, 32 -Observations MEB (a) d'une première réalisation de motifs sur diamant, (b) de la surface après une première croissance, (c) de la réalisation des micro-aiguilles, (d) d'une étape intermédiaire de la coalescence du diamant

, Cette méthode de croissance a permis à l'équipe de A. Sawabe d'obtenir un film de diamant de très haute qualité cristalline avec une désorientation polaire de 0,10 ? pour une épaisseur de 75 µm [112] sur un pseudo-substrat Ir/MgO(001). Cependant, elle nécessite de nombreuses étapes (première croissance, masque de gravure, gravure, seconde croissance

, C'est pourquoi cette équipe a employé une deuxième méthode pour réaliser la croissance ELO : la structuration des domaines

, La deuxième stratégie employée par l'équipe de Sawabe consiste à structurer les domaines obtenus après l'étape de BEN par une gravure par faisceau d'électrons

, Cette méthode a l'avantage d'être plus rapide et permet de réaliser des motifs de forme ou d

, 33 -Observations par MEB de motifs (a) carré et (b) en bande

, cette surface composée d'iridium monocristallin et polycristallin, permettant d'obtenir des domaines sur les parties composées d'iridium monocristallin (5)

, FIGURE 4.36 -Schéma représentant les étapes nécessaires à la nucléation sélective du diamant hétéroépitaxié sur iridium

, Nous avons alors mis en oeuvre ce procédé sur un pseudo-substrat de SrTiO, vol.3

, Un dépôt d'iridium polycristallin d'épaisseur proche de 300 nm a ensuite été réalisé par PVD en utilisant un masque métallique. Ce dépôt nous a permis de réaliser des motifs carrés d'iridium polycristallin d'environ 150x150 µm 2 espacés de 100 µm ((b) sur la Figure 4.37). Ces zones sont celles sur lesquelles nous ne souhaitons pas obtenir de domaines, Mise en oeuvre du procédé de nucléation sélective Un film d'iridium monocristallin de 158 nm d'épaisseur a été déposé sur un pseudo-substrat de SrTiO, vol.3

K. Ichikawa and A. L. , High crystalline quality heteroepitaxial diamond using grid patterned nucleation and growth on Ir, Diam. and Relat. Mater, vol.94, pp.92-100, 2019.

J. Narayan and A. L. , On epitaxial growth of diamond films on (100) silicon substrates, Applied Physics Letters, vol.53, issue.19, p.1823, 1988.

S. Barrat and A. L. , Diamond deposition by chemical vapor deposition process : Study of the bias enhanced nucleation step, Journal of Applied Physics, vol.84, issue.4, p.1870, 1998.

S. Koizumi and A. L. , Epitaxial growth of diamond thin films on cubic boron nitride {111} surfaces by dc plasma chemical vapor deposition, Applied Physics Letters, vol.57, issue.6, p.563, 1990.

B. R. Stoner and A. L. , Textured diamond growth on (100) SiC via microwave plasma chemical vapor deposition, Applied Physics Letters, vol.60, issue.6, p.698, 1992.

J. H. Chris, . Wort, and . Al, « Diamond as an electronic material, Mater. Today, vol.11, pp.22-28, 2008.

W. Ebert and A. L. High, , pp.329-332, 1997.

M. T. , SSilicon wafers : preparation and properties), Micro and Nano Technologies, pp.86-103, 2015.

N. Vaissiere, Synthèse de films de diamant de haute qualité cristalline pour la réalisation de dosimètres pour la radiothérapie, 2013.

P. Francis, . Bundy.-«-man-made, and . Diamonds, Nature, vol.176, pp.51-55, 1955.

P. Francis and . Bundy, The P and T phase and reaction diagram for elemental carbon, Journal of Geophysical Research, vol.85, pp.6930-6936, 1980.

H. Sumiya and A. L. , High-pressure synthesis of high-purity diamond crystal, Diamond and Related Materials, vol.5, pp.1359-1365, 1996.

