. .. Introduction, 146 6.2.1 Chaos map-based random parameter generator

, The proposed mABC algorithm-based parameter identification approach

, The mABC algorithm-based parameter identification approach

. .. Experimental,

. Parameter, . Of, . Nonlinear, . By, . Modified et al.,

. Hu, D (searching dimension), LOW ER (lower bound), UP P ER (upper bound), limit (control parameter), MCN (maximum cycle number), trail = 0. 2: Step 1) The population initialization phase: 3: Step 1.1) Randomly generate 0.5 * SN points in the search space to form an initial population via Eq, Step 0) Predefine some parameters: SN (population size number), vol.1, 2019.

, 10: Step 2.1.2) Evaluate f (V i ). 11: Step 2.2) If f (V i ) < f (X i ), set X i = V i , otherwise, set trial i = trial i +1. 12: End For 13: Step 3) Calculating the probability values p i by Eq

, 25: Step 6) Set cycle = cycle + 1, and if cycle > MCN, then stop and output the best solution achieved so far, otherwise, go to Step 2, Step 4.2) Set i = i + 1, if i = 0.5 * SN, set i = 1, vol.22, p.151, 2018.

M. Andersson and J. Wallander, Kin selection and reciprocity in flight formation?, Behavioral Ecology, vol.15, pp.158-162, 2004.

J. Bai and Y. Yu, Neural Networks Based Adaptive Consensus for a Class of Fractional-Order Uncertain Nonlinear Multiagent Systems, Complexity, issue.9, 2018.

J. Bai, G. Wen, A. Rahmani, and Y. Yu, Distributed formation control of fractional-order multi-agent systems with absolute damping and communication delay, International Journal of Systems Science, vol.46, pp.2380-2392, 2015.

J. Bai, G. Wen, A. Rahmani, and Y. Yu, Formation tracking of fractional-order multi-agent systems based on error predictor, The 27th Chinese Control and Decision Conference, p.19, 2015.

J. Bai, G. Wen, A. Rahmani, X. Chu, and Y. Yu, Consensus with a reference state for fractional-order multi-agent systems, International Journal of Systems Science, vol.47, pp.222-234, 2016.

J. Bai, G. Wen, A. Rahmani, and Y. Yu, Consensus Problem with a Reference State for Fractional-Order Multi-Agent Systems, Asian Journal of Control, vol.19, p.12, 2017.

J. Bibliography-bai, G. Wen, A. Rahmani, and Y. Yu, Distributed consensus tracking for the fractional-order multi-agent systems based on the sliding mode control method, Neurocomputing, vol.235, p.59, 2017.

J. Bai, G. Wen, Y. Song, A. Rahmani, and Y. Yu, Distributed formation control of fractional-order multi-agent systems with relative damping and communication delay, International Journal of Control, Automation and Systems, vol.15, p.18, 2017.

J. Bai, G. Wen, and A. Rahmani, Leaderless consensus for the fractional-order nonlinear multi-agent systems under directed interaction topology, International Journal of Systems Science, vol.49, p.39, 2018.

H. Bao, J. H. Park, and J. Cao, Adaptive synchronization of fractionalorder memristor-based neural networks with time delay, Nonlinear Dynamics, vol.82, p.127, 2015.

S. Bhalekar and V. Daftardar-gejji, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, Journal of Fractional Calculus and Applications, vol.1, pp.1-9, 2011.

J. Cao, H. X. Li, and D. W. Ho, Synchronization criteria of Lurâ??e systems with time-delay feedback control, Chaos, Solitons & Fractals, vol.23, pp.1285-1298, 2005.

Y. Cao and W. Ren, Distributed formation control for fractional-order systems: Dynamic interaction and absolute/relative damping. Systems & Control Letters, vol.59, p.59, 2010.

Y. Cao, Y. Li, W. Ren, and Y. Chen, Distributed coordination of networked fractional-order systems, IEEE Transactions on Systems, Man, and Cybernetics, vol.40, pp.362-370, 2010.

Y. Cao, W. Yu, W. Ren, and G. Chen, An overview of recent progress in the study of distributed multi-agent coordination, IEEE Transactions on Industrial informatics, vol.9, p.18, 2013.

C. Bibliography-chen, C. Wen, Z. Liu, K. Xie, Y. Zhang et al., , 2017.

, Adaptive consensus of nonlinear multi-agent systems with non-identical partially unknown control directions and bounded modelling errors, IEEE Transactions on Automatic Control, vol.62, p.114

J. Chen, Z. H. Guan, T. Li, D. X. Zhang, M. F. Ge et al., Multiconsensus of fractional-order uncertain multi-agent systems, Neurocomputing, vol.168, p.12, 2015.

J. Chen, Z. H. Guan, C. Yang, T. Li, D. X. He et al., Distributed containment control of fractional-order uncertain multi-agent systems, Journal of the Franklin Institute, vol.353, pp.1672-1688, 2016.

J. Chen, B. Chen, and Z. Zeng, Global Asymptotic Stability and Adaptive Ultimate Mittag-Leffler Synchronization for a Fractional-Order Complex-Valued Memristive Neural Networks With Delays, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol.83, p.127, 2018.

