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Chapter 1

Introduction

Contents

1.1 Background and motivation . . . . . . . . . . . . . . . 1

1.2 Overview of distributed coordination of FOMASs . . 5

1.2.1 Consensus problem . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Consensus-based formation control . . . . . . . . . . . 17

1.3 Overview of parameter identification problem . . . . 19

1.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.2 Caputo fractional-order derivative . . . . . . . . . . . 25

1.4.3 Mathematical knowledge . . . . . . . . . . . . . . . . . 28

1.5 Contributions and outline of dissertation . . . . . . . 29

1.1 Background and motivation

In the past two decades, multi-agent systems (MASs) have attracted increas-

ing attention from researchers in various fields, such as physics, mathematics,

engineering, biology, sociology and control theory. This is partly due to its po-

tential applications, including biological systems, vehicle formation, and group

decision making problems, to name a few (see Fig. 1.1). The advancements

are that a group of networked autonomous agents can perform tasks more effi-

ciently than a single agent or can accomplish tasks not executable by a single one.

1



1. INTRODUCTION

Moreover, networked MASs have advantages like increasing tolerance to possible

vehicle fault, providing flexibility to the task execution or taking advantage of

distributed sensing and actuation.

(a) (b)

(c) (d)

Fig. 1.1. Examples of multi-agent systems in practice applications

Considering the advantages of the MASs, the control of the MASs has received

increasing demands. Currently, two approaches are commonly used for control-

ling MASs: the centralized approach and the distributed coordination approach

(Cao et al., 2013). The centralized approach is based on the assumption that

a central station is available and sufficiently powerful to control a whole group of

vehicles which can be described as Fig. 1.2a. Essentially, the centralized approach

is a direct extension of the traditional single-agent-based control philosophy and

strategy. On the contrary, as shown in Fig. 1.2b, the distributed coordination

approach does not require a central station for control, at the cost of becoming

2
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1.1 Background and motivation

far more complex in structure and organization. Although both approaches are

considered to be practical depending on the situations and conditions of the real

applications, the distributed coordination approach is believed more promising

due to many inevitable physical constraints such as limited resources and en-

ergy, short wireless communication ranges, narrow bandwidths, and large sizes

of vehicles to manage and control. Besides, the distributed coordination owns

many advantages, such as low operational costs, less system requirement, high

robustness, more adaptive and flexible scalability (Cao et al., 2013). Thus, the

distributed coordination of MASs has been applied to many fields in the control

community, such as the rendezvous (Lin et al., 2007), robot teams (Peng et al.,

2013, 2016), flocking (Olfati-Saber, 2006), formation control (Consolini et al.,

2008), consensus (Tian & Liu, 2008) and so on. One challenge in distributed

coordination is that the collective group behaviours are achieved only through

the interacting of the local information.

Robot1 Robot2

Robot3 Robot4

Decision maker

(a) The centralized control

Local decision

Local decision

Local decision

(b) The distributed coordination control

Fig. 1.2. Two approaches for controlling MASs.

In the last few decades, as a generalization of the ordinary differentiation and

integration to arbitrary non-integer order, fractional calculus has attracted

great attention of many scientists. In fact, the first appearance of the concept of

3
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1. INTRODUCTION

a fractional derivative was found in a letter by the famous mathematician Leibniz

in 1695 to Guillaume de l’Hôpital. As far as the existence of such a theory was

concerned, the foundation of the subject was laid by Liouville in a paper from

1832.

(a) Leibniz (b) Guillaume de l’Hôpital (c) Liouville

Fig. 1.3. The important scientists in the history of fractional calculus.

Compared with the classical integer-order systems, fractional-order sys-

tems provide an excellent instrument for the description of memory and hered-

itary properties of various materials and processes. In fact, the real-world pro-

cesses generally or most likely are fractional-order systems, such as phenomeno-

logical description of viscoelastic liquids, diffusion and wave propagation, elec-

tromagnetic waves, dielectric relaxation phenomena in polymeric material and so

on (Podlubny, 1998). In other words, there are many phenomena that cannot or

are hard to be interpreted accurately by integer-order dynamics. For example,

the consensus motion of agents performs in viscoelastic materials such as macro-

molecule fluid, porous media, and complicated environments, underwater vehicles

operate in lentic lakes composed of microbes and viscoelastic materials, flying ve-

hicles operate in an environment where the influence of particles in air can not be

ignored (e.g. high-speed flight in duststorm, rain or snow), and ground vehicles

move on top of carpet, sand, muddy road or grass (Cao & Ren, 2010). Therefore,
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1.2 Overview of distributed coordination of FOMASs

it is more interesting and significant to investigate the distributed coordination

of fractional-order multi-agent systems (FOMASs).

Thus, the combination of the distributed coordination control of MASs and

fractional calculus leads to a new interdisciplinary subject, namely the dis-

tributed coordination of fractional-order multi-agent systems (FOMASs).

The objective of this subject is to develop new distributed algorithms for net-

worked FOMASs according to different situations, and improve the effectiveness

of MASs from the viewpoint of performance both in accomplishing certain tasks

and in the robustness and reliability of the system.

1.2 Overview of distributed coordination of FO-

MASs

The recent researches on distributed coordination of FOMASs mainly focus on

the consensus and formation control. The following subsections will introduce

these directions in terms of definition and state of the arts.

1.2.1 Consensus problem

Consensus problem, one of the most important and fundamental issues in the

distributed coordination for MASs, has attracted much attention from the re-

searchers in recent years. Among the research topics in consensus of MASs, there

are mainly three classes, i.e., leaderless consensus, leader-following consensus and

containment consensus problem. To define these three cases clearly, we first in-

troduce a leader (reference state).

Leader: a leader denotes a control objective or a common interest of the whole

multi-agent group, a leader is also regraded as a reference state.

Leaderless consensus: if multi-agents are not required to track a leader, the

consensus problem is called leaderless consensus or consensus producing (see as

Fig. 1.4).

Leader-following consensus: if multi-agents are required to track a leader, the

consensus problem is called leader-following consensus or consensus tracking or

synchronization (see as Fig. 1.5).

5
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The same position

Fig. 1.4. Leaderless consensus problem

The state of the leader 

Fig. 1.5. Leader-following consensus problem

Containment consensus: if multi-agents are required to converge to the con-

vex hull spanned by multiple leaders, the consensus problem is called containment

consensus (see as Fig. 1.6).

1.2.1.1 Leaderless consensus/consensus producing

For leaderless consensus of MASs, the aim is to design a network distributed

control protocol by only using the neighbors’ information, such that all agents

achieve the desired common goal, which maybe represent attitude, position, ve-

Follower 

Fig. 1.6. Containment consensus problem
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1.2 Overview of distributed coordination of FOMASs

locity, temperature, voltage and so on. Until now, the study of consensus problem

for MASs has made great achievements. For example, different kinds of control

methods have been proposed to achieve the consensus problem, such as event-

triggered control (Dimarogonas et al., 2012), output feedback control (Du et al.,

2014) and sliding mode control (Zhao et al., 2012). Besides, different kinds of

limited conditions have been considered when agents work in different environ-

ment, such as the time delay (Tian & Liu, 2008), parameter uncertainty (Lin &

Jia, 2010), external disturbances (Du et al., 2012) and so on.

To the best of our knowledge, the consensus of FOMASs with single integra-

tor was first studied in Cao & Ren (2010) under fixed directed communication

topology, where it has been stated that the convergence speed can be improved

by using a varying-order fractional-order strategy. Then until now, many results

have been obtained by considering different situations and using different kinds

of control, which can be summarized as follows.

In many cases, time delays occur in practical systems due to the finite switch-

ing speed of amplifiers, finite signal propagation time in biological networks, finite

chemical reaction times, memory effects, and so on. The existence of time delays

in a dynamic system is frequently a source of instability and poor performance.

Therefore, stability testing and stabilization of time-delay systems is a problem

of practical and theoretical interests. In Shen & Cao (2012), leaderless consen-

sus of single integrator FOMASs under fixed undirected/directed communication

topology was studied, where the identical/heterogeneous input delay was consid-

ered. In Shen et al. (2012), the leaderless consensus of single integrator FOMASs

with nonuniform input delays and communication delays were considered sepa-

rately or together over fixed undirected/directed communication topology. Yang

et al. (2013b) studied the leaderless consensus of compound-order FOMASs with

communication delays under fixed directed communication topology, where there

were two groups of MASs with integer-order and fraction-order single integrator

dynamics. In Yang et al. (2014b), leaderless consensus of single integrator FO-

MASs with communication delays under fixed directed communication topology

was addressed. In Soorki & Tavazoei (2017), leaderless consensus of a general-

ized linear form of FOMASs with self state and communication uniform time-

delays was considered under fixed undirected/directed communication topology.

In Liu et al. (2017b), leaderless consensus of single integrator FOMASs under
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fixed directed communication topology was studied, where the state fractional-

order derivative was introduced into the existing traditional leaderless consensus

protocol and the communication channels with time delay and without time delay

cases were considered. In Zhu et al. (2017), under fixed directed communication

topology, the leaderless consensus of FOMASs with general linear and nonlinear

dynamics under input delay was investigated by evaluating the error states. In

Liu et al. (2018b,d,e), leaderless consensus of single/double/high-order integra-

tor FOMASs with nonuniform input delays was investigated respectively, where

the FOMASs with symmetric time delays under fixed undirected communication

topology and FOMASs with asymmetric time delays under fixed directed com-

munication topology were considered. In Liu et al. (2018c), a state derivative

feedback was added into the designed control protocol and the leaderless consen-

sus of FOMASs with symmetric time delays under fixed undirected communica-

tion topology and FOMASs with asymmetric time delays under fixed directed

communication topology was studied. In Liu et al. (2018f), leaderless consen-

sus of a double integrator FOMASs containing two state variables with different

fractional orders was researched under symmetric time delays with fixed undi-

rected communication topology and asymmetric time delays with fixed directed

communication topology. In Liu et al. (2019e), leaderless consensus of nonlinear

FOMASs with self state time delay was investigated under fixed directed com-

munication topology by employing the fractional Razumikhin theorem and linear

matrix inequalities. In Shi et al. (2019b), leaderless consensus of a class of linear

FOMASs with input time delay was studied under fixed directed communication

topology.

In terms of the control approach, most of the results about the time delays

mentioned above are based on the frequency domain analysis and generalized

Nyquist stability criterion (Liu et al., 2018b,c,d,e,f, 2017b; Shen & Cao, 2012;

Shen et al., 2012; Shi et al., 2019b; Soorki & Tavazoei, 2017; Yang et al., 2013b,

2014b). Besides, Zhu et al. (2017) studied the leaderless consensus of FOMASs

with input time delays based on the properties of Mittag-Leffler function, matrix

theory, stability theory of fractional-order differential equations. Liu et al. (2019e)

addressed the leaderless consensus of FOMASs with time delay based on the

fractional Razumikhin theorem.
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In terms of the system dynamics, most of the results are based on the single

integrator dynamics (Liu et al., 2018b,c, 2017b; Shen & Cao, 2012; Shen et al.,

2012; Shi et al., 2019b; Soorki & Tavazoei, 2017; Yang et al., 2013b, 2014b).

Besides, Liu et al. (2018e,f) studied the double integrator dynamics, Liu et al.

(2018d) studied the high-order dynamics. Shi et al. (2019b); Zhu et al. (2017)

studied the FOMASs with nonlinearity.

In some real systems, parameter uncertainty is inevitable. In Li (2012),

an observer-type leaderless consensus protocol was proposed to deal with the

uncertain FOMASs with general linear node dynamics over fixed directed com-

munication topology. In Yin & Hu (2013), leaderless consensus of uncertain

FOMASs with general linear node dynamics was investigated based on output

feedback under fixed undirected communication topology. In Song et al. (2015),

leaderless consensus of uncertain FOMASs with general linear node dynamics was

studied under fixed undirected communication topology, where the second-order

neighbors information was utilised. In Chen et al. (2015a), the group leaderless

consensus of uncertain FOMASs with general linear node dynamics was inves-

tigated based on output feedback under fixed directed communication topology.

In summary, all the results were based on the general linear dynamics and the

uncertainties were denoted as time-invariant matrices.

External disturbances, such as stochastic noises, external interferences al-

ways impacts the system performance and causes the system instability. In Ren

& Yu (2016, 2017b), robust leaderless consensus of linear /nonlinear FOMASs

with external disturbances was studied based on fixed directed communication

topology, where linear control protocol was utilised.

Sometimes, the unknown nonlinear term and the external disturbance

term cannot usually be observed. Therefore, it is significant to design the valid

control laws, which are not necessary to know the specific information, such as

the Lipschitz condition of the nonlinearity and the boundedness of the external

disturbances. In Bai & Yu (2018); Mo et al. (2019), leaderless consensus of un-

certain FOMASs was studied under fixed undirected communication topology,

where the radial basis function neural networks (RBFNNs) method was proposed

to compensate the unknown nonlinear term and the external disturbance term,

and the corresponding fractional-order/integer-order adaptation laws were de-

signed respectively to approach the ideal neural network weight matrix of the

9



1. INTRODUCTION

unknown nonlinear term.

In practice, the control input subjected to the bounded situation is very

prevalent. In Soorki & Tavazoei (2016), leaderless consensus of FOMASs with

general linear dynamics was studied based on undirected/directed communication

topology, where two constraints were considered: the input constraint and the

restriction on distance of the agents from final destination which should be less

than a desired value.

In Yin & Hu (2013), leaderless consensus of heterogenous FOMASs mod-

elled by two kinds of general linear dynamics was addressed under fixed directed

communication topology.

All of the aforementioned works are concerned with continuous-time FOMASs,

some results have been obtained based on discrete-time systems. For exam-

ple, in Yang et al. (2013a), leaderless consensus of single integrator FOMASs

via sampled control and sampling delay was investigated based on fixed directed

communication topology, where the FOMASs was reformulated as discrete-time

dynamics by using the definition of Grünwald-Letnikov (GL) fractional deriva-

tive. In Malinowska & Odzijewicz (2018), leaderless consensus of discrete-time

FOMASs with single/double integrators was studied using optimal control strat-

egy based on fixed undirected communication topology.

In Yang et al. (2017), leaderless consensus of FOMAS with double-integrator

dynamics was studied over fixed directed communication topology. In Shen et al.

(2017), under switching topologies, leaderless consensus of FOMAS with double-

integrator dynamics was studied by applying Mittag-Leffler function, Laplace

transform and dwell time technique.

It is known that sliding mode control is an effective way to deal with

model uncertainty and disturbance in the control of fractional-order systems. In

Soorki & Tavazoei (2018), under fixed directed communication topology, leader-

less consensus of general linear FOMAS with model uncertainties and external

disturbances was investigated based on an adaptive robust sliding mode con-

trol, where a fractional-integral sliding manifold was constructed. In Liu et al.

(2018a), exponential finite-time leaderless consensus of single integrator FOMASs

was studied by using the fast sliding mode control over fixed strongly connected

communication topology/directed communication topology containing spanning
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tree. In Bai et al. (2017a, 2018), leaderless consensus of single/double integra-

tors FOMASs without/with inherent nonlinearity was addressed based on sliding

mode control under fixed directed communication topology.

In practice, continuous control may be infeasible since the controllers are

subjected to enormous load of continuously updated information. Besides, in

practical of digital sensors and controllers, although the system is always con-

tinuous, only the discrete sampled-data at some sampling instances can be used

in the control process. Compared with the continuous-time control, continuous-

time systems via sampled-data control have series of excellent properties such

as robustness, flexibility and low cost. Therefore, sampled-data control is more

practicable in applications. In Yu et al. (2017b), leaderless consensus of single in-

tegrator FOMASs was studied via periodic sampled-data control over fixed undi-

rected/directed communication topology. In Liu et al. (2019a), leaderless consen-

sus of double integrator FOMASs was investigated over fixed directed communi-

cation topology, where periodic sampled-data control was proposed for absolute

and relative damping cases.

However, it is pointed out that periodical sampling still leads to a large

amount of energy-cost and it may reduce system lifespan consequently. Thus

the event-triggered control strategy is proposed to solve this problem. In

Chen et al. (2018c), leaderless consensus of single integrator FOMASs over fixed

undirected communication topology was investigated via periodic sampled-data

event-triggered control. Besides, in Xu et al. (2014), leaderless consensus of single

integrator FOMASs based on fixed undirected communication topology was stud-

ied using centralized/distributed event-triggered sampled-data control, where the

exclusion of the Zeno behavior was not guaranteed. In Ren et al. (2019), lead-

erless consensus of general linear FOMASs over fixed undirected communication

topology was investigated through distributed event-triggered strategy, where the

Zeno behavior could be precluded to ensure the feasibility of the devised event-

triggered strategy.

Most of the works on leaderless consensus of FOMASs were devoted to de-

sign the state feedback control protocol using the state information of agents

directly. However, during practical implementation, under some circumstance,

some agents’ states can not be directly measured, while only the output informa-

tion is available. Therefore, the control protocol based on output informa-
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tion is more effective. Fox example, in Yin & Hu (2013), leaderless consensus

of uncertain FOMASs with general linear node dynamics was investigated based

on static output feedback under fixed undirected communication topology. In

Chen et al. (2015a), the group leaderless consensus of uncertain FOMASs with

general linear node dynamics was investigated based on static output feedback

under fixed directed communication topology.

Besides the static output feedback, in Li et al. (2014); Ma et al. (2017), under

fixed directed topology, a fractional-order observer-type leaderless consensus

protocol based on relative output measurements was proposed to achieve the

leaderless consensus of general linear FOMASs. In addition, in large scale net-

works, the absolute output measurement of each agent is not often completely

available. In Zhu et al. (2017), under fixed directed commmunication topology,

leaderless consensus of general linear FOMASs was studied, where a distributed

observer-type protocol was proposed to utilize the estimated states by available

measurements.

1.2.1.2 Leader-following consensus/consensus tracking

The consensus of a group of agents with a (virtual) leader has become a par-

ticularly interesting topic, where the leader is a special agent whose motion is

independent of all the other agents and thus is followed by all the other ones.

Such a consensus problem with a dynamic (virtual) leader is commonly called

leader-following consensus or consensus tracking problem (see Fig. 1.5). It was

reported that the leader-following configuration was an energy saving mechanism

(Hummel, 1995), which was found in many biological systems, and could also en-

hance the communication and orientation of the flock (Andersson & Wallander,

2004). So far, for the leader-following consensus of FOMASs, many results have

been obtained considering different conditions with different control methods.

Based on the stability theory of fractional-order linear system (Matignon,

1996), Bai et al. (2016, 2017a); Zhu et al. (2014) studied the leader-following con-

sensus of single integrator/general linear FOMASs under fixed directed commu-

nication topology. By using the fractional-order Lyapunov direct method

(Li et al., 2010a), Gong (2017); Ren et al. (2015); Yu et al. (2015) investigated the

leader-following consensus of single/double integrators FOMASs with inherent

nonlinearities under fixed undirected/directed communication topology, where
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different kinds of Lyapunov functions were constructed. Based on the Lya-

punov indirect method, Ye & Su (2019) studied the leader-following consensus

of general linear FOMASs with inherent nonlinearities under fixed directed com-

munication topology, where the explicit solution of the tracking errors system

was solved and evaluated by utilizing the Mittag-Leffler function, the Laplace

transform, and the inequality technique.

Time delay is a universal phenomenon in real dynamical system, which has

distinct effects on dynamical behavior of systems and even makes systems unsta-

ble. In Zhu et al. (2017), leader-following consensus of general linear FOMASs

with input delay was studied over fixed directed communication topology by eval-

uating error states, where the explicit solution of the tracking errors system was

obtained. In Yang et al. (2019b), over fixed directed weighted graph, leader-

following consensus of nonlinear FOMASs with distributed and input delays was

investigated by using the fractional-order Razumikhin approach (Wen et al., 2015)

and algebraic graph theory. Similarly, by using a modified fractional-order Razu-

mikhin approach, Liu et al. (2019e) studied the leader-following consensus of non-

linear FOMASs under fixed directed communication topology, where state time

delay existed in the nonlinearity. Note that for the above results, the fractional or-

ders between the leader and followers are all homogeneous, while in some complex

environment, the fractional orders for the leader and followers may be heteroge-

neous, which can be more accurate and flexible in describing the dynamics of the

leader-following FOMASs. Therefore, in Chapter 2 the leader-following consen-

sus of FOMASs with heterogenous fractional orders between leader and followers

under input delays is investigated.

In practical applications, the external disturbances may be inevitable

which always affect the stability performance of the systems. In Ren & Yu (2016),

leader-following consensus of nonlinear FOMASs with external disturbances was

investigated over fixed directed communication topology, where a distributed lin-

ear control protocol was proposed and the ultimately uniformly bounded track-

ing errors were obtained. In Chen et al. (2018b), leader-following consensus of

general linear FOMASs with bounded matched disturbances was studied, where

the control input was subjected to bounded saturation and the tracking errors

were ultimately uniformly bounded, where the performances were not satisfying.

Therefore, in order to improve the consensus performance of the FOMASs with
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external disturbances, two more efficient nonlinear control algorithms will be de-

signed in Chapter 3, which can speed up the convergence process and get a

better convergence effect.

In many cases, it is very difficult to measure the exact values of all the agents’

states due to sensor constraints, communication limits, noise perturbations or

data drop-out. Therefore observer design for consensus in MASs has been

widely discussed. For instance, in Yu et al. (2017a), under fixed directed com-

munication topology, to track the states of the leader described by second-order

dynamics, observers for the followers were designed by the FOMASs where the rel-

ative velocity information was unavailable. In Pan et al. (2018), leader-following

consensus of singular general linear FOMASs was investigated under fixed undi-

rected communication topology, where a distributed consensus protocol was pro-

posed based on the information of observer. In Wen et al. (2019), under fixed

directed communication topology, the observer-based output consensus of leader-

following heterogeneous linear/nonlinear FOMASs with potentially different state

dimensions and different dynamics was studied.

In some cases, the dynamics of the agent have unknown nonlinearities and

disturbances. To tackle this situation, the neural networks-based (NNs-based)

adaptive approach has been widely used to approximate the unknown functions.

Gong & Lan (2018a,b) studied the leader-following consensus of uncertain nonlin-

ear FOMASs with double integrators under fixed undirected/directed communi-

cation topology, where NNs were used in the designed controller to approximate

the unknown nonlinearities. In Shi et al. (2019a), the distributed adaptive cooper-

ative control algorithms for second-order agents to track a leader with unknown

fractional-order dynamics were investigated, where linearly parameterized NNs

were used to approximate the unknown functions.

All of the aforementioned works are concerned with continuous communica-

tion and continuous control updates which mean that the agents propagate their

information all the time. However, for the networks with limited resources, it is

necessary to use the intermittent communication technique to reduce the

frequency of the control update and communication of agents. At present, the

event-triggered sampling strategy has been displayed to be an effective way to

reduce the frequency of control updates in MASs. For FOMASs, over fixed undi-

rected communication topology, based on fractional Lyapunov approach, Shi et al.
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(2018); Wang & Yang (2017a) studied the leader-following consensus of FOMASs

via centralized/distributed event-triggered control respectively, where the agents

were modeled as single integrator dynamics with nonlinearities or general linear

system. Based on evaluating the explicit solution of the errors systems, Ye &

Su (2018); Ye et al. (2018) investigated the leader-following consensus of general

linear FOMASs without/with input delay via distributed event-triggered control

over fixed undirected/directed communication topologies. By using the gener-

alized Nyquist stability criterion, over fixed directed communication topology,

a necessary and sufficient condition for the observer tracking consensus of the

second-order leader systems via periodic sampled-based event-triggered control

was derived in Wang et al. (2018a).

Compared with the existing continuous control method mentioned above, im-

pulsive control is an efficient methods to deal with the dynamical systems which

can be controlled by continuous control methods. In Wang & Yang (2017b), over

fixed undirected communication topology, leader-following exponential consensus

of nonlinear FOMASs with hybrid time-varying delay was investigated by a het-

erogenous impulsive control. In Ma et al. (2018), over fixed directed communica-

tion topology, leader-following consensus of nonlinear FOMASs was investigated

through distributed impulsive control.

All the above works are concerned with the continuous-time FOMASs, while

some results about the discrete-time FOMASs have been obtained using the

Grünwald-Letnikov fractional derivative definition. For example, Shi & Zhang

(2015) studied the leader-following consensus of discrete-time FOMASs with sam-

pling delay by using Hermite-Biehler theorem and the change of bilinearity under

symmetrical and directly weighted networks. Girejko et al. (2018); Shahamatkhah

& Tabatabaei (2018); Wyrwas et al. (2018) addressed the leader-following con-

sensus of single/double summator FOMASs over fixed communication topology.

Adaptive strategies are also utilised in the leader-following consensus of

FOMASs. For examples, in Gong (2016), leader-following consensus of nonlinear

FOMASs with adaptive feedback control protocols was studied over fixed directed

communication topology. Soorki & Tavazoei (2014) presented an adaptive con-

troller to achieve consensus tracking of general linear FOMASs over fixed directed

communication topology. Yu et al. (2015) studied the leader-following consen-

sus of general linear FOAMSs without/with nonlinearities via adaptive pinning
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control over fixed directed communication topology. Zhang et al. (2018b) ad-

dressed the group multiple lag consensus of leader-following nonlinear FOMASs

via adaptive control over fixed directed communication topology. In addition, Bai

et al. (2017c) investigated the distributed consensus tracking of linear/nonlinear

FOMASs based on the sliding mode control method over fixed undirected com-

munication topology.

1.2.1.3 Containment consensus with multiple leaders

The main objective of containment control is to design appropriate protocol such

that all followers can converge to the convex hull spanned by the leaders.

In Liu & Xu (2012); Liu et al. (2012), over fixed directed topology, distributed

containment control of single integrator FOMASs with input delay was investi-

gated by using the algebraic graph theory, matrix theory, Nyquist stability crite-

rion and frequency domain method. In Chen et al. (2016), over fixed undirected

communication topology, containment control of general linear FOMASs with pa-

rameter uncertainty was studied based on the stability theory of fractional-order

systems and matrix theory. In Gong (2017), over fixed undirected communica-

tion topology, by using the fractional Lyapunov direct method, the distributed

robust containment control problem for a class of FOMASs with heterogeneous

unknown nonlinearities and external disturbances was studied based on the neu-

ral networks-based adaptive control. In Zou & Xiang (2017), over fixed directed

communication topology, the containment control problem of nonlinear FOMASs

was addressed by using the fractional-order Lyapunov function method. In Yang

et al. (2018), containment control of single integrator FOMASs without/with time

delays was analyzed in a directed/undirected communication topology by using

Laplace transform and frequency domain theorem. In Liu et al. (2019b), over fixed

directed communication topology, periodic sampling-data control was applied

to the containment control of FOMASs, where single integrator FOMAS with-

out/with time delays and double integrator FOMASs were considered. In Yang

et al. (2019a), containment control of FOMAS without/with input delays under

fixed directed weighted communication topology was studied by applying fre-

quency domain analysis theory, where the FOMASs were formulated with diverse

dynamical equations. In Yuan et al. (2019), observer-based quasi-containment
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of general linear FOMASs was investigated via event-triggered control strategy

based on fixed directed communication topology.

1.2.2 Consensus-based formation control

Consensus algorithms normally guarantee the agreement of a team of agents

on some common states without taking group formation into consideration. To

reflect many practical applications where a group of agents are normally required

to form some preferred geometric structures, it is desirable to consider a task-

oriented formation control problem for a group of mobile agents, which motivates

the study of formation control presented in this subsection.

Compared with the consensus problem where the final states of all agents typi-

cally reach a singleton, the final states of all agents can be more diversified under

the formation control scenario. Indeed, formation control is more desirable in

many practical applications such as formation flying, cooperative transportation,

sensor networks, as well as combat intelligence, surveillance, and reconnaissance.

In addition, the performance of a team of agents working cooperatively often

exceeds the simple integration of the performance of all individual agents. For

its broad applications and advantages, formation control has been a very active

research subject in the control systems community, where a certain geometric

pattern is aimed to form with or without a group reference. More precisely, the

main objective of formation control is to coordinate a group of agents such that

they can achieve some desired formation so that some tasks can be finished by

the collaboration of the agents.

Generally speaking, formation control can be categorized according to the

group reference.

Formation producing: if multi-agents are not required to track a leader, the

formation problem is called formation producing (see Fig. 1.7).

Formation tracking: if multi-agents are required to track a leader, the forma-

tion problem is called formation tracking (see Fig. 1.8).

Formation control without a group reference, called formation producing,

refers to the algorithm designed for a group of agents to reach some pre-desired

geometric pattern in the absence of a group reference, which can also be consid-

ered as the control objective. Formation control with a group reference, called
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Desired formation shape

Fig. 1.7. Formation producing problem

Desired formation shape

The state of the leader 

Fig. 1.8. Formation tracking problem

formation tracking, refers to the same task but following the predesigned group

reference. Due to the existence of the group reference, formation tracking is usu-

ally much more challenging than formation producing and control algorithms for

the latter might not be useful for the former. As for today, there are still many

open questions in solving the formation control problem. Some more detailed

descriptions can refer to Cao et al. (2013).

Up to now, formation control has been extensively studied by numerous re-

searches (Cao et al., 2013), and the existing results of formation control primarily

assume an integer-order dynamics, such as single integrator dynamics and double

ones. However, many practical engineering systems can’t be explained by integer-

order systems, and some more well reflections to the systems properties can be

given by fractional-order systems.

Currently, for the formation control of FOMASs, a few results have been ob-

tained. In Cao et al. (2010), the distributed formation producing for fractional-

order multi-agent systems was firstly studied under the dynamic interaction and

absolute/relative damping. In Bai et al. (2015a, 2017c), over fixed directed com-

munication topology, the distributed formation producing for fractional-order

multi-agent systems with communication delay and absolute/relative damping
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was investigated respectively. In Bai et al. (2015b), formation tracking of fractional-

order multi-agent systems was considered based on error predictor. In Luo et al.

(2018), over fixed directed communication topology, two iterative learning control

schemes (P-type and PI-type) were employed to fulfill the formation producing

of general linear FOMASs. In Liu et al. (2019c,d), formation producing of single

integrator or double integrators FOMASs in the case of relative damping and

nonuniform time-delays was studied respectively, where symmetric time-delays

and relative damping were studied under an undirected network topology, and

asymmetric time-delays and relative damping were studied under a directed net-

work topology. Besides, different from the above mentioned literatures consid-

ering the time-invariant formation control, in Gong et al. (2019), observer-based

time-varying formation producing of general linear FOMASs was investigated

over fixed and switching directed communication topologies.

1.3 Overview of parameter identification problem

Most control methods mentioned in Section 1.2 are valid only for the FOMASs

whose system parameters and fractional orders are known in advance. However,

in some situations, the dynamics of FOMASs are usually partly known. That is,

the structure of the fractional-order differential equations are known, while some

or all of the fractional orders and system parameters are unknown. Therefore,

in order to control the FOMASs, identifying the unknown fractional orders and

system parameters are really important.

Currently, for parameter identification of nonlinear systems, there are mainly

two methods. The first one is synchronization-based method, which was

first put forward by Parlitz (Parlitz, 1996). After that this method has been

sufficiently applied to the unknown parameter identification of different kinds of

nonlinear systems (Gu et al., 2017; Konnur, 2003). But it is not easy to be applied

because it is sensitive to the considered systems for designing the controllers and

updating laws. The second one is optimization-based method by using

artificial intelligence optimization algorithms (AIOAs). In the second

method, the parameter identification issue can be converted into a functional

optimization problem. Contrasted with the synchronization-based method, the

second method does not need the differentiable information of the considered
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systems and is more flexible to be applied. Currently, many kinds of AIOAs have

been applied for the second parameter identification method, such as differential

evolution (DE) (Guedes et al., 2018) and Cuckoo search (CS) (Wei & Yu, 2018).