P. W. Bridgman, « An Experimental Contribution to the Problem of Diamond Synthesis, J. Chem. Phys, vol.15, pp.92-98, 2005.

P. W. Bridgman, « Synthetic diamonds, SCIENTIFIC AMERICAN, vol.193, pp.42-46, 1955.

W. G. Eversole, « Canadian Patent N, vol.628, pp.42-46, 1961.

D. E. Meyer and A. L. , « Radio-frequency plasma chemical vapor deposition growth of diamond, Faculty Publications from the Department of Electrical and Computer Engineering, 1989.

R. H. Zhu and A. L. , High temperature thermal conductivity of free-standing diamond films prepared by DC arc plasma jet CVD, Diam. Relat. Mater, vol.50, pp.55-59, 2014.

E. M. Fuentes-fernandez and A. L. , Synthesis and characterization of microcrystalline diamond to ultrananocrystalline diamond films via Hot Filament Chemical Vapor Deposition for scaling to large area applications, Thin Solid Films, vol.603, pp.62-68, 2016.

A. P. Bolshakov and A. L. , High-rate growth of single crystal diamond in microwave plasma in CH4/H2 and CH4/H2/Ar gas mixtures in presence of intensive soot formation, Diam. Relat. Mater, vol.62, pp.49-57, 2016.

W. Piekarczyk and A. L. Diamond, Deposition by Chemical Vapour Transport with Hydrogen in a closed system, Journal of Crystal Growth, vol.106, pp.30-39, 1990.

Y. Nianjun, Novel Aspects of Diamond From Growth to Applications. T. 121, 2015.

A. Edwards and A. L. , « Filament metal contamination and Raman spectra of hot filament chemical vapor deposited diamond films, vol.8, pp.101-109, 1999.

J. E. Field, The mechanical and strength properties of diamond, Reports Prog. Phys, vol.75, p.12, 2012.

M. Dodson and A. L. , Single crystal and polycrystalline CVD diamond for demanding optical applications, Window and Dome Technologies and Materials XII, 2011.

D. F. Edwards and A. L. , Infrared refractive index of diamond, J. Opt. Soc. Am, vol.71, p.607, 1981.

D. J. Twitchen and . Al, Thermal conductivity measurements on CVD diamond, vol.10, pp.731-735, 2001.

G. A. Slack and . Al, « Thermal expansion of some diamondlike crystals, J. Appl. Phys, vol.46, pp.89-98, 1975.

B. Cyrille, « Films de diamant monocristallin dopes au bore pour des applications en électronique de puissance To cite this version : Films de diamant monocristallin dopés au bore pour application en électronique de puissance, 2019.

E. Gheeraert and . Al, « Electronic states of boron and phosphorus in diamond, Phys. Status Solidi Appl. Res, vol.174, pp.39-51, 1999.

S. K. , Growth and characterization of phosphorus doped n-type diamond thin films, Phys. Status Solidi Appl. Res, vol.172, pp.71-78, 1999.

J. C. Slater, Atomic radii in crystals, J. Chem. Phys, vol.41, pp.3199-3204, 1964.

A. , « Scanning confocal optical microscopy and magnetic resonance on single defect centers, pp.2012-2014, 1997.

K. Wang and A. L. , « Photoluminescence Studies of Both the Neutral and Negatively Charged Nitrogen-Vacancy Center in Diamond, Microscopy and Microanalysis, vol.22, pp.108-112, 2016.

I. Aharonovich and A. L. Diamond-photonics, Nature Photonics, vol.5, pp.397-405, 2011.

L. Childress and A. L. , « Diamond NV centers for quantum computing and quantum networks, MRS Bulletin, vol.38, pp.134-138, 2013.

K. S. , Classical approximations for ionised impurity scattering applied to diamond monocrystals, Diamond and Related Materials, vol.11, pp.1686-691, 2002.

