J. Hansen, R. Ruedy, M. Sato, and K. Lo, Global surface temperature change, Rev. Geophys, vol.48, p.4004, 2010.

R. J. Francey, Atmospheric verification of anthropogenic CO2 emission trends, Nat. Clim. Chang, vol.3, pp.520-524, 2013.

C. Macfarling-meure, Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP, Geophys. Res. Lett, vol.33, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01103823

C. D. Keeling, Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus A, vol.28, pp.538-551, 1976.

R. J. Andres, A synthesis of carbon dioxide emissions from fossil-fuel combustion, Biogeosciences, vol.9, pp.1845-1871, 2012.

F. Böhm, M. Joachimski, M. Lehnert, H. Retiner, and J. , Evidence for preindustrial variations in the marine surface water carbonate system from coralline sponges

, Geochemistry Geophys. Geosystems, vol.3, pp.1-13, 2002.

J. Hansen, Dangerous human-made interference with climate: a GISS modelE study, Atmos. Chem. Phys, vol.7, pp.2287-2312, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00328500

, International Energy Agency. Key world energy statistics. Statistics (Ber), vol.80, 2016.

, International Energy Agengy. Key Renewable Trends, 2016.

, International Energy Agengy. Global EV Outlook, 2015.

, Electric Vehicles Initiative, International Energy Agency. Global EV Outlook, 2016.

M. Becherif, Hydrogen Energy Storage: New Techno-Economic Emergence Solution Analysis, Energy Procedia, vol.74, pp.371-380, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01270968

J. A. Turner, Sustainable hydrogen production, Science, vol.305, p.200, 2004.

B. M. Besancon, Hydrogen quality from decarbonized fossil fuels to fuel cells, Int. J. Hydrogen Energy, vol.34, pp.2350-2360, 2009.

A. Zuttel, A. Remhof, A. Borgschulte, and O. Friedrichs, Hydrogen: the future energy carrier, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci, vol.368, pp.3329-3342, 2010.

S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, Review of the proton exchange membranes for fuel cell applications, Int. J. Hydrogen Energy, vol.35, pp.9349-9384, 2010.

S. Kreitmeier, G. A. Schuler, A. Wokaun, and F. N. Büchi, Investigation of membrane degradation in polymer electrolyte fuel cells using local gas permeation analysis, J. Power Sources, vol.212, pp.139-147, 2012.

L. Gubler, S. M. Dockheer, W. H. Koppenol, H. Ho?, and . Hoo?, Formation and Ionomer Degradation in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc, vol.158, p.755, 2011.

S. S. Kocha, J. D. Yang, and J. S. Yi, Characterization of Gas Crossover and Its Implications in PEM Fuel Cells, vol.52, 2006.

S. Kreitmeier, M. Michiardi, A. Wokaun, and F. N. Büchi, Factors determining the gas crossover through pinholes in polymer electrolyte fuel cell membranes, Electrochim. Acta, vol.80, pp.240-247, 2012.

F. A. De-bruijn, V. A. Dam, and G. J. Janssen, Review: Durability and Degradation Issues of PEM Fuel Cell Components, Fuel Cells, vol.8, pp.3-22, 2008.

W. Liu, K. Ruth, and G. Rusch, Membrane Durability in PEM Fuel Cells, vol.231, pp.227-231, 2001.

A. Pozio, R. F. Silva, M. De-francesco, and L. Giorgi, Nafion degradation in PEFCs from end plate iron contamination, Electrochim. Acta, vol.48, pp.1543-1549, 2003.

J. Healy, Aspects of the Chemical Degradation of PFSA Ionomers used in PEM Fuel Cells, Fuel Cells, vol.5, pp.302-308, 2005.

J. Xie, Durability of PEFCs at High Humidity Conditions, J. Electrochem. Soc, vol.152, p.104, 2005.

K. Teranishi, K. Kawata, S. Tsushima, and S. Hirai, Degradation Mechanism of PEMFC under Open Circuit Operation, Electrochem. Solid-State Lett, vol.9, p.475, 2006.

M. Inaba, Impacts of air bleeding on membrane degradation in polymer electrolyte fuel cells, J. Power Sources, vol.178, pp.699-705, 2008.

D. E. Curtin, R. D. Lousenberg, T. J. Henry, P. C. Tangeman, and M. E. Tisack, Advanced materials for improved PEMFC performance and life, J. Power Sources, vol.131, pp.41-48, 2004.

, Department of Energy), Fuel Cell Technical Team Roadmap. U. S. Drive Partnersh, vol.9, 2013.

N. Zamel and X. Li, Effect of contaminants on polymer electrolyte membrane fuel cells, Prog. Energy Combust. Sci, vol.37, pp.292-329, 2011.

W. Vogel, J. Lundquist, and P. Ross, Reaction patways and poison II. The rate controlling step for electrochemical oxidation of hydrogen on Pt in acid and poisoning of the reaction by CO, Electrochim. Acta, vol.20, pp.79-93, 1975.

S. Gilman, The Mechanism of Electrochemical Oxidation of Carbon Monoxide and Methanol on Platinum, The (' Reactant-Pair, vol.11

, Electrochemical Oxidation of Carbon Monoxide and Methanol, J. Phys. Chem, vol.68, pp.70-80, 1964.

H. A. Gasteiger, N. Markovic, P. N. Ross, and E. J. Cairns, CO Electrooxidation on Well-Characterized Pt-Ru Alloys, pp.617-625, 1994.

R. Iannielo, V. M. Schmidt, U. Stimming, J. Stumper, and A. Wallau, CO adsorption and oxydation on Pt and Pt-Ru alloys: dependance on substrate composition, Electrochim. Acta, vol.39, p.1863, 1994.

