this context, considering the system (4.1) with a state perturbation vector
wy, and a measurement perturbation vector (noise, offset, etc.) vy.

Combining w, and v, in a single vector w; = [w,;r ’UHT € R+ the
system (4.1) can be rewritten in an equivalent form:

{ LTrr1 = Awk -+ B’U/k -+ Ewk, (4 8)

vy, = Czxp+ Fuwy,

with the matrices E = [Ew Onz,ny} € ReX(matny) and F = [Ony,nz Fv} c
Rrv*(netny) - This form is useful in the comparison section between this filter
and the ellipsoidal technique. The initial state is assumed to belong to a
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compact set &y € A which can be chosen large enough due to the lack
of knowledge on the system. Additionally, we assume that the vector wy
containing the state and the measurement perturbations is bounded by the
unitary box B"= ",

Given an initial state set Xy (with g € A)) and considering that at time
k the state estimation set is A?k (with oy € )2;.3), the objective is to find the
state estimation set )gkﬂ that guarantees to contain the state x;,; of the
system (4.8) at time k + 1.

To solve this problem, three main steps are considered:

e Prediction step: The predicted state set is consistent with the evolu-
tion equation of the system (4.8). It offers bounds for the uncertain
trajectory of the system. Therefore, X}, is given by:

o Measurement step: The consistent state set with the measurements

Xy, 18 given by:
Xyerr = {@he1 €R™ ¢ (Ypyy — Cxpyn) € FB™ T (4.10)

e (Correction step: The guaranteed state estimation set /":}k+1 at time
instant k+ 1 is computed as an outer approximation of the intersection
between the predicted state set X}, ; and the measurement strip Xy -
Thus, the following expression is verified:

X1 2 X1 N X,

Ykt (4.11)

This methodology is generally applied to set-membership state estimation
techniques. In particular, the set X can have different geometric forms. In
this chapter, ellipsoids are used for their simplicity of formulation [Durieu
et al., 2001], [Polyak et al., 2004]. Figure 4.1 shows an example of the set-
membership state estimation algorithm implemented with ellipsoids. The
blue ellipsoid represents the predicted estimate at time instant k& 4 1, and
the green strip represents the measurements. The exact state estimation
set that contains the real state is the intersection between these two sets.
Nevertheless, the intersection has (in general) an arbitrary shape (the grey
part), thus the need of outer-approximating it by an ellipsoid for simplicity
reasons. For this, the Outer Bounding Ellipsoid (OBE) algorithm [Fogel and
Huang, 1982] can be used.

69



Chapter 4. Ellipsoidal state estimation for linear systems

Xvesr  Xk+1

X Xie+1

Figure 4.1 — Illustration of the ellipsoidal state estimation method

In the next section, we introduce an improvement of a previously devel-
oped ellipsoidal set-membership state estimation technique [Ben Chabane,
2015]. Considering the system (4.8), we assume that:

e The pairs (A, B) and (A, C) are respectively stabilizable and detectable,

e The matrices E and F represent weights for the normalized noises wy, €
[an+ny’

e The initial state belongs to the ellipsoid:
E(Po, Zo, po) = {o € R™ : (mg — &o) ' Po(xo — To) < po},  (412)

with Py = Pg > 0 being the shape matrix, @, the center and pg the
so-called radius [Ben Chabane, 2015].

Goal: Given an ellipsoidal state estimation set (P, &y, px) for the state
vector x; at time instant k, with &; the nominal estimated state, the goal
of the following technique is to provide a state estimation set of the form
E(P,Tp11, prr1) for the state &y, at time instant k + 1.

4.4 Ellipsoidal state estimation technique

This section briefly describes and improves the ellipsoidal guaranteed state
estimation technique [Ben Chabane, 2015] based on the minimization of the
radius of the ellipsoidal estimation at each sample time k by solving an op-
timization problem. Considering the system (4.8), the technique [Ben Cha-
bane, 2015] was improved by considering input signals in this section. The
dynamics of the state at each time instant x; is now governed by the initial
state oy and the control signal w;. This leads to some modifications in the
initial theorem [Ben Chabane, 2015], that we will be detailing here.
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The system state a1 is guaranteed to belong to the following ellipsoid
E(Pyi1, Tpi1, pry) if, for the matrices Yy € R™*™ Giy € R the
vector g, € R™ and the scalars fj41, pr+1 > 0, the following Linear Matrix
Inequality (LMI) ([Ben Chabane, 2015], page 113) is satisfied:

min «

Br+1,Yk4+1,Prt1,06+1,Gri1,95+1,07

subject to

Bry1Py * *
0 Pr+1 — Brt1Pk * >0,
P 1A-Y,,C Th+1 Pri1
Py = Py,
Pk+1 < QP + e
0<a<l,
v >0,
Pk+1 > 07

(4.13)

for all wy, belonging to the vertices set of the box B"=*"v  with the matrix:
Yy, = PyLy,
the vector:
Tir1 = (Pis1A=Y . 1C=Gpp) T+ (P E= Y F)wi —g o +B(up—uy,),
and the nominal estimated state:
T = Py (Gr@r + Yipayy, + giya) + By,
with 4, the nominal control signal'. The constraint:
Pr+1 < QP+,

with 0 < a < 1 and ~y a strictly positive scalar serving to bound the so-called
radius of the ellipsoidal estimation &(Py1, Zxi1, prr1) in order to decrease
the estimation set. The scalar v bounds the effect of any additive terms.
The proof of this result is similar to the proof provided by [Ben Chabane,
2015] with the additional terms Bay, in 74,1 and Zy,;. Indeed, denoting by:

Zp = T, — Ty,

1By considering a nominal control signal, we assume that the technique can work with
unknown control inputs.
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the error between the real state and the nominal estimated state at time k,
the goal is to prove that the following expression holds at each time instant
k, based on the results proposed in [Ben Chabane, 2015]:

2 Pz < pr = 2] Priizisr < prit-
At the time instant k£ + 1, the error is computed such that:
Zis1 = (A=Lp1C) 2+ (A—Ly 1 C) 1 +(E—Lip 1 F)wp—P | (G @it g 1) -

Notice that the evolution of the error z;,; relies on the eigenvalues of the
matrix A — L;;1C. Additionally, the computation of the matrix Gy, and
the vector g, guarantees a faster convergence of the error to zero. In this
context, the observer (which is similar to the structure of the Luenberger
observer) is stable since zj converges to zero. Besides minimizing the size
of the estimation set by solving the LMI problem (4.13), this method also
reduces the conservativeness of the estimation by allowing the adjustment
of the ellipsoid shape. Indeed, considering the matrix Py, as a decision
variable can modify the shape of the ellipsoid at time instant k£ + 1 compared
to the ellipsoid at the previous time instant.

The advantage of this method lies in the trade-off between its good accu-
racy and reduced complexity [Ben Chabane, 2015] compared to other tech-
niques in the literature. Indeed, the proposed ellipsoidal state estimation
method offers better accuracy than the P-radius based zonotopic state es-
timation technique [Le et al., 2013b] and the three ellipsoidal-based state
estimation techniques presented in [Ben Chabane et al., 2014]. The ellip-
soidal set-membership state estimation technique takes into consideration
the measurements at time instant k&, when computing the estimated ellip-
soidal set E(Pri1, Tyy1, prr1) at time instant £+ 1. However, the estimation
accuracy can be improved by considering additional quadratic constraints on
the output measurements [Ben Chabane, 2015]:

Yip1 = Cpp + Fwpp

and on the perturbations vector at time instant £ + 1 such that:

.
wp Tiwp <1,

with ¢ = 1,...,n,; +n, and T, = eie;-r the matrix having only the element
(7,7) equal to 1. The updated method, improves the accuracy of the esti-
mation by decreasing the size of the ellipsoid ékH at each iteration. In this
context, considering the ellipsoidal state estimation set E(P, &g 1, pry1) ob-
tained by solving the previous LMI (4.13), an updated set &' (P’, &)1, pl,1)
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can be found if the following LMI problem ([Ben Chabane, 2015], page 118)
is verified:
min e

p;€+1 7Pl7bl€+1 JHLO, g0y

subject to
™ 77; Pl

Nz +Ny

Ny 73— ; pi —by | =0,
;c+1 —bpy1 P§<;+1
P >0,
Nz +ny ~
F'HF < » uT;,
=1
0>0,
0 <1,

Prs1 > Opk+1,

125 207 izl)"'7n$+ny7
P;c—i—l Z Pk-i-lv

Pr+1 < apg + 7,

v >0

(4.14)

with:

bry1 = P;c+153k+1a
n, = 0P, + CTHC,
n, = —0%; Py — y,.,HC + u; B'CHC,
M3 = Prer = Oppr1 + 01Tk 1By, + [Ypt i + [|CBug||fy — 2u; B'C'Hy, .

The proof of this result is similar to [Ben Chabane, 2015], with the additional
terms related to the control signal in 75 and n3. Exhaustively, supposing that
i1 € E(P, Zp11, prt1), the expression (4.14) offers an improved ellipsoidal
state estimation set &'(P’, &), pj.+1). Due to the fact that this estimation
method changes both the shape and the radius at each iteration k, the com-
putational complexity can be high even though it offers a very good accuracy
estimation wise. This accuracy in addition to complexity will be further ex-
ploited where the technique is compared to the classical Kalman filter in the
next section.

Remark 4.1. Notice that this technique can also be applied on linear time
varying systems with interval uncertainties [Ben Chabane, 2015]. Even though
it is considered to be an important advantage of this method, this character-
istic will not be tested in this chapter.
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4.5 Comparison between two state estima-
tion techniques for linear time-invariant
systems

The main difference between the approaches presented in Sections 4.2 and
4.4 can be mainly spotted in terms of assumptions considered for the sys-
tem modeling. The ellipsoidal set-membership state estimation guarantees
the estimated bounds of the state within an ellipsoid for any LTI system,
while certain requirements should be met in order to efficiently run the clas-
sical Kalman filter. The Kalman filter (well known for its implementation
facility) works properly when the LTI model matrices are fixed and do not
present parametric uncertainties. The set-membership state estimation offers
guaranteed bounds for the state estimation despite the presence of possible
bounded perturbations, measurement noises and even interval uncertainties
on the evolution matrix A of the system (4.8) [Ben Chabane, 2015].

However, the Kalman filter offers a reduced computation complexity with
respect to the considered set-membership estimation method. In fact, the
Kalman equations are based on basic matrix operations and the computa-
tional complexity can be approximated by the number of multiplications
per loop. Using the expressions (4.2)-(4.7) and considering the worst case
scenario (i.e. full matrices) we can approximate the filter computational
complexity to O(N?3), with N = max(n,, n,).

The computational complexity of the ellipsoidal state estimation method
relies on solving a LMI optimization problem. The mincx solver of the Matlab
Robust Control Toolbox is based on the interior point method which is an
iterative technique solving a least square problem at each iteration [Nesterov
and Nemirovski, 1994]. The complexity of the method in the worst case
scenario can be approximated to O(0*™I'®) with o the number of scalar
decision variables and b the number of constraints [Vandenberghe and Boyd,
1994]. Notice that o = (n, + n,)? + nyn, + 2 and [ = 2" 4 3 for the
optimization problem (4.13) and o = 0.5(n + n2) + 2.5n, + 1.5n, + 2 and
| = n, + n, + 6 for the optimization problem (4.14).

The comparison allows us to conclude that the Kalman filter offers us a
better result in terms of complexity, thus faster computations. In terms of ac-
curacy, and for each iteration, the ellipsoidal method computes an ellipsoidal
set to which the real state is guaranteed to belong. The set-membership
estimation setup offers the possibility to use correlated/uncorrelated per-
turbations and measurement noises, however the choice of the perturbation
bounds needs good knowledge of the plant. The Kalman filter uses the as-
sumption of Gaussian noises, which can be difficult to verify for some real
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plants.
A numerical example is considered to illustrate the comparison of the
presented state estimation techniques.

Example 4.1. Consider the following stable LTT system:

_[-08 02]  [-0.12
Trt1 = | _03 0.1|** T | 0.02 | “k

(4.15)
U = [—2 1} @y, + 0.20;

In this example, we present the results obtained by the improved guaranteed
ellipsoidal set-membership state estimation (4.14) compared to the results
obtained by Kalman filter. In order to make a valid comparison between
these two techniques, appropriate assumptions should be taken regarding
the initial state and noises. In fact, the following assumptions were made for
the Kalman filter:

. T
o o~ N (Cl3‘0|_17 Go\—l)a with Lo|—1 = {5 5] and G'0|—1 = I,
® Wy N(O,l), Vg ~ N(O, 1)

Simultaneously, the following assumptions were made for the ellipsoidal set-
membership state estimation approach:

o x) € £(Py,xzo/-1, po), with Py = I, and py = 20,

o W, = ['wg UHT € Bt leading to |wg| <1 and |ug| < 1.

Indeed, the covariance matrix of the initial state Ggj—; is chosen such that
the initial probabilistic confidence ellipsoid has the same shape as the initial
ellipsoid in the ellipsoidal technique with the matrix shape Py. Additionally,
the noise generated in both cases are bounded by unitary boxes and generated
with the rand function of Matlab.

Figures 4.2 and 4.3 show the bounds of z; and x5, respectively, after 10 it-
erations obtained by the ellipsoidal set-membership state estimation method
(4.14) and the Kalman filter. The real state (red asterisk) is always inside
the guaranteed bounds (in dashed blue) calculated by the ellipsoidal set-
membership method (4.14). It can be noticed that, in this example, the
state estimated with the Kalman filter (black asterisk) has a slower conver-
gence and it is not always inside the guaranteed bounds obtained with the
improved set-membership method.

When it comes to the computational complexity, the Kalman filter takes
around 0.21ms per iteration, while the set-membership estimation technique
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(LMIs (4.13) and (4.14)) spends around 10ms to determine the estimation
bounds.
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Figure 4.2 — Example 4.1: bounds of z;
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Figure 4.3 — Example 4.1: bounds of x5

To take advantage of the ellipsoidal technique, it will be further exploited
in the next section to the case of a linear octorotor model used in the context
of radar applications.
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4.6 Application to an octorotor model

Low cost UAVs gave the users and researchers an enormous potential to test
their work in various fields of science, notably automatic control. Recently,
control strategies are being tested and mounted on various type of drones
like quadrotors or octorotors. In some applications, a precise estimation of
the state of the UAV is needed because perturbations leads to a deviation of
the drones from their planned trajectories which might cause, in a radar con-
text for example, an erroneous formation of radar images. In order to take
advantage of its high accuracy, the guaranteed ellipsoidal set-membership
state estimation technique exposed in the previous Sections 4.4 and 4.5 and
inspired from [Ben Chabane, 2015] is applied in this section on an octorotor.
The goal is to guarantee the drone’s position when bounded perturbations
and measurement noises are considered. Using ellipsoidal representations,
the proposed technique computes the set of states that are consistent with
the model in a first phase and with the measurements in second phase such
that the system’s real state is guaranteed to belong to this set. The advantage
of this method lies in its good accuracy and reduced complexity [Ben Cha-
bane, 2015]. Using the radar system embedded in the UAV, as well as the
estimated coordinates of the drone, an image reconstruction application is
exposed to value the efficiency of the set-membership state estimation tech-
nique. Furthermore, the real distance separating the drone from the target
is guaranteed to be inside the computed bounds. The relative error done
by the estimation leads to the calculation of the operating frequency of the
radar.

As an experimental platform, the Mikrokopter ARF Okto-XL drone (Fig-
ure 4.4) is used in this paper. The higher payload capacity and the motor
redundancy make this octorotor more advantageous over traditional quadro-
tor aircraft for radar applications. In this context, the UAV is equipped with
radar sensors in order to scan large areas and provide high resolution images,
thus there is a need for an accurate estimation of the drone’s position (which
is also the radar’s position?) and guaranteed limits for perturbations. The
challenge of this estimation problem resides in the model complexity and the
possible uncertainties coming from various sources (e.g. measurement noises,
perturbations).

2For simplicity reasons, we assume that SAR sensor position and the octorotor position
are identical.
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Figure 4.4 — Mikrokopter ARF representation and the associated drone’s
frame R

4.6.1 Octorotor modeling

The Mikrokopter ARF Okto-XL (Figure 4.4) is equipped with an inertial
measurement unit (IMU), an altimeter, a GPS and a magnetometer. The
drone’s microcontroller provides fused and filtered data on its position coor-
dinates (both linear and angular). The measurement data are transfered to
the PC through the microcontroller’s serial port for off-line data processing.
The octorotor’s motion in a state-space representation can be obtained using
twelve states (see Figure 4.4):

e the drone’s position in the Earth’s frame x, y and z,

e the drone’s orientation in the Earth’s frame ¢, 6 and v,

e the drone’s speed in the same frame V,, V, and V.,

e the drone’s rotational speed in its own frame w,, w, and w,.

This leads to the following state vector:
x=ryzo 0 VeV, V. wy w w]. (4.16)

The nonlinear continuous-time dynamical model of the drone used to sim-
ulate its behavior is presented in [Makarov et al., 2015]. However, while
this nonlinear model can be useful to evaluate the drone performances in
simulation, a simplified linear model will be used for the development of
linear control laws based on estimation techniques. The model is linearized
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around the static hovering equilibrium with null translational and rotational
velocities and null roll, pitch and yaw angles. The linear continuous-time
state-space equation can be denoted by:

(1) = Ax(t) + Boul(t), (4.17)
with the state vector & € R'2, the control vector:

-
w=[FF FR FE 7F 7 7R eRS,

where FIt, Ff and F are the components of the resulting propeller’s force

and 7%, 7,7 and 7/ are the components of the resulting propeller’s torque

expressed in the drone’s frame denoted by the superscript R. The matrices

A. € R?12 and B, € R'*% are provided in [Makarov et al., 2015]. The
thrust force and drag torque generated by the i-th propeller are assumed to
be proportional to the squared propeller’s speed 2;, with ¢ = {1,2,...,8}.
The new reduced control vector in this case can be expressed as a linear
combination of the rotational speeds of the motor €2; denoted by the matrix
M, leading to u(t) = M, Q, with @ = [ 2y ... Q] .