In the past few decades, AIOAs based on evolutionary and swarm principles

have achieved considerable success in handling complex function optimization

problems as they do not depend on the differentiability, continuity, and convex-

ity of the objective function. For instance, most of the traditional optimiza-

tion methods, such as steepest decent, conjugate gradient method and Newton

method, require gradient information of the objective function which make it

impossible for them to deal with the non-differentiable functions. Therefore,

the AIOAs have attracted more and more attention. In the family of AIOAs,

the most popular methods are genetic algorithms (GA) (Tam, 1992), differen-

tial evolution (DE) (Storn & Price, 1997), particle swarm optimization (PSO)

(Kennedy, 2010), biogeography-based optimization (BBO) (Simon, 2008), ant

colony optimization (ACO) (Socha & Dorigo, 2008), and artificial bee colony

(ABC) algorithm (Karaboga et al., 2014).

In the following, the problem formulation of parameter identification problem

with AIOAs is introduced.

Assume the original system is described as

0D
q
tY (t) = f(Y (t), Y0, θ), (1.1)

where Y (t) = [y1(t), y2(t), · · · , yn(t)]
T ∈ Rn denotes the state vector, Y0 = Y (0)

denotes the initial value, θ = [θ1, θ2, · · · , θm]
T is a set of original systematic

parameters, q = [q1, q2, · · · , qn] (0 < qi < 1, i = 1, 2, · · · , n) is the fractional

derivative orders, and the function f(Y (t), Y0, θ) = [f1(Y (t), Y0, θ), f2(Y (t), Y0, θ),

· · · , fn(Y (t), Y0, θ)]
T .

Suppose the structure of system (1.1) is known, then the corresponding iden-

tified system can be written as

0D
q̃
t Ỹ (t) = f(Ỹ (t), Y0, θ̃), (1.2)

where Ỹ (t) = [ỹ1(t), ỹ2(t), · · · , ỹn(t)]
T ∈ Rn is the state vector of the identified

system, θ̃ = [θ̃1, θ̃2, · · · , θ̃m]
T is a set of identified system parameters and q̃ =
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Minimizing J

0Y

Fig. 1.9. The general principle of parameter identification by AIOAs

[q̃1, q̃2, · · · , q̃n]
T is the identified fractional orders. Besides, systems (1.1) and

(1.2) have the same initial conditions Y0.

Based on the measurable state vector Y (t) = [y1(t), y2(t), · · · , yn(t)]
T ∈ Rn,

to identify the fractional-order system (1.1), the following objective function is

defined as

J(q̃, θ̃) = arg min
(q̃,θ̃)∈Ω

F = arg min
(q̃,θ̃)∈Ω

N
∑

k=1

‖Yk − Ỹk‖2, (1.3)

where k = 1, 2, · · · , N is the sampling time point and N denotes the length of

data used for parameter identification. Yk and Ỹk respectively denote the state

vector of the original system (1.1) and the identified system (1.2) at time kh. h

is the step size introduced in the predictor-corrector approach for the numerical

solutions of fractional differential equations. ‖·‖ is Euclid norm. Ω is the searching

area admitted for parameters θ̃, where the fractional orders q̃ are considered as

special variables. The parameter identification of system (1.1) can be achieved

by searching suitable θ̃ and q̃ in the searching space Ω such that the objective

function (1.3) is minimized. In other words, the main task is to find the best

combination of the independent variables q̃ and θ̃ for the objective function (1.3).

The general principle of parameter identification can be illustrated as Fig. 1.9.

In this thesis, we will identify the unknown FOMASs based on AIOAs. More

specifically, in Chapters 4 and 5, the ABC and DE algorithms will be employed

respectively to identify the unknown nonlinear delayed FOMASs, then the iden-

tified parameters are applied to the distributed consensus tracking of the delayed
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nonlinear FOMASs. In Chapter 6, in order to improve the performance of the

original ABC algorithm, a modified artificial bee colony (mABC) algorithm will

be proposed to identify the unknown nonlinear FOMASs.

1.4 Preliminaries

1.4.1 Graph Theory

In this thesis, the fixed undirected/directed communication graph with N agents

is considered. In graph G = (V,E,A), V = {v1, v2, · · · , vN} and E ⊆ V× V de-

note nodes set and edges set respectively, and A = [aij ]N×N ∈ RN×N denotes

a weighted adjacency matrix where all the elements aij ≥ 0 and aii = 0 due

to the no existence of the self-loops. eij = (vj , vi) denotes the edge of G, and

if agent i can receive information from agent j, it can be denoted by eij ∈ E

which is equal to aij > 0. For undirected communication graph, if eij ∈ E, it

implies eji = (vi, vj) ∈ E. Denote Ni = {vj|(vj, vi) ∈ E} as the neighbour set

of agent i. (v1, v2), (v2, v3), · · · represents a path. For undirected communication

graph, if there exists an undirected path between each pair of distinct nodes,

the corresponding undirected graph is connected. For directed communication

graph, if at least one node has a directed path to all other nodes, we say that

the directed graph has a directed spanning tree. Define the in-degree of the

ith agent as di =
∑N

j=1 aij and the in-degree matrix as D = diag{di} ∈ RN×N

which is a diagonal matrix with diagonal elements di(i = 1, · · · , N). Defined

L = D − A = [lij]N×N ∈ RN×N as the Laplace matrix, which means that

lij = −aij(i 6= j) and lii = di =
∑N

j=1 aij.

In this thesis, let vertex v0 denote the leader in the communication graph

and x0 represent its state. Then, the graph Ḡ is defined, which includes the

graph G and leader v0. For distributed coordination, the leader is independent,

which means it doesn’t obtain the information from its neighbors. The diagonal

matrix B ∈ RN×N denotes the leader’s adjacency matrix and when the leader is

a neighbor of agent i, the diagonal elements bi = ai0 > 0 and bi = 0, otherwise.

Similarly, in graph Ḡ, the in-degree of the ith agent can be defined as di =
∑N

j=0 aij (i = 1, · · · , N).

In order to utilize the communication topology, the following lemmas are

guaranteed.
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Lemma 1.1 (Ren & Beard, 2008) Suppose the undirected communication topol-

ogy Ḡ which contains N followers and one leader is connected, then M = L + B

is symmetric and positive definite.

Lemma 1.2 (Li et al., 2015) Suppose the directed communication topology Ḡ

among the followers and leader has a directed spanning tree with the leader as the

root node, then all the eigenvalues of matrix M = L+B own positive real parts.

Let

g = [g1, g2, · · · , gN ]
T = M−T

1N ,

G = diag{g1, g2, · · · , gN},

Q = GM +MTG,

then G > 0 and Q > 0.

Remark 1.3 In this thesis, we assume that the fixed undirected/directed commu-

nication topologies have 0-1 weight.

In the following, two examples with fixed undirected/directed communication

topologies will be given to show the definitions of adjacency matrixes A and B,

in-degree matrix D, and Laplace matrix L.

Example 1.4 Consider the fixed undirected communication topology as Fig. 1.10,

its adjacency matrixes A and B, in-degree matrix D, and Laplace matrix L can

be given as follows:

A =











0 1 1 0

1 0 0 1

1 0 0 0

0 1 0 0











,D =











2 0 0 0

0 2 0 0

0 0 1 0

0 0 0 1











,

B =











1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0











,L = D−A =











2 −1 −1 0

−1 2 0 −1

−1 0 1 0

0 −1 0 1











.
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Fig. 1.10. A fixed undirected communication topology with one leader v0 and
four followers vi(i = 1, · · · , 4)
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Fig. 1.11. A fixed directed communication topology with one leader v0 and
four followers vi(i = 1, · · · , 4)

Example 1.5 Consider the fixed directed communication topology as Fig. 1.11,

its adjacency matrixes A and B, in-degree matrix D, and Laplace matrix L can

be given as follows:

A =











0 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0











,D =











0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











,

B =











1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0











,L = D−A =











0 0 0 0

−1 1 0 0

−1 0 1 0

0 −1 0 1











.
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1.4 Preliminaries

1.4.2 Caputo fractional-order derivative

In general, three best-known definitions of fractional-order derivatives are widely

used: Grunwald-Letnikov, Riemann-Liouville and Caputo definitions (Podlubny,

1998). In particular, the main advantage of Caputo fractional-order derivative

is that it owns same initial conditions with integer-order derivatives, which has

well-understood features of physical situations and more applicable to real world

problems.Thus, the Caputo fractional-order derivative is employed in this thesis.

Definition 1.6 (Caputo fractional-order derivative) The Caputo fractional-order

derivative of order α for a function f(t) is defined as

t0D
α
t f(t) =

1

Γ(n− α)

∫ t

t0

f (n)(τ)

(t− τ)α+1−n
dτ, (1.4)

where α > 0 and α ∈ (n − 1, n), Γ(·) represents the gamma function. When

α = n, it holds that t0D
α
t f(t) = f (n)(t). Particularly, when α ∈ (0, 1), it holds

that

t0D
α
t f(t) =

1

Γ(1− α)

∫ t

t0

f
′

(τ)

(t− τ)α
dτ.

The corresponding Laplace transform is

L{t0D
α
t f(t); s} = sαF (s)−

n−1
∑

k=0

sα−k−1f (k)(t0), (1.5)

where α ∈ (n− 1, n), L{·} is the Laplace transform, s is the variable in Laplace

domain and F (s) is the Laplace transform of f(t), and F (s) = L{f(t); s} =
∫ +∞
0

e−stf(t)dt. In this thesis, we assume that α ∈ (0, 1], so the Laplace transform

of Caputo fractional derivative can be written as follows:

L{t0D
α
t x(t); s} = sαX(s)− sα−1x(0),

Property 1.7 If C is a constant, then t0D
α
t C = 0.

Property 1.8 The linearity of Caputo fractional-order derivative can be depicted

as

t0D
α
t (µf(t) + νg(t)) = µ t0D

α
t f(t) + ν t0D

α
t g(t).
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where µ and ν are arbitrary constants.

Analogous to the exponential function appearing in the solution of integer-

order differential equations, the Mittag-Leffler function is used frequently in the

solutions of fractional-order differential equations.

Definition 1.9 The Mittag-Leffler function with two parameters is

Eα,β(z) =
∞
∑

k=0

zk

Γ(kα+ β)
. (1.6)

Where α, β ∈ C. As a special case, if β = 1, and α > 0, then (1.6) can be

rewritten as Eα(z) =
∑∞

k=0
zk

Γ(kα+1)
. Especially, E1,1(z) = ez.

The corresponding Laplace transform is

L{tβ−1Eα,β(−λtα); s} =
sα−β

sα + λ
, (t ≥ 0, Re(s) > |λ|

1

α ),

where λ ∈ R, and Re(s) is the real part of the variable s.

Consider the following n-dimensional Caputo fractional-order system

{

t0D
α
t x(t) = f(t, x(t)),

x(t0) = xt0 ,
(1.7)

where α ∈ (0, 1), x = (x1, x2, · · · , xn) ∈ Rn, t0 ≥ 0, f : [0,+∞) × Rn → Rn is

piecewise continuous on t and satisfies locally Lipschitz conditions on x.

Definition 1.10 (Li et al., 2010a) The constant x̄ is an equilibrium point of

Caputo fractional dynamic system (1.7) if and only if f(t, x̄) = 0.

Remark 1.11 According to Properties (1.7) and (1.8), any equilibrium point can

be converted to the origin through change of variables. When the equilibrium point

in (1.7) is x̄ 6= 0, by using the change of variable y(t) = x(t) − x̄, system (1.7)

can be rewritten as

t0D
α
t y(t) = t0D

α
t (x(t)− x̄) = f(t, x(t)),

= f(t, y(t) + x̄) = g(t, y(t)),

where g(t, 0) and ȳ = 0 is the equilibrium of the new system for variable y.

Therefore, without loss of generality, the only case that the equilibrium point is

the origin is considered in Definition 1.10.

26



1.4 Preliminaries

Lemma 1.12 (Existence and uniqueness theorem (Li et al., 2010a)) There exists

a unique solution of system (1.7) for any initial value, if f(t, x) satisfies locally

Lipschitz condition on x.

Definition 1.13 (Mittag-Leffler stability (Li et al., 2010a)) If x̄ = 0 is an equi-

librium point of Caputo fractional dynamic system (1.7), the solution of system

(1.7) is said to be Mittag-Leffler stable if

‖x(t)‖ ≤ [m(xt0)Eα(−λ(t− t0)
α)]b (1.8)

where λ > 0, b > 0, m(0) = 0, ‖ · ‖ denotes an arbitrary norm and m(x) ≥ 0

satisfies locally Lipschitz condition on x ∈ Rn with Lipschitz constant m0.

Remark 1.14 Mittag-Leffler stability implies asymptotic stability for fractional-

order systems, i.e., ‖x(t)‖ → 0 with t → +∞.

To judge the system stability, the following lemmas are introduced.

Lemma 1.15 (Stability theory for fractional-order linear system (Matignon, 1996))

The following autonomous system

t0D
α
t x(t) = Ax(t), α ∈ (0, 1], (1.9)

is asymptotically stable if and only if |arg(ρ(A))| > απ/2, where ρ(A) denotes the

eigenvalue of matrix A, arg(·) denotes the argument principle value of a complex

number.

Lemma 1.16 (Fractional-order Lyapunov direct method (Li et al., 2010a)) The

equilibrium point x̄ = 0 of fractional-order system is Mittag-Leffler stable if there

exist positive constants α1, α2, α3, a, b and a continuously differentiable function

V (t, x(t)) satisfying

α1‖x(t)‖
a ≤ V (t, x(t)) ≤ α2‖x(t)‖

ab, (1.10)

t0D
β
t V (t, x(t)) ≤ −α3‖x(t)‖

ab, (1.11)

where t ≥ 0, β ∈ (0, 1), and V (t, x(t)) : [t0,∞) × D → R satisfies the local

Lipschitz condition on x, and D ∈ Rn is a domain including the origin. If the

assumptions are satisfied globally on Rn, then x̄ = 0 is globally Mittag-Leffler

stable.
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Lemma 1.17 (Comparison principle of linear fractional equation with delay (Wang

et al., 2015)) Consider the following delayed fractional-order differential inequal-

ity
{

t0D
α
t x(t) ≤ −λx(t) + δx(t− τ), α ∈ (0, 1],

x(t) = φ(t), t ∈ [−τ, 0],
(1.12)

and the following linear delayed fractional-order differential system

{

t0D
α
t z(t) = −λz(t) + δz(t− τ), α ∈ (0, 1],

z(t) = φ(t), t ∈ [−τ, 0],
(1.13)

where x(t) and z(t) are continuous and nonnegative in (0,+∞), and φ(t) ≥ 0, t ∈

[−τ, 0]. If λ > 0 and δ > 0, then x(t) ≤ z(t), t ∈ [0,+∞).

Lemma 1.18 (Stability theory of linear fractional equation with delay (Chen

et al., 2015b)) For system (1.13), the Lyapunov globally asymptotically stable

can be achieved for the zero solution of system (1.13), if λ > δ and there has no

purely imaginary root for the characteristic equation sα+λ− δe−sτ = 0 of system

(1.13).

Lemma 1.19 (Fractional derivative inequality (Duarte-Mermoud et al., 2015))

Denote x(t) ∈ Rn as a vector of differentiable functions. Then

1

2
t0D

α
t (x

T (t)Px(t)) ≤ xT (t)P t0D
α
t x(t), ∀ α ∈ (0, 1], ∀ t ≥ t0, (1.14)

where the constant square matrix P ∈ Rn×n is symmetric and positive definite.

Remark 1.20 In the following Chapters, in order to study simply, t0D
α
t x(t) is

replaced by x(α)(t).

1.4.3 Mathematical knowledge

If A is an m × n matrix and B is a p × q matrix, then the Kronecker product

A⊗ B is an mp× nq block matrix as follows:

A⊗ B =







a11B · · · a1nB
...

. . .
...

am1B · · · amnB






.

The properties of Kronecker product are:
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• A⊗ (B + C) = A⊗B + A⊗ C;

• (A⊗B)(C ⊗D) = (AC)⊗ (BD);

• (A +B)T = AT +BT ;

• (A +B)−1 = A−1 +B−1;

• λmax(A⊗ B) = λmax(A)λmax(B).

Lemma 1.21 (Schur complement (Crabtree & Haynsworth, 1969)) For given

matrices A,B,C, the following holds:

D =

[

A B

BT C

]

< 0 ⇐⇒ C < 0 & A−BC−1BT < 0,

⇐⇒ A < 0 & C −BTA−1B < 0.

(1.15)

Lemma 1.22 (Cao et al., 2005) For any real matrixes X, Y , Ξ = ΞT > 0 and

scalar ξ > 0, it holds

XTY + Y TX ≤ ξXTΞX + ξ−1Y TΞ−1Y. (1.16)

Lemma 1.23 (Gerschgorin’s disc theory (Horn et al., 1990)) For any matrix

M = [mij ] ∈ RN×N , all the eigenvalue of M are located in the union of N

Gerschgorin’s disc as

Ger(M) =
N
∪
i=1

{

z ∈ C, |z −mii| ≤ Σj 6=i|mij |
}

. (1.17)

1.5 Contributions and outline of dissertation

This dissertation presents parameter identification based on artificial intelligent

optimization and distributed tracking control of fractional-order multi-agent sys-

tems (FOMASs) under fixed communication topology. The main contributions

are summarized as follows.

Chapter 2: In many physical systems, the time delays universally exist

because the signal propagation speed is limited, the sensor needs extra time to

obtain the measurement information, the controller needs additional computation
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and execution time to produce and implement the control inputs. The undesir-

able instability and poor performance can easily happen due to the existence

of time delays. Secondly, note that for most existing results about the leader-

following consensus of fractional-order multi-agent systems (FOMASs), the frac-

tional orders between the leader and followers are all homogeneous, while in some

complex environment, the fractional orders for the leader and followers

may be heterogeneous, which can be more accurate and flexible in describing

the dynamics of the leader-following FOMASs. Therefore, it is interesting and

significant to learn the leader-following consensus of FOMASs with heterogenous

fractional orders between leader and followers, which can be viewed as HFOMASs.

Therefore, in this Chapter, over fixed directed communication graph, the

leader-following consensus of heterogenous HFOMASs is investigated with re-

spect to input delays, where the fractional orders between leader and followers

are heterogenous, which is more general. Firstly, a control algorithm with a

fractional-order estimator is proposed to guarantee the leader-following consen-

sus of the HFOMASs. Then, the identical input delays are taken into account in

the above control algorithm, and the leader-following consensus of the HFOMASs

can be achieved under the derived sufficient and necessary condition. Thirdly, the

diverse input delays are further considered in the HFOMASs, and a sufficient con-

dition is put forward under the designed control algorithm. Finally, simulations

are conducted to make the results be convinced.

The main contributions are as follows: firstly, different from the leaderless con-

sensus of FOMASs and leader-following consensus of FOMASs with homogeneous

orders between leader and followers, the leader-following consensus of FOMASs

with heterogenous orders between leader and followers is investigated and a novel

control algorithm with a fractional-order estimator is designed. Secondly, in con-

trast with leaderless consensus of delayed FOMASs and leader-following consen-

sus of FOMASs without time delays, the leader-following consensus of HFOMASs

under input delays is considered based on the proposed control algorithm.

Chapter 3: Note that the results studied in Chapter 2 are based on single

integrator systems. In practice, more complex intrinsic nonlinear dynamics

may exist in mobile agents. However, due to the complexity of the FOMASs,

stability of the nonlinear FOMASs is difficult to be verified. Besides, in real

applications, unknown external disturbances arising from environment and
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communication are usually unavoidable. External disturbances can easily lead to

instability or bad performance.

Therefore, in this Chapter, over fixed undirected communication topology

and based on the fractional Lyapunov direct method, the distributed consensus

tracking of nonlinear FOMASs with external disturbances is addressed. Firstly,

a nonlinear discontinuous distributed control protocol is put forward to solve the

distributed consensus tracking when some conditions are satisfied. Secondly, a

nonlinear continuous distributed control algorithm is further proposed to suppress

the chattering behavior of the discontinuous controller, where the upper bound of

the tracking error is uniformly ultimately bounded and can be made small enough

by choosing the parameters properly. Finally, some simulations are provided to

validate the advantages of the obtained results.

Compared with the existing results, There are four main differences. Firstly,

different from the most results studying the integer-order models, the MASs with

fractional dynamics are studied. Secondly, in contrast with most results about the

consensus tracking of FOMASs without considering the external disturbances, the

external disturbances are considered into the FOMASs in this Chapter. Thirdly,

different from most results where the style of the external disturbances are known,

in this Chapter we do not known the style of the external disturbances beforehand.

Fourthly, different from most results using a linear control protocol, we propose

two effective nonlinear control algorithms.

Chapter 4: As mentioned in Chapter 2, time delays are unavoidable in

many applications. In Chapter 2, several results with time delays have been

achieved based on linear case. However, in practice, more complex intrinsic non-

linear dynamics may exist in mobile agents. Unfortunately, the consensus control

algorithms and conditions designed for linear delayed FOMASs are not applica-

ble to the nonlinear case. Thus, it is significant to investigate the distributed

consensus tracking of nonlinear FOMASs with state time delays, which is full of

challenges and not well investigated. In addition, as mentioned in Chapter 3,

the effects of unknown external disturbances arising from environment and

communication are usually unavoidable in practice. Undesirable instability or

bad performance can easily happen because of the external disturbances. Thus,

for the study of MASs, taking the effects of the external disturbances into account

is essential and reasonable. On the other hand, note that most existing results
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are under the assumption that the fractional orders and system parameters of

the FOMASs are known beforehand. However in the real applications, the frac-

tional orders and system parameters are usually partly or all unknown,

which need to be identified in advance.

Therefore, in this Chapter, over fixed undirected communication topology,

the distributed consensus tracking of unknown nonlinear delayed FOMASs with

external disturbances is investigated, where the fractional orders and system pa-

rameters are unknown. Firstly, in order to identify the unknown parameters

of the delayed nonlinear FOMASs, an efficient artificial bee colony algorithm

(ABC)-based parameter identification approach is put forward. Secondly, based

on the identified parameters, by using fractional derivative inequality and compar-

ison principle of linear fractional equation with delay, a discontinuous distributed

control protocol is proposed to make the tracking errors converge to zero asymp-

totically. Thirdly, to overcome the undesirable chattering phenomenon caused

by the discontinuous controller, a continuous distributed control algorithm is fur-

ther designed and uniformly ultimately bounded (UUB) tracking errors can be

obtained and reduced as small as desired. Finally, numerical simulations are given

to test the effectiveness of the proposed parameter identification scheme and the

deigned control algorithms.

Compared with the existing works, the contributions are as follows. Firstly,

compared with most results concerning the integer-order MASs, the delayed

MASs with fractional-order dynamics, external disturbances are considered. Sec-

ondly, different from the results about the time delays with linear case, the time

delay under nonlinear case is further investigated. Thirdly, most results about the

FOMASs only considered the external disturbances, but have not taken the time

delays into account at the same time. Fourthly, most existing results are sup-

posed that the fractional orders and system parameters of the nonlinear FOMASs

are known beforehand, while in this Chapter, the parameters are considered to

be unknown, and the ABC algorithm is employed to identify the unknown pa-

rameters of the unknown delayed FOMASs. Furthermore, it should be pointed

out that this Chapter provides a promising link between the artificial intelligent

technique and distributed cooperative control of FOMASs or other control fields.

Chapter 5: The results obtained in above Chapters 2, 3 and 4 assume that

the control input of a leader is either equal to zero or available to all the follow-
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ers, which has some limitations and lacks flexibility. More specifically, for the

purpose of leading the followers to achieve special tasks, the leader’s input

need to be nonzero or time-varying. Furthermore, it is impossible for all

the followers to know the leader’s control input, when they are in an uncoopera-

tive scenario. Therefore, it is significant and essential to consider the leader with

nonzero input, although it is difficult to address because of the limited information

accessibility. In addition, recently, the investigation of heterogeneous MASs has

become a hot topic in distributed cooperative control. Heterogeneity may occur

because of the diverse designs and operating factors. For example, some results

considered heterogeneous input disturbances in the rendezvous problem. Some

researchers studied the formation control of multi-vehicles with heterogenous con-

trol gains. In addition, MASs with heterogenous dynamics were also investigated.

However, most results about the heterogeneous MASs were based on the integer-

order models, a few results have been obtained based on the fractional-order

models. Therefore, in this Chapter, we consider the delayed nonlinear FOMASs

with heterogenous control gains, which is more reasonable and practical. Be-

sides, as mentioned in Chapters 2 and 4, time delays are unavoidable in many

applications. What’s more, as mentioned in Chapter 4, in some situations, the

structure of the MASs may be known and the differential orders and system

parameters are unknown, which need to be identified beforehand.

Therefore, in this Chapter, under a fixed directed graph, the distributed co-

operative synchronization of heterogenous uncertain nonlinear delayed FOMASs

with a leader of bounded unknown input is investigated, where the fractional

orders and system parameters are uncertain and the controller gains are het-

erogenous due to imperfect implementation. It should be noted that the study

is more general by considering the FOMASs with time delays, unknown leader,

heterogeneity and unknown nonlinear dynamics. Firstly, a differential evolution

(DE)-based parameter identification method is proposed to identify the uncertain

parameters. Then based on the identified parameters, by using the matrix theory,

graph theory, fractional derivative inequality and comparison principle of linear

fractional equation with delay, a heterogenous discontinuous controller is designed

to achieve the distributed cooperative synchronization asymptotically. Thirdly, a

heterogenous continuous controller is further constructed to suppress the undesir-

able chattering behaviour, where uniformly ultimately bounded (UUB) synchro-
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nization tracking errors can be achieved and tuned as small as desired. Finally,

numerical simulations are provided to validate the effectiveness of the proposed

parameter identification scheme and the designed control algorithms.

Compared with the existing works, our contribution are as follows. Firstly,

compared with most results concerning the integer-order MASs, the delayed

MASs with fractional-order dynamics, unknown leaders and parameters, and

heterogenous control gains are involved. Secondly, different from some results

studied the time delays with linear FOMASs, the time delay with nonlinear dy-

namics is further studied; Thirdly, different from most results without considering

the leader’s control input, we assume that the leader owns bounded unknown in-

put, which could be more flexible and general in the distributed cooperative syn-

chronization. Fourthly, different from most results, where the differential orders

are assumed to be known, while in this Chapter, differential orders and system

parameters are both considered to be unknown, and a DE-based parameter es-

timation method is proposed to identity the unknown parameters of the delayed

heterogenous nonlinear FOMASs.

Chapter 6: As mentioned in Chapters 4 and 5, most consensus control algo-

rithms are valid only for the FOMASs whose system parameters and fractional

orders are known in advance. However, in practice, the FOMASs are usually

partly known. That is, the form of the fractional-order differential equations

are known, while some or all the fractional orders and system parameters are

unknown. Therefore, in order to control and utilize the FOMASs, identifying the

unknown fractional orders and system parameters is really important. In Chap-

ter 4, an efficient artificial bee colony algorithm (ABC) is used to identify the

unknown FOMASs. In Chapter 5, the differential evolution (DE) is selected to

identify the unknown FOMASs. However, although the AIOAs, such as ABC and

DE, have demonstrated superior features compared to other traditional methods,

there is no specific algorithm that can achieve the best solution for all optimiza-

tion problems. Namely, as far as most algorithms are concerned, it is difficult to

simultaneously manage the tradeoff between exploration and exploitation

successfully for all the optimization problems. Similarly, there are no exceptions

for ABC and DE.

Therefore, in this Chapter, to enhance the exploration and the exploita-

tion abilities, a modified artificial bee colony algorithm, named as mABC algo-
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rithm, is put forward. In mABC algorithm, the opposite population is generated

using opposite numbers based on perturbation rate to jump out from the local

optima. Secondly, two new searching equations are proposed and self-adaptive

component is added to explore all the promising search regions. Thirdly, the ran-

dom numbers in the searching equations are generated based on a chaotic map.

Then, the proposed mABC algorithm is applied to the parameter identification

of nonlinear FOMASs. Simulation results demonstrate that the proposed hybrid

algorithm is effective and comparative to identify the unknown parameters when

compared with some other typical population-based evolutionary algorithms.

Compared with the existing works, our contributions are as follows. Firstly,

a new modified ABC algorithm is proposed. Secondly, a novel parameter identi-

fication scheme based on the modified ABC algorithm is put forward. Thirdly,

non-parametric statistic tests are employed to demonstrate the performance of

the proposed algorithm.

Conclusions and perspectives: In this chapter, the results are summarized

and several possible directions for our future research are shared.
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2.1 Introduction

As mentioned in Chapter 1, the consensus of MASs with a (virtual) leader has

become a particularly interesting topic, which is commonly named as leader-

following consensus or consensus tracking. So far, for the leader-following con-

sensus of FOMASs, some results have been obtained. For example, in Yu et al.

(2015), leader-following consensus of FOMASs has been studied with algebraic
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graph theory and Lyapunov method. In Gong (2017), the nonlinear FOMASs

with an unknown leader and heterogenous control gains were studied and consen-

sus tracking was guaranteed. Bai et al. (2017b) proposed a sliding mode control

method to fulfill the leader-following consensus of FOMASs. Ma et al. (2018)

applied an impulsive controller to achieve the consensus tracking of nonlinear

FOMASs. Note that for all the above results, the fractional orders between the

leader and followers are all homogeneous, while in some complex environment,

the fractional orders for the leader and followers may be heterogeneous, which can

be more accurate and flexible in describing the dynamics of the leader-following

MASs. Therefore, it is interesting and significant to learn the leader-following

consensus of FOMASs with heterogenous fractional orders between leader and

followers, which can be viewed as HFOMASs.

In many physical systems, the time delays universally exist because the signal

propagation speed is limited, the sensor needs extra time to obtain the measure-

ment information, the controller needs additional computation and execution

time to produce and implement the control inputs. The undesirable instability

and poor performance can easily happen due to the existence of time delays.

Nowadays, many results about the leader-following consensus of integer-order de-

layed MASs have been obtained, which can be referred to Ni et al. (2017); Shariati

& Tavakoli (2017); Wang & Su (2018); Wang et al. (2018b). Some results about

the consensus of delayed FOMASs have been obtained (Shen & Cao, 2012; Yang

et al., 2014a; Zhu et al., 2017). However, most of the works in Shen & Cao (2012);

Yang et al. (2014a); Zhu et al. (2017) mainly deal with the leaderless consensus

of delayed FOMASs. For leader-following consensus of delayed FOMASs with

heterogenous fractional orders between leader and followers, little research has

been done.

