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Abstract  

 

Numerous compounds are used and produced in the world for various applications. Aside from 

the assessment of their efficacy, industries that produce these chemicals have to assess the 

safety of their chemicals for human. Toxicological assessment of these compounds is performed 

to reveal their potential toxic effect. Among the potential toxicities that need to be detected, the 

developmental toxicity (teratogenicity), meaning the chemical ability to provoke abnormalities 

during the embryonic development, is crucial. Moreover, in accordance with the Russel and 

Burch’s 3Rs rule that recommends to Replace, to Reduce and to Refine tests performed on 

laboratory animals, more and more industries are interested in developing alternatives to animal 

testing for the toxicological assessment of compounds. In compliance with the European 

regulation that forbids the use of animal testing for the safety assessment of cosmetics, the 

toxicological assessment of chemicals must rely on a series of techniques including in silico 

and in vitro assays. Assays performed on alternative models are also required to replace the 

regulatory in vivo tests made on laboratory animals. For now, no alternative method has been 

validated in the field of developmental toxicology. The development of new effective 

alternative methods is thus required. Furthermore, the use of most cosmetics and personal care 

products inevitably leads to their rejection in waterways after washing and rinsing. This results 

in the exposition of some aquatic environments (surface waters and coastal marine 

environments) to chemicals included in cosmetics and personal care products. Thus, 

environmental toxicological assessment of cosmetics and of their ingredients is also necessary, 

which requires the knowledge of their toxicity on organisms that are representative of aquatic 

food chains. 

In this context, the fish embryo model, considered ethically acceptable for the toxicological 

assessment of cosmetics according to international regulations, presents a dual advantage for 

the cosmetics industry. First, as a model representative of aquatic organisms, it is useful for 

assessing the environmental impact of chemicals. Second, as a vertebrate, key mechanisms of 

the embryonic development are conserved between fish and human, making this model 

promising for the assessment of the teratogenic effects of chemicals on human. 
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In this dissertation, a test is presented for the assessment of the chemicals teratogenic potential 

based on the analysis of exposed medaka fish embryos (Oryzias latipes). This test relies on the 

calculation of a teratogenicity index, which is the ratio between two indices:  LC50  is the 

concentration which is lethal for 50% of embryos, and EC50 is the concentration that causes an 

effect in 50% of the embryos, including malformations and lethality. LC50 calculation is based 

on a binary classification between alive and dead embryos. Similarly, a classification between 

healthy and malformed embryos leads to EC50  calculation. The final teratogenicity index 

allows to draw a conclusion on the teratogenic effect of the chemical. Currently, this test is 

manually performed, meaning it relies on observations of embryos made under a 

stereomicroscope and annotations of the embryos anomalies. This process is time-consuming 

and prone to error, as observations coming from several operators may differ. Computerized 

classification methods could help to improve the efficacy and the objectivity of the 

teratogenicity test. Thus, the objective of this project is to automate the test, by using image 

processing and machine learning classification methods (random forest). 

All methods developed during this project rely on (i) the identification, from image or video, 

of a region of interest which depends on the anomaly we want to detect, (ii) image or video 

characterization, i.e., extraction of features which are representative of the anomaly, and (iii) 

automated classification of embryos according to features analysis. A first method is developed 

aiming at automatically detect embryo heartbeats from short video of embryos. This detection 

is based on the time analysis of the pixel intensity variation in the heart region. An accuracy of 

98,5% is obtained compared to videos observation. A second method is developed to detect 

malformations in the spine of embryos after hatching (eleutheroembryo). The method 

automatically extracts morphological features from images and uses a random forest classifier 

to perform the classification. This leads to an accuracy of 85% compared to the gold standard 

of interactive microscope-based observations. Finally, a third method also relies on a random 

forest classifier to classify embryos according to the presence or the absence of a swim bladder, 

that leads to 95% of accuracy compared to the gold standard. These three assessments 

demonstrate the feasibility of automatically performing the functional and morphological 

assessment of embryos, and to validate the relevance of the used features for characterizing the 

studied anomalies.  
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Résumé  

 

De nombreuses substances chimiques sont produites et utilisées dans le monde pour des 

applications diverses. En dehors de la nécessité d’évaluer leur efficacité, l’industrie se doit 

surtout d’évaluer la sécurité de leurs substances pour l’humain. L’évaluation toxicologique des 

substances chimiques est réalisée dans le but de révéler un potentiel effet toxique de la substance 

testée. Parmi les effets potentiels que l’on doit détecter, la toxicité du développement 