In order to avoid the high computation complexity of the ellipsoidal state
estimation method, the 12-state linearized model is decoupled into three
double integrator subsystems detailed below. In fact, decoupling the 12-
state octorotor model into 3 subsystems (4.21)-(4.23) allows us to reduce the
number of LMI constraints in (4.13) from 23(M=F7) to 3. 2netny,

e Continuous-time subsystem 1 (altitude and yaw dynamics) It
describes the altitude dynamics expressed by the altitude z and the
velocity V, of the drone on this axis as well as the movement of the
drone around the vertical axis that changes the direction the drone is
pointing to:

) = Vi),
bt = wa),

V) = ER() (4.18)
auft) = 7o),

with m the octorotor’s mass and I,, the UAV’s inertia component
around z-axis.

e Continuous-time subsystem 2 (roll and pitch dynamics) It de-
scribes the movement of the drone around the roll axis (front-to-back)
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and the pitch (side-to-side) axis:

P(t) = walt),

o(t) = Wy(t)a

on(t) = ]175(75), (4.19)
By(t) = I;Tf@»

with I,, and I,,, the UAV’s inertia components around the z-axis and
the y-axis respectively.

e Continuous-time subsystem 3 (longitudinal dynamics) It refers
to the motion of the drone across the longitudinal axis denoted by the
linear coordinates (z and y) with the corresponding velocities on the
two axes (V,, and V,,, respectively):

i) = Vi)
yt) = V),

V) = FA(), (420)
V) = FR

However, simplifying conditions should be met for the obtained decoupled
model to hold. Indeed, the rotational angles (i.e. roll, pitch and yaw) should
be as small as possible and maintained as close as possible to zero. To quan-
tify this constraint, the change in these angles should not exceed 0.2618rad
or 15° [Abdolhosseini et al., 2013], which is the case in the considered radar
application.

The subsystems 1 and 2 describe the angular behavior of the drone, in ad-
dition to its altitude, while the subsystem 3 describes the linear movement on
both of the x-axis and the y-axis. These subsystems are then discretized with
a sampling period T, which is equal to the highest of all sensors sampling

periods. This leads to the linear discrete-time state-space representations
(4.21), (4.22) and (4.23):
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e Discretized subsystem 1:

Zh+1 | [ 21 ] 0 0
Y1 | _ (o 0 0] |FfF
Voo | = MV T|E 0| [T
o wad 102 4.21
_ ] (4.21)
2k (o
= C + Fiwy,
(g Ve 1k
_wzk_
e Discretized subsystem 2:
Prt1 ] K 0 0
0 0 0 O R
ML = AT+ | o 0 lnﬁ%} + Eowy,
w$k+1 wu’ck Iix T Tyk
w w 0 ==
Yk+14 : yk: Ly (4‘22)
) Px
0
Q;’“ = C| " | +Fawy,
| T,
[ Wy, |
e Discretized subsystem 3:
Lht1 i I T i 0 0
Ukl | Yk 0 0] (FF
‘/;tk+1 = A V:Tk + % 0 [F;: —|—E3¢dk,
v v 0 L
Yi+14 : yk: m (423)
- .Ik
Tl Yk
lyk_ = C ‘/mk + Fgwk.
LV
: I, T, :
The same matrices A = 0 I and C = [Ig 02} are obtained for the
2 2

three subsystems. The perturbations and the measurement noises are con-
sidered to be modeled by the vector wj, which is bounded by the unitary box
BS and the matrices E; = ¢, - [14 04X2], F,=- {04 I4X2}, for i € {1,2,3}.
The scalars ¢; and ~; represent the accuracy precision provided by the sensors
information. The reader will notice that the discretized subsystems (4.21),
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(4.22) and (4.23) of the octorotor are written in the form (4.8). In the fol-
lowing, this octorotor is the application platform for a guaranteed ellipsoidal
set-membership state estimation technique, used in the design of Synthetic
Aperture Radar (SAR) detailed in the next section.

4.6.2 Application to the design of SAR

Synthetic Aperture Radar (SAR) has been proposed in the fifties to provide
images of large areas with high resolution [Carrara et al., 1995]. Since then,
airplanes and satellites have been the main carriers of SAR sensors [Moreira
et al., 2013]. In recent years, due to reduction in their cost and weight, SAR
sensors are being mounted and tested on small UAVs [Zaugg et al., 2006],
[Yan et al., 2008], [Gonzalez-Partida et al., 2008]. Moreover, SAR images are
formed using the phase evolution resulted from comparing (e.g. via match
filtering) a SAR transmitted pulse signal (i.e. typically thousands of pulses
per second, hence the term Pulse Repetition Frequency — PRF) with the
received scattered signal of the illuminated scatterers of the scene under study
[Carrara et al., 1995], [Moreira et al., 2013]. This is done while the SAR sensor
is moving. A popular operating mode for SAR is the stripmap (side-looking),
where ideally the SAR antenna points to a fixed direction (as illustrated in
Figure 4.5) and the sensor is assumed to move in a perfect linear trajectory
with a constant speed and orientation, which is not the case for the UAV used
in this work. Indeed, and even under the best circumstances, perturbations
will cause the drone’s path to deviate from its assumed coordinates. As a
result, errors might occur in the formation of SAR images if the deviation
(e.g. the difference between the ideal and the real UAV’s position) is not
accurately taken into account. Errors on the estimation of the position of
the SAR sensor (hence, the UAV’s position) lead to errors on the relative
distance D, between the SAR sensor and the scatterer (see Figure 4.5), which
involve a phase error ¢, in the SAR data as shown in the next equation:
4o D fo

Pe = P (4.24)

where d0p is the error on the estimation of the relative distance D,, with
D, € [Duin, Dinaz|, fo is the working frequency and ¢y is the light speed in
free-space (equation adapted from [Carrara et al., 1995], page 225) where the
working wavelength has been replaced by:

b

Co

A (4.25)
In this work, the drone’s linear position is estimated using the ellipsoidal
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Figure 4.5 — Representation of the drone and the scatterer

state estimation technique detailed in Section 4.4. This method offers guar-
anteed estimation bounds for the coordinates at each iteration. Thus, the
relative distance D, between the drone and the scatterer can be computed
and bounded by a maximal D,,,, and minimal D,,;, bounds. For instance,
the estimation error of the drone’s position on both axes induces a relative
distance error between the UAV and the scatterer. The next two figures
present examples of SAR images with an accurately estimated UAV position
(Figure 4.6) and with an erroneous estimated UAV position (Figure 4.7).
The SAR parameters for these examples are detailed in Table 4.1. As the
Figure 4.7 shows, due to phase errors, the position of a single scatterer at 50m
range and 2m azimuth with respect to the scanned region can be mistaken
as being three scatterers.

Table 4.1 — SAR parameters

PRF 2kHz
Bandwidth 200MHz
Operating frequency 5GHz
Scatterer position
Azimuth 2m
Ground range 50m

It is common to use signal processing autofocus techniques to compensate
these phase errors as long as they are inferior to about 60rad [Carrara et al.,
1995]. Therefore, according to (4.24), knowing the maximum error amplitude
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Figure 4.6 — SAR image obtained in the ideal case allowing to correctly
identify the scatterer position
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Figure 4.7 — SAR image obtained with an erroneous estimated position
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in the position estimation of the UAV will let us know the maximum working
frequency of the SAR sensor. Reciprocally, if the working frequency of the
SAR sensor is imposed, this will specify the maximum acceptable error (in
terms of guaranteed bounds) of the position estimation of the UAV to obtain
SAR images with acceptable performance. In the next section, we will use
the guaranteed ellipsoidal state estimation technique to estimate the position
of the UAV where the SAR sensors are mounted. This step is followed by
the computation of the maximum allowed error amplitude in estimation, in
the goal of obtaining the suitable frequencies for which the SAR sensor can
operate.

4.6.3 Simulation results

The three discretized subsystems (4.21), (4.22) and (4.23) presented in Sec-
tion 4.6.1 are fully controllable and observable. Considering the presence of
state perturbations and measurement noises, the complete numerical discrete-
time model of the octorotor can be obtained with the drone parameters shown
in Table 4.2 including payload. The sampling period 7. = 0.1s is the highest
of all sensors sampling period. An accuracy of + 1m is assumed for both
the GPS and the altimeter, and an accuracy of £+ 0.01rad/s is considered
for the gyroscope. Based on this information on the bounds of measurement

0 0.01
F, = 0.01- {04 I4X2] and F3 = {04 I4X2] are chosen in (4.21), (4.22) and
(4.23). For simplification, the state perturbations can be chosen as follows

noises and perturbations, the matrices F; = [04 ]?‘1}, with Fy = [1 0 ],

E,=E;,=E;=103. [14 04X2}. The drone’s behavior was simulated using
a Matlab/Simulink simulator implementing the non-linear model. Addition-
ally, a linear quadratic integral (LQI) controller, detailed in [Makarov et al.,
2015] for this UAV is used for nominal input computations. These nominal
control inputs are then fed into the linear designed system (4.21), (4.22) and
(4.23).

Table 4.2 — Drone parameters

Total mass m 3.69kg
Inertia components
I 0.0869kg-m?
Iy, 0.0873kg-m?
I, 0.1683kg-m?
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Two reference trajectories have been tested in the simulation:

e A circular trajectory in which the drone rotates around its z-axis at a
constant tangential speed,

e A linear trajectory back and forth on the x-axis at a linear constant
speed which allows the drone to scan the selected area and process the
estimated positions for the radar application.
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Figure 4.8 — Estimation bounds of the altitude z
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Figure 4.9 — Drone’s velocity on the z-axis

The circular trajectory is used to validate the ellipsoidal set-membership
estimation technique, whereas the aim of the linear trajectory is to estimate
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the components of the state vector and test them in a radar imaging appli-
cation. More precisely, the goal is to compute the frequencies for which the
radar can operate; thus the need to compute the distance between the drone
(i.e. the radar) and the target at each sample time. The guaranteed bounds
for the relative distance provided by the set-membership state estimation
technique are used to find the error on the estimation and the working fre-
quency afterwards. The drone is initially, on the floor in an equilibrium state.
The rotor’s generated thrust compensates the weight.

The estimation results have been obtained with an Intel Core i7 processor-
3770 3.40 GHz. The entire flight duration for both trajectories is 235s. Both
trajectories correspond first to a take-off to an altitude of 50m. The results
for the take-off of the drone are the same for both movements regardless of
the trajectory type. Figure 4.8 presents the guaranteed estimation bounds
(blue dashed lines) of the altitude z, calculated by the mean of the tech-
nique previously detailed in Section 3. It can be seen that the real state
(the red dots in Figure 4.8) are guaranteed to remain inside the estimated
bounds (see the zoom of Figure 4.8), despite the presence of perturbations
and measurement noises. The velocity on the z-axis is shown in Figure 4.9.

In the next sections, the set-membership state estimation technique is
validated through two different trajectories: a circular trajectory and a linear
trajectory suitable for the radar application.

4.6.3.1 Case 1: Circular trajectory

After the take-off, the drone moves in a circular trajectory as shown in Fig-
ure 4.10.

Figures 4.11 and 4.13 show the bounds of x and y, respectively computed
as detailed in (4.23) applying the ellipsoidal set-membership state estimation
method for 2350 iterations. The real state is represented by red dots and it
is found inside the estimated bounds. Notice that at ¢ = 0, the position of
the drone is (29, y0) = (0,0) and the velocity on both axes is equal to 0. The
velocity of the drone varies between —2m/s and 2m/s as shown in Figure 4.12
and Figure 4.14.
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Figure 4.10 — Circular reference trajectory
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Figure 4.11 — Circular trajectory: estimation bounds of the linear position x
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Figure 4.12 — Circular trajectory: drone’s velocity on the x-axis
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Figure 4.13 — Circular trajectory: estimation bounds of the linear position y
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Figure 4.14 — Circular trajectory: drone’s velocity on the y-axis

4.6.3.2

Case 2: Linear trajectory for a SAR application

After the take-off, the reference trajectory shown in Figure 4.15 is composed
of a movement on the x-axis from z = 0 to x = 250m and then back to z =
0 at a constant speed of 2.5m/s, which is a relevant trajectory for the drone
in a radar application.

z (m)

60 4. Return movement
40 |5. Stopping po/
/ 3. Outward movement
20
3 2. Take-off
0 |
1 |

1. Starting point 300

250

150 2%

100
y (m) 10 x (m)

Figure 4.15 — Linear proposed trajectory

While the drone is moving, the radar scans a region where the potential
target is expected. More precisely, the drone takes off from the initial starting
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point to reach a certain altitude. Then, it goes in an outward movement along
the x-axis where it can scan a certain region before returning to its stopping
point. These movements are represented in Figure 4.15.
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Figure 4.16 — Linear trajectory: estimation bounds of the linear position x

Figure 4.16 shows the estimation done on the drone’s movement, along
the x-axis. A part of the figure has been zoomed in order to better exhibit
the position on the x-axis which is guaranteed inside the estimation bounds.
The UAV keeps moving forward with a constant speed until it reaches its
destination (z = 250m), this is when it moves in the opposite direction to
reach the stopping point (Figure 4.15) with the same speed as Figure 4.17
shows. By the end, the drone would have scanned the area and would have
identified the targets, this is why the final velocity is equal to zero. It should
be noticed that no movement is made on the y-axis, however (as shown in
Figure 4.18), the real y position is found between the upper and lower bounds
(blue dashed curve in Figure 4.18) estimated by the ellipsoidal technique
(4.14).

While moving in its planned linear trajectory, the drone images a scatterer
during 8s (which corresponds to 20m for a nominal speed of 2.5m/s) in the
stripmap mode. An extreme case is considered here where the scatterer is at
50m range and 10m azimuth with respect to the scanned region (see Table
4.3).
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Figure 4.17 — Linear trajectory: drone’s velocity on the x-axis
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Figure 4.18 — Linear trajectory: estimation bounds of the linear position y

Table 4.3 — SAR parameters considered for the linear trajectory

PRF 2kHz
Scatterer position
Azimuth 10m

Ground range  50m

Using the bounds found for the coordinates of the drone, the maximal,
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real and minimal distances between the scatterer and UAV are calculated
at each iteration. Afterwards, |Dyin — Dy| and | Dy — D,| are plotted in
Figure 4.19, where dp is equal to max(dmaz, dmin). Since phase errors can
be effectively compensated by autofocus techniques up to 60rad, and using
(4.24) in Section 4 with dp ~ 2m, the maximum operating frequency of the
SAR sensor has to be less than 600MHz (very high frequency VHF and ultra
high frequency UHF applications).
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Figure 4.19 — Distance errors

4.7 Conclusion

This chapter discussed ellipsoidal set-membership state estimation for lin-
ear time invariant systems. First, a previously developed ellipsoidal set-
membership state estimation technique for multi-variable systems has been
improved to deal with a general case where control inputs are considered.
Then, a brief comparison has been made between this technique and the
classical Kalman filter for discrete-time linear time invariant systems, sub-
ject to perturbations and measurement noises. The guaranteed ellipsoidal
set-membership estimation method is compared to the classical Kalman Fil-
ter, in terms of accuracy and complexity. The best estimation results (i.e.
guaranteed bounds) are obtained with the improved estimation method. The
main advantage of the Kalman filter is its simplicity and lower computational
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complexity.

In a second part, this chapter illustrated an application of the detailed
ellipsoidal guaranteed set-membership state estimation technique to an oc-
torotor’s attitude and position used for radar applications. The considered
technique minimizes an ellipsoidal set in the presence of bounded perturba-
tions and measurement noises in order to improve the estimation accuracy
at each sample time. The computed bounds are used in the context of radar
applications to find the operating frequency of the synthetic aperture radar.
The next chapter proposes an extension of this ellipsoidal set-membership
state estimation approach to descriptor systems.
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5.1 Introduction

A mathematical model is in general required for the investigation of systems
dynamics via analysis and simulation. Usually, the behavior of a dynamical
system is described by differential equations. These differential equations
result in discrete-time linear time invariant systems discussed in the previ-
ous chapters. However, many physical systems are modeled using differential
equations coupled with algebraic equations to take into account the physical
phenomena that standard differential equations can not completely describe.
For instance, the algebraic equations allow us to take into consideration phys-
ical conservation laws such as energy, mass and volume.

