A. Abi-gerges, W. Richter, F. Lefebvre, P. Mateo, A. Varin et al., Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on beta-adrenergic cAMP signals, Circ. Res, vol.105, pp.784-792, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00439324

R. Acin-perez, E. Salazar, M. Kamenetsky, J. Buck, L. R. Levin et al., Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation, Cell Metab, vol.9, pp.265-276, 2009.

R. Acin-perez, M. Russwurm, K. Günnewig, M. Gertz, G. Zoidl et al., A phosphodiesterase 2A isoform localized to mitochondria regulates respiration, J. Biol. Chem, vol.286, pp.30423-30432, 2011.

M. Aflaki, X. Qi, L. Xiao, B. Ordog, A. Tadevosyan et al., Exchange protein directly activated by cAMP mediates slow delayed-rectifier current remodeling by sustained ?-adrenergic activation in guinea pig hearts, Circ. Res, vol.114, pp.993-1003, 2014.

S. R. Agarwal, C. E. Clancy, and H. R. , Mechanisms Restricting Diffusion of Intracellular cAMP, Sci. Rep, vol.6, 2016.

F. Ahmad, T. Murata, K. Shimizu, E. Degerman, D. Maurice et al., Cyclic nucleotide phosphodiesterases: important signaling modulators and therapeutic targets, Oral Dis, vol.21, pp.25-50, 2015.

F. Ahmad, W. Shen, F. Vandeput, N. Szabo-fresnais, J. Krall et al., Regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) activity by phosphodiesterase 3A (PDE3A) in human myocardium: phosphorylation-dependent interaction of PDE3A1 with SERCA2, J. Biol. Chem, vol.290, pp.6763-6776, 2015.

A. X. Curran, J. W. Shannon, T. R. Bers, D. M. Pogwizd, and S. M. , Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure, Circ. Res, vol.97, pp.1314-1322, 2005.

H. Al-ameri and R. A. Kloner, Erectile dysfunction and heart failure: the role of phosphodiesterase type 5 inhibitors, Int. J. Impot. Res, vol.21, pp.149-157, 2009.

Y. Alcalay, E. Hochhauser, V. Kliminski, J. Dick, M. A. Zahalka et al., Popeye domain containing 1 (Popdc1/Bves) is a caveolae-associated protein involved in ischemia tolerance, PloS One, vol.8, 2013.

E. Amsallem, C. Kasparian, G. Haddour, J. P. Boissel, and P. Nony, Phosphodiesterase III inhibitors for heart failure, Cochrane Database Syst. Rev. CD002230, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02372544

B. Andrée, T. Hillemann, G. Kessler-icekson, T. Schmitt-john, H. Jockusch et al., , 2000.

, Isolation and characterization of the novel popeye gene family expressed in skeletal muscle and heart, Dev. Biol, vol.223, pp.371-382

B. Andrée, A. Fleige, T. Hillemann, H. Arnold, G. Kessler-icekson et al., Molecular and functional analysis of Popeye genes: A novel family of transmembrane proteins preferentially expressed in heart and skeletal muscle, Exp. Clin. Cardiol, vol.7, pp.99-103, 2002.

M. Arai, N. R. Alpert, D. H. Maclennan, P. Barton, and P. M. , Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium, Circ. Res, vol.72, pp.463-469, 1993.

D. F. Ashman, R. Lipton, M. M. Melicow, and P. T. , Isolation of adenosine 3', 5'-monophosphate and guanosine 3', 5'-monophosphate from rat urine, Biochem. Biophys. Res. Commun, vol.11, pp.330-334, 1963.

A. Asokan and R. J. Samulski, An emerging adeno-associated viral vector pipeline for cardiac gene therapy, Hum. Gene Ther, vol.24, pp.906-913, 2013.

M. Asrar-ul-haq, V. Mutha, N. Rudd, D. L. Hare, and C. Wong, Heart failure with preserved ejection fraction -unwinding the diagnosis mystique, Am. J. Cardiovasc. Dis, vol.4, pp.100-113, 2014.

R. W. Atchison, B. C. Casto, and W. M. Hammon, ADENOVIRUS-ASSOCIATED DEFECTIVE VIRUS PARTICLES, Science, vol.149, pp.754-756, 1965.

M. F. Azevedo, F. R. Faucz, E. Bimpaki, A. Horvath, I. Levy et al., Clinical and molecular genetics of the phosphodiesterases (PDEs), Endocr. Rev, vol.35, pp.195-233, 2014.

J. Backs, B. C. Worst, L. H. Lehmann, D. M. Patrick, Z. Jebessa et al., Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4, J. Cell Biol, vol.195, pp.403-415, 2011.

G. S. Baillie, A. Sood, I. Mcphee, I. Gall, S. J. Perry et al., beta-Arrestinmediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.940-945, 2003.

D. S. Baim, A. V. Mcdowell, J. Cherniles, E. S. Monrad, J. A. Parker et al., Evaluation of a new bipyridine inotropic agent--milrinone--in patients with severe congestive heart failure, N. Engl. J. Med, vol.309, pp.748-756, 1983.

A. J. Baker, Adrenergic signaling in heart failure: a balance of toxic and protective effects, Pflugers Arch, vol.466, pp.1139-1150, 2014.

R. S. Baliga, M. E. Preedy, M. S. Dukinfield, S. M. Chu, A. A. Aubdool et al., Phosphodiesterase 2 inhibition preferentially promotes NO/guanylyl cyclase/cGMP signaling to reverse the development of heart failure, Proc. Natl. Acad. Sci. U. S. A, vol.115, pp.7428-7437, 2018.

R. C. Balijepalli, J. D. Foell, D. D. Hall, J. W. Hell, and T. J. Kamp, Localization of cardiac L-type Ca(2+) channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.7500-7505, 2006.

J. Balligand, Cardiac salvage by tweaking with beta-3-adrenergic receptors, Cardiovasc. Res, vol.111, pp.128-133, 2016.

J. L. Balligand, R. A. Kelly, P. A. Marsden, T. W. Smith, and M. T. , Control of cardiac muscle cell function by an endogenous nitric oxide signaling system, Proc. Natl. Acad. Sci. U. S. A, vol.90, pp.347-351, 1993.

L. G. Baltas, P. Karczewski, S. Bartel, and E. G. Krause, The endogenous cardiac sarcoplasmic reticulum Ca2+/calmodulin-dependent kinase is activated in response to beta-adrenergic stimulation and becomes Ca2+-independent in intact beating hearts, FEBS Lett, vol.409, pp.131-136, 1997.

D. C. Bartos, E. Grandi, and C. M. Ripplinger, Ion Channels in the Heart, Compr. Physiol, vol.5, pp.1423-1464, 2015.

Z. Bastug-Özel, P. T. Wright, A. E. Kraft, D. Pavlovic, J. Howie et al., Heart failure leads to altered ?2-adrenoceptor/cyclic adenosine monophosphate dynamics in the sarcolemmal phospholemman/Na,K ATPase microdomain, Cardiovasc. Res, vol.115, pp.546-555, 2019.

R. Bauer, H. Enns, A. Jungmann, B. Leuchs, C. Volz et al., Various effects of AAV9-mediated ?ARKct gene therapy on the heart in dystrophin-deficient (mdx) mice and ?-sarcoglycan-deficient (Sgcd-/-) mice, Neuromuscul. Disord. NMD, vol.29, pp.231-241, 2019.

G. F. Baxter, Natriuretic peptides and myocardial ischaemia, Basic Res. Cardiol, vol.99, pp.90-93, 2004.

M. B. Beard, A. E. Olsen, R. E. Jones, S. Erdogan, M. D. Houslay et al., UCR1 and UCR2 domains unique to the cAMP-specific phosphodiesterase family form a discrete module via electrostatic interactions, J. Biol. Chem, vol.275, pp.10349-10358, 2000.

J. A. Beavo and L. L. Brunton, Cyclic nucleotide research --still expanding after half a century, Nat. Rev. Mol. Cell Biol, vol.3, pp.710-718, 2002.

M. A. Beazely and V. J. Watts, Regulatory properties of adenylate cyclases type 5 and 6: A progress report, Eur. J. Pharmacol, vol.535, pp.1-12, 2006.

S. Beca, P. B. Helli, J. A. Simpson, D. Zhao, G. P. Farman et al., Phosphodiesterase 4D regulates baseline sarcoplasmic reticulum Ca2+ release and cardiac contractility, independently of L-type Ca2+ current, Circ. Res, vol.109, pp.1024-1030, 2011.

S. Beca, F. Ahmad, W. Shen, J. Liu, S. Makary et al., Phosphodiesterase type 3A regulates basal myocardial contractility through interacting with sarcoplasmic reticulum calcium ATPase type 2a signaling complexes in mouse heart, Circ. Res, vol.112, pp.289-297, 2013.

F. B. Bedada, J. J. Martindale, E. Arden, and J. M. Metzger, Molecular inotropy mediated by cardiac miRbased PDE4D/PRKAR1?/phosphoprotein signaling, Sci. Rep, vol.6, p.36803, 2016.

I. Bedioune, P. Bobin, S. Karam, M. Lindner, D. Mika et al., , 2016.

, Biol. Aujourdhui, vol.210, pp.127-138

I. Bedioune, F. Lefebvre, P. Lechêne, A. Varin, V. Domergue et al., PDE4 and mAKAP? are nodal organizers of ?2-ARs nuclear PKA signalling in cardiac myocytes, Cardiovasc. Res, vol.114, pp.1499-1511, 2018.

S. J. Beebe, O. Oyen, M. Sandberg, A. Frøysa, V. Hansson et al., Molecular cloning of a tissuespecific protein kinase (C gamma) from human testis--representing a third isoform for the catalytic subunit of cAMP-dependent protein kinase, Mol. Endocrinol. Baltim. Md, vol.4, pp.465-475, 1990.

A. T. Bender and J. A. Beavo, Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use, Pharmacol. Rev, vol.58, pp.488-520, 2006.

A. T. Bender, C. L. Ostenson, D. Giordano, and J. A. Beavo, Differentiation of human monocytes in vitro with granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor produces distinct changes in cGMP phosphodiesterase expression, Cell. Signal, vol.16, pp.365-374, 2004.

I. J. Benjamin, J. E. Jalil, L. B. Tan, K. Cho, K. T. Weber et al., Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis, Circ. Res, vol.65, pp.657-670, 1989.

J. L. Benovic, L. J. Pike, R. A. Cerione, C. Staniszewski, T. Yoshimasa et al., Phosphorylation of the mammalian beta-adrenergic receptor by cyclic AMP-dependent protein kinase. Regulation of the rate of receptor phosphorylation and dephosphorylation by agonist occupancy and effects on coupling of the receptor to the stimulatory guanine nucleotide regulatory protein, J. Biol. Chem, vol.260, pp.7094-7101, 1985.

J. K. Bentley, A. Kadlecek, C. H. Sherbert, D. Seger, W. K. Sonnenburg et al., Molecular cloning of cDNA encoding a "63"-kDa calmodulin-stimulated phosphodiesterase from bovine brain, J. Biol. Chem, vol.267, pp.18676-18682, 1992.

O. Bergmann, S. Zdunek, A. Felker, M. Salehpour, K. Alkass et al., Dynamics of Cell Generation and Turnover in the Human Heart, Cell, vol.161, pp.1566-1575, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01225091

F. Berisha and V. O. Nikolaev, Cyclic nucleotide imaging and cardiovascular disease, Pharmacol. Ther, vol.175, pp.107-115, 2017.

D. M. Bers, Ca transport during contraction and relaxation in mammalian ventricular muscle, Basic Res. Cardiol. 92 Suppl, vol.1, pp.1-10, 1997.

D. M. Bers, Excitation-Contraction Coupling and Cardiac Contractile Force, 2001.

D. M. Bers, Cardiac excitation-contraction coupling, Nature, vol.415, pp.198-205, 2002.

M. Berthouze-duquesnes, A. Lucas, A. Saulière, Y. Y. Sin, A. Laurent et al., Specific interactions between Epac1, ?-arrestin2 and PDE4D5 regulate ?-adrenergic receptor subtype differential effects on cardiac hypertrophic signaling, Cell. Signal, vol.25, pp.970-980, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01010399

P. Bidwell, D. J. Blackwell, Z. Hou, A. V. Zima, and S. L. Robia, Phospholamban binds with differential affinity to calcium pump conformers, J. Biol. Chem, vol.286, pp.35044-35050, 2011.

M. Biel and M. S. , Cyclic nucleotide-gated channels, Handb. Exp. Pharmacol, pp.111-136, 2009.

A. Biernacka and N. G. Frangogiannis, Aging and Cardiac Fibrosis, Aging Dis, vol.2, pp.158-173, 2011.

B. J. Biesiadecki, J. P. Davis, M. T. Ziolo, and P. M. Janssen, Tri-modal regulation of cardiac muscle relaxation; intracellular calcium decline, thin filament deactivation, and cross-bridge cycling kinetics, Biophys. Rev, vol.6, pp.273-289, 2014.

L. T. Bish, K. Morine, M. M. Sleeper, J. Sanmiguel, D. Wu et al., Adenoassociated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat, Hum. Gene Ther, vol.19, pp.1359-1368, 2008.

K. Bishu, N. Hamdani, S. F. Mohammed, M. Kruger, T. Ohtani et al., Sildenafil and B-type natriuretic peptide acutely phosphorylate titin and improve diastolic distensibility in vivo, Circulation, vol.124, pp.2882-2891, 2011.

J. D. Bisognano, H. D. Weinberger, T. J. Bohlmeyer, A. Pende, M. V. Raynolds et al., Myocardial-directed overexpression of the human beta(1)-adrenergic receptor in transgenic mice, J. Mol. Cell. Cardiol, vol.32, pp.817-830, 2000.

L. M. Blayney, J. Jones, J. Griffiths, and L. F. , A mechanism of ryanodine receptor modulation by FKBP12/12.6, protein kinase A, and K201, Cardiovasc. Res, vol.85, pp.68-78, 2010.

D. K. Blumenthal, J. T. Stull, and G. N. Gill, Phosphorylation of cardiac troponin by guanosine 3':5'-monophosphate-dependent protein kinase, J. Biol. Chem, vol.253, pp.324-326, 1978.

P. Bobin, M. Belacel-ouari, I. Bedioune, L. Zhang, J. Leroy et al., Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective, Arch. Cardiovasc. Dis, vol.109, pp.431-443, 2016.

P. Bobin, A. Varin, F. Lefebvre, R. Fischmeister, G. Vandecasteele et al., Calmodulin kinase II inhibition limits the pro-arrhythmic Ca2+ waves induced by cAMP-phosphodiesterase inhibitors, Cardiovasc. Res, vol.110, pp.151-161, 2016.

D. C. Bode, J. R. Kanter, and L. L. Brunton, Cellular distribution of phosphodiesterase isoforms in rat cardiac tissue, Circ. Res, vol.68, pp.1070-1079, 1991.

M. Böhm, T. Eschenhagen, P. Gierschik, K. Larisch, H. Lensche et al., Radioimmunochemical quantification of Gi alpha in right and left ventricles from patients with ischaemic and dilated cardiomyopathy and predominant left ventricular failure, J. Mol. Cell. Cardiol, vol.26, pp.133-149, 1994.

P. Bois, R. Guinamard, A. E. Chemaly, J. Faivre, and J. Bescond, Molecular regulation and pharmacology of pacemaker channels, Curr. Pharm. Des, vol.13, pp.2338-2349, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00394274

B. Boivin, C. Lavoie, G. Vaniotis, A. Baragli, L. Villeneuve et al., Functional beta-adrenergic receptor signalling on nuclear membranes in adult rat and mouse ventricular cardiomyocytes, Cardiovasc. Res, vol.71, pp.69-78, 2006.

G. Bolger, T. Michaeli, T. Martins, T. St-john, B. Steiner et al.,

, A family of human phosphodiesterases homologous to the dunce learning and memory gene product of Drosophila melanogaster are potential targets for antidepressant drugs, Mol. Cell. Biol, vol.13, pp.6558-6571

C. Bollensdorff, O. Lookin, and P. Kohl, Assessment of contractility in intact ventricular cardiomyocytes using the dimensionless "Frank-Starling Gain" index, Pflugers Arch, vol.462, pp.39-48, 2011.

J. S. Borer, K. Fox, P. Jaillon, G. Lerebours, and I. Group, Antianginal and antiischemic effects of ivabradine, an I(f) inhibitor, in stable angina: a randomized, double-blind, multicentered, placebo-controlled trial, Circulation, vol.107, pp.817-823, 2003.

N. I. Bork and V. O. Nikolaev, cGMP Signaling in the Cardiovascular System-The Role of Compartmentation and Its Live Cell Imaging, Int. J. Mol. Sci, vol.19, 2018.

B. A. Borlaug, G. D. Lewis, S. E. Mcnulty, M. J. Semigran, M. Lewinter et al., Effects of sildenafil on ventricular and vascular function in heart failure with preserved ejection fraction, Circ. Heart Fail, vol.8, pp.533-541, 2015.

P. Borst, C. De-wolf, and K. Van-de-wetering, Multidrug resistance-associated proteins 3, 4, and 5, Pflugers Arch, vol.453, pp.661-673, 2007.

C. Boularan and C. Gales, Cardiac cAMP: production, hydrolysis, modulation and detection, Front. Pharmacol, vol.6, p.203, 2015.

A. Bourcier, M. Barthe, I. Bedioune, P. Lechêne, H. B. Miled et al., Imipramine as an alternative to formamide to detubulate rat ventricular cardiomyocytes, Exp. Physiol, vol.104, pp.1237-1249, 2019.

J. Bradley, J. Reisert, and F. S. , Regulation of cyclic nucleotide-gated channels, Curr. Opin. Neurobiol, vol.15, pp.343-349, 2005.

T. Brand, The Popeye domain-containing gene family, Cell Biochem. Biophys, vol.43, pp.95-103, 2005.

T. Brand, The Popeye Domain Containing Genes and Their Function as cAMP Effector Proteins in Striated Muscle, J. Cardiovasc. Dev. Dis, vol.5, 2018.

C. A. Bravo, D. E. Vatner, R. Pachon, J. Zhang, and S. F. Vatner, A Food and Drug Administration-Approved Antiviral Agent that Inhibits Adenylyl Cyclase Type 5 Protects the Ischemic Heart Even When Administered after Reperfusion, J. Pharmacol. Exp. Ther, vol.357, pp.331-336, 2016.

R. Breckenridge, Heart failure and mouse models, Dis. Model. Mech, vol.3, pp.138-143, 2010.

M. Brescia and M. Zaccolo, Modulation of Compartmentalised Cyclic Nucleotide Signalling via Local Inhibition of Phosphodiesterase Activity, Int. J. Mol. Sci, vol.17, 2016.

F. Brette, E. Blandin, C. Simard, R. Guinamard, and L. Sallé, Epac activator critically regulates action potential duration by decreasing potassium current in rat adult ventricle, J. Mol. Cell. Cardiol, vol.57, pp.96-105, 2013.

A. B. Brillantes, K. Ondrias, A. Scott, E. Kobrinsky, E. Ondriasová et al., Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein, Cell, vol.77, pp.513-523, 1994.

M. R. Bristow, R. Ginsburg, W. Minobe, R. S. Cubicciotti, W. S. Sageman et al., Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts, N. Engl. J. Med, vol.307, pp.205-211, 1982.

M. R. Bristow, R. Ginsburg, V. Umans, M. Fowler, W. Minobe et al., Beta 1-and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure, Circ. Res, vol.59, pp.297-309, 1986.

B. Michael and R. , Treatment of Chronic Heart Failure With ?-Adrenergic Receptor Antagonists, Circ. Res, vol.109, pp.1176-1194, 2011.

O. E. Brodde, Beta 1-and beta 2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure, Pharmacol. Rev, vol.43, pp.203-242, 1991.

O. E. Brodde, Beta-adrenoceptors in cardiac disease, Pharmacol. Ther, vol.60, pp.405-430, 1993.

O. E. Brodde and M. M. , Adrenergic and muscarinic receptors in the human heart, Pharmacol. Rev, vol.51, pp.651-690, 1999.

O. E. Brodde, H. Bruck, K. Leineweber, and T. Seyfarth, Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart, Basic Res. Cardiol, vol.96, pp.528-538, 2001.

J. A. Broussard, B. Rappaz, D. J. Webb, and C. M. Brown, Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt, Nat. Protoc, vol.8, pp.265-281, 2013.

P. Brugada, M. Green, H. Abdollah, and H. J. Wellens, Significance of ventricular arrhythmias initiated by programmed ventricular stimulation: the importance of the type of ventricular arrhythmia induced and the number of premature stimuli required, Circulation, vol.69, pp.87-92, 1984.

A. Bucchi, M. Baruscotti, and D. Difrancesco, Current-dependent block of rabbit sino-atrial node I(f) channels by ivabradine, J. Gen. Physiol, vol.120, pp.1-13, 2002.

H. U. Bühler, M. Da-prada, W. Haefely, and G. B. Picotti, Plasma adrenaline, noradrenaline and dopamine in man and different animal species, J. Physiol, vol.276, pp.311-320, 1978.

A. L. Bui, T. B. Horwich, and G. C. Fonarow, Epidemiology and risk profile of heart failure, Nat. Rev. Cardiol, vol.8, pp.30-41, 2011.

M. Buitrago, K. Lorenz, A. H. Maass, S. Oberdorf-maass, U. Keller et al., The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy, Nat. Med, vol.11, pp.837-844, 2005.

P. P. Burgers, Y. Ma, L. Margarucci, M. Mackey, M. A. Van-der-heyden et al., A small novel A-kinase anchoring protein (AKAP) that localizes specifically protein kinase A-regulatory subunit I (PKA-RI) to the plasma membrane, J. Biol. Chem, vol.287, pp.43789-43797, 2012.