S. Kono and . Al, « Reprint of imaging of diamond defect sites by electron-beaminduced current, Diam. Relat. Mater, vol.63, pp.30-37, 2016.

A. Tallaire and A. L. , Growth strategy for controlling dislocation densities and crystal morphologies of single crystal diamond by using pyramidal-shape substrates, Diam. Relat. Mater, vol.33, pp.71-77, 2013.

M. Naamoun and A. L. , Développement de nouvelles stratégies de croissance pour réduire la densité de dislocations dans les monocristaux de diamant CVD, Symp. Genie Electr. Ef-Epf-Mge, 2014.

A. T. Blumenau and . Al, Dislocation Structures in Diamond : Density-Functional Based Modelling and High-Resolution Electron Microscopy ». In : Defect Diffus. Forum, pp.11-30, 2009.

A. Boussadi and . Al, « Reduction of dislocation densities in single crystal CVD diamond by confinement in the lateral sector, Diamond Related Materials, vol.83, pp.162-169, 2018.

A. Tallaire and . Al, « Reduction of Dislocations in Single Crystal Diamond by Lateral Growth over a Macroscopic Hole, Adv. Mater, vol.29, p.1604823, 2017.

C. Wild and . Al, « Oriented CVD diamond films : twin formation, structure and morphology, Diam. and Rel. Mat, vol.3, pp.373-381, 1994.

M. Fischer and A. L. , Growth of twin-free heteroepitaxial diamond on Ir/YSZ/Si(111), vol.104, p.12, 2008.

A. Tallaire and . Al, « Origin of growth defects in CVD diamond epitaxial films, pp.60-65, 2008.

J. E. Butler and A. L. , A mechanism for crystal twinning in the growth of diamond by chemical vapour deposition, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci, vol.366, pp.295-311, 2008.

A. Chavanne, Heteroepitaxie du diamant sur Iridium, 2011.
URL : https://hal.archives-ouvertes.fr/tel-02273855

H. Yamada and A. L. , « Fabrication and fundamental characterizations of tiled clones of single-crystal diamond with 1 inch size, Diam. Relat. Mater, vol.24, pp.29-33, 2012.

S. Ohmagari and . Al, « Schottky barrier diodes fabricated on diamond mosaic wafers : dislocation reduction to mitigate the effect of coalescence boundaries, Applied Physics Letters, vol.114, p.82104, 2019.

S. Nad and A. L. , Growth strategies for large and high quality single crystal diamond substrates, Diam. Relat. Mater, vol.60, pp.26-34, 2015.

R. Issaoui and A. L. , Thick and widened high quality heavily boron doped diamond single crystals synthetized with high oxygène flow under high microwave power regime, Diamond Related Materials, vol.94, pp.88-91, 2019.

J. C. Arnault and H. A. Girard, « Diamond nucleation and seeding techniques : two complementary strategies for growth of ultra-thin diamond films, pp.221-252, 2014.

S. Lijima and A. L. , Growth of diamond particles in chemical vapor deposition, J. Mater. Res. 6, vol.7, pp.1491-1497, 1991.

O. A. Williams and A. L. , Enhanced diamond nucleation on monodispersed nanocrystalline diamond, Chem. Phys. Lett, vol.445, pp.255-258, 2007.

H. A. Girard and A. L. , Electrostatic grafting of diamond nanoparticles : A versatile route to nanocrystalline diamond thin films, ACS Appl. Mater. Interfaces, vol.1, pp.2738-2746, 2009.
URL : https://hal.archives-ouvertes.fr/cea-01807224

S. Yugo and . Al, « Effects of electric field on the growth of diamond by microwave plasma CVD, Vacuum 41, pp.1364-1367, 1990.

X. Jiang and A. L. , Heteroepitaxial diamond growth on (100) silicon, vol.2, pp.1112-1113, 1993.

T. Suesada and A. L. , Initial growth of heteroepitaxial diamond on Si(001) substrates via SiC buffer layer, Jpn. J. Appl. Phys, vol.34, pp.4898-4904, 1995.