Given above discussion, in this Chapter, the HFOMASs without delays are

considered firstly, where a control algorithm with a fractional-order estimator is

proposed. Then, the identical input delays are considered in the above proposed

control algorithm and the leader-following consensus of HFOMASs can be also

achieved under the given condition. Thirdly, the control algorithm with diverse

input delays is further studied, leader-following consensus of the HFOMASs can

be guaranteed under the derived condition. Finally, the obtained results are

verified with some simulations.
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2.2 Problem formulation

The main contributions are as following: firstly, different from the leaderless

consensus of FOMASs (Bai et al., 2018; Cao & Ren, 2010; Liu et al., 2018a;

Ren & Yu, 2017a; Song et al., 2015; Yin et al., 2013) and leader-following con-

sensus of FOMASs with homogeneous orders between leader and followers (Bai

et al., 2017b; Gong, 2017; Ma et al., 2018; Yu et al., 2015), the leader-following

consensus of FOMASs with heterogenous orders between leader and followers is

investigated and a novel control algorithm with a fractional-order estimator is

designed. Secondly, in contrast with leaderless consensus of delayed FOMASs

(Shen & Cao, 2012; Yang et al., 2014a; Zhu et al., 2017) and leader-following

consensus of FOMASs without time delays (Bai et al., 2017b; Gong, 2017; Ma

et al., 2018; Yu et al., 2015), the leader-following consensus of HFOMASs under

input delays is considered based on the proposed control algorithm.

The rest parts of this chapter is organized as follows. Section 2.2 introduces

the problem formulation. In Section 2.3, main results are introduced. In Section

2.4, the obtained results are convinced by some simulations. Section 2.5 is the

conclusions.

2.2 Problem formulation

The leader is modeled as

x
(α)
0 (t) = u0(t), (2.1)

where α ∈ (0, 1], x0(t) ∈ Rn is the leader’s state and u0(t) ∈ Rn is the leader’s

control input.

The followers are formulated as

x
(β)
i (t) = ui(t) + ui(t), i ∈ N = {1, 2, · · · , N}, (2.2)

where β ∈ (0, 1], xi(t) ∈ Rn is the ith follower’s state vector. The ith follower’s

control input consists of ui(t) and ui(t), and ui(t) is related to u0(t) which can

be viewed as an estimator of u0(t).

Remark 2.1 Without loss of generality, a one-dimensional space is considered

for all agents in this chapter, which can be easily extended to n-dimensional (n >

1) case with Kronecker product.
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Assumption 2.2 The fixed communication graph Ḡ contains a directed spanning

tree with leader as the root node.

Assumption 2.3 For each follower i ∈ N, if u0(t) is given, there has ui(t) such

that s−αL{u0(t); s} = s−βL{ui(t); s}, where u0(t) and ui(t) are defined in (2.1)

and (2.2).

Remark 2.4 If u0(t) is set, ui(t) can be calculated by the inverse Laplace trans-

form such that s−αL{u0(t); s} = s−βL{ui(t); s}. Thus, the Assumption 2.3 is

reasonable.

Definition 2.5 For any initial conditions, the MASs (2.1) and (2.2) are said to

achieve leader-following consensus if

lim
t→∞

(

xi(t)− x0(t)
)

= 0, ∀ i ∈ N.

2.3 Main results

2.3.1 Case without input delays

In this subsection, the leader-follower consensus of HFOMASs (2.1) and (2.2)

without input delays is investigated.

The ith follower’s control input ui(t) in (2.2) is designed as

ui(t) = −γΣN
j=0aij

(

xi(t)− xj(t)
)

, (2.3)

where γ is a positive constant.

Theorem 2.6 (Hu et al., 2019a) Given Assumptions 2.2 and 2.3, the HFOMASs

(2.1) and (2.2) can achieve leader-following consensus.

Proof: Performing Laplace transform of (2.1), it can be given as: sαX0(s) −

sα−1x0(0) = L{u0(t); s}, where X0(s) = L{x0(t); s}, it is easy to see that

X0(s) = s−1x0(0) + s−αL{u0(t); s}. (2.4)

Similarly, with the Laplace transform of (2.2), one has

sβXi(s)− sβ−1xi(0)

= −γΣN
j=0aij

(

Xi(s)−Xj(s)
)

+ L{ui(t); s},
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where Xi(s) = L{xi(t); s}, i ∈ N. Then we can obtain

Xi(s) = s−1xi(0)− s−βγΣN
j=0aij

(

Xi(s)−Xj(s)
)

+ s−βL{ui(t); s}.
(2.5)

Denote error vector as ei(t) = xi(t)− x0(t). The Laplace transform of ei(t) is

Ei(s) = L{ei(t); s} = Xi(s)−X0(s). Subtracting (2.4) from (2.5) gets the error

system:

Ei(s) = s−1ei(0)− s−βγΣN
j=0aij

(

Ei(s)−Ej(s)
)

,

which can be rewritten as

E(s) = s−1e(0)− s−βγME(s), (2.6)

where E(s) and e(0) denote the column vectors of Ei(s) and ei(0) respectively.

From (2.6), it can be calculated that

E(s) = (sβIN + γM)−1
(

sβ−1e(0)
)

. (2.7)

The characteristic equation of (2.7) is

det(sβIN + γM) = 0, (2.8)

which can be viewed as the characteristic equation of the following system

eβ(t) = −γMe(t). (2.9)

Therefore, the achievement of leader-following consensus of HFOMASs (2.1)

and (2.2) is equivalent to the asymptotically stable problem of system (2.9).

Based on Assumption 2.2 and Lemma 1.1, one has

mini∈N|arg
(

λi(−γM)
)

| > π/2 > βπ/2, β ∈ (0, 1].

According to Lemma 1.15, system (2.9) is asymptotically stable. This completes

the proof. �

Based on Lemma 1.15, a more general condition for the leader-following con-

sensus of HFOMASs (2.1) and (2.2) can be easily obtained as following:
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Corollary 2.7 (Hu et al., 2019a) Given Assumptions 2.2 and 2.3, the HFO-

MASs (2.1) and (2.2) can achieve leader-following consensus if and only if

mini∈N|arg
(

λi(−γM)
)

| > βπ/2, β ∈ (0, 1],

where λi(−γM) represent the eigenvalues of −γM .

Proof: Based on system (2.9) and Lemma 1.15, the above Corollary 2.7 can be

easily derived. �

2.3.2 Case with identical input delays

In this subsection, a control algorithm with identical input delays is proposed

to achieve the leader-following consensus of HFOMASs, and a necessary and

sufficient condition is obtained, which has closed relationship with the eigenvalue

of the directed graph Ḡ and the followers’ fractional order β.

The dynamics of the followers with identical input delays are described as

x
(β)
i (t) = ui(t− τ) + ui(t), i ∈ N = {1, · · · , N}, (2.10)

where ui(t − τ) = −γΣN
j=0aij

(

xi(t − τ) − xj(t − τ)
)

, τ is the input delay with

identical value for each follower, the definitions of other parameters and variables

in (2.10) are the same as those of (2.2) and (2.3).

Theorem 2.8 (Hu et al., 2019a) Given Assumptions 2.2 and 2.3, the leader-

following consensus of HFOMASs (2.1) and (2.10) can be achieved if and only

if

τ < min
i∈N

π − πβ/2 + arg(µi)

(γ|µi|)1/β
, (2.11)

where µi is the eigenvalue of M .

Proof: Conducting Laplace transform of (2.10) yields

sβXi(s)− sβ−1xi(0)

= −γΣN
j=0aije

−τs
(

Xi(s)−Xj(s)
)

+ L{ui(t); s},
(2.12)
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where Xi(s) = L{xi(t); s}, i ∈ N. Then, through simple calculation, the following

formula can be obtained as:

Xi(s) =− s−βγe−τsΣN
j=0aij

(

Xi(s)−Xj(s)
)

+ s−1xi(0)

+ s−βL{ui(t); s}.
(2.13)

Let ei(t) = xi(t)− x0(t) be the error vector, the corresponding Laplace trans-

form is Ei(s) = L{ei(t); s} = Xi(s) − X0(s). Subtracting (2.4) from (2.13), the

error system can be obtained as

Ei(s) = s−1ei(0)− s−βγe−τsΣN
j=0aij

(

Ei(s)−Ej(s)
)

,

which can be rewritten as

E(s) = s−1e(0)− s−βγe−τsME(s), (2.14)

where E(s) and e(0) are the column vectors of Ei(s) and ei(0) respectively. E(s)

can be obtained as

E(s) = (sβIN + γe−τsM)−1
(

sβ−1e(0)
)

. (2.15)

The characteristic equation of (2.15) is

det(sβIN + γe−τsM) = 0. (2.16)

Since det(sβIN+γe−τsM) =
∏N

i=1(s
β+γe−τsµi) and the real part of the eigenvalue

µi of M are positive based on Lemma 1.1, therefore all the characteristic roots of

(2.16) are nonzero. With generalized Nyquist stability criterion (Desoer & Wang,

1980), all of the roots of sβ + γe−τsµi = 0 are on the open left half plane if and

only if the Nyquist plot of Gi(ω) = γe−jωτµi/(jω)
β neither encircle nor touches

the point (−1, jω) for all ω ∈ (−∞,+∞). Because the Nyquist plot is symmetric,

the case of ω ∈ (0,+∞) is only considered. In the following, the bound of the
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input delays is derived. By some calculation of Gi(ω), we can obtain that:

Gi(ω) =
γe−jωτ |µi|e

jarg(µi)

ωβejπβ/2

=
γ|µi|

ωβ
ej
(

arg(µi)−ωτ−πβ/2
)

=
γ|µi|

ωβ

(

cos
(

ωτ + πβ/2− arg(µi)
)

− j sin
(

ωτ + πβ/2− arg(µi)
)

)

.

Fig. 2.1 shows the Nyquist plot of Gi(ω), which does not enclose (−1, j0) if and

only if the intersection point, where the real axis is intersected with Gi(ω) for the

first time as ω varies from 0 to +∞, is on the right side of (-1, j0). This means

ωτ + πβ/2− arg(µi) = π, and γ|µi|/ω
β < 1,

which implies

τ < min
i∈N

π − πβ/2 + arg(µi)

(γ|µi|)1/β
.

Therefore, under condition (2.11), error system (2.15) is asymptotically stable.

This completes the proof. �
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Fig. 2.1. Nyquist plot of Gi(ω) for µi = 1 + 2i, β = 0.9, τ = 0.6

Remark 2.9 Theorem 2.8 demonstrates that the followers’ fractional order β,

the control gain γ and the eigenvalues µi of matrix M paly important roles in the

threshold of the input delay τ .
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2.3 Main results

2.3.3 Case with diverse input delays

In this subsection, a control algorithm with diverse input delays is considered

and leader-following consensus of HFOMASs can be achieved under the proposed

sufficient condition.

The dynamics of the followers with diverse input delays are described as

x
(β)
i (t) = ui(t− τi) + ui(t), i ∈ N = {1, · · · , N}, (2.17)

where ui(t− τi) = −γΣN
j=0aij

(

xi(t− τi)− xj(t− τi)
)

, τi is the ith follower’s input

delay which is different from each follower, the definitions of other parameters

and variables are the same as those of (2.2) and (2.3).

Theorem 2.10 (Hu et al., 2019a) Given Assumptions 2.2 and 2.3, the leader-

following consensus of HFOMASs (2.1) and (2.17) can be achieved if

τi <
(2− β)π

2(2γdi)1/β
, i ∈ N, (2.18)

where di =
∑N

k=0 aik, which is the in-degree of the ith follower in graph Ḡ.

Proof: Performing Laplace transform of system (2.17), one has

sβXi(s)− sβ−1xi(0)

= −γΣN
j=0aije

−τis
(

Xi(s)−Xj(s)
)

+ L{ui(t); s},
(2.19)

where Xi(s) = L{xi(t); s}, i ∈ N. Then, after simple calculation, (2.19) can be

written as

Xi(s) =− s−βγΣN
j=0aije

−τis
(

Xi(s)−Xj(s)
)

+ s−1xi(0) + s−βL{ui(t); s}.
(2.20)

Let ei(t) = xi(t) − x0(t) be the error vector, then the corresponding Laplace

transform is Ei(s) = L{ei(t); s} = Xi(s)−X0(s). Subtracting (2.4) from (2.20),

the error system can be obtained as

Ei(s) = s−1ei(0)− s−βγΣN
j=0aije

−τis
(

Ei(s)− Ej(s)
)

,
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which can be rewritten as

E(s) = s−1e(0)− s−βγΛ(s)ME(s), (2.21)

where E(s) and e(0) are the column vectors of Ei(s) and ei(0) respectively, Λ(s) =

diag{e−τ1s, e−τ2s, · · · , e−τNs}. From (2.21), it can be obtained as

E(s) =
(

sβIN + γΛ(s)M
)−1(

sβ−1e(0)
)

. (2.22)

Then the characteristic equations is

det
(

sβI + γΛ(s)M
)

= 0. (2.23)

Due to det
(

sβIN + γΛ(s)M
)

=
∏N

i=1(s
β + γe−τisµi) and all the eigenvalue µi of

M have positive real part based on Lemma 1.1, therefore all the characteristic

roots of the characteristic equation (2.23) are nonzero. Then let F (s) = det(IN +

s−βγΛ(s)M), in the next step, we will proof all the zeros of F (s) = 0 are on the

left half plane.

Let G(s) = s−βγΛ(s)M , s = jω with j denoting complex number unit.

With generalized Nyquist stability criterion (Desoer & Wang, 1980), the ze-

ros of the F (s) are all on the left half plane if the eigenvalue of the G(jω),

i.e., λ
(

(jω)−βγΛ(jω)M
)

, neither enclose nor touch the point (−1, j0) for ω ∈

(−∞,+∞). After simple calculation, one obtains

G(jω) = γω−βdiag{e−j(ωτ1+βπ/2), e−j(ωτ2+βπ/2), · · · , e−j(ωτN+βπ/2)}M. (2.24)

Here, to estimate the eigenvalue of the matrix G(jω) denoted as λ(G(jω)),

the Gerschgorin’s disc theory introduced in Lemma 1.23 is used, and one has

λ
(

G(jω)
)

∈ ∪i∈NGi, (2.25)
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where for i ∈ N,

Gi = {δ ∈ C, |δ − γω−βdie
−j(ωτi+βπ/2)|

≤ γω−β
N
∑

k=1

|aike
−j(ωτi+βπ/2)|

≤ γω−β

N
∑

k=0

|aike
−j(ωτi+βπ/2)|},

(2.26)

with di =
∑N

k=0 aik. After sorting, one has

Gi = {δ ∈ C, |δ − γω−βdie
−j(ωτi+βπ/2)| ≤ γω−βdi}. (2.27)

From (2.27), it is clearly seen that Gi is a disc, and the origin of the disc Gi is

γω−βdie
−j(ωτi+βπ/2) and the radius of the disc Gi is γω−βdi. Then, we will proof

that arbitrary point (−a, j0)(a ≥ 1) is not in the disc Gi(i ∈ N), i.e., the distance

between the point (−a, j0)(a ≥ 1) and the origin of the disc Gi is larger than the

radius of the disc Gi. Thus, let

△ = |(−a + j0)− γω−βdie
−j(ωτi+βπ/2)|2 − (γω−βdi)

2.

After simple calculation, it can be obtained as

△ = a
(

a+ 2γω−βdi cos(ωτi + βπ/2)
)

.

Let ωcτi + βπ/2 = π, then cos(ωcτi + βπ/2) = −1. Thus we can get △ ≥

a(a− 2γω−β
c di), where ωc = (2− β)π/(2τi). According to the condition (2.18) in

Theorem 2.10, we can get that 2γω−β
c di = 2γ

(

(2− β)π/(2τi)
)−β

di < 1. Based on

the hypothesis a ≥ 1, we can get △ ≥ a(a− 2γω−β
c di) > 0. Then we have

|(−a+ j0)− γω−βdie
−j(ωτi+βπ/2)| > γω−βdi,

which means that the point (−a, j0)(a ≥ 1) is not in the disc Gi. Thus the point

(−1, j0) is neither enclosed nor touched by the curves of eigenvalue λ(G(jω)) of

matrix G(jω). Therefore, all zero points of F (s) have negative real parts. This

completes the proof. �

Remark 2.11 The condition (2.18) in Theorem 2.10 indicates that the upper
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Fig. 2.2. Graph Ḡ for case 1

bound of the input delay τi for follower i is related with the followers’ fractional

order β, control gain γ and in-degree of follower i. More specially, if the fractional

order β and control gain γ are fixed for all the followers, the higher in-degree the

agent i has, the less tolerance for the input delay the follower i has.

2.4 Simulations

Here we give three examples to verify Theorems 2.6-2.10. The directed graph

with 0-1 weights is used.

1) Case without input delays: To verify Theorem 2.6, graph Ḡ in Fig. 2.2

is employed. We randomly assume the order of the leader α = 0.8 and the order

of the followers β = 0.9, the dynamic of leader is x
(α)
0 (t) = −0.01t2, the initial

values are [x1(0), x2(0), x3(0), x4(0), x5(0), x0(0)] = [2,−10,−8, 5, 7, 3]. Choose

γ = 1, 2, 3, the state trajectories of leader-follower consensus with one leader and

five followers under different control gains γ are displayed in Fig. 2.3, which can

verify Theorem 2.6. In addition, as the value γ increases, the convergence speed

of achieving consensus becomes faster.

2) Case with identical input delays: Here, the MASs with one leader x0

and four followers xi(i = 1, 2, 3, 4) is considered. Graph Ḡ in Fig. 2.4 is used.

Based on condition (2.11) in Theorem 2.8, the relationship between the upper

bound of input delays and the control gains γ under different derivative orders

β is illustrated in Fig. 2.5. Fig. 2.5 shows that the smaller the value of the

derivative order β is, the faster the upper bound of the input delays change.

Besides, based on condition (2.11) in Theorem 2.8, the relationship between the
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Fig. 2.3. State trajectories of leader-follower consensus for case 1 under different
values of γ
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Fig. 2.4. Graph Ḡ for case 2

upper bound of input delays and derivative orders β under different control gains

is given in Fig. 2.6. Fig. 2.6 shows that under lower control gains, the agents

with fractional orders are more tolerant than those with integer orders, while

under high control gains, the agents with integer orders are more tolerant than

those with fractional orders.

Here, the order of the leader is assumed as α = 0.8, the order of the follower

is assumed as β = 0.9, the control gain is chosen as γ = 1, the dynamic of

leader is x
(α)
0 (t) = 0.01t, the initial values are [x1(0), x2(0), x3(0), x4(0), x0(0)] =

[2,−10,−8, 5, 3]. Based on condition (2.11) in Theorem 2.8, the leader-following

consensus of HFOMASs (2.1) and (2.10) can be guaranteed if and only if τ <

0.59. In the following, the different values of the input delays are choose as

τ = 0.2, 0.5, 0.59, 0.8 in respect. Fig. 2.7 depicts the states trajectories of the

HFOMASs (2.1) and (2.10), which can verify the correctness of Theorem 2.8.

Besides, Fig. 2.7 shows that if the input delay increases, the time to fulfill leader-

following consensus of the HFOMASs (2.1) and (2.10) will increase. When τ =

0.59, as the critical case, an oscillatory behavior happens. When τ = 0.8, the

leader-following consensus of the HFOMASs (2.1) and (2.10) can not be achieved

which can confirm our derived results.

3) Case with diverse input delays: Consider MASs with one leader x0 and

five followers xi(i = 1, 2, · · · , 5). Graph Ḡ in Fig. 2.8 is considered. According to

condition (2.18) in Theorem 2.10, the relationship between the upper bound of

input delays and control gain γ for each agent with various derivative orders β

can be obtained and illustrated as Fig. 2.9, where agent 1 is randomly selected

as an example to show the corresponding relationship. Similarly, the relationship

between the upper bound of input delays and derivative orders under different

control gains for agent 1 is shown in Fig. 2.10, which indicates that under low
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Fig. 2.7. State trajectories of leader-follower consensus for case 2 under identical
input delays
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Fig. 2.8. Graph Ḡ for case 3

control gains, the agents with fractional orders have more tolerance than those

with integer orders, while under high control gains, the agents with integer orders

have more tolerance than those with fractional orders.

In this example, the leader’s order is assumed as α = 0.85, the order of the

followers is assumed as β = 0.95, the control gain is chosen as γ = 1, the dynamic

of leader is x(α)
0 (t) = −0.03t2+0.5t, the initial values are [x1(0), x2(0), x3(0), x4(0),

x5(0), x0(0)] = [3,−6, 2, 8,−4, 5]. Based on Theorem 2.10, it can be obtained

that the consensus conditions requires τ1 < 0.7951, τ2 < 0.7951, τ3 < 0.7951, τ4 <

0.3833, τ5 < 0.3833. It should be noted that due to agents 1-3 have the same

in-degrees which can be observed in Fig. 2.8, therefore based on condition (2.18),

they have the same upper limit of input delays. With the same reason, agents 4

and 5 also own the same upper limits of the input delays. We randomly choose

τ1 = 0.79, τ2 = 0.79, τ3 = 0.79, τ4 = 0.38, τ5 = 0.38. The state trajectories of

the leader and followers are described in Fig. 2.11, which proves our theoretical

results in Theorem 2.10.

2.5 Conclusion

This chapter addresses the leader-following consensus of HFOMASs with input

delays, where the fractional orders between leader and followers are heterogenous

and a control algorithm with a fractional-order estimator is designed. Firstly, the

leader-following consensus of HFOMASs without input delays is studied, and a

sufficient condition is obtained based on fractional-order stability theory. Sec-

ondly, the proposed control algorithm with the identical input delays is consid-
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Fig. 2.11. State trajectories of leader-follower consensus for case 3 under diverse
input delays

ered, with the generalized Nyquist stability theory, the HFOMASs can achieve

leader-following consensus within a certain bound of input delays. Furthermore,

the diverse input delays are further taken into account in the proposed control

algorithm, leader-following consensus of the HFOMASs can be guaranteed under

the derived sufficient condition. Finally, simulations are given to validate our

results.
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Chapter 3

Distributed consensus tracking of

nonlinear FOMASs with external

disturbances based on nonlinear

algorithms
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3.1 Introduction

Note that the results studied in Chapter 2 are based on single integrator systems

without considering the external disturbances. However, in real applications,

unknown external disturbances arising from environment and communication are

usually unavoidable. External disturbances can easily lead to instability or bad
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performance. Thus, for the study of MASs, taking the external disturbances into

account is much more important and significant. In recent years, many results

about the mentioned topics have been developed. For instance, in Yu & Long

(2015), consensus of second-order MASs with disturbances was studied based on

integral sliding mode. In Liu et al. (2017a), a discontinuous observer was proposed

to solve the consensus of MASs with external disturbances. In Dong & Wang

(2018), a distributed observer was designed for the consensus of nonlinear MASs

with unknown external disturbance. However, most existing results are only

based on the integer-order MASs, few results have been obtained by considering

the external disturbances into the FOMASs. In Yang et al. (2014a), consensus of

FOMASs with external disturbance was studied, where the external disturbance

was generated with a fractional linear systems. In Ren & Yu (2016, 2017b),

consensus problem for linear and nonlinear FOMASs with external disturbances

was investigated based on linear control protocol, where the control performances

were not satisfying. Therefore, in order to improve the consensus performance of

the FOMASs with external disturbances, it is very significant and promising to

investigate the consensus problem of FOMASs with nonlinear control algorithms,

which can accelerate the convergence speed and achieve a better convergence

effect (Bai et al., 2017b).

Note that most of the results for the consensus of FOMASs mentioned above

are mainly based on single or double integrator systems. In practice, more com-

plicated intrinsic dynamics may exist in mobile agents. However, due to the

complexity of the FOMASs, stability of the nonlinear FOMASs is difficult to be

verified. In Li et al. (2010a) and Duarte-Mermoud et al. (2015), the Lyapunov

direct method for fractional-order systems has been investigated, where an effi-

cient tool was proposed to verify the stability problem. But it is still difficult to

design an ideal Lyapunov candidate function for the FOMAs due to the existence

of the communication topology.

Based on the above discussions, the distributed consensus tracking of non-

linear FOMASs with external disturbances is investigated based on nonlinear

algorithms. Firstly, a nonlinear discontinuous control protocol is put forward to

deal with the distributed consensus tracking problem. Then, in order to elim-

inate the chattering phenomenon resulting from the discontinuity, a nonlinear

continuous distributed algorithm is further designed to make the tracking error
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3.2 Problem formulation

asymptotically converge to a bounded set which is given clearly and can be made

small enough through selecting the parameters appropriately.

Compared with the existed results, There are four main differences. Firstly,

different from Dong & Wang (2018); Liu et al. (2017a); Sun et al. (2016); Yu

& Long (2015), the MASs with fractional dynamics are studied. Secondly, in

contrast with Bai et al. (2017b); Cao & Ren (2010); Gong (2017); Sun et al. (2011);

Yu et al. (2017b); Zhu et al. (2017), the external disturbances are considered into

the FOMASs. Thirdly, different from Yang et al. (2014a), in this chapter we

do not known the style of the external disturbances beforehand. What is more,

different from Ren & Yu (2016, 2017b) where a linear control protocol was used,

we propose two effective nonlinear control algorithms.

The rest of this chapter is organised as follows. In Section 3.2, the problem

formulation is introduced. In Sections 3.3, to deal with the distributed consensus

tracking of nonlinear FOMASs with external disturbances, a nonlinear discon-

tinuous and continuous control algorithms are given respectively. In Section 3.4,

several simulation results are performed to validate the proposed controllers. Fi-

nally, a short conclusion is drawn in Section 3.5.

3.2 Problem formulation

Consider the nonlinear FOMASs with N followers described as

x
(α)
i (t) = Axi(t) + f(xi(t)) + ui(t) + wi(t), i ∈ N = {1, 2, · · · , N}, (3.1)

where α ∈ (0, 1], xi(t) ∈ Rn and ui(t) ∈ Rn are the state and control input of the

ith follower respectively. f(xi(t)) ∈ Rn is the corresponding intrinsic nonlinear

dynamics, and wi(t) ∈ Rn denotes the external disturbances.

The leader’s dynamic is

x
(α)
0 (t) = Ax0(t) + f(x0(t)), (3.2)

where α ∈ (0, 1], x0(t) ∈ Rn and f(x0(t)) ∈ Rn represent the state vector and the

intrinsic nonlinear dynamics for the leader respectively. It can be treated as an

exosystem or a command generator, which produces the desired target trajectory.
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Definition 3.1 The distributed consensus tracking for MASs (3.1) and (3.2) are

said to be achieved if for any initial conditions, the following condition is satisfied

lim
t→∞

‖xi(t)− x0(t)‖ = 0, ∀ i ∈ N.

Before moving forward, the following assumptions are needed.

Assumption 3.2 The communication topology Ḡ among the followers and leader

is undirected and connected.

Assumption 3.3 The nonlinear function f is continuous and satisfies the fol-

lowing local Lipschitz condition

‖f(x(t))− f(y(t))‖ ≤ l‖x(t)− y(t)‖, ∀ x(t), y(t) ∈ Rn, (3.3)

where l > 0 is the Lipschitz constant.

Assumption 3.4 The external disturbances wi(t) satisfy ‖wi(t)‖ ≤ ρ < +∞, ∀ i ∈

N.

For the sake of convenience, denote that exi
= xi − x0, efi = f(xi(t)) −

f(x0(t)). Let ex, ef , u(t) and w(t) be the column vector of exi
, efi, ui(t) and wi(t)

respectively. Subtracting system (3.2) from system (3.1), the tracking errors ex

can be obtained as

e(α)x (t) = (IN ⊗A)ex + ef + u(t) + w(t). (3.4)

Based on Assumption 3.2, v0 is a global reachable node. Let M = L + B =

[mij ]N×N , then M is a symmetric positive definite matrix based on Lemma 1.1.

3.3 Main results

3.3.1 Nonlinear discontinuous tracking control algorithm

In this subsection, a nonlinear discontinuous control algorithm is proposed to

tackle the problem of consensus tracking of nonlinear FOMASs considering ex-

ternal disturbances.
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The following nonlinear discontinuous control protocol is designed for each

follower:

ui(t) = −ayi − βh(yi), i ∈ N = {1, 2, · · · , N}, (3.5)

where yi =
∑N

j=0 ai,j(xi−xj), and a, β are positive constant coupling gains, h(yi)

is a nonlinear discontinuous function defined as

h(yi) =

{ yi
‖yi‖ , ‖yi‖ 6= 0,

0n, ‖yi‖ = 0.
(3.6)

Based on the graph theory introduced in Subsection 1.4.1, we can obtain that

yi =
∑N

j=0 ai,j(exi
− exj

) =
∑N

j=1mijexj
, which means y = (M ⊗ In)ex = M̃ex,

where y is the column vector of yi.

Theorem 3.5 (Hu et al., 2019d) Suppose that Assumptions 3.2-3.4 hold, if a >
λmax(A+AT )+2l

2λmin(M̃)
and β ≥ ρ, then the distributed consensus tracking of nonlinear FO-

MASs (3.1) and (3.2) can be achieved under the nonlinear discontinuous control

algorithm (3.5).

Proof: Substituting the protocol (3.5) into tracking errors system (3.4) as

e(α)x (t) = (IN ⊗A)ex + ef − ay − βH(y) + w(t), (3.7)

where H(y) is the column vector of h(yi).

Construct the following Lyapunov function as

V (t) = eTx (M ⊗ In)ex = eTx M̃ex. (3.8)

Then based on Lemma 1.19, the fractional-order derivative of (3.8) with respect

to time t along the trajectories of system (3.7) is

V (α)(t) ≤ 2eTx M̃e(α)x

= 2eTx M̃
(

(IN ⊗ A)ex + ef − ay − βH(y) + w(t)
)

= 2eTx M̃(IN ⊗ A)ex + 2eTx M̃ef − 2aeTx M̃y − 2βeTx M̃H(y) + 2eTx M̃w(t).

(3.9)

Based on the properties of Kronecker product introduced in Subsection 1.4.3 , we
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have

2eTx M̃(IN ⊗ A)ex = 2eTx (M ⊗A)ex

= eTx (M ⊗ A)ex + eTx (M ⊗ A)T ex

= eTx
(

M ⊗ (A + AT )
)

ex

≤ λmax(A+ AT )eTx M̃ex.

(3.10)

Based on Assumption 3.3, we have

2eTx M̃ef ≤ 2leTx M̃
T ex. (3.11)

Due to y = M̃ex, we have

−2aeTx M̃y = −2aeTx M̃M̃ex ≤ −2aλmin(M̃)eTx M̃ex. (3.12)

Due to y = M̃ex and yTi h(yi) = ‖yi‖, we have

−2βeTx M̃H(y) = −2βyTH(y) = −2β

N
∑

i=1

‖yi‖. (3.13)

Due to y = M̃ex and yTi wi(t) ≤ ‖yi‖‖wi(t)‖, combining with Assumption 3.4, we

have

2eTx M̃w(t) = 2
N
∑

i=1

yTi wi(t) ≤ 2
N
∑

i=1

‖yi‖‖wi(t)‖ ≤ 2ρ
N
∑

i=1

‖yi‖. (3.14)

Thus, based on (3.10)-(3.14) and β > ρ, we have

V (α)(t) ≤ −
(

2aλmin(M̃)− λmax(A+ AT )− 2l
)

eTx M̃ex

+ 2(ρ− β)
N
∑

i=1

‖yi‖

< −
(

2aλmin(M̃)− λmax(A + AT )− 2l
)

V (t).

(3.15)

Because a > λmax(A+AT )+2l

2λmin(M̃)
, i.e. 2aλmin(M̃) − λmax(A + AT ) − 2l > 0, thus

based on Lemma 1.16, the tracking error dynamics (3.7) is asymptotically stable.

Therefore, the distributed consensus tracking problem is achieved in systems (3.1)

and (3.2) with the control protocol (3.5). �
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3.3.2 Nonlinear continuous tracking control algorithm

In the last subsection, the h(·) in protocol (3.5) is discontinuous, which may gen-

erate the undesirable chattering behavior and restrict its application. Therefore,

it is significant and interesting to design a continuous distributed protocol without

undesirable chattering problem to solve the distributed consensus tracking.