(tératogénicité), c’est-à-dire la capacité d’une substance à provoquer des anomalies lors du 

développement embryonnaire, est fondamentale. De plus, en accord avec la règle des 3R de 

Russel et Burch qui recommande de Remplacer, Réduire et Raffiner les tests sur animaux de 

laboratoires, de plus en plus d’industries s’intéressent au développement de nouvelles méthodes 

alternatives à l’expérimentation animale pour l’évaluation toxicologique des produits 

chimiques. Conformément à la législation européenne qui interdit à l’industrie cosmétique 

d’avoir recours à des tests sur animaux de laboratoire pour l’évaluation toxicologique de leurs 

substances, cette évaluation se base sur les résultats de tests in silico et in vitro. Des tests 

développés sur modèles alternatifs sont également requis pour remplacer les tests 

réglementaires in vivo réalisés sur animaux de laboratoire. Pour le moment, aucune méthode 

alternative n’a été validée d’un point de vue réglementaire pour évaluer la toxicité du 

développement. Le développement de nouvelles méthodes alternatives s’avère donc nécessaire. 

D’autre part, l’usage de la plupart des produits cosmétiques et d’hygiène corporelle conduit, 

après lavage et rinçage, à un rejet à l’égout et donc dans les cours d’eau. Il en résulte que les 

environnements aquatiques (eaux de surface et milieux marins côtiers) sont parfois exposés aux 

substances chimiques incluses dans les formules cosmétiques. Ainsi, l’évaluation toxicologique 

environnementale des cosmétiques et de leurs ingrédients est également nécessaire. Celle-ci 

nécessite de connaître leur toxicité sur des organismes représentatifs de chaînes alimentaires 

aquatiques. 

Dans ce contexte, le modèle embryon de poisson, considéré éthiquement acceptable par la 

législation pour l’évaluation toxicologique des produits cosmétiques, présente un double 

avantage pour l’industrie cosmétique. Premièrement, ce modèle est représentatif des 

organismes aquatiques. Il est donc pertinent pour évaluer la toxicité environnementale des 

substances chimiques. Deuxièmement, en tant que vertébré, les mécanismes clefs du 
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développement embryonnaire sont conservés entre le poisson et l’humain, faisant de l’embryon 

de poisson un modèle prometteur pour évaluer l’effet tératogène de substances chimiques chez 

l’humain. 

Ce manuscrit présente un test d’évaluation de la tératogénicité de substances chimiques, basé 

sur l’analyse d’embryons de medaka (Oryzias latipes) exposés à des substances. Ce test repose 

sur le calcul d’un indice tératogène, qui est le ratio de deux indices : la CL50   est la 

concentration létale pour (qui provoque la mort de) 50% des embryons exposés, et la CE50 est 

la concentration qui cause un effet chez 50% des embryons exposés, ce qui inclut les 

malformations et la létalité. Le calcul de la CL50 est basé sur une classification binaire des 

embryons morts et vivants. Le calcul de la CE50 se base sur une classification binaire des 

embryons selon qu’ils présentent ou non une malformation. L’indice tératogène permet de tirer 

une conclusion quant à l’effet tératogène de la substance testée. Pour le moment, ce test est 

réalisé de façon manuelle, ce qui implique qu’un opérateur observe les embryons sous une loupe 

binoculaire et les annotent en fonction de leurs potentielles anomalies. Ce processus est long et 

sujet à erreur, dans le sens où différents opérateurs peuvent ne pas avoir les mêmes observations 

sur un même embryon. Des procédures automatisées pourraient aider à améliorer l’efficacité et 

l’objectivité du test d’évaluation de la tératogénicité. Ainsi, l’objectif de ce projet est 

d’automatiser le test en ayant recours à des procédures de traitement d’images et de 

classification par apprentissage automatique (forêts aléatoires). 

Les méthodes développées durant ce projet reposent toutes sur (i) l’identification d’une zone 

d’intérêt spécifique de l’anomalie que l’on cherche à détecter, (ii) la caractérisation des images 

et vidéos par extraction de descripteurs caractéristiques de l’anomalie que l’on cherche à 

détecter, et (iii) la classification automatique des embryons basées sur l’analyse de ces 

descripteurs. Une première méthode est développée et sert à détecter automatiquement les 

battements cardiaques d’embryons de medaka à partir de courtes séquences vidéos. La détection 

des battements cardiaques repose sur l’analyse de la variation d’intensité de pixels dans la zone 

du cœur et permet de classer les embryons en vivants et morts. On obtient un taux de 

classifications correctes de 98,5% comparé aux observations faites sur les vidéos. Une seconde 

méthode est développée pour détecter les malformations axiales des embryons après éclosion 

(alevins vésiculés). Des descripteurs morphologiques représentatifs de cette anomalie sont 

extraits des images et utilisés par un classificateur de type forêt aléatoire pour classer les images. 