J. A. , Venables et AL. « Nucleation and growth of thin films, Reports on Progress in Physics, pp.399-459, 1984.

H. Liu and A. L. , « Studies on nucleation process in diamond CVD : an overview of recent developments, Diam. Relat. Mater. 4, vol.10, pp.1173-1188, 1995.

C. Sarrieu and . Al, « Influence of silicon carbide interlayer evolution on diamond heteroepitaxy during bias enhanced nucleation on silicon substrates, vol.8, pp.1246-1249, 2011.

B. R. Stoner and A. L. , Epitaxial nucleation of diamond on SiC via bias-enhanced microwave plasma chemical vapor deposition, Diam. Relat. Mater, vol.2, issue.2, pp.142-146, 1993.

B. Massalski and . Al, « Binary Alloy Phase Diagram-second edition, Advanced Materials, vol.3, pp.628-629, 1972.

A. Chavanne and A. L. , Bias-enhanced nucleation of diamond on iridium : A comprehensive study of the first stages by sequential surface analysis, Surf. Sci, vol.605, pp.564-569, 2011.

W. J. Arnoult and . Al, Solubility of carbon in rhodium, ruthenium, iridium and rhenium, pp.1013-1031, 1972.

M. Schreck and A. L. , Diamond nucleation on iridium buffer layers and subsequent textured growth : A route for the realization of single-crystal diamond films, Appl. Phys. Lett, vol.78, pp.192-194, 2001.

N. Vaissiere and . Al, Heteroepitaxial diamond on iridium : New insights on domain formation, vol.36, pp.16-25, 2013.
URL : https://hal.archives-ouvertes.fr/cea-01846952

F. , « First stages of diamond nucleation on iridium buffer layers, Diam. Relat. Mater, vol.10, issue.10, pp.1617-1621, 2001.

M. Schreck and . Al, « Domain formation in diamond nucleation on iridium, Diam. Relat. Mater, vol.12, pp.262-267, 2003.

M. Schreck and . Al, « Ion bombardment induced buried lateral growth : the key mechanism for the synthesis of single crystal diamond wafers, Scientific Reports, p.44462, 2017.

K. Ohtsuka and A. L. , Epitaxial Growth of Diamond on Iridium, vol.35, pp.1072-1074, 1996.

M. Schreck and A. L. Diamond, Ir/SrTiO3 : A material combination for improved heteroepitaxial diamond films, Appl. Phys. Lett, vol.74, pp.650-652, 1999.

Z. Dai and A. L. , 100) iridium on A-plane sapphire : A system for wafer-scale diamond heteroepitaxy, Appl. Phys. Lett, vol.82, pp.3847-3849, 2003.

V. Lebedev and . Al, « Formation of icosahedron twins during initial stages of heteroepitaxial diamond nucleation and growth, J. Appl. Phys, vol.125, 2019.

T. Yoshikawa and A. L. , Influence of substrate holder configurations on bias enhanced nucleation area for diamond heteroepitaxy : Toward wafer-scale single-crystalline diamond synthesis, J. Vac. Sci. Technol. B, vol.37, p.21207, 2019.

S. T. Lee and . Al, « The road to diamond wafers, Nature, vol.424, pp.500-501, 2003.

S. Gsell and A. L. , A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers, Appl. Phys. Lett, vol.84, pp.4541-4543, 2004.

M. , « Preparation of 4-inch Ir/YSZ/Si(001) substrates for the large-area deposition of single-crystal diamond, Diam. Relat. Mater, vol.17, pp.1035-1038, 2008.

J. M. Vila-fungueirino and A. L. , « Integration of functional complex oxide nanomaterials on silicon, Front. Phys, vol.3, pp.1-12, 2015.

F. Hormann and A. L. , Epitaxial Ir layers on SrTiO3 as substrates for diamond nucleation : Deposition of the films and modification in the CVD environment, Diam. Relat. Mater, vol.9, pp.256-261, 2000.