T. Iwasita, Electrocatalysis of methanol oxidation, Electrochim. Acta, vol.47, pp.3663-3674, 2002.

S. Wasmus and A. Ku, Methanol oxidation and direct methanol fuel cells : a selective review 1, vol.461, pp.14-31, 1999.

M. Markovic and H. A. Gasteiger, Electro-oxydation mechanism of methanol and formic acid on Pt-Ru alloy surface, Electrochem. commun, vol.40, pp.91-98, 1995.

S. L. Gojkovi?, T. R. Vidakovi?, and D. R. ?urovi?, Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst, Electrochim. Acta, vol.48, pp.3607-3614, 2003.

Y. Ishikawa, M. S. Liao, C. R. Cabrera, and . ;-m-=-ru, Sn): A theoretical study, Oxidation of methanol on platinum, ruthenium and mixed Pt-M metals, vol.463, pp.66-80, 2000.

E. Yeager, Electrocatalysts for O2 reduction, Electrochim. Acta, vol.29, pp.1527-1537, 1984.

A. Damjanovic and V. Brusic, Electrode kinetics of oxygen reduction on oxide-free platinium electrodes, vol.12, pp.615-628, 1966.

S. Chen and A. Kucernak, Electrocatalysis under Conditions of High Mass Transport Rate: Oxygen Reduction on Single Submicrometer-Sized Pt Particles Supported on Carbon, J. Phys. Chem. B, vol.108, pp.3262-3276, 2004.

U. A. Paulus, A. Wokaun, G. G. Scherer, T. J. Schmidt, and V. Stamenko, Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes, vol.47, 2002.

J. K. Nørskov, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B, vol.108, pp.17886-17892, 2004.

J. Rossmeisl, G. S. Karlberg, T. Jaramillo, and J. K. Norskov, Steady state oxygen reduction and cyclic voltammetry, Faraday Discuss, vol.140, pp.337-346, 2008.

X. Yu and S. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC, J. Power Sources, vol.172, pp.145-154, 2007.

E. Passalacqua and P. L. Antonucci, The influence of Pt on the electrooxidation behaviour of carbon in phosphoric acid, Electrochim. Acta, vol.37, pp.2725-2730, 1992.

L. M. Roen, C. H. Paik, and T. D. Jarvi, Electrocatalytic Corrosion of Carbon Support in PEMFC Cathodes, Electrochem. Solid-State Lett, vol.7, p.19, 2004.

E. Antolini, Carbon supports for low-temperature fuel cell catalysts, Appl. Catal. B Environ, vol.88, pp.1-24, 2009.

E. Antolini, Graphene as a new carbon support for low-temperature fuel cell catalysts, Appl. Catal. B Environ, pp.52-68, 2012.

L. Castanheira, Carbon corrosion in proton-exchange membrane fuel cells: Effect of the carbon structure

, ACS Catal, vol.5, pp.2184-2194, 2015.

L. Castanheira, Carbon corrosion in proton-exchange membrane fuel cells: From model experiments to real-life operation in membrane electrode assemblies
URL : https://hal.archives-ouvertes.fr/hal-01923898

, ACS Catal, vol.4, pp.2258-2267, 2014.

A. V. Virkar and Y. Zhou, Mechanism of Catalyst Degradation in Proton Exchange Membrane Fuel Cells, J. Electrochem. Soc, vol.154, p.540, 2007.

E. Guilminot, Membrane and Active Layer Degradation upon PEMFC Steady-State Operation, J. Electrochem. Soc, vol.154, p.1106, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00386380

L. Dubau, A review of PEM fuel cell durability: Materials degradation, local heterogeneities of aging and possible mitigation strategies, Wiley Interdiscip. Rev. Energy Environ, vol.3, pp.540-560, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01418285

P. Stonehart, P. O. Box, and C. Road, Development of Advanced Noble Metal-Alloy Electrocatalysts for Phosphoric Acid Fuel Cells (PAFC)'. Berichte der Bunsengesellschaft für Phys. Chemie, p.921, 1990.

B. Hammer and J. K. Nørskov, Electronic factors determining the reactivity of metal surfaces, Surf. Sci, vol.343, pp.211-220, 1995.

V. Stamenkovic, Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure, Angew. Chemie -Int. Ed, vol.45, pp.2897-2901, 2006.

V. Jalan and E. J. Taylor, Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid, pp.2299-2302, 1983.

T. Frelink, W. Visscher, and J. A. Van-veen, Particle size effect of carbonsupported platinum catalysts for the electrooxidation of methanol, J. Electroanal. Chem, vol.382, pp.65-72, 1995.

S. Mukerjee, Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction, J. Electrochem. Soc, vol.142, p.1409, 1995.

V. R. Stamenkovic, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability, Science, vol.315, pp.493-497, 2007.

J. Greeley, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts, Nat. Chem, vol.1, pp.552-556, 2009.

F. Maillard, Durability of Pt3Co/C nanoparticles in a proton-exchange membrane fuel cell: Direct evidence of bulk Co segregation to the surface, Electrochem. commun, vol.12, pp.1161-1164, 2010.

L. Dubau, Durability of Pt[sub 3]Co/C Cathodes in a 16 Cell PEMFC Stack: Macro/Microstructural Changes and Degradation Mechanisms, J. Electrochem

. Soc, , vol.157, p.1887, 2010.

L. Dubau, Further insights into the durability of Pt3Co/C electrocatalysts: Formation of 'hollow' Pt nanoparticles induced by the Kirkendall effect

, Electrochim. Acta, vol.56, pp.10658-10667, 2011.

U. G. Vej-hansen, J. Rossmeisl, I. E. Stephens, and J. Schiøtz, Correlation between diffusion barriers and alloying energy in binary alloys, Phys. Chem. Chem. Phys, vol.18, pp.3302-3307, 2016.