Overall, the system can be modeled using a combination of differential
and algebraic equations, i.e. by differential-algebraic equations (DAE). They
represent simultaneously the behavior of the system and the set of constraints
that the system is subject to. In control engineering, these systems are known
as descriptor systems or singular systems [Dai, 1989]. The formulation of de-
scriptor systems retains the physical meaning of the modeled system, e.g.
mechanical systems taking into account constraints related to scientific phe-
nomena [Varga, 2017]. It is therefore useful in electrical networks [Reis,
2010], power systems [Hill and Mareels, 1990], chemical plants [Biegler et al.,
2012], biological processes [Liu et al., 2008], economic systems [Varga, 2017],
aircraft modeling [Stevens et al., 2015] etc. In other terms, descriptor sys-
tems can be considered as a generalization of dynamical system. Descrip-
tor systems were firstly introduced from a control theory point of view by
Luenberger [Luenberger, 1977] and then became a powerful tool of system
modeling [Lewis, 1985]. In the last few decades, the development of reliable
studies for the stability [Han, 2004], controllability [Bender and Laub, 1987],
[Bara, 2011], [Varga, 1995] and observability [Campbell et al., 1991], [Yip
and Sincovec, 1981] of descriptor systems have been the center of attention
for more and more researchers. The need of these studies arises from the
fact that descriptor systems offer a more general overview of the system de-
scription than the standard state-space systems. Indeed, when the descriptor
matrix is the identity matrix, the descriptor representation is equivalent to
the standard state-space representation [Wang et al., 2012]. In order to make
descriptor systems accessible to expert or non-specialist users, a descriptor
system toolbox for Matlab has been introduced in [Varga, 2000] providing
new tools to manipulate generalized state-space systems, both for the case of
continuous- and discrete-time systems. In addition, this toolbox proposes nu-
merous extensions for systems with singular descriptor matrix and provides
robust tools for fault detection and isolation of descriptor systems. Among
the work done in literature, state observers are designed for linear [Wang
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et al., 2012], [Darouach and Boutayeb, 1995] and non-linear descriptor sys-
tems [Koenig et al., 2008], [Shields, 1997]. Moreover, a considerable amount
of literature has been published on state estimation for discrete-time linear
and non-linear descriptor systems [Wu et al., 2010]. Due to its simplicity and
efficiency, the Kalman filter [Kalman, 1960] is a powerful tool widely used
in stochastic state estimation for standard and descriptor systems [Ishihara
et al., 2006], [Nikoukhah et al., 1999], [Nikoukhah et al., 1992] via its differ-
ent versions. Similarly, the set-membership state estimation techniques were
firstly introduced to standard linear time invariant systems, before inspiring
similar approaches for descriptor systems. In this context, a zonotopic set-
membership state estimation approach has been proposed in [Wang et al.,
2018], [Wang et al., 2016] for discrete-time descriptor systems subject to un-
certainties and unknown inputs. Despite the fact that set-membership state
estimation techniques offer a good estimation accuracy, while maintaining a
realistic aspect of the problem, there is a lack of set-membership state estima-
tion approaches for descriptor systems. To fill this gap, in the present chapter,
set-membership state estimation techniques are formulated as feasible opti-
mization problems solved to compute guaranteed bounds for the components
of the state vector of descriptor systems subject to bounded perturbations
and measurement noises. The chapter starts with a brief overview of descrip-
tor systems theory and applications and proceeds to extend the guaranteed
ellipsoidal set-membership state estimation approaches from [Ben Chabane
et al., 2014] for discrete-time linear time invariant descriptor systems. In this
context, firstly, a constant observer gain matrix for the considered descriptor
system is computed off-line via a linear matrix inequality (LMI) optimization
problem. This result has been published to the 23rd International Conference
on System Theory, Control and Computing, 2019. To the end of improving
the accuracy of the method, the observer gain is computed online via an
optimization problem. This approach is then further improved by deriving a
scaling technique for descriptor system. The additional step reduces the com-
putation load due to online calculation, while keeping an accurate estimation.
Finally, the chapter introduces an ellipsoidal set-membership state estima-
tion technique for discrete-time linear time variant (LTV) descriptor systems
with bounded perturbations and measurement noises. This technique in-
cludes the scaling technique for LTI systems and considers, the measurement
at the next time instant as well quadratic constraints on the perturbations.
Additionally, it allows us to update at each time instant the size and shape
of the ellipsoidal estimated set which leads to better accuracy. The results
developed in this chapter will be submitted soon in form of a journal paper
to Automatica.
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5.2 Overview of descriptor systems

The class of systems addressed in this chapter corresponds to deterministic,
discrete-time linear descriptor systems with finite dimension. This class of
systems can cover a large number of systems encountered in practice. A
state-space realization of this type of descriptor systems is the following:

{ dekJrl = Awk -+ B’U,k + Ewk (5 1)

yr = Cx,+ Fwy

where x;, € R™ is the state vector, u; € R™ the input vector and y, € R™
the output vector at time instant k. Here, the perturbations are unknown
but bounded by unitary boxes such that wy € B™. Moreover, appropriate
dimensions are considered for the system matrices E; € R™*"* A € R™ X",
B € R**™ C e R E € R™*™ and F € R™*"». The main difference
with the standard state-space representation is a possible singular matriz Eg4
in (5.1) which means that:

rank(Eg) < ng.

5.2.1 Practical examples

It is important to show with an example how a descriptor system in control
engineering can model different systems from various fields of study. We
consider the electrical system in Figure 5.1 with an inductor of inductance
L, capacitor of capacitance C' and charge ¢, a continuous voltage source V'
and the resistances R;, Ry and Rjs.

Figure 5.1 — Electrical circuit
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The system can be mathematically modeled using differential equations
obtained by using the current and voltage Kirchoff’s laws:

dqg .
d7t — Zg(t), (52)
pdis o ] .
2 Rais(t) = Za(t) + Raia0), (5.3)

with an additional constraint due to the fact that in a series circuit, the
voltage is the sum of the voltage drops of the individual components:

0= (R + Ro)ialt) + Ruis(t) + alt) — vl0) (5.4)

Transforming the system into the form (5.1) yields:

dq(t)

10 0| 0 1 0 1 [a(t) 0
0 0 L| |20 =\l R —Rs| |i2(t)| + | 0 |ow(t) (5.5)
0 0 0f |40 & (Ri+Rs) Ry | |is(t) —1

Notice that the state-space part has been singled out by the transformation.

10 0
Indeed the matrix E; = [0 0 L| is singular with rank(E;) = 2 < 3. This
000

is expected, because the internal variables of the system may depend directly
on derivatives of the input or not. In this case, the only dynamic elements
in the circuit are the inductor and the capacitor, the rest depend directly on
the input voltage v(t), which is a primordial constraint for the modeling of
the system.

5.2.2 Basic properties of descriptor systems

Before detailing the proposed set-membership state estimation techniques
for descriptor systems, it is useful to discuss some of the basic properties of
these systems that we will further need in this chapter [Dai, 1989].

Definition 5.1. A descriptor system is observable if:

rank [Eéd] = Ny, (5.6)
and
rank [)\Edc_ A] =n,, VA € C. (5.7)

99



Chapter 5. Ellipsoidal state estimation for descriptor systems

Expressions (5.6) and (5.7), guaranteeing infinite observability and finite
observability, respectively (see [Varga, 2017]), are needed to ensure the exis-
tence of Luenberger type observers for a descriptor system ([Dai, 1989], [Hou
and Muller, 1995]).

Definition 5.2. If the descriptor system (7.1) is used for control purposes,
it should be controllable. Its controllability is assumed if:

rank [Ed B] = n,, (5.8)

and
rank |AEq — A B| =n,, VA € C. (5.9)

Conditions (5.6)-(5.8) guarantees a weakly minimal descriptor realization.
In the general case, a minimal descriptor realization can be considered by
ensuring AN (E;) C R(E,), where N (E,;) and R(E,) are the kernel and the
range of the descriptor matrix Eg, respectively [Varga, 2017]).

5.3 Problem formulation

Let us consider the following discrete-time linear time invariant descriptor
system described by the following equations

{ Edwk+1 = A.’Ek + Buk + Ewk (5 10)

Yy, = Czx,+Fuwy

where x;, € R™ is the state vector, u; € R™ the input vector and y, € R™
the output vector at time instant k. Here, the perturbations are unknown
but bounded by unitary boxes such that w, € B™. Moreover, appropriate
dimensions are considered for the system matrices E; € R™*" A € R™ X",
B € R*=*™ C e Rw*™ E € R™»*"™ and F € R™*"™. Besides, the initial
state belongs to the ellipsoid

E(Py, Ty, po) = {x € R™ : (x — &) ' Po(x — &) < po} (5.11)

with Py = P(T > 0 being the shape matrix, &, the center and p, the so called
radius of £(Py, &g, po). The matrix E, is a possible singular matrix with:

rank(Eq) < n,. (5.12)

Based on Section 5.2.2, in order to guarantee the observability of the de-
scriptor system (5.10), it is assumed that the observability conditions (5.6)
and (5.7) hold. Moreover, the system (5.10) is used for control purposes, its
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controllability (i.e. expressions (5.8) and (5.9)) has to be assumed.
Additionally, since (5.6) holds, there exist two matrices T € R"*"* and
N € R"™*"™ such that [Wang et al., 2012]:

TE,+NC=1, . (5.13)

We now show that this equality allows us to compute @1 from x;, us, wy
and wygy1. Multiplying by T the first equation of system (5.10) and by N
the second equation (evaluated at time instant k + 1), we obtain:

TEdwk+1 = TAmk + TBuk + TEwk,
Ny,,., = NCxyi1 + NFwpy.

Equivalently, highlighting the term NCax. in the second equation leads to:

TEdkarl = TAJIk + TBuk + TEwk,
NCz,1 = Ny, — NFw;.

Adding both equalities and taking into account the equality (5.13), we obtain:
i1 = TAz, + TBu, + Ny, + TEw, — NFw; ;. (5.14)

In this framework, we further investigate the set-membership state estimation
problem based on ellipsoids for the descriptor system (5.10).

Goal: Given an ellipsoidal estimation £(P, &y, px) for the state @y from
(5.10) at time instant k, the aim is to find an ellipsoidal estimation for the
state @y, 1 at time instant k + 1 of the form E(P, Zyi1, pri1)-

This problem is further addressed in the upcoming sections where we
detail several guaranteed ellipsoidal state estimation techniques for LTI and
LTV descriptor systems. An overview of these techniques is given in Fig-
ure 5.2.
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o discrete-time LTI descriptor systems
e bounded perturbations & measurement
noises

Figure 5.2 — An overview of the five methods developed in this chapter

5.4 Ellipsoidal state estimation technique for
LTI descriptor systems

In this section, three approaches are extended for ellipsoidal set-membership
state estimation of discrete-time linear time invariant descriptor systems.
The first one (Method 1) computes off-line a constant observer matrix. The
second one (Method 2) is an online technique where the observer gain is
computed once per iteration via an optimization problem, which is compu-
tationally expensive. The third approach (Method 3) represents a trade-off
between the first off-line fast approach, and the second online accurate ap-
proach.

5.4.1 Method 1: Off-line state estimation approach
with a constant observer gain

This section details the guaranteed ellipsoidal state estimation for the LTI

discrete-time descriptor systems (5.10). Knowing that the perturbations and

noises are bounded, the proposed approach minimizes the radius of the el-
lipsoidal estimation in such way that, at each time instant k, the following
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inequality is satisfied:
pr+1 < Bpi, + 0, (5.15)
where 4 € (0, 1) is a real bounded number and o is a strictly positive scalar

o > 0. In fact, expression (5.15) formulates the non increasing property of
the ellipsoidal radius. We notice that (5.15) is equivalent to:

pet1 — pe < (B —1)pr + o, (5.16)

Since f — 1 < 0, we infer that:

Pk+1 S pk‘a

for every
o

1-p
With a pair of matrices T and N satisfying (5.13), a Luenberger observer of

the following form [Wang et al., 2012] is designed for the descriptor system
(5.10):

Pk =

iik_;,_l = TAQ_Zk + TB'U,k + L(yk - C:Ek.) + Nyk:-i-l’ (517)

where L is the observer gain to be determined such that the error between the
real state and the nominal estimated state &, asymptotically converges to
zero. Guaranteeing the ellipsoidal state estimation for the state vector x; at
each time instant k& is shown in the following theorem, allowing to extend the
results from [Ben Chabane et al., 2014] to the considered descriptor system
(5.10).

Theorem 5.1. Given a scalar § € (0,1), the matrices T and N satisfying
(5.13), and an initial state &g, suppose that there exist a matrix P € R"*"=,
with P = PT > 0 a matrix Y € R™*™_ and a scalar ¢ > 0 such that the
linear matrix inequality:

oP * *
0 o * | >0, (5.18)
PTA - YC (PTE - YF)w;, — PNFw;,; P

holds for all wy,wr1 € B™. Then, the system state x; of the descriptor
system (5.10) satisfies:

xr € E(P, &y, pr), Vk >0,

where, defining L = P7Y, &y = xo, po = T, PZo, the sequence Ty, and
Pr+1, k € N can be obtained from the recursive expressions:

iI_Zk_H = TAfIk + TB’U,k + NykJrl + L(yk — CZI_Zk), (519)
Pet1 = Ppr+o. (5.20)
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Proof. Since T and N satisfy (5.13), the state vector @y of the descriptor
system (5.10) satisfies (5.14).

The estimation error z;, is defined as the difference between the real value
of the state x;, and the nominal estimated state &, at time instant k, i.e.

Zp = XL — Zl_ik.
Using (5.19) and (5.14), the error dynamic equation is given by:

Zkt1 = Tyl — Tl
= TAZk + TEwk — NF(.dk_H — L(yk — Cil_i'k)
— (TA —LC)z; + (TE — LF)w; — NFwj,,

= Asz + N, (521)
with
A, = TA-LC, (5.22)

We notice that, for every k, the vector i, belongs to the following set:
n,. €T ={(TE - LF)w, — NFw; : w, € B", w, € B"™. }

This allows us to take into consideration the evolution of the perturbation
knowing that wj; and wy,; are independent. To validate Theorem 5.1, we
prove that if 2] Pz, < pg, then the following expression is verified:

zp Pz = (Apzi+m) 'P(ALze +my) < Bpe+ 0, Vo, € Y. (5.24)
With the notation:

Fo(zimy,) = Bor+o— (Apz+n,) P(Arz,+m,),  (5.25)
Fi(zx) = pp— 2, Pz, (5.26)

and using the S-Procedure [Boyd et al., 1994], we have that (5.24) holds if
there exists > 0 such that:

Fo(zg,my,) — pFi(zg) >0, Vz, € R, ¥y, € T. (5.27)

Choosing p = /8 and using the definitions of Fy(zg, n,) and F(zy), we obtain
that (5.24) holds if for every z; € R™ and every i, € T:

o — (ALZk + ’r]k)TP(ALZk + ’I’]k) + 5z;sz Z 0. (528)
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This can be rewritten in the matrix form as:

[ 2 ]T [ —AJPA, + B8P -AlPn, ] [ 2

>
1 -nlPA,  o—n/Pny e (5.29)

for every zy € R and every i, € T. Expression (5.29) is satisfied if:

[ —AJ/PA; + 3P —A]Pn,

Equivalently, expression (5.30) can be rewritten as follows:

6P 0 AP _1
[ 0 o| | P P PA, Pn, |>-0Vn, T (5.31)
The Schur complement [Boyd et al., 1994] applied to the previous equation
leads to the following equivalent LMI:

BP0 AP
0 o mniP | =0, Vn,eT. (5.32)
PA;, Pp, P

From the equality A;, = TA — LC and the definition of T we obtain that
(5.24) is satisfied if for every w, € B"™ and every w, € B™:

gP * *
0 o x| = 0.
PTA -YC (PTE - YF)w; — PNFw;,; P

with
Y = PL. (5.33)

This proves the claim of the theorem. ]

The center of the ellipsoid is calculated using (5.17) which is a special
form of the Luenberger observer for discrete-time descriptor systems LTI,
with the gain L = P~'Y found after solving the linear matrix inequality
(5.18).

Considering the worst case where py 1 = OBpr + 0 at each iteration is a
sufficient condition to guarantee the convergence of the sequence. Reducing
the size of the associated ellipsoid can be done by minimizing ¢ subject to
the LMI (5.18). Solving this LMI off-line to get a constant matrix gain
significantly reduces the computation time of the technique.

When we consider that the scalar f is a real variable, the expression (5.18)
is a case of a bilinear matrix inequality (BMI). However, since 5 € (0,1) is a
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bounded scalar variable, the BMI is rewritten as a linear matrix inequality
(LMI) problem by fixing the value of the scalar [ successively using either
the bisection algorithm or an available BMI solver, e.g. the penbmi solver,
for example [Koc¢vara and Stingl, 2003].

5.4.2 Method 2: Online ellipsoidal state estimation ap-
proach

Similar to the previous technique, this approach aims to find the smallest
ellipsoid in terms of accuracy that contains the state estimate. The main
difference between the off-line and the online technique is the fact that the
latter one minimizes the ellipsoidal radius pgi; at each time instant [Ben
Chabane et al., 2014]. Thus, the proof here is similar to the off-line method
in the Theorem 5.1 substituting o by pr.1—Bpr and L by L. In other words,
considering that the system state x; belongs to the ellipsoid £(P, Zy, px) at
time instant k, with the matrix P, the radius p, and the scalar ¢ computed
off-line (using the result of Theorem 5.1), the system state xyi; at time
instant k& + 1 is guaranteed inside the ellipsoid of the form (P, Zy11, pri1),
for all wy, wryq € B™, if the following optimization problem holds:

min
ﬁvazpkH»l pk+1
subject to
sP * *

PTA -Y,;C (PTE - Y.F)wy — NFw;.; P
Pri1 < PBpe o
with a scalar 8 € (0,1),
Y, =PL;, € R (5.35)
and the center of the ellipsoid:
Zy1 = TAZ, + TBuy, + Ny, + Li(y, — Cxy). (5.36)

Due to the fact that this estimation method updates the ellipsoidal ra-
dius online, the computational complexity can be high. The LMI problem
presented in (5.34) has to be verified in 22" vertices. The second constraint
pr+1 < Bpr + o guarantees the non increasing condition of the radius. This
implies a reduction of the ellipsoidal radius only if the radius py is larger
than p,, = 75 In order to reduce the computation time when solving the
online optimization problem, the online technique can be extended to avoid
vertex enumeration. This will be done by taking into account the structure
of the perturbation vector wy, in the approach presented in the next section.
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5.4.3 Method 3: Online ellipsoidal state estimation ap-
proach with vector scaling technique

To the aim of reducing the computation time when solving the online op-
timization problem, the online technique can be modified to avoid vertex
enumeration by taking into account the structure of the perturbation vector
wi. The proposed approach is based on the scaling technique previously
introduced in [Ben Chabane et al., 2014] for standard systems, and based
on the results developed by [Alamo et al., 2008b]. This scaling technique is
applied to (5.34). An extended vector

.

w=|wl wl,| eB™, (5.37)
with [w| < 1 can be formed. Moreover, we consider w'e;e] w < 1, for
t =1,...,2n,, with e; being the columns of the identity matrix I,,6 =
{el e ... egnw}. Then, denoting by T, = eieiT the matrix having only
the element (i,7) equal to 1, the following scalar inequalities hold:

wTiw<l1, i=1,...,2n,. (5.38)
This result will be exploited by the following property.