L. Chen, R. Wu, J. Cao, and J. B. Liu, Stability and synchronization of memristor-based fractional-order delayed neural networks, Neural Networks, vol.71, p.127, 2015.

L. Chen, Y. W. Wang, W. Yang, and J. W. Xiao, Robust consensus of fractional-order multi-agent systems with input saturation and external disturbances, Neurocomputing, vol.303, issue.13, pp.11-19, 2018.

Y. Chen, G. Wen, Z. Peng, and A. Rahmani, Consensus of Fractional-Order Multiagent System via Sampled-Data Event-Triggered Control, Journal of the Franklin Institute, vol.11, p.114, 2018.

L. Consolini, F. Morbidi, D. Prattichizzo, and M. Tosques, , 2008.

, Leaderâ??follower formation control of nonholonomic mobile robots with input constraints, Automatica, vol.44, issue.3, pp.1343-1349

D. E. Crabtree and E. V. Haynsworth, An identity for the Schur complement of a matrix, Proceedings of the American Mathematical Society, vol.22, pp.364-366, 1969.

B. Cui, C. Zhao, T. Ma, and C. Feng, Leaderless and leader-following consensus of multi-agent chaotic systems with unknown time delays and switching topologies, Nonlinear Analysis: Hybrid Systems, vol.24, p.128, 2017.

S. Das and P. N. Suganthan, Differential evolution: a survey of the state-of-the-art, IEEE transactions on evolutionary computation, vol.15, p.116, 2011.

C. Desoer and Y. T. Wang, On the generalized Nyquist stability criterion, IEEE Transactions on Automatic Control, vol.25, p.46, 1980.

S. Devasia, Iterative control for networked heterogeneous multi-agent systems with uncertainties, IEEE Transactions on Automatic Control, vol.62, pp.431-437, 2017.

K. Diethelm, N. J. Ford, and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynamics, vol.29, pp.3-22, 2002.

D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, Distributed event-triggered control for multi-agent systems, IEEE Transactions on Automatic Control, vol.57, issue.7, pp.1291-1297, 2012.

T. Dong and A. Wang, Event-Triggered Consensus of Nonlinear Multi-Agent Systems with Unknown External Disturbance, Asian Journal of Control, vol.20, p.59, 1928.

H. Du, S. Li, and P. Shi, Robust consensus algorithm for second-order multi-agent systems with external disturbances, International Journal of Control, vol.85, issue.7, pp.1913-1928, 2012.

H. Du, Y. He, and Y. Cheng, Finite-time synchronization of a class of second-order nonlinear multi-agent systems using output feedback control, 2014.

, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.61, pp.1778-1788

M. A. Duarte-mermoud, N. Aguila-camacho, J. A. Gallegos, and R. Castro-linares, Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Communications in Nonlinear Science and Numerical Simulation, vol.22, p.58, 2015.

R. C. Eberhart and Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, Proceedings of the 2000 Congress on, vol.1, p.153, 2000.

Y. Fan, X. Huang, Z. Wang, and Y. Li, Nonlinear dynamics and chaos in a simplified memristor-based fractional-order neural network with discontinuous memductance function, Nonlinear Dynamics, vol.83, pp.1-17, 2018.

H. Gao, Y. Shi, C. M. Pun, and S. Kwong, An Improved Artificial Bee Colony Algorithm with its Application, IEEE Transactions on Industrial Informatics, vol.144, 2018.

W. Gao, Z. Wei, Y. Luo, and J. Cao, Artificial bee colony algorithm based on Parzen window method, Applied Soft Computing, vol.74, p.145, 2019.

W. F. Gao, S. Y. Liu, and L. Huang, Enhancing artificial bee colony algorithm using more information-based search equations, Information Sciences, vol.270, pp.112-133, 2014.

E. Girejko, D. Mozyrska, and M. Wyrwas, Behaviour of fractional discrete-time consensus models with delays for summator dynamics, Bulletin of the Polish Academy of Sciences. Technical Sciences, vol.66, p.15, 2018.

P. Gong, Distributed consensus of non-linear fractional-order multiagent systems with directed topologies, IET Control Theory & Applications, vol.10, pp.2515-2525, 2016.

P. Gong, Distributed tracking of heterogeneous nonlinear fractionalorder multi-agent systems with an unknown leader, Journal of the Franklin Institute, vol.354, p.112, 2017.

P. Bibliography-gong and W. Lan, Adaptive robust tracking control for multiple unknown fractional-order nonlinear systems, IEEE transactions on cybernetics, vol.14, p.114, 2018.

P. Gong and W. Lan, Adaptive robust tracking control for uncertain nonlinear fractional-order multi-agent systems with directed topologies. Automatica, vol.92, p.114, 2018.

Y. Gong, G. Wen, Z. Peng, T. Huang, and Y. Chen, Observerbased time-varying formation control of fractional-order multi-agent systems with general linear dynamics, IEEE Transactions on Circuits and Systems-II: Express Briefs, vol.19, p.114, 2019.