I. E. Stephens, A. S. Bondarenko, U. Grønbjerg, J. Rossmeisl, and I. Chorkendorff, Understanding the electrocatalysis of oxygen reduction on platinum and its alloys, Energy Environ. Sci, vol.5, p.6744, 2012.

I. E. Stephens, A. S. Bondarenko, L. Bech, and I. Chorkendorff, Oxygen Electroreduction Activity and X-Ray Photoelectron Spectroscopy of Platinum and Early Transition Metal Alloys, ChemCatChem, vol.4, pp.341-349, 2012.

M. Escudero-escribano, Pt5Gd as a highly active and stable catalyst for oxygen electroreduction, J. Am. Chem. Soc, vol.134, pp.16476-16485, 2012.

M. Escudero-escribano, Tuning the Activity of Pt alloy Electrocatalysts be Means of the Lanthanide Contraction. Science (80-. ), vol.352, pp.73-76, 2016.

R. W. Kelsall, I. W. Hamley, and M. Geoghegan, Nanoscale Science and Technology, 2005.

E. Roduner, Size matters: why nanomaterials are different, Chem. Soc. Rev, vol.35, p.583, 2006.

J. Zhang, H. Yang, J. Fang, and S. Zou, Synthesis and oxygen reduction activity of shape-controlled Pt(3)Ni nanopolyhedra, Nano Lett, vol.10, pp.638-644, 2010.

M. K. Carpenter, T. E. Moylan, R. S. Kukreja, M. H. Atwan, and M. M. Tessema, Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis, J. Am. Chem. Soc, vol.134, pp.8535-8542, 2012.

C. Cui, Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition, Nano Lett, vol.12, pp.5885-5889, 2012.

C. Cui, L. Gan, M. Heggen, S. Rudi, and P. Strasser, Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis, Nat. Mater, vol.12, pp.765-71, 2013.

L. Gan, Element-specific anisotropic growth of shaped platinum alloy nanocrystals, Science, vol.346, pp.1502-1506, 2014.

S. Choi and . Il, Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction, Nano Lett, vol.13, pp.3420-3425, 2013.

V. Beermann, Rh-Doped Pt-Ni Octahedral Nanoparticles: Understanding the Correlation between Elemental Distribution, Oxygen Reduction Reaction, and Shape Stability, Nano Lett, vol.16, pp.1719-1725, 2016.

M. Oezaslan, F. Hasché, and P. Strasser, Pt-Based Core-Shell Catalyst Architectures for Oxygen Fuel Cell Electrodes, J. Phys. Chem. Lett, vol.4, pp.3273-3291, 2013.

J. Snyder, I. Mccue, K. Livi, and J. Erlebacher, Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction, J. Am. Chem. Soc, vol.134, pp.8633-8678, 2012.

V. R. Stamenkovic, Trends in electrocatalysis on extended and nanoscale Ptbimetallic alloy surfaces, Nat. Mater, vol.6, pp.241-247, 2007.

K. J. Mayrhofer, V. Juhart, K. Hartl, M. Hanzlik, and M. Arenz, Adsorbate-Induced surface Segregation for core-shell nanocatalysts, Angew. Chemie -Int. Ed, vol.48, pp.3529-3531, 2009.

C. Wang, Monodisperse Pt(3)Co nanoparticles as electrocatalyst: the effects of particle size and pretreatment on electrocatalytic reduction of oxygen, Phys. Chem. Chem. Phys, vol.12, pp.6933-6939, 2010.

Z. Peng and H. Yang, Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property, Nano Today, vol.4, pp.143-164, 2009.

R. R. Adzic, Platinum monolayer fuel cell electrocatalysts, Top. Catal, vol.46, pp.249-262, 2007.

P. Strasser and S. Kühl, Dealloyed Pt-based core-shell oxygen reduction electrocatalysts, Nano Energy, 2016.

L. Gan, R. Yu, J. Luo, Z. Cheng, and J. Zhu, Lattice strain distributions in individual dealloyed Pt-Fe catalyst nanoparticles, J. Phys. Chem. Lett, vol.3, pp.934-938, 2012.

L. Gan, M. Heggen, S. Rudi, and P. Strasser, Core?Shell Compositional Fine Structures of Dealloyed PtxNi1?x Nanoparticles and Their Impact on Oxygen Reduction Catalysis, Nano Lett, vol.12, pp.5423-5430, 2012.

K. A. Kuttiyiel, Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction, Energy Environ. Sci, vol.5, p.5297, 2012.

K. Kuttiyiel, Nitride Stabilized PtNi Core ? Shell Nanocatalyst for high Oxygen Reduction Activity, 2012.

L. Gan, C. Cui, S. Rudi, and P. Strasser, Core-Shell and Nanoporous Particle Architectures and Their Effect on the Activity and Stability of Pt ORR Electrocatalysts, Top. Catal, vol.57, pp.236-244, 2013.

B. Han, Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells, Energy Environ. Sci, vol.8, pp.258-266, 2015.

M. Oezaslan, M. Heggen, and P. Strasser, Size-Dependent morphology of dealloyed bimetallic catalysts: Linking the nano to the macro scale, J. Am. Chem. Soc, vol.134, pp.514-524, 2012.

L. Gan, M. Heggen, R. O'malley, B. Theobald, and P. Strasser, Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts, Nano Lett, vol.13, pp.1131-1138, 2013.

J. Erlebacher, An Atomistic Description of Dealloying, J. Electrochem. Soc, vol.151, p.614, 2004.

J. Erlebacher and D. Margetis, Mechanism of Hollow Nanoparticle Formation Due to Shape Fluctuations, Phys. Rev. Lett, vol.112, p.155505, 2014.

K. Sieradzki, The Dealloying Critical Potential, J. Electrochem. Soc, vol.149, p.370, 2002.

J. Erlebacher, M. J. Aziz, . Karma, N. Dimitrov, and K. Sieradzki, Evolution of nanoporosity in dealloying, Nature, vol.410, pp.450-453, 2001.