B. S. Burlew and W. K. , Cardiac fibrosis as a cause of diastolic dysfunction, Herz, vol.27, pp.92-98, 2002.

B. Burstein and N. S. , Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation, J. Am. Coll. Cardiol, vol.51, pp.802-809, 2008.

I. L. Buxton and L. L. Brunton, Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes, J. Biol. Chem, vol.258, pp.10233-10239, 1983.

S. Calaghan, L. Kozera, and E. White, Compartmentalisation of cAMP-dependent signalling by caveolae in the adult cardiac myocyte, J. Mol. Cell. Cardiol, vol.45, pp.88-92, 2008.

A. I. Calejo and T. K. , Targeting protein-protein interactions in complexes organized by A kinase anchoring proteins, Front. Pharmacol, vol.6, p.192, 2015.

P. Camelliti, T. K. Borg, and P. Kohl, Structural and functional characterisation of cardiac fibroblasts, Cardiovasc. Res, vol.65, pp.40-51, 2005.

G. K. Carnegie, C. K. Means, and J. D. Scott, A-kinase anchoring proteins: from protein complexes to physiology and disease, IUBMB Life, vol.61, pp.394-406, 2009.

L. R. Castro, I. Verde, D. M. Cooper, and R. Fischmeister, Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes, Circulation, vol.113, pp.2221-2228, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00000038

L. R. Castro, J. Schittl, and R. Fischmeister, Feedback control through cGMP-dependent protein kinase contributes to differential regulation and compartmentation of cGMP in rat cardiac myocytes, Circ. Res, vol.107, pp.1232-1240, 2010.

O. Cazorla and L. A. , Regional variation in myofilament length-dependent activation, Pflugers Arch, vol.462, pp.15-28, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00573260

O. Cazorla, A. Lucas, F. Poirier, A. Lacampagne, and F. Lezoualc'h, The cAMP binding protein Epac regulates cardiac myofilament function, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.14144-14149, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01824357

M. C. Cerra and D. Pellegrino, Cardiovascular cGMP-generating systems in physiological and pathological conditions, Curr. Med. Chem, vol.14, pp.585-599, 2007.

J. M. Chalovich and E. E. , Inhibition of actomyosin ATPase activity by troponin-tropomyosin without blocking the binding of myosin to actin, J. Biol. Chem, vol.257, pp.2432-2437, 1982.

N. J. Chandler, I. D. Greener, J. O. Tellez, S. Inada, H. Musa et al., Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker, Circulation, vol.119, pp.1562-1575, 2009.

C. J. Chang, L. Lee, D. Yu, K. Dao, J. Bossuyt et al., Acute ?-adrenergic activation triggers nuclear import of histone deacetylase 5 and delays G(q)-induced transcriptional activation, J. Biol. Chem, vol.288, pp.192-204, 2013.

S. Cheepala, J. Hulot, J. A. Morgan, Y. Sassi, W. Zhang et al., Cyclic nucleotide compartmentalization: contributions of phosphodiesterases and ATP-binding cassette transporters, Annu. Rev. Pharmacol. Toxicol, vol.53, pp.231-253, 2013.

M. G. Chelu, S. Sarma, S. Sood, S. Wang, R. J. Van-oort et al., Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice, J. Clin. Invest, vol.119, pp.1940-1951, 2009.

C. Chen, J. Du, W. Feng, Y. Song, Z. Lu et al., ?-Adrenergic receptors stimulate interleukin-6 production through Epac-dependent activation of PKC?/p38 MAPK signalling in neonatal mouse cardiac fibroblasts, Br. J. Pharmacol, vol.166, pp.676-688, 2012.

S. Chen, W. E. Knight, and Y. C. , Roles of PDE1 in Pathological Cardiac Remodeling and Dysfunction, J. Cardiovasc. Dev. Dis, vol.5, 2018.

W. Chen, A. Spitzl, D. Mathes, V. O. Nikolaev, F. Werner et al., Endothelial Actions of ANP Enhance Myocardial Inflammatory Infiltration in the Early Phase After Acute Infarction, Circ. Res, vol.119, pp.237-248, 2016.

M. Chen-goodspeed, A. N. Lukan, and C. W. Dessauer, Modeling of Galpha(s) and Galpha(i) regulation of human type V and VI adenylyl cyclase, J. Biol. Chem, vol.280, pp.1808-1816, 2005.

Y. Chen-izu, R. P. Xiao, L. T. Izu, H. Cheng, M. Kuschel et al., G(i)-dependent localization of beta(2)-adrenergic receptor signaling to L-type Ca(2+) channels, Biophys. J, vol.79, pp.2547-2556, 2000.

A. Chesley, M. S. Lundberg, T. Asai, R. P. Xiao, S. Ohtani et al., The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3'-kinase, Circ. Res, vol.87, pp.1172-1179, 2000.

L. G. Chicoine, C. L. Montgomery, W. G. Bremer, K. M. Shontz, D. A. Griffin et al., Plasmapheresis eliminates the negative impact of AAV antibodies on microdystrophin gene expression following vascular delivery, Mol. Ther. J. Am. Soc. Gene Ther, vol.22, pp.338-347, 2014.

M. Chinkers, D. L. Garbers, M. S. Chang, D. G. Lowe, H. M. Chin et al., A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor, Nature, vol.338, pp.78-83, 1989.

Y. W. Chung, C. Lagranha, Y. Chen, J. Sun, G. Tong et al., Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.2253-2262, 2015.

V. M. Coghlan, B. A. Perrino, M. Howard, L. K. Langeberg, J. B. Hicks et al., Association of protein kinase A and protein phosphatase 2B with a common anchoring protein, Science, vol.267, pp.108-111, 1995.

J. N. Cohn, T. B. Levine, M. T. Olivari, V. Garberg, D. Lura et al., , 1984.

, Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure, N. Engl. J. Med, vol.311, pp.819-823

J. M. Colomer, L. Mao, H. A. Rockman, and A. R. Means, Pressure overload selectively up-regulates Ca2+/calmodulin-dependent protein kinase II in vivo, Mol. Endocrinol. Baltim. Md, vol.17, pp.183-192, 2003.

C. Communal, K. Singh, D. B. Sawyer, and W. S. Colucci, Opposing effects of beta(1)-and beta(2)-adrenergic receptors on cardiac myocyte apoptosis : role of a pertussis toxin-sensitive G protein, Circulation, vol.100, pp.2210-2212, 1999.

G. Conceição, I. Heinonen, A. P. Lourenço, D. J. Duncker, and I. Falcão-pires, Animal models of heart failure with preserved ejection fraction, Neth. Heart J. Mon. J. Neth. Soc. Cardiol. Neth. Heart Found, vol.24, pp.275-286, 2016.

M. Conti and J. Beavo, Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling, Annu. Rev. Biochem, vol.76, pp.481-511, 2007.

M. Conti, W. Richter, C. Mehats, G. Livera, J. Park et al., Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling, J. Biol. Chem, vol.278, pp.5493-5496, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00322006

M. Conti, D. Mika, and W. Richter, Cyclic AMP compartments and signaling specificity: role of cyclic nucleotide phosphodiesterases, J. Gen. Physiol, vol.143, pp.29-38, 2014.

D. M. Cooper, Molecular and cellular requirements for the regulation of adenylate cyclases by calcium, Biochem. Soc. Trans, vol.31, pp.912-915, 2003.

J. D. Corbin and K. S. , Characterization and regulation of heart adenosine 3':5'-monophosphatedependent protein kinase isozymes, J. Biol. Chem, vol.252, pp.910-918, 1977.

J. D. Corbin, P. H. Sugden, T. M. Lincoln, and K. S. , Compartmentalization of adenosine 3':5'-monophosphate and adenosine 3':5'-monophosphate-dependent protein kinase in heart tissue, J. Biol. Chem, vol.252, pp.3854-3861, 1977.

J. D. Corbin, I. V. Turko, A. Beasley, and F. S. , The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding, Eur. J. Biochem, vol.267, pp.2760-2767, 2000.

C. Corinaldesi, D. Luigi, L. Lenzi, A. Crescioli, and C. , Phosphodiesterase type 5 inhibitors: back and forward from cardiac indications, J. Endocrinol. Invest, vol.39, pp.143-151, 2016.

S. Cotecchia, C. D. Del-vescovo, M. Colella, S. Caso, and D. D. , The alpha1-adrenergic receptors in cardiac hypertrophy: Signaling mechanisms and functional implications, Cell. Signal, vol.27, 1984.

P. Coumel, The management of clinical arrhythmias. An overview on invasive versus non-invasive electrophysiology, Eur. Heart J, vol.8, pp.92-99, 1987.

R. Covian, S. French, H. Kusnetz, and R. S. Balaban, Stimulation of oxidative phosphorylation by calcium in cardiac mitochondria is not influenced by cAMP and PKA activity, Biochim. Biophys. Acta, vol.1837, pp.1913-1921, 2014.

M. R. Cowie, A. Mosterd, D. A. Wood, J. W. Deckers, P. A. Poole-wilson et al., The epidemiology of heart failure, Eur. Heart J, vol.18, pp.208-225, 1997.

M. S. Cuffe, R. M. Califf, K. F. Adams, R. Benza, R. Bourge et al., Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial, JAMA, vol.287, pp.1541-1547, 2002.

Y. Daaka, L. M. Luttrell, and R. J. Lefkowitz, Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A, Nature, vol.390, pp.88-91, 1997.

A. Das, A. Smolenski, S. M. Lohmann, and R. C. Kukreja, Cyclic GMP-dependent protein kinase Ialpha attenuates necrosis and apoptosis following ischemia/reoxygenation in adult cardiomyocyte, J. Biol. Chem, vol.281, pp.38644-38652, 2006.

V. De-arcangelis, R. Liu, D. Soto, and Y. Xiang, Differential association of phosphodiesterase 4D isoforms with beta2-adrenoceptor in cardiac myocytes, J. Biol. Chem, vol.284, pp.33824-33832, 2009.

D. Jong, A. M. Maass, A. H. Oberdorf-maass, S. U. Van-veldhuisen, D. J. Van-gilst et al., Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation, Cardiovasc. Res, vol.89, pp.754-765, 2011.

D. Vries, L. Zheng, B. Fischer, T. Elenko, E. Farquhar et al., The Regulator of G Protein Signaling Family, Annu. Rev. Pharmacol. Toxicol, vol.40, pp.235-271, 2000.

E. Degerman, P. Belfrage, and V. C. Manganiello, Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3), J. Biol. Chem, vol.272, pp.6823-6826, 1997.

M. R. Dent, P. S. Tappia, and N. S. Dhalla, Gender differences in ?-adrenoceptor system in cardiac hypertrophy due to arteriovenous fistula, J. Cell. Physiol, vol.226, pp.181-186, 2011.

J. L. Desseyn, K. A. Burton, and G. S. Mcknight, Expression of a nonmyristylated variant of the catalytic subunit of protein kinase A during male germ-cell development, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.6433-6438, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02177685

C. A. Dézsi and V. Szentes, The Real Role of ?-Blockers in Daily Cardiovascular Therapy, Am. J. Cardiovasc. Drugs Drugs Devices Interv, vol.17, pp.361-373, 2017.

D. Benedetto, G. Scalzotto, E. Mongillo, M. , and P. T. , Mitochondrial Ca 2+ uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels, Cell Metab, vol.17, pp.965-975, 2013.

R. Dibianco, R. Shabetai, W. Kostuk, J. Moran, R. C. Schlant et al., A comparison of oral milrinone, digoxin, and their combination in the treatment of patients with chronic heart failure, N. Engl. J. Med, vol.320, pp.677-683, 1989.

C. De-diego, L. González-torres, J. M. Núñez, R. Centurión-inda, D. A. Martin-langerwerf et al., Effects of angiotensin-neprilysin inhibition compared to angiotensin inhibition on ventricular arrhythmias in reduced ejection fraction patients under continuous remote monitoring of implantable defibrillator devices, Heart Rhythm, vol.15, pp.395-402, 2018.

M. A. Dimattia, H. Nam, K. Van-vliet, M. Mitchell, A. Bennett et al., Structural insight into the unique properties of adeno-associated virus serotype 9, J. Virol, vol.86, pp.6947-6958, 2012.

B. Ding, J. Abe, H. Wei, Q. Huang, R. A. Walsh et al., Functional role of phosphodiesterase 3 in cardiomyocyte apoptosis: implication in heart failure, Circulation, vol.111, pp.2469-2476, 2005.

B. Ding, J. Abe, H. Wei, H. Xu, W. Che et al., A positive feedback loop of phosphodiesterase 3 (PDE3) and inducible cAMP early repressor (ICER) leads to cardiomyocyte apoptosis, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.14771-14776, 2005.

J. J. Dinicolantonio, H. Fares, A. K. Niazi, S. Chatterjee, F. D'ascenzo et al., ?-Blockers in hypertension, diabetes, heart failure and acute myocardial infarction: a review of the literature, Open Heart, vol.2, p.230, 2015.

M. Dittrich, J. Jurevicius, M. Georget, F. Rochais, B. Fleischmann et al., Local response of L-type Ca(2+) current to nitric oxide in frog ventricular myocytes, J. Physiol, vol.534, pp.109-121, 2001.

D. Dobrev and X. H. Wehrens, Role of RyR2 phosphorylation in heart failure and arrhythmias: Controversies around ryanodine receptor phosphorylation in cardiac disease, Circ. Res, vol.114, pp.1311-1319, 2014.

K. L. Dodge, S. Khouangsathiene, M. S. Kapiloff, R. Mouton, E. V. Hill et al., mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module, EMBO J, vol.20, pp.1921-1930, 2001.

K. L. Dodge-kafka, J. Soughayer, G. C. Pare, C. Michel, J. J. Langeberg et al., The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways, Nature, vol.437, pp.574-578, 2005.

K. L. Dodge-kafka, L. Langeberg, and J. D. Scott, Compartmentation of cyclic nucleotide signaling in the heart: the role of A-kinase anchoring proteins, Circ. Res, vol.98, pp.993-1001, 2006.

S. Doll, M. Dreßen, P. E. Geyer, D. N. Itzhak, C. Braun et al., Region and cell-type resolved quantitative proteomic map of the human heart, Nat. Commun, vol.8, p.1469, 2017.

A. Domínguez-rodríguez, G. Ruiz-hurtado, J. Sabourin, A. M. Gómez, J. L. Alvarez et al., , 2015.

, Proarrhythmic effect of sustained EPAC activation on TRPC3/4 in rat ventricular cardiomyocytes, J. Mol. Cell. Cardiol, vol.87, pp.74-78

S. A. Doppler, C. Carvalho, H. Lahm, M. Deutsch, M. Dreßen et al., Cardiac fibroblasts: more than mechanical support, J. Thorac. Dis, vol.9, pp.36-51, 2017.

W. R. Dostmann and T. S. , Identifying the molecular switches that determine whether (Rp)-cAMPS functions as an antagonist or an agonist in the activation of cAMP-dependent protein kinase I, Biochemistry, vol.30, pp.8710-8716, 1991.

M. V. Duinen, O. A. Reneerkens, L. Lambrecht, A. Sambeth, B. P. Rutten et al., Treatment of Cognitive Impairment in Schizophrenia: Potential Value of Phosphodiesterase Inhibitors in Prefrontal Dysfunction, Curr. Pharm. Des, vol.21, pp.3813-3828, 2015.

J. C. Dunlap, J. J. Loros, Y. Liu, and C. S. , Eukaryotic circadian systems: cycles in common, Genes Cells Devoted Mol. Cell. Mech, vol.4, pp.1-10, 1999.

M. Dvorakova, K. S. Lips, D. Brüggmann, J. Slavikova, J. Kuncova et al., Developmental changes in the expression of nicotinic acetylcholine receptor alpha-subunits in the rat heart, Cell Tissue Res, vol.319, pp.201-209, 2005.

H. V. Edwards, J. D. Scott, and B. G. , The A-kinase-anchoring protein AKAP-Lbc facilitates cardioprotective PKA phosphorylation of Hsp20 on Ser(16), Biochem. J, vol.446, pp.437-443, 2012.

A. El-armouche and E. T. , Beta-adrenergic stimulation and myocardial function in the failing heart, Heart Fail. Rev, vol.14, pp.225-241, 2009.

A. El-armouche, O. Zolk, T. Rau, and E. T. , Inhibitory G-proteins and their role in desensitization of the adenylyl cyclase pathway in heart failure, Cardiovasc. Res, vol.60, pp.478-487, 2003.

L. J. Emorine, S. Marullo, M. M. Briend-sutren, G. Patey, K. Tate et al., Molecular characterization of the human beta 3-adrenergic receptor, Science, vol.245, pp.1118-1121, 1989.

S. Epelman, P. P. Liu, and D. L. Mann, Role of innate and adaptive immune mechanisms in cardiac injury and repair, Nat. Rev. Immunol, vol.15, pp.117-129, 2015.

R. Erkens, C. M. Kramer, W. Lückstädt, C. Panknin, L. Krause et al., Left ventricular diastolic dysfunction in Nrf2 knock out mice is associated with cardiac hypertrophy, decreased expression of SERCA2a, and preserved endothelial function. Free Radic, Biol. Med, vol.89, pp.906-917, 2015.

T. Eschenhagen, Beta-adrenergic signaling in heart failure-adapt or die, Nat. Med, vol.14, pp.485-487, 2008.

P. V. Escribá, P. B. Wedegaertner, F. M. Goñi, and O. Vögler, Lipid-protein interactions in GPCR-associated signaling, Biochim. Biophys. Acta, vol.1768, pp.836-852, 2007.

J. L. Esseltine and J. D. Scott, AKAP signaling complexes: pointing towards the next generation of therapeutic targets?, Trends Pharmacol. Sci, vol.34, pp.648-655, 2013.

T. H. Everett and J. E. Olgin, Atrial fibrosis and the mechanisms of atrial fibrillation, Heart Rhythm, vol.4, pp.24-27, 2007.

O. V. Evgenov, P. Pacher, P. M. Schmidt, G. Haskó, H. H. Schmidt et al., NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential, Nat. Rev. Drug Discov, vol.5, pp.755-768, 2006.

A. Fabiato and F. F. , Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat, and frog hearts and from fetal and new-born rat ventricles, Ann. N. Y. Acad. Sci, vol.307, pp.491-522, 1978.

A. Fabiato and F. F. , Myofilament-generated tension oscillations during partial calcium activation and activation dependence of the sarcomere length-tension relation of skinned cardiac cells, J. Gen. Physiol, vol.72, pp.667-699, 1978.

L. Fang, A. J. Murphy, and A. M. Dart, A Clinical Perspective of Anti-Fibrotic Therapies for Cardiovascular Disease, Front. Pharmacol, vol.8, 2017.

C. Farah, L. Y. Michel, and B. , Nitric oxide signalling in cardiovascular health and disease, Nat. Rev. Cardiol, vol.15, pp.292-316, 2018.

L. Fazal, M. Laudette, S. Paula-gomes, S. Pons, C. Conte et al., Multifunctional Mitochondrial Epac1 Controls Myocardial Cell Death, Circ. Res, vol.120, pp.645-657, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01831264

R. Feil, S. M. Lohmann, H. De-jonge, U. Walter, and F. Hofmann, Cyclic GMP-dependent protein kinases and the cardiovascular system: insights from genetically modified mice, Circ. Res, vol.93, pp.907-916, 2003.

M. D. Feldman, L. Copelas, J. K. Gwathmey, P. Phillips, S. E. Warren et al., Deficient production of cyclic AMP: pharmacologic evidence of an important cause of contractile dysfunction in patients with end-stage heart failure, Circulation, vol.75, pp.331-339, 1987.

R. Fischmeister and H. C. Hartzell, Cyclic guanosine 3',5'-monophosphate regulates the calcium current in single cells from frog ventricle, J. Physiol, vol.387, pp.453-472, 1987.

R. Fischmeister, L. Castro, A. Abi-gerges, F. Rochais, and G. Vandecasteele, Species-and tissuedependent effects of NO and cyclic GMP on cardiac ion channels, Comp. Biochem. Physiol. A. Mol. Integr. Physiol, vol.142, pp.136-143, 2005.

R. Fischmeister, L. R. Castro, A. Abi-gerges, F. Rochais, J. Jurevicius et al., , 2006.

, Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases, Circ. Res, vol.99, pp.816-828

D. A. Fisher, J. F. Smith, J. S. Pillar, S. H. St-denis, and J. B. Cheng, Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase, J. Biol. Chem, vol.273, pp.15559-15564, 1998.

J. M. Foody, M. H. Farrell, and H. M. Krumholz, beta-Blocker therapy in heart failure: scientific review, JAMA, vol.287, pp.883-889, 2002.

U. Förstermann, A. Mülsch, E. Böhme, and R. Busse, Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium-derived factor from rabbit and canine arteries, Circ. Res, vol.58, pp.531-538, 1986.

G. S. Francis and W. H. Tang, Histamine, mast cells, and heart failure: is there a connection?, J. Am. Coll. Cardiol, vol.48, pp.1385-1386, 2006.

G. S. Francis, S. R. Goldsmith, S. M. Ziesche, and J. N. Cohn, Response of plasma norepinephrine and epinephrine to dynamic exercise in patients with congestive heart failure, Am. J. Cardiol, vol.49, pp.1152-1156, 1982.

G. S. Francis, J. N. Cohn, G. Johnson, T. S. Rector, S. Goldman et al., Plasma norepinephrine, plasma renin activity, and congestive heart failure. Relations to survival and the effects of therapy in V-HeFT II. The V-HeFT VA Cooperative Studies Group, Circulation, vol.87, pp.40-48, 1993.