Il en résulte un taux de classifications correctes de 85% par rapport aux observations des alevins 
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faites au microscope, qui constituent la norme de référence. Enfin une troisième méthode repose 

également sur l’utilisation d’un classificateur de type forêt aléatoire pour classer les alevins 

selon qu’ils présentent ou non une vessie natatoire. Le taux de succès de la classification est de 

95% comparé à la norme de référence. Ces trois évaluations permettent de mettre en évidence 

la faisabilité de l’automatisation et de valider la pertinence des descripteurs utilisés pour 

caractériser chacune de ces anomalies. 

 

  



10 
 

  



11 
 

Publications 

 

Parts of this project have appeared in the following publications: 

 

International journal 

E. Puybareau, D. Genest, E. Barbeau, M. Leonard, H. Talbot. “An automated assay for the 

assessment of cardiac arrests in fish embryo”, in Computer in Biology and Medicine, pp 32-44, 

2017. 

D. Genest, E. Puybareau, M. Léonard, J. Cousty, N. De Crozé, H. Talbot. “High throughput 

automated detection of axial malformations in Medaka embryo”, in Computer in Biology and 

Medicine, pp 157-168, 2018. 

 

International conferences 

E. Puybareau, D. Genest, N. de Crozé, M. Leonard, H. Talbot. “Automated image analysis of 

fish embryo for toxicology and teratology assays: a state of the art”, in International 

Symposiumon on Fish and Amphibian Embryos as Alternative Models in Toxicology and 

Teratoly, L’Oréal, Aulnay-sous-Bois, France, 2016 (oral presentation). 

E. Puybareau, D. Genest, E. Barbeau, M. Léonard, H. Talbot. “An automated assay for the 

assessment of cardiac arrests in fish embryo”, in World Congress on Alternatives and Animal 

Use in the Life Sciences, Seattle, United States, 2017 (poster). 

(submitted) D. Genest, M. Léonard, J. Cousty, N. De Crozé, H. Talbot. “Atlas-based automated 

detection of swim bladder in Medaka embryo”, in International Symposium on Mathematical 

Morphology, Saarbrücken, Germany, 2019 (oral presentation). 

 

  



12 
 

 

  



13 
 

Contents  

LIST OF FIGURES ............................................................................................................... 17 

LIST OF TABLES ................................................................................................................. 21 

PREAMBLE ........................................................................................................................... 23 

1. INTRODUCTION ....................................................................................................... 27 

1.1. Toxicological assessment of chemicals .................................................................................................. 29 

1.1.1. Regulatory context ........................................................................................................................... 29 

1.1.1.1. Toxicity assessment of chemicals for industry ............................................................................. 29 

1.1.1.2. Specific case of the cosmetics industry ........................................................................................ 31 

1.1.2. Fish embryos as an alternative model for toxicological assessment ................................................ 32 

1.1.2.1. Model description and advantages ............................................................................................... 32 

1.1.2.2. The medaka embryonic development .......................................................................................... 37 

1.1.3. The fish embryo model to assess toxicity ......................................................................................... 37 

1.1.3.1. Regulatory assays for ecotoxicological assessment ..................................................................... 38 

1.1.3.2. Development of a teratogenicity assessment test ......................................................................... 39 

1.2. Automated classification for toxicological assessment ........................................................................ 45 

1.2.1. Classification main principles .......................................................................................................... 45 

1.2.2. Learning rules from the data: machine learning approaches ............................................................ 47 

1.2.2.1. Machine learning principle .......................................................................................................... 47 

1.2.2.2. Support vector machines .............................................................................................................. 49 

1.2.2.3. Decision trees and random forests ............................................................................................... 51 

1.2.3. Automated features extraction for image classification ................................................................... 56 

1.2.3.1. Shape extraction ........................................................................................................................... 57 

1.2.3.2. Shape description ......................................................................................................................... 65 

1.3. Automating embryos classification ....................................................................................................... 66 

1.3.1. Image analysis applied to fish analysis: state of the art .................................................................... 66 

1.3.1.1. Fish analysis using fluorescence microscopy ............................................................................... 67 

1.3.1.2. Fish analysis using bright-field microscopy ................................................................................. 68 

1.3.2. Objectives and challenges ................................................................................................................ 71 