Property 5.1. (see Property 1 in [Ben Chabane et al., 2014]) Consider a
positive definite matrix S = ST € R?">2mw and the positive real scalars p > 0
and 7; > 0 such that, for ¢ = 1,...,2n,,, all the three following inequalities
hold:

w' T,w < 1, (5.39)
2N
> <p, (5.39b)
i=1
2N B
> 7T~ S. (5.39¢)
i=1
Then, this implies:
1
—-ww' <S°L (5.40)
p

Proof. Looking back at expression (5.39), it is trivial to say that:
2N
p>> 7,>0. (5.41)

1=0
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Multiplying the left side of (5.39¢) by w' and then the right side of the new
expression by w yields:

2N 5
w' (O nT)w = w'Sw. (5.42)
i=1
Equivalently, manipulating expression (5.42), gives:
2N B
> n(w'Tyw) = w'Sw. (5.43)
i=1

Using (5.39a), expression (5.43) becomes equivalent to:

2N ~ 2N
wiSw <> r(w Tyw) <> 7 <p. (5.44)
=1 =0

To proceed with the proof, expression (5.44) can be rewritten under the
following form:
p—w' Sw>0,8 >0, (5.45)

Using the Schur complement to reformulate expression (5.45) yields:

T 1

@ ;V_l =0, S=0 (5.46)
and - _
EVT "pv =0, p>0. (5.47)

Applying again the Schur complement leads to another form of the expression
(5.47) such that:

S —wplw' =0, p>0. (5.48)

which is another form of (5.40). O

Furthermore, left and right multiplying the inequality (5.34) by the ma-
I 00

trix | 0 0 I | leads to:
0TI O
sP * *
PTA - Y, C P * >0
0 ((PTE — YkF)wk — PNka+1)T Pk+1 — 6pk

(5.49)
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with pr+1 — Bpr > 0. Using the notation:
Hy = [PTE - Y,F -PNF|, (5.50)

a simplified expression of (5.49) can be obtained such that:

6P * *
PTA-Y,C P x =0 (5.51)
0 (Hyw)"  prey1 — Bpw

with w given by (5.37). Applying the Schur complement on (5.51) leads us
to the following equation:

&l i 0 5.52
PTA-Y,C P—— HwwH |0 (5.52)
Pr+1—BpPk
with prr1 — Bpr > 0. Applying (5.40) to the term:
1
—_—ww '
Pr+1 — B
with p = pr+1 — Bpr, means that 3S = ST = 0 such that:
1 T -1
—ww <3S 5.53
Pr+1 — Bpx (5:53)
From (5.52) and (5.53) it can be inferred that:
oP * )
l PTA - Y,C P_H ] |~ 0WithS -0 (5.54)

Decomposing (5.54) and applying the Schur complement on it gives the fol-
lowing LMI:

8P * +
PTA - Y,C P * | = 0, with S = 0.
T (5.55)
0 [PTE ~Y,F —PNF} S

To summarize, if the online LMI constraint (5.34) is verified, then there
exist a scalar 3 € (0,1) and a matrix S = ST = 0, with S € RZwx2nw
such that (5.55) together with py1 — Bpr > 0 hold. In a typical descriptor
system, when considering both perturbation vectors w; and wy.q, a large
computation time is required since the LMI (5.34) has to be verified for all

109



Chapter 5. Ellipsoidal state estimation for descriptor systems

the 22" vertices of the box B**». The presented scaling technique permits
avoiding the vertex enumeration used in the online approach (5.34).

Next, an illustrative example is considered to show the performance of the
proposed ellipsoidal state estimation approaches: Method 1 (5.18), Method
2 (5.34) and Method 3 (5.55).

Example 5.1. Let us consider the discrete-time linear time-invariant de-
scriptor system (5.10) with the following matrices:

100 05 0 0 10 Lo 1
E;= [0 1 0/,A= 108 095 0|, B= |0 1, C L = 01,
000 ~1 05 1 0 0
01 0 0 0 0
E=[0 15 0 0 o,F:lg 8 8 0(')5 105].
0 0 06 00 '

The control signal is u(t) = {0.5 sin(t) +1 —2 cos(t)]T, for t € {0 5%},
with 50 sampling steps. The perturbation vector wy is randomly generated
with ||wk|le < 1. The matrices E, A, B and C satisfy the rank conditions
(5.6), (5.7), (5.8), (5.9). A possible solution satisfying the condition (5.13) is:

0.6667  0.3333 0 0 0.3333
T=103333 0.6667 0| and N= [0 —0.3333].
—0.6667 —0.3333 0 1 —0.3333

The initial state x is inside the ellipsoid £(Pyg, &g, po), with Pg = I3, g =

[O 0 O} ! and pg = 1 as a random initialization choice. The three techniques
are tested and analyzed on the considered descriptor system using mincx, a
LMI solver of the Matlab Robust Control Toolbox, with an Intel Core i7-
8750G 3.10 GHz.

Simulation results plotted in Figures 5.3-5.5 illustrate the bounds of each
element x1, x5 and 3 of the state vector after 50 iterations of the ellipsoidal
set-membership state estimation techniques. The black lines are obtained by
the off-line technique when solving LMI (5.18), i.e. via Method 1. Moreover,
the blue dashed lines represent the online technique (Method 2) solving LMI
(5.34), while the green dashed lines are obtained using the online ellipsoidal
approach with the scaling technique allowing (Method 3) to avoid the vertex
enumeration (5.55). Figures 5.3 to 5.5 show that the real state represented
by the red stars is guaranteed to belong to the bounds computed by the
techniques at each time instant k. The bounds computed by the ellipsoidal
off-line technique (Method 1) are larger than the bounds obtained by the on-
line ellipsoidal estimation method with scaling technique (Method 3), which
are also larger than the bounds computed by the online technique (Method
2).
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Figure 5.5 — Example 5.1: bounds of z3

Table 5.1 — Example 5.1: total computation time

Algorithm  Time (second)

Method 1 0.61
Method 2 6.56
Method 3 0.77

The low computation time of Method 1 is the fruit of the off-line com-
putation of the feasible set of the state estimate. However, as the simula-
tion shows, a good trade-off between accuracy and complexity is offered by
Method 3. In this simulation test, the elapsed CPU time for Method 3 is
0.77 seconds. This is thanks to the scaling technique which avoids the vertex
enumeration. Method 2 offers a faster convergence rate of state estimation
than the other techniques but with increased complexity due to the online
computation of the radius (see Table 5.1).

Furthermore, the accuracy of the state estimation approach inversely pro-
portional to the volume of ellipsoidal set obtained at steady state. Table 5.2
showing the different volume obtained by the three techniques confirms the
fact that Method 3 offers a better estimation accuracy compared to the
Method 1 with a gain on simulation time compared to Method 2 accord-
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ing to Table 5.1.

Table 5.2 — Example 5.1: volume of ellipsoidal sets at steady state

Algorithm  Volume
Method 1 44.69
Method 2 2.24
Method 3 8.31

5.5 Ellipsoidal state estimation for LTV de-
scriptor systems

In this thesis, we assume unknown but bounded perturbations and measure-
ment noises. In general, in control systems or model analysis, it is important
to incorporate uncertainties in the considered model. The mathematical sim-
plification in the modeling phase, the inevitable errors involved in engineering
coming from different sources or from partial knowledge of the system can
lead to uncertainties in the model.

The goal of this section is to extend the previous developed state esti-
mation technique to the case of linear time variant descriptor systems with
bounded noises and perturbations and interval uncertainties in the evolution
matrix of the model.

5.5.1 Problem formulation

Consider the following discrete-time linear time variant descriptor system:

{ Eqxi11 = Arzy + Buy, + Ewy, (5.56)

Y, = Cxy, + Fwy,

where x;, € R" is the state vector of the system, u, € R™ is the control
input vector and y, € R™ is the measured output vector at sample time
k. The vector wyp € R™ contains both the state perturbations and the
measurement perturbations (noise, offset, etc.), which are non-correlated. It
is also assumed that the perturbations wj are bounded by the unitary box
B, with n,, = n, + n, and the initial state &y is bounded by the ellipsoid:

EPo, o, po) = {x €R™ : (x — Zo) ' Po(x — o) < po}-
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Matrices A, B, C, E, E; and F have the appropriate dimensions. The
matrix Ay is an unknown time-varying matrix belonging to interval matrix
[A] (see Section 3.3.1 for more details on interval uncertainties).

Goal: Given an ellipsoidal estimation set E(P, &y, p) for the state xy
from (5.56) at time instant k, the aim is to find an ellipsoidal estimation for
the state @y at time instant k + 1 of the form E(P, &y 1, pry1) taking into
consideration that the evolution matrix of the model is not constant. The
next section presents an ellipsoidal technique to treat this problem.

5.5.2 Method /j: Online flexible shape ellipsoidal state
estimation approach

This method minimizes the size of the ellipsoidal state estimation set of the
linear time variant (LTV) descriptor system (5.56) by solving an online Linear
Matrix Inequality (LMI) problem, while allowing to adjust the shape of the
ellipsoid, which reduces the conservativeness of the estimation. Method 4
extends a previously developed ellipsoidal set-membership state estimation
technique for LTV systems [Ben Chabane, 2015] to the case of descriptor
systems. This method based on the use of the S-procedure for quadratic
functions [Boyd et al., 1994] can be applied on linear time-varying systems
with possible interval uncertainties, bounded perturbations and measurement
noises. The following theorem formulates the solution to this problem.

Theorem 5.2. Let us consider an uncertain discrete-time descriptor system
of the form (5.56), under the following assumptions:

(i) At time k, the system state x; belongs to the ellipsoid &(Py, &x, pr),

(ii) At time k, the uncertainties are bounded by a convex set €, i.e.
(wk, Ag) € Vq,, with Vg, denoting the vertices of Q,

(iii) There exist two matrices T and N satisfying (5.13),

(iv) There exist the matrices Py = P, = 0, with Py € R,
Y1 € R Gyyq € R™*% the vector g, € R" and the positive
scalars fBri1, prr1 > 0 such that the following LMI is satisfied for every
(wk,Ak) € ng:

B+ 1P * *
0 Pr+1 — Brr1pe % =0, (5.57)
Pp 1 TA, — Y1 C Tht1 Py

with 711 = (Pry1TAL = Y31 C — Gig) T + (Pt TE- Y 1 Fwy, —
i1+ Ny — NpFwpy,
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then, at time k+1, the system state @1 belongs to the ellipsoid €(P1, Zxi1, prr1),
with Zp41 = Py (Graa @ + Yir1¥y + Grar)-

Proof. Since T and N satisfy the condition (5.13), we have in virtue of equa-
tion (5.14) that the state vector @, of the descriptor system (5.56) satisfies:

L1 = TAkCL‘k + TB’U,k + Nyk+1 + TE’LUk - Nka+1. (558)

Let us define the error between the real state and the nominal estimated
state at time instant k by:

Zp = T — CI_%.
Therefore, the error dynamics at the next time instant:

Zkt1 = Tl — Thl
= TAkZEk —+ TEwk + Nyk+1 — Nka+1 — P];_,l_l(Gk-i-l:Ek + Yk+1yk + gk+1)
(5.59)

The notation P,;ilYkH = Ly, yields:
Zip1 = TAyz+ TEwp — L1y, — Pl (Gr1 B +91 ) + Ny —NFwy .

(5.60)
Then, using the measurement equation in (5.56) to replace y, leads to:

zp1 = TApxy, + TEw, — Ly 1 Cxy, — Ly Fwy,
— P L (G @k + gpt) + Nyp oy — NFwyyp. (5.61)

Regrouping the terms in z;, € and w; gives:

Zpr1 = (TAp — Ly 1C)zg + (TA, — Ly 1C)xy + (TE — Ly 1 Fwy,
— P 11(GraZy + gpyr) + Ny — NFwg . (5.62)
The error can be rewritten under the form of:
Zpt1 = AL,CHZI@ + M1y (5.63)
with

Ar,.,=TA, — Ly, C, (5.64)
Mepr = (TA, — Ly 1C)@y + (TE — Ly Fwy,

) - (5.65)
- Pk_|1_1<Gk+1CUk + gk+1) + Nyk+1 — NFW}C+1.
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The next step in order to verify the result of the theorem is to prove that
the following expression holds:

Z;—szk < Pr = z;HPkszH < Ph+1- (566)
Denote by:
Fo(2zk) = prr1 — 201 PeriZin (5.67)
and
F1<Zk) = Pk — Z;szk, (568)

using the S-Procedure, the expression (5.66) is verified if there exists S, > 0
such that:
Fo(Zk) — ﬁk—&—lFl(zk) > O,V(wk, Ak) € Qk (569)

Expression (5.69) is equivalent to saying that:
zp 1 Priizem + Besi (o — 2 Przy) < prg1, V(wr, Ag) € Q. (5.70)

Using expression (5.63) to substitute zj; by its equivalent form yields:

Zg(AzkﬂPkHALkH — Br1Pr)zi + 2If’g+1Pk+1ALk+lzk + ﬁl;r+1Pk+1ﬁk+1+
+ Bres1pk — Prr1 <0, V(wr, Ag) € Q. (5.71)

Expression (5.71) can be rewritten as:

T ~ ~
[Zk] [Azk+1Pk+1ALk+l — Br1Pg * ] [zk] <0
1 "~71;r+1Pk+1ALk+1 'fl;——i-lPkJrl'f’kJrl + Bet1Pk — Pr1 1 ’
(5.72)

with V(wg, Ag) € Qp and Vz, € R"™. The expression (5.72) is verified,
Vz, € R if:

[_A—erHPkHALHl + Ber1 Py * ] <0

11 PriiAr,, ~ i1 Pra1fy s — Brs1Pr + Prs
(5.73)

V(wg, Ag) € Qy, or equivalently if:

P 0 AT P - A %
[ Br1Pg ]_l Lyt1” k1 ] Pl [ PiiAr, Praafey } -0,

0 Pr+1 — Brt1Pk 7~72+1Pk+1
(5.74)
V(wy, Ag) € Q. Using the Schur complement, (5.74) becomes:
Br1 Py * *
0 Pk+1 — ﬁk—l—lpk * > 0, V(wk, Ak) € Q. (575)

Pk+1ALk+1 Pime P
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Taking into account that Pk+1ALk+1 = Pr 1 TA; — Y, 1C and that:

PiyiMpy1 = (Pry1TAL = Y1 C)xp + (Pri TE — Y Fwy,
— G1®k — g1 + PraNy,p — NFwy i, (5.76)

the linear matrix inequality (5.57) is found. This proves the claim of Theo-
rem 5.2. O

Remark 5.1. The vector wy and the matrix Ay appear in an affine way in
the LMI (5.57), therefore the inequality should be verified for all the vertices
of Qk

In the next section, Method 4 is improved by adding the vector scaling
technique [Ben Chabane, 2015]. As proven in Section 5.4.3, the vector scaling
technique improves the accuracy of the state estimation but requires higher
computational complexity since it solves an additional LMI problem.

5.5.3 Method 5: Online flexible shape ellipsoidal state
estimation approach with vector scaling technique

The state estimation in the previous subsection computes the ellipsoidal set
E(Pyi1, Tpi1, prr1) using the measurements y,. To adjust the ellipsoidal
estimation set, a convenient technique is to use the measurement vy, , at
time £ + 1. In this context, additional quadratic constraints on the output
measurement taking into account the structure of the perturbations and the
measurement noise allow to improve the accuracy of the estimation. Starting
from the ellipsoidal state estimation computed by Theorem 5.2, the idea is to
consider supplementary quadratic constraints on the measurement y, , and
on the perturbations w1 in order to compute the new ellipsoidal state es-
timation set. This is similar to a correction step based on the measurements
at time k 4+ 1. Consider the ellipsoidal estimation set &(Pyy1, Zri1, prr1)
obtained at sample time k + 1 by the ellipsoidal estimation method (Theo-
rem 5.2) and the following measurements:

Y1 — Cppr = Fwpg. (5.77)
Similar to Method 3, an extended vector:
-
W= {w; wgﬂ} c B*™,
with |[w| <1 is formed. Thus, the vector wy, satisfies:

w Tiw<1, i=1,...,2n,, (5.78)
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with T; = eieiT, fort=1,...,2n,, and e; being the columns of the identity
matrix Iy, = [el e ... egnw] The matrix T; has only the element (4,7)
equal to 1.

The objective is to find &' (P}, T}, 1, Pry1), an updated ellipsoidal esti-
mation set, such that the equations (5.77) and (5.78) hold. The following
proposition summarizes the result of this problem.