K. Han, Si (001) : A promising scalable substrate for diamond heteroepitaxy, « Epitaxy of iridium on SrTiO, vol.3, pp.67-76, 2016.

T. Tsubota and A. L. , Heteroepitaxial growth of diamond on an iridium (100) substrate using microwave plasma-assisted chemical vapor deposition, Diam. Relat. Mater, vol.9, pp.1380-1387, 2000.

B. Golding and A. L. Diamond-heteroepitaxy, Pattern formation and mechanisms, vol.13, pp.545-551, 2004.

T. H. Alfred, . Chuang, and . Al, « Freestanding carbon nanowalls by microwave plasma-enhanced chemical vapour deposition, Diam. Relat. Mater, vol.15, pp.1103-1106, 2006.

A. L. Lawrence and . Diamond, Electronic Properties and Applications, pp.1013-1031, 1995.

T. Yoshikawa and A. L. , Wafer bowing control of free-standing heteroepitaxial diamond (100) films grown on Ir(100) substrates via patterned nucleation growth, Thin Solid Films, vol.594, pp.120-128, 2015.

K. Ichikawa and . Al, « Dislocation in heteroepitaxial diamond visualized by hydrogen plasma etching, Thin Solid Films, vol.600, pp.142-145, 2016.

M. Mayr and A. L. , Correlation between surface morphology and defect structure of heteroepitaxial diamond grown on off-axis substrates, Phys. Status Solidi Appl. Mater. Sci, vol.211, pp.2257-2263, 2014.

M. Mayr and A. L. , Interaction between surface structures and threading dislocations during epitaxial diamond growth, Phys. Status Solidi Appl. Mater. Sci, vol.212, pp.2480-2486, 2015.

O. Klein and A. L. , Propagation and annihilation of threading dislocations during off-axis growth of heteroepitaxial diamond films, vol.65, pp.53-58, 2016.

Z. Dai and A. L. , Heteroepitaxial diamond film growth : the a-plane sapphireiridium system, pp.552-556, 2004.

J. C. Arnault and A. L. , Surface science contribution to the BEN control on Si(100) and 3C-SiC(100), Chemical Vapor Deposition, vol.14, pp.7-8, 2008.

K. H. Lee, Hétéroépitaxie de films de diamant sur Ir / SrTiO3 / Si ( 001 ) : une voie prometteuse pour l ' élargissement des substrats, 2016.

S. Gsell and . Al, « Crystal tilting of diamond heteroepitaxially grown on vicinal Ir/SrTiO3(001), J. Appl. Phys, vol.96, issue.3, pp.1413-1417, 2004.

J. A. Powell and A. L. , Growth and Characterization of Silicon Carbide Polytypes for Electronic Applications, Semiconductor Interfaces, Microstructures, and Devices : Properties and Applications, 1993.

J. H. Kaneko and A. L. , Growth and evaluation of self-standing CVD diamond single crystals on off-axis (001) surface of HP/HT type IIa substrates, Diam. Relat. Mater, vol.26, pp.45-49, 2012.

M. Schreck and . Al, « Multiple role of dislocations in the heteroepitaxial growth of diamond : A brief review, Physical Status Solidi a, vol.8, pp.2028-2035, 2016.

T. Bauer and A. L. , High growth rate homoepitaxial diamond deposition on offaxis substrates, vol.14, pp.266-271, 2005.

M. Imanishi and A. L. Coalescence, Growth of Dislocation-Free GaN Crystals by the Na-Flux Method, Appl. Phys. Express, vol.5, p.95501, 2012.

A. and A. L. , « Fabrication of freestanding heteroepitaxial diamond substrate via micropatterns and microneedles, Applied Physics Express, vol.3, p.35504, 2016.