Y. Gu, Y. Yu, and H. Wang, Synchronization-based parameter estimation of fractional-order neural networks, Physica A: Statistical Mechanics and its Applications, vol.483, p.86, 2017.

J. J. Guedes, M. F. Castoldi, A. Goedtel, and C. M. Agulhari,

D. S. Sanches, Parameters estimation of three-phase induction motors using differential evolution. Electric Power Systems Research, vol.154, p.81, 2018.

S. Guo, L. Mo, and Y. Yu, Mean-square consensus of heterogeneous multi-agent systems with communication noises, Journal of the Franklin Institute, vol.355, pp.3717-3736, 2018.

R. A. Horn, R. A. Horn, and C. R. Johnson, Matrix analysis. Cambridge university press, p.29, 1990.

T. J. Hsieh, H. F. Hsiao, and W. C. Yeh, Mining financial distress trend data using penalty guided support vector machines based on hybrid of particle swarm optimization and artificial bee colony algorithm, Neurocomputing, vol.82, pp.196-206, 2012.

W. Hu, G. Wen, A. Rahmani, J. Bai, and Y. Yu, Leader-following consensus of heterogenous fractional-order multi-agent systems under input delays, Asian journal of control, vol.40, p.45, 2019.

W. Hu, G. Wen, A. Rahmani, and Y. Yu, Differential evolutionbased parameter estimation and synchronization of heterogeneous uncertain nonlinear delayed fractional-order multi-agent systems with unknown leader, Nonlinear Dynamics, vol.97, p.123, 2019.

W. Hu, G. Wen, A. Rahmani, and Y. Yu, Distributed consensus tracking of unknown nonlinear chaotic delayed fractional-order multi-agent systems with external disturbances based on ABC algorithm, Communications in Nonlinear Science and Numerical Simulation, vol.71, p.114, 2019.

W. Hu, G. Wen, A. Rahmani, and Y. Yu, Parameters estimation using mABC algorithm applied to distributed tracking control of unknown nonlinear fractional-order multi-agent systems, Communications in Nonlinear Science and Numerical Simulation, vol.79, p.150, 2019.

W. Hu, G. Wen, A. Rahmani, and Y. Yu, Robust consensus tracking based on DE with parameters identification for uncertain nonlinear fractionalorder multi-agent systems with external disturbances, 2019 International Conference on Fractional Calculus Theory and Applications, vol.36, p.63, 2019.

X. Huang, Z. Zhao, Z. Wang, and Y. Li, Chaos and hyperchaos in fractional-order cellular neural networks, Neurocomputing, vol.94, pp.13-21, 2012.

D. Hummel, Formation flight as an energy-saving mechanism, Israel Journal of Zoology, vol.41, pp.261-278, 1995.

N. Imanian, M. E. Shiri, and P. Moradi, Velocity based artificial bee colony algorithm for high dimensional continuous optimization problems. Engineering Applications of Artificial Intelligence, vol.36, pp.148-163, 2014.

S. S. Jadon, R. Tiwari, H. Sharma, and J. C. Bansal, Hybrid artificial bee colony algorithm with differential evolution, Applied Soft Computing, vol.58, pp.11-24, 2017.

A. Jain and D. Ghose, Stabilization of collective formations with speed and controller gain heterogeneity and saturation, Journal of the Franklin Institute, vol.354, pp.5964-5995, 2017.

A. Jain and D. Ghose, Synchronization of multi-agent systems with heterogeneous controllers, Nonlinear Dynamics, vol.89, pp.1433-1451, 2017.

J. Ji, S. Song, C. Tang, S. Gao, Z. Tang et al., An artificial bee colony algorithm search guided by scale-free networks, Information Sciences, vol.473, pp.142-165, 2019.

F. Kang, J. Li, and Q. Xu, Structural inverse analysis by hybrid simplex artificial bee colony algorithms, Computers & Structures, vol.87, pp.861-870, 2009.

D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, A comprehensive survey: artificial bee colony (ABC) algorithm and applications, Artificial Intelligence Review, vol.42, p.145, 2014.

E. Kaslik and S. Sivasundaram, Nonlinear dynamics and chaos in fractional-order neural networks, Neural Networks, vol.32, pp.245-256, 2012.

M. Kefayat, A. L. Ara, and S. N. Niaki, A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources. Energy Conversion and Management, vol.92, pp.149-161, 2015.

J. Kennedy, Particle swarm optimization. Encyclopedia of machine learning, vol.20, pp.760-766, 2010.

M. Khalili, X. Zhang, M. M. Polycarpou, T. Parisini, and Y. Cao, Distributed adaptive fault-tolerant control of uncertain multi-agent systems, Automatica, vol.87, p.114, 2018.

M. S. Kiran, H. Hakli, M. Gunduz, and H. Uguz, Artificial bee colony algorithm with variable search strategy for continuous optimization, Information Sciences, vol.300, pp.140-157, 2015.

R. Konnur, Synchronization-based approach for estimating all model parameters of chaotic systems, Physical Review E, vol.67, p.80, 2003.

S. Lakshmanan, M. Prakash, C. P. Lim, R. Rakkiyappan, P. Balasubramaniam et al., Synchronization of an inertial neural network with time-varying delays and its application to secure communication, BIBLIOGRAPHY IEEE transactions on neural networks and learning systems, vol.29, p.97, 2018.