Proposition 5.1. Consider the state estimation described by the ellipsoid
E(Pyi1, Tia1, pry1) after solving the optimization problem in Theorem 5.2
for system (5.56) at time k + 1, based on the information available at time
k. If there exist a matrix P}, = P;;rl = 0in R"™*" a matrix H=H' > 0
in R™*™  a vector &}, € R™ and a real positive scalar pj_,; > 0 such that
the following LMI constraints are verified:

nl * *
Ng+Ny

Ny M3 — ‘21 i * =0,

/ !/
k41 —bi 41 P

Ng+Ny ~
FTHF < 5 T, (5.79)
=1

P -0, P, >Pry, 020 0<1,~v>0,

Prr1 > Oprirs pry1 < apy + 7,
i >0, 1=1,...,n, +ny,

with:
b1 =Pl 1Ty,
mn = QPk_H + CTHC,
N2 = _95311+1Pk+1 — Y5 HC,
s = Pyt = Opes + O1Zeallp,, + Uil

(5.80)

then the updated ellipsoidal state estimation set is &'(P}_ , &} 1, Phy1)-

Method 5 is an extension of a previously developed technique for lin-
ear time variant standard systems proposed in [Ben Chabane, 2015]. It is
improved in this thesis by considering linear time variant descriptor systems.

Example 5.2 shows the performance of the proposed ellipsoidal state es-
timation approach when solving LMIs (5.57) and (5.1), i.e. Method 5.

Example 5.2. Consider the following discrete-time linear time variant de-
scriptor system:

(5.81)

Eqxin = Apz, + Buy + Ewy,
Yy, = Cxp+ Fuwy,
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100 —04 0 0
withEg=]0 1 0 |,Ay=]0016, 01 2 |,B=0,
00 0 —1 by, 0.265
Lo 1 50000
C:[1 o 01,13:10—3- 05000 ,F:5-10—3[02X3 IM].
00600

The vector w;, € B® and the uncertainty parameters are randomly generated
with ||wk|le < 1 and |6;,| < 1,7 =1,2,3. We consider constant matrices T
and N satisfying (5.13) such that:

0.6667  0.3333 0 0 0.3333
T=|03333 0.6667 Oland N= |0 —0.3333].
—0.6667 —0.3333 0 1 —-0.3333

Randomly chosen, the initial state @, is inside the ellipsoid £(Py, Zo, po),

with Py = 10 - I3, &y = 10 - Ll 1 1]T, and py = 50. In this example, the
results obtained by Method 5 for descriptor systems are analyzed. Figures 5.6
to 5.8 illustrate the bounds of the signal x;, after 10 iterations obtained by the
improved ellipsoidal estimation method in blue dashed lines. The real state
represented by red asterisks is inside the blue bounds at each time instant &
which proved the accuracy and efficiency of this technique. Additionally, it is
shown that this technique offers a high rate of convergence of the components
of the state vector.

* Real state
104 —— Method 4
***** Method 5
g
Gy
o 5t
0N
o
=
]
Qo
m 0 L S 3
_5 I 1
2 4 6 8 10

Sample time k

Figure 5.6 — Example 5.2: bounds of z;
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* Real state
——Method 4
s v 0N | Method 5

Bounds of z-
S

Sample time k

Figure 5.7 — Example 5.2: bounds of x5

10+ * Real state
——Method 4

Bounds of x5

Sample time k

Figure 5.8 — Example 5.2: bounds of x3
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5.6 Conclusion

A new guaranteed ellipsoidal state estimation approach for linear descrip-
tor systems with bounded perturbations and measurement noises has been
proposed in this chapter. The methods represent an extension of previously
developed techniques in [Ben Chabane, 2015] for standard systems. Succes-
sive improvements are elaborated in the five proposed methods. Method 1 is
developed for discrete-time Linear Time Invariant (LTI) descriptor systems.
In this method, the radius of the ellipsoidal set is minimized by off-line solv-
ing an LMI problem once, leading to compute a constant observer matrix
gain. In Method 2, the observer gain is updated at each time instant by
solving an online LMI problem. This leads to a better estimation accuracy
compared to Method 1, but with higher complexity due to the vertex enumer-
ation related to the considered perturbations bounds. Applying a new vector
scaling technique for Method 2, the computation time is significantly reduced
in Method 3, while keeping an acceptable level of the estimation accuracy.

Finally, this ellipsoidal state estimation method is extended to the case of
discrete-time Linear Time Variant (LTV) systems (Method 4) with interval
uncertainties in the evolution matrix. This method is based on the online
minimization of the size of the ellipsoidal state estimation set by solving a
Linear Matrix Inequality optimization problem. Not only the size, but also
the shape of the ellipsoidal set is adjusted at each time instant allowing to
reduce the conservatism in comparison to the previous methods. An im-
provement of the accuracy of the proposed ellipsoidal estimation method has
been presented in Method 5 by adding quadratic constraints on both mea-
surements and perturbations. This allows us to reduce the bounds of the
estimation domain, offering a better estimation accuracy.

In the next chapter, set-membership state estimation approaches are de-
veloped using zonotopic sets for the accuracy they provide compared to el-
lipsoids. These approaches are developed for standard systems and their

extension to descriptor systems will be considered as a potential perspective
for this PhD thesis.
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6.1 Introduction

In the last decades, the problem of state estimation has been studied by many
researchers, leading to different state estimation methods such as Kalman fil-
ter [Kalman, 1960], Luenberger observer [Luenberger, 1964], set-membership
estimation [Witsenhausen, 1968], [Schweppe, 1968], functional observer [Mur-
doch, 1973], [Moore and Ledwich, 1975], moving-horizon estimation [Grizzle
and Moraal, 1990], [Michalska and Mayne, 1991], [Mare and De Dona, 2006],
[Alamir, 2007]. In the previous chapters, we discussed in details several set-
membership state estimation techniques based on ellipsoids for linear time
invariant standard and descriptor systems. Here, the uncertainties of the
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system are modeled using zonotopes [Puig et al., 2001], [Combastel, 2003,
[Alamo et al., 2005], [Alamo et al., 2008a], [Le et al., 2011]. The estimator
computes at each sample time a zonotopic set containing all the possible
system states that are consistent with the perturbations, the uncertainties
and the measurement noise. These techniques are mainly based on a predic-
tion step followed by a correction step. Zonotopes offer a good compromise
between flexibility and complexity; therefore they have been used in several
topics in automatic control applications that include but not limited to reach-
ability analysis [Althoff et al., 2007], [Girard, 2005], [Girard and Le Guernic,
2008], collision detection [Guibas et al., 2005], identification [Bravo et al.,
2006], state estimation [Puig et al., 2001], [Combastel, 2003], [Alamo et al.,
2005], [Alamo et al., 2008a], fault detection [Guerra et al., 2008], [Ingimundar-
son et al., 2008], [Stoican, 2011] and fault diagnosis [Combastel et al., 2008].
Moreover, when using zonotopes, the wrapping effect is reduced (compared
to boxes) leading to a more precise result of the estimation [Kiithn, 1998]. In
this chapter, zonotopes are chosen to solve the set-membershp state estima-
tion problem due to their advantages. The chapter starts with a brief sum-
mary of zonotopic set-membership state estimation techniques in literature.
A particular zonotopic set-membership state estimation technique based on
a Luenberger observer is applied to the model of the octorotor detailed in
Chapter 4. This result has been presented to the 12th Summer Workshop
on Interval Methods 2019. The considered zonotopic set-membership state
estimation is further analyzed and extended to deal with a new class of sys-
tems called piecewise affine systems. PWA systems are linear systems whose
dynamics are governed by multiple linear time invariant equations. Exten-
sively, the state-space of a piecewise affine system is partitioned into two or
more regions, in each of which the dynamics are governed by a linear time
invariant system equations. Even though the behavior of PWA systems can
be complex, they share many properties with a standard LTI system. Here,
we consider a particular class of PWA systems: a bi-modal PWA system
which can be interesting to study from theoretical and practical points of
view.

6.2 Zonotopic state estimation

This chapter focuses on a two-step zonotopic set-membership state estimation
technique. In the prediction step, a zonotopic set consistent with the model
is found, and then, in a second step, a strip consistent with the measurements
is computed. The difference between existing different techniques relies in
the correction step where the construction of the final state estimation set
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is computed. It is indeed the intersection between the two previously found
sets consistent with the predictions and the measurements. In the zonotopic
state estimation case, several methods are used in literature: segments mini-
mization method [Alamo et al., 2005], volume minimization method [Alamo
et al., 2005], Singular Value Decomposition-based method [Combastel, 2003]
and the P-radius minimization method [Le et al., 2013b]. In the following,
we will give an overview of these techniques. However, a detailed synthesis
of some of these methods can be found in [Le, 2012].

Using the representation of the intersection between the zonotope and a
strip [Alamo et al., 2005], the following techniques are the one mainly used
in zonotopic set-membership state estimation:

e Segments minimization method [Alamo et al., 2005]: In this technique,
the goal is to improve the accuracy of the state estimation by mini-
mizing the size of the segments that generate the zonotopic estimation
set.

e Volume minimization method [Alamo et al., 2005]: The goal of this
technique is to minimize the volume of the zonotopic estimation set to
improve the accuracy of the estimation technique, however this tech-
nique could lead to very narrow zonotopes.

o P-radius minimization method [Le et al., 2013b]: The P-radius provides
a criterion to evaluate the size of the zonotope, thus the accuracy of
the estimation. For the same matrix P, a smaller value of the P-radius
means a smaller zonotope.

e Singular Value Decomposition-based method [Combastel, 2003]: In this
technique, the consistent state set with the measurement is not ex-
plicitly used. However, the extended space of the predicted zonotopic
set, called abstract space, is decomposed into two complementary sub-
spaces: one influenced by the measurements, while the other is not
affected.

The P-radius minimization of the zonotope leads to a trade-off between the
accuracy of the estimation offered by the volume minimization of a zonotope
and the rapidity of the segments minimization technique. The SVD method
and P-radius minimization zonotopic method offer quite similar results [Le,
2012]. However, the P-radius based method imposes a fixed gain to construct
the zonotopic estimation set which is parametrized by a vector/matrix com-
puted off-line. In order to take advantage of this result, the next section
considers the P-radius in a zonotopic set-membership state estimation tech-
nique.
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6.3 Zonotopic set-membership estimation tech-
nique based on a Luenberger observer

Consider the following standard discrete-time Linear Time Invariant (LTI)
system:

(6.1)

L1 — ACCk -+ B’U,k -+ Ewk
vy, = Cx + Fwy,

where x;, € R" is the state vector of the system, u, € R™ is the control
input vector and y, € R™ is the measured output vector at sample time
k. The vector w; € B™ contains the state perturbations and measurement
noises.

Theorem 6.1. (based on [Wang et al., 2018]) Consider @, the initial state
and assume that the state x; belongs to the zonotope Z(p,,Hy) = p, &
H;B™. Given a scalar § € (0,1), if there exist a positive definite matrix
P =P" - 0in R™*"= a matrix Y € R%™*™ for which the following LMI
holds:

BP0 ATP-C'YT

x '@ E'P-F'Y"| =0, (6.2)

* * P

then it is guaranteed that @1 € Z(Zg11, Hpr1), Ywy € B where:

-’EkJrl = Ag’ik -+ B’U,k + L(yk - Cik), (63)
Hy = [AfHe 7, (6.4)

.
withY:PL,@:[ET FT} A, =A—LCandn=E—LF.

Proof. The error z, = xp — @ between the real state and the nominal
estimated state at time k belongs to centered zonotope HpB™. At time
k + 1, one has:

Zpi1 = Apzr +nwir € App, © Hy . (6.5)
Denote the P-radius of the zonotopic set at the time instant &k by:

r, = max ([|lzx — @kllp)- (6.6)
TR EXY

This can be rewritten like:

TR = mngﬂk%H%a (6.7)
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with 2 € B"™=*™_ The non increase of the P-radius [Le, 2012] of the
zonotopic error at each time instant can be expressed by:

Tht1 < Pri + max 106];. (6.8)

The expression:
i1 < Pre, (6.9)

with 8 € (0,1), ensures the contraction of the P-radius. However, this is
difficult to verify in the presence of perturbations and measurement noises.
Equation (6.8) represents a relaxation of this condition, where the term:

max | ©6)]

is a positive constant that bounds the influence of the set of disturbances.
This inequality can be rewritten under the form of:

max [y 2[5 < fma [Hyz [ + max |©6)] (6.10)

-
with the notations 2 = |z7 0| € B"™™tw 2z ¢ B™ and @ € B t",
Using the reverse triangle inequality leads to a sufficient condition for:

max(|[Hy12[p — 5| Hizllp - [©6]3) < 0. (6.11)
Extensively, Vz, 8, the next expression is verified:
2"H], ,PH, 12 — B2 H,PH,z - 0'©700 < 0. (6.12)
Thus now we can write the following equation:
H;.12=(A-LC)H;z + (E — LF)6. (6.13)
Moreover, replacing Hy 12 in (6.12) gives:

(H z"(A-LC)" +0"(E-LF)")P((A - LC)H.z + (E — LF)0)—
— Bz HPH,z —0'©@'©0 <0 V2 6 (6.14)

Regrouping the terms of (6.14) and applying the Schur complement leads to:
[sz] i [(A ~LC)"P(A —LC) - P * ] [sz

6 (E-LF)’P(A-LC) (E-LF)'P(E-LF)-0'©
(6.15)
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Doing some manipulations with (6.15), the following matrix inequality is de-
rived:

T

[BP : ] ) l(A_LC)TPl p! l(A_LC)TP -0 (6.16)

0 ©'e| |(E-LF)'P (E—LF)'P

Using the Schur complement definition, this expression is equivalent to the
following matrix inequality:

BP0 (A-LC)'P

+ @@ (E-LF)'P|>o0. (6.17)
* * P
The change of variables Y = PL leads us to (6.2). O

The center of the zonotope p;,,, (which is the nominal state estimation at
time instant £+ 1 is computed like a Luenberger observer which is motivated
by the fact that the system is linear. The gain L = P~'Y is obtained after
solving the LMI (6.2). Notice that when f is a free variable in the interval
(0, 1), the expression (6.2) becomes a very simple case of Bilinear Matrix
Inequality (BMI). As 5 €(0, 1) is a bounded scalar, this expression can be
rewritten as a LMI problem by successively fixing the value of S via the
bisection algorithm.

Example 6.1. The Mikrokopter ARF Okto-XL

We recall the example of the octorotor employed in the context of radar
applications that we used in Chapter 4. As mentioned earlier, the Mikrokopter
ARF Okto-XL is equipped with a micro-controller that provides fused and
filtered information from the sensors about the drone’s position.

A non-linear dynamical model together with a linearized model around
the static hovering equilibrium with null translational and rotational veloci-
ties and null roll, pitch and yaw angles exist [Chevet et al., 2017]. The linear
discretized model with a sampling period 7, has been detailed in Chapter 4
through (4.21)- (4.23). However, for linear position estimation problems, we
only need the two subsystems describing the longitudinal and the altitude
dynamics, respectively, reminded below:

., = Az, +Biu;, + Ejwy,

x3,,, = Axs, + Baus, + Ezwy,
Y3, = Cx3, + Fawy,
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withmlk:{zk 'ka ‘/Zk wzk}T’mgjk:{l’k Yk Vzpk Vyk}Tyulk:[FR TZR;}T’

T T T I, T.0
u3k - [Fai Fy}:] ) ylk [Zk’ wk} ) ySk = {xk yk} ) A = |})Z 122‘|)
0 0 0 0
B, = g 8 , By = g 8 , C = [Ig 02}. Furthermore, the perturba-
0 7 0%

tions and the measurement noises wj are bounded by the unitary box BS.
Additionally, the same assumptions on state perturbations and measurement
noises considered in Chapter 4 are used here. The control inputs F, Ff and
F® are the components of the resulting propeller’s force, whereas 7% is the
component of the resulting propeller’s torque expressed in the drone’s frame
denoted by the superscript R.

A sampling period T, = 0.02s of all sensors is considered. A linear trajec-
tory is simulated to validate the efficiency of the zonotopic set-membership
estimation technique. It corresponds to a take-off to an altitude of 50m and
then to a flight on the x-axis with a linear constant speed as presented in
Figure 6.1. The flight duration is 235s.

60

40 / 3. Outward moven

z (m)

20

" | 2. Take-off

1. Starting point 70

60
40 50

30

10 20

y (m) -1 0 x (m)

Figure 6.1 — Linear proposed trajectory
Figure 6.2 shows the guaranteed bounds of the linear position z of the
drone, whereas Figure 6.3 presents the guaranteed estimation bounds of the

altitude z. The example compares the state estimation between the off-
line ellipsoidal method (Method 1) presented in Chapter 5 and the off-line
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zonotopic method in this chapter.
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Figure 6.2 — Example 6.1: bounds of the linear position x
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Figure 6.3 — Example 6.1: bounds of the altitude z
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It is shown in Figures 6.2 and 6.3 that the real state (red dots) is guaran-
teed to remain inside of the bounds computed by the two techniques despite
of the considered measurement noises and state perturbations. The off-line
ellipsoidal method has larger bounds (green dashes) than the off-line zono-
topic off-line method represented by the blue line. This means that the
zonotopic method offers a higher accuracy than the ellipsoidal method with
a similar computation time since they both compute the observer’s gain by
off-line solving a LMI.

6.4 Overview of piecewise affine systems

Piecewise affine systems (PWA) can be seen as a special class of linear time
invariant systems whose state evolution is not limited to one equation. The
dynamical behavior of a system is governed by a set of affine equations,
each valid in one particular region out of different regions of the state-space.
This class of systems can cover a large number of systems encountered in
practice, specifically those that consider relays, dead-zones and saturation
[Feng, 2002]. The PWA systems description is similar to the LTI models, a
possible state-space representation of PWA systems being the following:

Yy, = Cizy, + Fwy,

where x;, € R",y, € R™,u, € R™ are respectively the state vector, the
measuret output vector and the control input vector of the system at time
instant £. The vector w; € B" ™ contains the state perturbations and
measurement noises.