In order to overcoming the chattering problem, by using the boundary layer

technique (Slotine & Sastry, 1983), the following nonlinear continuous control

protocol is proposed as

ui(t) = −ayi − βh̄i(yi), i ∈ N = {1, 2, · · · , N}, (3.16)

where

h̄i(yi) =

{ yi
‖yi‖ , ‖yi‖ > di,
yi
di
, ‖yi‖ ≤ di,

(3.17)

and di > 0 (i = 1, 2, · · · , N) are small constants, denoting the widths of the

boundary layers. yi =
∑N

j=0 ai,j(xi − xj), a, β are positive constant coupling

gains.

Theorem 3.6 (Hu et al., 2019e) Suppose that Assumptions 3.2-3.4 hold, the

tracking errors of nonlinear FOMASs (3.1) and (3.2) are uniformly ultimately

bounded (UUB) under the nonlinear continuous control algorithm (3.16), if a >
λmax(A+AT )+2l

2λmin(M̃)
and β ≥ ρ. Moreover, ex asymptotically converges to the following

bounded set

D =

{

ex : ‖ex‖
2 ≤

2(β + ρ)
∑N

i=1 di

λmin(M̃)
(

2aλmin(M̃)− λmax(A+ AT )− 2l
)

}

. (3.18)

Proof: Substituting the protocol (3.16) into tracking errors system (3.4), we can

obtain that

e(α)x (t) = (IN ⊗A)ex + ef − ay − βH̄(y) + w(t), (3.19)

where H̄(y) is the column vector of h̄i(y).

Consider the Lyapunov function candidate as (3.8), based on Lemma 1.19, its
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fractional-order derivative satisfies the following inequality

V (α)(t) ≤ eTx M̃e(α)x

= 2eTx M̃
(

(IN ⊗ A)ex + ef − ay − βH̄(y) + w(t)
)

.
(3.20)

Due to the virtue of (3.17), the following three cases are discussed.

(i) ‖yi‖ > di, i = 1, 2, · · · , N .

In this case, based on (3.13) and (3.14), one can obtained that

2eTx M̃
(

− βH̄(y) + w(t)
)

= 2(−β + ρ)
N
∑

i=1

‖yi‖ < 0. (3.21)

Substituting (3.10)-(3.12) and (3.21) into(3.20) yields

V (ᾱ)(t) < −
(

2aλmin(M̃)− λmax(A+ AT )− 2l
)

V (t). (3.22)

(ii) ‖yi‖ ≤ di, i = 1, 2, · · · , N .

In this case, due to yTi h̄i(yi) = ‖yi‖
2/di ≤ di, one has

2eTx M̃
(

− βH̄(y)
)

= −2β

N
∑

i=1

yTi h̄i(yi) = −2β

N
∑

i=1

‖yi‖
2/di ≤ 2β

N
∑

i=1

di. (3.23)

Due to yTi wi(t) ≤ ‖yi‖‖wi(t)‖ ≤ ρ‖yi‖ ≤ ρdi, one has

2eTx M̃w(t) = 2
N
∑

i=1

yTi wi(t) ≤ 2
N
∑

i=1

‖yi‖‖wi(t)‖ ≤ 2ρ
N
∑

i=1

‖yi‖ ≤ 2ρ
N
∑

i=1

di. (3.24)

Therefore, one can deduce that

2eTx M̃
(

− βH̄(y) + w(t)
)

≤ 2(β + ρ)

N
∑

i=1

di. (3.25)

Substituting (3.10)-(3.12) and (3.25) into Eq. (3.20) yields

V (ᾱ)(t) <−
(

2aλmin(M̃)− λmax(A+ AT )− 2l
)

V (t)

+ 2(β + ρ)
N
∑

i=1

di.
(3.26)
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(iii) y satisfies neither Case (i) nor Case (ii).

Without loss of generality, suppose that ‖yi‖ > di, i = 1, 2, · · · , k, and ‖yi‖ ≤

di, i = k+1, k+2, · · · , N , where 1 < k < N . In this case, from (3.22) and (3.26),

one can get that

V (ᾱ)(t) <−
(

2aλmin(M̃)− λmax(A+ AT )− 2l
)

V (t)

+ 2(β + ρ)
N
∑

i=k+1

di.
(3.27)

Therefore, by analyzing the above three cases, it can be easily deduced that

V (ᾱ)(t) <−
(

2aλmin(M̃)− λmax(A+ AT )− 2l
)

V (t)

+ 2(β + ρ)

N
∑

i=1

di.
(3.28)

Denote η = 2aλmin(M̃)− λmax(A+AT )− 2l, let z(t) = V (t)−
2(β+ρ)

∑N
i=1

di
η

, this

together with (3.28) implies that

z(α)(t) ≤ −ηz(t). (3.29)

Then, there exists a nonnegative function m(t) satisfying

z(α)(t) +m(t) = −ηz(t). (3.30)

Taking the Laplace transform of (3.30) gives

sαZ(s)− z(0)sα−1 +M(s) = −ηZ(s), (3.31)

where Z(s) = L{z(t); s} and M(s) = L{m(t); s}. Thus, we have

Z(s) =
z(0)sα−1 −M(s)

sα + η
. (3.32)

For (3.30), there exists a unique solution. By the inverse Laplace transform, we

can achieve that

z(t) = z(0)Eα(−ηtα)−m(t) ∗
(

tα−1Eα,α(−ηtα)
)

, (3.33)
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where ∗ is a convolution operator. Because tα−1 and Eα,α(−ηtα) are nonnegative

functions, thus the above Eq. (3.33) becomes

z(t) = V (t, ex)−
2(β + ρ)

∑N
i=1 di

η
≤ z(0)Eα(−ηtα) −→ 0, (3.34)

when t → +∞. Note that V (t) ≥ λmin(M̃)‖ex‖
2 and let t converge to infinity,

then one has

lim
t→+∞

‖ex‖
2 ≤

2(β + ρ)
∑N

i=1 di

λmin(M̃)
(

2aλmin(M̃)− λmax(A+ AT )− 2l
) . (3.35)

Thus, one can obtain from Eq. (3.35) that tracking error ex asymptotically

converges to the bounded set D in Eq. (3.14). �

Corollary 3.7 If the widths di of the boundary layers are the same, i.e., d1 =

d2 = · · · = dN = d, the bounded set can be simplified as

D =

{

ex : ‖ex‖
2 ≤

2(β + ρ)Nd

λmin(M̃)
(

2aλmin(M̃)− λmax(A+ AT )− 2l
)

}

. (3.36)

Remark 3.8 In virtue of Eqs. (3.14) and (3.36), the upper bound of the tracking

errors ex asymptotically converges to a bounded set which depends on the width

di of the boundary layers. Thus, a sufficiently small acceptable tracking errors ex

with the nonlinear continuous algorithm (3.16) can be obtained asymptotically if

a small enough di is chosen.

3.4 Simulations

In the following simulation, we assume that the undirected graph has 0-1 weights

for simplicity. Consider the FOMASs consisting of one leader and five followers.

The communication topology is displayed in Fig. 3.1. Assume the FOMASs are

modeled by fractional-order neural network with three neurons as

x
(α)
i (t) = Axi(t) + f(xi(t)), i = 0, 1, · · · , 5, (3.37)
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where A = diag{a1, a2, a3}, f(xi(t)) = Btanh(xi(t)). When α = 0.98, A = −I3,

B = [bij ]3×3 =





2 −1.2 0
1.8 1.71 1.15

−4.75 0 1.1



 ,

the system has a chaotic attractor. It can be easily obtained that λmax(A+AT ) =

−2, l = 5.5.

0v

1
v

3
v

4
v

2
v

5
v

Fig. 3.1. The communication topology with one leader and five followers

The initial conditions are selected as x0(0) = [1, 2, 0.5]T , x1(0) = [3, 1.5,−1.2]T ,

x2(0) = [3, 0.3,−1.5]T , x3(0) = [4.5,−3.5, 0.5]T , x4(0) = [1.2, 1,−3]T , x5(0) =

[2,−0.5,−2.5]T . The external disturbances are given as: w1(t) = 0.65sin(t +

2), w2(t) = 0.8cos(5t− 6), w3(t) = 0.35sin(3t + 5), w4(t) = 0.9sin(t + 4), w5(t) =

0.5cos(−7t+1). According to Theorems 3.5 and 3.6, we choose a = 15 > 14.7, β =

1.5 > 1.3 = ρ.

Firstly, for the nonlinear discontinuous control protocol (3.5), the state trajec-

tories of consensus tracking are illustrated in Fig. 3.2, where five followers track

the leader quickly within very short time. The phase portraits are also given in

Fig. 3.3, which shows that the followers can tracking the chaotic attractor of the

leader successfully. The control inputs are also provided in Fig. 3.4. Therefore,

the feasibility of Theorem 3.5 is verified.
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(a) State trajectories of xi1(i = 0, 1, · · · , 5) (b) State trajectories of xi2(i = 0, 1, · · · , 5)

(c) State trajectories of xi3(i = 0, 1, · · · , 5)

Fig. 3.2. State trajectories of FOMASs (3.1) and (3.2) by control algorithm
(3.5)
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3.4 Simulations

(a) Phase portrait in 3D (b) Phase portrait in 2D

(c) Phase portrait in 2D (d) Phase portrait in 2D

Fig. 3.3. Phase portraits for all agents (i = 0, 1, · · · , 5) by control algorithm
(3.5)
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(a) Control inputs of ui1(i = 1, · · · , 5) (b) Control inputs of ui2(i = 1, · · · , 5)

(c) Control inputs of ui3(i = 1, · · · , 5)

Fig. 3.4. Control inputs for control algorithm (3.5)

Then, for the nonlinear continuous control protocol (3.16), two cases are con-

sidered in terms of boundary layers widths di given in Eq. (3.17) as: di =

0.2, (i = 1, 2, · · · , 5) and di = 2, (i = 1, 2, · · · , 5). The state trajectories of con-

sensus tracking are displayed in Figs. 3.5 and 3.8 respectively, where it can be

concluded that the consensus tracking errors can asymptotically converge a suf-

ficiently small neighborhood of zero if one can choose a sufficient small di. The

phase portraits are also given in Figs. 3.6 and 3.9. Besides, chattering behavior

can be avoided by the control protocol (3.16), which can be verified in Figs. 3.7

and 3.10. Therefore, the feasibility of Theorem 3.6 is proved as well.
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(a) State trajectories of xi1(i = 0, 1, · · · , 5)
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(b) State trajectories of xi2(i = 0, 1, · · · , 5)
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(c) State trajectories of xi3(i = 0, 1, · · · , 5)

Fig. 3.5. State trajectories of FOMASs (3.1) and (3.2) by control algorithm
(3.16) with di = 0.2
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(b) Phase portrait in 2D
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(c) Phase portrait in 2D
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(d) Phase portrait in 2D

Fig. 3.6. Phase portraits for all agents (i = 0, 1, · · · , 5) by control algorithm
(3.16) with di = 0.2

72

paper2/chapter2figs/EPS/phase_Sat_x123_0.2_NNs.eps
paper2/chapter2figs/EPS/phase_Sat_x12_0.2_NNs.eps
paper2/chapter2figs/EPS/phase_Sat_x13_0.2_NNs.eps
paper2/chapter2figs/EPS/phase_Sat_x23_0.2_NNs.eps


3.4 Simulations

t/s
0 5 10 15 20 25 30 35 40 45 50

u
i1

(t
)

-80

-60

-40

-20

0

20

40

60

80

100

u
11

(t)

u
21

(t)

u
31

(t)

u
41

(t)

u
51

(t)

49 49.5 50
-1

-0.5

0

0.5

1

(a) Control inputs of ui1(i = 1, · · · , 5)
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(b) Control inputs of ui2(i = 1, · · · , 5)
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(c) Control inputs of ui3(i = 1, · · · , 5)

Fig. 3.7. Control inputs for control algorithm (3.16) with di = 0.2
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(a) State trajectories of xi1(i = 0, 1, · · · , 5)
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(b) State trajectories of xi2(i = 0, 1, · · · , 5)
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(c) State trajectories of xi3(i = 0, 1, · · · , 5)

Fig. 3.8. State trajectories of FOMASs (3.1) and (3.2) by control algorithm
(3.16) with di = 2
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Fig. 3.9. Phase portraits for all agents (i = 0, 1, · · · , 5) by control algorithm
(3.16) with di = 2
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(a) Control inputs of ui1(i = 1, · · · , 5)
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(b) Control inputs of ui2(i = 1, · · · , 5)
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(c) Control inputs of ui3(i = 1, · · · , 5)

Fig. 3.10. Control inputs for control algorithm (3.16) with di = 2

3.5 Conclusion

In this chapter, the distributed consensus tracking problem of nonlinear FOMASs

is studied, and the external disturbances are considered at the same time. A

nonlinear discontinuous and a nonlinear continuous distributed control protocols

are proposed to solve the consensus tracking problem respectively. By using the

Lyapunov direct method, firstly a nonlinear discontinuous control protocol is pro-

posed to solve the consensus tracking problem successfully under the demanded

conditions. Then a nonlinear continuous control algorithm is further designed

without chattering behavior, and it is proved that the tracking error can reach

to a uniformly bounded region which can be made small enough by selecting the
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3.5 Conclusion

parameters appropriately. Finally, the simulations are conducted to illustrate the

effectiveness and advantage of our results.

77



3. DISTRIBUTED CONSENSUS TRACKING OF NONLINEAR
FOMASS WITH EXTERNAL DISTURBANCES BASED ON
NONLINEAR ALGORITHMS

78



Chapter 4

Distributed consensus tracking of

unknown nonlinear delayed

FOMASs with external

disturbances based on ABC

algorithm

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Problem description for consensus tracking of FOMASs 82

4.3 ABC algorithm-based parameter identification scheme

for FOMASs . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Problem formulation for parameter identification . . . 84

4.3.2 The standard ABC algorithm . . . . . . . . . . . . . . 85

4.3.3 The proposed ABC algorithm-based parameter identi-

fication scheme . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Distributed consensus tracking of FOMASs based on

ABC algorithm . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.1 Discontinuous distributed control algorithm . . . . . . 89

4.4.2 Continuous distributed control algorithm . . . . . . . . 93

4.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 97

79



4. DISTRIBUTED CONSENSUS TRACKING OF UNKNOWN
NONLINEAR DELAYED FOMASS WITH EXTERNAL
DISTURBANCES BASED ON ABC ALGORITHM

4.5.1 ABC algorithm-based parameter identification results 97

4.5.2 Simulation results on distributed consensus tracking . 101

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.1 Introduction

As mentioned in Chapter 2, time delays are unavoidable in many applications.

Thus in Chapter 2, several results with time delays have been achieved based

on linear case. However, in practice, more complex intrinsic nonlinear dynamics

may exist in mobile agents. Unfortunately, the consensus control algorithms

and conditions designed for linear delayed FOMASs are not be extended to the

nonlinear case. Currently, a few results have been obtained for the consensus of

nonlinear delayed FOMASs (Zhu et al., 2017). Thus, it is significant to investigate

the distributed consensus tracking of nonlinear FOMASs with time delays, which

is full of challenges and not well investigated.

In addition, as mentioned in Chapter 3, the effects of unknown external dis-

turbances arising from environment and communication are usually unavoidable

in the real world. Undesirable instability or bad performance can easily happen

because of the external disturbances. Thus, for the study of MASs, taking the

effects of the external disturbances into account is essential and reasonable.

On the other hand, note that most of the existing results about the distributed

coordination of the FOMASs are under the assumption that the fractional orders

and system parameters of the FOMASs are known beforehand. However in the

real applications, the fractional orders and system parameters are usually partly

or all unknown, which need to be identified in advance. Currently, for parameter

identification of nonlinear systems, there are mainly two methods. The first one

is synchronization-based method, which was first put forward by Parlitz (Parlitz,

1996). This method has been sufficiently applied to the unknown parameters iden-

tification of different kinds of nonlinear systems (Gu et al., 2017; Konnur, 2003).

But it is not easy to be applied because it is sensitive to the considered systems

for designing the controllers and updating laws. The second one is optimization-

based method by using artificial intelligence optimization algorithms (AIOAs).

In the second method, the parameter identification issue can be converted into
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a functional optimization problem. Contrasted with the synchronization-based

method, the second method does not need the differentiable information of the

considered systems and is more flexible to be applied. Currently, many kinds of

AIOAs have been applied for the second parameter identification method, such

as differential evolution (DE) (Guedes et al., 2018) and Cuckoo search (CS) (Wei

& Yu, 2018).

Artificial bee colony (ABC) algorithm, as an efficient AIOAs, was proposed

by Karaboga in 2005 and the idea comes from the foraging behavior of honeybee

swarm. Lots of studies have revealed that ABC algorithm can successfully solve

different kinds of optimization problems appeared in many fields, such as image

segmentation, vehicle routing problem and control engineering (Karaboga et al.,

2014). Therefore, considering its wonderful performance, the ABC algorithm

is chosen to identify the unknown fractional orders and system parameters of

the unknown nonlinear delayed FOMASs in this chapter, which can extend the

application fields of the ABC algorithm, and can provide a promising parameter

identify method for the FOMASs as well.

Given the above discussion, in this chapter, distributed consensus tracking

of unknown nonlinear delayed FOMASs with external disturbances is addressed.

More specifically, FOMASs with time delays, external disturbances and unknown

nonlinear dynamics are considered, which are more general than the existing re-

sults about consensus of FOMASs. Firstly, the efficient ABC algorithm-based

parameter identify scheme is proposed to identify the unknown nonlinear delayed

FOMASs. Secondly, based on the identified fractional orders and system pa-

rameters, we design a discontinuous distributed control protocol to achieve the

consensus tracking by using the fractional-order comparison principle. Thirdly,

for the purpose of suppressing the chattering phenomenon occurring in the discon-

tinuous controller, a continuous control protocol is further proposed, with which

the UUB tracking errors can be obtained and regulated small enough with proper

parameters.

Compared with the existing works, our contribution are as follows. Firstly,

compared with Cui et al. (2017); Li et al. (2010b); Ma (2015); Ma et al. (2016)

concerning the integer-order MASs, the delayed MASs with fractional-order dy-

namics, external disturbances are considered. Secondly, different from Shen &

Cao (2012); Yang et al. (2014a) with linear case, the time delay under nonlinear
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case is further investigated. Thirdly, in Ren & Yu (2016); Yang et al. (2014a),

the authors only considered the external disturbances, but have not taken the

time delays into account. Fourthly, all the results mentioned above are supposed

that the fractional orders and system parameters of the nonlinear FOMASs are

known beforehand, while in this chapter the parameters are considered to be un-

known, and the ABC algorithm is employed to identify the unknown parameters

of the unknown delayed FOMASs. Furthermore, it should be pointed out that

this chapter provides a promising link between the AI technique and distributed

cooperative control of FOMASs.

The rest of this chapter is arranged as below. In Section 4.2, the description

of consensus tracking problem is given. In Section 4.3, an ABC algorithm-based

parameter identification scheme for unknown nonlinear delayed FOMASs is pro-

posed. In Section 4.4, based on the identified parameters, two efficient nonlinear

control protocols are put forward to solve the consensus tracking problem. Fi-

nally, the efficiencies of the proposed ABC algorithm-based parameter identifica-

tion method and the designed control algorithms are both verified based on the

simulation experiments.

4.2 Problem description for consensus tracking of

FOMASs

Consider dynamics of the followers as

x
(α)
i (t) = −Cxi(t) + Af(xi(t)) +Bf(xi(t− τ)) + ui(t) + wi(t),

i = 1, 2, · · · , N,
(4.1)

where α ∈ (0, 1], xi(t) = [xi1(t), · · · , xin(t)]
T ∈ Rn denotes state vector of the ith

follower. The nonlinear vector function f(xi(t)) = [f1(xi1(t)), · · · , fn(xin(t))]
T ∈

Rn and constant time delay τ > 0. C = [cij]n×n, A = [âij ]n×n and B = [b̂ij ]n×n

denote the corresponding weight matrices. ui(t) ∈ Rn is the control input vector

for follower i. wi(t) ∈ Rn is external disturbance of follower i.

The dynamic of the leader is described as

x
(α)
0 (t) = −Cx0(t) + Af(x0(t)) +Bf(x0(t− τ)), (4.2)
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where x0(t) = [x01, · · · , x0n(t)]
T ∈ Rn represents the state vector of the leader,

the other definitions are the same as those of systems (4.1).

Remark 4.1 In this chapter, the authors considered a representative model (Bao

et al., 2015; Chen et al., 2018a, 2015b; Fan et al., 2018; Huang et al., 2012; Kaslik

& Sivasundaram, 2012; Lakshmanan et al., 2018; Liu et al., 2018g; Rakkiyappan

et al., 2015; Wang et al., 2015; Zhang & Yang, 2018; Zhou & Tan, 2019), which

can represent a general class of fractional-order nonlinear systems including de-

layed fractional-order nonlinear systems, such as the fractional-order Hopfield

delayed neural networks, fractional-order cellular delayed neural networks, and

fractional-order BAM neural networks with or without delays. Some unpredictable

behaviours of the model considered in this chapter, such as periodic oscillations,

bifurcation and chaotic attractors, and master-slave synchronization have been

widely investigated which can be referred to Bao et al. (2015); Chen et al. (2018a,

2015b); Fan et al. (2018); Huang et al. (2012); Kaslik & Sivasundaram (2012);

Lakshmanan et al. (2018); Liu et al. (2018g); Rakkiyappan et al. (2015); Wang

et al. (2015); Zhang & Yang (2018); Zhou & Tan (2019). Besides, special setting

of matrices A,B,C of the model considered in this chapter can include other sim-

pler models. In addition, when the delayed nonlinearity in the considered model

(5.1) does not exist, the dynamics will degrade to a class of general nonlinear

systems.

Definition 4.2 For any initial conditions of FOMASs (4.1) and (4.2), the dis-

tributed consensus tracking is achieved, if

lim
t→∞

‖xi(t)− x0(t)‖ = 0, ∀ i = 1, 2, · · · , N.

To achieve the distributed consensus tracking, the following assumptions are

needed.

Assumption 4.3 The nonlinear functions fi are Lipschitz continuous with Lip-

schitz constants θi > 0 , such that

|fi(µ)− fi(ν)| < θi|µ− ν|, ∀µ, ν ∈ R, i = 1, 2, · · · , n. (4.3)

Assumption 4.4 The external disturbances wi(t) satisfy ‖wi(t)‖ ≤ ρ < +∞, ∀ i =

1, 2, · · · , N .
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Assumption 4.5 The communication topology Ḡ among the followers and leader

is undirected and connected.

4.3 ABC algorithm-based parameter identification

scheme for FOMASs

4.3.1 Problem formulation for parameter identification

For the purpose of identifying the unknown fractional orders and systematic pa-

rameters of nonlinear FOMASs (4.1) and (4.2), we consider the following original

and identified systems with same initial conditions. The original systems are

described as

x
(α)
i (t) = −Cxi(t) + Af(xi(t)) +Bf(xi(t− τ)), i = 0, 1, · · · , N, (4.4)

where the definition of the corresponding parameters and variables in (4.4) are

the same as those of (4.1) and (4.2).

The corresponding identified systems are

x̃
(α̃)
i (t) = −C̃x̃i(t) + Ãf(x̃i(t)) + B̃f(x̃i(t− τ)), i = 0, 1, · · · , N, (4.5)

where α̃ is the identified fractional order, x̃i(t) = [x̃i1(t), · · · , x̃in(t)]
T ∈ Rn repre-

sents the state vector for identified systems (4.5), C̃ = [c̃ij ]n×n, Ã = [ãij ]n×n and

B̃ = [b̃ij ]n×n are the corresponding matrices of identified system.

To identify the unknown nonlinear FOMASs (4.4), we convert them into the

following functional optimization model as

Ji(α̃, C̃, Ã, B̃) = arg min
(α̃,C̃,Ã,B̃)∈Ω

Fi

= arg min
(α̃,C̃,Ã,B̃)∈Ω

K
∑

k=1

‖xik − x̃ik‖, i = 0, 1, · · · , N,
(4.6)

where sampling time point k = 1, 2, · · · , K and K is data length. xik and x̃ik

denote respectively the state vectors of original system (4.4) and identified sys-

tem (4.5) at time kh for agent i, where h is the step size between two sam-

pling time point (Bhalekar & Daftardar-Gejji, 2011). Ω represents searching area
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predesigned for parameters α̃, C̃, Ã and B̃. Thus, the unknown parameters of

FOMASs (4.4) can be identified through finding suitable α̃, C̃, Ã and B̃ in the

searching space Ω along with the minimization of objective function (4.6).

4.3.2 The standard ABC algorithm

In 2005, Karaboga proposed the artificial bee colony (ABC) algorithm, which is a

competitive population-based AIOAs. The idea comes from the foraging behavior

of honeybee swarm (Karaboga et al., 2014). There are three kinds of bees in the

standard ABC algorithm, which are employed bees, onlooker bees and scout bees.

In fact, half of them are employed bees, others are onlooker bees, which is also

equal with the size of food sources or candidate solutions. The standard ABC

algorithm can be described as the following phases.

In population initialization phase, several basic parameters are initialized. D

and SN represent the dimension and sizes of the solutions (food sources), and

Xi = (xi1, xi,2, · · · , xi,D) denotes the ith food source generated by

xi,j = xmin,j + rand(0, 1)(xmax,j − xmin,j), (4.7)

where i = 1, · · · , SN/2, j = 1, · · · , D, xmin,j and xmax,j are the lower and up-

per bounds for the jth dimension in respect. Then the corresponding fitness is

calculated as

fiti =

{ 1
1+f(Xi)

, if f(Xi) ≥ 0,

1 + |f(Xi)|, if f(Xi) < 0,

where f(Xi) represents the objective function value with respect to Xi.

In employed bee phase, in order to find a better food source, the employed

bee generates a new food source position Vi around the current position Xi with

vi,j = xi,j + φi,j(xi,j − xk,j), (4.8)

where k = 1, · · · , SN/2(k 6= i), j = 1, 2, · · · , D, φi,j denotes a real number ran-

domly selected in [-1,1]. Then if Vi has better fitness than that of Xi, Xi will be

replaced by Vi, otherwise Xi is retained.

In onlooker bee phase, the employed bees will share information about amounts

and positions of their food sources with onlooker bees. Then the onlooker bees
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will choose a food source to further search new food sources based on probability

value pi formulated as

pi = fiti/

SN
∑

j=1

fitj . (4.9)

After that, a modification is made around the chosen food source using (4.8).

In scout bee phase, if the new position in corresponding to Xi is not improved

continuously within certain time (limit), then the corresponding food source will

be abandoned by the employed bee, which will become a scout bee. Then a new

food source will be generated by the scout bee using (4.7).

The main flowchart of the ABC algorithm is described in Algorithm 1.

4.3.3 The proposed ABC algorithm-based parameter iden-

tification scheme

Based on the above efficient ABC algorithm, the following parameter identifica-

tion scheme for FOMASs is proposed as Algorithm 2 (Hu et al., 2019c).

Remark 4.6 In this chapter, the ABC algorithm is specially applied to the pa-

rameter identification of unknown nonlinear delayed FOMASs, which can enlarge

the applications of the ABC algorithm and can offer a promising method for iden-

tifying the unknown nonlinear delayed FOMASs.

Remark 4.7 Compared with the synchronized-based parameter identification method

studied in (Gu et al., 2017), the proposed ABC algorithm-based parameter identi-

fication method in this chapter does not need design the parameter updating laws

which are sensitive to the considered systems. Besides, the fractional orders are

also considered as unknown parameters, which need to be identified.

4.4 Distributed consensus tracking of FOMASs based

on ABC algorithm

After applying Algorithm 1, assume that fractional order α and system param-

eters C,A,B of the unknown FOMASs (4.4) are identified as ᾱ, C̄ = [C̄ij]n×n,
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Algorithm 1 Framework of the standard ABC algorithm

1: Step 0) Predefine some parameters: SN (population size number), D

(searching dimension), LOWER (lower bound), UPPER (upper bound),

limit (control parameter), MCN (maximum cycle number), trail = 0.

2: Step 1) The population initialization phase:

3: Step 1.1) Randomly generate 0.5 ∗SN points in the search space to form

an initial population via Eq. (4.7).

4: Step 1.2) Evaluate the objective function values of population.

5: Step 1.3) cycle=1;

6: Step 2) The employed bees phase:

7: For i = 1 to 0.5 ∗ SN do

8: Step 2.1)

9: Step 2.1.1) Generate a candidate solution Vi by Eq. (4.8).

10: Step 2.1.2) Evaluate f(Vi).

11: Step 2.2) If f(Vi) < f(Xi), set Xi = Vi, otherwise, set triali = triali+1.

12: End For

13: Step 3) Calculating the probability values pi by Eq. (4.9), set t = 0, i = 1.

14: Step 4) The onlooker bees phase:

15: While t ≤ 0.5 ∗ SN, do

16: Step 4.1)

17: If rand(0, 1) < pi

18: Step 4.1.1) Searching the candidate solution Vi via Eq. (4.8).

19: Step 4.1.4) Set t = t+ 1.

20: End If

21: Step 4.2) Set i = i+ 1, if i = 0.5 ∗ SN , set i = 1.

22: End While

23: Step 5) The scout bees phase:

24: If max(triali) > limit, replace Xi with a new candidate solution generated

via Eq. (4.7).

25: Step 6) Set cycle = cycle + 1, and if cycle > MCN , then stop and output

the best solution achieved so far, otherwise, go to Step 2.
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Algorithm 2 ABC algorithm-based parameter identification scheme

1: Initialize the parameters for Algorithm 1 and FOMASs (4.5)

2: Generate the initial population in the feasible domain Ω defined in subsection

4.3.1

3: repeat

4: Optimize the function (4.6) with employed bees

5: Optimize the function (4.6) with onlooker bees

6: Optimize the function (4.6) with scout bees

7: until Maximum iteration is met

8: Return the best parameter identification values

Ā = [āij ]n×n and B̄ = [b̄ij ]n×n, then the dynamics of N ≥ 1 followers can be

modeled as

x
(ᾱ)
i (t) = −C̄xi(t) + Āf(xi(t)) + B̄f(xi(t− τ)) + ui(t) + wi(t),

i = 1, 2, · · · , N.
(4.10)

The dynamic of the leader can be described as

x
(ᾱ)
0 (t) = −C̄x0(t) + Āf(x0(t)) + B̄f(x0(t− τ)), (4.11)

where ᾱ, C̄ = [āij]n×n, Ā = [āij]n×n and B̄ = [b̄ij ]n×n are the corresponding es-

timated values. Other definitions in (4.10) and (4.11) are the same as those of

(4.1) and (4.2).

Denote the tracking errors as exi
= xi(t)−x0(t), and efi = f(xi(t))−f(x0(t)),

exiτ
= xi(t−τ)−x0(t−τ), efiτ = f(xi(t−τ))−f(x0(t−τ)). Let ex, ef , exτ

, efτ , u(t)

and w(t) be the column vector of exi
, efi, exiτ

, efiτ , ui(t) and wi(t), respectively.

Subtracting system (4.11) from system (4.10), the tracking errors ex can be ob-

tained as:

e(ᾱ)x (t) = −(IN ⊗ C̄)ex + (IN ⊗ Ā)ef + (IN ⊗ B̄)efτ + u(t) + w(t). (4.12)

According to Assumption 4.5, v0 is a global reachable node. Let M = L+B =

[mij ]N×N , then matrix M is positive definite based on Lemma 1.1.