N. G. Frangogiannis, Inflammation in cardiac injury, repair and regeneration, Curr. Opin. Cardiol, vol.30, pp.240-245, 2015.

B. Fraysse, F. Weinberger, S. C. Bardswell, F. Cuello, N. Vignier et al., Increased myofilament Ca2+ sensitivity and diastolic dysfunction as early consequences of Mybpc3 mutation in heterozygous knock-in mice, J. Mol. Cell. Cardiol, vol.52, pp.1299-1307, 2012.

T. Frielle, S. Collins, K. W. Daniel, M. G. Caron, R. J. Lefkowitz et al., Cloning of the cDNA for the human beta 1-adrenergic receptor, Proc. Natl. Acad. Sci. U. S. A, vol.84, pp.7920-7924, 1987.

A. Froese, S. S. Breher, C. Waldeyer, R. F. Schindler, V. O. Nikolaev et al., Popeye domain containing proteins are essential for stress-mediated modulation of cardiac pacemaking in mice, J. Clin. Invest, vol.122, pp.1119-1130, 2012.

Y. Fu, R. E. Westenbroek, T. Scheuer, and W. A. Catterall, Basal and ?-adrenergic regulation of the cardiac calcium channel CaV1.2 requires phosphorylation of serine 1700, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.16598-16603, 2014.

F. Fuchs and M. D. , Length-dependent Ca(2+) activation in cardiac muscle: some remaining questions, J. Muscle Res. Cell Motil, vol.26, pp.199-212, 2005.

T. Fujita, M. Umemura, U. Yokoyama, S. Okumura, and Y. Ishikawa, The role of Epac in the heart, Cell. Mol. Life Sci. CMLS, vol.74, pp.591-606, 2017.

R. F. Furchgott and P. M. Vanhoutte, Endothelium-derived relaxing and contracting factors, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.3, pp.2007-2018, 1989.

A. Galindo-tovar and A. J. Kaumann, Phosphodiesterase-4 blunts inotropism and arrhythmias but not sinoatrial tachycardia of (-)-adrenaline mediated through mouse cardiac beta(1)-adrenoceptors, Br. J. Pharmacol, vol.153, pp.710-720, 2008.

M. Gamanuma, K. Yuasa, T. Sasaki, N. Sakurai, J. Kotera et al., Comparison of enzymatic characterization and gene organization of cyclic nucleotide phosphodiesterase 8 family in humans, Cell. Signal, vol.15, pp.565-574, 2003.

S. Gao, D. Ho, D. E. Vatner, and S. F. Vatner, Echocardiography in Mice. Curr. Protoc. Mouse Biol, vol.1, pp.71-83, 2011.

D. L. Garbers, D. Koesling, and G. Schultz, Guanylyl cyclase receptors, Mol. Biol. Cell, vol.5, pp.1-5, 1994.

C. Gauthier, G. Tavernier, F. Charpentier, D. Langin, L. Marec et al., Functional beta3-adrenoceptor in the human heart, J. Clin. Invest, vol.98, pp.556-562, 1996.

C. Gauthier, V. Leblais, L. Kobzik, J. N. Trochu, N. Khandoudi et al., The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle, J. Clin. Invest, vol.102, pp.1377-1384, 1998.

C. Gauthier, D. Langin, and J. L. Balligand, Beta3-adrenoceptors in the cardiovascular system, Trends Pharmacol. Sci, vol.21, pp.426-431, 2000.

B. Gellen, M. Fernández-velasco, F. Briec, L. Vinet, K. Lequang et al., Conditional FKBP12.6 overexpression in mouse cardiac myocytes prevents triggered ventricular tachycardia through specific alterations in excitation-contraction coupling, Circulation, vol.117, pp.1778-1786, 2008.

V. Geoffroy, F. Fouque, V. Nivet, J. P. Clot, C. Lugnier et al., Activation of a cGMP-stimulated cAMP phosphodiesterase by protein kinase C in a liver Golgi-endosomal fraction, Eur. J. Biochem, vol.259, pp.892-900, 1999.

W. J. George, J. B. Polson, A. G. O'toole, and N. D. Goldberg, Elevation of guanosine 3',5'-cyclic phosphate in rat heart after perfusion with acetylcholine, Proc. Natl. Acad. Sci. U. S. A, vol.66, pp.398-403, 1970.

W. J. George, R. D. Wilkerson, and P. J. Kadowitz, Influence of acetylcholine on contractile force and cyclic nucleotide levels in the isolated perfused rat heart, J. Pharmacol. Exp. Ther, vol.184, pp.228-235, 1973.

A. Ghigo, A. Perino, H. Mehel, A. Zahradníková, F. Morello et al., Phosphoinositide 3-kinase ? protects against catecholamine-induced ventricular arrhythmia through protein kinase A-mediated regulation of distinct phosphodiesterases, Circulation, vol.126, pp.2073-2083, 2012.

O. Gileadi, Structures of soluble guanylate cyclase: implications for regulatory mechanisms and drug development, Biochem. Soc. Trans, vol.42, pp.108-113, 2014.

A. Gille, G. H. Lushington, T. Mou, M. B. Doughty, R. A. Johnson et al., Differential inhibition of adenylyl cyclase isoforms and soluble guanylyl cyclase by purine and pyrimidine nucleotides, J. Biol. Chem, vol.279, pp.19955-19969, 2004.

M. Gilles-gonzalez and G. Gonzalez, Signal transduction by heme-containing PAS-domain proteins, J. Appl. Physiol. Bethesda Md, vol.96, pp.774-783, 1985.

N. A. Glavas, C. Ostenson, J. B. Schaefer, V. Vasta, and J. A. Beavo, T cell activation up-regulates cyclic nucleotide phosphodiesterases 8A1 and 7A3, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.6319-6324, 2001.

M. Gloerich and J. L. Bos, Epac: defining a new mechanism for cAMP action, Annu. Rev. Pharmacol. Toxicol, vol.50, pp.355-375, 2010.

A. S. Go, D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry et al., Executive summary: heart disease and stroke statistics, American Heart Association. Circulation, vol.127, pp.143-152, 2013.

R. O. Godinho, T. Duarte, and P. E. , New perspectives in signaling mediated by receptors coupled to stimulatory G protein: the emerging significance of cAMP efflux and extracellular cAMP-adenosine pathway, Front. Pharmacol, vol.6, 2015.

M. Golob, R. L. Moss, and N. C. Chesler, Cardiac tissue structure, properties, and performance: a materials science perspective, Ann. Biomed. Eng, vol.42, pp.2003-2013, 2014.

A. M. Gómez, H. H. Valdivia, H. Cheng, M. R. Lederer, L. F. Santana et al., Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure, Science, vol.276, pp.800-806, 1997.

H. Gong, H. Sun, W. J. Koch, T. Rau, T. Eschenhagen et al., Specific beta(2)AR blocker ICI 118,551 actively decreases contraction through a G(i)-coupled form of the beta(2)AR in myocytes from failing human heart, Circulation, vol.105, pp.2497-2503, 2002.

O. B. Goodman, J. G. Krupnick, V. V. Gurevich, J. L. Benovic, and J. H. Keen, Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain, J. Biol. Chem, vol.272, pp.15017-15022, 1997.

R. Gordan, J. K. Gwathmey, and X. , Autonomic and endocrine control of cardiovascular function, World J. Cardiol, vol.7, pp.204-214, 2015.

A. M. Gordon, A. F. Huxley, and J. F. , The variation in isometric tension with sarcomere length in vertebrate muscle fibres, J. Physiol, vol.184, pp.170-192, 1966.

J. Gorelik, P. T. Wright, A. R. Lyon, and S. E. Harding, Spatial control of the ?AR system in heart failure: the transverse tubule and beyond, Cardiovasc. Res, vol.98, pp.216-224, 2013.

G. Augustus and O. , Cardiac Ion Channels, Circ. Arrhythm. Electrophysiol, vol.2, pp.185-194, 2009.

H. L. Granzier and T. C. Irving, Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments, Biophys. J, vol.68, pp.1027-1044, 1995.

H. L. Granzier and L. S. , The giant protein titin: a major player in myocardial mechanics, signaling, and disease, Circ. Res, vol.94, pp.284-295, 2004.

G. A. Gray, I. S. Toor, R. Castellan, M. Crisan, and M. Meloni, Resident cells of the myocardium: more than spectators in cardiac injury, repair and regeneration, Curr. Opin. Physiol, vol.1, pp.46-51, 2018.

B. Greenberg, J. Butler, G. M. Felker, P. Ponikowski, A. A. Voors et al., Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial, Lancet Lond. Engl, vol.387, pp.1178-1186, 2016.

P. Gregorevic, M. J. Blankinship, J. M. Allen, R. W. Crawford, L. Meuse et al., Systemic delivery of genes to striated muscles using adeno-associated viral vectors, Nat. Med, vol.10, pp.828-834, 2004.

T. M. Griffith, D. H. Edwards, M. J. Lewis, A. C. Newby, and H. A. , The nature of endotheliumderived vascular relaxant factor, Nature, vol.308, pp.645-647, 1984.

M. Guazzi, Clinical use of phosphodiesterase-5 inhibitors in chronic heart failure, Circ. Heart Fail, vol.1, pp.272-280, 2008.

A. Guellich, H. Mehel, and R. Fischmeister, Cyclic AMP synthesis and hydrolysis in the normal and failing heart, Pflugers Arch, vol.466, pp.1163-1175, 2014.

S. Guerra, A. Leri, X. Wang, N. Finato, C. Di-loreto et al., Myocyte death in the failing human heart is gender dependent, Circ. Res, vol.85, pp.856-866, 1999.

M. Guipponi, H. S. Scott, J. Kudoh, K. Kawasaki, K. Shibuya et al., Identification and characterization of a novel cyclic nucleotide phosphodiesterase gene (PDE9A) that maps to 21q22.3: alternative splicing of mRNA transcripts, genomic structure and sequence, Hum. Genet, vol.103, pp.386-392, 1998.

T. Guo, T. Zhang, R. Mestril, and D. M. Bers, Ca2+/Calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes, Circ. Res, vol.99, pp.398-406, 2006.

C. R. Guthrie, B. S. Skâlhegg, and G. S. Mcknight, Two novel brain-specific splice variants of the murine Cbeta gene of cAMP-dependent protein kinase, J. Biol. Chem, vol.272, pp.29560-29565, 1997.

C. H. Ha, J. Y. Kim, J. Zhao, W. Wang, B. S. Jhun et al., PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.15467-15472, 2010.

M. Haberland, R. L. Montgomery, and E. N. Olson, The many roles of histone deacetylases in development and physiology: implications for disease and therapy, Nat. Rev. Genet, vol.10, pp.32-42, 2009.

H. A. Hager and D. M. Bader, Bves: ten years after, Histol. Histopathol, vol.24, pp.777-787, 2009.

H. Haimoto and K. Kato, S100a0 (alpha alpha) protein in cardiac muscle. Isolation from human cardiac muscle and ultrastructural localization, Eur. J. Biochem, vol.171, pp.409-415, 1988.

H. Slimane, Z. Bedioune, I. Lechêne, P. Varin, A. Lefebvre et al., Control of cytoplasmic and nuclear protein kinase A by phosphodiesterases and phosphatases in cardiac myocytes, Cardiovasc. Res, vol.102, pp.97-106, 2014.

R. Hambleton, J. Krall, E. Tikishvili, M. Honeggar, F. Ahmad et al., , 2005.

, Isoforms of cyclic nucleotide phosphodiesterase PDE3 and their contribution to cAMP hydrolytic activity in subcellular fractions of human myocardium, J. Biol. Chem, vol.280, pp.39168-39174

H. K. Hammond, W. F. Penny, J. H. Traverse, T. D. Henry, M. W. Watkins et al., Intracoronary Gene Transfer of Adenylyl Cyclase 6 in Patients With Heart Failure: A Randomized Clinical Trial, JAMA Cardiol, vol.1, pp.163-171, 2016.

C. Hampton, R. Rosa, D. Szeto, G. Forrest, B. Campbell et al., Effects of carvedilol on structural and functional outcomes and plasma biomarkers in the mouse transverse aortic constriction heart failure model, SAGE Open Med, vol.5, 2017.

J. Hanoune and N. Defer, Regulation and role of adenylyl cyclase isoforms, Annu. Rev. Pharmacol. Toxicol, vol.41, pp.145-174, 2001.

V. B. Harding, L. R. Jones, R. J. Lefkowitz, W. J. Koch, and H. A. Rockman, Cardiac beta ARK1 inhibition prolongs survival and augments beta blocker therapy in a mouse model of severe heart failure, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.5809-5814, 2001.

J. Hartupee and D. L. Mann, Neurohormonal activation in heart failure with reduced ejection fraction, Nat. Rev. Cardiol, vol.14, pp.30-38, 2017.

H. C. Hartzell and R. Fischmeister, Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells, Nature, vol.323, pp.273-275, 1986.

R. D. Harvey and A. E. Belevych, Muscarinic regulation of cardiac ion channels, Br. J. Pharmacol, vol.139, pp.1074-1084, 2003.

G. Hasenfuss, H. Reinecke, R. Studer, M. Meyer, B. Pieske et al., Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium, Circ. Res, vol.75, pp.434-442, 1994.

T. Hashimoto, G. E. Kim, R. S. Tunin, T. Adesiyun, S. Hsu et al., Acute Enhancement of Cardiac Function by Phosphodiesterase Type 1 Inhibition, Circulation, vol.138, pp.1974-1987, 2018.

Y. Hashimoto, R. K. Sharma, and T. R. Soderling, Regulation of Ca2+/calmodulin-dependent cyclic nucleotide phosphodiesterase by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II, J. Biol. Chem, vol.264, pp.10884-10887, 1989.

S. B. Haudek, G. E. Taffet, M. D. Schneider, and D. L. Mann, TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways, J. Clin. Invest, vol.117, pp.2692-2701, 2007.

W. P. Hausdorff, M. Bouvier, B. F. O'dowd, G. P. Irons, M. G. Caron et al., Phosphorylation sites on two domains of the beta 2-adrenergic receptor are involved in distinct pathways of receptor desensitization, J. Biol. Chem, vol.264, pp.12657-12665, 1989.

D. J. Hausenloy and Y. D. , Myocardial ischemia-reperfusion injury: a neglected therapeutic target, J. Clin. Invest, vol.123, pp.92-100, 2013.

J. S. Hayes, L. L. Brunton, and M. S. , Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin E1, J. Biol. Chem, vol.255, pp.5113-5119, 1980.

S. Hayoz, P. B. Tiwari, G. Piszczek, A. Üren, and T. I. Brelidze, Investigating cyclic nucleotide and cyclic dinucleotide binding to HCN channels by surface plasmon resonance, PloS One, vol.12, 2017.

Q. He, G. Wu, and M. C. Lapointe, Isoproterenol and cAMP regulation of the human brain natriuretic peptide gene involves Src and Rac, Am. J. Physiol. Endocrinol. Metab, vol.278, pp.1115-1123, 2000.

J. Heijman, N. Voigt, S. Nattel, and D. D. , Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression, Circ. Res, vol.114, pp.1483-1499, 2014.

S. Hein, S. Kostin, A. Heling, Y. Maeno, and J. Schaper, The role of the cytoskeleton in heart failure, Cardiovasc. Res, vol.45, pp.273-278, 2000.

C. W. Heizmann, G. E. Ackermann, and A. Galichet, Pathologies involving the S100 proteins and RAGE, Subcell. Biochem, vol.45, pp.93-138, 2007.

M. Helmes, K. Trombitás, and H. Granzier, Titin develops restoring force in rat cardiac myocytes, Circ. Res, vol.79, pp.619-626, 1996.

J. Hernández-cascales, Does glucagon have a positive inotropic effect in the human heart?, Cardiovasc. Diabetol, vol.17, p.148, 2018.

S. Herzig and J. Neumann, Effects of serine/threonine protein phosphatases on ion channels in excitable membranes, Physiol. Rev, vol.80, pp.173-210, 2000.

M. P. Hitz, P. Pandur, T. Brand, and M. Kühl, Cardiac specific expression of Xenopus Popeye-1, Mech. Dev, vol.115, pp.123-126, 2002.

R. Hoffmann, G. S. Baillie, S. J. Mackenzie, S. J. Yarwood, and M. D. Houslay, The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579, EMBO J, vol.18, pp.893-903, 1999.

F. Hofmann, J. A. Beavo, P. J. Bechtel, and E. G. Krebs, Comparison of adenosine 3':5'-monophosphatedependent protein kinases from rabbit skeletal and bovine heart muscle, J. Biol. Chem, vol.250, pp.7795-7801, 1975.

F. Hofmann, D. Bernhard, R. Lukowski, and P. Weinmeister, , 2009.

, Handb. Exp. Pharmacol, pp.137-162

M. D. Hoggan, N. R. Blacklow, and R. W. , Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics, Proc. Natl. Acad. Sci. U. S. A, vol.55, pp.1467-1474, 1966.

C. M. Hohl and L. Q. , Compartmentation of cAMP in adult canine ventricular myocytes. Relation to single-cell free Ca2+ transients, Circ. Res, vol.69, pp.1369-1379, 1991.

E. A. Hoivik, S. L. Witsoe, I. R. Bergheim, Y. Xu, I. Jakobsson et al., DNA methylation of alternative promoters directs tissue specific expression of Epac2 isoforms, PloS One, vol.8, p.67925, 2013.

T. Hong and R. M. Shaw, Cardiac T-Tubule Microanatomy and Function, Physiol. Rev, vol.97, pp.227-252, 2017.

S. R. Houser, Role of RyR2 phosphorylation in heart failure and arrhythmias: protein kinase A-mediated hyperphosphorylation of the ryanodine receptor at serine 2808 does not alter cardiac contractility or cause heart failure and arrhythmias, Circ. Res, vol.114, pp.1320-1327, 2014.

M. D. Houslay and A. D. , PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization, Biochem. J, vol.370, pp.1-18, 2003.

M. D. Houslay and A. D. , Putting the lid on phosphodiesterase 4, Nat. Biotechnol, vol.28, pp.38-40, 2010.

M. D. Houslay, G. S. Baillie, and M. D. , cAMP-Specific phosphodiesterase-4 enzymes in the cardiovascular system: a molecular toolbox for generating compartmentalized cAMP signaling, Circ. Res, vol.100, pp.950-966, 2007.

L. J. Huang, K. Durick, J. A. Weiner, J. Chun, and T. S. , Identification of a novel protein kinase A anchoring protein that binds both type I and type II regulatory subunits, J. Biol. Chem, vol.272, pp.8057-8064, 1997.

J. T. Hulme, T. W. Lin, -. Westenbroek, R. E. Scheuer, T. Catterall et al., Beta-adrenergic regulation requires direct anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper interaction with A kinaseanchoring protein 15, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.13093-13098, 2003.

J. Hulot, K. Ishikawa, and R. J. Hajjar, Gene therapy for the treatment of heart failure: promise postponed, Eur. Heart J, vol.37, pp.1651-1658, 2016.

D. C. Hutchings, S. G. Anderson, J. L. Caldwell, and A. W. Trafford, Phosphodiesterase-5 inhibitors and the heart: compound cardioprotection? Heart Br, Card. Soc, vol.104, pp.1244-1250, 2018.

D. Hutter, Y. Yo, W. Chen, P. Liu, N. J. Holbrook et al., Age-related decline in Ras/ERK mitogen-activated protein kinase cascade is linked to a reduced association between Shc and EGF receptor, J. Gerontol. A. Biol. Sci. Med. Sci, vol.55, pp.125-134, 2000.

H. Huxley and H. J. , Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation, Nature, vol.173, pp.973-976, 1954.

G. Iaccarino, E. D. Tomhave, R. J. Lefkowitz, and W. J. Koch, Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by beta-adrenergic receptor stimulation and blockade, Circulation, vol.98, pp.1783-1789, 1998.

R. V. Iancu, S. W. Jones, and H. R. , Compartmentation of cAMP signaling in cardiac myocytes: a computational study, Biophys. J, vol.92, pp.3317-3331, 2007.

R. V. Iancu, G. Ramamurthy, S. Warrier, V. O. Nikolaev, M. J. Lohse et al., , 2008.

, Cytoplasmic cAMP concentrations in intact cardiac myocytes, Am. J. Physiol. Cell Physiol, vol.295, pp.414-422

L. J. Ignarro, G. M. Buga, K. S. Wood, R. E. Byrns, and C. G. , Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide, Proc. Natl. Acad. Sci. U. S. A, vol.84, pp.9265-9269, 1987.

K. Inagaki, S. Fuess, T. A. Storm, G. A. Gibson, C. F. Mctiernan et al., Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8, Mol. Ther. J. Am. Soc. Gene Ther, vol.14, pp.45-53, 2006.

K. Iwatsubo, S. Minamisawa, T. Tsunematsu, M. Nakagome, Y. Toya et al., Direct inhibition of type 5 adenylyl cyclase prevents myocardial apoptosis without functional deterioration, J. Biol. Chem, vol.279, pp.40938-40945, 2004.

K. Iwatsubo, C. Bravo, M. Uechi, E. Baljinnyam, T. Nakamura et al., Prevention of heart failure in mice by an antiviral agent that inhibits type 5 cardiac adenylyl cyclase, Am. J. Physiol. Heart Circ. Physiol, vol.302, pp.2622-2628, 2012.

J. L. Januzzi, Natriuretic Peptides as Biomarkers in Heart Failure, J. Investig. Med. Off. Publ. Am. Fed. Clin. Res, vol.61, pp.950-955, 2013.

B. C. Jensen, T. D. O?connell, and P. C. Simpson, Alpha-1-adrenergic receptors in heart failure: the adaptive arm of the cardiac response to chronic catecholamine stimulation, J. Cardiovasc. Pharmacol, vol.63, pp.291-301, 2014.