H. Li, Observer-type consensus protocol for a class of fractional-order uncertain multiagent systems, In Abstract and Applied Analysis, vol.2012, issue.9, 2012.

P. Li, S. Xu, W. Chen, Y. Wei, and Z. Zhang, A connectivity preserving rendezvous for unicycle agents with heterogenous input disturbances, Journal of the Franklin Institute, vol.355, pp.4248-4267, 2018.

Y. Li, Y. Chen, and I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittagâ??Leffler stability, Computers & Mathematics with Applications, vol.59, p.58, 2010.

Y. Li, W. Yu, G. Wen, X. Yu, and L. Yao, Observer design for consensus of general fractional-order multi-agent systems, 2014 IEEE international symposium on circuits and systems (ISCAS), p.12, 2014.

Z. Li, Z. Duan, G. Chen, and L. Huang, Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.57, pp.213-224, 2010.

Z. Li, G. Wen, Z. Duan, and W. Ren, Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs, IEEE Transactions on Automatic Control, vol.60, issue.23, pp.1152-1157, 2015.

J. Lin and Z. J. Wang, Parameter identification for fractional-order chaotic systems using a hybrid stochastic fractal search algorithm, Nonlinear Dynamics, vol.90, pp.1243-1255, 2017.

J. Lin, A. S. Morse, and B. D. Anderson, The multi-agent rendezvous problem. Part 2: The asynchronous case, SIAM Journal on Control and Optimization, vol.46, issue.3, pp.2120-2147, 2007.

P. Lin and Y. Jia, Robust Hâ?? consensus analysis of a class of secondorder multi-agent systems with uncertainty, IET control theory & applications, vol.4, issue.7, pp.487-498, 2010.

H. Liu, L. Cheng, M. Tan, and Z. G. Hou, Exponential Finite-Time Consensus of Fractional-Order Multiagent Systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 1-10, vol.10, p.39, 2018.

H. Liu, G. Xie, and Y. Gao, Consensus of fractional-order doubleintegrator multi-agent systems, Neurocomputing, vol.340, issue.11, pp.110-124, 2019.

H. Liu, G. Xie, and M. Yu, Necessary and sufficient conditions for containment control of fractional-order multi-agent systems, Neurocomputing, vol.323, pp.86-95, 2019.

J. Liu, W. Chen, K. Qin, and P. Li, Consensus of Fractional-Order Multiagent Systems with Double Integral and Time Delay, Mathematical Problems in Engineering, vol.8, p.9, 2018.

J. Liu, W. Chen, K. Qin, and P. Li, Consensus of Multi-Integral Fractional-Order Multiagent Systems with Nonuniform Time-Delays, Complexity, vol.8, p.9, 2018.

J. Liu, K. Qin, W. Chen, and P. Li, Consensus of Delayed Fractional-Order Multiagent Systems Based on State-Derivative Feedback, Complexity, vol.8, p.9, 2018.

J. Liu, K. Qin, W. Chen, P. Li, and M. Shi, Consensus of fractionalorder multiagent systems with nonuniform time delays, Mathematical Problems in Engineering, vol.8, p.9, 2018.

J. Liu, K. Qin, P. Li, and W. Chen, Distributed consensus control for double-integrator fractional-order multi-agent systems with nonuniform timedelays, Neurocomputing, vol.321, p.9, 2018.

J. Liu, P. Li, W. Chen, K. Qin, and L. Qi, Distributed formation control of fractional-order multi-agent systems with relative damping and nonuniform time-delays, ISA Transactions, p.19, 2019.

J. Liu, P. Li, L. Qi, W. Chen, and K. Qin, Distributed formation control of double-integrator fractional-order multi-agent systems with relative damping and nonuniform time-delays, Journal of the Franklin Institute, vol.356, pp.5122-5150, 2019.

P. Liu, Z. Zeng, and J. Wang, Global Synchronization of Coupled Fractional-Order Recurrent Neural Networks, IEEE transactions on neural networks and learning systems, p.83, 2018.

S. Liu, R. Yang, X. F. Zhou, W. Jiang, X. Li et al., Stability analysis of fractional delayed equations and its applications on consensus of multi-agent systems, Communications in Nonlinear Science and Numerical Simulation, vol.8, p.13, 2019.

X. Liu and B. Xu, Distributed containment control of networked fractional-order systems with multiple leaders, Proceedings of the 10th World Congress on Intelligent Control and Automation, p.16, 2012.

X. Liu, B. Xu, and L. Xie, Distributed Containment Control of Networked Fractional-Order Systems with Delay-Dependent Communications, p.16, 2012.

X. Liu, D. W. Ho, J. Cao, and W. Xu, Discontinuous observers design for finite-time consensus of multiagent systems with external disturbances, IEEE transactions on neural networks and learning systems, vol.28, p.59, 2017.

X. Liu, Z. Zhang, and H. Liu, Consensus control of fractional-order systems based on delayed state fractional order derivative, Asian Journal of Control, vol.19, p.9, 2017.