A. L. Bertrand-vilquin, Integration of functional oxides on silicon for novel devices, Hill inter edition1st International Symposium on Access Spaces (ISAS), pp.294-298, 2011.

L. Louahadj, « Développement de l'épitaxie par jet moléculaire d'oxydes fonctionnels sur silicium, 2014.

Y. Wei and A. L. , Mechanism of cleaning Si(100) surface using Sr or SrO for the growth of crystalline SrTiO3 films, Journal of Vacuum Science and Technology B : Microelectronics and Nanometer Structures, vol.20, issue.4, p.1402, 2002.

G. Niu and A. L. , Heteroepitaxy of SrTiO3 thin films on Si (001) using different growth strategies : Toward substratelike quality, Journal of Vacuum Science and Technology B : Microelectronics and Nanometer Structures, vol.29, issue.4, p.41207, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01892239

G. Niu and A. L. , « Evidence for the formation of two phases during the growth of SrTiO3 on silicon, Physical Review B, vol.83, issue.5, p.54105, 2011.

M. L. , Synthèse et caractérisation de films ultraminces de diamant polycristallin pour les applications Silicon-On-Diamond, 2011.

G. P. , Microscopic mechanisms of reactions associated with silicon MBE : A molecular dynamics investigation, Technical report, CNAM, Paris, 2010.

D. L. Smith and . Al, Thin film Deposition : Principles and Practice ». In : Hill inter edition, 1995.

H. J. Gossmann and . Al, The influence of reconstruction on epitaxial growth : Ge on Si(100)-(2x1) and Si(111)-(7x7), vol.155, pp.413-431, 1985.

H. J. Gossmann and . Al, « Initial stages of silicon molecular-beam epitaxy : Effects of surface reconstruction, Surface Science, vol.32, issue.1, pp.6-11, 1985.

D. W. Brenner and A. L. , Microscopic mechanisms of reactions associated with silicon MBE : A molecular dynamics investigation, Surface Science, vol.198, issue.1-2, pp.151-166, 1988.

G. Niu and A. L. , Molecular beam epitaxy of SrTiO3 on Si (001) : Early stages of the growth and strain relaxation, vol.95, p.62902, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00663481

J. W. Park and . Al, « Quasi-single crystal (001) SrTiO3 templates on Si, Applied Physics Letters, vol.95, issue.6, p.61902, 2009.

S. Gsell and . Al, « Reduction of mosaic spread using iridium interlayers : A route to improved oxide heteroepitaxy on silicon, Applied Physics Letters, vol.91, issue.6, p.61501, 2007.

. V. Bw and A. L. Sorin, Simultaneous thickness and group index measurement using optical low-coherence reflectometry, IEEE Photonics Technology Letters, vol.4, pp.105-107, 1992.

A. V. Ermakov and . Al, « Recrystallization of deformed single crystals of iridium, Scripta Materialia, vol.42, pp.209-212, 2000.

G. K. Williamson and A. L. «-x-, Acta Metallurgica, vol.1, pp.22-31, 1953.

Y. T. Prabhu and A. L. «-x-ray, Analysis by Williamson-Hall and Size-Strain Plot Methods of ZnO Nanoparticles with Fuel Variation, World Journal of Nano Science and Engineering, vol.4, pp.21-28, 2013.

V. D. Mote and A. L. Williamson, Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, Journal of Theoretical and Applied Physics, 2012.

J. C. Arnault and A. L. , Enhanced deuterium diffusion in boron doped monocrystalline diamond films using bias-assisted MPCVD, Physics Letters A, vol.374, pp.31-32, 2010.

A. Chavanne and . Al, Effect of bias voltage on diamond nucleation on iridium during BEN, pp.137-140, 2010.

A. Chavanne and A. L. , Surface investigations on different nucleation pathways for diamond heteroepitaxial growth on iridium, Diamond and Related Materials, vol.22, pp.52-58, 2012.

N. Vaissiere and . Al, « Porous diamond foam with nanometric diamond grains using bias enhanced nucleation on iridium, Diamond and Related Materials, vol.68, pp.23-27, 2016.