M. Jessup, B. Greenberg, D. Mancini, T. Cappola, D. F. Pauly et al., Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure, Circulation, vol.124, pp.304-313, 2011.

T. H. Ji, M. Grossmann, and J. I. , G Protein-coupled Receptors I. DIVERSITY OF RECEPTOR-LIGAND INTERACTIONS, J. Biol. Chem, vol.273, pp.17299-17302, 1998.

L. H. Jiang, D. J. Gawler, N. Hodson, C. J. Milligan, H. A. Pearson et al., Regulation of cloned cardiac L-type calcium channels by cGMP-dependent protein kinase, J. Biol. Chem, vol.275, pp.6135-6143, 2000.

M. T. Jiang, A. J. Lokuta, E. F. Farrell, M. R. Wolff, R. A. Haworth et al., Abnormal Ca2+ release, but normal ryanodine receptors, in canine and human heart failure, Circ. Res, vol.91, pp.1015-1022, 2002.

W. B. Johnson, S. Katugampola, S. Able, C. Napier, and S. E. Harding, Profiling of cAMP and cGMP phosphodiesterases in isolated ventricular cardiomyocytes from human hearts: comparison with rat and guinea pig, Life Sci, vol.90, pp.328-336, 2012.

L. Jordaens, A clinical approach to arrhythmias revisited in 2018 : From ECG over noninvasive and invasive electrophysiology to advanced imaging, Neth. Heart J. Mon. J. Neth. Soc. Cardiol. Neth. Heart Found, vol.26, pp.182-189, 2018.

J. Jurevicius and R. Fischmeister, cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by beta-adrenergic agonists, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.295-299, 1996.

E. Kaftan, A. R. Marks, and B. E. Ehrlich, Effects of rapamycin on ryanodine receptor/Ca(2+)-release channels from cardiac muscle, Circ. Res, vol.78, pp.990-997, 1996.

J. Kajstura, E. Cigola, A. Malhotra, P. Li, W. Cheng et al., Angiotensin II induces apoptosis of adult ventricular myocytes in vitro, J. Mol. Cell. Cardiol, vol.29, pp.859-870, 1997.

Y. Kakinuma, T. Akiyama, and T. Sato, Cholinoceptive and cholinergic properties of cardiomyocytes involving an amplification mechanism for vagal efferent effects in sparsely innervated ventricular myocardium, FEBS J, vol.276, pp.5111-5125, 2009.

Y. Kakinuma, M. Tsuda, K. Okazaki, T. Akiyama, M. Arikawa et al., Heart-specific overexpression of choline acetyltransferase gene protects murine heart against ischemia through hypoxia-inducible factor-1?-related defense mechanisms, J. Am. Heart Assoc, vol.2, p.4887, 2013.

R. Kakkar, R. V. Raju, and R. K. Sharma, Calmodulin-dependent cyclic nucleotide phosphodiesterase (PDE1), Cell. Mol. Life Sci. CMLS, vol.55, pp.1164-1186, 1999.

M. Kanwar, C. Walter, M. Clarke, and M. Patarroyo-aponte, Targeting heart failure with preserved ejection fraction: current status and future prospects. Vasc. Health Risk Manag, vol.12, pp.129-141, 2016.

D. A. Kass, Cardiac role of cyclic-GMP hydrolyzing phosphodiesterase type 5: from experimental models to clinical trials, Curr. Heart Fail. Rep, vol.9, pp.192-199, 2012.

D. A. Kass, H. C. Champion, and J. A. Beavo, Phosphodiesterase type 5: expanding roles in cardiovascular regulation, Circ. Res, vol.101, pp.1084-1095, 2007.

U. B. Kaupp and R. Seifert, Cyclic nucleotide-gated ion channels, Physiol. Rev, vol.82, pp.769-824, 2002.

H. Kawasaki, G. M. Springett, N. Mochizuki, S. Toki, M. Nakaya et al., A family of cAMP-binding proteins that directly activate Rap1, Science, vol.282, pp.2275-2279, 1998.

T. Keravis and C. Lugnier, Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments, Br. J. Pharmacol, vol.165, pp.1288-1305, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00670798

B. Kerfant, D. Zhao, I. Lorenzen-schmidt, L. S. Wilson, S. Cai et al., PI3Kgamma is required for PDE4, not PDE3, activity in subcellular microdomains containing the sarcoplasmic reticular calcium ATPase in cardiomyocytes, Circ. Res, vol.101, pp.400-408, 2007.

S. Kettlewell, P. Most, S. Currie, W. J. Koch, and G. L. Smith, S100A1 increases the gain of excitationcontraction coupling in isolated rabbit ventricular cardiomyocytes, J. Mol. Cell. Cardiol, vol.39, pp.900-910, 2005.

G. E. Kim and K. D. , Cardiac Phosphodiesterases and Their Modulation for Treating Heart Disease, Handb. Exp. Pharmacol, vol.243, pp.249-269, 2017.

T. E. Kimura, J. Jin, M. Zi, S. Prehar, W. Liu et al., Targeted deletion of the extracellular signal-regulated protein kinase 5 attenuates hypertrophic response and promotes pressure overload-induced apoptosis in the heart, Circ. Res, vol.106, pp.961-970, 2010.

K. I. Kinugawa, O. Kohmoto, A. Yao, T. Serizawa, and T. Takahashi, Cardiac inducible nitric oxide synthase negatively modulates myocardial function in cultured rat myocytes, Am. J. Physiol, vol.272, pp.35-47, 1997.

P. Kirchhof, S. Benussi, D. Kotecha, A. Ahlsson, D. Atar et al., 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS, Eur. Eur. Pacing Arrhythm. Card. Electrophysiol. J. Work. Groups Card. Pacing Arrhythm. Card. Cell. Electrophysiol. Eur. Soc. Cardiol, vol.18, pp.1609-1678, 2016.

M. Kirstein, M. Rivet-bastide, S. Hatem, A. Bénardeau, J. J. Mercadier et al., Nitric oxide regulates the calcium current in isolated human atrial myocytes, J. Clin. Invest, vol.95, pp.794-802, 1995.

J. Klarenbeek, J. Goedhart, A. Van-batenburg, D. Groenewald, and J. K. , Fourth-generation epac-based FRET sensors for cAMP feature exceptional brightness, photostability and dynamic range: characterization of dedicated sensors for FLIM, for ratiometry and with high affinity, PloS One, vol.10, 2015.

J. B. Klarenbeek, J. Goedhart, M. A. Hink, T. W. Gadella, and J. K. , A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range, PloS One, vol.6, 2011.

A. C. Kleiber, H. Zheng, H. D. Schultz, J. D. Peuler, and P. K. , Exercise training normalizes enhanced glutamate-mediated sympathetic activation from the PVN in heart failure, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.294, pp.1863-1872, 2008.

R. A. Kloner, I. Goldstein, M. G. Kirby, J. D. Parker, and R. Sadovsky, Cardiovascular Safety of Phosphodiesterase Type 5 Inhibitors After Nearly 2 Decades on the Market. Sex, Med. Rev, vol.6, pp.583-594, 2018.

R. F. Knight, D. M. Bader, and J. R. Backstrom, Membrane topology of Bves/Pop1A, a cell adhesion molecule that displays dynamic changes in cellular distribution during development, J. Biol. Chem, vol.278, pp.32872-32879, 2003.

W. E. Knight, S. Chen, Y. Zhang, M. Oikawa, M. Wu et al., PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.7116-7125, 2016.

M. Kobayashi, N. Machida, M. Mitsuishi, and Y. Y. , Beta-blocker improves survival, left ventricular function, and myocardial remodeling in hypertensive rats with diastolic heart failure, Am. J. Hypertens, vol.17, pp.1112-1119, 2004.

M. Kobayashi, A. Massiello, J. H. Karimov, D. R. Van-wagoner, and F. K. , Cardiac autonomic nerve stimulation in the treatment of heart failure, Ann. Thorac. Surg, vol.96, pp.339-345, 2013.

J. Krupicka, T. Janota, and J. Hradec, Natriuretic peptides in heart failure, Cor Vasa, vol.55, pp.370-376, 2013.

M. Kuhn, Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A, Circ. Res, vol.93, pp.700-709, 2003.

M. Kuhn, Endothelial actions of atrial and B-type natriuretic peptides, Br. J. Pharmacol, vol.166, pp.522-531, 2012.

M. Kuhn, Molecular Physiology of Membrane Guanylyl Cyclase Receptors, Physiol. Rev, vol.96, pp.751-804, 2016.

I. Y. Kuo and B. E. Ehrlich, Signaling in muscle contraction, Cold Spring Harb. Perspect. Biol, vol.7, p.6023, 2015.

M. Kuschel, Y. Y. Zhou, H. Cheng, S. J. Zhang, Y. Chen et al., G(i) protein-mediated functional compartmentalization of cardiac beta(2)-adrenergic signaling, J. Biol. Chem, vol.274, pp.22048-22052, 1999.

R. Kvetnansky, V. K. Weise, N. B. Thoa, and I. J. Kopin, Effects of chronic guanethidine treatment and adrenal medullectomy on plasma levels of catecholamines and corticosterone in forcibly immobilized rats, J. Pharmacol. Exp. Ther, vol.209, pp.287-291, 1979.

D. Ladage, R. H. Schwinger, and K. Brixius, Cardio-selective beta-blocker: pharmacological evidence and their influence on exercise capacity, Cardiovasc. Ther, vol.31, pp.76-83, 2013.

L. Lai, L. Yan, S. Gao, C. Hu, H. Ge et al., , 2013.

, Type 5 adenylyl cyclase increases oxidative stress by transcriptional regulation of manganese superoxide dismutase via the SIRT1/FoxO3a pathway, Circulation, vol.127, pp.1692-1701

N. C. Lai, D. M. Roth, M. H. Gao, T. Tang, N. Dalton et al., Intracoronary adenovirus encoding adenylyl cyclase VI increases left ventricular function in heart failure, Circulation, vol.110, pp.330-336, 2004.

V. Lakics, E. H. Karran, and F. G. Boess, Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues, Neuropharmacology, vol.59, pp.367-374, 2010.

A. Laurent, M. Bisserier, A. Lucas, F. Tortosa, M. Roumieux et al., Exchange protein directly activated by cAMP 1 promotes autophagy during cardiomyocyte hypertrophy, Cardiovasc. Res, vol.105, pp.55-64, 2015.

S. Lavandero, R. Troncoso, B. A. Rothermel, W. Martinet, J. Sadoshima et al., Cardiovascular autophagy: concepts, controversies, and perspectives, vol.9, pp.1455-1466, 2013.

S. Lavandero, M. Chiong, B. A. Rothermel, and J. A. Hill, Autophagy in cardiovascular biology, J. Clin. Invest, vol.125, pp.55-64, 2015.

M. Lawless, J. L. Caldwell, E. J. Radcliffe, C. E. Smith, G. W. Madders et al., Phosphodiesterase 5 inhibition improves contractile function and restores transverse tubule loss and catecholamine responsiveness in heart failure, Sci. Rep, vol.9, p.6801, 2019.

J. Layland, J. Li, and A. M. Shah, Role of cyclic GMP-dependent protein kinase in the contractile response to exogenous nitric oxide in rat cardiac myocytes, J. Physiol, vol.540, pp.457-467, 2002.

J. Layland, R. J. Solaro, and A. M. Shah, Regulation of cardiac contractile function by troponin I phosphorylation, Cardiovasc. Res, vol.66, pp.12-21, 2005.

V. Leblais, S. Jo, K. Chakir, V. Maltsev, M. Zheng et al., , 2004.

, Phosphatidylinositol 3-kinase offsets cAMP-mediated positive inotropic effect via inhibiting Ca2+ influx in cardiomyocytes, Circ. Res, vol.95, pp.1183-1190

D. I. Lee and K. D. , Phosphodiesterases and cyclic GMP regulation in heart muscle, Physiol. Bethesda Md, vol.27, pp.248-258, 2012.

D. I. Lee, S. Vahebi, C. G. Tocchetti, L. A. Barouch, R. J. Solaro et al., PDE5A suppression of acute beta-adrenergic activation requires modulation of myocyte beta-3 signaling coupled to PKGmediated troponin I phosphorylation, Basic Res. Cardiol, vol.105, pp.337-347, 2010.

D. I. Lee, G. Zhu, T. Sasaki, G. Cho, N. Hamdani et al., Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease, Nature, vol.519, pp.472-476, 2015.

K. Lefkimmiatis, D. Leronni, and A. M. Hofer, The inner and outer compartments of mitochondria are sites of distinct cAMP/PKA signaling dynamics, J. Cell Biol, vol.202, pp.453-462, 2013.

R. J. Lefkowitz, G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization, J. Biol. Chem, vol.273, pp.18677-18680, 1998.

S. E. Lehnart, X. H. Wehrens, S. Reiken, S. Warrier, A. E. Belevych et al., Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias, Cell, vol.123, pp.25-35, 2005.

J. Leroy and R. Fischmeister, Inhibit a Phosphodiesterase to Treat Heart Failure?, Circulation, vol.138, 2003.

J. Leroy, A. Abi-gerges, V. O. Nikolaev, W. Richter, P. Lechêne et al., Spatiotemporal dynamics of beta-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: role of phosphodiesterases, Circ. Res, vol.102, pp.1091-1100, 2008.

J. Leroy, W. Richter, D. Mika, L. R. Castro, A. Abi-gerges et al., Phosphodiesterase 4B in the cardiac L-type Ca 2+ channel complex regulates Ca 2+ current and protects against ventricular arrhythmias in mice, J. Clin. Invest, vol.121, pp.2651-2661, 2011.

J. Leroy, G. Vandecasteele, and R. Fischmeister, Cyclic AMP signaling in cardiac myocytes, Curr. Opin. Physiol, vol.1, pp.161-171, 2018.

R. C. Levi, G. Alloatti, and R. Fischmeister, Cyclic GMP regulates the Ca-channel current in guinea pig ventricular myocytes, Pflugers Arch, vol.413, pp.685-687, 1989.

&. Lezoualc, F. Métrich, M. Hmitou, I. Duquesnes, N. et al., Small GTP-binding proteins and their regulators in cardiac hypertrophy, J. Mol. Cell. Cardiol, vol.44, pp.623-632, 2008.

&. Lezoualc, F. Fazal, L. Laudette, M. Conte, and C. , Cyclic AMP Sensor EPAC Proteins and Their Role in Cardiovascular Function and Disease, Circ. Res, vol.118, pp.881-897, 2016.

C. Li, P. C. Krishnamurthy, H. Penmatsa, K. L. Marrs, X. Q. Wang et al., Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia, Cell, vol.131, pp.940-951, 2007.

J. Li, A. Negro, J. Lopez, A. L. Bauman, E. Henson et al., The mAKAPbeta scaffold regulates cardiac myocyte hypertrophy via recruitment of activated calcineurin, J. Mol. Cell. Cardiol, vol.48, pp.387-394, 2010.

Y. Li, P. J. Charles, C. Nan, J. R. Pinto, Y. Wang et al., , 2010.

, Correcting diastolic dysfunction by Ca2+ desensitizing troponin in a transgenic mouse model of restrictive cardiomyopathy, J. Mol. Cell. Cardiol, vol.49, pp.402-411

Y. Li, L. Chen, R. S. Kass, and C. W. Dessauer, The A-kinase anchoring protein Yotiao facilitates complex formation between adenylyl cyclase type 9 and the IKs potassium channel in heart, J. Biol. Chem, vol.287, pp.29815-29824, 2012.

Y. Li, L. Zhang, P. Jean-charles, C. Nan, G. Chen et al., Dosedependent diastolic dysfunction and early death in a mouse model with cardiac troponin mutations, J. Mol. Cell. Cardiol, vol.62, pp.227-236, 2013.

J. Lim, G. Pahlke, and M. Conti, Activation of the cAMP-specific phosphodiesterase PDE4D3 by phosphorylation. Identification and function of an inhibitory domain, J. Biol. Chem, vol.274, pp.19677-19685, 1999.

C. Lin, S. Chow, A. Lau, R. Tu, and L. T. , Human PDE5A gene encodes three PDE5 isoforms from two alternate promoters, Int. J. Impot. Res, vol.14, pp.15-24, 2002.

C. Lin, G. Lin, Z. Xin, and L. T. , Expression, distribution and regulation of phosphodiesterase 5, Curr. Pharm. Des, vol.12, pp.3439-3457, 2006.

T. M. Lincoln and C. J. , Purified cyclic GMP-dependent protein kinase catalyzes the phosphorylation of cardiac troponin inhibitory subunit (TN-1), J. Biol. Chem, vol.253, pp.337-339, 1978.

A. E. Linder, L. P. Mccluskey, K. R. Cole, K. M. Lanning, and W. R. , Dynamic association of nitric oxide downstream signaling molecules with endothelial caveolin-1 in rat aorta, J. Pharmacol. Exp. Ther, vol.314, pp.9-15, 2005.

M. E. Linder, P. Middleton, J. R. Hepler, R. Taussig, A. G. Gilman et al., Lipid modifications of G proteins: alpha subunits are palmitoylated, Proc. Natl. Acad. Sci. U. S. A, vol.90, pp.3675-3679, 1993.

M. L. Lindsey, Z. Kassiri, J. A. Virag, L. E. De-castro-brás, and M. Scherrer-crosbie, Guidelines for measuring cardiac physiology in mice, Am. J. Physiol. Heart Circ. Physiol, vol.314, pp.733-752, 2018.

H. Liu and M. D. , Expression of cyclic GMP-inhibited phosphodiesterases 3A and 3B (PDE3A and PDE3B) in rat tissues: differential subcellular localization and regulated expression by cyclic AMP, Br. J. Pharmacol, vol.125, pp.1501-1510, 1998.

D. Liu, Z. Wang, V. Nicolas, M. Lindner, D. Mika et al., PDE2 regulates membrane potential, respiration and permeability transition of rodent subsarcolemmal cardiac mitochondria, Mitochondrion, vol.47, pp.64-75, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02356190

S. Liu, Y. Li, S. Kim, Q. Fu, D. Parikh et al., Phosphodiesterases coordinate cAMP propagation induced by two stimulatory G protein-coupled receptors in hearts, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.6578-6583, 2012.

S. M. Lohmann, R. Fischmeister, and W. U. , Signal transduction by cGMP in heart, Basic Res. Cardiol, vol.86, pp.503-514, 1991.

M. J. Lohse, Molecular mechanisms of membrane receptor desensitization, Biochim. Biophys. Acta, vol.1179, pp.171-188, 1993.

M. J. Lohse, J. L. Benovic, M. G. Caron, and R. J. Lefkowitz, Multiple pathways of rapid beta 2-adrenergic receptor desensitization. Delineation with specific inhibitors, J. Biol. Chem, vol.265, pp.3202-3211, 1990.

M. J. Lohse, S. Engelhardt, and E. T. , What is the role of beta-adrenergic signaling in heart failure?, Circ. Res, vol.93, pp.896-906, 2003.

M. Lolicato, M. Nardini, S. Gazzarrini, S. Möller, D. Bertinetti et al., Tetramerization dynamics of C-terminal domain underlies isoform-specific cAMP gating in hyperpolarization-activated cyclic nucleotide-gated channels, J. Biol. Chem, vol.286, pp.44811-44820, 2011.

R. Lorenz, D. Bertinetti, and F. W. Herberg, cAMP-Dependent Protein Kinase and cGMP-Dependent Protein Kinase as Cyclic Nucleotide Effectors, Handb. Exp. Pharmacol, vol.238, pp.105-122, 2017.

A. Lorenzini, M. Tresini, M. Mawal-dewan, L. Frisoni, H. Zhang et al., Role of the Raf/MEK/ERK and the PI3K/Akt(PKB) pathways in fibroblast senescence, Exp. Gerontol, vol.37, pp.1149-1156, 2002.

K. Loughney, T. J. Martins, E. A. Harris, K. Sadhu, J. B. Hicks et al., Isolation and characterization of cDNAs corresponding to two human calcium, calmodulin-regulated, 3',5'-cyclic nucleotide phosphodiesterases, J. Biol. Chem, vol.271, pp.796-806, 1996.

C. M. Loughrey, T. Seidler, S. L. Miller, J. Prestle, K. E. Maceachern et al., Over-expression of FK506-binding protein FKBP12.6 alters excitation-contraction coupling in adult rabbit cardiomyocytes, J. Physiol, vol.556, pp.919-934, 2004.

B. D. Lowes, W. Minobe, W. T. Abraham, M. N. Rizeq, T. J. Bohlmeyer et al., Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium, J. Clin. Invest, vol.100, pp.2315-2324, 1997.

B. D. Lowes, E. M. Gilbert, W. T. Abraham, W. A. Minobe, P. Larrabee et al., Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents, N. Engl. J. Med, vol.346, pp.1357-1365, 2002.

Z. Lu, X. Xu, X. Hu, S. Lee, J. H. Traverse et al., , 2010.

, Oxidative stress regulates left ventricular PDE5 expression in the failing heart, Circulation, vol.121, pp.1474-1483

C. Lugnier, Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents, Pharmacol. Ther, vol.109, pp.366-398, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00129920

C. Lugnier, T. Keravis, L. Bec, A. Pauvert, O. Proteau et al., Characterization of cyclic nucleotide phosphodiesterase isoforms associated to isolated cardiac nuclei, Biochim. Biophys. Acta, vol.1472, pp.431-446, 1999.

R. Lukowski, S. D. Rybalkin, F. Loga, V. Leiss, J. A. Beavo et al., Cardiac hypertrophy is not amplified by deletion of cGMP-dependent protein kinase I in cardiomyocytes, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.5646-5651, 2010.