P. Strasser, Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts, Nat. Chem, vol.2, pp.454-460, 2010.

Y. Yin, Formation of hollow nanocrystals through the nanoscale Kirkendall effect, Science, vol.304, pp.711-715, 2004.

X. Xia, Y. Wang, A. Ruditskiy, and Y. Xia, 25Th Anniversary Article: Galvanic Replacement: a Simple and Versatile Route To Hollow Nanostructures With Tunable and Well-Controlled Properties, Adv. Mater, vol.25, pp.6313-6346, 2013.

S. E. Skrabalak, Applications, vol.41, pp.1587-1595, 2008.

C. M. Cobley and Y. Xia, Engineering the properties of metal nanostructures via galvanic replacement reactions, Mater. Sci. Eng. R Reports, vol.70, pp.44-62, 2010.

Z. L. Wang, T. S. Ahmad, and M. A. E1-sayed, Steps, ledges and kinks on the surfaces of platinum nanoparticles of different shapes, Surf. Sci, vol.380, pp.302-310, 1997.

Z. L. Wang, Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies, J. Phys. Chem. B, vol.104, pp.1153-1175, 2000.

X. Xia, J. Zeng, L. K. Oetjen, Q. Li, and Y. Xia, Quantitative Analysis of the Role Played by Poly ( vinylpyrrolidone ) in Seed-Mediated Growth of Ag Nanocrystals

, J. Am. Chem. Soc, vol.134, pp.1793-1801, 2012.

X. Xia and Y. Xia, Symmetry Breaking during Seeded Growth of Nanocrystals, Nano Lett, vol.12, pp.6038-6042, 2012.

Y. Wu, S. Cai, D. Wang, W. He, and Y. Li, Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions, J. Am. Chem. Soc, vol.134, pp.8975-8981, 2012.

H. Zhang, Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction, J. Am. Chem. Soc, vol.133, pp.6078-6089, 2011.

E. González, J. Arbiol, and V. F. Puntes, Carving at the Nanoscale : Sequential Galvanic Exchange and Kirkendall Growth at Room Temperature, 2011.

H. Liang, Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts, Angew. Chem. Int. Ed. Engl, vol.43, pp.1540-1543, 2004.

J. Zhao, W. Chen, Y. Zheng, and X. Li, Novel carbon supported hollow Pt nanospheres for methanol electrooxidation, J. Power Sources, vol.162, pp.168-172, 2006.

J. Snyder, K. Livi, and J. Erlebacher, Oxygen Reduction Reaction Performance of [MTBD][beti]-Encapsulated Nanoporous NiPt Alloy Nanoparticles, Adv. Funct. Mater, vol.23, pp.5494-5501, 2013.

H. Fan, M. Cheng, Z. Wang, and R. Wang, Layer-controlled Pt-Ni porous nanobowls with enhanced electrocatalytic performance, Nano Res, vol.2, pp.1-12, 2016.

A. Shan, Z. Chen, B. Li, C. Chen, and R. Wang, Monodispersed, ultrathin NiPt hollow nanospheres with tunable diameter and composition via a green chemical synthesis, J. Mater. Chem. A, vol.3, pp.1031-1036, 2015.

Z. Li, A simple strategy to form hollow Pt3Co alloy nanosphere with ultrathin Pt shell with significant enhanced oxygen reduction reaction activity, Int. J. Hydrogen Energy, vol.1, issue.10, 2016.

Z. Peng, J. Wu, and H. Yang, Synthesis and Oxygen Reduction Electrocatalytic Property of Platinum Hollow and Platinum-on-Silver Nanoparticles ?, Chem. Mater, vol.22, pp.1098-1106, 2010.

H. M. Chen, Hollow Platinum Spheres with Nano-Channels : Synthesis and Enhanced Catalysis for Oxygen Reduction, J. Phys. Chem. C, vol.7522, p.7526, 2008.

J. Wook, H. Shin-wook, and K. , Controlled Synthesis of Pd À Pt Alloy Hollow Nanostructures with Enhanced Catalytic Activities for Oxygen, ACS Nano, vol.6, pp.2410-2419, 2012.

S. J. Bae, S. J. Yoo, Y. Lim, S. Kim, and Y. Lim, Facile Preparation of Carbon-Supported PtNi Hollow Nanoparticles with High Electrochemical Performance, 2012.

L. Dubau, Beyond conventional electrocatalysts: hollow nanoparticles for improved and sustainable oxygen reduction reaction activity, J. Mater. Chem. A, vol.2, pp.18497-18507, 2014.

C. Chen, Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces, Science, vol.343, pp.1339-1382, 2014.

V. R. Stamenkovic and N. M. Markovic, 2 Nanosegregated Cathode Alloy Catalysts with Ultra-Low Platinum Loading, 2015.

I. E. Stephens, Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying, J. Am. Chem. Soc, vol.133, pp.5485-5491, 2011.

Q. Sun, Z. Ren, R. Wang, N. Wang, and X. Cao, Platinum catalyzed growth of NiPt hollow spheres with an ultrathin shell, J. Mater. Chem, vol.21, p.1925, 2011.

J. X. Wang, Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity, J. Am. Chem. Soc, vol.133, pp.13551-13558, 2011.

Y. Sun and Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science, vol.298, pp.2176-2185, 2002.

J. Chen, Optical Properties of Pd-Ag and Pt-Ag Nanoboxes Synthesized via Galvanic Replacement Reactions, Nano Lett, vol.5, p.2058, 2005.