Given the identified FOMASs (4.10) and (4.11), two kinds of distributed con-
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trollers are designed to deal with the consensus tracking issue.

4.4.1 Discontinuous distributed control algorithm

To guarantee the distributed consensus tracking, a nonlinear discontinuous track-

ing protocol is designed as following for each follower:

ui(t) = −ayi − βh(yi), i = 1, 2, · · · , N, (4.13)

where yi =
∑N

j=0 ai,j(xi − xj) and a, β > 0 are constant coupling gains. h(yi) is a

nonlinear discontinuous function defined as

h(yi) =

{ yi
‖yi‖ , ‖yi‖ 6= 0,

0n, ‖yi‖ = 0.
(4.14)

Based on the graph theory introduced in Chapter 1, it can be easily verified that

yi =
∑N

j=0 ai,j(exi
− exj

) =
∑N

j=1mijexj
, which means y = (M ⊗ In)ex = M̃ex,

where y is the column vector of yi.

Theorem 4.8 (Hu et al., 2019c) Suppose that Assumptions 4.3-4.5 hold, with

the nonlinear discontinuous control algorithm (4.13), the distributed consensus

tracking of nonlinear delayed FOMASs (4.10) and (4.11) can be achieved, if β ≥

ρ, and there exist some constants λ > δ > 0, a > 0 and positive definite matrixes

Ξ1 and Ξ2 such the following LMIs hold:

Φ =

[

Φ1 IN ⊗Θ

∗ −Ξ1

]

< 0, (4.15)

Ψ =

[

−λmin(M̃)δINn IN ⊗Θ

∗ −Ξ2

]

< 0, (4.16)

where Φ1 = −2M ⊗ (C̄ + C̄T ) + (M ⊗ Ā)Ξ1(M ⊗ Ā)T + (M ⊗ B̄)Ξ2(M ⊗ B̄)T −

2a(M2⊗ In)+λmax(M̃)λINn, M̃ = M ⊗ In. Θ = diag{θ1, · · · , θn} with θi defined

in Assumption 4.3.

Proof: Substitute the protocol (4.13) into tracking errors system (4.12) as

e(ᾱ)x (t) =− (IN ⊗ C̄)ex + (IN ⊗ Ā)ef + (IN ⊗ B̄)efτ

− ay − βH(y) + w(t),
(4.17)
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where H(y) =
(

hT (y1), · · · , h
T (yN)

)T
∈ RNn.

To verify the stability of the errors system (4.17), construct the Lyapunov

function as

V (t) = eTx M̃ex. (4.18)

Then based on Lemma 1.19, we have

V (ᾱ)(t) ≤ 2eTx M̃e(ᾱ)x

= 2eTx M̃
(

− (IN ⊗ C̄)ex + (IN ⊗ Ā)ef

+ (IN ⊗ B̄)efτ − ay − βH(y) + w(t)
)

.

(4.19)

According to the properties of Kronecker product, one can obtain

2eTx M̃
(

− (IN ⊗ C̄)ex
)

= −2eTx (M ⊗ In)(IN ⊗ C̄)ex

= −2eTx (M ⊗ C̄)ex

= −eTx (M ⊗ C̄)ex − eTx (M ⊗ C̄)T ex

= −eTx
(

M ⊗ (C̄ + C̄T )
)

ex.

(4.20)

According to Lemma 1.22, denoting Ξ = Ξ1, ξ = 1, it yields

2eTx M̃(IN ⊗ Ā)ef

≤ eTx M̃(IN ⊗ Ā)Ξ1(IN ⊗ Ā)TM̃ex + eTf Ξ
−1
1 ef

≤ eTx
(

(M ⊗ Ā)Ξ1(M ⊗ Ā)T + (IN ⊗Θ)Ξ−1
1 (IN ⊗Θ)

)

ex.

(4.21)

According to Lemma 1.22, denoting Ξ = Ξ2, ξ = 1, it yields

2eTx M̃(IN ⊗ B̄)efτ

≤ eTx M̃(IN ⊗ B̄)Ξ2(IN ⊗ B̄)TM̃ex + eTfτΞ
−1
2 efτ

≤ eTx
(

(M ⊗ B̄)Ξ2(M ⊗ B̄)T
)

ex + eTxτ

(

(IN ⊗Θ)Ξ−1
2 (IN ⊗Θ)

)

exτ
.

(4.22)

Note that yTi h(yi) = ‖yi‖, one has

2eTx M̃
(

− βH(y)
)

= −2β
N
∑

i=1

yTi h(yi) = −2β
N
∑

i=1

‖yi‖. (4.23)
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Note that yTi wi(t) ≤ ‖yi‖‖wi(t)‖ ≤ ρ‖yi‖, one has

2eTx M̃w(t) = 2

N
∑

i=1

yTi wi(t) ≤ 2

N
∑

i=1

‖yi‖‖wi(t)‖ ≤ 2ρ

N
∑

i=1

‖yi‖. (4.24)

Thus based on β > ρ, (4.15),(4.16), and (4.20)-(4.24), one can obtain that

V (ᾱ)(t)

≤ eTx
(

− 2(M ⊗ C̄) + (M ⊗ Ā)Ξ1(M ⊗ Ā)T + (IN ⊗Θ)Ξ−1
1 (IN ⊗Θ)

+ (M ⊗ B̄)Ξ2(M ⊗ B̄)T − 2a(M2 ⊗ In)
)

ex

+ eTxτ

(

(IN ⊗Θ)Ξ−1
2 (IN ⊗Θ)

)

exτ
− 2β

N
∑

i=1

‖yi‖+ 2ρ
N
∑

i=1

‖yi‖

≤ eTx
(

− 2(M ⊗ C̄) + (M ⊗ Ā)Ξ1(M ⊗ Ā)T + (IN ⊗Θ)Ξ−1
1 (IN ⊗Θ)

+ (M ⊗ B̄)Ξ2(M ⊗ B̄)T − 2a(M2 ⊗ In) + λ̃INn

)

ex

+ eTxτ

(

(IN ⊗Θ)Ξ−1
2 (IN ⊗Θ)− δ̃INn

)

exτ
− λ̃eTx ex + δ̃eTxτ

exτ

= eTxΦex + eTxτ
Ψexτ

− λ̃eTx ex + δ̃eTxτ
exτ

≤ −λ̃eTx ex + δ̃eTxτ
exτ

≤ −
λ̃

λmax(M̃)
eTx M̃ex +

δ̃

λmin(M̃)
eTxτ

M̃exτ

= −λV (t) + δV (t− τ),

(4.25)

where λ̃ = λmax(M̃)λ, δ̃ = λmin(M̃)δ.

Now, consider the following fractional-order linear delayed system

{

Z(ᾱ)(t) = −λZ(t) + δZ(t− τ), ᾱ ∈ (0, 1],

Z(t) = φ(t), t ∈ [−τ, 0],
(4.26)

where the initial condition is same as that of system (4.25). Based on Lemma 1.18,

if λ > δ and there has no purely imaginary root for the following characteristic

equation of system (4.26)

sᾱ + λ− δe−sτ = 0, (4.27)

then, the zero solution of system (4.26) is Lyapunov globally asymptotically sta-

ble, which means that Z(t) → 0 as t → +∞. For Eq. (4.27), suppose there exists

a pure imaginary root s = ηi, η ∈ R. If η > 0, s = ηi = |η|(cos π
2
+ i sin π

2
), and if

91



4. DISTRIBUTED CONSENSUS TRACKING OF UNKNOWN
NONLINEAR DELAYED FOMASS WITH EXTERNAL
DISTURBANCES BASED ON ABC ALGORITHM

η < 0, s = ηi = |η|(cos π
2
− i sin π

2
). Then substituting s = ηi = |η|(cos π

2
± i sin π

2
)

into Eq. (4.27) yields

|η|ᾱ
(

cos
ᾱπ

2
+ i sin(±

ᾱπ

2
)
)

+ λ− δ
(

cos(ητ)− i sin(ητ)
)

= 0. (4.28)

Separate Eq. (4.28) into real and imaginary parts as

{

|η|ᾱ cos ᾱπ
2
+ λ = δ cos(ητ),

|η|ᾱ sin(± ᾱπ
2
) = −δ sin(ητ).

(4.29)

From Eq. (4.29), it can be deduced as

|η|2ᾱ + 2λ|η|ᾱ cos
ᾱπ

2
+ λ2 − δ2 = 0. (4.30)

Since |η|ᾱ > 0, cos ᾱπ
2

> 0, λ2 > δ2, so Eq. (4.30) cannot hold. Therefore, the pure

imaginary root does not exist in characteristic Eq. (4.27). According to Lamma

1.18, Z(t) is Lyapunov globally asymptotically stable. With Lamma 1.17, one

can obtained that λmin(M̃)‖ex‖
2 ≤ V (t) ≤ Z(t) → 0, t → +∞, which implies

that ‖ex‖2 → 0, t → +∞. Therefore, the proof is completed. �

Remark 4.9 Theorem 4.8 shows us how to select the coupling gain a > 0 in the

control protocol (4.13). From the definition of Φ1 in Theorem 4.8, it can be found

that the coupling gain a > 0 should be selected large in order to make the LMI

(4.15) hold.

Remark 4.10 In Theorem 4.8, the coupling gain β > 0 in the control protocol

(4.13) is related to the bound of the external disturbances. The value of the

coupling gain β > 0 must be larger than the bound of the external disturbances.

In special, if there are no external disturbances, the value of the coupling gain β

can be set as zero.

Remark 4.11 Compared with the synchronization of delayed fractional-order

neural networks where there are only a single master and a single slave system

(Bao et al., 2015; Chen et al., 2015b; Lakshmanan et al., 2018; Vaseghi et al.,

2017; Zhang et al., 2018a), in this chapter, the synchronization for a single mater

and multiple slaves delayed fractional-order neural networks is considered, where

the multiple salves systems are coupled with a connected graph communication

topology. Different from Bao et al. (2015); Chen et al. (2015b); Lakshmanan et al.
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(2018); Vaseghi et al. (2017); Zhang et al. (2018a), in this chapter, to prove the

efficiency of the proposed synchronization controller in theory, the design of the

Lyapunov function should depend on the graph communication topology, which is

full of challenge due to the structure of the graph.

4.4.2 Continuous distributed control algorithm

In subsection 4.4.1, the discontinuous control protocol (4.13) can cause the nega-

tive chattering effect in applications. Thus, to overcome this drawback, a contin-

uous distributed control protocol is further designed to deal with the consensus

tracking. Based on the boundary layer technique (Young et al., 1999), we propose

the following continuous control protocol as

ui(t) = −ayi − βh̄i(yi), i = 1, 2, · · · , N, (4.31)

where yi =
∑N

j=0 ai,j(xi − xj) and a, β > 0 are constant coupling gains. h̄i(yi) is

a nonlinear continuous function defined as

h̄i(yi) =

{ yi
‖yi‖ , ‖yi‖ > di,
yi
di
, ‖yi‖ ≤ di,

(4.32)

where di > 0 represents the width of the boundary layers.

Theorem 4.12 (Hu et al., 2019c) Suppose that Assumptions 4.3-4.5 hold, the

tracking errors of FOMASs (4.10) and (4.11) are UUB with the continuous control

algorithm (4.31), if β ≥ ρ, and there exist some constants λ > δ > 0, a > 0 and

positive definite matrixes Ξ1 and Ξ2 such the following LMIs hold:

Φ =

[

Φ1 IN ⊗Θ

∗ −Ξ1

]

< 0, (4.33)

Ψ =

[

−λmin(M̃)δINn IN ⊗Θ

∗ −Ξ2

]

< 0, (4.34)

where Φ1 and M̃ are defined as Theorem 4.8, Θ = diag{θ1, · · · , θn} with θi defined

as Assumption 4.3. Moreover, the tracking errors ex asymptotically converge to
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the following bounded region

D =

{

ex : ‖ex‖
2 ≤

2(β + ρ)
∑N

i=1 di

λmin(M̃)(λ− δ)

}

. (4.35)

Proof: Substitute the protocol (4.31) into the tracking errors system (4.12), it

can be obtained as

e(ᾱ)x (t) =− (IN ⊗ C̄)ex + (IN ⊗ Ā)ef + (IN ⊗ B̄)efτ

− ay − βH̄(y) + w(t),
(4.36)

where H̄(y) = [h̄T
1 (y1), · · · , h̄

T
N(yN)]

T ∈ RNn.

The ᾱ-order derivative of Lyapunov function candidate (4.18) with errors

system (4.36) is

V (ᾱ)(t) ≤ 2eTx M̃e(ᾱ)x

= 2eTx M̃
(

− (IN ⊗ C̄)ex + (IN ⊗ Ā)ef + (IN ⊗ B̄)efτ

− ay − βH̄(y) + w(t)
)

.

(4.37)

According to the property of Eq. (4.31), the following three cases are discussed.

(i) ‖yi‖ > di, i = 1, 2, · · · , N .

For this case, based on Eqs. (4.23) and (4.24), one can obtained

2eTx M̃
(

− βH̄(y) + w(t)
)

= 2(−β + ρ)
N
∑

i=1

‖yi‖ < 0. (4.38)

Substituting Eqs. (4.20)-(4.22) and(4.38) into Eq. (4.37) yields

V (ᾱ)(t) < −λV (t) + δV (t− τ). (4.39)

(ii) ‖yi‖ ≤ di, i = 1, 2, · · · , N .

In this case, note that yTi h̄i(yi) = ‖yi‖
2/di ≤ di, one has

2eTx M̃
(

− βH̄(y)
)

= −2β
N
∑

i=1

yTi h̄i(yi) = −2β
N
∑

i=1

‖yi‖
2/di ≤ 2β

N
∑

i=1

di. (4.40)
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Note that yTi wi(t) ≤ ‖yi‖‖wi(t)‖ ≤ ρ‖yi‖ ≤ ρdi, one has

2eTx M̃w(t) = 2

N
∑

i=1

yTi wi(t) ≤ 2

N
∑

i=1

‖yi‖‖wi(t)‖ ≤ 2ρ

N
∑

i=1

‖yi‖ ≤ 2ρ

N
∑

i=1

di. (4.41)

Therefore, one can deduce that

2eTx M̃
(

− βH̄(y) + w(t)
)

≤ 2(β + ρ)

N
∑

i=1

di. (4.42)

Substituting Eqs. (4.20)-(4.22), (4.42) into Eq. (4.37) yields

V (ᾱ)(t) < −λV (t) + δV (t− τ) + 2(β + ρ)
N
∑

i=1

di. (4.43)

(iii) y satisfies neither Case (i) nor Case (ii).

Without loss of generality, we suppose |yi| > di, i = 1, 2, · · · , κ, and |yi| ≤

di, i = κ + 1, κ + 2, · · · , N , (1 < κ < N). For this case, according to (4.38) and

(4.42), one can get that

2eTx M̃
(

− βH̄(y) + w(t)
)

≤ 2(β + ρ)

N
∑

i=κ+1

di. (4.44)

Thus, from Eqs. (4.20)-(4.22) and (4.44), one has

V (ᾱ)(t) < −λV (t) + δV (t− τ) + 2(β + ρ)
N
∑

i=κ+1

di. (4.45)

Therefore, based on the above three discussed cases, for all y ∈ RNn, we have

V (ᾱ)(t) < −λV (t) + δV (t− τ) + d, (4.46)

where d = 2(β + ρ)
∑N

i=1 di.

Consider the following system:

Z(ᾱ)(t) = −λZ(t) + δZ(t− τ) + d, (4.47)
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where Z(t) ≥ 0(Z(t) ∈ R), and has the same initial conditions with V (t). Based

on Lemma 1.17, one can obtain that 0 < V (t) < Z(t). With Properties 1.7 and

1.8, we have

(

Z(t)− d̄
)(ᾱ)

(t) = −λ
(

Z(t)− d̄
)

+ δ
(

Z(t− τ)− d̄
)

, (4.48)

where d̄ = d/(λ− δ). Taking Z̄(t) = Z(t)− d̄, then system (4.48) can be trans-

formed into

Z̄(ᾱ)(t) = −λZ̄(t) + δZ̄(t− τ). (4.49)

Applying the similar proof procedure in Theorem 4.8, we can obtain that Z̄(t) =

Z(t)− d̄ → 0, as t → +∞, which implies that λmin(M̃)‖ex‖
2 ≤ V (t) ≤ Z(t) → d̄,

as t → +∞. Therefore, the tracking errors can asymptotically converge to the

following bounded region

‖ex‖
2 ≤

d̄

λmin(M̃)
=

2(β + ρ)
∑N

i=1 di

λmin(M̃)(λ− δ)
, (t → +∞), (4.50)

which can be made small enough by choosing proper parameter di. �

Corollary 4.13 If all the widths di of the boundary layers are equal in controller

(4.31), i.e., d1 = d2 = · · · = dN = d, the bounded region in Theorem 4.12 can be

simplified as

D =

{

ex : ‖ex‖
2 ≤

2(β + ρ)Nd

λmin(M̃)(λ− δ)

}

. (4.51)

Remark 4.14 In this chapter, the distributed consensus tracking of nonlinear

delayed FOMASs with external disturbances is investigated. In fact, the results

are also effective for consensus tracking of FOMASs with any nonlinear dynamics

as
{

x
(α)
0 (t) = f(x0(t), x0(t− τ)), leader,

x
(α)
i (t) = f(xi(t), xi(t− τ)) + ui(t) + wi(t), followers,

where nonlinear function f(·) satisfies Assumption 4.3, and external disturbance

wi(t) satisfies Assumption 4.4.

Remark 4.15 When the number of the followers is chosen as N = 1, the consen-

sus tracking methods studied in this chapter will degenerate into the case of single
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mater-single slave synchronization between two delayed fractional-order neural

networks (Bao et al., 2015; Chen et al., 2015b; Zhang et al., 2018a). That is to

say, this chapter is an extension of the traditional master-slave synchronization

to more general case of FOMASs.

Remark 4.16 When the fractional order ᾱ = 1, the consensus tracking problem

studied in this chapter will reduce to the case of integer-order MASs (Cui et al.,

2017; Ma, 2015; Ma et al., 2016) as

{

ẋ0(t) = −Cx0(t) + Af(x0(t)) +Bf(x0(t− τ)), leader,

ẋi(t) = −Cxi(t) + Af(xi(t)) +Bf(xi(t− τ)) + ui(t) + wi(t), followers,

which is a special case of this chapter.

Remark 4.17 For the master-slave chaos synchronization, one of the important

applications is in terms of the secure communication (Lakshmanan et al., 2018;

Vaseghi et al., 2017). In this chapter, the extension provides some interesting

viewpoints in the real applications. More specifically, it is the security transmis-

sion that plays an important role in the application of chaos synchronization.

For single master-multiple slaves case studied in this chapter, the single master

system (leader) can avoid sending information directly to all the slave systems

(followers), and the single master system (leader) just needs transmit its infor-

mation to a part of informed followers, and other followers can obtain the leader’s

information indirectly by interacting with their neighborhoods. Finally, the single

master-multiple slaves chaos synchronization can be achieved.

4.5 Simulations

4.5.1 ABC algorithm-based parameter identification results

For the initialization of Algorithm 2, the number of sample points is chosen as 200

and the step size is 0.01. For ABC algorithm, SN = 100, maximum iterations is

200, the control parameter limit = 15.

• Case 1: α = 0.97

Consider FOMASs with one leader and six followers. The communication

topology is given as Fig. 4.1. Assume that the leader and followers own homoge-

97



4. DISTRIBUTED CONSENSUS TRACKING OF UNKNOWN
NONLINEAR DELAYED FOMASS WITH EXTERNAL
DISTURBANCES BASED ON ABC ALGORITHM

0v

1
v

3
v

4
v

2
v

5
v v

Fig. 4.1. The communication topology with one leader and six followers

nous nonlinear dynamics with two-dimensional fractional-order delayed NNs as

x
(α)
i (t) = −Cxi(t) + Af(xi(t)) +Bf(xi(t− τ)), i = 0, 1, · · · , 6, (4.52)

where xi(t) = [xi1(t), xi2(t)]
T , α = 0.97, C = I2, τ = 1, f(xi(t)) = tanh(xi(t)).

Obviously, from Assumption 4.3, it is easily obtained that Θ = I2. The feedback

matrix A and the delay feedback matrix B are respectively given as

A = [âij ]2×2 =

[

2.0 −0.1
−5.0 2.0

]

, B = [b̂ij ]2×2 =

[

−1.5 −0.1
−0.2 −1.5

]

.

Under the above parameters, each agent has a chaotic attractor (Zhang et al.,

2018a), which is shown in Fig. 4.2.

Since the nonlinear dynamics of all the agents are homogenous, we just need

identify one agent. Without loss of generality, we select agent 1 as the identified

object. For the purpose of showing the performance of Algorithm 2 more clearly

in terms of tables and figures, we randomly choose the fractional order α = 0.97,

system parameters â11 = 2.0, b̂22 = −1.5 as unknown parameters which need to

be identified. Then the corresponding identified system is

x̃
(α̃)
1 (t) = −C̃x̃1(t) + Ãf(x̃1(t)) + B̃f(x̃1(t− τ)), (4.53)
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Fig. 4.2. Chaotic behavior of agent i with initial value [2, 1.5]T

with C̃ = I2, and

Ã = [ãij ]2×2 =

[

ã11 −0.1
−5.0 2.0

]

, B̃ = [b̃ij ]2×2 =

[

−1.5 −0.1

−0.2 b̃22

]

,

other definitions in (4.53) are the same as those of (4.52). We set the searching

space Ω as (α̃, ã11, b̃22) ∈ [0.01, 1]× [1, 3]× [−2,−1]. The corresponding objective

function is

F1(α̃, ã11, b̃22) =
K
∑

k=0

‖x1k − x̃1k‖. (4.54)

Thus, the parameter identification problem of system (4.52) becomes a functional

optimization problem where the objective function is Eq. (4.54). Obviously, the

smaller the objective function value F1 is, the better combination of parameters

(α̃, ã11, b̃22) is.

Firstly, the statistical results in terms of the best, the mean and the worst

identified parameters obtained by ABC algorithm are given in Table 4.1, where

30 independent runs are operated. Table 4.1 demonstrates that the unknown

parameters of system (4.52) can be well identified by ABC algorithm, even though

the worst identified values can also have a high accuracy. Figs. 4.3 and 4.4 show

the convergence profile of the evolutionary processes in terms of identified values,

the corresponding relative error values and the fitness values in a single run,

which further demonstrate the effectiveness of the proposed ABC algorithm-based

parameter identification method.
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Table 4.1: Statistical results for system (4.52) over 30 independent runs in Case
1

Best Mean Worst

α̃ 0.969998942018956 0.969999169844999 0.970181112780390
| α̃−0.97

0.97 | 1.09E-06 3.26E-05 1.87E-04
ã11 2.000005093988760 1.999998453254200 1.999682379184920

| ã11−2
2 | 2.55E-06 3.06E-05 1.59E-04

b̃22 -1.500003022791350 -1.500014242901070 -1.501174138236190

| b̃22−(−1.5)
−1.5 | 2.02E-06 1.01E-04 7.83E-04

F1 2.67E-04 1.32E-03 6.65E-03
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Fig. 4.3. Evolutionary curve of the identified parameters values with ABC on
system (4.52) in a single run in Case 1
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Fig. 4.4. Evolutionary curve in terms of the relative errors and objective function
values with ABC on system (4.52) in a single run in Case 1

• Case 2: α = 0.65

In order to test the efficiency of the ABC algorithm in identifying different

fractional derivative order, in this case we assume that the real fractional order

α in system (4.52) is 0.65, which need to be identified. The other experimental

setup is the same with that in Case 1.

Similarly, 30 independent runs are performed. The statistical results in terms

of the best, the mean and the worst identified parameters obtained by ABC algo-

rithm are given in Table 4.2, which demonstrates that the unknown parameters of

system (4.52) can be well identified by ABC algorithm. Figs. 4.5 and 4.6 display

the convergence profile of the evolutionary processes in terms of identified val-

ues, the corresponding relative error values and the fitness values in a single run,

which further illustrate the effectiveness of the proposed ABC algorithm-based

parameter identification method.

4.5.2 Simulation results on distributed consensus tracking

In this subsection, we will achieve the distributed consensus tracking based on

the identified parameters. We assume that the real FOMASs are modeled as Case

1. Based on the identified values obtained in Table 4.1, the identified value can

be approximated as α̃ = 0.97, ã11 = 2.0, b̃22 = −1.5, thus the dynamics of the six
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Table 4.2: Statistical results for system (4.52) over 30 independent runs in Case
2

Best Mean Worst

α̃ 0.649999999996805 0.649999999279857 0.650000009077807
| α̃−0.65

0.65 | 4.92E-12 4.57E-09 1.40E-08
ã11 1.999999999967040 2.000000003700050 2.000000030544100

| ã11−2
2 | 1.65E-11 3.12E-09 1.53E-08

b̃22 -1.500000002447100 -1.500000001810420 -1.500000492509220

| b̃22−(−1.5)
−1.5 | 1.63E-09 3.07E-08 3.28E-07

F1 2.62E-08 3.04E-07 2.76E-06
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Fig. 4.5. Evolutionary curve of the identified parameters values with ABC on
system (4.52) in a single run in Case 2
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Fig. 4.6. Evolutionary curve in terms of the relative errors and objective function
values with ABC on system (4.52) in a single run in Case 2

followers can be modeled as

x
(ᾱ)
i (t) = −C̄xi(t) + Āf(xi(t)) + B̄f(xi(t− τ)) + ui(t) + wi(t),

i = 1, 2, · · · , 6,
(4.55)

and the dynamic of the leader can be written as

x
(ᾱ)
0 (t) = −C̄x0(t) + Āf(x0(t)) + B̄f(x0(t− τ)), (4.56)

where ᾱ = 0.97, C̄ = I2,

Ā = [āij ]2×2 =

[

2.0 −0.1
−5.0 2.0

]

, B̄ = [b̄ij ]2×2 =

[

−1.5 −0.1
−0.2 −1.5

]

,

other definitions in (4.55) and (4.56) are the same as those of (4.52).

The initial conditions are selected as x0 = [2, 1.5]T , x1 = [4,−2.5]T , x2 =

[1,−1.2]T , x3 = [3,−3.4]T , x4 = [2.5,−3.7]T , x5 = [1.5, 4]T , x6 = [2, 3]T . The

external disturbances are given as: w1j(t) = 0.3 cos(t + 2), w2j(t) = 0.6 sin(t −

2), w3j(t) = 0.25 cos(3t − 5), w4j(t) = 0.55 sin(4t + 4), w5j(t) = 0.5 sin(−3t −

1), w6j(t) = 0.7 cos(6t − 3), for j = 1, 2. Based on Theorems 4.8 and 4.12, we

choose a = 21, β = 2, λ = 0.3, δ = 0.28, then the LMIs (4.15),(4.16) and (4.33),

(4.34) hold.

Firstly, the state trajectories of consensus tracking by nonlinear discontinuous
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control protocol (4.13) are shown in Fig. 4.7, which shows that the six followers

can track the leader’s states quickly. Besides the phase portraits are also displayed

in Fig. 4.8, from which we can find that all agents can successfully synchronize

to the chaotic attractor of the leader, which can further verify the feasibility of

Theorem 4.8. The corresponding control inputs are also given in Fig. 4.9.

(a) State trajectories of xi1(i = 0, 1, · · · , 6) (b) State trajectories of xi2(i = 0, 1, · · · , 6)

Fig. 4.7. State trajectories of FOMASs (4.55) and (4.56) by control protocol
(4.13)

(a) Phase portraits in 2D
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(b) Phase portraits in 3D

Fig. 4.8. Phase portraits for all agents (i = 0, 1, · · · , 6) by control protocol
(4.13)
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4.5 Simulations

(a) Control inputs of ui1(i = 1, · · · , 6) (b) Control inputs of ui2(i = 1, · · · , 6)

Fig. 4.9. Control inputs for control protocol (4.13)

Then, for boundary layers widths di in Eq. (4.32), in order to study the influ-

ence of the parameters di, two cases are considered as: di = 0.6, (i = 1, 2, · · · , 6)

and di = 0.1, (i = 1, 2, · · · , 6). The evolutionary trajectories of consensus track-

ing by nonlinear continuous control protocol (4.31) are given in Figs. 4.10 and

4.13, where the consensus tracking errors can become smaller if the value of the

boundary layers widths di are smaller. Besides, the corresponding phase portrait

are given in Figs. 4.11 and 4.14, where all agents can successfully synchronize to

the chaotic attractor of the leader. Furthermore, the chattering behavior can be

avoided which can be verified in Figs. 4.12 and 4.15. Therefore, Theorem 4.12 is

validated.
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(a) State trajectories of xi1(i = 0, 1, · · · , 6)
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(b) State trajectories of xi2(i = 0, 1, · · · , 6)

Fig. 4.10. State trajectories of FOMAS (4.55) and (4.56) by control protocol
(4.31) with di = 0.6(i = 1, 2, · · · , 6)
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(a) Phase portraits in 2D
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(b) Phase portraits in 3D

Fig. 4.11. Phase portraits for all agents (i = 0, 1, · · · , 6) by control protocol
(4.31) with di = 0.6(i = 1, 2, · · · , 6)

106

paper3/chapter3figs/EPS/state_sat_0.6_x1_undirected.eps
paper3/chapter3figs/EPS/state_sat_0.6_x2_undirected.eps
paper3/chapter3figs/EPS/Phase_2D_sat_0.6_undirected.eps
paper3/chapter3figs/EPS/Phase_3D_sat_0.6_undirected.eps


4.5 Simulations

t
0 5 10 15 20 25 30 35 40 45 50

u
i1

(t
)

-150

-100

-50

0

50

100

150

u
11

(t)

u
21

(t)

u
31

(t)

u
41

(t)

u
51

(t)

u
61

(t)

49 49.5 50
-1

-0.5

0

0.5

1

(a) Control inputs of ui1(i = 1, · · · , 6)
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(b) Control inputs of ui2(i = 1, · · · , 6)

Fig. 4.12. Control inputs for control protocol (4.31) with di = 0.6(i =
1, 2, · · · , 6)
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(a) State trajectories of xi1(i = 0, 1, · · · , 6)
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(b) State trajectories of xi2(i = 0, 1, · · · , 6)

Fig. 4.13. State trajectories of FOMAS (4.55) and (4.56) by control protocol
(4.31) with di = 0.1(i = 1, 2, · · · , 6)
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Fig. 4.14. Phase portraits for all agents (i = 0, 1, · · · , 6) by control protocol
(4.31) with di = 0.1(i = 1, 2, · · · , 6)
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(a) Control inputs of ui1(i = 1, · · · , 6)
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(b) Control inputs of ui2(i = 1, · · · , 6)

Fig. 4.15. Control inputs for control protocol (4.31) with di = 0.1(i =
1, 2, · · · , 6)

4.6 Conclusion

In this chapter, the distributed consensus tracking of unknown nonlinear delayed

FOMASs with external disturbances is investigated. Firstly, the parameter identi-

fication of the unknown nonlinear delayed FOMASs is converted into a functional

optimization problem by treating the unknown fractional orders as additional de-

cision variables. Then ABC algorithm-based parameter identification method is
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4.6 Conclusion

proposed to solve the functional optimization problem. Secondly, based on the

identified parameters, a discontinuous control protocol is put forward to solve the

consensus tracking problem by applying the inequalities of the fractional deriva-

tive and the comparison principle of the linear fractional equation with delay,

and a new sufficient condition is established. Thirdly, in order to eliminate the

chattering behavior caused by the above discontinuous control protocol, a con-

tinuous control protocol is further designed, and the UUB tracking errors can

be obtained which can be tuned as small as enough by selecting proper parame-

ters. Simulations are provided to show the efficiencies of the proposed parameter

identification scheme and the two control protocols.
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5.1 Introduction

Note that the results obtained in Chapters 2, 3 and 4 assume that the control

input of a leader is either equal to zero or available to all the followers, which

has some limitations and lacks flexibility. More specifically, for the purpose of

leading the followers to achieve special tasks, the leader’s input need to be nonzero

or time-varying. Furthermore, it is impossible for all the followers to know the

leader’s control input, when they are in an uncooperative scenario. Therefore, it

is significant and essential to consider the leader with nonzero input, although it

is difficult to address because of the limited information accessibility. Recently,

some works have been done to overcome this difficulty in different distributed

cooperative control problems. For example, in Yuan & He (2017), a leader of

bounded input was considered in the cooperative output regulation of MASs. In

Yu et al. (2018), a leader with bounded input was taken into account for the time-

varying formation tracking. However, for distributed cooperative synchronization

of FOMASs, a few researchers have considered the leader with bounded input.