R. Lukowski, T. Krieg, S. D. Rybalkin, J. Beavo, and F. Hofmann, Turning on cGMP-dependent pathways to treat cardiac dysfunctions: boom, bust, and beyond, Trends Pharmacol. Sci, vol.35, pp.404-413, 2014.

Y. O. Lukyanenko, A. Younes, A. E. Lyashkov, K. V. Tarasov, D. R. Riordon et al., Ca(2+)/calmodulin-activated phosphodiesterase 1A is highly expressed in rabbit cardiac sinoatrial nodal cells and regulates pacemaker function, J. Mol. Cell. Cardiol, vol.98, pp.73-82, 2016.

W. Luo, G. Chu, Y. Sato, Z. Zhou, V. J. Kadambi et al., Transgenic approaches to define the functional role of dual site phospholamban phosphorylation, J. Biol. Chem, vol.273, pp.4734-4739, 1998.

T. Lv, Y. Du, N. Cao, S. Zhang, Y. Gong et al., Proliferation in cardiac fibroblasts induced by ?1-adrenoceptor autoantibody and the underlying mechanisms, Sci. Rep, vol.6, p.32430, 2016.

B. Lygren, C. R. Carlson, K. Santamaria, V. Lissandron, T. Mcsorley et al., AKAP complex regulates Ca2+ re-uptake into heart sarcoplasmic reticulum, EMBO Rep, vol.8, pp.1061-1067, 2007.

X. Ma, H. Liu, S. R. Foyil, R. J. Godar, C. J. Weinheimer et al., Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury, Circulation, vol.125, pp.3170-3181, 2012.

A. H. Maass, K. Ikeda, S. Oberdorf-maass, S. K. Maier, and L. A. Leinwand, Hypertrophy, fibrosis, and sudden cardiac death in response to pathological stimuli in mice with mutations in cardiac troponin T, Circulation, vol.110, pp.2102-2109, 2004.

D. A. Macdougall, S. R. Agarwal, E. A. Stopford, H. Chu, J. A. Collins et al., Caveolae compartmentalise ?2-adrenoceptor signals by curtailing cAMP production and maintaining phosphatase activity in the sarcoplasmic reticulum of the adult ventricular myocyte, J. Mol. Cell. Cardiol, vol.52, pp.388-400, 2012.

S. J. Mackenzie, G. S. Baillie, I. Mcphee, C. Mackenzie, R. Seamons et al., , p.van

G. Heeke and M. D. Houslay, Long PDE4 cAMP specific phosphodiesterases are activated by protein kinase A-mediated phosphorylation of a single serine residue in Upstream Conserved Region 1 (UCR1), Br. J. Pharmacol, vol.136, pp.421-433, 2002.

S. K. Mahata, H. Zheng, S. Mahata, X. Liu, and P. K. , Effect of heart failure on catecholamine granule morphology and storage in chromaffin cells, J. Endocrinol, vol.230, pp.309-323, 2016.

C. A. Makarewich, R. N. Correll, H. Gao, H. Zhang, B. Yang et al., A caveolae-targeted L-type Ca 2 + channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility, Circ. Res, vol.110, pp.669-674, 2012.

S. Mangmool, A. K. Shukla, and H. A. Rockman, beta-Arrestin-dependent activation of Ca(2+)/calmodulin kinase II after beta(1)-adrenergic receptor stimulation, J. Cell Biol, vol.189, pp.573-587, 2010.

S. Mangmool, W. Parichatikanond, and H. Kurose, Therapeutic Targets for Treatment of Heart Failure: Focus on GRKs and ?-Arrestins Affecting ?AR Signaling, Front. Pharmacol, vol.9, p.1336, 2018.

D. L. Mann, Left ventricular size and shape: determinants of mechanical signal transduction pathways, Heart Fail. Rev, vol.10, pp.95-100, 2005.

D. L. Mann and M. R. Bristow, Mechanisms and models in heart failure: the biomechanical model and beyond, Circulation, vol.111, pp.2837-2849, 2005.

D. L. Mann, R. L. Kent, B. Parsons, and C. G. , Adrenergic effects on the biology of the adult mammalian cardiocyte, Circulation, vol.85, pp.790-804, 1992.

J. M. Manns, K. J. Brenna, R. W. Colman, and S. B. Sheth, Differential regulation of human platelet responses by cGMP inhibited and stimulated cAMP phosphodiesterases, Thromb. Haemost, vol.87, pp.873-879, 2002.

E. Marbán, Cardiac channelopathies, Nature, vol.415, pp.213-218, 2002.

A. Marcantoni, R. C. Levi, M. P. Gallo, E. Hirsch, and A. G. , Phosphoinositide 3-kinasegamma (PI3Kgamma) controls L-type calcium current (ICa,L) through its positive modulation of type-3 phosphodiesterase (PDE3), J. Cell. Physiol, vol.206, pp.329-336, 2006.

A. R. Marks, Calcium cycling proteins and heart failure: mechanisms and therapeutics, J. Clin. Invest, vol.123, pp.46-52, 2013.

Y. Marrari, M. Crouthamel, R. Irannejad, and P. B. Wedegaertner, Assembly and trafficking of heterotrimeric G proteins, Biochemistry, vol.46, pp.7665-7677, 2007.

S. E. Martinez, A. Y. Wu, N. A. Glavas, X. Tang, S. Turley et al., The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.13260-13265, 2002.

T. J. Martins, M. C. Mumby, and J. A. Beavo, Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues, J. Biol. Chem, vol.257, pp.1973-1979, 1982.

S. O. Marx, S. Reiken, Y. Hisamatsu, T. Jayaraman, D. Burkhoff et al., PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts, Cell, vol.101, pp.365-376, 2000.

S. A. Mavropoulos, N. S. Khan, A. C. Levy, B. T. Faliks, C. P. Sison et al., Nicotinic acetylcholine receptor-mediated protection of the rat heart exposed to ischemia reperfusion, Mol. Med. Camb. Mass, vol.23, pp.120-133, 2017.

L. K. Mccorry, Physiology of the Autonomic Nervous System, Am. J. Pharm. Educ, vol.71, 2007.

J. J. Mcmurray, S. Adamopoulos, S. D. Anker, A. Auricchio, M. Böhm et al., ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC, Eur. Heart J, vol.33, pp.1787-1847, 2012.

J. J. Mcmurray, M. Packer, A. S. Desai, J. Gong, M. P. Lefkowitz et al., Angiotensin-neprilysin inhibition versus enalapril in heart failure, N. Engl. J. Med, vol.371, pp.993-1004, 2014.

C. K. Means, B. Lygren, L. K. Langeberg, A. Jain, R. E. Dixon et al., An entirely specific type I A-kinase anchoring protein that can sequester two molecules of protein kinase A at mitochondria, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.1227-1235, 2011.

H. Mehel, J. Emons, C. Vettel, K. Wittköpper, D. Seppelt et al., Phosphodiesterase-2 is up-regulated in human failing hearts and blunts ?-adrenergic responses in cardiomyocytes, J. Am. Coll. Cardiol, vol.62, pp.1596-1606, 2013.

H. G. Mengesha, T. B. Tafesse, and M. H. Bule, If Channel as an Emerging Therapeutic Target for Cardiovascular Diseases: A Review of Current Evidence and Controversies, Front. Pharmacol, vol.8, p.874, 2017.

P. F. Méry, S. M. Lohmann, U. Walter, and R. Fischmeister, Ca2+ current is regulated by cyclic GMPdependent protein kinase in mammalian cardiac myocytes, Proc. Natl. Acad. Sci. U. S. A, vol.88, pp.1197-1201, 1991.

P. F. Méry, C. Pavoine, F. Pecker, and R. Fischmeister, Erythro-9-(2-hydroxy-3-nonyl)adenine inhibits cyclic GMP-stimulated phosphodiesterase in isolated cardiac myocytes, Mol. Pharmacol, vol.48, pp.121-130, 1995.

P. F. Méry, L. Hove-madsen, J. M. Chesnais, H. C. Hartzell, and R. Fischmeister, Nitric oxide synthase does not participate in negative inotropic effect of acetylcholine in frog heart, Am. J. Physiol, vol.270, pp.1178-1188, 1996.

M. Metra, E. Eichhorn, W. T. Abraham, J. Linseman, M. Böhm et al., Effects of low-dose oral enoximone administration on mortality, morbidity, and exercise capacity in patients with advanced heart failure: the randomized, double-blind, placebo-controlled, parallel group ESSENTIAL trials, Eur. Heart J, vol.30, pp.3015-3026, 2009.

M. Métrich, A. Lucas, M. Gastineau, J. Samuel, C. Heymes et al., Epac mediates beta-adrenergic receptor-induced cardiomyocyte hypertrophy, Circ. Res, vol.102, pp.959-965, 2008.

A. M. Michie, M. Lobban, T. Müller, M. M. Harnett, and M. D. Houslay, Rapid regulation of PDE-2 and PDE-4 cyclic AMP phosphodiesterase activity following ligation of the T cell antigen receptor on thymocytes: analysis using the selective inhibitors erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA) and rolipram, Cell. Signal, vol.8, pp.97-110, 1996.

D. Mika, J. Leroy, G. Vandecasteele, and R. Fischmeister, PDEs create local domains of cAMP signaling, J. Mol. Cell. Cardiol, vol.52, pp.323-329, 2012.

D. Mika, P. Bobin, M. Pomérance, P. Lechêne, R. E. Westenbroek et al., Differential regulation of cardiac excitation-contraction coupling by cAMP phosphodiesterase subtypes, Cardiovasc. Res, vol.100, pp.336-346, 2013.

D. Mika, W. Richter, R. E. Westenbroek, W. A. Catterall, and M. Conti, PDE4B mediates local feedback regulation of ??-adrenergic cAMP signaling in a sarcolemmal compartment of cardiac myocytes, J. Cell Sci, vol.127, pp.1033-1042, 2014.

D. Mika, W. Richter, and M. Conti, A CaMKII/PDE4D negative feedback regulates cAMP signaling, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.2023-2028, 2015.

D. Mika, P. Bobin, M. Lindner, A. Boet, A. Hodzic et al., Synergic PDE3 and PDE4 control intracellular cAMP and cardiac excitationcontraction coupling in a porcine model, J. Mol. Cell. Cardiol, vol.133, pp.57-66, 2019.

T. Miki, M. Taira, S. Hockman, F. Shimada, J. Lieman et al., Characterization of the cDNA and gene encoding human PDE3B, the cGIP1 isoform of the human cyclic GMP-inhibited cyclic nucleotide phosphodiesterase family, Genomics, vol.36, pp.476-485, 1996.

C. L. Miller and Y. C. , Targeting cyclic nucleotide phosphodiesterase in the heart: therapeutic implications, J Cardiovasc. Transl. Res, vol.3, pp.507-515, 2010.

C. L. Miller, M. Oikawa, Y. Cai, A. P. Wojtovich, D. J. Nagel et al., Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy, Circ. Res, vol.105, pp.956-964, 2009.

C. L. Miller, Y. Cai, M. Oikawa, T. Thomas, W. R. Dostmann et al., Cyclic nucleotide phosphodiesterase 1A: a key regulator of cardiac fibroblast activation and extracellular matrix remodeling in the heart, Basic Res. Cardiol, vol.106, pp.1023-1039, 2011.

E. C. Miner and W. L. Miller, A look between the cardiomyocytes: the extracellular matrix in heart failure, Mayo Clin. Proc, vol.81, pp.71-76, 2006.

F. Mingozzi, X. M. Anguela, G. Pavani, Y. Chen, R. J. Davidson et al., Overcoming preexisting humoral immunity to AAV using capsid decoys, Sci. Transl. Med, vol.5, pp.194-92, 2013.

M. L. Mohan, N. T. Vasudevan, M. K. Gupta, E. E. Martelli, N. Prasad et al., G-protein coupled receptor resensitization-appreciating the balancing act of receptor function, Curr. Mol. Pharmacol, 2012.

C. E. Molina, J. Leroy, W. Richter, M. Xie, C. Scheitrum et al., Cyclic adenosine monophosphate phosphodiesterase type 4 protects against atrial arrhythmias, J. Am. Coll. Cardiol, vol.59, pp.2182-2190, 2012.

P. B. Molinoff, Alpha-and beta-adrenergic receptor subtypes properties, distribution and regulation, Drugs, vol.28, pp.1-15, 1984.

M. Mongillo, T. Mcsorley, S. Evellin, A. Sood, V. Lissandron et al., Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases, Circ. Res, vol.95, pp.67-75, 2004.

M. Mongillo, C. G. Tocchetti, A. Terrin, V. Lissandron, Y. Cheung et al., Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway, Circ. Res, vol.98, pp.226-234, 2006.

S. Moniotte, L. Kobzik, O. Feron, J. N. Trochu, C. Gauthier et al., Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium, Circulation, vol.103, pp.1649-1655, 2001.

E. S. Monrad, R. G. Mckay, D. S. Baim, W. S. Colucci, M. A. Fifer et al., Improvement in indexes of diastolic performance in patients with congestive heart failure treated with milrinone, Circulation, vol.70, pp.1030-1037, 1984.

V. Monteilhet, S. Saheb, S. Boutin, C. Leborgne, P. Veron et al., A 10 Patient Case Report on the Impact of Plasmapheresis Upon Neutralizing Factors Against Adeno-associated Virus (AAV) Types 1, 2, 6, and 8, Mol. Ther, vol.19, pp.2084-2091, 2011.

S. Monterisi and M. Zaccolo, Components of the mitochondrial cAMP signalosome, Biochem. Soc. Trans, vol.45, pp.269-274, 2017.

S. Monterisi, M. J. Lobo, C. Livie, J. C. Castle, M. Weinberger et al., PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling, 2017.

W. R. Montfort, J. A. Wales, and W. A. , Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor, Antioxid. Redox Signal, vol.26, pp.107-121, 2017.

B. F. Moody and J. W. Calvert, Emergent role of gasotransmitters in ischemia-reperfusion injury, Med. Gas Res, vol.1, p.3, 2011.

E. Morel, A. Marcantoni, M. Gastineau, R. Birkedal, F. Rochais et al., cAMP-binding protein Epac induces cardiomyocyte hypertrophy, Circ. Res, vol.97, pp.1296-1304, 2005.

P. Most, J. Bernotat, P. Ehlermann, S. T. Pleger, M. Reppel et al., S100A1: a regulator of myocardial contractility, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.13889-13894, 2001.

P. Most, A. Remppis, S. T. Pleger, E. Löffler, P. Ehlermann et al., Transgenic overexpression of the Ca2+-binding protein S100A1 in the heart leads to increased in vivo myocardial contractile performance, J. Biol. Chem, vol.278, pp.33809-33817, 2003.

P. Most, A. Remppis, S. T. Pleger, H. A. Katus, and W. J. Koch, S100A1: a novel inotropic regulator of cardiac performance. Transition from molecular physiology to pathophysiological relevance, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.293, pp.568-577, 2007.

A. Mosterd and A. W. Hoes, Clinical epidemiology of heart failure, Heart Br. Card. Soc, vol.93, pp.1137-1146, 2007.

M. Movsesian, New pharmacologic interventions to increase cardiac contractility: challenges and opportunities, Curr. Opin. Cardiol, vol.30, pp.285-291, 2015.

M. Movsesian, O. Wever-pinzon, and F. Vandeput, PDE3 inhibition in dilated cardiomyopathy, Curr. Opin. Pharmacol, vol.11, pp.707-713, 2011.

M. A. Movsesian, C. J. Smith, J. Krall, M. R. Bristow, and V. C. Manganiello, Sarcoplasmic reticulumassociated cyclic adenosine 5'-monophosphate phosphodiesterase activity in normal and failing human hearts, J. Clin. Invest, vol.88, pp.15-19, 1991.

B. Muller, J. C. Stoclet, and C. Lugnier, Cytosolic and membrane-bound cyclic nucleotide phosphodiesterases from guinea pig cardiac ventricles, Eur. J. Pharmacol, vol.225, pp.263-272, 1992.

B. Myagmar, J. M. Flynn, P. M. Cowley, P. M. Swigart, M. D. Montgomery et al., Adrenergic Receptors in Individual Ventricular Myocytes: The Beta-1 and Alpha-1B Are in All Cells, the Alpha-1A Is in a Subpopulation, and the Beta-2 and Beta-3 Are Mostly Absent, Circ. Res, vol.120, pp.1103-1115, 2017.

J. Nagendran, S. L. Archer, D. Soliman, V. Gurtu, R. Moudgil et al., Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility, Circulation, vol.116, pp.238-248, 2007.

S. F. Nagueh, O. A. Smiseth, C. P. Appleton, B. F. Byrd, H. Dokainish et al., Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging, J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr, vol.29, pp.277-314, 2016.

A. Nakai, O. Yamaguchi, T. Takeda, Y. Higuchi, S. Hikoso et al.,

M. Asahi, The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress, Nat. Med, vol.13, pp.619-624, 2007.

S. J. Nakano, J. Sucharov, R. Van-dusen, M. Cecil, K. Nunley et al., Cardiac Adenylyl Cyclase and Phosphodiesterase Expression Profiles Vary by Age, Disease, and Chronic Phosphodiesterase Inhibitor Treatment, J. Card. Fail, vol.23, pp.72-80, 2017.

K. Nakao, Y. Ogawa, S. Suga, and H. Imura, Molecular biology and biochemistry of the natriuretic peptide system. II: Natriuretic peptide receptors, J. Hypertens, vol.10, pp.1111-1114, 1992.

M. Nakaoka, E. Iwai-kanai, M. Katamura, Y. Okawa, Y. Mita et al., An alpha-adrenergic agonist protects hearts by inducing Akt1-mediated autophagy, Biochem. Biophys. Res. Commun, vol.456, pp.250-256, 2015.

M. Nakaya, S. Chikura, K. Watari, N. Mizuno, K. Mochinaga et al., Induction of cardiac fibrosis by ?-blocker in G protein-independent and G protein-coupled receptor kinase 5/?-arrestin2-dependent Signaling pathways, J. Biol. Chem, vol.287, pp.35669-35677, 2012.

H. Nakayama, X. Chen, C. P. Baines, R. Klevitsky, X. Zhang et al., Ca2+-and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure, J. Clin. Invest, vol.117, pp.2431-2444, 2007.

J. M. Nerbonne and K. R. , Molecular physiology of cardiac repolarization, Physiol. Rev, vol.85, pp.1205-1253, 2005.

J. Neumann, R. C. Gupta, W. Schmitz, H. Scholz, A. C. Nairn et al., Evidence for isoproterenol-induced phosphorylation of phosphatase inhibitor-1 in the intact heart, Circ. Res, vol.69, pp.1450-1457, 1991.

A. G. Nickel, A. Von-hardenberg, M. Hohl, J. R. Löffler, M. Kohlhaas et al., Reversal of Mitochondrial Transhydrogenase Causes Oxidative Stress in Heart Failure, Cell Metab, vol.22, pp.472-484, 2015.

P. Nicolaou and E. G. Kranias, Role of PP1 in the regulation of Ca cycling in cardiac physiology and pathophysiology, Front. Biosci. Landmark Ed, vol.14, pp.3571-3585, 2009.

P. Nicolaou, R. J. Hajjar, and E. G. Kranias, Role of protein phosphatase-1 inhibitor-1 in cardiac physiology and pathophysiology, J. Mol. Cell. Cardiol, vol.47, pp.365-371, 2009.

M. Niimura, T. Miki, T. Shibasaki, W. Fujimoto, T. Iwanaga et al., Critical role of the N-terminal cyclic AMP-binding domain of Epac2 in its subcellular localization and function, J. Cell. Physiol, vol.219, pp.652-658, 2009.

V. O. Nikolaev, M. Bünemann, E. Schmitteckert, M. J. Lohse, and E. S. , Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptormediated signaling, Circ. Res, vol.99, pp.1084-1091, 2006.

V. O. Nikolaev, A. Moshkov, A. R. Lyon, M. Miragoli, P. Novak et al., Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation, Science, vol.327, pp.1653-1657, 2010.

N. Romanelli, M. Sartiani, L. Masi, A. Mannaioni, G. Manetti et al., HCN Channels Modulators: The Need for Selectivity, Curr. Top. Med. Chem, vol.16, pp.1764-1791, 2016.

N. Nuamnaichati, V. H. Sato, P. Moongkarndi, W. Parichatikanond, and M. S. , Sustained ?-AR stimulation induces synthesis and secretion of growth factors in cardiac myocytes that affect on cardiac fibroblast activation, Life Sci, vol.193, pp.257-269, 2018.

E. A. Oestreich, H. Wang, S. Malik, K. A. Kaproth-joslin, B. C. Blaxall et al., Epac-mediated activation of phospholipase C(epsilon) plays a critical role in beta-adrenergic receptor-dependent enhancement of Ca2+ mobilization in cardiac myocytes, J. Biol. Chem, vol.282, pp.5488-5495, 2007.

E. A. Oestreich, S. Malik, S. A. Goonasekera, B. C. Blaxall, G. G. Kelley et al., , 2009.

, Epac and phospholipase Cepsilon regulate Ca2+ release in the heart by activation of protein kinase Cepsilon and calcium-calmodulin kinase II, J. Biol. Chem, vol.284, pp.1514-1522

M. Oikawa, M. Wu, S. Lim, W. E. Knight, C. L. Miller et al., Cyclic nucleotide phosphodiesterase 3A1 protects the heart against ischemia-reperfusion injury, J. Mol. Cell. Cardiol, vol.64, pp.11-19, 2013.

S. Okumura, J. Kawabe, A. Yatani, G. Takagi, M. Lee et al., Type 5 adenylyl cyclase disruption alters not only sympathetic but also parasympathetic and calcium-mediated cardiac regulation, Circ. Res, vol.93, pp.364-371, 2003.