Y. Sun and Y. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium, J. Am. Chem. Soc, vol.126, pp.3892-901, 2004.

G. Renaud, Real-Time Monitoring of Growing Nanoparticles. Science (80-. ), vol.300, pp.1416-1419, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01442871

F. Leroy, Phys. Rev. Lett, vol.95, pp.1-15, 2005.

R. Lazzari, G. Renaud, J. Jupille, and F. Leroy, Self-similarity during growth of the Au Ti O2 (110) model catalyst as seen by the scattering of x-rays at grazing-angle incidence, Phys. Rev. B -Condens. Matter Mater. Phys, vol.76, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01442853

L. Dubau, Tuning the Performance and the Stability of Porous Hollow PtNi/C Nanostructures for the Oxygen Reduction Reaction, ACS Catal, vol.5, pp.5333-5341, 2015.

A. J. Bard, R. Parsons, and J. Jordan, Standard Potentials in Aqueous Solution, 1985.

S. J. Bae, Facile preparation of carbon-supported PtNi hollow nanoparticles with high electrochemical performance, J. Mater. Chem, vol.22, p.8820, 2012.

S. Carenco, D. Portehault, C. Boissière, N. Mézailles, and C. Sanchez, Nanoscaled metal borides and phosphides: Recent developments and perspectives, Chem. Rev, vol.113, pp.7981-8065, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01289771

R. Caputo, F. Guzzetta, and A. Angerhofer, Room-temperature synthesis of nickel borides via decomposition of NaBH 4 promoted by nickel bromide, Inorg. Chem, vol.49, pp.8756-8762, 2010.

Q. Jia, Circumventing Metal Dissolution-Induced Degradation of Pt-alloy Catalysts in Proton Exchange Membrane Fuel Cells: Revealing the Asymmetric Volcano Nature of Redox Catalysis, ACS Catal. acscatal, pp.5-02750, 2015.

J. Durst, Reversibility of Pt-skin and Pt-skeleton nanostructures in acidic media, J. Phys. Chem. Lett, vol.5, pp.434-439, 2014.

L. Dubau, Defects do Catalysis: CO Monolayer Oxidation and Oxygen Reduction Reaction on Hollow PtNi/C Nanoparticles, ACS Catal, vol.6, p.4684, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01355740

G. Li, J. Boerio-goates, B. F. Woodfield, and L. Li, Evidence of linear lattice expansion and covalency enhancement in rutile TiO2 nanocrystals Evidence of linear lattice expansion and covalency enhancement in rutile TiO2 nanocrystals

, Appl. Phys. Lett, vol.85, pp.259-261, 2010.

W. Qin and J. Szpunar, Origin of lattice strain in nanocrystalline materials, Philos. Mag. Lett, vol.85, pp.649-656, 2005.

K. Maniammal, G. Madhu, and V. Biju, X-ray diffraction line profile analysis of nanostructured nickel oxide: Shape factor and convolution of crystallite size and microstrain contributions, Phys. E Low-dimensional Syst. Nanostructures, vol.85, pp.214-222, 2017.

S. Mezzavilla, Experimental Methodologies to Understand Degradation of Nanostructured Electrocatalysts for PEM Fuel Cells: Advances and Opportunities, 2016.

M. T. Paffett, K. A. Daube, S. Gottesfeld, and C. T. Campbell, Electrochemical and surface science investigations of PtCr alloy electrodes, J. Electroanal. Chem, vol.220, pp.269-285, 1987.

U. Bardi, B. C. Beard, and P. N. Ross, Surface oxidation of a Pt80Co20 alloy -An X-Ray photoelectron spectroscopy and low energy electron diffraction study on the [100] and [111] oriented single crystal surfaces, J. Vac. Sci. Technol. A, vol.6, pp.665-670, 1988.

D. P. Chem and A. C. Soc, Oxygen Reduction at Pt(0.65)Cr(0.3)s, Pt(0.2)Cr(0.8) and Roughened Platinum, J. Electrochem. Soc, vol.135, pp.1431-1436, 1988.

Y. Gauthier, PtxNi1-x(111) alloy surfaces: structure and composition in relation to some catalytic properties, Surf. Sci, vol.162, pp.342-347, 1985.

T. Bligaard and J. K. Nørskov, Ligand effects in heterogeneous catalysis and electrochemistry, Electrochim. Acta, vol.52, pp.5512-5516, 2007.

H. A. Gasteiger and N. M. Markovi?, Just a Dream --or Future Reality? Science (80-. ), vol.324, pp.48-49, 2009.

J. Durst, Reversibility of Pt-skin and Pt-skeleton Nanostructures in Acidic Media, J. Phys. Chem. Lett, vol.5, pp.434-439, 2014.

J. Greeley and J. K. Nørskov, A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys, Surf. Sci, vol.592, pp.104-111, 2005.

M. Shao, Q. Chang, J. Dodelet, and R. Chenitz, Recent Advances in Electrocatalysts for Oxygen Reduction Reaction, Chem. Rev, vol.116, p.3657, 2016.

S. W. Price, J. M. Rhodes, L. Calvillo, and A. E. Russell, Revealing the details of the surface composition of electrochemically prepared Au@Pd Core@Shell nanoparticles with in situ EXAFS, J. Phys. Chem. C, vol.117, pp.24858-24865, 2013.

Y. Zhang, Hollow core supported Pt monolayer catalysts for oxygen reduction, Catal. Today, vol.202, pp.50-54, 2013.

F. Kertis, Structure / Processing Relationships in the Fabrication of Nanoporous, J. Miner. Met. Mater. Soc, vol.62, pp.50-56, 2010.

F. Fievet, J. P. Lagier, and M. Figlarz, Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Sizes by the Polyol Process, MRS Bull, vol.14, pp.29-34, 1989.

H. S. Oh, J. G. Oh, and H. Kim, Modification of polyol process for synthesis of highly platinum loaded platinum-carbon catalysts for fuel cells, J. Power Sources, vol.183, pp.600-603, 2008.