6.4.1 Practical example

It is important to show with an example how a PWA system in control
engineering can model different systems. Therefore before elaborating on
the state estimation problem of PWA systems, we provide an example of
a particular system called a bi-modal piecewise affine system based on the
partitioning of the state-space into only two regions. We consider the two-
tank benchmark [Thuan and Camlibel, 2014] depicted in Figure 6.4 and used
in the context of water regulating systems with u the constant water flow
into the first tank. The variables x; and x5 designate the deviations of the
water level from the bottom of the first and the second tank, respectively.
The valve is closed when the amount of water in the second tank exceeds 11
i.e. i) Z 1.
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— DK

1l

X1

Figure 6.4 — Two-tank system

The system can be mathematically modeled by considering a state vector
of the water levels in tanks 1 and 2 resulting in the following continuous-time
formulation:

i;gg - _11 _01 28 + 8 ut) if zy > 1 (6.19)
28 - _11 _01 28 + (1) u(t) ifwy <1 (6.20)

As such, this system is an example of a bi-modal piecewise affine system.
In the rest of this chapter, the zonotopic set-membership state estimation
technique will be presented for a bi-modal piecewise affine system. This
approach is a first step towards the long term goal of dealing with a general
representation of a piecewise affine systems and hybrid systems.

6.4.2 State estimation for PWA systems

PWA systems have been studied for a long time. Kalman presented in one
of his works a concrete qualitative understanding of these systems, by treat-
ing a saturated system by a series of polyhedral regions in the state-space.
These polyhedral regions were separated by switching boundaries [Kalman,
1955]. Recently, an increasing interest has been given to these systems due
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to their wide applications and promising aspects [Xu and Xie, 2014]. In-
deed, PWA systems are used to model a large class of systems, mainly
hybrid and switched systems. In this context, many contributions rang-
ing from the modeling [Johansson, 2003], [Johansson and Rantzer, 1997] to
controllers elaboration [Feng, 2003a], [Rodrigues and How, 2003] were done
on PWA systems, even though some of the characteristics and properties
can be conservative. Here, we only focus on the state estimation of piece-
wise affine systems. In this context, various approaches have been proposed
in the literature for the state estimation problem of PWA systems [Juloski
et al., 2003], [Juloski et al., 2002]. However most of these results can be
classified as conservative [Alessandri and Coletta, 2001a], [Alessandri and
Coletta, 2001b] considering the fact that they don’t take into consideration
some of the characteristics of these systems, for instance the partition in-
formation. More recent studies integrated the partition information in the
design of observers [Juloski et al., 2003], [Juloski et al., 2002] for bi-modal
systems. More precisely, [Alessandri and Coletta, 2001a] developed a Luen-
berger type observer for both continuous-time and discrete-time piecewise
affine systems. Moreover, in [Alessandri and Coletta, 2001b], a state esti-
mation approach for linear systems based on the use of switching observers
(switching between different observer gains) is proposed. An observer de-
sign [Feng, 2003b] as well as several filter design methods [Feng, 2005] are
proposed for discrete-time piecewise affine linear systems. The paper [Feng,
2005] makes the assumption that the real model and the state estimator
always switch to the same partition at the same time. This is possible by
partitioning the output not the state-space which does not apply on most of
the PWA systems. In a general case, no guarantee exists that the estimated
state and the real system state are in the same partition at every time in-
stant. The estimation errors can lead to cases where the estimated system
state operates in a different region than the real state. For this case, a design
procedure for the Luenberger type of observer, which does not require infor-
mation on currently active dynamics of a bi-modal PWA system is proposed
in [Juloski et al., 2003], [Juloski et al., 2002]. Additionally, other studies
focused on different approaches for state estimation of PWA systems, such
as the moving-horizon estimation (MHE) [Ferrari-Trecate et al., 2002], Hx
and Hy estimators [Xu and Xie, 2014]. Nevertheless, to our knowledge, few
researchers have addressed the problem of set-membership state estimation
for PWA systems [Bemporad et al., 2005]. The papers [Rakovic and Mayne,
2004] and [Rakovic et al., 2004] address the problem of set-membership state
estimation for discrete time piecewise affine systems subject to additive but
bounded disturbances. Indeed, a recursive filtering algorithm for piecewise
affine systems using polygons is provided. Furthermore, [Tabatabaeipour
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and Stoustrup, 2013] presents a zonotopic set-membership state estimation
technique for piecewise affine systems. At each iteration, the technique com-
putes via analytic method the intersection between the zonotope estimating
the state with each of the polyhedral partitions of the piecewise affine system
and then minimize it. Nevertheless, this technique remains computationally
expensive and the result of approximation can be sometimes conservative
since the method is based on the minimization of the segments of zonotopes
[Alamo et al., 2005]. Moreover, set-membership state estimation techniques
were developed for hybrid systems [Ramdani et al., 2009], [Meslem et al.,
2010], [Heemels et al., 2001]. However, hybrid systems are beyong the scope
of this thesis.

6.5 Zonotopic state estimation for PWA sys-
tems

Consider the following discrete-time bi-modal piecewise affine system:

Az, +Bu, + Ew;, ifr'ax, <d,

Thyy = o (6.21a)
Asxz, + Bu, + Ew, if r'x, > d,

Y, = Czy + Fuwy, (6.21D)

where x;, € R is the state vector of the system, u;, € R™ is the control
input vector, and y, € R™ is the measured output vector at sample time k.
The vector w;, € B"=1" contains the state perturbations and measurement
noises (offset, noise etc.). It is bounded by the unitary interval, therefore the
matrices E and F represent the weights for the normalized perturbations.
The hyperplane defined by the switching condition r'x;, = d separates the
state-space system into two different half-spaces in which, at each time in-
stant k, one of the two dynamics is active. This is clearly represented in Fig-
ure 6.5. The system (6.21) is a standard bi-modal piecewise affine system,
with the same observation matrix C, perturbations weight matrix E, and
measurement noises weight matrix F. Moreover, depending on the switching
condition, we distinguish two model matrices A; and A,. All these matrices,
have appropriate dimensions, with the pairs (C, A;) and (C, As) detectable
and the pairs (A1, B) and (A,, B) stabilizable. The initial state is assumed
to belong to the zonotope Z(p,, Hy), where p, is the center of the zonotope
and Hy the matrix of its generators.
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Figure 6.5 — Partitions of the state-space

Goal: Given a zonotopic estimation set for xj of the form Z(p,, Hy),
with &) = p;, the nominal estimated state, the aim of this technique is to
provide a zonotopic state estimation set for ;1 of the form Z(p,, ,, Hiy1).

As a Luenberger observer for the system (6.21), we propose the following
bi-modal structure [Juloski et al., 2003]:

_ Az + Buy + Li(y, — Cz) ifr'z <d,
Tpy1 = ~ ~ T (6.22)
Az + Buy + Lo(y, — Czy) ifr'a > d.

The observer is designed (i.e. Lj and Ly are determined) such that the state
estimate & converges asymptotically to . Denote by z, = x; — Ty the
error between the real state and the nominal estimated state. Assuming the
knowledge of the partition to which the real state of the system belongs and
considering that the state estimation belongs to the same partition, the error
dynamics of the state estimation is described by:

A, -L,C E-L,F if diti
o {( 1 1C)zy + ( 1F)w;,  if condition @) (6.23)

(Ay — LyC)zi + (E — LoF)wy,  if condition 2
with the following conditions:
e Condition O: »'& < dand r'x < d,
e Condition @: »'Z > d and ' > d.

Conditions (D) and 2 mean that the real state and the nominal estimated
state are in the same region considering the knowledge of the position of the
real state.

In details, expression (6.23) is obtained starting from:

241 = L1 — ik-ﬁ-l' (624)
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In the following we consider the two conditions. If the condition O) r'@ < d
and 'z < d holds or the condition @ ' > d and r"x > d holds, the
computation leads to:

211 = (Az — LzC>Zk + (E - LzF)wk, (625)
for + = 1,2. Moving to set computations, the error z; belongs to:
Zp =T — T €P;, D H.B™ @© {—pk}. (626)

Thus, the error belongs to the centered zonotope:

ZL € Hk[Bm. (627)

Using equation (6.27), the error at the next time instant belongs to:
[(Al — L1C)Hk E - LlF] Bmtnatny if @,

€ 6.28
Zk+1 [(A2 i LgC)Hk E . LQF] [Bm—‘,-nz—‘rny lf @ ( )

Next, the idea is to compute a matrix P = P such that, the P-radius of
the zonotopic state estimation set is not increased at each iteration. Similar
to the previous approach applied to the octorotor model, the P-radius can
be expressed as r, = max |H,2||%. Theorem 6.1 can be applied here to each

of the two cases we have. Therefore, there exist the matrices Lq, Ly and P
such that two LMIs are verified in the same time.

Cases (D and @) are similar to the work done in the previous sections.
Thus, with a change of variables Y; = PL; with P € R"%*" L, € R"x"=
and Y,; € R*=*"= Jeads to:

6P 0 AiTP — CTYiT
x O’ E'P-— FTYZ.T = 0, (6.29)
* * P

fori=1,2.

Remark 6.1. These results for the zonotopic set-membership state estima-
tion techniques are preliminary. The extension of this technique considering
a bi-modal observation matrix C or input matrix B along with the model
matrix A; is possible.

Remark 6.2. The results in this chapter are considered for bi-modal PWA
systems. However, they can be extended for a general representation of PWA
systems, with ¢ > 2.
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To validate this extension to PWA bi-modal systems, we consider the
following example.

Ezample 6.2. Consider the system (6.21) with the following notations:
0.7969 —0.227 0.4969 —0.2247

A= [0.1798 0.9767] A2 = [0.0798 0.9767 1 .C=[05 9,
002 0 O

E= l 0 002 0

domly generated and the input vector is neglected (B = 0) such that the

] JF = [O 0 0.03}. The perturbations vector is ran-

a
evolution of the system is only governed by the initial state xq = {5 5]

1 2

belonging to the zonotope Z(xg, Hy), with Hy = [2 )

]. The switching

condition is given such that r' = {1 1} and d = 2.

8 —
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Figure 6.6 — Example 6.2: bounds of z;

The state estimation simulation is depicted in Figures 6.6 and 6.7 where
we can see that the real state (red asterisks) is guaranteed to belong to the
bounds computed by our zonotopic state estimator (blue dashes) at each time
instant. The guaranteed bounds were obtained by solving simultaneously the
LMIs (6.29) corresponding the two considered cases.
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Figure 6.7 — Example 6.2: bounds of x5

6.6 Conclusion

As an alternative to ellipsoidal set-membership state estimation, the results
proposed in this chapter rely on zonotopic set-membership state estimation.

After an overview of the zonotopic set-membership state estimation in
literature, we introduce a technique based on a Luenbeger observer and the
P-radius minimization method. Solving a linear matrix inequality (LMI)
problem guarantees that the state belongs to a zonotope and the estimation
error decreases at each time instant. An application to an octorotor model
has been also proposed and presented to the 12th Summer Workshop on
Interval Methods, 2019.

Furthermore, the main contribution of this chapter is the introduction
of a new guaranteed zonotopic state estimation approach for a particular
class of bi-modal piecewise affine systems with bounded perturbations and
measurement noises. The technique computes the Luenberger observer gains
off-line which makes the approach simple and easy to implement, while guar-
anteeing that the state belongs to a zonotope at each time instant. These
are preliminary results and they will be submitted as a journal paper.

The main line of reasoning of the zonotopic state estimation for piecewise
affine systems can be used to extend this technique to a general case of a
standard PWA system. Additionally, it can be interesting to compare this
technique to the ellipsoidal state estimation techniques extended for PWA
systems.

In the next chapter, a different perspective of the set-membership state
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estimation problem is presented. The new approach combines both deter-
ministic and stochastic approaches considering zonotopic constraints on the
system state. Indeed, we introduce a new Zonotopic Constrained Kalman
Filter (ZCKF) that guarantees that the system state belongs to a zonotope
representing the set of constraints that the state is subject to.
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Zonotopic constrained Kalman
filter
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7.1 Introduction

In the previous chapters, we discussed two major approaches for set-membership
state estimation with a focus on ellipsoidal or zonotopic set-based techniques.
As it is obvious by now, in the state estimation theory, the Kalman filter
[Kalman, 1960] is well known to be suitable for the state estimation of linear
systems assuming the knowledge of the characteristics (covariance, average,
etc.) of perturbations and noises governing the state and measurements.
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Moreover, many extensions of the Kalman filter have been developed through
time to deal with real time systems (e.g. Extended Kalman filter [Schmidt,
1966], unscented Kalman filter [Wan and Merwe, 2000], Kalman-Bucy filter
[Kalman and Bucy, 1961] etc.). Due to its accuracy and easy implementa-
tion, the Kalman filter is widely used in industrial fields. As an alternative,
the deterministic approach, particularly the set-membership state estimation
became subject of research interest since it considers bounded perturbations
and measurement noises. Additionally, the estimated state belongs to a ge-
ometrical set such as ellipsoids and zonotopes that we detailed through this
thesis. With the intention of mixing the advantages of both approaches, in
[Combastel, 2015b], the classic Kalman filter and the zonotopic state estima-
tion are combined in a zonotopic Kalman filter (ZKF') based on the intro-
duction of a new notion of covariation connecting the two approaches. Even
though the Kalman filter is a powerful tool in state estimation, some of the
known information about the system state can not be integrated. For exam-
ple, distances and speeds are always positive, and these information should
be treated as state constraints during the state estimation. A possible solu-
tion is to use descriptor systems introducing differential algebraic equations
that are considered as a generalization of dynamical systems. Indeed, as
shown in Chapter 5, algebraic equations, representing equality constraints of
the systems, can be added to describe physical phenomena that a standard
dynamical model can not describe. In this chapter, we address inequality
constraints that can be applied on the state of the system. There has been
a wide use of systems with state constraints in state estimation applications
that include but are not limited to biomedical systems [Quintana et al., 1987],
camera tracking [Julier and LaViola, 2007] and others. An overview of the
techniques to incorporate equality and inequality constraints from the liter-
ature is given in Section 7.2. Then, Section 7.3 proposes a new approach
for a constrained Kalman filter guaranteeing that the estimated state, at
each time instant, belongs to a given zonotope, which is the envelope of the
constraints applied on the system state. Indeed, the unconstrained Kalman
estimation is projected onto the zonotope; an optimization problem is solved
at each iteration such that the state belongs to this zonotope. Unlike the
common deterministic approaches dealing with zonotopes, this technique re-
quires no intersection between two geometrical sets allowing us to reduce the
computation time. The main contribution of this chapter (which is also the
major contribution of this thesis) is the development of a new approach for a
zonotopic constrained Kalman filter (ZCKF) for systems subject to a poten-
tially large number of linear inequality constraints on the state, with reduced
complexity due to the use of an efficient optimization strategy. Indeed, the
novelty is the design of a dual algorithm taking advantage of the particular
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structure of the problem. The complexity of the optimization problem will
no longer be affected by the potentially large number of constraints defin-
ing the zonotope. Within the algorithm, a particularization of the iterative
shrinkage-thresholding algorithm (ISTA) is presented in Section 7.3.4 to take
advantage of its simplicity. Then, an improvement of the convergence rate
is considered by using the fast ISTA algorithm, known as FISTA [Nesterov,
1983], [Beck and Teboulle, 2009], in Section 7.3.5. These results have been
presented at the 57th IEEE Conference on Decision and Control, 2018. An
extension of the ZCKF strategy is proposed in Section 7.4 and is part of a
future submission to Automatica.

7.2 Constrained Kalman filter

When the system is subject to equality constraints, different approaches can
be applied to incorporate them. One approach focuses, for instance, on
the system model reduction [Wen and Durrant-Whyte, 1992], decreasing the
number of computations of the Kalman filter even though it might lead to
the loss of the physical meaning of the state variables. Another technique is
to consider the constraints as perfect measurements with zero measurement
noise [Porrill, 1988], but this will provide a new augmented measurement
equation leading to a singular measurement noise covariance. In addition,
increasing the dimension of the problem leads to larger computational com-
plexity of the Kalman gain. A third approach is to project the unconstrained
estimation onto the constraint surface at each time iteration [Simon and Chia,
2002]. These three different approaches result in the same final optimal state
estimation as proven in [Simon, 2010], in which a comparison of Kalman
filters results in case of equality and inequality constraints, for the different
methods, has been made. The advantage of the third approach lies in its ca-
pacity to be extended to inequality constraints. Another method to use for
inequality constraints is the probability density function (PDF) truncation
in which the constrained state estimate equals the mean of the truncated
PDF [Simon and Simon, 2010}, [Shimada et al., 1998]. In parallel, the same
problem has been treated differently in [Scott et al., 2016]: a set-based state
estimation problem has been considered using constrained zonotopes to take
into account linear equality constraints on the unit hypercube within its gen-
erators polytopes, zonotopes or even ellipsoids. Nevertheless, if the problem
of state estimation is addressed using zonotopes, the complexity grows con-
siderably due to set operations (e.g. intersection).

Goal: Given an estimation for the real state x; subject to known linear
constraints, the objective of this chapter is to provide a zonotopic constrained
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estimation for the state at the next time instant x;,;. In other terms, the
envelope of the constraints is a zonotope of the form Z = (p,H). Before
going into details, we start by presenting the structure of the constrained
Kalman filter.