S. Okumura, G. Takagi, J. Kawabe, G. Yang, M. Lee et al., Disruption of type 5 adenylyl cyclase gene preserves cardiac function against pressure overload, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.9986-9990, 2003.

S. Okumura, D. E. Vatner, R. Kurotani, Y. Bai, S. Gao et al., Disruption of type 5 adenylyl cyclase enhances desensitization of cyclic adenosine monophosphate signal and increases Akt signal with chronic catecholamine stress, Circulation, vol.116, pp.1776-1783, 2007.

S. Okumura, T. Fujita, W. Cai, M. Jin, I. Namekata et al., Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses, J. Clin. Invest, vol.124, pp.2785-2801, 2014.

G. Olivetti, R. Abbi, F. Quaini, J. Kajstura, W. Cheng et al., Apoptosis in the failing human heart, N. Engl. J. Med, vol.336, pp.1131-1141, 1997.

F. Omar, J. E. Findlay, G. Carfray, R. W. Allcock, Z. Jiang et al., Small-molecule allosteric activators of PDE4 long form cyclic AMP phosphodiesterases, Proc. Natl. Acad. Sci. U. S. A, vol.116, pp.13320-13329, 2019.

K. Omori and J. Kotera, Overview of PDEs and their regulation, Circ. Res, vol.100, pp.309-327, 2007.

C. Orchard and F. Brette, t-Tubules and sarcoplasmic reticulum function in cardiac ventricular myocytes, Cardiovasc. Res, vol.77, pp.237-244, 2008.

M. E. Osler, T. K. Smith, and D. M. Bader, Bves, a member of the Popeye domain-containing gene family, Dev. Dyn. Off. Publ. Am. Assoc. Anat, vol.235, pp.586-593, 2006.

S. Osman, K. A. Taylor, N. Allcock, R. D. Rainbow, and M. P. Mahaut-smith, Detachment of surface membrane invagination systems by cationic amphiphilic drugs, Sci. Rep, vol.6, p.18536, 2016.

C. A. Pacak, C. S. Mah, B. D. Thattaliyath, T. J. Conlon, M. A. Lewis et al., Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo, Circ. Res, vol.99, pp.3-9, 2006.

M. Packer, J. R. Carver, R. J. Rodeheffer, R. J. Ivanhoe, R. Dibianco et al., Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group, N. Engl. J. Med, vol.325, pp.1468-1475, 1991.

J. Pandit, M. D. Forman, K. F. Fennell, K. S. Dillman, and F. S. Menniti, Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.18225-18230, 2009.

L. Pang, Y. Cai, E. H. Tang, M. G. Irwin, H. Ma et al., Prostaglandin E Receptor Subtype, vol.4, 2016.

, Signaling in the Heart: Role in Ischemia/Reperfusion Injury and Cardiac Hypertrophy, J. Diabetes Res, p.1324347, 2016.

D. Parnes, V. Jacoby, A. Sharabi, H. Schlesinger, T. Brand et al., The Popdc gene family in the rat: molecular cloning, characterization and expression analysis in the heart and cultured cardiomyocytes, Biochim. Biophys. Acta, vol.1769, pp.586-592, 2007.

R. Passier, H. Zeng, N. Frey, F. J. Naya, R. L. Nicol et al., CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo, J. Clin. Invest, vol.105, pp.1395-1406, 2000.

E. Patrucco, A. Notte, L. Barberis, G. Selvetella, A. Maffei et al., PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects, Cell, vol.118, pp.375-387, 2004.

E. Patrucco, M. S. Albergine, L. F. Santana, and J. A. Beavo, Phosphodiesterase 8A (PDE8A) regulates excitation-contraction coupling in ventricular myocytes, J. Mol. Cell. Cardiol, vol.49, pp.330-333, 2010.

A. J. Patterson, W. Zhu, A. Chow, R. Agrawal, J. Kosek et al., Protecting the myocardium: a role for the beta2 adrenergic receptor in the heart, Crit. Care Med, vol.32, pp.1041-1048, 2004.

W. J. Paulus, C. Tschöpe, J. E. Sanderson, C. Rusconi, F. A. Flachskampf et al., How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology, Eur. Heart J, vol.28, pp.2539-2550, 2007.

N. Pavlaki and V. O. Nikolaev, Imaging of PDE2-and PDE3-Mediated cGMP-to-cAMP Cross-Talk in Cardiomyocytes, J. Cardiovasc. Dev. Dis, vol.5, 2018.

W. F. Penny, T. D. Henry, M. W. Watkins, A. N. Patel, and H. K. Hammond, with heart failure with reduced left ventricular ejection fraction: The FLOURISH Clinical Trial, Am. Heart J, vol.201, pp.111-116, 2018.

P. Marra, M. De-lazzari, M. Zorzi, A. Migliore, F. Zilio et al., Impact of the presence and amount of myocardial fibrosis by cardiac magnetic resonance on arrhythmic outcome and sudden cardiac death in nonischemic dilated cardiomyopathy, Heart Rhythm, vol.11, pp.856-863, 2014.

L. Pereira, M. Métrich, M. Fernández-velasco, A. Lucas, J. Leroy et al., The cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes, J. Physiol, vol.583, pp.685-694, 2007.

L. Pereira, G. Ruiz-hurtado, E. Morel, A. Laurent, M. Métrich et al., Epac enhances excitation-transcription coupling in cardiac myocytes, J. Mol. Cell. Cardiol, vol.52, pp.283-291, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00726758

L. Pereira, H. Cheng, D. H. Lao, L. Na, R. J. Van-oort et al., , 2013.

, Epac2 mediates cardiac ?1-adrenergic-dependent sarcoplasmic reticulum Ca2+ leak and arrhythmia, Circulation, vol.127, pp.913-922

L. Pereira, H. Rehmann, D. H. Lao, J. R. Erickson, J. Bossuyt et al., Novel Epac fluorescent ligand reveals distinct Epac1 vs. Epac2 distribution and function in cardiomyocytes, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.3991-3996, 2015.

L. Pereira, D. J. Bare, S. Galice, T. R. Shannon, and D. M. Bers, ?-Adrenergic induced SR Ca2+ leak is mediated by an Epac-NOS pathway, J. Mol. Cell. Cardiol, vol.108, pp.8-16, 2017.

R. K. Perera and V. O. Nikolaev, Compartmentation of cAMP signalling in cardiomyocytes in health and disease, Acta Physiol. Oxf. Engl, vol.207, pp.650-662, 2013.

A. Perino, A. Ghigo, E. Ferrero, F. Morello, G. Santulli et al., Integrating cardiac PIP3 and cAMP signaling through a PKA anchoring function of p110?, Mol. Cell, vol.42, pp.84-95, 2011.

A. Perino, A. Ghigo, J. D. Scott, and H. E. , Anchoring proteins as regulators of signaling pathways, Circ. Res, vol.111, pp.482-492, 2012.

S. J. Perry, G. S. Baillie, T. A. Kohout, I. Mcphee, M. M. Magiera et al., Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins, Science, vol.298, pp.834-836, 2002.

S. Phosri, A. Arieyawong, K. Bunrukchai, W. Parichatikanond, A. Nishimura et al., Stimulation of Adenosine A2B Receptor Inhibits Endothelin-1-Induced Cardiac Fibroblast Proliferation and ?-Smooth Muscle Actin Synthesis Through the cAMP/Epac/PI3K/Akt-Signaling Pathway, Front. Pharmacol, vol.8, p.428, 2017.

G. Pidoux and T. K. , Specificity and spatial dynamics of protein kinase A signaling organized by Akinase-anchoring proteins, J. Mol. Endocrinol, vol.44, pp.271-284, 2010.

G. Pidoux, O. Witczak, E. Jarnaess, L. Myrvold, H. Urlaub et al., Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis, EMBO J, vol.30, pp.4371-4386, 2011.

A. Piek, R. A. De-boer, and H. H. Silljé, The fibrosis-cell death axis in heart failure, Heart Fail. Rev, vol.21, pp.199-211, 2016.

K. L. Pierce, R. T. Premont, and R. J. Lefkowitz, Seven-transmembrane receptors, Nat. Rev. Mol. Cell Biol, vol.3, pp.639-650, 2002.

S. Pierre, T. Eschenhagen, G. Geisslinger, and K. Scholich, Capturing adenylyl cyclases as potential drug targets, Nat. Rev. Drug Discov, vol.8, pp.321-335, 2009.

M. Pinilla-vera, V. S. Hahn, and K. D. , Leveraging Signaling Pathways to Treat Heart Failure With Reduced Ejection Fraction, Circ. Res, vol.124, pp.1618-1632, 2019.

A. R. Pinto, A. Ilinykh, M. J. Ivey, J. T. Kuwabara, M. L. D'antoni et al., Revisiting Cardiac Cellular Composition, Circ. Res, vol.118, pp.400-409, 2016.

J. A. Pitcher, J. Inglese, J. B. Higgins, J. L. Arriza, P. J. Casey et al., Role of beta gamma subunits of G proteins in targeting the beta-adrenergic receptor kinase to membrane-bound receptors, Science, vol.257, pp.1264-1267, 1992.

S. T. Pleger, P. Most, M. Boucher, S. Soltys, J. K. Chuprun et al., Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue, Circulation, vol.115, pp.2506-2515, 2007.

S. T. Pleger, C. Shan, J. Ksienzyk, R. Bekeredjian, P. Boekstegers et al., Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model, Sci. Transl. Med, vol.3, pp.92-64, 2011.

T. Podzuweit, P. Nennstiel, and A. Müller, Isozyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine, Cell. Signal, vol.7, pp.733-738, 1995.

S. M. Pogwizd and D. M. Bers, Cellular basis of triggered arrhythmias in heart failure, Trends Cardiovasc. Med, vol.14, pp.61-66, 2004.

P. Pokreisz, S. Vandenwijngaert, V. Bito, A. Van-den-bergh, I. Lenaerts et al., Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice, Circulation, vol.119, pp.408-416, 2009.

N. Polidovitch, S. Yang, H. Sun, R. Lakin, F. Ahmad et al., Phosphodiesterase type 3A (PDE3A), but not type 3B (PDE3B), contributes to the adverse cardiac remodeling induced by pressure overload, J. Mol. Cell. Cardiol, vol.132, pp.60-70, 2019.

P. Ponikowski, A. A. Voors, S. D. Anker, H. Bueno, J. G. Cleland et al., 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC, Eur. Heart J, vol.37, pp.2129-2200, 2016.

N. J. Pyne, M. E. Cooper, and M. D. Houslay, Identification and characterization of both the cytosolic and particulate forms of cyclic GMP-stimulated cyclic AMP phosphodiesterase from rat liver, Biochem. J, vol.234, pp.325-334, 1986.

E. Qvigstad, T. Brattelid, I. Sjaastad, K. W. Andressen, K. A. Krobert et al., Appearance of a ventricular 5-HT4 receptor-mediated inotropic response to serotonin in heart failure, Cardiovasc. Res, vol.65, pp.869-878, 2005.

P. W. Raake, P. Schlegel, J. Ksienzyk, J. Reinkober, J. Barthelmes et al., AAV6.?ARKct cardiac gene therapy ameliorates cardiac function and normalizes the catecholaminergic axis in a clinically relevant large animal heart failure model, Eur. Heart J, vol.34, pp.1437-1447, 2013.

A. Rahm, P. Lugenbiel, P. A. Schweizer, H. A. Katus, and T. D. , Role of ion channels in heart failure and channelopathies, Biophys. Rev, vol.10, pp.1097-1106, 2018.

M. Rajabi, C. Kassiotis, P. Razeghi, and H. Taegtmeyer, Return to the fetal gene program protects the stressed heart: a strong hypothesis, Heart Fail. Rev, vol.12, pp.331-343, 2007.

M. T. Ramirez, X. L. Zhao, H. Schulman, and J. H. Brown, The nuclear deltaB isoform of Ca2+/calmodulindependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes, J. Biol. Chem, vol.272, pp.31203-31208, 1997.

C. J. Ramos and D. A. Antonetti, The role of small GTPases and EPAC-Rap signaling in the regulation of the blood-brain and blood-retinal barriers, Tissue Barriers, vol.5, 2017.

O. R. Rana, P. Schauerte, R. Kluttig, J. W. Schröder, R. R. Koenen et al., Acetylcholine as an age-dependent non-neuronal source in the heart, Auton. Neurosci. Basic Clin, vol.156, pp.82-89, 2010.

R. M. Rapoport and M. F. , Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP, Circ. Res, vol.52, pp.352-357, 1983.

S. T. Rapundalo, R. J. Solaro, and E. G. Kranias, Inotropic responses to isoproterenol and phosphodiesterase inhibitors in intact guinea pig hearts: comparison of cyclic AMP levels and phosphorylation of sarcoplasmic reticulum and myofibrillar proteins, Circ. Res, vol.64, pp.104-111, 1989.

R. Rastaldo, P. Pagliaro, S. Cappello, C. Penna, D. Mancardi et al., Nitric oxide and cardiac function, Life Sci, vol.81, pp.779-793, 2007.

M. M. Redfield, H. H. Chen, B. A. Borlaug, M. J. Semigran, K. L. Lee et al., Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial, JAMA, vol.309, pp.1268-1277, 2013.

D. E. Reese, M. Zavaljevski, N. L. Streiff, and D. Bader, bves: A novel gene expressed during coronary blood vessel development, Dev. Biol, vol.209, pp.159-171, 1999.

A. Remppis, T. Greten, B. W. Schäfer, P. Hunziker, P. Erne et al., Altered expression of the Ca(2+)-binding protein S100A1 in human cardiomyopathy, Biochim. Biophys. Acta, vol.1313, pp.253-257, 1996.

M. Richards, O. Lomas, K. Jalink, K. L. Ford, R. D. Vaughan-jones et al., , 2016.

, Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes, Cardiovasc. Res, vol.110, pp.395-407

W. Richter and M. Conti, Dimerization of the type 4 cAMP-specific phosphodiesterases is mediated by the upstream conserved regions (UCRs), J. Biol. Chem, vol.277, pp.40212-40221, 2002.

W. Richter, S. C. Jin, and M. Conti, Splice variants of the cyclic nucleotide phosphodiesterase PDE4D are differentially expressed and regulated in rat tissue, Biochem. J, vol.388, pp.803-811, 2005.

W. Richter, P. Day, R. Agrawal, M. D. Bruss, S. Granier et al., Signaling from beta1-and beta2-adrenergic receptors is defined by differential interactions with PDE4, EMBO J, vol.27, pp.384-393, 2008.

W. Richter, M. Xie, C. Scheitrum, J. Krall, M. A. Movsesian et al., Conserved expression and functions of PDE4 in rodent and human heart, Basic Res. Cardiol, vol.106, pp.249-262, 2011.

W. Richter, D. Mika, E. Blanchard, P. Day, and M. Conti, ?1-adrenergic receptor antagonists signal via PDE4 translocation, EMBO Rep, vol.14, pp.276-283, 2013.

M. Y. Rincon, T. Vandendriessche, and M. K. Chuah, Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation, Cardiovasc. Res, vol.108, pp.4-20, 2015.

M. Rivet-bastide, G. Vandecasteele, S. Hatem, I. Verde, A. Bénardeau et al., cGMP-stimulated cyclic nucleotide phosphodiesterase regulates the basal calcium current in human atrial myocytes, J. Clin. Invest, vol.99, pp.2710-2718, 1997.

F. Rochais, G. Vandecasteele, F. Lefebvre, C. Lugnier, H. Lum et al., Negative feedback exerted by cAMP-dependent protein kinase and cAMP phosphodiesterase on subsarcolemmal cAMP signals in intact cardiac myocytes: an in vivo study using adenovirus-mediated expression of CNG channels, J. Biol. Chem, vol.279, pp.52095-52105, 2004.

F. Rochais, A. Abi-gerges, K. Horner, F. Lefebvre, D. M. Cooper et al., A specific pattern of phosphodiesterases controls the cAMP signals generated by different Gs-coupled receptors in adult rat ventricular myocytes, Circ. Res, vol.98, pp.1081-1088, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00000047

C. Rocha-resende, A. Roy, R. Resende, M. S. Ladeira, A. Lara et al., Non-neuronal cholinergic machinery present in cardiomyocytes offsets hypertrophic signals, J. Mol. Cell. Cardiol, vol.53, pp.206-216, 2012.

H. A. Rockman, R. S. Ross, A. N. Harris, K. U. Knowlton, M. E. Steinhelper et al., Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy, Proc. Natl. Acad. Sci. U. S. A, vol.88, pp.8277-8281, 1991.

H. A. Rockman, K. R. Chien, D. J. Choi, G. Iaccarino, J. J. Hunter et al., Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in genetargeted mice, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.7000-7005, 1998.

D. K. Rohrer, A. Chruscinski, E. H. Schauble, D. Bernstein, and B. K. Kobilka, Cardiovascular and metabolic alterations in mice lacking both beta1-and beta2-adrenergic receptors, J. Biol. Chem, vol.274, pp.16701-16708, 1999.

J. De-rooij, F. J. Zwartkruis, M. H. Verheijen, R. H. Cool, S. M. Nijman et al., Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP, Nature, vol.396, pp.474-477, 1998.

G. J. Rosman, T. J. Martins, W. K. Sonnenburg, J. A. Beavo, K. Ferguson et al., Isolation and characterization of human cDNAs encoding a cGMP-stimulated 3',5'-cyclic nucleotide phosphodiesterase, Gene, vol.191, pp.89-95, 1997.

D. M. Roth, H. Bayat, J. D. Drumm, M. H. Gao, J. S. Swaney et al., Adenylyl cyclase increases survival in cardiomyopathy, Circulation, vol.105, pp.1989-1994, 2002.

K. G. Rothberg, J. E. Heuser, W. C. Donzell, Y. Ying, J. R. Glenney et al., Caveolin, a protein component of caveolae membrane coats, Cell, vol.68, pp.673-682, 1992.

A. Roy, S. Guatimosim, V. F. Prado, R. Gros, and M. A. Prado, Cholinergic activity as a new target in diseases of the heart, Mol. Med. Camb. Mass, vol.20, pp.527-537, 2015.

A. Roy, M. Dakroub, G. C. Tezini, Y. Liu, S. Guatimosim et al., Cardiac acetylcholine inhibits ventricular remodeling and dysfunction under pathologic conditions, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.30, pp.688-701, 2016.

B. Rozec and C. Gauthier, beta3-adrenoceptors in the cardiovascular system: putative roles in human pathologies, vol.111, pp.652-673, 2006.

A. Ruppelt, R. Mosenden, M. Grönholm, E. M. Aandahl, D. Tobin et al., Inhibition of T cell activation by cyclic adenosine 5'-monophosphate requires lipid raft targeting of protein kinase A type I by the A-kinase anchoring protein ezrin, J. Immunol. Baltim. Md, vol.179, pp.5159-5168, 1950.

C. Russwurm, G. Zoidl, D. Koesling, and R. M. , Dual acylation of PDE2A splice variant 3: targeting to synaptic membranes, J. Biol. Chem, vol.284, pp.25782-25790, 2009.

M. Russwurm, N. Wittau, and K. D. , Guanylyl cyclase/PSD-95 interaction: targeting of the nitric oxide-sensitive alpha2beta1 guanylyl cyclase to synaptic membranes, J. Biol. Chem, vol.276, pp.44647-44652, 2001.

S. D. Rybalkin, I. G. Rybalkina, M. Shimizu-albergine, X. Tang, and J. A. Beavo, PDE5 is converted to an activated state upon cGMP binding to the GAF A domain, EMBO J, vol.22, pp.469-478, 2003.

V. O. Rybin, X. Xu, M. P. Lisanti, and S. F. Steinberg, Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway, J. Biol. Chem, vol.275, pp.41447-41457, 2000.

N. Saadane, L. Alpert, and L. E. Chalifour, Expression of immediate early genes, GATA-4, and Nkx-2.5 in adrenergic-induced cardiac hypertrophy and during regression in adult mice, Br. J. Pharmacol, vol.127, pp.1165-1176, 1999.

N. Saadane, L. Alpert, and L. E. Chalifour, Altered molecular response to adrenoreceptor-induced cardiac hypertrophy in Egr-1-deficient mice, Am. J. Physiol. Heart Circ. Physiol, vol.278, pp.796-805, 2000.

K. Sadhu, K. Hensley, V. A. Florio, and S. L. Wolda, Differential expression of the cyclic GMP-stimulated phosphodiesterase PDE2A in human venous and capillary endothelial cells, J. Histochem. Cytochem. Off. J. Histochem. Soc, vol.47, pp.895-906, 1999.

M. Said, C. Mundiña-weilenmann, L. Vittone, and M. A. , The relative relevance of phosphorylation of the Thr(17) residue of phospholamban is different at different levels of beta-adrenergic stimulation, Pflugers Arch, vol.444, pp.801-809, 2002.

N. C. Salazar, X. Vallejos, A. Siryk, G. Rengo, A. Cannavo et al., GRK2 blockade with ?ARKct is essential for cardiac ?2-adrenergic receptor signaling towards increased contractility, Cell Commun. Signal. CCS, vol.11, p.64, 2013.

J. T. San-agustin and G. B. Witman, Differential expression of the C(s) and Calpha1 isoforms of the catalytic subunit of cyclic 3',5'-adenosine monophosphate-dependent protein kinase testicular cells, Biol. Reprod, vol.65, pp.151-164, 2001.

G. Sánchez-fernández, S. Cabezudo, C. García-hoz, C. Benincá, A. M. Aragay et al., G?q signalling: the new and the old, Cell. Signal, vol.26, pp.833-848, 2014.