I. Schrader, Kharisov, B. I. et al. Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-aqueous solvents: recent trends, J. Phys. Chem. C, vol.119, pp.45354-45381, 2014.

S. J. Bae, Facile preparation of carbon-supported PtNi hollow nanoparticles with high electrochemical performance, J. Mater. Chem, vol.22, p.8820, 2012.

J. Kang, Effect of Ni core structure on the electrocatalytic activity of Pt-Ni/C in methanol oxidation, Materials (Basel), vol.6, pp.2789-2818, 2013.

E. Westsson and G. Koper, How to Determine the Core-Shell Nature in Bimetallic Catalyst Particles? Catalysts, vol.4, pp.375-396, 2014.

J. M. Montejano-carrizales and J. L. Morán-lópez, Geometrical characteristics of compact nanoclusters, Nanostructured Mater, vol.1, pp.397-409, 1992.

J. M. Montejano-carrizales, F. Aguilera-granja, and J. L. Morán-lópez, Direct enumeration of the geometrical characteristics of clusters, Nanostructured Mater, vol.8, pp.269-287, 1997.

W. Qin, T. Nagase, Y. Umakoshi, and J. A. Szpunar, Relationship between microstrain and lattice parameter change in nanocrystalline materials, Philos. Mag. Lett, vol.88, pp.169-179, 2008.

P. S. Mocherla, C. Karthik, R. Ubic, M. S. Ramachandra-rao, and C. Sudakar, Tunable bandgap in BiFeO3 nanoparticles: The role of microstrain and oxygen defects, Appl. Phys. Lett, vol.103, pp.1-6, 2013.

X. Feng, K. Jiang, S. Fan, and M. W. Kanan, A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles, ACS Cent. Sci, vol.2, pp.169-174, 2016.

K. Shinozaki, J. W. Zack, R. M. Richards, B. S. Pivovar, and S. S. Kocha, Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique, J. Electrochem. Soc, vol.162, pp.1144-1158, 2015.

N. M. Markovic, S. T. Sarraf, H. Gasteigert, and P. N. Ross, Surfaces in Alkaline Solution, J. Chem. Soc. Faraday Trans, vol.92, pp.3719-3725, 1996.

K. Jayasayee, Oxygen reduction reaction (ORR) activity and durability of carbon supported PtM (Co, Ni, Cu) alloys: Influence of particle size and non-noble metals, Appl. Catal. B Environ, pp.515-526, 2012.

G. Samjeské, X. Y. Xiao, and H. Baltruschat, Ru decoration of stepped Pt single crystals and the role of the terrace width on the electrocatalytic CO oxidation, Langmuir, vol.18, pp.4659-4666, 2002.

W. F. Lin, T. Iwasita, and W. Vielstich, Catalysis of CO Electrooxidation at Pt, Ru, and PtRu Alloy. An in Situ FTIR Study, J. Phys. Chem. B, vol.103, pp.3250-3257, 1999.

F. Maillard, Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: the role of surface mobility, Faraday Discuss, vol.125, pp.357-377, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00417871

F. Maillard, Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation, Phys. Chem. Chem. Phys, vol.7, pp.385-393, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00420694

F. Maillard, E. R. Savinova, and U. Stimming, CO monolayer oxidation on Pt nanoparticles: Further insights into the particle size effects, J. Electroanal. Chem, vol.599, pp.221-232, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00333785

P. Urchaga, S. Baranton, C. Coutanceau, and G. Jerkiewicz, Electro-oxidation of CO chem on Pt nanosurfaces: Solution of the peak multiplicity puzzle, Langmuir, vol.28, pp.3658-3663, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00749429

C. Cui, Shape-selected bimetallic nanoparticle electrocatalysts: evolution of their atomic-scale structure, chemical composition, and electrochemical reactivity under various chemical environments, Faraday Discuss, vol.162, p.91, 2013.

Z. Zhao, L. Dubau, and F. Maillard, Evidences of the migration of Pt crystallites on high surface area carbon supports in the presence of reducing molecules, J. Power Sources, vol.217, pp.449-458, 2012.

Z. Zhao, Carbon corrosion and platinum nanoparticles ripening under open circuit potential conditions, J. Power Sources, vol.230, pp.236-243, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00839675

A. Lopez-cudero, J. Solla-gullòn, E. Herrero, A. Aldaz, and J. M. Feliu, CO electrooxidation on carbon supported platinum nanoparticles: Effect of aggregation, J. Electroanal. Chem, vol.644, pp.117-126, 2010.

Y. Garsany, O. Baturina, K. E. Swider-lyons, and S. S. Kocha, Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction, Anal. Chem, vol.82, pp.6321-6329, 2010.

Y. Garsany, I. L. Singer, and K. E. Swider-lyons, Impact of film drying procedures on RDE characterization of Pt/VC electrocatalysts, J. Electroanal. Chem, vol.662, pp.396-406, 2011.

I. Takahashi and S. S. Kocha, Examination of the activity and durability of PEMFC catalysts in liquid electrolytes, J. Power Sources, vol.195, pp.6312-6322, 2010.

H. A. Gasteiger, S. S. Kocha, B. Sompalli, and F. T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Appl. Catal. B Environ, vol.56, pp.9-35, 2005.

A. Kriston, T. Xie, P. Ganesan, and B. N. Popov, Analysis of the Effect of Pt Loading on Mass and Specific Activity in PEM Fuel Cells, J. Electrochem. Soc, vol.160, pp.406-412, 2013.

F. Calle-vallejo, Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science (80-. ), vol.350, pp.185-189, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01234587

S. M. Alia, S. Pylypenko, K. C. Neyerlin, S. S. Kocha, and B. S. Pivovar, Nickel Nanowire Oxidation and Its Effect on Platinum Galvanic Displacement and Methanol Oxidation, ECS Trans, vol.64, pp.89-95, 2014.