Gong (2017) studied the distributed synchronization of FOMAS with a leader of

bounded input, while the time delay was not considered which is unavoidable in

practice as mentioned Chapters 2 and 4. Therefore, in this chapter, it is full of

challenge and meaningful to consider the leader’s bounded input and the time

delay simultaneously.

Recently, the investigation of heterogeneous MASs has become a hot topic in

distributed cooperative control. Heterogeneity may occur because of the diverse

designs and operating factors. For example, Li et al. (2018) considered hetero-

geneous input disturbances in the rendezvous problem. Jain & Ghose (2017a,b)

studied the formation control of multi-vehicles with heterogenous control gains.

In addition, MASs with heterogenous dynamics were also investigated in Devasia

(2017); Guo et al. (2018); Meng et al. (2018). However, most results about the

heterogeneous MASs are based on the integer-order models, a few results have

been obtained based on the fractional-order models (Gong, 2017). Therefore,

in this chapter, we consider the delayed nonlinear FOMASs with heterogenous

control gains, which is more reasonable and practical.
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5.1 Introduction

As mentioned in Chapter 4, there may exist different kinds of uncertainties

and nonlinearities in practical MASs, distributed cooperative control of uncer-

tain nonlinear MASs has attracted much attentions. For instance, the MASs

with uncertain parameters were considered in Yazdani & Haeri (2017). Khalili

et al. (2018) studied the MASs with modelling uncertainty and known nonlinear-

ity. In Chen et al. (2017), unknown control directions were taken into account

in the consensus of nonlinear MASs. In addition, Gong & Lan (2018a,b) in-

vestigated the unknown nonlinear FOMASs using neural network-based robust

adaptive control algorithm. However, all the results mentioned above are based

on the known differential orders, while in some situations, the structure of the

MASs may be known and the differential orders and system parameters are un-

known, which need to be identified beforehand. Thus, based on a similar spirit,

the unknown fractional orders and system parameters are further considered in

the distributed cooperative synchronization of heterogenous nonlinear delayed

FOMASs with unknown leader.

Differential evolution (DE), as an efficient AIOAs, was proposed in 1995 (Storn

& Price, 1997). Many researches have demonstrated that DE can successfully

tackle various optimization problems appeared in different fields, such as economic

dispatch, controller design and tuning, and data clustering (Das & Suganthan,

2011). Compared to other AIOAs, the concept of DE is simple enough to be

implemented easily, and it owns quick convergence. Therefore, in this chapter, the

DE is employed to identify the unknown fractional orders and system parameters

of the nonlinear delayed FOMASs, which not only can broad the application fields

of the DE, but also can offer a promising parameter identification method for the

FOMASs at the same time.

Under the above discussions, in this chapter, distributed cooperative syn-

chronization of uncertain nonlinear delayed FOMASs with unknown leader and

heterogenous control gains is addressed. Firstly, an efficient DE-based parameter

identification scheme is put forward to identify the unknown nonlinear delayed

FOMASs. Then based on the identified fractional orders and system parameters,

a discontinuous distributed control protocol is designed to achieve the distributed

cooperative synchronization by using the fractional-order derivative inequality

and comparison principle of the linear fractional equation with delay. Thirdly,
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for the purpose of overcoming the chattering phenomenon resulting from the dis-

continuous controller, a continuous control protocol is further put forward, where

the UUB tracking errors can be obtained and tuned small enough with appropri-

ate parameters.

Compared with the existing works, our contribution are as follows. Firstly,

different with Cui et al. (2017); Ma et al. (2016); Wen et al. (2013) which con-

sidered the integer-order MASs, this chapter considers the delayed MASs with

fractional-order dynamics, moreover the unknown leaders, uncertain parameters,

and the heterogenous control gains are also considered. Secondly, different from

Chen et al. (2018c); Gong et al. (2019); Shen & Cao (2012); Yang et al. (2014a);

Yu et al. (2017b) which considered linear FOMASs without/with time delay, due

to the nonlinear dynamics is inevitable in practice, this chapter considers non-

linear FOMASs with time delay. Thirdly, different from Chen et al. (2018c);

Cui et al. (2017); Hu et al. (2019c); Ma et al. (2016); Shen & Cao (2012); Wen

et al. (2013); Yang et al. (2014a); Yu et al. (2017b); Zhu et al. (2017) which have

not considered the leader’s control input, in this chapter we consider the situa-

tion that the leader owns unknown bounded input, which could be more flexible

and general in the distributed cooperative synchronization. Fourthly, different

from Chen et al. (2017); Gong & Lan (2018a,b); Khalili et al. (2018); Yazdani &

Haeri (2017) where the differential orders were assumed to be known, while in

this chapter differential orders and system parameters are both considered to be

unknown, then a DE-based parameter identification method is proposed to iden-

tity the unknown parameters of the delayed heterogenous nonlinear FOMASs.

Fifthly, different from Ahandani et al. (2018); Panahi et al. (2016), which only

considered the parameter identification problem, this chapter also applies it to

the distributed cooperative synchronization. Furthermore, it is worth noting that

this chapter makes a promising link between the artificial intelligent technique

and distributed cooperative synchronization of FOMASs or other control fields.

The rest of this chapter is organized as following. In Section 5.2, the de-

scription of distributed cooperative synchronization is given. In Section 5.3, a

DE-based parameter identification scheme for unknown nonlinear delayed FO-

MASs is put forward. In Section 5.4, based on the identified parameters, two

powerful nonlinear control protocols are proposed to deal with the distributed

cooperative synchronization. Finally, the efficiencies of the proposed DE-based
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parameter identification method and the designed control algorithms are both

verified based on the simulation experiments.

5.2 Problem description for synchronization of FO-

MASs

Given FOMASs with one leader labeled as 0 and N followers labeled as 1 to N ,

the dynamics of FOMASs are described as

x
(α)
i (t) = −Cxi(t) + Af(xi(t)) +Bf(xi(t− τ)) + ui(t), i = 0, 1, · · · , N, (5.1)

where α ∈ (0, 1], xi(t) = [xi1(t), · · · , xin(t)]
T ∈ Rn denotes state vector of the ith

agent. The nonlinear vector function f(xi(t)) = [f1(xi1(t)), · · · , fn(xin(t))]
T ∈ Rn

and constant time delay τ > 0. C = [cij ]n×n, A = [âij ]n×n and B = [b̂ij ]n×n

denote the corresponding weight matrices. ui(t) ∈ Rn is the control input vector

for agent i.

Definition 5.1 Considered any initial conditions of FOMASs (5.1), the dis-

tributed cooperative synchronization is obtained, if

lim
t→∞

‖xi(t)− x0(t)‖ = 0, ∀ i = 1, 2, · · · , N.

To achieve the distributed cooperative synchronization, the following Assump-

tions and Lemmas are needed.

Assumption 5.2 The nonlinear functions fi are Lipschitz continuous with Lip-

schitz constants θi > 0 , such that

|fi(µ)− fi(ν)| < θi|µ− ν|, ∀ µ, ν ∈ R, i = 1, · · · , n.

Assumption 5.3 The leader’s control input u0(t) satisfies ‖u0(t)‖ ≤ ρ < +∞,

where ρ ≥ 0.

Assumption 5.4 The communication topology Ḡ among the followers and leader

has a directed spanning tree with the leader as the root node.
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5.3 DE-based parameter identification for FOMASs

5.3.1 Differential evolution

Differential evolution (DE), belonging to AIOAs, was reported by Storn and Price

in 1995 (Das & Suganthan, 2011; Storn & Price, 1997). Contrasted with other

AIOAs, DE has the nice properties with simple idea, easy fulfillment and fast

searching speed. Therefore, DE has wide applications in complex continuous

optimization problems appeared in various fields (Das & Suganthan, 2011). In

addition, diverse searching equations of DE have been designed. In this chapter,

DE/rand/1/bin version is used. The detailed information of DE can be referred

to Das & Suganthan (2011); Storn & Price (1997). The main operators are as

following:

Mutation operator: A mutated individual Vi is produced as

Vi = Xr1 + F (Xr2 −Xr3), (5.2)

where r1, r2, r3 are three different integers randomly chosen from 1 to SN (the

size of the population), F > 0 denotes the scale factor.

Crossover operator: A trial vector Ti is generated by recombination of Xi

and Vi as

ti,j =

{

νi,j, if r ≤ CR or j = jrand,
xi,j , otherwise,

(5.3)

where i = 1, 2, · · · , SN , j = 1, 2, · · · , D, ti,j denotes the jth element of the trial

vector Ti, r is a uniformly random value between 0 and 1, CR ∈ [0, 1] is to

control the ratio of selection between the parent and mutated vectors, and jrand

is a random integer from 1 to D to guarantee that at least one element of Vi will

be inherited.

Selection operator: Comparison between the trail vector Ti and Xi is con-

ducted and the superior one will be kept to the next generation, namely

Xi =







Ti, if f(Xi) > f(Ti)
(for minimization problem, vice versa),
Xi, otherwise.

(5.4)
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5.3.2 The proposed DE-based parameter identification scheme

Based on the above efficient DE and the parameter identification model intro-

duced in Subsection 4.3.1, the following parameter identification scheme for FO-

MASs is proposed as Algorithm 3 (Hu et al., 2019b).

Algorithm 3 DE-based parameter identification scheme

1: Initialize the parameters for DE and FOMASs (5.1)

2: Create the initial population based on the feasible domain Ω defined in sub-

section 4.3.1

3: repeat

4: Call the mutation operator based on (5.2)

5: Call the crossover operator based on (5.3)

6: Call the selection operator based on (4.6) and (5.4)

7: until Maximum iteration is met

8: Return the best parameter identification values

Remark 5.5 In this chapter, DE is specially applied to the parameter identifica-

tion of unknown nonlinear delayed FOMASs, which both can expand the applica-

tions of DE and can provide a meaningful approach for identifying the unknown

nonlinear delayed FOMASs.

5.4 Distributed cooperative synchronization of FO-

MASs based on DE

By applying Algorithm 3, we assume that system parameters C,A,B and frac-

tional order α of the unknown FOMASs (5.1) are identified as ᾱ, C̄ = [c̄ij ]n×n, Ā =

[āij ]n×n and B̄ = [b̄ij ]n×n. Then the dynamics of FOMASs can be reformulated

as

x
(ᾱ)
i (t) = −C̄xi(t) + Āf(xi(t)) + B̄f(xi(t− τ)) + ui(t), i = 0, 1, · · · , N, (5.5)

where ᾱ, C̄ = [c̄ij]n×n, Ā = [āij ]n×n and B̄ = [b̄ij ]n×n are the corresponding esti-

mated values. Other definitions in (5.5) are the same as those of (5.1).
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Denote the synchronization errors as exi
= xi(t)− x0(t), and efi = f(xi(t))−

f(x0(t)), exiτ
= xi(t − τ) − x0(t − τ), efiτ = f(xi(t − τ)) − f(x0(t − τ)). Let

ex, ef , exτ
, efτ and u(t) be the column vectors of exi

, efi, exiτ
, efiτ and ui(t), re-

spectively. Based on (5.5), the synchronization errors ex can be obtained as:

e(ᾱ)x (t) =− (IN ⊗ C̄)ex + (IN ⊗ Ā)ef

+ (IN ⊗ B̄)efτ − 1N ⊗ u0(t) + u(t).
(5.6)

According to Assumption 5.4, v0 is a global reachable node. Let M = L+B =

[mij ]N×N , then matrix M is positive definite based on Lemma 1.2.

In the following, based on the identified FOMASs (5.5), two kinds of dis-

tributed controllers are designed to tackle the distributed cooperative synchro-

nization under the directed communication topology.

5.4.1 Discontinuous distributed control algorithm

To achieve the distributed cooperative synchronization, a nonlinear discontinuous

control protocol is designed for each follower as

ui(t) = −ayi − βh(yi), i = 1, 2, · · · , N, (5.7)

where yi = γi
∑N

j=0 ai,j(xi − xj), and a, β, γi > 0 are constant coupling gains.

h(yi) is a nonlinear discontinuous function defined as

h(yi) =

{ yi
‖yi‖ , ‖yi‖ 6= 0,

0n, ‖yi‖ = 0.
(5.8)

Based on the graph theory introduced in Chapter 1, it can be easily verified that

yi = γi
∑N

j=0 ai,j(exi
− exj

) = γi
∑N

j=1mijexj
, which means y = (ΛM ⊗ In)ex,

where Λ = diag{γ1, γ2, · · · , γN}, M̃ = M ⊗ In and y is the column vector of yi .

Theorem 5.6 (Hu et al., 2019b) Given Assumptions 5.2-5.4, with the nonlinear

discontinuous control algorithm (5.7), the distributed cooperative synchronization

of delayed nonlinear FOMASs (5.5) can be reached, if β ≥ ρ, and there exist

some constants λ > δ > 0, a > 0 and positive definite matrixes Ξ1 and Ξ2 such

the following LMIs hold:
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Φ =

[

Φ1 Λ−1 ⊗Θ

∗ −Ξ1

]

< 0, (5.9)

Ψ =

[

−λmin(G̃)δINn Λ−1 ⊗Θ

∗ −Ξ2

]

< 0, (5.10)

where Φ1 = −GΛ−1 ⊗ (C̄ + C̄T ) + (G⊗ Ā)Ξ1(G⊗ Ā)T + (G⊗ B̄)Ξ2(G⊗ B̄)T −

a(Q⊗ In) + λmax(G̃)λINn, G̃ = GΛ−1 ⊗ In. Θ = diag{θ1, · · · , θn} with θi defined

in Assumption 5.2.

Proof: Substitute the protocol (5.7) into synchronization errors system (5.6) as

e(ᾱ)x (t) =− (IN ⊗ C̄)ex + (IN ⊗ Ā)ef

+ (IN ⊗ B̄)efτ −1N ⊗ u0(t)− ay − βH(y),
(5.11)

where H(y) = [hT (y1), · · · , h
T (yN)]

T ∈ RNn.

In order to verify the stability of the errors system (5.6), construct the Lya-

punov function as

V (t) = yT (GΛ−1 ⊗ In)y = yT G̃y. (5.12)

Then based on Lemma 1.19, we have

V (ᾱ)(t) ≤ 2yT G̃y(ᾱ)

= 2yT (GΛ−1 ⊗ In)(ΛM ⊗ In)e
(ᾱ)
x

= 2yT (GM ⊗ In)e
(ᾱ)
x

= 2yT (GM ⊗ In)
(

− (IN ⊗ C̄)ex + (IN ⊗ Ā)ef

+ (IN ⊗ B̄)efτ − 1N ⊗ u0(t)− ay − βH(y)
)

.

(5.13)

With the properties of Kronecker product, one has

2yT (GM ⊗ In)
(

− (IN ⊗ C̄)ex
)

= −2yT (GM ⊗ C̄)(ΛM ⊗ In)
−1y

= −2yT (GΛ−1 ⊗ C̄)y

= −yT
(

GΛ−1 ⊗ (C̄ + C̄T )
)

y.

(5.14)
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Based on Lemma 1.22, let Ξ = Ξ1, ξ = 1, it yields

2yT (GM ⊗ In)(IN ⊗ Ā)ef

= 2yT (GM ⊗ Ā)ef

= 2yT (G⊗ Ā)(M ⊗ In)ef

≤ yT (G⊗ Ā)Ξ1(G⊗ Ā)Ty + eTf (M ⊗ In)
TΞ−1

1 (M ⊗ In)ef

≤ yT (G⊗ Ā)Ξ1(G⊗ Ā)Ty + eTx (IN ⊗Θ)(M ⊗ In)
TΞ−1

1 (M ⊗ In)(IN ⊗Θ)ex

= yT (G⊗ Ā)Ξ1(G⊗ Ā)Ty + yT (ΛM ⊗ In)
−T (IN ⊗Θ)(M ⊗ In)

TΞ−1
1 (M ⊗ In)

× (IN ⊗Θ)(ΛM ⊗ In)
−1y

= yT (G⊗ Ā)Ξ1(G⊗ Ā)Ty + yT (Λ−1 ⊗Θ)Ξ−1
1 (Λ−1 ⊗Θ)y.

(5.15)

Based on Lemma 1.22, let Ξ = Ξ2, ξ = 1, it yields

2yT (GM ⊗ In)(IN ⊗ B̄)efτ

= 2yT (GM ⊗ B̄)efτ

= 2yT (G⊗ B̄)(M ⊗ In)efτ

≤ yT (G⊗ B̄)Ξ2(G⊗ B̄)Ty + eTfτ (M ⊗ In)
TΞ−1

2 (M ⊗ In)efτ

≤ yT (G⊗ B̄)Ξ2(G⊗ B̄)Ty + eTxτ
(IN ⊗Θ)(M ⊗ In)

TΞ−1
2 (M ⊗ In)(IN ⊗Θ)exτ

= yT (G⊗ B̄)Ξ2(G⊗ B̄)Ty + yTτ (ΛM ⊗ In)
−T (IN ⊗Θ)(M ⊗ In)

TΞ−1
2 (M ⊗ In)

× (IN ⊗Θ)(ΛM ⊗ In)
−1yτ

= yT (G⊗ B̄)Ξ2(G⊗ B̄)Ty + yTτ (Λ
−1 ⊗Θ)Ξ−1

2 (Λ−1 ⊗Θ)yτ .

(5.16)

Due to M1N = (L+B)1N = [a10, a20, · · · , aN0]
T , one has

2yT (GM ⊗ In)(−1N ⊗ u0) = −2yT (GM1N ⊗ u0)

= −2
N
∑

i=1

giai0y
T
i u0

≤ 2

N
∑

i=1

giai0‖yi‖‖u0‖

≤ 2ρ
N
∑

i=1

giai0‖yi‖.

(5.17)
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According to Lemma 1.2, one obtains

2yT (GM ⊗ In)(−ay)

= −2ayT (GM ⊗ In)y

= −a
(

yT (GM ⊗ In)y + yT (GM ⊗ In)
Ty

)

= −ayT
(

(

GM + (GM)T
)

⊗ In

)

y

= −ayT (Q⊗ In)y.

(5.18)

Due to yTi h(yi) = ‖yi‖ and yTi h(yj) ≤ ‖yi‖‖h(yj)‖ = ‖yi‖, one has

2yT (GM ⊗ In)(−βH(y))

= −2β
N
∑

i=1

giy
T
i

(

ai0h(yi) +
N
∑

j=1

aij
(

h(yi)− h(yj)
)

)

≤ −2β

N
∑

i=1

giai0‖yi‖.

(5.19)

Then according to β > ρ, (5.9),(5.10), and (5.14)-(5.19), it yields

V (ᾱ)(t)

≤ yT
(

−GΛ−1 ⊗ (C̄ + C̄T ) + (G⊗ Ā)Ξ1(G⊗ Ā)T

+ (Λ−1 ⊗Θ)Ξ−1
1 (Λ−1 ⊗Θ) + (G⊗ B̄)Ξ2(G⊗ B̄)T − a(Q⊗ In)

)

y

+ yTτ (Λ
−1 ⊗Θ)Ξ−1

2 (Λ−1 ⊗Θ)yτ − 2β
N
∑

i=1

giai0‖yi‖+ 2ρ
N
∑

i=1

giai0‖yi‖

≤ yT
(

−GΛ−1 ⊗ (C̄ + C̄T ) + (G⊗ Ā)Ξ1(G⊗ Ā)T + (Λ−1 ⊗Θ)Ξ−1
1 (Λ−1 ⊗Θ)

+ (G⊗ B̄)Ξ2(G⊗ B̄)T − a(Q⊗ In) + λ̃INn

)

y

+ yTτ

(

(Λ−1 ⊗Θ)Ξ−1
2 (Λ−1 ⊗Θ)− δ̃INn

)

yτ − λ̃yTy + δ̃yTτ yτ

= yTΦy + yTτ Ψyτ − λ̃yTy + δ̃yTτ yτ

≤ −λ̃yTy + δ̃yTτ yτ

≤ −
λ̃

λmax(G̃)
yT G̃y +

δ̃

λmin(G̃)
yTτ G̃yτ

= −λV (t) + δV (t− τ),

(5.20)
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where λ̃ = λmax(G̃)λ, δ̃ = λmin(G̃)δ.

Now, consider the fractional-order linear delayed system as

{

Z(ᾱ)(t) = −λZ(t) + δZ(t− τ), ᾱ ∈ (0, 1],
Z(t) = φ(t), t ∈ [−τ, 0],

(5.21)

which has the same initial condition with system (5.20). According to Lemma

1.18, if λ > δ and there exists no purely imaginary root for the following charac-

teristic equation of system (5.21)

sᾱ + λ− δe−sτ = 0, (5.22)

then, the zero solution of system (5.21) is Lyapunov globally asymptotically sta-

ble, which implies that Z(t) → 0 as t → +∞. For (5.22), suppose there exists a

pure imaginary root s = ηi, η ∈ R. If η > 0, s = ηi = |η|(cos π
2
+ i sin π

2
), and if

η < 0, s = ηi = |η|(cos π
2
− i sin π

2
). Then substituting s = ηi = |η|(cos π

2
± i sin π

2
)

into (5.22) generates

|η|ᾱ
(

cos
ᾱπ

2
+ i sin(±

ᾱπ

2
)
)

+ λ− δ(cos ητ − i sin ητ) = 0. (5.23)

Separate (5.23) into real and imaginary parts as

{

|η|ᾱ cos ᾱπ
2
+ λ = δ cos ητ,

|η|ᾱ sin(± ᾱπ
2
) = −δ sin ητ.

(5.24)

From (5.24), it can be conducted as

|η|2ᾱ + 2λ|η|ᾱ cos
ᾱπ

2
+ λ2 − δ2 = 0. (5.25)

Since |η|ᾱ > 0, cos ᾱπ
2

> 0, λ2 > δ2, so (5.25) cannot hold. Therefore, the pure

imaginary root does not exist in characteristic equation (5.22). According to

Lemma 1.18, Z(t) is Lyapunov globally asymptotically stable. With Lemmas 1.2

and 1.17, we have λmin(G̃)‖y‖2 ≤ V (t) ≤ Z(t) → 0, t → +∞, which means that

‖ex‖
2 → 0, t → +∞. Therefore, the proof is completed. �
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5.4.2 Continuous distributed control algorithm

In subsection 5.4.1, the discontinuous control protocol (5.7) can result in the

undesirable chattering phenomenon in practice. Therefore, to compensate this

drawback, a continuous distributed control protocol is further designed to solve

the distributed cooperative synchronization. According to the boundary layer

technique (Young et al., 1999), the continuous control protocol is designed as

ui(t) = −ayi − βh̄i(yi), i = 1, 2, · · · , N, (5.26)

where yi = γi
∑N

j=0 ai,j(xi − xj), and a, β, γi > 0 are constant coupling gains.

h̄i(yi) is a nonlinear continuous function defined as

h̄i(yi) =

{ yi
‖yi‖ , ‖yi‖ > di,
yi
di
, ‖yi‖ ≤ di,

(5.27)

where di > 0 denotes the width of the boundary layers.

Theorem 5.7 (Hu et al., 2019b) Given Assumptions 5.2-5.4, the synchroniza-

tion errors of FOMASs (5.5) are UUB with the continuous control algorithm

(5.26), if β ≥ ρ, and there exist some constants λ > δ > 0, a > 0 and positive

definite matrixes Ξ1 and Ξ2 such the LMIs (5.9) and (5.10) hold. Moreover, the

tracking error ex asymptotically converges to the following bounded region

D =
{

ex : ‖ex‖
2 ≤

2
∑N

i=1
digi(ρai0+βlii)

λmin(MTΛ2M)λmin(G̃)(λ−δ)

}

. (5.28)

Proof: Substituting the protocol (5.26) into the synchronization errors system

(5.6), one obtains that

e(ᾱ)x (t) =− (IN ⊗ C̄)ex + (IN ⊗ Ā)ef

+ (IN ⊗ B̄)efτ − 1N ⊗ u0(t)− ay − βH̄(y),
(5.29)

where H̄(y) = [h̄T
1 (y1), · · · , h̄

T
N(yN)]

T ∈ RNn.
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The ᾱ-order derivative of Lyapunov function candidate (5.12) with errors

system (5.29) is

V (ᾱ)(t) ≤ 2yT G̃y(ᾱ)

= 2yT (GΛ−1 ⊗ In)(ΛM ⊗ In)e
(ᾱ)
x

= 2yT (GM ⊗ In)e
(ᾱ)
x

= 2yT (GM ⊗ In)
(

− (IN ⊗ C̄)ex + (IN ⊗ Ā)ef

+ (IN ⊗ B̄)efτ − 1N ⊗ u0(t)− ay − βH̄(y)
)

.

(5.30)

Based on the property of (5.27), the following three cases are discussed.

(i) ‖yi‖ > di, i = 1, 2, · · · , N .

In this case, based on (5.17) and (5.19), one has

2yT (GM ⊗ In)
(

− 1N ⊗ u0(t)− βH̄(y)
)

≤ 2(−β + ρ)

N
∑

i=1

giai0‖yi‖ < 0.
(5.31)

Substituting (5.14)-(5.16), (5.18) and (5.31) into (5.30) yields

V (ᾱ)(t) < −λV (t) + δV (t− τ). (5.32)

(ii) ‖yi‖ ≤ di, i = 1, 2, · · · , N .

Based on (5.17), one has

2yT (GM ⊗ In)(−1N ⊗ u0) ≤ 2ρ

N
∑

i=1

digiai0. (5.33)

Note that for any i, j = 1, 2, · · · , N ,

yTi h̄i(yi) = ‖yi‖
2/di ≥ 0,

yTi h̄i(yj) ≤ ‖yi‖‖h̄i(yj)‖ ≤ ‖yi‖ ≤ di,
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one has

2yT (GM ⊗ In)
(

− βH̄(y)
)

= 2β
N
∑

i=1

giy
T
i

(

− ai0h̄i(yi) +
N
∑

j=1

aij
(

h̄j(yj)− h̄i(yi)
)

)

≤ 2β
N
∑

i=1

digi

N
∑

j=1

aij

= 2β

N
∑

i=1

digilii.

(5.34)

Therefore, it can be obtained that

2yT (GM ⊗ In)
(

− 1N ⊗ u0 − βH̄(y)
)

≤ 2
N
∑

i=1

digi(ρai0 + βlii). (5.35)

Substituting (5.14)-(5.16) and (5.35) into (5.30) yields

V (ᾱ)(t) < −λV (t) + δV (t− τ) + 2

N
∑

i=1

digi(ρai0 + βlii). (5.36)

(iii) y satisfies neither Case (i) nor Case (ii).

Without loss of generality, we suppose ||yi|| > di, i = 1, 2, · · · , κ, and ||yi|| ≤

di, i = κ + 1, κ + 2, · · · , N , (1 < κ < N). For this case, according to (5.31) and

(5.35), one derive that

2yT (GM ⊗ In)
(

− 1N ⊗ u0 − βH̄(y)
)

≤ 2

N
∑

i=κ+1

digi(ρai0 + βlii). (5.37)

Thus, from (5.14)-(5.16) and (5.37), one has

V (ᾱ)(t) < −λV (t) + δV (t− τ) + 2

N
∑

i=κ+1

digi(ρai0 + βlii). (5.38)

Therefore, based on the above three discussed cases, for all y ∈ RNn, we have

V (ᾱ)(t) < −λV (t) + δV (t− τ) + d, (5.39)
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where d = 2
∑N

i=1 digi(ρai0 + βlii).

Consider the following system:

Z(ᾱ)(t) = −λZ(t) + δZ(t− τ) + d, (5.40)

where Z(t) ≥ 0(Z(t) ∈ R), and has the same initial conditions with V (t). Based

on Lemma 1.17, one can obtain that 0 < V (t) < Z(t). With Properties 1.7 and

1.8, we have

(Z(t)− d̄)(ᾱ)(t) = −λ(Z(t)− d̄) + δ(Z(t− τ)− d̄), (5.41)

where d̄ = d/(λ− δ). Taking Z̄(t) = Z(t)− d̄, then system (5.41) can be trans-

formed into

Z̄(ᾱ)(t) = −λZ̄(t) + δZ̄(t− τ). (5.42)

Applying the similar proof procedure in Theorem 5.6, we can obtain that Z̄(t) =

Z(t)− d̄ → 0, as t → +∞, which implies that

λmin(G̃)‖y‖2 ≤ V (t) ≤ Z(t) → d̄, t → +∞. (5.43)

Due to y = (ΛM ⊗ In)ex, one has

‖y‖2 = yTy = eTx (M
TΛ2M ⊗ In)ex ≥ λmin(M

TΛ2M)‖ex‖
2. (5.44)

Therefore, according to (5.43) and (5.44), the synchronization errors can asymp-

totically converge to the following bounded region

‖ex‖
2 ≤

d̄

λmin(MTΛ2M)λmin(G̃)

=
2
∑N

i=1 digi(ρai0 + βlii)

λmin(MTΛ2M)λmin(G̃)(λ− δ)
, (t → +∞),

(5.45)

which can be made small enough by choosing proper parameter di. �

Corollary 5.8 If the widths di of the boundary layers are the same in controller

(5.26), i.e., d1 = d2 = · · · = dN = d, the bounded region in Theorem 5.7 can be
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simplified as

D =

{

ex : ‖ex‖
2 ≤

2d
∑N

i=1 gi(ρai0 + βlii)

λmin(MTΛ2M)λmin(G̃)(λ− δ)

}

. (5.46)

Remark 5.9 Compared with the synchronization of delayed fractional-order cou-

pled systems where there are only a single master and a single slave system (Bao

et al., 2015; Chen et al., 2018a, 2015b; Zhang & Yang, 2018), this chapter studies

synchronization for a single mater and multiple slaves delayed FOMASs, where

the multiple salves systems are coupled with a connected directed communication

topology. Different from the single master and a single slave system (Bao et al.,

2015; Chen et al., 2018a, 2015b; Zhang & Yang, 2018), in this chapter, to verify

the effectiveness of the proposed synchronization controller in theory, the design

of the Lyapunov function should depend on the graph communication topology and

heterogenous control gains, which are full of challenge due to the structure of the

graph and the heterogeneities.

Remark 5.10 In this chapter, the distributed cooperative synchronization of non-

linear delayed FOMASs with unknown leader is investigated based on directed

communication topology. In fact, the results are also effective for distributed co-

operative synchronization of FOMASs with any nonlinear dynamics as

{

x
(α)
0 (t) = f(x0(t), x0(t− τ)) + u0(t), leader,

x
(α)
i (t) = f(xi(t), xi(t− τ)) + ui(t), followers,

where nonlinear function f(·) satisfies Assumption 5.2, and leader’s control input

u0(t) satisfies Assumption 5.3.