R. M. Saraiva and J. M. Hare, Nitric oxide signaling in the cardiovascular system: implications for heart failure, Curr. Opin. Cardiol, vol.21, pp.221-228, 2006.

A. Saraste, K. Pulkki, M. Kallajoki, P. Heikkilä, P. Laine et al., Cardiomyocyte apoptosis and progression of heart failure to transplantation, Eur. J. Clin. Invest, vol.29, pp.380-386, 1999.

A. Sarrias and A. Bayes-genis, Is Sacubitril/Valsartan (Also) an Antiarrhythmic Drug?, Circulation, vol.138, pp.551-553, 2018.

L. Sartiani, G. Mannaioni, A. Masi, N. Romanelli, M. et al., The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels, Pharmacol. Rev, vol.69, pp.354-395, 2017.

Y. Sassi, A. Abi-gerges, J. Fauconnier, N. Mougenot, S. Reiken et al., Regulation of cAMP homeostasis by the efflux protein MRP4 in cardiac myocytes, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.26, pp.1009-1017, 2012.

Y. Sassi, A. Ahles, D. J. Truong, Y. Baqi, S. Lee et al., Cardiac myocyte-secreted cAMP exerts paracrine action via adenosine receptor activation, J. Clin. Invest, vol.124, pp.5385-5397, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01329340

J. J. Saucerman, E. C. Greenwald, and R. Polanowska-grabowska, Mechanisms of cyclic AMP compartmentation revealed by computational models, J. Gen. Physiol, vol.143, pp.39-48, 2014.

E. L. Saw, Y. Kakinuma, M. Fronius, and K. R. , The non-neuronal cholinergic system in the heart: A comprehensive review, J. Mol. Cell. Cardiol, vol.125, pp.129-139, 2018.

R. V. Schillace and J. D. Scott, Association of the type 1 protein phosphatase PP1 with the A-kinase anchoring protein AKAP220, Curr. Biol. CB, vol.9, pp.321-324, 1999.

R. F. Schindler and T. Brand, The Popeye domain containing protein family--A novel class of cAMP effectors with important functions in multiple tissues, Prog. Biophys. Mol. Biol, vol.120, pp.28-36, 2016.

R. F. Schindler, C. Scotton, J. Zhang, C. Passarelli, B. Ortiz-bonnin et al., POPDC1(S201F) causes muscular dystrophy and arrhythmia by affecting protein trafficking, J. Clin. Invest, vol.126, pp.239-253, 2016.

M. Schnelle, N. Catibog, M. Zhang, A. A. Nabeebaccus, G. Anderson et al., Echocardiographic evaluation of diastolic function in mouse models of heart disease, J. Mol. Cell. Cardiol, vol.114, pp.20-28, 2018.

F. Schröder, R. Handrock, D. J. Beuckelmann, S. Hirt, R. Hullin et al., Increased availability and open probability of single L-type calcium channels from failing compared with nonfailing human ventricle, Circulation, vol.98, pp.969-976, 1998.

H. Schulman and G. P. , Ca2+-dependent protein phosphorylation system in membranes from various tissues, and its activation by "calcium-dependent regulator, Proc. Natl. Acad. Sci. U. S. A, vol.75, pp.5432-5436, 1978.

P. Scicchitano, S. Carbonara, G. Ricci, C. Mandurino, M. Locorotondo et al., HCN channels and heart rate, Mol. Basel Switz, vol.17, pp.4225-4235, 2012.

J. D. Scott and L. F. Santana, A-kinase anchoring proteins: getting to the heart of the matter, Circulation, vol.121, pp.1264-1271, 2010.

J. D. Scott, C. W. Dessauer, and T. K. , Creating order from chaos: cellular regulation by kinase anchoring, Annu. Rev. Pharmacol. Toxicol, vol.53, pp.187-210, 2013.

N. J. Scott, M. T. Rademaker, C. J. Charles, E. A. Espiner, and A. M. Richards, Hemodynamic, Hormonal, and Renal Actions of Phosphodiesterase-9 Inhibition in Experimental Heart Failure, J. Am. Coll. Cardiol, vol.74, pp.889-901, 2019.

U. Seeland, S. Selejan, S. Engelhardt, P. Müller, M. J. Lohse et al., Interstitial remodeling in beta1-adrenergic receptor transgenic mice, Basic Res. Cardiol, vol.102, pp.183-193, 2007.

H. Senzaki, C. J. Smith, G. J. Juang, T. Isoda, S. P. Mayer et al., Cardiac phosphodiesterase 5 (cGMP-specific) modulates beta-adrenergic signaling in vivo and is down-regulated in heart failure, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.15, pp.1718-1726, 2001.

A. M. Shah, Ventricular Remodeling in Heart Failure with Preserved Ejection Fraction, Curr. Heart Fail. Rep, vol.10, pp.341-349, 2013.

A. M. Shah and D. L. Mann, In search of new therapeutic targets and strategies for heart failure: recent advances in basic science, Lancet Lond. Engl, vol.378, pp.704-712, 2011.

Y. Shakur, L. S. Holst, T. R. Landstrom, M. Movsesian, E. Degerman et al., Regulation and function of the cyclic nucleotide phosphodiesterase (PDE3) gene family, Prog. Nucleic Acid Res. Mol. Biol, vol.66, pp.241-277, 2001.

X. Shan, M. P. Quaile, J. K. Monk, B. French, T. P. Cappola et al., Differential expression of PDE5 in failing and nonfailing human myocardium, Circ. Heart Fail, vol.5, pp.79-86, 2012.

R. K. Sharma, Phosphorylation and characterization of bovine heart calmodulin-dependent phosphodiesterase, Biochemistry, vol.30, pp.5963-5968, 1991.

K. Sharma and K. D. , Unmet Needs in Cardiovascular Science and Medicine, Circ. Res, vol.115, pp.79-96, 2014.

R. K. Sharma and W. J. , Differential regulation of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase isoenzymes by cyclic AMP-dependent protein kinase and calmodulin-dependent phosphatase, Proc. Natl. Acad. Sci. U. S. A, vol.82, pp.2603-2607, 1985.

R. K. Sharma and W. J. , Calmodulin and Ca2+-dependent phosphorylation and dephosphorylation of 63-kDa subunit-containing bovine brain calmodulin-stimulated cyclic nucleotide phosphodiesterase isozyme, J. Biol. Chem, vol.261, pp.1322-1328, 1986.

H. A. Shiels and E. White, The Frank-Starling mechanism in vertebrate cardiac myocytes, J. Exp. Biol, vol.211, pp.2005-2013, 2008.

S. Shin, T. Kim, H. Lee, J. H. Kang, J. Y. Lee et al., The switching role of ?adrenergic receptor signalling in cell survival or death decision of cardiomyocytes, Nat. Commun, vol.5, p.5777, 2014.

D. P. Siderovski and W. F. , The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits, Int. J. Biol. Sci, vol.1, pp.51-66, 2005.

B. S. Skalhegg and T. K. , Specificity in the cAMP/PKA signaling pathway. Differential expression,regulation, and subcellular localization of subunits of PKA, Front. Biosci. J. Virtual Libr, vol.5, pp.678-693, 2000.

V. A. Skeberdis, V. Gendviliene, D. Zablockaite, R. Treinys, R. Macianskiene et al., beta3-adrenergic receptor activation increases human atrial tissue contractility and stimulates the L-type Ca2+ current, J. Clin. Invest, vol.118, pp.3219-3227, 2008.

J. Slavíková, J. Kuncová, and T. O. , Plasma catecholamines and ischemic heart disease, Clin. Cardiol, vol.30, pp.326-330, 2007.

C. J. Smith, J. Krall, V. C. Manganiello, and M. A. Movsesian, Cytosolic and sarcoplasmic reticulumassociated low Km, cGMP-inhibited cAMP phosphodiesterase in mammalian myocardium, Biochem. Biophys. Res. Commun, vol.190, pp.516-521, 1993.

F. D. Smith, S. L. Reichow, J. L. Esseltine, D. Shi, L. K. Langeberg et al., Intrinsic disorder within an AKAP-protein kinase A complex guides local substrate phosphorylation, vol.2, p.1319, 2013.

F. D. Smith, J. L. Esseltine, P. J. Nygren, D. Veesler, D. P. Byrne et al., Local protein kinase A action proceeds through intact holoenzymes, Science, vol.356, pp.1288-1293, 2017.

S. H. Soderling, S. J. Bayuga, and J. A. Beavo, Cloning and characterization of a cAMP-specific cyclic nucleotide phosphodiesterase, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.8991-8996, 1998.

S. H. Soderling, S. J. Bayuga, and J. A. Beavo, Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases, J. Biol. Chem, vol.273, pp.15553-15558, 1998.

W. K. Sonnenburg, P. J. Mullaney, and J. A. Beavo, Molecular cloning of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase cDNA. Identification and distribution of isozyme variants, J. Biol. Chem, vol.266, pp.17655-17661, 1991.

W. K. Sonnenburg, D. Seger, K. S. Kwak, J. Huang, H. Charbonneau et al., Identification of inhibitory and calmodulin-binding domains of the PDE1A1 and PDE1A2 calmodulin-stimulated cyclic nucleotide phosphodiesterases, J. Biol. Chem, vol.270, pp.30989-31000, 1995.

W. K. Sonnenburg, S. D. Rybalkin, K. E. Bornfeldt, K. S. Kwak, I. G. Rybalkina et al., , 1998.

, Identification, quantitation, and cellular localization of PDE1 calmodulin-stimulated cyclic nucleotide phosphodiesterases, Methods San Diego Calif, vol.14, pp.3-19

C. A. Souders, S. L. Bowers, and T. A. Baudino, Cardiac fibroblast: the renaissance cell, Circ. Res, vol.105, pp.1164-1176, 2009.

N. Sperelakis, Z. Xiong, G. Haddad, and H. Masuda, Regulation of slow calcium channels of myocardial cells and vascular smooth muscle cells by cyclic nucleotides and phosphorylation, Mol. Cell. Biochem, vol.140, pp.103-117, 1994.

A. Stangherlin, F. Gesellchen, A. Zoccarato, A. Terrin, L. A. Fields et al., cGMP signals modulate cAMP levels in a compartment-specific manner to regulate catecholamine-dependent signaling in cardiac myocytes, Circ. Res, vol.108, pp.929-939, 2011.

S. F. Steinberg and L. L. Brunton, Compartmentation of G protein-coupled signaling pathways in cardiac myocytes, Annu. Rev. Pharmacol. Toxicol, vol.41, pp.751-773, 2001.

D. T. Stephenson, T. M. Coskran, M. B. Wilhelms, W. O. Adamowicz, M. M. O'donnell et al., Immunohistochemical localization of phosphodiesterase 2A in multiple mammalian species, J. Histochem. Cytochem. Off. J. Histochem. Soc, vol.57, pp.933-949, 2009.

G. L. Stiles and R. J. Lefkowitz, Cardiac adrenergic receptors, Annu. Rev. Med, vol.35, pp.149-164, 1984.

H. Subramanian, A. Froese, P. Jönsson, H. Schmidt, J. Gorelik et al., Distinct submembrane localisation compartmentalises cardiac NPR1 and NPR2 signalling to cGMP, Nat. Commun, vol.9, p.2446, 2018.

C. C. Sucharov, P. D. Mariner, K. R. Nunley, C. Long, L. Leinwand et al., A beta1-adrenergic receptor CaM kinase II-dependent pathway mediates cardiac myocyte fetal gene induction, Am. J. Physiol. Heart Circ. Physiol, vol.291, pp.1299-1308, 2006.

C. C. Sucharov, S. J. Nakano, D. Slavov, J. A. Schwisow, E. Rodriguez et al., A PDE3A Promoter Polymorphism Regulates cAMP-Induced Transcriptional Activity in Failing Human Myocardium, J. Am. Coll. Cardiol, vol.73, pp.1173-1184, 2019.

M. Sugioka, M. Ito, H. Masuoka, K. Ichikawa, T. Konishi et al., Identification and characterization of isoenzymes of cyclic nucleotide phosphodiesterase in human kidney and heart, and the effects of new cardiotonic agents on these isoenzymes, Naunyn. Schmiedebergs Arch. Pharmacol, vol.350, pp.284-293, 1994.

B. Sun, H. Li, Y. Shakur, J. Hensley, S. Hockman et al., Role of phosphodiesterase type 3A and 3B in regulating platelet and cardiac function using subtype-selective knockout mice, Cell. Signal, vol.19, pp.1765-1771, 2007.

R. K. Sunahara and T. R. , Isoforms of mammalian adenylyl cyclase: multiplicities of signaling, Mol. Interv, vol.2, pp.168-184, 2002.

A. H. Swan, L. Gruscheski, L. A. Boland, and T. Brand, The Popeye domain containing gene family encoding a family of cAMP-effector proteins with important functions in striated muscle and beyond, J. Muscle Res. Cell Motil, 2019.

K. Swedberg, A. Hjalmarson, F. Waagstein, and W. I. , Beneficial effects of long-term beta-blockade in congestive cardiomyopathy, Br. Heart J, vol.44, pp.117-133, 1980.

S. Szardien, H. M. Nef, S. Voss, C. Troidl, C. Liebetrau et al., Regression of cardiac hypertrophy by granulocyte colony-stimulating factor-stimulated interleukin-1? synthesis, Eur. Heart J, vol.33, pp.595-605, 2012.

G. Taimor, B. Hofstaetter, and H. M. Piper, Apoptosis induction by nitric oxide in adult cardiomyocytes via cGMP-signaling and its impairment after simulated ischemia, Cardiovasc. Res, vol.45, pp.588-594, 2000.

M. Taira, S. C. Hockman, J. C. Calvo, M. Taira, P. Belfrage et al., Molecular cloning of the rat adipocyte hormone-sensitive cyclic GMP-inhibited cyclic nucleotide phosphodiesterase, J. Biol. Chem, vol.268, pp.18573-18579, 1993.

E. Takimoto, Cyclic GMP-dependent signaling in cardiac myocytes, Circ. J. Off. J. Jpn. Circ. Soc, vol.76, pp.1819-1825, 2012.

E. Takimoto, H. C. Champion, M. Li, D. Belardi, S. Ren et al., Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy, Nat. Med, vol.11, pp.214-222, 2005.

E. Takimoto, H. C. Champion, D. Belardi, J. Moslehi, M. Mongillo et al., cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism, Circ. Res, vol.96, pp.100-109, 2005.

E. Takimoto, D. Belardi, C. G. Tocchetti, S. Vahebi, G. Cormaci et al., Compartmentalization of cardiac beta-adrenergic inotropy modulation by phosphodiesterase type 5, Circulation, vol.115, pp.2159-2167, 2007.

L. B. Tan, J. E. Jalil, R. Pick, J. S. Janicki, and W. K. , Cardiac myocyte necrosis induced by angiotensin II, Circ. Res, vol.69, pp.1185-1195, 1991.

T. Tang, N. C. Lai, D. M. Roth, J. Drumm, T. Guo et al., , 2006.

, Adenylyl cyclase type V deletion increases basal left ventricular function and reduces left ventricular contractile responsiveness to beta-adrenergic stimulation, Basic Res. Cardiol, vol.101, pp.117-126

T. Tang, M. H. Gao, N. C. Lai, A. L. Firth, T. Takahashi et al.,

, Adenylyl cyclase type 6 deletion decreases left ventricular function via impaired calcium handling, Circulation, vol.117, pp.61-69

T. Tang, N. C. Lai, H. K. Hammond, D. M. Roth, Y. Yang et al., Adenylyl cyclase 6 deletion reduces left ventricular hypertrophy, dilation, dysfunction, and fibrosis in pressure-overloaded female mice, J. Am. Coll. Cardiol, vol.55, pp.1476-1486, 2010.

P. Tannous, H. Zhu, A. Nemchenko, J. M. Berry, J. L. Johnstone et al., Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy, Circulation, vol.117, pp.3070-3078, 2008.

K. Taskén and E. M. , Localized effects of cAMP mediated by distinct routes of protein kinase A, Physiol. Rev, vol.84, pp.137-167, 2004.

K. A. Taskén, P. Collas, W. A. Kemmner, O. Witczak, M. Conti et al., Phosphodiesterase 4D and protein kinase a type II constitute a signaling unit in the centrosomal area, J. Biol. Chem, vol.276, pp.21999-22002, 2001.

G. Tavernier, G. Toumaniantz, M. Erfanian, M. F. Heymann, K. Laurent et al., beta3-Adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human beta3-adrenergic receptor, Cardiovasc. Res, vol.59, pp.288-296, 2003.

J. J. Tesmer, R. K. Sunahara, R. A. Johnson, G. Gosselin, A. G. Gilman et al., Two-metal-Ion catalysis in adenylyl cyclase, Science, vol.285, pp.756-760, 1999.

M. K. Thomas, S. H. Francis, and C. J. , Substrate-and kinase-directed regulation of phosphorylation of a cGMP-binding phosphodiesterase by cGMP, J. Biol. Chem, vol.265, pp.14971-14978, 1990.

V. Timofeyev, R. E. Myers, H. J. Kim, R. L. Woltz, P. Sirish et al., Adenylyl cyclase subtype-specific compartmentalization: differential regulation of Ltype Ca2+ current in ventricular myocytes, Circ. Res, vol.112, pp.1567-1576, 2013.

G. L. Todd, G. Baroldi, G. M. Pieper, F. C. Clayton, and E. R. , Experimental catecholamine-induced myocardial necrosis. I. Morphology, quantification and regional distribution of acute contraction band lesions, J. Mol. Cell. Cardiol, vol.17, pp.317-338, 1985.

K. Toischer, A. G. Rokita, B. Unsöld, W. Zhu, G. Kararigas et al., Differential cardiac remodeling in preload versus afterload, vol.122, pp.993-1003, 2010.

P. P. De-tombe, Cardiac myofilaments: mechanics and regulation, J. Biomech, vol.36, pp.721-730, 2003.

H. Tomita, M. Nazmy, K. Kajimoto, G. Yehia, C. A. Molina et al., Inducible cAMP early repressor (ICER) is a negative-feedback regulator of cardiac hypertrophy and an important mediator of cardiac myocyte apoptosis in response to beta-adrenergic receptor stimulation, Circ. Res, vol.93, pp.12-22, 2003.

P. Tonino, B. Kiss, J. Strom, M. Methawasin, J. E. Smith et al., The giant protein titin regulates the length of the striated muscle thick filament, Nat. Commun, vol.8, 1041.

J. Tröger, M. C. Moutty, P. Skroblin, and K. E. , A-kinase anchoring proteins as potential drug targets, Br. J. Pharmacol, vol.166, pp.420-433, 2012.

H. L. Trong, N. Beier, W. K. Sonnenburg, S. D. Stroop, K. A. Walsh et al., , 1990.

, Amino acid sequence of the cyclic GMP stimulated cyclic nucleotide phosphodiesterase from bovine heart, Biochemistry, vol.29, pp.10280-10288

E. J. Tsai and K. D. , Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics, Pharmacol. Ther, vol.122, pp.216-238, 2009.

G. Tse, Mechanisms of cardiac arrhythmias, J. Arrhythmia, vol.32, pp.75-81, 2016.

L. V. Tse, K. A. Klinc, V. J. Madigan, C. Rivera, R. M. Wells et al., Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion, Proc. Natl. Acad. Sci. U. S. A, vol.114, pp.4812-4821, 2017.

I. V. Turko, S. H. Francis, and C. J. , Binding of cGMP to both allosteric sites of cGMP-binding cGMP-specific phosphodiesterase (PDE5) is required for its phosphorylation, Biochem. J, vol.329, pp.505-510, 1998.

M. D. Uhler, D. F. Carmichael, D. C. Lee, J. C. Chrivia, E. G. Krebs et al., Isolation of cDNA clones coding for the catalytic subunit of mouse cAMP-dependent protein kinase, Proc. Natl. Acad. Sci. U. S. A, vol.83, pp.1300-1304, 1986.

M. D. Uhler, J. C. Chrivia, and G. S. Mcknight, Evidence for a second isoform of the catalytic subunit of cAMP-dependent protein kinase, J. Biol. Chem, vol.261, pp.15360-15363, 1986.

M. Ungerer, M. Böhm, J. S. Elce, E. Erdmann, and M. J. Lohse, Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart, Circulation, vol.87, pp.454-463, 1993.

G. Vandecasteele, T. Eschenhagen, and R. Fischmeister, Role of the NO-cGMP pathway in the muscarinic regulation of the L-type Ca2+ current in human atrial myocytes, J. Physiol, vol.506, pp.653-663, 1998.

G. Vandecasteele, I. Verde, C. Rücker-martin, P. Donzeau-gouge, and R. Fischmeister, Cyclic GMP regulation of the L-type Ca(2+) channel current in human atrial myocytes, J. Physiol, vol.533, pp.329-340, 2001.

P. Vandenabeele, L. Galluzzi, T. Vanden-berghe, and G. Kroemer, Molecular mechanisms of necroptosis: an ordered cellular explosion, Nat. Rev. Mol. Cell Biol, vol.11, pp.700-714, 2010.

S. Vandenwijngaert, P. Pokreisz, H. Hermans, H. Gillijns, M. Pellens et al., Increased cardiac myocyte PDE5 levels in human and murine pressure overload hypertrophy contribute to adverse LV remodeling, PloS One, vol.8, p.58841, 2013.

F. Vandeput, S. L. Wolda, J. Krall, R. Hambleton, L. Uher et al., Cyclic nucleotide phosphodiesterase PDE1C1 in human cardiac myocytes, J. Biol. Chem, vol.282, pp.32749-32757, 2007.