S. Saada and . Al, « Real time investigation of diamond nucleation by laser scattering, Diamond and Related Materials, vol.18, issue.5-8, pp.707-712, 2009.

C. D. , Etude et réalisation de fenêtres innovantes en diamant : application aux tubes à rayons X, 2016.

T. Fujisaki and . Al, « Fabrication of heteroepitaxial diamond thin films on Ir(001)/ MgO(001) substrates using antenna-edge-type microwave plasma-assisted chemical vapor deposition, Diamond and Related Materials, vol.11, issue.3-6, pp.478-481, 2002.

F. Hormann and . Al, « TEM analysis of nanometer-size surface structures formed by bias enhanced nucleation of diamond on iridium, Diamond and Related Materials, vol.12, pp.350-355, 2003.

R. Brescia and A. L. , Transmission electron microscopy study of the very early stages of diamond growth on iridium, Diamond and Related Materials, vol.17, issue.7, pp.1045-1050, 2008.

R. Brescia and . Al, « Interaction of small diamond islands on iridium : A finite element simulation study, Diamond and Related Materials, vol.16, issue.4-7, pp.705-710, 2007.

J. Bousquet and . Al, « Spectroscopic ellipsometry of homoepitaxial diamond multilayers and delta-doped structures, Applied Physics Letters, vol.104, p.21905, 2014.

S. Gupta and A. L. , « Study of the electron field emission and microstructure correlation in nanocrystalline carbon thin films, Journal of Applied Physics, vol.89, p.5671, 2001.

A. L. Stehl, Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications, Applied Physics Letters, vol.103, p.151905, 2013.

Y. Kaenel and A. L. , Stress distribution in heteroepitaxial chemical vapor deposited diamond films, Journal of Applied Physics, vol.81, p.1726, 1997.

Y. H. Tang and . Al, « Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth, Applied Physics Letters, vol.108, issue.5, p.52101, 2016.

Y. Ando and . Al, « Patterned growth of heteroepitaxial diamond, Diamond Related Materials, vol.13, issue.11, pp.1975-1979, 2004.

Y. Ando and . Al, « Fabrication of freestanding diamond platelet by patterned heteroepitaxial growth, New Diamond and Frontier Carbon Technology, vol.16, issue.2, pp.71-78, 2006.

S. Washiyama and . Al, Coalescence of epitaxial lateral overgrowth-diamond on stripe-patterned nucleation on Ir/MgO(001), vol.4, p.95502, 2011.

Y. Ando and A. L. , Epitaxial lateral overgrowth of diamonds on iridium by patterned nucleation and growth method, Japanese Journal of Applied Physics, vol.51, issue.9R, p.90101, 2012.

J. Achard and A. L. , Improvement of dislocation density in thick CVD single crystal diamond films by coupling H 2 /O 2 plasma etching and chemo-mechanical or ICP treatment of HPHT substrates, Physica Status Solidi (a), vol.211, issue.10, pp.2264-2267, 2014.

O. A. Ivanov and A. L. , Experimental study of hydrogen plasma etching of (100) single crystal diamond in a MPACVD reactor, Material Letters, vol.151, pp.115-118, 2015.

M. Naamoun and A. L. , Experimental study of hydrogen plasma etching of (100) single crystal diamond in a MPACVD reactorReduction of dislocation densities in single crystal CVD diamond by using self-assembled metallic masks, Diamond and Related Materials, vol.58, pp.62-68, 2015.

H. W. Choi and A. L. , Fabrication of natural diamond microlenses by plasma etching, Journal of Vacuum Science and Technology B : Microelectronics and Nanometer Structures, vol.23, issue.1, p.130, 2005.

L. Han and A. L. , Experimental exploration of the fabrication of GaN microdome arrays based on a self-assembled approach, Optical Materials Express, vol.3, issue.8, p.1093, 2013.