Remark 5.11 When the number of the followers is assumed as N = 1, the syn-

chronization methods studied in this chapter will degenerate into the case of single

mater-single slave synchronization between two delayed fractional-order nonlinear

systems (Bao et al., 2015; Chen et al., 2018a, 2015b; Zhang & Yang, 2018). That

is to say, this chapter is an extension of the classical master-slave synchronization

to the more general case of FOMASs.

Remark 5.12 When the fractional order ᾱ = 1, the distributed cooperative syn-

chronization studied in this chapter will reduce to the case of integer-order MASs
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(Cui et al., 2017; Ma et al., 2016) as

{

ẋ0(t) =− Cx0(t) + Af(x0(t)) +Bf(x0(t− τ)) + u0(t), leader,

ẋi(t) =− Cxi(t) + Af(xi(t)) +Bf(xi(t− τ)) + ui(t), followers,

which is a special case of this chapter.

5.5 Simulations

5.5.1 DE-based parameter identification results

5.5.1.1 Parameter identification without noise

For the initialization of Algorithm 3, the number of sample points is chosen as

K = 100 and the step size is h = 0.01. For DE algorithm, SN = 100, maximum

iteration is 200, F = 0.5, CR = 0.7.

• Case 1: α = 0.98

Consider FOMASs with one leader and six followers. The communication

topology is given as Fig. 5.1. Assume that the leader and followers have homoge-

nous nonlinear dynamics with two-dimensional fractional-order delayed neural

networks as

x
(α)
i (t) = −Cxi(t) + Af(xi(t)) +Bf(xi(t− τ)),

i = 0, 1, · · · , 6,
(5.47)

where xi(t) = [xi1(t), xi2(t)]
T , α = 0.98, C = I2, τ = 0.9, f(xi(t)) = [f1(xi1(t)),

f2(xi2(t))]
T , and fj(xij(t)) = 1

2
(|xij + 1| − |xij − 1|), j = 1, 2. Obviously, from

Assumption 5.2, it is easily obtained that Θ = I2. The feedback matrixes A and

B are respectively given as

A = [âij ]2×2 =

[

1 + π
4

20
0.1 1 + π

4

]

,

B = [b̂ij ]2×2 =

[

−1.3
√
2
4
π 0.1

0.1 −1.3
√
2
4
π

]

.

With the above parameters, each agent has a chaotic attractor, which is shown

in Fig. 5.2.
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Fig. 5.1. The communication topology with one leader and six followers
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Fig. 5.2. Chaotic behavior of agent i with initial value [−2, 3]T

Since the nonlinear dynamics of all the agents are homogenous, we just need

identify one agent. Without loss of generality, we select agent 1 as the identi-

fied object. In order to reflect the performance of Algorithm 3 more clearly in

terms of tables and figures, we randomly assume the fractional order α = 0.98,

system parameters â12 = 20, b̂21 = 0.1 as unknown parameters which need to be

identified. Then the corresponding identified system is

x̃
(α̃)
1 (t) = −C̃x̃1(t) + Ãf(x̃1(t)) + B̃f(x̃1(t− τ)), (5.48)

with C̃ = I2, and

Ã = [ãij]2×2 =

[

1 + π
4

ã12
0.1 1 + π

4

]

,

B̃ = [b̃ij ]2×2 =

[

−1.3
√
2
4
π 0.1

b̃21 −1.3
√
2
4
π

]

.

Other definitions in (5.48) are the same as those of (5.47). The searching space Ω

is set as (α̃, ã12, b̃21) ∈ [0.01, 1]× [19, 21]× [0.01, 2]. The corresponding objective

129

paper4/chapter4figs/EPS/topology_abs_directed.eps
paper4/chapter4figs/EPS/chaos_abs_directed.eps


5. DISTRIBUTED COOPERATIVE SYNCHRONIZATION OF
HETEROGENOUS UNCERTAIN NONLINEAR DELAYED
FOMASS WITH UNKNOWN LEADER BASED ON DE
ALGORITHM

Table 5.1: Statistical results for system (5.47) over 30 independent runs without
noise in Case 1

Best Mean Worst

α̃ 0.98000000000000 0.980000000000000 0.980000000000000
| α̃−0.98

0.98
| 0.00E+00 0.00E+00 0.00E+00

ã12 20.00000000000000 20.000000000000000 19.999999999999900
| ã12−20

20
| 0.00E+00 6.28E-16 2.84E-15

b̃21 0.10000000000000 0.100000000000000 0.100000000000037
| b̃21−0.1

0.1
| 1.72E-14 1.36E-13 3.69E-13

F1 1.98E-14 8.69E-14 2.54E-13

function is

F1(α̃, ã12, b̃21) =
K
∑

k=0

‖x1k − x̃1k‖. (5.49)

Thus, the parameter identification problem of systems (5.47) can be converted

into a functional optimization problem where the objective function is (5.49).

Obviously, the smaller the objective function value F1 is, the better combination

of parameters (α̃, ã12, b̃21) is.

The Algorithm 3 is operated with 30 independent runs. Firstly, the statistical

results in terms of the best, the mean and the worst identified parameters obtained

by DE algorithm are given in Table 5.1. Table 5.1 demonstrates that the unknown

fractional order and system parameters of system (5.47) can be well identified

by Algorithm 3, even though the worst identified values can also have a high

accuracy. Secondly, Figs. 5.3 and 5.4 show the convergence processes in terms

of identified parameters, their relative errors values and the objective function

values in a single run, which further verifies the effectiveness of the proposed

DE-based parameter identification method.

• Case 2: α = 0.6

To test the performance of the DE algorithm in identifying different fractional

derivative order, in this case the real fractional order α in system (5.47) is assumed

as 0.6, which needs to be identified. The other experimental setup is the same

with that in Case 1.

Similarly, 30 independent runs are executed. The statistical results in terms of
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Fig. 5.3. Evolutionary curve of the identified parameters values with DE on
system (5.47) in a single run without noise in Case 1
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Fig. 5.4. Evolutionary curve in terms of the relative errors and objective function
values with DE on system (5.47) in a single run without noise in Case 1.

Table 5.2: Statistical results for system (5.47) over 30 independent runs without
noise in Case 2

Best Mean Worst

α̃ 0.600000000000000 0.600000000000005 0.600000000000011
| α̃−0.6

0.6 | 0.00E+00 8.70E-15 1.91E-14
ã11 20.000000000000000 20.000000000000300 20.000000000000500

| ã11−20
20 | 1.07E-15 1.24E-14 2.65E-14

b̃22 0.100000000000004 0.100000000000003 0.100000000000084

| b̃22−0.1
0.1 | 3.84E-14 2.72E-14 8.36E-13
F1 1.57E-13 6.56E-13 7.87E-13

the best, the mean and the worst identified parameters obtained by DE algorithm

are showed in Table 4.2, which demonstrates that the unknown parameters of

system (5.47) can be well identified by DE algorithm. Figs. 5.5 and 5.6 display

the convergence profile of the evolutionary processes in terms of identified values,

the corresponding relative error values and the fitness values in a single run, which

further illustrate the effectiveness of the proposed DE algorithm-based parameter

identification method.

5.5.1.2 Parameter identification with noise

In real situations, the measured real data usually contains certain noise. Thus, in

this subsection, we add the additive white Gaussian noise (AWGN) to orbits in
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ã
1
2

19.92

19.94

19.96

19.98

20

20.02

20.04

20.06

(b) Identified parameter value a12

No. of Iterations
0 20 40 60 80 100 120 140 160 180 200

E
st
im

at
ed

va
lu
e
b̃ 2

1

0

0.05

0.1

0.15

0.2

0.25

(c) Identified parameter value b21

Fig. 5.5. Evolutionary curve of the identified parameters values with DE on
system (5.47) in a single run without noise in Case 2
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Fig. 5.6. Evolutionary curve in terms of the relative errors and objective function
values with DE on system (5.47) in a single run without noise in Case 2.

the original system (5.47) and the identified system (5.48). Besides, the signal-to-

noise ratio (SNR) probably the most common and well understood performance

measure used in science and engineering that compares the level of a desired

signal to the level of background noise. It is a term for the power ratio between a

signal and the background noise: SNR = Ps/Pn, where Ps is the average signal

power and Pn is average noise power (Yuan & Yang, 2019). Here the SNR is set

as 50.

• Case 1: α = 0.98

The other experimental setup is the same with the Case 1 in Subsection 5.5.1.1.

The Algorithm 3 is executed with 30 independent runs. Firstly, the statistical

results in terms of the best, the mean and the worst identified parameters obtained

by DE algorithm are given in Table 5.3, which illustrates that the unknown

fractional order and system parameters of system (5.47) can still be well identified

by Algorithm 3 under the measurement noise. Secondly, Fig. 5.7 shows the

convergence processes of the identified values in a single run, which further verifies

the effectiveness of the proposed DE-based parameter identification method.

• Case 2: α = 0.6

To test the performance of the DE algorithm in identifying different fractional

derivative order, in this case the real fractional order α in system (5.47) is assumed

as 0.6, which needs to be identified. The other experimental setup is the same

with the Case 1 in Subsection 5.5.1.1. 30 independent runs are executed.
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Table 5.3: Statistical results for system (5.47) over 30 independent runs with
noise in Case 1

Best Mean Worst

α̃ 0.980000946887114 0.980094598025661 0.980236062265603
| α̃−0.98

0.98
| 9.66E-07 9.65E-05 2.41E-04

ã12 20.000337557599700 20.001390039300400 20.002943132678700
| ã12−20

20
| 1.69E-05 6.95E-05 1.47E-04

b̃21 0.100171306525072 0.100425767521111 0.098146838686302
| b̃21−0.1

0.1
| 1.71E-03 4.26E-03 1.85E-02

F1 4.04E-02 4.22E-02 4.31E-02
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Fig. 5.7. Evolutionary curve of the identified parameters values with DE on
system (5.47) in a single run with noise in Case 1.
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Table 5.4: Statistical results for system (5.47) over 30 independent runs with
noise in Case 2

Best Mean Worst

α̃ 0.600005935258439 0.599872950311652 0.599724951293683
| α̃−0.6

0.6
| 9.89E-06 2.12E-04 4.58E-04

ã12 20.000028486039900 19.999571285840600 19.997228191011500
| ã12−20

20
| 1.42E-06 2.14E-05 1.39E-04

b̃21 0.100250428262669 0.100707665018889 0.103818248094096
| b̃21−0.1

0.1
| 2.50E-03 7.08E-03 3.82E-02

F1 3.97E-02 4.07E-02 4.17E-02

The statistical results in terms of the best, the mean and the worst identified

parameters obtained by DE algorithm are showed in Table 5.4, which demon-

strates that the unknown parameters of system (5.47) can be well identified by

DE algorithm under the measurement noise. Secondly, Fig. 5.8 shows the con-

vergence processes of the identified values in a single run, which further verifies

the effectiveness of the proposed DE-based parameter identification method.

5.5.2 Simulation results on distributed cooperative syn-

chronization

In this subsection, we will achieve the distributed consensus tracking based on

the identified parameters. We assume that the real FOMASs are modeled as Case

1. Based on the identified values obtained by Algorithm 3, which are given in

Subsection 5.5.1, the identified parameters values are approximated as: ᾱ = 0.98,

ā12 = 20, and b̄21 = 0.1, thus the dynamics of FOMASs can be reformulated as

x
(ᾱ)
i (t) = −C̄xi(t) + Āf(xi(t)) + B̄f(xi(t− τ)) + ui(t),

i = 0, 1, · · · , 6,
(5.50)

where ᾱ = 0.98, C̄ = I2,

Ā = [āij ]2×2 =

[

1 + π
4

20
0.1 1 + π

4

]

, B̄ = [b̄ij ]2×2 =

[

−1.3
√
2
4
π 0.1

0.1 −1.3
√
2
4
π

]

.

Other definitions in (5.50) are the same as those of (5.47).
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No. of Iterations
0 20 40 60 80 100 120 140 160 180 200

E
st
im

at
ed

va
lu
e
b̃ 2

1

0

0.05

0.1

0.15

(c) Identified parameter value b̃21

Fig. 5.8. Evolutionary curve of the identified parameters values with DE on
system (5.47) in a single run with noise in Case 2.
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(b) State trajectories of xi2(i = 0, 1, · · · , 6)

Fig. 5.9. State trajectories of FOMASs (5.50) by control protocol (5.7)

The initial conditions are selected as x0 = [−2, 3]T , x1 = [−12, 1.5]T , x2 =

[7, 2.2]T , x3 = [−5, 0.5]T , x4 = [9, 1]T , x5 = [−3, 5]T , x6 = [12, 1.4]T . The leader’s

control input is given as: u0(t) = [0.3 cos(t), 0.4 sin(t − 1)]T . The heterogenous

control gains are set as Λ = diag{1.10, 0.95, 1.05, 0.90, 1.10, 1.00}. Based on The-

orems 5.6 and 5.7, we choose a = 42, β = 1, λ = 1.6, δ = 1.58, then the LMIs

(5.9) and (5.10) hold.

Firstly, the state trajectories of distributed cooperative synchronization by

nonlinear discontinuous control protocol (5.7) are displayed in Fig. 5.9, which

shows that the six followers can track the leader’s states quickly which can verify

Theorem 5.6. The corresponding control inputs are also given in Fig. 5.10.

Then, for boundary layers widths di in Eq. (5.27), in order to study the in-

fluence of the parameters di, two cases are considered as: di = 2, (i = 1, 2, · · · , 6)

and di = 0.2, (i = 1, 2, · · · , 6). The evolutionary trajectories of distributed coop-

erative synchronization by nonlinear continuous control protocol (5.26) are given

in Figs. 5.11 and 5.13. From Figs. 5.11 and 5.13, it can be found that the syn-

chronization errors will be smaller if the value of the boundary layers widths di

are smaller. Furthermore, the chattering behavior can be avoided which can be

verified in Figs. 5.12 and 5.14. Therefore, Theorem 5.7 is validated.
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5.5 Simulations

(a) Control inputs of ui1(i = 1, · · · , 6) (b) Control inputs of ui2(i = 1, · · · , 6)

Fig. 5.10. Control inputs for control protocol (5.7)
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(b) State trajectories of xi2(i = 0, 1, · · · , 6)

Fig. 5.11. State trajectories of FOMAS (5.50) by control protocol (5.26) with
di = 2(i = 1, 2, · · · , 6)
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Fig. 5.12. Control inputs for control protocol (5.26) with di = 2(i = 1, 2, · · · , 6)
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(b) State trajectories of xi2(i = 0, 1, · · · , 6)

Fig. 5.13. State trajectories of FOMAS (5.50) by control protocol (5.26) with
di = 0.2(i = 1, 2, · · · , 6)

140

paper4/chapter4figs/EPS/input_sat_2_u1_directed.eps
paper4/chapter4figs/EPS/input_sat_2_u2_directed.eps
paper4/chapter4figs/EPS/state_sat_02_x1_directed.eps
paper4/chapter4figs/EPS/state_sat_02_x2_directed.eps


5.6 Conclusion

t
0 1 2 3 4 5 6 7 8 9 10

u
i1

(t
)

-800

-600

-400

-200

0

200

400

600

u
11

(t)

u
21

(t)

u
31

(t)

u
41

(t)

u
51

(t)

u
61

(t)

9.4 9.6 9.8 10
-0.35

-0.3

-0.25

-0.2

-0.15

(a) Control inputs of ui1(i = 1, · · · , 6)

t
0 1 2 3 4 5 6 7 8 9 10

u
i2

(t
)

-150

-100

-50

0

50

100

u
12

(t)

u
22

(t)

u
32

(t)

u
42

(t)

u
52

(t)

u
62

(t)

9.4 9.6 9.8 10
0.15

0.2

0.25

0.3

0.35

(b) Control inputs of ui2(i = 1, · · · , 6)

Fig. 5.14. Control inputs for control protocol (5.26) with di = 0.2(i =
1, 2, · · · , 6)

5.6 Conclusion

In this chapter, the distributed cooperative synchronization of uncertain nonlin-

ear delayed FOMASs with unknown leader and heterogeneous control gains is

investigated. Firstly, a DE-based parameter identification method is proposed

to identify the unknown nonlinear delayed FOMASs by transforming it into a

functional optimization problem. Secondly, under the identified parameters, a

discontinuous control protocol is designed to solve the distributed cooperative

synchronization by employing the inequalities of the fractional derivative and

the comparison principle of the linear fractional equation with delay, and a new

sufficient conditions is obtained. Thirdly, for the purpose of eliminating the chat-

tering behavior originated from the discontinuous control protocol, a continuous

control protocol is further proposed, and the UUB synchronization errors can be

obtained which can be adjusted small enough by choosing proper parameters.

Finally, simulations are given to demonstrate the efficiencies of the proposed pa-

rameter identification scheme and the two control protocols.
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6.1 Introduction

As mentioned in Chapters 4 and 5, most consensus control algorithms are valid

only for the FOMASs whose system parameters and fractional orders are known

in advance. However, in practice, the FOMASs are usually partly known. That is,

the form of the fractional-order differential equations are known, while some or all

of the fractional orders and system parameters are unknown. Therefore, in order

to control and utilize the FOMASs, identifying the unknown fractional orders and

system parameters are really important. In Chapter 4, an efficient artificial bee

colony algorithm (ABC) is used to identify the unknown FOMASs. In Chapter

5, the differential evolution (DE) is selected to identify the unknown FOMASs.

However, although the AIOAs, such as ABC and DE, have demonstrated superior

features compared to other traditional methods, there is no specific algorithm

that can achieve the best solution for all optimization problems. Namely, as

far as most algorithms are concerned, it is difficult to simultaneously manage the

tradeoff between exploration and exploitation successfully for all the optimization

problems. Similarly, there are no exceptions for ABC and DE.

As introduced in Chapter 4, artificial bee colony (ABC) algorithm, which is be-

long to the family of the population-based AIOAs, was put forward by Karaboga

motivated by the foraging behavior of honeybees (Karaboga et al., 2014). Due to

its nice properties, it has been widely utilised in diverse real-world optimization

problems (Karaboga et al., 2014) and a lot of ABC variants have been put for-

wards (Gao et al., 2018, 2019; Ji et al., 2019; Yurtkuran et al., 2018). Although it

was reported that ABC algorithm owns wonderful performance, the randomness

of the searching equation brings about the strong exploration and weak exploita-

tion. Thus it’s necessary to find a balance between the two contradictory aspects

for the original ABC algorithm.

To improve the exploitation performance of ABC algorithm, many researchers

have concentrated on the study of searching strategies as they can control the

balance between exploration and exploitation. Nowadays, there are two ap-

proaches mostly preferred by the researchers to improve the existing ABC al-

gorithm, known as hybridization and modification.
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The former (hybridization) is the process of mixing with other AIOAs-based

methods or traditional algorithms. For instance, in Kang et al. (2009), a hy-

brid simplex ABC was proposed by combining the Nelder-Mead simplex method.

In Hsieh et al. (2012), a new hybrid algorithm was put forward by combining

the ABC with PSO. In Ozturk et al. (2015), a novel ABC algorithm was pro-

posed based on genetic operator. In Kefayat et al. (2015), a hybrid of ant colony

algorithm and ABC algorithm was proposed. In Zhou & Yao (2017), a hybrid ap-

proach combining ABC algorithm and cuckoo search algorithm was put forwards.

In Jadon et al. (2017), a hybrid ABC algorithm with DE was designed. In Gao

et al. (2019), parzen window method and two different neighborhood mechanisms

were applied to the ABC algorithm.

The latter (modification) is the process of integrating an operator of an exist-

ing algorithm into the ABC. For example, in Zhu & Kwong (2010), a global-best

guided ABC was introduced, which used the global best individual’s information

within the searching rule similar to PSO. In Gao et al. (2014), two new searching

equations were presented to generate candidate solutions in the employed bees

phase and onlooker bees phase in respect. In Imanian et al. (2014), inspired by

PSO, a modified ABC algorithm is proposed by applying a new searching equa-

tion in the onlooker bees phase, which used the PSO searching strategy to guide

the search for candidate solutions. In Kiran et al. (2015), variable search strate-

gies were used in the proposed ABC algorithm. In Sharma et al. (2016), a Lévy

flight inspired search strategy was proposed and integrated with ABC algorithm.

In Xue et al. (2018), a self-adaptive ABC algorithm based on the global best

candidate was proposed. However, the studies, are not restricted to the above

mentioned two aspects, for an extensive literature review of the ABC, it can be

referred to Karaboga et al. (2014).

In this chapter, to enhance the exploration and the exploitation abilities, the

above mentioned two approaches (hybridization and modification) are both con-

sidered together. As a result, a modified artificial bee colony algorithm, called

mABC algorithm, is put forward. Namely, in terms of modification, two new

searching equations based on the chaotic map, adaptive parameter updating law

and elite learning strategy are proposed respectively. In terms of hybridization,

the opposite-based learning mechanism is added to be hybridized with the mod-

ified ABC algorithm. Then, the proposed mABC algorithm is applied to the
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parameter identification of nonlinear FOMASs.

The rest of this chapter is organised as follows. In Section 6.2, the proposed

mABC algorithm is introduced. In Section 6.3, the problem formulation for

parameters identification is described based on mABC algorithm. In Section 6.4,

experiment results are provided. Finally, conclusions are given.

6.2 The proposed mABC algorithm

Based on the original ABC algorithm introduced in Subsection 4.3.2 in Chapter

4, in order to make well balance between exploration and exploitation abilities, in

this section, the mABC algorithm is put forward. In the mABC algorithm, two

novel searching equations are designed based on the chaotic map, adaptive param-

eter updating law and elite learning strategy. Then to further avoid premature,

the opposite-based learning is utilised based on a perturbation rate.

6.2.1 Chaos map-based random parameter generator

Most of the random parameters appeared in AIOAs are generated by uniform or

Gaussian distribution. Currently, due to the pseudo-randomness of the chaotic

maps, the random parameters can be replaced with chaotic maps for the purpose

of utilizing their nice statistical performance (Yousri et al., 2019). In this chapter,

the Logistic map is used, which is described as

zk+1 = azk(1− zk), a = 4. (6.1)

The distributed values for 300 iterations under random initial values are displayed

in Fig. 6.1.

Iterations
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1

Fig. 6.1. The distributed values of the Logistic map.
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6.2 The proposed mABC algorithm

6.2.2 Opposition-based generation jumping

Opposition-based learning (OBL), as a new scheme for machine intelligence, has

been widely applied to AIOAs to improve their performance (Tizhoosh, 2005),

the consideration of the opposite point of the current point is the core of OBL.

Denote a current point as X = (x1, x2, · · · , xD), where xj ∈ R and xj ∈ [aj , bj].

The opposite point V = (v1, v2, · · · , vD) is defined by vj = aj + bj − xj .

Different from OBL, the opposition-based generation jumping (OGJ) gener-

ates the opposite point dynamically along with searching process. The opposite

value of each variable will be generated as

oxi,j = xP
min(j) + xP

max(j)− xi,j , (6.2)

where xP
min(j) and xP

max(j) are the minimum and maximum values of the jth

variable in the current population P respectively.

6.2.3 Two new searching equations

New searching equation for employed bees: Inspired by the mutation op-

erator of DE, a modified searching equation is proposed as

Vi = Xr1 + ch(Xr2 −Xr3), (6.3)

where r1, r2, r3 (r1 6= r2 6= r3 6= i) are three different indexes chosen randomly

from {1, 2, · · · , SN/2}, ch is a random value generated based on Eq. (6.1).

Then the OGJ is conducted under the perturbation or jumping rate (Jr) which

is described in Subsection 6.2.2. Thus, the combinatorial searching strategy in

the employed bees phase can be given as

Vi =

{

Xr1 + ch(Xr2 −Xr3), if rand > Jr,

XP
min +XP

max −Xi, otherwise,
(6.4)

where XP
min = (xP

min(1), x
P
min(2), · · · , x

P
min(D)) and XP

max = (xP
max(1), x

P
max(2),

· · · , xP
max(D)).

New searching equation for onlooker bees: Since Eq. (6.3) pays more

emphasis on the exploration, to enhance the exploitation performance, the fol-

lowing searching equation based on adaptive elite learning strategy is proposed
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as

Vi = Xr1 + η(t)(Xbest −Xr2), (6.5)

η(t) = (ξmax − ξmin) ·

√

1−
t

T
+ ξmin, (6.6)

where Xbest represents the best solution obtained so far, r1 and r2 denote two

different indexes chosen randomly from {1, 2, · · · , SN/2}. t and T represent the

current and total iterations in respect. In Eq. (6.5), with the help of the best-so-

far solution Xbest, Eq. (6.5) focuses more on the exploitation ability, which can

compensate the disadvantage of Eq. (6.3). In addition, the adaptive parameter

adjusting law in Eq. (6.6) is employed. From Eq. (6.6), it can be found that at

the early iteration process, the value of η(t) is large, so the searching direction

is more toward the best-so-far solution, which can enhance the searching speed.

As the iteration increases, the value η(t) decreases gradually, the influence of the

best-so-far solution weakens at the same time, which can avoid premature.

Then the OGJ is also considered under the perturbation or jumping rate (Jr).

The combinatorial searching strategy in the onlooker bees phase can be written

as

Vi =

{

Xr1 + η(t)(Xbest −Xr2), if rand > Jr,
XP

min +XP
max −Xi, otherwise.

(6.7)

6.2.4 The proposed mABC algorithm

Under above discussion, the mABC algorithm is put forward. In mABC algo-

rithm, two novel searching equations are put forward based on the chaotic maps,

adaptive parameter adjusting law and elite learning strategy. Then the opposite-

based learning is utilised based on a perturbation rate. The main process of the

mABC algorithm is given as follows. After initialization, the following search-

ing process is repeated. Firstly, the employed bees use the new combinatorial

searching strategy (6.4) to produce the novel candidate solutions. Then greedy

selection is employed. When all the employed bees finish the tasks, the proba-

bility pi(i = 1, 2, · · · , SN/2) are calculated using (4.9). Then, each onlooker bee

selects a food position with pi, the new combinatorial searching strategy (6.7) is

employed to produce the new candidate solutions. Then the greedy selection is
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conducted again. Finally, the scout process is called. Then, the algorithm goes

back to the employed bee phase and repeat the loop until stop condition is met.

The main flowchart of the mABC algorithm is shown in Algorithm 4.

6.3 The proposed mABC algorithm-based param-

eter identification approach

6.3.1 Problem formulation for the parameter identification

In order to identify the parameters of unknown FOMASs, consider the original

systems as

x
(α)
i (t) = f(xi(t), θ), i ∈ N ∪ {0}, (6.8)

where the fractional order α ∈ (0, 1], θ = (θ1, θ2, · · · , θm) are the system pa-

rameters; xi(t) ∈ Rn are the ith agent’s state; f(xi(t), θ) ∈ Rn is the intrinsic

nonlinearity.

Consider the identified systems as

x̃
(α̃)
i (t) = f(x̃i(t), θ̃), i ∈ N ∪ {0}, (6.9)

where α̃ is the identified fractional order, θ̃ = (θ̃1, θ̃2, · · · , θ̃m)
T denotes the iden-

tified system parameters, x̃i(t) ∈ Rn denotes the state of systems (6.9). Besides,

systems (6.8) and (6.9) have the same initial conditions.

To identify FOMASs (6.8), it is converted into the following functional opti-

mization model as

Ji(α̃θ̃) = arg min
(α̃,θ̃)∈Ω

Fi

= arg min
(α̃,θ̃)∈Ω

K
∑

k=1

‖xik − x̃ik‖, i ∈ N ∪ {0},
(6.10)

where K is the size of the sampling data. xik and x̃ik represent respectively the

ith agent’s state of systems (6.8) and (6.9) at time kh, where h is the step size

(Diethelm et al., 2002). Ω denotes the searching space for α̃, Ã and θ̃. Therefore,
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Algorithm 4 Framework of the mABC algorithm (Hu et al., 2019d)

1: Step 0) Predefine some parameters: SN (population size number), D

(searching dimension), LOWER (lower bound), UPPER (upper bound),

limit (control parameter), MCN (maximum cycle number), trail = 0.

2: Step 1) The population initialization phase:

3: Step 1.1) Randomly generate 0.5 ∗SN points in the search space to form

an initial population via Eq. (4.7).

4: Step 1.2) Evaluate the objective function values of population.

5: Step 1.3) cycle=1;

6: Step 2) The employed bees phase:

7: For i = 1 to 0.5 ∗ SN do

8: Step 2.1)

9: Step 2.1.1) Generate a candidate solution Vi by Eq. (6.4).

10: Step 2.1.2) Evaluate f(Vi).

11: Step 2.2) If f(Vi) < f(Xi), set Xi = Vi, otherwise, set triali = triali+1.

12: End For

13: Step 3) Calculating the probability values pi by Eq. (4.9), set t = 0, i = 1.

14: Step 4) The onlooker bees phase:

15: While t ≤ 0.5 ∗ SN, do

16: Step 4.1)

17: If rand(0, 1) < pi

18: Step 4.1.1) Searching the candidate solution Vi via Eq. (6.7).

19: Step 4.1.4) Set t = t + 1.

20: End If

21: Step 4.2) Set i = i+ 1, if i = 0.5 ∗ SN , set i = 1.

22: End While

23: Step 5) The scout bees phase:

24: If max(triali) > limit, replace Xi with a new candidate solution generated

via Eq. (4.7).

25: Step 6) Set cycle = cycle + 1, and if cycle > MCN , then stop and output

the best solution achieved so far, otherwise, go to Step 2.
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FOMASs (6.8) can be identified by searching suitable α̃, Ã and θ̃ in the region Ω

by minimizing function (6.10).

6.3.2 The mABC algorithm-based parameter identification

approach

Using the proposed mABC algorithm introduced in Section 6.2, and the func-

tion optimization model (6.10), the following mABC algorithm-based parameter

identification approach is presented as Algorithm 5.

Algorithm 5 mABC algorithm-based parameter identification scheme

1: Initialize parameters for Algorithm 4 and FOMASs (6.9)

2: Produce the initial population in the feasible region Ω defined in Subsection

6.3.1

3: repeat

4: Optimize the function (6.10) with employed bees based on (6.4)

5: Optimize the function (6.10) with onlooker bees based on (6.7)

6: Optimize the function (6.10) with scout bees based on (4.7)

7: until Maximum iteration is met

8: Return the best parameter identification values

6.4 Experimental setup and results

6.4.1 Experimental setup

To test the efficiency of the proposed scheme, the FOMASs modeled with five

typical fractional-order chaotic systems are treated as the standard benchmarks

which are described in (6.11)-(6.15). Nowadays, these nonlinear systems have

been widely utilized as benchmarks for investigations of parameter identification

with different algorithms by lots of researchers (Ahandani et al., 2018; Lin &

Wang, 2017; Sheng et al., 2014; Wei et al., 2018).
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Example 6.1 The FOMASs are modeled with fractional-order Chua’s circuit as











x
(α)
i1 (t) = p1(xi2(t)− g(xi1(t))),

x
(α)
i2 (t) = xi1(t)− xi2(t) + xi3(t),

x
(α)
i3 (t) = −p2xi2(t),

(6.11)

where i = 0, 1 · · · , N , g(xi1(t)) = m1xi1(t)+
1
2
(m0−m1)(|xi1(t)+1|−|xi1(t)−1|),

α = 0.97, p1 = 10, p2 = 14.7, m0 = −0.144, m1 = 0.256.