Let us consider the following standard discrete-time LTT system:

{ Trp1 = Az + Buy +wy, (7.1)

yk: = ka + 'Uk,

where o), € R™, u, € R™ and y, € R™ are respectively the state vector of
the system, the input vector, and the measured output vector at sample time
k. The matrices A € R"=*™ B € R"™*" and C € R™*"* are respectively
the system, control and output matrices. Here, w, € R"™ and v, € R™
are random, independent white Gaussian noises with zero mean and covari-
ances G,, and G, respectively, i.e. wy ~ N(0,Gy), v ~ N(0,G,). Notice
that the state is a random Gaussian vector and the initial state is chosen
xy ~ N(o-1,Go—1). The Kalman filter is a recursive estimator, concep-
tualized in two phases: prediction and correction. The first phase uses the
estimation from a previous time instant &;_;;—; to produce a new estimate
of the state at the current instant Zj,—;. In the second phase, the prediction
is combined with the measurement information vy, to refine the estimation
Zyk. An overview of the standard Kalman filter! along with its equation
can be found in Chapter 4. Unavailable in the classical filter, constrained
filtering consists on correcting the estimation by considering constraints on
the state vector [Simon, 2010]. Suppose that the system state verifies the
inequality constraints:
Kz, < ¢,

with the matrix K and the vector & of appropriate dimensions. The con-
strained estimate is obtained solving the following optimization problem:

. N 2

min T, — T

in e — @l )
s.t. Kz, < ¢,

where W is a symmetric positive-definite weighting matrix W = W' = 0.
IfW= Gai, then the maximum probability estimate of the state with re-
spect to constraints is obtained [Simon and Chia, 2002]. The unconstrained
state estimation is directly projected onto the constrained subspace. The

'For simplicity reasons, we chose to work with a classical Kalman filter in this chap-
ter. However, the proposed algorithms in this chapter can also work with the different
extensions of the Kalman filter.
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constrained state estimate is then the solution of a quadratic programming
(QP) problem. For general quadratic optimization problems, various meth-
ods are commonly used. For example, the interior point method [McShane
et al., 1989] solves inequality constrained convex problems in polynomial
time, whereas the active set method [Panier, 1987] proceeds by solving equal-
ity subproblems and verifying if the original constraints are satisfied. The
algorithm in this chapter is based on a dual formulation of the (primal)
problem of obtaining the minimum weighted distance of the unconstrained
Kalman estimation to a zonotopic constraint. The designed algorithm be-
longs to the class of accelerated gradient methods [Nesterov, 2018], [Beck and
Teboulle, 2009]. Tt allows us to address zonotopic constraints, in the context
of the Kalman filter, with a simple implementation that is well suited for real
time applications. The presented algorithm inherits the convergence prop-
erties of accelerated methods. The proposed zonotopic constrained Kalman
filter will be presented in the next section.

7.3 Zonotopic Constrained Kalman Filter (ZCKF)

Motivated by the above discussion, we recall the fact that a zonotope is a
symmetric convex polytope that can also be represented by the half-space
representation (see Chapter 3). The conversion between the two represen-
tations is studied in [Fukuda, 2004], [Seymour, 1994]. Notice that solving
a convex optimization problem constrained by a zonotope is equivalent to
solving an optimization problem with linear inequalities. Obtaining the op-
timal solution based on classical optimization strategies, specially when the
zonotope has a large number of generators, can be quite time consuming and
not well suited for online implementations. The following subsections show
how to implement a dual formulation of the original problem that takes into
consideration the specific structure of the zonotopic constraint. In the dual
formulation the number of decision variables grows with the dimension of
the state-space and not with the number of generators required to define the
zonotopic constraint.

7.3.1 Preliminary work

In the context of the duality principle explained in Chapter 3, optimization
problems can be seen from two perspectives: the primal and the dual prob-
lem. In a convex problem, the primal and dual optimal objective values are
equal under rather general assumptions [Boyd and Vandenberghe, 2004]. In
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this work, we address an optimization problem of the form:

J* =min J,(u)
ueU (73)
st. Ru—p=0,
with u € R™, R € R™™, and p € R". It is assumed that &/ C R™ is a convex
set. Following the dual approach proposed in Nesterov’s work [Nesterov,
2005], a formal definition of the dual cost is provided.

Definition 7.1. Given the matrix R € R™*™, the vector p € R", and the
primal function J,: U — R from (7.3), let us define the smooth function
called dual function:

fla) = max (o, Ru — p) — Ju(u) (7.4)
and
u(a) = arg ng(a, Ru — p) — J,(u). (7.5)

Following the results in [Nesterov, 2005], given that:
- J < max (o, Ru — p) — J,(u), (7.6)

with J* defined by (7.3), the solution of the original problem is obtained by
minimizing f(a) with respect to a, with an inner maximization problem to
find the optimal value of u(e). For this formulation, the following property
holds.

Property 7.1. [Nesterov, 2005] Suppose that J,(+) is a smooth strictly con-
vex function with the hessian:
9?2 J,(u)
ou?

and suppose that U is a convex set. Then, using the notation:

=S >0 (7.7)

u = u(a) = arg max (a, Ru —p) — J,(u), (7.8)
we have:
1
fla) < f(a) + (Ru — p, Aar) + §AaTRS_1RTAa, (7.9)

with Aa = o« — &x.

This property states that in order to compute an increment A« leading
to an improvement of the dual function (i.e. f(a+ Aa) < f(a)) it suffices
to obtain Ac in such a way that:

(Ru — p, Aa) + ;AaTRS_lRTAa (7.10)

is minimized. The optimal value for Aa has an explicit solution because the
function to be minimized is a quadratic convex function of Acx.
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7.3.2 Algorithmic solution for ZCKF

The state estimation of the system (7.1) at each time instant k is subject
to a system of inequality constraints that can be rewritten as a zonotopic
constraint of the form x; € p @ HB™. This constraint is equivalent to the
existence of w € R™ such that |w|w < 1 and ; = p+ Hw, with p € R
the center and H = {hl hy ... hm] € R"*™ the generators matrix of the
zonotope. Hence, we are faced to the problem of computing the minimum
distance from the unconstrained Kalman estimate &y to the zonotope. This
distance is zero if Z;, is included in the zonotope. The constrained Kalman
filter optimization problem is:

rggl Jow(Z, W)

st. z=p+ Hw (7.11)
[wlle <1,

where the cost function is defined such as:

Jow(z,w) = J.(z) + ng'w
(7.12)

1 . 12 € T
= §Hz _m“k”GEﬁc tow w.

In this setting, the scalar ¢ > 0 is an arbitrarily small regularization pa-
rameter that guarantees that the quadratic function J,,(z,w) meets the
strict convexity assumption of the Property 7.1. From the inspection of the
quadratic function J,,(z,w) we have that the hessian is given by the fol-
lowing block diagonal matrix:

S = diag(G,a}g, el,). (7.13)
Notice that z = p + Hw is equivalent to:
{I —H} [zT 'wT}T =p.

This allows us to rewrite the problem (7.11) in the form of (7.3), with:



Chapter 7. Zonotopic constrained Kalman filter

The function u(a), as defined in Property 7.1, is given by:
_ S _ _ €T
u(a) = arg o X (o, z— p—Hw) — J.(2) FW W (7.14)

We notice that the previous optimization problem can be decomposed in two
independent ones as shown in (7.15):

u(a) = [Z(O‘)] - [ N Twl (7.15)

arg max —(a, Hw) — fw w
flwlloe <1

As noticed, the variable z, constrained by the linear inequalities forming the
zonotope in the primal mode, belongs to the set of real numbers in the dual
mode. In other terms, the number of decision variables in the optimization
problem no longer depends on the number of linear constraints, but on the
dimension of the state-space, which is generally smaller.

7.3.3 Computation details

This subsection details how to obtain the explicit expressions for z;, w; and
Aa;, required to implement both ISTA and FISTA algorithms at the jth
iteration.

7.3.3.1 Expression for z(a;,)

Based on expression (7.15), we recall here the definition of z; = z(«a;):

zj = arg max (@, z) — J.(z), (7.16)
where J.(z) = 3|z — &l|% -, . With the notation:
K|k

AZj =Z;— "ik\ka
equation (7.16) becomes:
Zj = ik\k + AZ]‘,
where
T Lo Ta
Azj = arg max o Az — §Az Gz (7.17)

AzeRnz
In order to obtain Az; we have to determine the value for Az that cancels
the gradient, i.e. Az; is given by:

oy, — G,aiAzj = 0.
Thus, Az; = Gyra; and then z; is obtained by (7.18):
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7.3.3.2 Expression for w(a;)
We recall from (7.15) that:

w(o;) = arg | Hﬁa}il —(aj, Hw) — %erw. (7.19)
Consider the following notation:
.
w; = w(ey) = | wi(1) w;(2) ... wi(m) ]| . (7.20)

We show in what follows that it is possible to obtain each component of
w; from the solution of an 1-dimensional optimization problem. Since H =

hi, hs ... h, }, we have from (7.19) that:

m ) UL .
w,; = arg max — Z(a;hi)wj (1) — Z 511)3(@)

w;j (i) ,i=1,...,m i1

st w(9)] <1, i=1,...,m.

We notice that this is a separable optimization problem in which each com-
ponent w;(7) can be obtained from:

. T . € o, .\ .
(i) = m (el h)w;(i) — <w?@),i=1,...,m. (7.21
w; (%) argwj(i)eﬂ?,\atij(i)\gl ( J Jw; (i) 2wj(z) 1 m ( )

We remark that the gradient of — (o) h;)w; (i) — Sw?(i) vanishes at —ta] h;.
This, along with the constraint |w;(i)| < 1, gives the expression:
w;(i) =4 1, if —lo)h;>1 (7.22)
—1 if —%ajh;<-1

for each component w; (i) with i =1,...,m.

7.3.3.3 Expression for Aq;

In view of Property 7.1 we have that the gradient of the dual cost for a given
a; is given by Ru; — p = z; — p — Hw;. Moreover, Property 7.1 also states
that an optimal local improvement with respect to the value obtained for o;
is given by a; + Aca;. The optimal local increment Acy; is obtained from
the minimization of:

1
(Ru(oy) — p, Aayy) + §0¢;FR571RTA%-
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By deriving with respect to Acy; and setting the derivative equal to 0, we
obtain that the value of Aa; at each iteration j is given by the expression:

Aa; = (RST'R") (p+ Hw; — z;). (7.23)

Notice that this last expression provides an exit condition for an algorithm
based on the gradient information. If the norm of p+Hw,;_; — z,_; is small,
the pair (w;_1,2;_1) is close to optimality because the gradient at a;_; is
close to zero. Therefore, the norm of ||p + Hw;_1 — z;_1]|| could be used
as exit condition for a numerical algorithm computing the solution of the
zonotopic constrained Kalman estimation.

7.3.4 Iterative Shrinkage Thresholding Algorithm (ISTA)

The particularization of the iterative shrinkage-thresholding algorithm (ISTA)
to the specific dual formulation adopted in this chapter is illustrated by Al-
gorithm 4.

Algorithm 4 ISTA method applied to (7.11)
Input: &, H, p.
Output: p + Hw;_;.
1: Initialization: j =1, a; = 0, zg = Ty, wo = 0.
2: while ||z;_; —p — Hw,_4|| > p do
3: Compute z; and w;, with (7.18) and (7.22), respectively.
4 Compute Ay from (7.23).
5 a1 = o + Aay.
6: g=7+1
7: return p + Hw;_;.

The scalar variable y denotes the desired tolerance for which the solution
is finally reached. Notice that the output p + Hw;_; belongs, by construc-
tion, to the zonotope p ® HB™. Moreover, p + Hw;_; provides, up to a
numeric accuracy controlled by the exit parameter u, the closest point, ac-
cording to the weighted norm || - “Giﬁc , to the original unconstrained Kalman

estimation &y;. We conclude that the output of the algorithm provides the
numerical solution to the zonotopic Kalman filter estimation problem. The
convex optimization problem (7.11) could be solved via classical methods.
However, with high order zonotopes, the problem can involve a large number
of constraints, which motivates the use of our approach.

One of the advantages of the algorithm above is its simplicity. However,
the ISTA algorithm is recognized as a slow method [Nesterov, 2018], [Beck
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and Teboulle, 2009]. In fact, it is guaranteed to converge with a convergence
rate of O( %) A faster algorithm, called fast iterative shrinkage-thresholding
algorithm (FISTA) provides a better convergence rate: the difference with
the optimal solution decreases with (’)(j%), see [Nesterov, 2018], [Beck and
Teboulle, 2009]. The speed of convergence and simplicity of both algorithms

make them well suited for online applications [Richter et al., 2012].

7.3.5 Fast Iterative Shrinkage Thresholding Algorithm
(FISTA)

In what follows, we present how to adapt the FISTA algorithm to the opti-
mization problem considered here (see Algorithm 5).

Algorithm 5 FISTA method applied to (7.11)
Input: z,, H, p.
Output: p + Hw;_;.
Initialization: j = 1,a; = 0,29 = &y, wo = 0,1, = 0,1; = 1.
while ||z, — p — Hw;_4|| > p do
Compute z; and w; using (7.18) and (7.22), respectively.
Compute Aca; from (7.23).
n; = a; + Aa;.

tj+1 — O5<1 + \/ 1 + 4t12)

oy =1+ ’ ("7]' - 77j—1)-
Jj=J+1L

9: return p + Hw;_,.

=

tit

The main difference between the two algorithms relies in the fact that in
FISTA, the gradient of the dual function is evaluated as a linear combination
of the last two values of an auxiliary variable n; [Beck and Teboulle, 2009].
This means that o, is obtained by interpolation between the two previous
points of the auxiliary variable (n; and n; ;). The computational time per
iteration for FISTA is basically the same as for ISTA. However, as commented
before, the convergence rate of FISTA is much better.

The convergence analysis of both algorithms is extensively detailed in
[Beck and Teboulle, 2009]. To test the algorithm and the assumption that
the FISTA algorithm has a better convergence rate than the ISTA algorithm
[Beck and Teboulle, 2009], three examples are further presented.
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Example 7.1. Given a zonotope Z(p;, H;) with normalized random values
p, = randn(n,,1) and Hy = %mndn(nx,m), with n, = 2 and m = 15,
the idea is to find the closest point to the state estimate that belongs to the
T
zonotope. The exact values of p, and H; are p, = [0.0423 —0.0403} and

H, = [H H, H} with:

H — —0.0434 0.0381 —0.1089 0.0431 0.0640
¢ 10.0260 —0.0768 0.0338 0.0086 0.0777|’

H, — —0.1026 0.0081 0.0253 0.0524  0.0248
P77 1-0.0480 0.0519 0.0451 —0.0098 —0.0081|’

H — —0.0299 —-0.1230 —0.0699 0.0499 —0.0972
¢ 1-0.0708 0.0315 0.0630 0.0703 —0.0277]|"

For verification and validation purposes, we assume the prior knowledge of
the optimal solution z* of the problem (7.11). Therefore, let us consider the

-
Kalman state estimation to be Zy, = {—1.5639 0.2457} , the covariance of
estimation Gyy = I,,, at the time instant &, with e = 107* in (7.12) and the

optimal solution that should be reached z* = {—0.8148 —0.0702]T.

Figure 7.1 shows that starting with the unconstrained state estimate rep-
resented by the black asterisk (sub-figure 7.1a), the algorithm offers a new
feasible point (denoted by a red circle) at each iteration, with a decreased
value of the original objective function (7.11), which means a closer point
to the blue zonotope (see sub-figures 7.1b to 7.1f). This was done by tak-
ing one step in the direction of the gradient of the objective function. By
adopting the estimate projection method, we are computing the minimum
distance from the unconstrained estimate to the zonotope. At the end of
the algorithm, the last red circle reaches the pre-calculated optimal solution
represented by the green asterisk.

The algorithm is expected to find better and better solution until the
convergence criterion is met (see Figure 7.1).
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Figure 7.1 — Illustration of the proposed zonotopic constrained algorithm
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Error
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Figure 7.2 — Comparison of estimation errors obtained with ISTA and FISTA

The exit criterion is the norm of the deviation of z; from the closest vertex
of the zonotope p+Huw; (black circle at each iteration) that is || z;—p—Huw;]|.
This norm is measured at each iteration and the algorithm terminates when
it is less or equal to u = 1078,

In order to expose the advantages of FISTA over ISTA, the algorithms
were tested on the same example 7.1. Figure 7.2 shows a comparison of the
function value error J(z;) — J(z*). Clearly, the results provided by FISTA
are much better than the ones provided by the ISTA algorithm in means of
convergence rate. In fact, it can be seen that after 500 iterations, FISTA
reaches an accuracy of 107, which is more precise than ISTA by several
orders of magnitude, and demonstrates its efficiency. Moreover, ISTA needed
more than 3000 iterations to reach the optimal value which was equivalent
to 0.08s that FISTA obtained after less than 1000 iterations (0.02s) with an
accuracy of 1077,

Example 7.2. Consider the system (7.1) with:

[ o1 0.3
~|-0.225 0.925]’
-1,

C= :1 o].
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The system state is estimated using a classical Kalman filter with g ~

e
N($0|_1, GO\—I); U = 5, wy, ~ N(0,00Z), Vg ~ N(0,00l), Lo|—1 = [0 2]
and Go—; = I. The constraints envelope Z(p,, Hy), with:

p,=[2 —03]",

—2 1 —0.6]

Hz:[O.S —0.8 1.6

is chosen randomly, on the basis of knowledge of the trajectory of the system
for illustration purposes.