S. M. Alia, Oxidation of Platinum Nickel Nanowires to Improve Durability of Oxygen-Reducing Electrocatalysts, J. Electrochem. Soc, vol.163, pp.296-301, 2016.

C. Koenigsmann, W. P. Zhou, R. R. Adzic, E. Sutter, and S. S. Wong, Sizedependent enhancement of electrocatalytic performance in relatively defect-free, processed ultrathin platinum nanowires, Nano Lett, vol.10, pp.2806-2811, 2010.

S. Henning, Pt-Ni Aerogels as Unsupported Electrocatalysts for the Oxygen Reduction Reaction, J. Electrochem. Soc, vol.163, pp.998-1003, 2016.

W. Liu, Bimetallic aerogels: High-performance electrocatalysts for the oxygen reduction reaction, Angew. Chemie -Int. Ed, vol.52, pp.9849-9852, 2013.

M. Li, Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science (80-. ), vol.354, pp.1414-1419, 2016.

L. Bacq and O. , Effect of Atomic Vacancies on the Structure and the Electrocatalytic Activity of Pt-rich/C Nanoparticles: A Combined Experimental and Density Functional Theory Study, ChemCatChem, vol.9, pp.2324-2338, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01914007

Z. Jusys and R. J. Behm, Methanol Oxidation on a Carbon-Supported Pt Fuel Cell CatalystsA Kinetic and Mechanistic Study by Differential Electrochemical Mass Spectrometry, J. Phys. Chem. B, vol.105, pp.10874-10883, 2001.

C. S. Lai and M. T. Koper, Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes, Faraday Discuss, vol.140, pp.399-416, 2008.

P. N. Ross and J. E. Soc, Structure Sensitivity in the Electrocatalytic Properties of Pt : I . Hydrogen Adsorption on Low Index Single Crystals and the Role of Steps Structure Sensitivity in the Electrocatalytic Properties of Pt I . Hydrogen Adsorption on Low Index Single Crystals, vol.126, pp.67-77, 1979.

M. J. Van-der-niet, N. Garcia-araez, J. Hernández, J. M. Feliu, and M. T. Koper, Water dissociation on well-defined platinum surfaces: The electrochemical perspective, Catal. Today, vol.202, pp.105-113, 2013.

M. J. Farias, E. Herrero, and J. M. Feliu, Site selectivity for CO adsorption and stripping on stepped and kinked platinum surfaces in alkaline medium, J. Phys. Chem. C, vol.117, pp.2903-2913, 2013.

M. J. Farias, G. A. Camara, and J. Feliu, Understanding the CO Preoxidation and the Intrinsic Catalytic Activity of Step Sites in Stepped Pt Surfaces in Acidic Medium, J. Phys. Chem. C, vol.119, pp.20272-20282, 2015.

A. M. Gómez-marín and J. M. Feliu, Oxygen reduction on nanostructured platinum surfaces in acidic media: Promoting effect of surface steps and ideal response of Pt(1 1 1), Catal. Today, vol.244, pp.172-176, 2015.

F. Sugimura, M. Nakamura, and N. Hoshi, The Oxygen Reduction Reaction on Kinked Stepped Surfaces of Pt, Electrocatalysis, vol.8, pp.46-50, 2017.

R. Chattot, T. Asset, P. Bordet, J. Drnec, L. B. Dubau et al., Microstrain-Induced Enhancement of the Oxygen Reduction Reaction Kinetics on Various PtNi/C Nanostructures, ACS Catal, vol.7, pp.398-408, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01636067

T. Asset, Structure-Activity Relationships for the Oxygen Reduction Reaction in Porous Hollow PtNi/C Nanoparticles, vol.3, pp.1591-1600, 2016.

L. Dubau, J. Nelayah, T. Asset, R. Chattot, and F. Maillard, Implementing Structural Disorder as a New Direction to Improve the Stability of PtNi/C Nanoparticles, ACS Catal, vol.7, pp.3072-3081, 2017.

T. Asset, Elucidating the Mechanisms Driving the Aging of Porous Hollow PtNi/C Nanoparticles by Means of COads Stripping, ACS Appl. Mater. Interfaces, 2017.

M. Watanabe and K. Tsurumi, Activity and Stability of Ordered and Disordered Co-Pt Alloys for Phosphoric Acid Fuel Cells, J. ?, vol.141, pp.6-15, 1994.

F. Calle-vallejo, Why conclusions from platinum model surfaces do not necessarily lead to enhanced nanoparticle catalysts for the oxygen reduction reaction, Chem. Sci, pp.2283-2289, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01889557

C. Cui, Carbon Monoxide-Assisted Size-Confinement of Bimetallic Alloy Nanoparticles. Jacs, vol.1, p.11, 2013.

L. Gan, S. Rudi, C. Cui, M. Heggen, and P. Strasser, Size-Controlled Synthesis of Sub-10 nm PtNi3 Alloy Nanoparticles and their Unusual Volcano-Shaped Size Effect on ORR Electrocatalysis, Small, vol.3189, p.3196, 2016.

V. K. Lamer, R. H. Dinegar, and . Theory, Production and Mechanism of Formation of Monodispersed Hydrosols, J. Am. Chem. Soc, vol.72, pp.4847-4854, 1950.

V. Beermann, Rh-doped Pt-Ni octahedral nanoparticles: understanding the correlation between elemental distribution, ORR and shape stability, Nano Lett. acs.nanolett, pp.5-04636, 2016.

S. Henning, Unsupported Pt-Ni Aerogels with Enhanced High Current Performance and Durability in Fuel Cell Cathodes. Angew. Chemie Int, 2017.

G. Kimmel and D. Dayan, X-ray diffraction characterization of microstrain in some uranium alloys, Powder Diffr, vol.13, pp.89-95, 1998.