Example 6.2 The FOMASs are modeled with fractional-order Rössler system as











x
(α)
i1 (t) = −(xi2(t) + xi3(t)),

x
(α)
i2 (t) = xi1(t) + axi2(t),

x
(α)
i3 (t) = b+ xi3(t)(xi1(t)− c),

(6.12)

where i = 0, 1 · · · , N , α = 0.90, a = 0.4, b = 0.2, c = 10.

Example 6.3 The FOMASs are modeled with fractional-order financial system

as










x
(α)
i1 (t) = xi3(t) + xi1(t)(xi2(t)− a),

x
(α)
i2 (t) = 1− bxi2(t)− x2

i1(t),

x
(α)
i3 (t) = −xi1(t)− cxi3(t),

(6.13)

where i = 0, 1 · · · , N , α = 0.95, a = 3, b = 0.1, c = 1.

Example 6.4 The FOMASs are modeled with fractional-order Lorenz system as











x
(α)
i1 (t) = a(xi2(t)− xi1(t)),

x
(α)
i2 (t) = cxi1(t)− xi2(t)− xi1(t)xi3(t),

x
(α)
i3 (t) = −bxi3(t) + xi1(t)xi2(t),

(6.14)

where i = 0, 1 · · · , N , α = 0.99, a = 10, b = 8/3, c = 28.

Example 6.5 The FOMASs are modeled with fractional-order neural networks

as










x
(α)
i1 (t) = a1xi1(t) + b11tanh(xi1(t)) + b12tanh(xi2(t)) + b13tanh(xi3(t)),

x
(α)
i2 (t) = a2xi2(t) + b21tanh(xi1(t)) + b22tanh(xi2(t)) + b23tanh(xi3(t)),

x
(α)
i3 (t) = a3xi3(t) + b31tanh(xi1(t)) + b32tanh(xi2(t)) + b33tanh(xi3(t)),

(6.15)
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where i = 0, 1 · · · , N , A = diag{a1, a2, a3} = −I3,

B = [bij ]3×3 =







2 −1.2 0

1.8 1.71 1.15

−4.75 0 1.1






.

In the following experiments, to show convinced results, the mABC algorithm

is compared with the standard ABC and some other typical AIOAs, such as DE

(Storn & Price, 1997), PSO (Eberhart & Shi, 2000) and CS (Yang & Deb, 2009).

In order to execute the same function evaluation numbers, the population size are

all set as SN = 100, To calculate the objective function, the K = 100 and h =

0.01. 30 runs are conducted for each algorithm in each example, and all runs are

stopped when the predefined iteration T is met. Some other special parameters

of the compared algorithms and identified FOMASs are set as Tables 6.1 and 6.2

respectively. Here, the homogeneous FOMASs are considered, therefore we just

need to randomly choose one agent to identify.

Table 6.1: Parameters setting for the compared algorithms

Algorithms Parameters

mABC limit = 15, ξmax = 0.5, ξmin = 0.005, Jr = 0.1

ABC limit = 15

DE F = 0.5, CR = 0.7

PSO vmax = 1, vmin = −1, w = 0.7298, c1 = c2 = 1.49618

CS pa = 0.25

Table 6.2: Parameters setting for the considered FOMASs

FOMASs Unknown parameters Lower bound Upper bound Initial condition T

System (6.11) (α, p1, p2,m0,m1) (0.01,9,13,-1,0.01) (1,11,16,0,1) (-2,0.5,3) 150

System (6.12) (α, a, b, c) (0.01,0.01,0.01,9) (1,1,1,11) (3,2,5) 100

System (6.13) (α, a, b, c) (0.01,2,0.01,0.5) (1,4,1,1.5) (2,3,2) 100

System (6.14) (α, a, b, c) (0.01,9,2,27) (1,11,4,29) (12,-5,-13) 100

System (6.15) (α, b11, b22, b33) (0.01,1,1,0.5) (1,3,3,2) (1,2,0.5) 100
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6.4.2 Parameter identification results

To illustrate the superiority of the proposed mABC algorithm, firstly the mean

value of the identified parameters with 30 times and the corresponding relative

errors are given, and the mean objective function values and the standard deriva-

tion are also provided, which can be found in Tables 6.3-6.7. Tables 6.3-6.7

show the identified parameter values obtained by the proposed mABC algorithm

are more accurate, the relative errors obtained with mABC algorithm are much

smaller than those obtained by other algorithms, and the standard derivation of

the mABC algorithm is much smaller than others, which shows that the mABC

algorithm is more robust than others. Secondly, Fig. 6.2 displays the evolution-

ary curves of the objective function values in a single run, which further shows

that the searching speed of the mABC algorithm is faster than others.

Besides, the box plots of the experimental results in terms of the best objective

function values in 30 runs are given in Fig. 6.3. In Fig. 6.3, the box plots, which

are also called as box and whisker plots, display five-number summary of a set of

data. The five-number summary includes the minimum, first quartile, median,

third quartile, and maximum. In a box plot, a box is drawn from the first quartile

to the third quartile. A vertical line goes through the box at the median. The

whiskers go from each quartile to the minimum or maximum. In fact, the five-

number summary divides the data into sections that each contain approximately

25% of the data in that set. Besides, the box plot can display the outliers and

what their values are, which are marked with +. It can also reflect if the data

is symmetrical, how tightly the data is grouped, and if and how the data is

skewed. Therefore, based on the characteristics of Fig. 6.3, it can be found that

the performance of the mABC algorithm are the best among all the compared

algorithms for all the systems.
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Table 6.3: Statistical results in terms of mean values for parameter identification of FOMASs (6.11)

mABC ABC DE PSO CS

α 0.969999999963962 0.969108668929158 0.970011498248518 0.971399332871050 0.970859819985801

|α−0.97
0.97 | 3.72E-11 9.19E-04 1.19E-05 1.44E-03 8.86E-04

p1 9.999999999601490 9.979946641501790 9.999507186165270 9.867773856560690 9.969646494300770

|p1−10
10 | 3.99E-11 2.01E-03 4.93E-05 1.32E-02 3.04E-03

p2 14.699999999162200 14.672235192216800 14.699954465408900 14.535336437671600 14.673050072167500

|p2−14.7
14.7 | 5.70E-11 1.89E-03 3.10E-06 1.12E-02 1.83E-03

m0 -0.144000000236786 -0.141631851239487 -0.144028449128557 -0.097038353733713 -0.154428547836811

|m0−(−0.144)
−0.144 | 1.64E-09 1.64E-02 1.98E-04 3.26E-01 7.24E-02

m1 0.256000000745335 0.256293252258667 0.256197124637012 0.152550078593795 0.296178225732747

|m1−0.256
0.256 | 2.91E-09 1.15E-03 7.70E-04 4.04E-01 1.57E-01

J1 1.29E-09 2.11E-01 2.75E-03 4.97E-01 1.69E-01

Std 7.04E-09 6.02E-02 9.06E-04 4.48E-01 4.00E-02
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Table 6.4: Statistical results in terms of mean values for parameter identification of FOMASs (6.12)

mABC ABC DE PSO CS

α 0.900000000000007 0.900000934702510 0.899999992812217 0.900476029743134 0.899325519605760

|α−0.9
0.9 | 7.52E-15 1.04E-06 7.99E-09 5.29E-04 7.49E-04

a 0.399999999999985 0.399998667169488 0.399999978894998 0.400022388034355 0.399631561857637

|a−0.4
0.4 | 3.76E-14 3.33E-06 5.28E-08 5.60E-05 9.21E-04

b 0.200000000000662 0.200199173089204 0.199998917658505 0.226667228634665 0.192492576454752

| b−0.2
0.2 | 3.31E-12 9.96E-04 5.41E-06 1.33E-01 3.75E-02

c 10.000000000000400 10.000112683062500 10.000000357589200 10.020928948380600 10.004189705708300

| c−10
10 | 4.23E-14 1.13E-05 3.58E-08 2.09E-03 4.19E-04

J1 6.61E-13 0.002569746 6.60E-06 0.014593375 0.060988296

Std 1.89E-13 1.31E-03 3.60E-06 7.99E-02 2.47E-02
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Table 6.5: Statistical results in terms of mean values for parameter identification of FOMASs (6.13)

mABC ABC DE PSO CS

α 0.950000000000007 0.950507527589402 0.949999918469961 0.951637304166363 0.949477786745610

|α−0.95
0.95 | 7.13E-15 5.34E-04 8.58E-08 1.72E-03 5.50E-04

a 3.000000000000000 3.001983645276290 3.000000274350410 3.005143486624690 2.998774196816740

|a−3
3 | 1.48E-16 6.61E-04 9.15E-08 1.71E-03 4.09E-04

b 0.100000000000003 0.101314738721886 0.100000162046569 0.103998985147500 0.100060538054273

| b−0.1
0.1 | 3.23E-14 1.31E-02 1.62E-06 4.00E-02 6.05E-04

c 1.000000000000020 1.001421295824540 0.999999630314067 1.007189155678480 0.997241336982322

| c−1
1 | 1.75E-14 1.42E-03 3.70E-07 7.19E-03 2.76E-03

J1 1.87E-13 2.37E-02 3.43E-05 2.35E-02 4.59E-02

Std 3.44E-13 1.31E-02 1.39E-05 9.81E-02 2.16E-02
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Table 6.6: Statistical results in terms of mean values for parameter identification of FOMASs (6.14)

mABC ABC DE PSO CS

α 0.990000000000001 0.989883631443830 0.990000024541688 0.990333336667774 0.990180502717956

|α−0.99
0.99 | 5.61E-16 1.18E-04 2.48E-08 3.37E-04 1.82E-04

a 10.000000000000100 9.990975625810070 10.000000746310500 10.017643275039700 10.003000177964100

|a−10
10 | 1.24E-14 9.02E-04 7.46E-08 1.76E-03 3.00E-04

b 2.666666666666730 2.664549397031520 2.666667555596440 2.675131218483940 2.669360589181400

| b−8/3
8/3 | 2.31E-14 7.94E-04 3.33E-07 3.17E-03 1.01E-03

c 27.999999999999900 27.998858480608700 27.999999923100800 28.005999451836900 28.007120911522200

| c−28
28 | 4.82E-15 4.08E-05 2.75E-09 2.14E-04 2.54E-04

J1 7.80E-12 7.14E-01 2.76E-04 3.93E-01 2.62E+00

Std 1.09E-11 5.34E-01 1.35E-04 2.15E+00 1.07E+00
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Table 6.7: Statistical results in terms of mean values for parameter identification of FOMASs (6.15)

mABC ABC DE PSO CS

α 0.980000000000000 0.980023386901886 0.980000061882073 0.991333360939757 0.979963140355235

|α−0.98
0.98 | 3.40E-16 2.39E-05 6.31E-08 1.16E-02 3.76E-05

b11 2.000000000000000 2.000026001223250 1.999999983660480 1.994394995097900 1.999952086912340

| b11−2
2 | 5.55E-16 1.30E-05 8.17E-09 2.80E-03 2.40E-05

b22 1.710000000000000 1.710061372444070 1.709999966869790 1.702292760073590 1.710333544567430

| b22−1.71
1.71 | 0.00E+00 3.59E-05 1.94E-08 4.51E-03 1.95E-04

b33 1.100000000000000 1.099763987541540 1.099999738101140 1.109231196578470 1.100505113623240

| b33−1.1
1.1 | 8.07E-16 2.15E-04 2.38E-07 8.39E-03 4.59E-04

J1 6.48E-14 8.40E-03 9.94E-06 1.17E-01 1.49E-02

Std 3.84E-14 4.06E-03 3.89E-06 1.04E-01 5.62E-03
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(c) FOMASs (6.13)
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Fig. 6.2. Searching processes of the objective function values for different FO-
MASs with the compared AIOAs in a single run.
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Fig. 6.3. Box plots of the objective function values in 30 independent runs for
different FOMASs with the compared AIOAs.

To further evaluate the performance of mABC algorithm, Wilcoxon signed
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rank test with respect to the best objective function values in 30 runs is used

between the compared algorithms as showed in Tables 6.8-6.12. In Tables 6.8-

6.12, R+ denotes the sum of ranks for runs where the right algorithm outperform

the left one, R− denotes the sum of ranks for runs where the left algorithm

outperform the right one; p − value reflects the significance of the results in a

statistical hypothesis test, where the smaller the p−value, the stronger evidences

against the null hypothesis. If h = 1, this means the null hypothesis is rejected

with 100∗0.05% significance level, If h = 0, this means the null hypothesis is failed

to be rejected with 100∗0.05% significance level. Therefore, from Tables 6.8-6.12,

it can be found that the proposed mABC algorithm significantly outperforms

other algorithms. Furthermore, the Friedman test is also carried out on the

relative errors in Tables 6.3-6.7 among the compared algorithms. The p-value is

3.9447e−16, which further confirms that there exists significant difference among

the compared algorithms. Meanwhile, the mABC algorithm obtains the highest

rank, which can be clearly seen in Fig. 6.4.

Table 6.8: Wilcoxon signed ranks test results for FOMASs (6.11)

Algorithms R+ R- p-value h Algorithms R+ R- p-value h

mABC vs ABC 0 465 1.73E-06 1 DE vs PSO 55 410 2.61E-04 1

mABC vs DE 0 465 1.73E-06 1 DE vs CS 0 465 1.73E-06 1

mABC vs PSO 0 465 1.73E-06 1 PSO vs ABC 365 100 6.42E-03 1

mABC vs CS 0 465 1.73E-06 1 PSO vs CS 398 67 6.64E-04 1

DE vs ABC 0 465 1.73E-06 1 CS vs ABC 97 368 5.32E-03 1

Table 6.9: Wilcoxon signed ranks test results for FOMASs (6.12)

Algorithms R+ R- p-value h Algorithms R+ R- p-value h

mABC vs ABC 0 465 1.73E-06 1 DE vs PSO 98 367 5.67E-03 1

mABC vs DE 0 465 1.73E-06 1 DE vs CS 0 465 1.73E-06 1

mABC vs PSO 0 465 1.73E-06 1 PSO vs ABC 30 435 3.11E-05 1

mABC vs CS 0 465 1.73E-06 1 PSO vs CS 30 435 3.11E-05 1

DE vs ABC 0 465 1.73E-06 1 CS vs ABC 465 0 1.73E-06 1
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Table 6.10: Wilcoxon signed ranks test results for FOMASs (6.13)

Algorithms R+ R- p-value h Algorithms R+ R- p-value h

mABC vs ABC 0 465 1.73E-06 1 DE vs PSO 378 87 2.77E-03 1

mABC vs DE 0 465 1.73E-06 1 DE vs CS 0 465 1.73E-06 1

mABC vs PSO 0 465 1.73E-06 1 PSO vs ABC 59 406 3.59E-04 1

mABC vs CS 0 465 1.73E-06 1 PSO vs CS 59 406 3.59E-04 1

DE vs ABC 0 465 1.73E-06 1 CS vs ABC 417 48 1.48E-04 1

Table 6.11: Wilcoxon signed ranks test results for FOMASs (6.14)

Algorithms R+ R- p-value h Algorithms R+ R- p-value h

mABC vs ABC 0 465 1.73E-06 1 DE vs PSO 435 30 3.11E-05 1

mABC vs DE 0 465 1.73E-06 1 DE vs CS 0 465 1.73E-06 1

mABC vs PSO 0 465 1.73E-06 1 PSO vs ABC 30 435 3.11E-05 1

mABC vs CS 0 465 1.73E-06 1 PSO vs CS 30 435 3.11E-05 1

DE vs ABC 0 465 1.73E-06 1 CS vs ABC 459 6 3.18E-06 1

Table 6.12: Wilcoxon signed ranks test results for FOMASs (6.15)

Algorithms R+ R- p-value h Algorithms R+ R- p-value h

mABC vs ABC 0 465 1.73E-06 1 DE vs PSO 72 393 9.63E-04 1

mABC vs DE 0 465 1.73E-06 1 DE vs CS 0 465 1.73E-06 1

mABC vs PSO 0 465 1.73E-06 1 PSO vs ABC 374 91 3.61E-03 1

mABC vs CS 0 465 1.73E-06 1 PSO vs CS 374 91 3.61E-03 1

DE vs ABC 0 465 1.73E-06 1 CS vs ABC 415 50 1.74E-04 1
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Fig. 6.4. The Friedman test among the compared algorithms

6.5 Conclusion

In this chapter, the parameter identification of unknown nonlinear FOMASs is

addressed based a modified ABC algorithm. Firstly, the mABC algorithm is put

forward. Then it is applied to identify the unknown parameters of the nonlin-

ear FOMASs, where the parameter identification is converted into a functional

optimization issue. Finally, experimental results demonstrate that the proposed

mABC-based parameters identification approach owns higher accuracy, stronger

robustness and faster searching speed than other compared algorithms.
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Conclusions and Perspectives

Summary of main results

This thesis deals with the parameter identification from the viewpoint of opti-

mization and distributed tracking control of fractional-order multi-agent systems

(FOMASs) considering time delays, external disturbances, inherent nonlinear-

ity, parameters uncertainties, and heterogeneity under fixed undirected/directed

communication topology.

Firstly, in Chapter 2, over fixed directed communication topology, the leader-

following consensus of heterogenous FOMASs is investigated with respect to input

delays based on the frequency domain analysis approach, where the fractional or-

ders between leader and followers are heterogenous, which is more general. The

main contributions are as following: firstly, different from the leaderless consensus

of FOMASs and leader-following consensus of FOMASs with homogeneous orders

between leader and followers, the leader-following consensus of FOMASs with het-

erogenous orders between leader and followers is investigated and a novel control

algorithm with a fractional-order estimator is designed. Secondly, in contrast

with leaderless consensus of delayed FOMASs and leader-following consensus of

FOMASs without time delays, the leader-following consensus of HFOMASs under

input delays is considered based on the proposed control algorithm.

Secondly, in Chapter 3, the inherent nonlinear dynamics and external distur-

bances are further considered into the FOMASs, and the distributed consensus

tracking is studied based on the fractional Lyapunov direct method over fixed

undirected communication topology. Compared with the existing results, There

are four main differences. Firstly, different from the most results studying the

integer-order models, the MASs with fractional dynamics are studied. Secondly,

in contrast with most results about the consensus tracking of FOMASs without
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considering the external disturbances, the external disturbances are considered

into the FOMASs in this Chapter. Thirdly, different from most results where the

style of the external disturbances are known, in this Chapter we do not known

the style of the external disturbances beforehand. Fourthly, different from most

results using a linear control protocol, we propose two effective nonlinear control

algorithms.

Thirdly, in Chapter 4, the unknown parameters are further considered, the dis-

tributed consensus tracking of unknown nonlinear delayed FOMASs with external

disturbances is addressed based on ABC algorithm, where the parameter identifi-

cation problem is tackled from the viewpoint of optimization. Compared with the

existing works, the contribution are as follows. Firstly, compared with most re-

sults concerning the integer-order MASs, the delayed MASs with fractional-order

dynamics, external disturbances are considered. Secondly, different from the re-

sults about the time delays with linear case, the time delay under nonlinear case

is further investigated. Thirdly, most results about the FOMASs only considered

the external disturbances, but have not taken the time delays into account at

the same time. Fourthly, most existing results are supposed that the fractional

orders and system parameters of the nonlinear FOMASs are known beforehand,

while in this Chapter, the parameters are considered to be unknown, and the

ABC algorithm is employed to identify the unknown parameters of the unknown

delayed FOMASs. Furthermore, it should be pointed out that this Chapter pro-

vides a promising link between the artificial intelligent technique and distributed

cooperative control of FOMASs or other control fields.

Fourthly, the results obtained above assume that the control input of a leader

is either equal to zero or available to all the followers, which has some limitations

and lacks flexibility. More specifically, for the purpose of leading the followers to

achieve special tasks, the leader’s input need to be nonzero or time-varying. Be-

sides, the controller gains may be heterogenous due to imperfect implementation.

Thus in Chapter 5, under a fixed directed graph, the distributed cooperative syn-

chronization of heterogenous uncertain nonlinear delayed FOMASs with a leader

of bounded unknown input is further investigated based on DE algorithm. Com-

pared with the existing works, our contribution are as follows. Firstly, compared

with most results concerning the integer-order MASs, the delayed MASs with

fractional-order dynamics, unknown leaders and parameters, and heterogenous
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control gains are involved. Secondly, different from some results studied the time

delays with linear FOMASs, the time delay with nonlinear dynamics is further

studied; Thirdly, different from most results without considering the leader’s

control input, we assume that the leader owns bounded unknown input, which

could be more flexible and general in the distributed cooperative synchronization.

Fourthly, different from most results, where the differential orders are assumed

to be known, while in this Chapter, differential orders and system parameters are

both considered to be unknown, and a DE-based parameter estimation method

is proposed to identify the unknown parameters of the delayed heterogenous non-

linear FOMASs.

Fifthly, in Chapter 4, an efficient ABC algorithm is used to identify the un-

known FOMASs. In Chapter 5, the DE algorithm is selected to identify the

unknown FOMASs. However, although the AIOAs, such as ABC and DE, have

demonstrated superior features compared to other traditional methods, there

is no specific algorithm that can achieve the best solution for all optimization

problems. Namely, as far as most algorithms are concerned, it is difficult to

simultaneously manage the tradeoff between exploration and exploitation suc-

cessfully for all the optimization problems. Similarly, there are no exceptions

for ABC and DE. Therefore, in Chapter 6, to enhance the exploration and the

exploitation abilities, a hybrid adaptive artificial bee colony algorithm, named as

mABC, is put forward. Then, the proposed mABC algorithm is applied to the

parameters identification of nonlinear FOMASs, experiment results demonstrate

that the proposed mABC algorithm can identify the unknown parameters more

accurately, efficiently and robustly. Compared with the existing works, our con-

tribution are as follows. Firstly, a novel modified ABC algorithm is proposed.

Secondly, a novel parameter identification scheme based on the modified ABC

algorithm is put forward. Thirdly, non-parametric statistic tests are employed to

demonstrate the performance of the proposed algorithm.

Future works

The following directions will be explored in the future

• This thesis mainly investigates the continuous-time fractional-order multi-

agent systems (FOMASs) by using the Caputo fractional-order derivative
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as the initial conditions of the Caputo fractional-order differential equations

are the same with those of the integer-order one, which is more reasonable

in practice. To the best of authors’ knowledge, for the study of the discrete-

time FOMASs, few results have been reported where only the Grünwald-

Letnikov fractional-order derivative has been used because of definition of

fractional order derivative (Shahamatkhah & Tabatabaei, 2018; Wyrwas

et al., 2018). In the authors’ future works, the authors will try to extend

their results to the discrete-time versions.

• The proportional-integral-derivative (PID) controller is perhaps the most

widely used controller in the world, it is easy to design and implement and

has been applied well in most control systems. While control theory has

been developed significantly, the PID controllers are used in a wide range

of process control, motor drives, magnetic and optic memories, automotive

control, flight control, instrumentation, and so on. In industrial applica-

tions, more than 90% of all control loops are PID type. Besides, Podlubny

proposed a generalization of the PID controller, namely the fractional-order

PID controller (FOPID or PIλDδ), where λ and δ are integers. However,

it is difficult and complicated to design the FOPID controller by analytical

method because of using fraction calculus. In the future, we plan to use

the AIOAs for tuning of FOPID controller in the distributed coordination

of FOMASs.

• As we have mentioned before, there is no specific AIOAs that can achieve

the best solution for all optimization problems. Therefore, we will continue

to improve the existing AIOAs to manage the tradeoff between exploration

and exploitation.

• Note that most existing results are focus on the fixed communication topol-

ogy, constant time delays. In the future, we will try to extend our results

to switched communication topology, and time-varying time delays.

• Our obtained results mainly focus on the the theoretical aspects. Only

the numerical simulations have been conducted to test the effectiveness of

our results. In the future, we plan to verify our results using a practical

experimental platform.
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Résumé Etendu

Cette thèse traite de l’identification des paramètre du point de vue de l’optimisation

et du contrôle de suivi distribué des systèmes multi-agents d’ordre fractionnaire

(FOMASs) en tenant compte des délais, des perturbations externes, de la non-

linéarité inhérente, des incertitudes des paramètres et de l’hétérogénéité dans

le cadre d’une communication fixe non dirigée/dirigée topologie. Plusieurs con-

trôleurs efficaces sont conçus pour réaliser avec succès le contrôle de suivi dis-

tribué des FOMASs dans différentes conditions. Plusieurs types d’algorithmes

d’optimisation de l’intelligence artificielle et leurs versions modifiées sont ap-

pliqués pour identifier les paramètres inconnus des FOMASs avec une précision

élevée, une convergence rapide et une grande robustesse. Il est à noter que cette

thèse fournit un lien prometteur entre la technique d’intelligence artificielle et le

contrôle distribué.

Tout d’abord, au chapitre 2, sur la topologie de communication dirigée fixe, le

consensus des FOMASs hétérogènes suivant le leader est étudié en ce qui concerne

les retards d’entrée sur la base de l’approche par analyse du domaine fréquentiel,

où les ordres fractionnaires entre leader et suiveurs sont hétérogènes, ce qui est

plus général. Les principales contributions sont les suivantes: premièrement, dif-

férent du consensus sans leader des FOMASs et du consensus suivant des leaders

avec des ordres homogènes entre leader et suiveurs, le consensus des leaders suiv-

ant des FOMASs avec des ordres hétérogènes est étudié et un roman algorithme

de contrôle avec un estimateur d’ordre fractionnel est conçu. Deuxièmement, con-

trairement au consensus sans leader des FOMASs retardés et au consensus des

FOMASs suivant les dirigeants sans délai, le consensus des leaders HFOMASs

suivant les retards d’entrée est pris en compte sur la base de l’algorithme de

contrôle proposé.

Deuxièmement, au chapitre 3, la FOMASs prend en compte la dynamique
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non linéaire inhérente et les perturbations externes, et le suivi du consensus dis-

tribué est étudié sur la base de la méthode directe fractionnelle de Lyapunov

sur une topologie de communication fixe non dirigée. Par rapport aux résultats

existants, il existe quatre différences principales. Premièrement, différents des

principaux résultats concernant les modèles d’ordre entier, les MAS à dynamique

fractionnelle sont étudiés. Deuxièmement, contrairement à la plupart des résul-

tats concernant le suivi par consensus des FOMASs sans prendre en compte les

perturbations externes, les perturbations externes sont prises en compte dans les

FOMASs dans le présent chapitre. Troisièmement, différents de la plupart des

résultats où le style des perturbations externes sont connus, nous ne connaissons

pas auparavant le style des perturbations externes. Quatrièmement, différents de

la plupart des résultats utilisant un protocole de contrôle linéaire, nous proposons

deux algorithmes de contrôle non linéaires efficaces.

Troisièmement, au chapitre 4, les paramètres inconnus sont également pris

en compte, le suivi distribué par consensus de FOMASs inconnus à retard non

linéaire avec perturbations externes est traité sur la base de l’algorithme ABC, où

le problème d’identification de paramètre est traité du point de vue de l’optimisation.

Par rapport aux travaux existants, la contribution est la suivante. Premièrement,

par rapport à la plupart des résultats concernant les MASs d’ordre entier, les

MASs différés à dynamique d’ordre fractionnel, les perturbations externes sont

prises en compte. Deuxièmement, différents des résultats concernant les retards

dans le cas linéaire, le retard dans le cas non linéaire fait l’objet d’une enquête plus

approfondie. Troisièmement, la plupart des résultats concernant les FOMASs ne

prenaient en compte que les perturbations externes, mais n’ont pas tenu compte

des retards en même temps. Quatrièmement, la plupart des résultats existants

supposent que les ordres fractionnaires et les paramètres système des FOMASs

non linéaires sont connus à l’avance. Dans ce chapitre, les paramètres sont consid-

érés comme inconnus et l’algorithme ABC est utilisé pour identifier les paramètres

inconnus de l’inconnu retardé. FOMASs. En outre, il convient de souligner que

ce chapitre constitue un lien prometteur entre la technique intelligente artificielle

et le contrôle coopératif distribué des FOMASs ou d’autres champs de contrôle.

Quatrièmement, les résultats obtenus ci-dessus supposent que l’entrée de con-

trôle d’un leader est égale à zéro ou disponible pour tous les suiveurs, ce qui

présente certaines limites et manque de flexibilité. Plus précisément, pour amener
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les suiveurs à accomplir des tâches spéciales, la contribution du responsable doit

être non nulle ou variable dans le temps. En outre, les gains du contrôleur peuvent

être hétérogènes en raison d’une mise en œuvre imparfaite. Ainsi, au chapitre 5,

sous un graphe dirigé fixe, la synchronisation coopérative distribuée de FOMASs

hétérogènes incertains, à retard retardé non linéaire, avec un chef de file d’entrée

inconnue liée est approfondie sur la base de l’algorithme DE. Par rapport aux

travaux existants, notre contribution est la suivante. Premièrement, comparés à

la plupart des résultats concernant les MASs d’ordre entier, les MASs retardés

avec une dynamique d’ordre fractionnaire, des leaders et paramètres inconnus et

des gains de contrôle hétérogènes entrent en jeu. Deuxièmement, les résultats

différés avec les FOMASs linéaires sont différents de certains résultats. Le re-

tard temporel avec la dynamique non linéaire est ensuite étudié; Troisièmement,

différent de la plupart des résultats sans tenir compte de l’entrée de contrôle du

leader, nous supposons que le leader possède une entrée inconnue limitée, ce qui

pourrait être plus flexible et plus général dans la synchronisation coopérative

distribuée. Quatrièmement, il est différent de la plupart des résultats, où les

ordres différentiels sont supposés connus, tandis que dans ce chapitre, les ordres

différentiels et les paramètres système sont tous deux considérés comme incon-

nus, et une méthode d’estimation des paramètres basée sur l’algorithme DE est

proposée pour identifier les paramètres inconnus de les FOMASs non linéaires

hétérogènes retardés.

Cinquièmement, au chapitre 4, un algorithme ABC efficace est utilisé pour

identifier les FOMASs inconnus. Au chapitre 5, l’algorithme DE est sélectionné

pour identifier les FOMASs inconnus. Cependant, bien que les AIOAs, telles

que ABC et DE, aient démontré des fonctionnalités supérieures à celles des

autres méthodes traditionnelles, il n’existe aucun algorithme spécifique perme-

ttant d’obtenir la meilleure solution pour tous les problèmes d’optimisation. À

savoir, autant que la plupart En ce qui concerne les algorithmes, il est difficile

de gérer simultanément le compromis entre exploration et exploitation pour tous

les problèmes d’optimisation. De même, il n’y a pas d’exception pour ABC et

DE. Par conséquent, au chapitre 6, pour améliorer les capacités d’exploration

et d’exploitation, un algorithme hybride adaptatif de colonies d’abeilles artifi-

cielles, appelé mABC, est proposé. Ensuite, l’algorithme mABC proposé est ap-

pliqué à l’identification des paramètres de FOMASs non linéaires. Les résultats
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de l’expérience démontrent que l’algorithme mABC proposé permet d’identifier

les paramètres inconnus de manière plus précise, efficace et robuste. Par rap-

port aux travaux existants, notre contribution est la suivante. Tout d’abord,

un nouvel algorithme ABC modifié est proposé. Deuxièmement, un nouveau

schéma d’identification de paramètre basé sur l’algorithme ABC modifié est pro-

posé. Troisièmement, des tests statistiques non paramétriques sont utilisés pour

démontrer les performances de l’algorithme proposé.
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