3
* Kalman filter
X * ZCKF
2r —— Constraints | |
‘l L 4
(]
=
£ of f
o
=
o
S |
>
2F i
3+ i
_4 I I I
-2 0 2 4 6

X-coordinate

Figure 7.3 — Classical Kalman filter versus zonotopic constrained Kalman
filter

Example 7.3. The chosen constraints are not too loose to prove the effi-
ciency of the algorithm no matter where the estimate is located, and not too
tight to keep a realistic problem, allowing variations on the state variables
and trajectory. The regularization parameter is ¢ = 1074, Figure 7.3 shows
the plot of the system trajectory, along with the zonotope representing the
constraints envelope, the unconstrained estimates and the constrained esti-
mates. The red asterisks obtained by applying the classical Kalman filter,
are the input for the constraints algorithm. It can be noticed that the uncon-
strained estimates remain the same if they already belong to the zonotope
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(blue lines). If not, the constrained estimates (black asterisks) are obtained
using the proposed algorithm. The constrained estimates, then, belong to
the zonotope.

Set-membership state estimation approaches, that consist mainly in com-
puting the intersection between the predicted uncertain set and the measure-
ment set, usually require a large computation time. Therefore, it is interest-
ing to study the computational time of the proposed approach, once applied
to state estimation problems subject to a large number of linear constraints.
Table 7.1 shows the simulation time in seconds, for both algorithms ISTA and
FISTA when dealing with large scale zonotopes up to an order of m = 10000.
The simulation results have been obtained with an Intel Core i7 — 4790 3.60
GHz, for random generated zonotopes with n, = 2 and a desired tolerance of
1= 0.01. Clearly it can be shown that the computation time is significantly
reduced when using the proposed approach with FISTA.

Table 7.1 — Computation time of the considered algorithms with large-scale
zonotopes

Parameter Computation time (s)
m ZCKF based on ISTA | ZCKF based on FISTA
10 1.4 0.02
100 5.35 0.04
1000 125.35 0.12
10000 762 3.2

7.4 Extended Zonotopic Constrained Kalman
Filter (EZCKF)

When the convex optimization problem (7.11) is applied to a large scale
system, the number of decision variables can reach thousands when dealing
with high order zonotopes. This motivated the use of the approach based
on FISTA, where most of the computational effort is limited to simple equa-
tions of multiplications and additions. Furthermore, the use of the generator
representation of a zonotope Z(p, H) presents significant advantages in re-
search. In fact, being able to represent a complex geometrical form using a
"simple" matrix, leads to easier and simpler computations. When the order
of the zonotope defined by the number of its generators increases, the com-
plexity of the algorithm grows up. The goal of this section is to compute a
reduced order zonotope, approximating a high order zonotope. This problem
is tackled in the literature, by using reduction techniques, more precisely the
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reduction of the number of generators of a zonotope. Concisely, it consists
of replacing a subset of generators by a lower number that form an inter-
val [Combastel, 2006] or a parallelotope [M. Althoff and Buss, 2010]. The
choice of the subset and the quality of the approximation depend generally
on the criterion used to split the zonotope. Here, a complexity reduction
technique is integrated on what was done in the previous algorithms, to limit
the number of generators defining the zonotope at each iteration. It is more
convenient time-wise to iterate on a smaller zonotope rather than on the
original one.

In this context, the algorithm should be able to find a smaller zonotope
that we will refer to by the non fixed zonotope. More precisely, the generators
forming the matrix H are sorted in a way that:

H=|h hy ... hy |

such that:

1 1 1
|gajTh1| < |gajTh2| <...< |gajThm|

The choice of the active generators is critical to solve the dual problem as it
determines the set of generators that influence the final result the most. The
new non fized zonotope is Z(P,,ey,, Hnyp) with:

an:[hl hy ... h,], (7.24)

wnf:{wl wy ... wl}, (7.25)

formed of the first [ generators of m (I < m), with a new center p,,,,, obtained
by a simple translation of the previous zonotope center such that

pnew =D + waf7 (726)

with
Hy =l by oo by |, (7.27)
wyr = { Wiy1 Wi ... Wy } . (728)

Once the smaller zonotope is chosen, the algorithm is expected to find a
feasible solution with respect to the zonotope Z(p,,.,,, Hnf).

Briefly, and similar to the previous FISTA algorithm, Algorithm 6 takes
as input the zonotope forming the constraints along with the unconstrained
Kalman filter. Mainly, each iteration of the algorithm consists of a gradient
step of the smooth part followed by a shrinkage operation.
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Algorithm 6 Reduced FISTA method applied to (7.11)

Input zKalmanaHyp
Output: oy

1: Initialization: k=1, a; =0
Split the initial zonotope Z(p,H) and find Hy, ws, H, s, w,;, with
(7.27),(7.28), (7.24), (7.25), respectively.
if Hy is not empty then
Prew = P+ Hywy
while ||z,_1 — p,.., — Hw,_1|| > 1 do
Compute z; and w; using (7.18) and (7.22), respectively.
Compute Ay from (7.23).
n; = a; + Aa;.

tj+1 — O5<1 —|— \/1 + 475?)

t:—1
(nj —77j—1>-

N

J
it

10: i = 7’] +
11: j=7+1
12: return p + Hw;_;.

The main difference with the previous algorithm is the newly added re-
duction step of zonotopes, that makes the computations more efficient. In-
deed, the complexity of Algorithm 6 strongly depends on the number of
constraints, thus on the order of zonotopes represented by their number of
generators and dimensions. The foremost advantage then of the additional
zonotope reduction step in the algorithm is a reduced complexity, therefore
reduced computation time. Actually, at each iteration, the algorithm finds a
solution with a decreased value of the original objective function (7.11) with
respect to the reduced zonotope. This output is close enough to the optimal
solution of the algorithm. However, reaching the optimal solution using one
or more reduced zonotopes is faster than considering the original zonotope,
with a potentially large number of constraints in computations.

Example 7.4. To prove the effectiveness of the proposed EZCKF, we con-
sider a randomly generated zonotope Z(p,H), with p = randn(n,,1) and
a normalized form of the matrix H = trandn(n,,m) that forms the con-
straints for the system state with n, = 2 and m = 20. The exact values of p
and H are:

.
p=[0.0185 —0.0035] ,
H:[Ha Hb Hc Hd]a
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such that:

H — [—0.0884 —0.0623 0.0576 —0.0107 —0.1191
“__0.0149 0.0348 —0.0380 0.0584  0.1042 |’

B [0.0426 —0.0672  0.0255 —0.0366 0.0329
10.0352 —0.0575 —0.0052 0.0414 0.0154]°

H. — [0.0262 —0.0751 —0.0351 0.0080 0.0156
c |—0.0273  —0.0333  0.0529 0.0651 0.0050]°

B [0.0716  0.0834  0.0025 0.0567 —0.0110
10.0017 —0.0205 0.0098 0.0186 —0.0619] "

A prior knowledge of the optimal solution is assumed for verification purposes
T
such that z,,; = {0.3382 —0.6963} . The unconstrained Kalman estimate

-
1S ZKalman = [0.4070 —0.9123} and the covariance of estimation equals to
I.,.

Figures 7.4, 7.5 and 7.6 show the zonotopic constrained algorithm in de-
tails. Instead of iterating on the entire zonotope shown in Figure 7.4, the
algorithm chooses at the beginning a smaller zonotope (See Figure 7.5), in
terms of the number of generators (m; = 5). The algorithm iterates until
finding the best solution coherent with the chosen zonotope which is the pro-
jection of the unconstrained estimate on the smaller zonotope. This solution
is feasible and clearly closer to the optimal solution. For more accuracy,
the algorithm iterates next with a larger zonotope (my = 10) as shown in
Figure 7.6, keeping the generators that affect the most the shape of the zono-
tope. Starting with the previously obtained solution, the algorithm iterates
until reaching a better solution. The convergence criterion is met when the
error the variable z represented by the red circles, and 2.4, = Dy,e, T Hrpwi s
represented by the black circles is relatively small (< 10~%). The new zono-
tope and the original zonotope have the same side where the optimal solution
is located. The algorithm is guaranteed to converge at the end to the pre-
calculated solution represented by the green asterisk. When the number of
generators is relatively high, using the EZCKF multiple times on small zono-
topes is better in terms of time complexity than solving the algorithm on a
large scale zonotope. More precisely, in this example for m = 20, the ZCKF
reaches the optimal solution in 0.02s while the EZCKF reaches the optimal
solution slightly faster (0.019s). The speed is improved when we consider
larger zonotopes.
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Figure 7.5 — Example 7.4: first zonotope
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Figure 7.6 — Example 7.4: second zonotope

7.5 Conclusion

This chapter presents a new approach to design a zonotopic constrained
Kalman filter (ZCKF) combining the advantages of stochastic and determin-
istic approaches. The proposed technique guarantees that the system state
at each time instant belongs to a given zonotope. Using the duality prin-
ciple, the unconstrained estimated state is projected on a zonotope via a
convex optimization problem taking advantage of the particular structure of
the problem. The optimal solution of the problem can be obtained either
through the simple and efficient iterative shrinkage-thresholding algorithm
ISTA or FISTA, the faster version of ISTA.

The second contribution of the chapter is to consider an additional step of
zonotope order reduction in order to improve the overall performance of the
algorithm in terms of speed of convergence and computational complexity.
This is done by limiting the number of generators of the zonotope, thus the
number of computations per iteration. The simplicity and reduced complex-
ity of the approach makes it a promising method to use in set-membership
state estimation for large scale systems possibly subject to a large number of
constraints. This could also be an advantage, if the approach is applied to
large scale real systems.
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Chapter 8

Conclusion and perspectives

This chapter summarizes all the contributions presented in this thesis and
discusses our future research directions in the field of set-membership state
estimation.

8.1 Conclusion

This thesis discusses the advances of state estimation, particularly set-membership
state estimation, and proposes new ellipsoidal and zonotopic state estimation
techniques in the presence of bounded disturbances and measurement noises

for different classes of linear systems. The main contributions of this thesis

are divided into two parts:

e The first part builds upon previous results developed in the literature
and applies an ellipsoidal set-membership state estimation technique
to an octorotor in the context of radar applications. An extension to
discrete-time both linear time invariant (LTT) and linear time variant
(LTV) descriptor systems in the presence of bounded perturbations and
measurement noises is proposed.

e In the second part, a new zonotopic state estimation approach using
a Luenberger observer and based on the minimization of P-radius is
applied to the same model of an octorotor in a first step. In a sec-
ond step, this approach has been further extended to deal with a new
class of systems: the bi-modal piecewise affine systems. Furthermore,
the problem of set-membership state estimation has been treated dif-
ferently, combining deterministic and stochastic approaches. A new
zonotopic constrained Kalman filter (ZCKF) which combines the good
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accuracy of the zonotopic set-membership state estimation and the re-
duced complexity of the classical Kalman filter is presented.

The first part deals with the set-membership state estimation problem for
standard discrete-time linear time invariant systems with bounded perturba-
tions and bounded measurement noises. An existing ellipsoidal set-membership
state estimation technique is exposed, then compared to the classical Kalman
filter in terms of accuracy and complexity. The ellipsoidal technique offers
high precision but higher complexity compared to the Kalman filter. Then,
the method is extended to include control inputs in order to apply it on
a model of an octorotor in a radar application context where the goal is to
compute its operating frequency. Additionally, this technique inspired the de-
velopment of several ellipsoidal set-membership state estimation techniques
for discrete-time descriptor systems:

e Method 1 computes a fixed observer gain by off-line solving a LMI
problem,

e Method 2 updates the observer gain at each time instant aiming for
better accuracy but with higher complexity compared to Method 1,

e Method 3 aims to avoid the vertex enumeration problem in Method 2
by using a vector scaling technique.

Finally, an extension is proposed for LTV descriptor systems. Thus,
Method 4 computes at each time instant an updated observer gain and a
flexible shape of the estimated ellipsoidal set. Quadratic constraints on both
perturbations and measurements are considered in Method 5 to reduce the
estimation bounds.

In the second part, the set-membership state estimation problem is solved
using zonotopes as an alternative for ellipsoids. A guaranteed zonotopic set-
membership estimation technique based on a typical Luenberger observer
and on the minimization of the P-radius of a zonotope for linear discrete
time LTT standard systems. This technique is then compared to the off-line
ellipsoidal approach provided by Method 1 in Chapter 5 and applied to the
same octorotor model used in synthetic aperture radar. Another contribution
of this thesis is the extension of this off-line zonotopic state-estimation to deal
with a particular class of bi-modal piecewise affine systems by considering
some additional LMI constraints in the optimization problem.

Moreover, taking into consideration the previous contributions, a new
approach for a zonotopic constrained Kalman filter (ZCKF) is proposed in
Chapter 7 guaranteeing that the estimated state, at each time instant, be-
longs to a given zonotope, which is the envelope of the inequality constraints
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applied on the system state via an optimization problem. Unlike the common
deterministic approaches dealing with zonotopes, this technique requires no
intersection between two geometrical sets allowing to reduce the computation
complexity. The novelty of this part (which is the major contribution of this
thesis) is the design of a dual algorithm taking advantage of the particular
structure of the problem. The complexity of the optimization problem will
no longer be affected by the potentially large number of constraints defin-
ing the zonotope. Within the algorithm, a particularization of the iterative
shrinkage-thresholding algorithm (ISTA) is presented to take advantage of its
simplicity. An improvement of the convergence rate is considered by using the
fast ISTA algorithm, known as FISTA [Nesterov, 1983], [Beck and Teboulle,
2009]. Then, we introduce in a second part, within the FISTA algorithm,
a new extended zonotopic Kalman filter (EZCKF) reducing the complexity
of the zonotopic constraints. EZCKF approximates the given zonotope by a
lower order one, by limiting the number of generators at each time instant.
This step reduces the computational time of the FISTA algorithm.

8.2 Future directions

Several mid-term and long-term directions are proposed below.

This thesis mainly focused on considering that the perturbations belongs
to a box. An interesting perspective would be to consider that the pertur-
bations vector belong as well to an ellipsoid in Part I which allows us to
avoid the vertex enumeration without compromising on the accuracy of the
online ellipsoidal set-membership state estimation technique for descriptor
systems. Another interesting idea is to work with interval uncertainties in
the model, both for the standard and the descriptor systems. Additionally,
it is important to compare the ellipsoidal set-membership state estimation
techniques for descriptor systems with existing techniques in literature in
particular those using zonotopes.

As stated in Chapter 6, the off-line zonotopic technique has been de-
veloped for bi-modal piecewise systems. This could potentially lead to a
zonotopic state estimation technique for a general standard representation
of piecewise affine systems. To further our research, we intend to develop
ellipsoidal set-membership state estimation techniques for PWA systems to
take advantage of their simplicity in state estimation and compare them in
terms of accuracy and complexity with the developed zonotopic techniques.

In addition, we believe that the new results of Chapter 7 represent an
initial step toward a promising approach for state estimation of large scale
systems that combines the advantages of deterministic and stochastic ap-
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proaches. Future work on this topic should address the application of the
presented contributions (ZCKF and EZCKF') on a more complex system with
experimental validation. Moreover, another way to extend these results is to
update the state covariance matrix in the Kalman filter. Indeed, at the end
of the execution of the ZCKF algorithm we have more confidence in the sys-
tem’s state estimation meaning that the covariance matrix could be updated
to improve the state estimation at the next time instant. Notice that the
ZCKF and EZCKF approaches have been developed starting from a classical
Kalman filter. Further improvements can be done by using several extensions
of the Kalman filter.

Finally, on a wider level, it is important to further use the developed state
estimation methods (using zonotopes and ellipsoids) in the context of fault
detection and fault tolerant control.
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Résumé Dans le contexte des systémes
dynamiques, cette these développe des tech-
niques d’estimation d’état ensemblistes pour
différentes classes de systéemes. On considere
pour cela le cas d’un systeme standard linéaire
invariant dans le temps soumis a des perturba-
tions, des bruits de mesure et des incertitudes
inconnus, mais bornés.

Dans une premiere étape, une technique
d’estimation d’état ellipsoidale est étendue, puis
appliquée sur un modele d’octorotor utilisé dans
un contexte radar. Une extension de cette ap-
proche ellipsoidale d’estimation d’état est pro-
posée pour des systémes descripteurs.

Dans la deuxieme partie, nous proposons une
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méthode fondée sur la minimisation du P-
rayon d’un zonotope, appliquée a un modele
d’octorotor. Cette méthode est ensuite étendue
pour traiter un cas particulier de systémes
affines par morceaux.

Dans la continuité des approches précédentes,
un nouveau filtre de Kalman sous contraintes
zonotopiques est proposé dans la derniere partie
de cette these. En utilisant la forme duale d’un
probleme d’optimisation, ’algorithme projette
I’état sur un zonotope qui forme ’enveloppe de
I’ensemble des contraintes auxquelles 1’état est
soumis. La complexité de ’algorithme est en-
suite améliorée en remplagant le zonotope initial
par une forme réduite en limitant son nombre
de générateurs.
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Abstract: In the context of dynamical sys-
tems, this thesis focuses on the development of
robust set-membership state estimation proce-
dures for different classes of systems. We con-
sider the case of standard linear time-invariant
systems, subject to unknown but bounded per-
turbations and measurement noises.

The first part of this thesis builds upon
previous results on ellipsoidal set-membership
approaches. An extended ellipsoidal set-
membership state estimation technique is ap-
plied to a model of an octorotor used for radar
applications. Then, an extension of this ellip-
soidal state estimation approach is proposed for
descriptor systems. In the second part, we pro-
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pose a state estimation technique based on the
minimization of the P-radius of a zonotope, ap-
plied to the same model of the octorotor. This
approach is further extended to deal with a par-
ticular class of piecewise affine systems.

In the continuity of the previous approaches, a
new zonotopic constrained Kalman filter is pro-
posed in the last part of this thesis. By solving a
dual form of an optimization problem, the algo-
rithm projects the state on a zonotope forming
the envelope of the set of constraints that the
state is subject to. Then, the computational
complexity of the algorithm is improved by re-
placing the original possibly large-scale zono-
tope with a reduced form, by limiting its num-
ber of generators.
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