D. Luo, J. Wang, and D. Shen, Learning formation control for fractional-order multiagent systems, Mathematical Methods in the Applied Sciences, vol.41, pp.5003-5014, 2018.

T. Ma, Synchronization of multi-agent stochastic impulsive perturbed chaotic delayed neural networks with switching topology, Neurocomputing, vol.151, p.97, 2015.

T. Ma, F. L. Lewis, and Y. Song, Exponential synchronization of nonlinear multi-agent systems with time delays and impulsive disturbances, International Journal of Robust and Nonlinear Control, vol.26, pp.1615-1631, 2016.

T. Ma, T. Li, and B. Cui, Coordination of fractional-order nonlinear multi-agent systems via distributed impulsive control, International Journal of Systems Science, vol.49, p.39, 2018.

X. Ma, F. Sun, H. Li, and B. He, The consensus region design and analysis of fractional-order multi-agent systems, International Journal of Systems Science, vol.48, pp.629-636, 2017.

A. B. Malinowska and T. Odzijewicz, Optimal control of discretetime fractional multi-agent systems, Journal of Computational and Applied Mathematics, vol.339, issue.10, pp.258-274, 2018.

D. ;. Matignon, I. Imacs, and . Lille, Stability results for fractional differential equations with applications to control processing, Computational engineering in systems applications, vol.2, p.27, 1996.

X. Meng, L. Xie, and Y. C. Soh, Event-Triggered Output Regulation of Heterogeneous Multiagent Networks, IEEE Transactions on Automatic Control, vol.63, pp.4429-4434, 2018.

L. Mo, X. Yuan, and Y. Yu, Neuro-adaptive Leaderless Consensus of Fractional-order Multi-agent Systems, Neurocomputing, issue.9, 2019.

J. Ni, L. Liu, C. Liu, and J. Liu, Fixed-Time Leader-Following Consensus for Second-Order Multiagent Systems With Input Delay, IEEE Transactions on Industrial Electronics, vol.64, pp.8635-8646, 2017.

R. Olfati-saber, Flocking for multi-agent dynamic systems: Algorithms and theory, IEEE Transactions on automatic control, vol.51, issue.3, pp.401-420, 2006.

C. Ozturk, E. Hancer, and D. Karaboga, A novel binary artificial bee colony algorithm based on genetic operators, Information Sciences, vol.297, pp.154-170, 2015.

H. Pan, X. Yu, and L. Guo, Admissible leader-following consensus of fractional-order singular multi-agent system via observer-based protocol, IEEE Transactions on Circuits and Systems II: Express Briefs, vol.14, 2018.

S. Panahi, S. Jafari, V. T. Pham, S. T. Kingni, A. Zahedi et al., Parameter identification of a chaotic circuit with a hidden attractor using Krill herd optimization, International Journal of Bifurcation and Chaos, vol.26, 2016.

U. Parlitz, Estimating model parameters from time series by autosynchronization, Physical Review Letters, vol.76, p.80, 1232.

Z. Peng, G. Wen, A. Rahmani, and Y. Yu, Leaderâ??follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach, Robotics and autonomous systems, vol.61, issue.3, pp.988-996, 2013.

Z. Peng, G. Wen, S. Yang, and A. Rahmani, Distributed consensusbased formation control for nonholonomic wheeled mobile robots using adaptive neural network, Nonlinear Dynamics, vol.86, issue.3, pp.605-622, 2016.

I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol.198, p.25, 1998.

R. Rakkiyappan, J. Cao, and G. Velmurugan, Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays, IEEE Transactions on Neural Networks and Learning Systems, vol.26, pp.84-97, 2015.

G. Ren and Y. Yu, Robust consensus of fractional multi-agent systems with external disturbances, Neurocomputing, vol.218, p.82, 2016.

G. Ren and Y. Yu, Consensus of Fractional Multi-Agent Systems Using Distributed Adaptive Protocols, Asian Journal of Control, vol.19, pp.2076-2084, 2017.

G. Ren and Y. Yu, Robust consensus for fractional nonlinear multiagent systems with external disturbances, Control Conference (CCC, p.2017, 2017.

, 36th Chinese, vol.9, p.59

G. Ren, Y. Yu, and S. Zhang, Leader-following consensus of fractional nonlinear multiagent systems, Mathematical Problems in Engineering, 2015.

G. Ren, Y. Yu, C. Xu, and X. Hai, Consensus of fractional multiagent systems by distributed event-triggered strategy, Nonlinear Dynamics, vol.95, issue.11, pp.541-555, 2019.

W. Ren and R. W. Beard, Distributed consensus in multi-vehicle cooperative control, 2008.

E. Shahamatkhah and M. Tabatabaei, Leader-following consensus of discrete-time fractional-order multi-agent systems, Chinese Physics B, vol.27, p.168, 2018.

A. Shariati and M. Tavakoli, A descriptor approach to robust leaderfollowing output consensus of uncertain multi-agent systems with delay, IEEE Transactions on Automatic Control, vol.62, pp.5310-5317, 2017.