M. Arenz, The Effect of the Particle Size on the Kinetics of CO Electrooxidation on High Surface Area Pt Catalysts, J. Am. Chem. Soc, vol.127, pp.6819-6829, 2005.

P. J. Feibelman, The CO/Pt(111) Puzzle, J. Phys. Chem. B, vol.105, pp.4018-4025, 2001.

M. J. Farias, Mobility and oxidation of adsorbed CO on shape-controlled Pt nanoparticles in acidic medium, Langmuir, vol.33, pp.865-871, 2017.

B. Love and . Lipkowski, J. in Electrochemical Surface Science, pp.485-496, 1988.

C. Coutanceau, P. Urchaga, and S. Baranton, Diffusion of adsorbed CO on platinum (100) and (111) oriented nanosurfaces, Electrochem. commun, vol.22, pp.109-112, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00749878

N. P. Lebedeva, A. Rodes, J. M. Feliu, M. T. Koper, and R. A. Van-santen, Role of crystalline defects in electrocatalysis: CO adsorption and oxidation on stepped platinum electrodes as studied by in situ infrared spectroscopy, J. Phys. Chem. B, vol.106, pp.9863-9872, 2002.

F. Calle-vallejo, M. D. Pohl, and A. S. Bandarenka, Quantitative Coordination-Activity Relations for the Design of Enhanced Pt catalysts for CO Electro-Oxidation, 2017.

. Van-der and D. F. Vliet, Unique electrochemical adsorption properties of Pt-skin surfaces, Angew. Chemie -Int. Ed, vol.51, pp.3139-3142, 2012.

A. S. Bandarenka, Design of an active site towards optimal electrocatalysis: Overlayers, surface alloys and near-surface alloys of Cu/Pt(111), Angew. Chemie -Int. Ed, vol.51, pp.11845-11848, 2012.

P. S. Ruvinskiy, A. Bonnefont, and E. R. Savinova, Further Insight into the Oxygen Reduction Reaction on Pt Nanoparticles Supported on Spatially Structured Catalytic Layers, pp.123-133, 2011.

C. J. Corcoran, H. Tavassol, M. A. Rigsby, P. S. Bagus, and A. Wieckowski, Application of XPS to study electrocatalysts for fuel cells, J. Power Sources, vol.195, pp.7856-7879, 2010.

A. Panchenko, M. T. Koper, T. E. Shubina, S. J. Mitchell, and E. Roduner, Ab Initio Calculations of Intermediates of Oxygen Reduction on Low-Index Platinum Surfaces, J. Electrochem. Soc, vol.151, p.2016, 2004.

M. Shao, A. Peles, and K. Shoemaker, Electrocatalysis on Platinum Nanoparticles : Particle Size Effect on, Nano Lett, vol.11, pp.3714-3719, 2011.

F. J. Perez-alonso, The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles, Angew. Chemie -Int. Ed, vol.51, pp.4641-4643, 2012.

H. Schulenburg, J. Durst, E. Ller, A. Wokaun, and G. G. Scherer, Real surface area measurements of Pt3Co/C catalysts, J. Electroanal. Chem, vol.642, pp.52-60, 2010.

V. A. Marichev, Reversibility of platinum voltammograms in aqueous electrolytes and ionic product of water, Electrochim. Acta, vol.53, pp.7952-7960, 2008.

C. Baldizzone, Stability of Dealloyed Porous Pt/Ni Nanoparticles, ACS Catal, vol.5, pp.5000-5007, 2015.

K. C. Neyerlin, R. Srivastava, C. Yu, and P. Strasser, Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR), J. Power Sources, vol.186, pp.261-267, 2009.

F. Hasche?, M. Oezaslan, P. Strasser, and . Activity, Structure and Degradation of Dealloyed PtNi3 Nanoparticle Electrocatalyst for the Oxygen Reduction Reaction in PEMFC, J. Electrochem. Soc, vol.159, p.25, 2012.

H. S. Oh, J. G. Oh, Y. G. Hong, and H. Kim, Investigation of carbon-supported Pt nanocatalyst preparation by the polyol process for fuel cell applications, Electrochim. Acta, vol.52, pp.7278-7285, 2007.

G. Ashiotis, The fast azimuthal integration Python library: PyFAI, J. Appl. Crystallogr, vol.48, pp.510-519, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01572879

T. Li, A. J. Senesi, and B. Lee, Small Angle X-ray Scattering for Nanoparticle Research, Chem. Rev, vol.116, pp.11128-11180, 2016.

P. Bartlett and R. H. Ottewill, A neutron scattering study of the structure of a bimodal colloidal crystal, J. Chem. Phys, vol.96, pp.3306-3318, 1992.

J. Rodríguez-carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Phys. B Condens. Matter, vol.192, pp.55-69, 1993.

P. Thompson, D. E. Cox, and J. B. Hastings, Rietveld Refinement of Debye-Scherrer Synchrotron X-ray Data from A1203, J. Appl. Crystallogr, vol.20, pp.79-83, 1987.

T. Proffen, S. J. Billinge, T. Egami, and D. Louca, Structural analysis of complex materials using the atomic pair distribution function -a practical guide, Zeitschrift für Krist, vol.218, pp.132-143, 2003.

T. Egami and S. J. Billinge, Underneath The Bragg Peaks: Structural Analysis of Complex Materials -Second Edition, 2012.

C. L. Farrow, PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals, J. Phys. Condens. Matter, vol.19, p.335219, 2007.

R. C. Howell, T. Proffen, and S. D. Conradson, Pair distribution function and structure factor of spherical particles, Phys. Rev. B -Condens. Matter Mater. Phys, vol.73, 2006.

M. Chatenet, L. Guétaz, and F. Maillard, , vol.5, pp.844-860, 2009.