F. Vandeput, J. Krall, R. Ockaili, F. N. Salloum, V. Florio et al., cGMP-hydrolytic activity and its inhibition by sildenafil in normal and failing human and mouse myocardium, J. Pharmacol. Exp. Ther, vol.330, pp.884-891, 2009.

D. E. Vatner, L. Yan, L. Lai, C. Yuan, L. Mouchiroud et al., Type 5 adenylyl cyclase disruption leads to enhanced exercise performance, Aging Cell, vol.14, pp.1075-1084, 2015.

R. C. Venema, V. J. Venema, H. Ju, M. B. Harris, C. Snead et al., Novel complexes of guanylate cyclase with heat shock protein 90 and nitric oxide synthase, Am. J. Physiol. Heart Circ. Physiol, vol.285, pp.669-678, 2003.

L. A. Venetucci, A. W. Trafford, and D. A. Eisner, Increasing ryanodine receptor open probability alone does not produce arrhythmogenic calcium waves: threshold sarcoplasmic reticulum calcium content is required, Circ. Res, vol.100, pp.105-111, 2007.

I. Verde, G. Vandecasteele, &. Lezoualc, F. Fischmeister, and R. , Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes, Br. J. Pharmacol, vol.127, pp.65-74, 1999.

S. Verheule, T. Sato, T. Everett, S. K. Engle, D. Otten et al., Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1, Circ. Res, vol.94, pp.1458-1465, 2004.

C. Vettel, S. Lämmle, S. Ewens, C. Cervirgen, J. Emons et al., PDE2-mediated cAMP hydrolysis accelerates cardiac fibroblast to myofibroblast conversion and is antagonized by exogenous activation of cGMP signaling pathways, Am. J. Physiol. Heart Circ. Physiol, vol.306, pp.1246-1252, 2014.

C. Vettel, M. Lindner, M. Dewenter, K. Lorenz, C. Schanbacher et al., Phosphodiesterase 2 Protects Against Catecholamine-Induced Arrhythmia and Preserves Contractile Function After Myocardial Infarction, Circ. Res, vol.120, pp.120-132, 2017.

L. E. Vinge, E. Øie, Y. Andersson, H. K. Grøgaard, G. Andersen et al., Myocardial distribution and regulation of GRK and beta-arrestin isoforms in congestive heart failure in rats, Am. J. Physiol. Heart Circ. Physiol, vol.281, pp.2490-2499, 2001.

N. Voigt, N. Li, Q. Wang, W. Wang, A. W. Trafford et al., Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation, Circulation, vol.125, pp.2059-2070, 2012.

M. Völkers, C. M. Loughrey, N. Macquaide, A. Remppis, B. R. Degeorge et al., S100A1 decreases calcium spark frequency and alters their spatial characteristics in permeabilized adult ventricular cardiomyocytes, Cell Calcium, vol.41, pp.135-143, 2007.

M. Wagner, H. Mehel, R. Fischmeister, and A. El-armouche, Phosphodiesterase 2: anti-adrenergic friend or hypertrophic foe in heart disease?, Naunyn. Schmiedebergs Arch. Pharmacol, vol.389, pp.1139-1141, 2016.

C. Wang, S. Dostanic, N. Servant, and L. E. Chalifour, Egr-1 negatively regulates expression of the sodiumcalcium exchanger-1 in cardiomyocytes in vitro and in vivo, Cardiovasc. Res, vol.65, pp.187-194, 2005.

J. Wang, X. Guo, and N. S. Dhalla, Modification of myosin protein and gene expression in failing hearts due to myocardial infarction by enalapril or losartan, Biochim. Biophys. Acta, vol.1690, pp.177-184, 2004.

L. Wang, B. T. Burmeister, K. R. Johnson, G. S. Baillie, A. V. Karginov et al., UCR1C is a novel activator of phosphodiesterase 4 (PDE4) long isoforms and attenuates cardiomyocyte hypertrophy, Cell. Signal, vol.27, pp.908-922, 2015.

P. Wang, P. Wu, R. W. Egan, and M. M. Billah, Human phosphodiesterase 8A splice variants: cloning, gene organization, and tissue distribution, Gene, vol.280, pp.183-194, 2001.

P. Wang, P. Wu, R. W. Egan, and M. M. Billah, Identification and characterization of a new human type 9 cGMP-specific phosphodiesterase splice variant (PDE9A5). Differential tissue distribution and subcellular localization of PDE9A variants, Gene, vol.314, pp.15-27, 2003.

Y. Wang, S. Tandan, J. Cheng, C. Yang, L. Nguyen et al., , 2008.

, Ca2+/Calmodulin-dependent Protein Kinase II-dependent Remodeling of Ca2+ Current in Pressure Overload Heart Failure, J. Biol. Chem, vol.283, pp.25524-25532

Z. Wang, D. Liu, A. Varin, V. Nicolas, D. Courilleau et al., A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death, Cell Death Dis, vol.7, 2016.

A. M. Watanabe and H. R. Besch, Interaction between cyclic adenosine monophosphate and cyclic gunaosine monophosphate in guinea pig ventricular myocardium, Circ. Res, vol.37, pp.309-317, 1975.

S. Weber, S. Meyer-roxlau, M. Wagner, D. Dobrev, and A. El-armouche, Counteracting Protein Kinase Activity in the Heart: The Multiple Roles of Protein Phosphatases, Front. Pharmacol, vol.6, p.270, 2015.

S. Weber, S. Meyer-roxlau, and A. El-armouche, Role of protein phosphatase inhibitor-1 in cardiac beta adrenergic pathway, J. Mol. Cell. Cardiol, vol.101, pp.116-126, 2016.

S. Weber, M. Zeller, K. Guan, F. Wunder, M. Wagner et al., PDE2 at the crossway between cAMP and cGMP signalling in the heart, Cell. Signal, vol.38, pp.76-84, 2017.

J. Wechsler, Y. Choi, J. Krall, F. Ahmad, V. C. Manganiello et al., Isoforms of cyclic nucleotide phosphodiesterase PDE3A in cardiac myocytes, J. Biol. Chem, vol.277, pp.38072-38078, 2002.

P. B. Wedegaertner, Lipid modifications and membrane targeting of G alpha, Biol. Signals Recept, vol.7, pp.125-135, 1998.

X. H. Wehrens, S. E. Lehnart, F. Huang, J. A. Vest, S. R. Reiken et al., FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death, Cell, vol.113, pp.829-840, 2003.

X. H. Wehrens, S. E. Lehnart, S. R. Reiken, S. Deng, J. A. Vest et al., Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2, Science, vol.304, pp.292-296, 2004.

X. H. Wehrens, S. E. Lehnart, S. Reiken, R. Van-der-nagel, R. Morales et al., Enhancing calstabin binding to ryanodine receptors improves cardiac and skeletal muscle function in heart failure, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.9607-9612, 2005.

R. E. Weishaar, D. C. Kobylarz-singer, R. P. Steffen, and H. R. Kaplan, Subclasses of cyclic AMP-specific phosphodiesterase in left ventricular muscle and their involvement in regulating myocardial contractility, Circ. Res, vol.61, pp.539-547, 1987.

J. N. Weiss, A. Garfinkel, H. S. Karagueuzian, P. Chen, and Z. Qu, Early Afterdepolarizations and Cardiac Arrhythmias, Heart Rhythm Off. J. Heart Rhythm Soc, vol.7, pp.1891-1899, 2010.

H. J. Wellens, P. Brugada, and W. G. Stevenson, Programmed electrical stimulation of the heart in patients with life-threatening ventricular arrhythmias: what is the significance of induced arrhythmias and what is the correct stimulation protocol?, Circulation, vol.72, pp.1-7, 1985.

J. F. Wen, X. Cui, J. Y. Jin, S. M. Kim, S. Z. Kim et al., High and low gain switches for regulation of cAMP efflux concentration: distinct roles for particulate GC-and soluble GC-cGMP-PDE3 signaling in rabbit atria, Circ. Res, vol.94, pp.936-943, 2004.

D. Wencker, M. Chandra, K. Nguyen, W. Miao, S. Garantziotis et al., A mechanistic role for cardiac myocyte apoptosis in heart failure, J. Clin. Invest, vol.111, pp.1497-1504, 2003.

D. Willoughby and C. D. , Organization and Ca2+ Regulation of Adenylyl Cyclases in cAMP Microdomains, Physiol. Rev, vol.87, pp.965-1010, 2007.

K. C. Wollert, S. Yurukova, A. Kilic, F. Begrow, B. Fiedler et al., Increased effects of C-type natriuretic peptide on contractility and calcium regulation in murine hearts overexpressing cyclic GMP-dependent protein kinase I, Br. J. Pharmacol, vol.140, pp.1227-1236, 2003.

W. Wong and J. D. Scott, AKAP signalling complexes: focal points in space and time, Nat. Rev. Mol. Cell Biol, vol.5, pp.959-970, 2004.

G. E. Woodard and J. A. Rosado, Natriuretic peptides in vascular physiology and pathology, Int. Rev. Cell Mol. Biol, vol.268, pp.59-93, 2008.

P. T. Wright, N. K. Bhogal, I. Diakonov, L. M. Pannell, R. K. Perera et al., Cardiomyocyte Membrane Structure and cAMP Compartmentation Produce Anatomical Variation in ?2AR-cAMP Responsiveness in Murine Hearts, Cell Rep, vol.23, pp.459-469, 2018.

A. Y. Wu, X. Tang, S. E. Martinez, K. Ikeda, and J. A. Beavo, Molecular determinants for cyclic nucleotide binding to the regulatory domains of phosphodiesterase 2A, J. Biol. Chem, vol.279, pp.37928-37938, 2004.

C. F. Wu, N. H. Bishopric, and R. E. Pratt, Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes, J. Biol. Chem, vol.272, pp.14860-14866, 1997.

Y. Wu, C. Chen, C. Chien, H. Lai, S. Jiang et al., The type VI adenylyl cyclase protects cardiomyocytes from ?-adrenergic stress by a PKA/STAT3-dependent pathway, J. Biomed. Sci, vol.24, 2017.

Y. Xiang and B. K. Kobilka, Myocyte Adrenoceptor Signaling Pathways, Science, vol.300, pp.1530-1532, 2003.

Y. Xiang, V. O. Rybin, S. F. Steinberg, and B. Kobilka, Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes, J. Biol. Chem, vol.277, pp.34280-34286, 2002.

R. P. Xiao and E. G. Lakatta, Beta 1-adrenoceptor stimulation and beta 2-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+, and Ca2+ current in single rat ventricular cells, Circ. Res, vol.73, pp.286-300, 1993.

B. Xiao, M. T. Jiang, M. Zhao, D. Yang, C. Sutherland et al., Characterization of a novel PKA phosphorylation site, serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure, Circ. Res, vol.96, pp.847-855, 2005.

H. Xiao, H. Li, J. Wang, J. Zhang, J. Shen et al., IL-18 cleavage triggers cardiac inflammation and fibrosis upon ?-adrenergic insult, Eur. Heart J, vol.39, pp.60-69, 2018.

R. P. Xiao, C. Hohl, R. Altschuld, L. Jones, B. Livingston et al., Beta 2-adrenergic receptor-stimulated increase in cAMP in rat heart cells is not coupled to changes in Ca2+ dynamics, contractility, or phospholamban phosphorylation, J. Biol. Chem, vol.269, pp.19151-19156, 1994.

X. Zhu, W. Zheng, M. Chakir, K. Bond, R. Lakatta et al., Subtype-specific betaadrenoceptor signaling pathways in the heart and their potential clinical implications, Trends Pharmacol. Sci, vol.25, pp.358-365, 2004.

M. Xie, T. C. Rich, C. Scheitrum, M. Conti, and W. Richter, Inactivation of multidrug resistance proteins disrupts both cellular extrusion and intracellular degradation of cAMP, Mol. Pharmacol, vol.80, pp.281-293, 2011.

M. Xie, B. Blackman, C. Scheitrum, D. Mika, E. Blanchard et al., The upstream conserved regions (UCRs) mediate homo-and hetero-oligomerization of type 4 cyclic nucleotide phosphodiesterases (PDE4s), Biochem. J, vol.459, pp.539-550, 2014.

M. Xin, E. N. Olson, and R. Bassel-duby, Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair, Nat. Rev. Mol. Cell Biol, vol.14, pp.529-541, 2013.

C. Yan, A. Z. Zhao, J. K. Bentley, and J. A. Beavo, The calmodulin-dependent phosphodiesterase gene PDE1C encodes several functionally different splice variants in a tissue-specific manner, J. Biol. Chem, vol.271, pp.25699-25706, 1996.

C. Yan, C. L. Miller, and A. J. , Regulation of phosphodiesterase 3 and inducible cAMP early repressor in the heart, Circ. Res, vol.100, pp.489-501, 2007.

C. Yan, B. Ding, T. Shishido, C. Woo, S. Itoh et al., Activation of extracellular signal-regulated kinase 5 reduces cardiac apoptosis and dysfunction via inhibition of a phosphodiesterase 3A/inducible cAMP early repressor feedback loop, Circ. Res, vol.100, pp.510-519, 2007.

L. Yan, D. E. Vatner, J. P. O'connor, A. Ivessa, H. Ge et al., Type 5 adenylyl cyclase disruption increases longevity and protects against stress, Cell, vol.130, pp.247-258, 2007.

N. Yanaka, Y. Kurosawa, K. Minami, E. Kawai, and K. Omori, cGMP-phosphodiesterase activity is upregulated in response to pressure overload of rat ventricles, Biosci. Biotechnol. Biochem, vol.67, pp.973-979, 2003.

J. H. Yang, R. K. Polanowska-grabowska, J. S. Smith, C. W. Shields, and J. J. Saucerman, PKA catalytic subunit compartmentation regulates contractile and hypertrophic responses to ?-adrenergic signaling, J. Mol. Cell. Cardiol, vol.66, pp.83-93, 2014.

L. Yang, G. Liu, S. I. Zakharov, A. M. Bellinger, M. Mongillo et al., Protein kinase G phosphorylates Cav1.2 alpha1c and beta2 subunits, Circ. Res, vol.101, pp.465-474, 2007.

Q. Yang, M. Paskind, G. Bolger, W. J. Thompson, D. R. Repaske et al., A novel cyclic GMP stimulated phosphodiesterase from rat brain, Biochem. Biophys. Res. Commun, vol.205, pp.1850-1858, 1994.

Y. Yang, W. Zhu, M. Joiner, R. Zhang, C. V. Oddis et al., Calmodulin kinase II inhibition protects against myocardial cell apoptosis in vivo, Am. J. Physiol. Heart Circ. Physiol, vol.291, pp.3065-3075, 2006.

J. Yu, S. L. Wolda, A. L. Frazier, V. A. Florio, T. J. Martins et al., Identification and characterisation of a human calmodulin-stimulated phosphodiesterase PDE1B1, Cell. Signal, vol.9, pp.519-529, 1997.

L. Yuan, T. Wang, F. Liu, E. D. Cohen, and P. V. , An Evaluation of Transmitral and Pulmonary Venous Doppler Indices for Assessing Murine Left Ventricular Diastolic Function, J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr, vol.23, pp.887-897, 2010.

S. Yusuf, S. Rangarajan, K. Teo, S. Islam, W. Li et al., Cardiovascular risk and events in 17 low-, middle-, and high-income countries, N. Engl. J. Med, vol.371, pp.818-827, 2014.

S. Zacchigna, L. Zentilin, and M. Giacca, Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system, Circ. Res, vol.114, pp.1827-1846, 2014.

M. Zaccolo, cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies, Br. J. Pharmacol, vol.158, pp.50-60, 2009.

M. Zaccolo, Spatial control of cAMP signalling in health and disease, Curr. Opin. Pharmacol, vol.11, pp.649-655, 2011.

M. Zaccolo and M. A. Movsesian, cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology, Circ. Res, vol.100, pp.1569-1578, 2007.

M. Zaccolo and P. T. , Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes, Science, vol.295, pp.1711-1715, 2002.

M. Zeisberg and K. R. , Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis, Am. J. Physiol. Cell Physiol, vol.304, pp.216-225, 2013.

M. Zhang and K. D. , Phosphodiesterases and cardiac cGMP: evolving roles and controversies, Trends Pharmacol. Sci, vol.32, pp.360-365, 2011.

H. Zhang, B. Pan, P. Wu, N. Parajuli, M. D. Rekhter et al., PDE1 inhibition facilitates proteasomal degradation of misfolded proteins and protects against cardiac proteinopathy, Sci. Adv, vol.5, p.5870, 2019.

M. Zhang, M. Li, J. H. Wang, and H. J. Vogel, The effect of Met-->Leu mutations on calmodulin's ability to activate cyclic nucleotide phosphodiesterase, J. Biol. Chem, vol.269, pp.15546-15552, 1994.

T. Zhang, Y. Zhang, M. Cui, L. Jin, Y. Wang et al., CaMKII is a RIP3 substrate mediating ischemia-and oxidative stress-induced myocardial necroptosis, Nat. Med, vol.22, pp.175-182, 2016.

W. Zhang, K. J. Lavine, S. Epelman, S. A. Evans, C. J. Weinheimer et al., Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo, J. Am. Heart Assoc, vol.4, p.1993, 2015.

W. Zhang, X. Qu, B. Chen, M. Snyder, M. Wang et al., Critical Roles of STAT3 in ?-Adrenergic Functions in the Heart, Circulation, vol.133, pp.48-61, 2016.

X. Zhang, Y. N. Tallini, Z. Chen, L. Gan, B. Wei et al., , 2009.

, Dissociation of FKBP12.6 from ryanodine receptor type 2 is regulated by cyclic ADP-ribose but not betaadrenergic stimulation in mouse cardiomyocytes, Cardiovasc. Res, vol.84, pp.253-262

Y. Zhang, W. Knight, S. Chen, A. Mohan, and Y. C. , Multiprotein Complex With TRPC (Transient Receptor Potential-Canonical) Channel, PDE1C (Phosphodiesterase 1C), and A2R (Adenosine A2 Receptor) Plays a Critical Role in Regulating Cardiomyocyte cAMP and Survival, Circulation, vol.138, 1988.

Y. Zhang, W. E. Wang, X. Zhang, Y. Li, B. Chen et al., , 2019.

, Cardiomyocyte PKA Ablation Enhances Basal Contractility While Eliminates Cardiac ?-Adrenergic Response Without Adverse Effects on the Heart, Circ. Res, vol.124, pp.1760-1777

. Zhang-liyan, S. Jagdip, R. Ussher-john, S. Sowndramalingam, W. Cory et al., Cardiac Insulin-Resistance and Decreased Mitochondrial Energy Production Precede the Development of Systolic Heart Failure After Pressure-Overload Hypertrophy, Circ. Heart Fail, vol.6, pp.1039-1048, 2013.

L. Zhao, G. Cheng, R. Jin, M. R. Afzal, A. Samanta et al., Deletion of Interleukin-6 Attenuates Pressure Overload-Induced Left Ventricular Hypertrophy and Dysfunction, Circ. Res, vol.118, pp.1918-1929, 2016.

Y. Zhao, P. M. Vanhoutte, and S. W. Leung, Vascular nitric oxide: Beyond eNOS, J. Pharmacol. Sci, vol.129, pp.83-94, 2015.

M. Zheng, W. Zhu, Q. Han, and X. , Emerging concepts and therapeutic implications of betaadrenergic receptor subtype signaling, Pharmacol. Ther, vol.108, pp.257-268, 2005.

S. Zhe-wei, G. Li-sha, and L. Yue-chun, The Role of Necroptosis in Cardiovascular Disease, Front. Pharmacol, vol.9, p.721, 2018.

P. Zhou and W. T. Pu, Recounting Cardiac Cellular Composition, Circ. Res, vol.118, pp.368-370, 2016.

W. Zhou and J. Yuan, Necroptosis in health and diseases, Semin. Cell Dev. Biol, vol.35, pp.14-23, 2014.

W. Zhu, Y. Zou, I. Shiojima, S. Kudoh, R. Aikawa et al., Ca2+/calmodulin-dependent kinase II and calcineurin play critical roles in endothelin-1-induced cardiomyocyte hypertrophy, J. Biol. Chem, vol.275, pp.15239-15245, 2000.

W. Zhu, S. Tsang, D. M. Browe, A. Y. Woo, Y. Huang et al., Interaction of ?1-adrenoceptor with RAGE mediates cardiomyopathy via CaMKII signaling, JCI Insight, vol.1, p.84969, 2016.

W. Zhu, S. Wang, K. Chakir, D. Yang, T. Zhang et al., Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase Aindependent activation of Ca2+/calmodulin kinase II, J. Clin. Invest, vol.111, pp.617-625, 2003.

X. Zhuang, M. Long, F. Li, X. Hu, X. Liao et al., PDE5 inhibitor sildenafil in the treatment of heart failure: a meta-analysis of randomized controlled trials, Int. J. Cardiol, vol.172, pp.581-587, 2014.

B. Ziaeian and G. C. Fonarow, Epidemiology and aetiology of heart failure, Nat. Rev. Cardiol, vol.13, pp.368-378, 2016.

A. Zoccarato, N. C. Surdo, J. M. Aronsen, L. A. Fields, L. Mancuso et al., Cardiac Hypertrophy Is Inhibited by a Local Pool of cAMP Regulated by Phosphodiesterase 2, Circ. Res, vol.117, pp.707-719, 2015.

A. Zoccarato, L. H. Fields, and M. Zaccolo, Response to Wagner et al.: phosphodiesterase-2-anti-adrenergic friend or hypertrophic foe in heart disease?, Naunyn. Schmiedebergs Arch. Pharmacol, vol.389, pp.1143-1145, 2016.

A. Bourcier, M. Barthe, I. Bedioune, P. Lechêne, H. B. Miled et al., Cet article est publié dans Experimental Physiology. Référence, vol.104, pp.1237-1249, 2019.