H. Sharma, J. C. Bansal, K. V. Arya, and X. S. Yang, LÃ?vy flight artificial bee colony algorithm, International Journal of Systems Science, vol.47, 2016.

J. Shen and J. Cao, Necessary and Sufficient Conditions for Consensus of Delayed Fractional-order Systems, Asian Journal of Control, vol.14, p.114, 1690.

J. Shen, J. Cao, and J. Lu, Consensus of fractional-order systems with non-uniform input and communication delays, Proceedings of the Institution of Mechanical Engineers, vol.226, p.9, 2012.

S. Shen, W. Li, and W. Zhu, Consensus of fractional-order multiagent systems with double integrator under switching topologies. Discrete Dynamics in Nature and Society, 2017.

Z. Sheng, J. Wang, S. Zhou, and B. Zhou, Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.24, p.151, 2014.

M. Shi, Y. Yu, and X. Teng, Leader-following consensus of general fractional-order linear multi-agent systems via event-triggered control, The Journal of Engineering, vol.14, pp.199-202, 2018.

M. Shi, K. Qin, J. Liang, and J. Liu, Distributed control of uncertain multiagent systems for tracking a leader with unknown fractional-order dynamics, International Journal of Robust and Nonlinear Control, vol.14, 2019.

M. Shi, Y. Yu, and Q. Xu, Delay-dependent consensus condition for a class of fractional-order linear multi-agent systems with input time-delay, International Journal of Systems Science, vol.8, p.9, 2019.

Y. Shi and J. Zhang, Networked convergence of fractional-order multiagent systems with a leader and delay. Mathematical Problems in Engineering, p.15, 2015.

D. Simon, Biogeography-based optimization, IEEE transactions on evolutionary computation, vol.12, pp.702-713, 2008.

J. J. Slotine and S. S. Sastry, Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators, International journal of control, vol.38, pp.465-492, 1983.

K. Socha and M. Dorigo, Ant colony optimization for continuous domains, European journal of operational research, vol.185, pp.1155-1173, 2008.

C. Song, J. Cao, and Y. Liu, Robust consensus of fractional-order multi-agent systems with positive real uncertainty via second-order neighbors information, Neurocomputing, vol.165, p.39, 2015.

M. N. Soorki and M. S. Tavazoei, Adaptive consensus tracking for fractional-order linear time invariant swarm systems, Journal of Computational and Nonlinear Dynamics, vol.9, 2014.

M. N. Soorki and M. S. Tavazoei, Constrained swarm stabilization of fractional order linear time invariant swarm systems, IEEE/CAA Journal of Automatica Sinica, vol.3, issue.10, pp.320-331, 2016.

M. N. Bibliography-soorki and M. S. Tavazoei, Asymptotic swarm stability of fractional-order swarm systems in the presence of uniform time-delays, International Journal of Control, vol.90, p.9, 2017.

M. N. Soorki and M. S. Tavazoei, Adaptive robust control of fractionalorder swarm systems in the presence of model uncertainties and external disturbances, IET Control Theory & Applications, vol.12, issue.10, pp.961-969, 2018.

R. Storn and K. Price, Differential evolutionâ??a simple and efficient heuristic for global optimization over continuous spaces, Journal of global optimization, vol.11, p.153, 1997.

F. Sun, W. Zhu, Y. Li, and F. Liu, Finite-time consensus problem of multi-agent systems with disturbance, Journal of the Franklin Institute, vol.353, pp.2576-2587, 2016.

W. Sun, Y. Li, C. Li, and Y. Chen, Convergence speed of a fractional order consensus algorithm over undirected scale-free networks, Asian Journal of Control, vol.13, pp.936-946, 2011.

K. Y. Tam, Genetic algorithms, function optimization, and facility layout design, European Journal of Operational Research, vol.63, pp.322-346, 1992.

Y. P. Tian and C. L. Liu, Consensus of multi-agent systems with diverse input and communication delays, IEEE Transactions on Automatic Control, vol.53, p.7, 2008.

H. R. Tizhoosh, Opposition-based learning: a new scheme for machine intelligence, Computational intelligence for modelling, control and automation, 2005 and international conference on intelligent agents, web technologies and internet commerce, international conference on, vol.1, p.147, 2005.

B. Vaseghi, M. A. Pourmina, and S. Mobayen, Secure communication in wireless sensor networks based on chaos synchronization using adaptive sliding mode control, Nonlinear Dynamics, vol.89, p.97, 2017.

A. Wang, X. Liao, and T. Dong, Fractional-order follower observer design for tracking consensus in second-order leader multi-agent systems: Periodic sampled-based event-triggered control, Journal of the Franklin Institute, vol.355, pp.4618-4628, 2018.

F. Wang and Y. Yang, Leader-following consensus of nonlinear fractional-order multi-agent systems via event-triggered control, International Journal of Systems Science, vol.48, pp.571-577, 2017.

F. Wang and Y. Yang, Leader-following exponential consensus of fractional order nonlinear multi-agents system with hybrid time-varying delay: A heterogeneous impulsive method, Physica A: Statistical Mechanics and its Applications, vol.482, pp.158-172, 2017.

H. Wang, Y. Yu, G. Wen, S. Zhang, and J. Yu, Global stability analysis of fractional-order Hopfield neural networks with time delay, Neurocomputing, vol.154, p.83, 2015.

X. Wang and H. Su, Self-Triggered Leader-Following Consensus of Multi-Agent Systems with Input Time Delay, Neurocomputing, vol.38, 2018.

Y. Wang, J. Cao, H. Wang, A. Alsaedi, and F. E. Alsaadi, Exponential Consensus for Nonlinear Multi-Agent Systems with Communication and Input Delays via Hybrid Control, Asian Journal of Control, vol.38, 2018.

J. Wei and Y. Yu, An Effective Hybrid Cuckoo Search Algorithm for Unknown Parameters and Time Delays Estimation of Chaotic Systems, IEEE Access, vol.6, p.81, 2018.

J. Wei, Y. Yu, and D. Cai, Identification of uncertain incommensurate fractional-order chaotic systems using an improved quantum-behaved particle swarm optimization algorithm, Journal of Computational and Nonlinear Dynamics, vol.13, 2018.

G. Wen, W. Yu, Y. Zhao, and J. Cao, Pinning synchronisation in fixed and switching directed networks of Lorenz-type nodes, IET Control Theory & Applications, vol.7, pp.1387-1397, 2013.

G. Wen, Y. Zhang, Z. Peng, Y. Yu, and A. Rahmani, Observerbased output consensus of leader-following fractional-order heterogeneous nonlinear multi-agent systems, International Journal of Control, vol.14, pp.1-9, 2019.

Y. Wen, X. F. Zhou, Z. Zhang, and S. Liu, Lyapunov method for nonlinear fractional differential systems with delay, Nonlinear dynamics, vol.82, issue.13, pp.1015-1025, 2015.

M. Wyrwas, D. Mozyrska, and E. Girejko, Fractional discretetime consensus models for single-and double-summator dynamics, International Journal of Systems Science, vol.49, p.168, 2018.

G. H. Xu, M. Chi, D. X. He, Z. H. Guan, D. X. Zhang et al., Fractional-order consensus of multi-agent systems with event-triggered control, 11th IEEE International Conference on Control & Automation (ICCA), p.11, 2014.

Y. Xue, J. Jiang, B. Zhao, and T. Ma, A self-adaptive artificial bee colony algorithm based on global best for global optimization, Soft Computing, vol.145, pp.1-18, 2018.

H. Yang, F. Han, F. Liu, H. Liu, and M. Zhao, Distributed coordination of fractional dynamical systems with exogenous disturbances. Mathematical Problems in Engineering, vol.81, p.114, 2014.

H. Yang, F. Wang, and F. Han, Containment control of fractional order multi-agent systems with time delays, IEEE/CAA Journal of Automatica Sinica, vol.5, pp.727-732, 2018.

H. Y. Yang, L. Guo, B. Xu, and J. Z. Gu, Collaboration control of fractional-order multiagent systems with sampling delay, Mathematical Problems in Engineering, issue.10, 2013.

H. Y. Yang, L. Guo, X. Zhu, K. C. Cao, and H. Zou, Consensus of compound-order multi-agent systems with communication delays, Open Physics, vol.11, p.9, 2013.

H. Y. Yang, X. Zhu, and K. C. Cao, Distributed coordination of fractional order multi-agent systems with communication delays. Fractional Calculus and Applied Analysis, vol.17, p.9, 2014.

H. Y. Yang, Y. Yang, F. Han, M. Zhao, and L. Guo, Containment control of heterogeneous fractional-order multi-agent systems, Journal of the Franklin Institute, vol.356, pp.752-765, 2019.

R. Yang, S. Liu, Y. Y. Tan, Y. J. Zhang, and W. Jiang, Consensus analysis of fractional-order nonlinear multi-agent systems with distributed and input delays, Neurocomputing, vol.329, issue.13, pp.46-52, 2019.

S. Yang, X. Liao, Y. Liu, X. Chen, and D. Ge, Consensus of Delayed Multi-agent Systems via Intermittent Impulsive Control, Asian Journal of Control, vol.19, issue.10, pp.941-950, 2017.

X. S. Yang and S. Deb, Cuckoo search via LÃ?vy flights, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp.210-214, 2009.

S. Yazdani and M. Haeri, Robust adaptive fault-tolerant control for leader-follower flocking of uncertain multi-agent systems with actuator failure, ISA transactions, vol.71, p.114, 2017.

Y. Ye and H. Su, Leader-following consensus of general linear fractionalorder multiagent systems with input delay via event-triggered control, International Journal of Robust and Nonlinear Control, vol.28, pp.5717-5729, 2018.

Y. Ye and H. Su, Leader-following consensus of nonlinear fractional-order multi-agent systems over directed networks, Nonlinear Dynamics, issue.13, pp.1-13, 2019.

Y. Ye, H. Su, and Y. Sun, Event-triggered consensus tracking for fractional-order multi-agent systems with general linear models, Neurocomputing, vol.315, pp.292-298, 2018.

X. Yin and S. Hu, Consensus of Fractional-Order Uncertain Multi-Agent Systems Based on Output Feedback, Asian Journal of Control, vol.15, p.12, 2013.

X. Bibliography-yin, D. Yue, and S. Hu, Consensus of fractional-order heterogeneous multi-agent systems, IET Control Theory & Applications, vol.7, pp.314-322, 2013.

K. D. Young, V. I. Utkin, and U. Ozguner, A control engineer's guide to sliding mode control, IEEE transactions on control systems technology, vol.7, p.123, 1999.

D. Yousri, D. Allam, and M. B. Eteiba, Chaotic whale optimizer variants for parameters estimation of the chaotic behavior in Permanent Magnet Synchronous Motor, Applied Soft Computing, vol.74, pp.479-503, 2019.

J. Yu, X. Dong, Q. Li, and Z. Ren, Time-varying formation tracking for high-order multi-agent systems with switching topologies and a leader of bounded unknown input, Journal of the Franklin Institute, vol.355, pp.2808-2825, 2018.

S. Yu and X. Long, Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode, Automatica, vol.54, p.59, 2015.

W. Yu, Y. Li, G. Wen, X. Yu, and J. Cao, Observer design for tracking consensus in second-order multi-agent systems: Fractional order less than two, IEEE Transactions on Automatic Control, vol.62, pp.894-900, 2017.

Z. Yu, H. Jiang, and C. Hu, Leader-following consensus of fractionalorder multi-agent systems under fixed topology, Neurocomputing, vol.149, p.39, 2015.

Z. Yu, H. Jiang, C. Hu, and J. Yu, Necessary and sufficient conditions for consensus of fractional-order multiagent systems via sampled-data control, IEEE Transactions on Cybernetics, vol.47, p.114, 2017.

C. Yuan and H. He, Cooperative output regulation of heterogeneous multi-agent systems with a leader of bounded inputs, IET Control Theory & Applications, vol.12, pp.233-242, 2017.

L. Yuan and Q. Yang, Parameter identification of fractional-order chaotic systems without or with noise: Reply to comments, Communications in Nonlinear Science and Numerical Simulation, vol.67, pp.506-516, 2019.

X. Yuan, L. Mo, and Y. Yu, Observer-based quasi-containment of fractional-order multi-agent systems via event-triggered strategy, International Journal of Systems Science, vol.16, pp.1-17, 2019.

A. Yurtkuran, B. Yagmahan, and E. Emel, A novel artificial bee colony algorithm for the workforce scheduling and balancing problem in subassembly lines with limited buffers, Applied Soft Computing, vol.73, pp.767-782, 2018.

L. Zhang and Y. Yang, Lag synchronization for fractional-order memristive neural networks with time delay via switching jumps mismatch, Journal of the Franklin Institute, vol.355, p.127, 2018.

W. Zhang, J. Cao, R. Wu, A. Alsaedi, and F. E. Alsaadi, Projective synchronization of fractional-order delayed neural networks based on the comparison principle, Advances in Difference Equations, vol.93, p.98, 2018.

Y. Zhang, G. Wen, Z. Peng, Y. Yu, and A. Rahmani, Group multiple lags consensus of fractional-order nonlinear leader-following multi-agent systems via adaptive control, Transactions of the Institute of Measurement and Control, 2018.

D. Zhao, T. Zou, S. Li, and Q. Zhu, Adaptive backstepping sliding mode control for leaderâ??follower multi-agent systems, IET Control Theory & Applications, vol.6, issue.7, pp.1109-1117, 2012.

J. Zhou and X. Yao, A hybrid approach combining modified artificial bee colony and cuckoo search algorithms for multi-objective cloud manufacturing service composition, International Journal of Production Research, vol.55, pp.4765-4784, 2017.

L. Zhou and F. Tan, A chaotic secure communication scheme based on synchronization of double-layered and multiple complex networks, Nonlinear Dynamics, vol.83, pp.1-15, 2019.

G. Zhu and S. Kwong, Gbest-guided artificial bee colony algorithm for numerical function optimization, Applied mathematics and computation, vol.217, pp.3166-3173, 2010.

W. Bibliography-zhu, M. Wang, and C. Yang, Leader-following consensus of fractional-order multi-agent systems with general linear models, Proceeding of the 11th World Congress on Intelligent Control and Automation, p.12, 2014.

W. Zhu, B. Chen, and J. Yang, Consensus of fractional-order multiagent systems with input time delay. Fractional Calculus and Applied Analysis, vol.20, p.114, 2017.

W. Zou and Z. Xiang, Containment control of fractional-order nonlinear multi-agent systems under fixed topologies, IMA Journal of Mathematical Control and Information, vol.35, pp.1027-1041, 2017.

, Résumé Etendu de l'expérience démontrent que l'algorithme mABC proposé permet d'identifier les paramètres inconnus de manière plus précise, efficace et robuste. Par rapport aux travaux existants, notre contribution est la suivante. Tout d'abord, un nouvel algorithme ABC modifié est proposé. Deuxièmement, un nouveau schéma d'identification de paramètre basé sur l'algorithme ABC modifié est proposé, Troisièmement, des tests statistiques non paramétriques sont utilisés pour démontrer les performances de l'algorithme proposé