2. MORTALITY ASSESSMENT: AUTOMATED CLASSIFICATION OF 

MEDAKA EMBRYOS ACCORDING TO THE DETECTION OF CARDIAC 

ARRESTS ............................................................................................................................... 75 

2.1. Introduction to the detection of cardiac arrests ................................................................................... 77 

2.2. Video pre-processing .............................................................................................................................. 79 

2.2.1. Video quality control and detection of unusable videos ................................................................... 80 



14 
 

2.2.2. Segmentation of the well and selection of a region of interest ......................................................... 80 

2.2.3. Localization of the embryo in the well ............................................................................................. 83 

2.2.4. Differentiation between eggs and alevins ......................................................................................... 85 

2.3. Image analysis solution .......................................................................................................................... 87 

2.3.1. Search of the heart region ................................................................................................................. 87 

2.3.1.1. Segmentation of the alevin’s body ............................................................................................... 87 

2.3.1.2. Registration .................................................................................................................................. 89 

2.3.1.3. Denoising ..................................................................................................................................... 89 

2.3.1.4. Segmentation of the inner parts of the embryo ............................................................................ 90 

2.3.2. Heartbeat detection ........................................................................................................................... 91 

2.3.2.1. Elimination of spurious, non-cyclic motion ................................................................................. 91 

2.3.2.2. Segmentation of cyclic motion areas ........................................................................................... 93 

2.3.3. Detection of cyclic motion associated with the mouth ..................................................................... 93 

2.4. Assessment of the classification between dead and alive alevins ........................................................ 95 

2.4.1. Experimental setup ........................................................................................................................... 95 

2.4.1.1. Experimental protocol .................................................................................................................. 95 

2.4.1.2. Software and libraries .................................................................................................................. 95 

2.4.1.3. Database description and ground truth ......................................................................................... 96 

2.4.2. Results .............................................................................................................................................. 97 

2.4.3. Limitations and further optimizations .............................................................................................. 99 

2.4.4. Discussion ...................................................................................................................................... 100 

3. AUTOMATED CLASSIFICATION OF ALEVINS WITH AND WITHOUT AN 

AXIAL MALFORMATION BY MACHINE LEARNING ............................................. 105 

3.1. Introduction to axial malformation detection .................................................................................... 107 

3.2. Feature extraction for alevins spine characterization ....................................................................... 109 

3.2.1. Alevin’s spine segmentation .......................................................................................................... 109 

3.2.2. Alevin’s spine geometrical description .......................................................................................... 112 

3.2.2.1. Size measurement on the alevin masks ...................................................................................... 112 

3.2.2.2. Curvature assessment from the graphical representation of the alevin’s spine .......................... 113 

3.2.2.3. Curve regularity assessment ....................................................................................................... 115 

3.2.2.4. Curve discontinuities assessment ............................................................................................... 115 

3.3. Assessment of the learning classification of alevins with and without a spine malformation ........ 118 

3.3.1. Experimental set-up........................................................................................................................ 118 

3.3.1.1. Experimental protocol ................................................................................................................ 118 

3.3.1.2. Software and libraries ................................................................................................................ 118 

3.3.1.3. Database description .................................................................................................................. 118 

3.3.1.4. Ground truth establishment ........................................................................................................ 119 

3.3.1.5. Tested classification methods .................................................................................................... 120 

3.3.1.6. Performance measurement ......................................................................................................... 122 

3.3.2. Classification results ...................................................................................................................... 124 

3.3.2.1. Accuracy of the spine detection assay ........................................................................................ 124 

3.3.2.2. Robustness of the method and time efficiency ........................................................................... 127 

3.3.2.3. Quality control of early data sorting .......................................................................................... 128 



15 
 

3.3.2.4. Inter-operator subjectivity .......................................................................................................... 129 

3.3.2.5. Execution time ........................................................................................................................... 130 

3.3.3. Discussion ...................................................................................................................................... 131 

4. AUTOMATED CLASSIFICATION OF ALEVINS WITH AND WITHOUT A 

SWIM BLADDER BASED ON ATLAS AND MACHINE LEARNING 

CLASSIFICATION ............................................................................................................. 133 

4.1. Introduction to swim bladder detection.............................................................................................. 135 

4.2. Pre-processing ....................................................................................................................................... 136 

4.2.1. Alevin compartmentation ............................................................................................................... 138 

4.2.1.1. Markers extraction ..................................................................................................................... 138 

4.2.1.2. Markers superposition ................................................................................................................ 139 

4.2.1.3. Partition refinement .................................................................................................................... 140 

4.2.2. Determination of the alevin orientation .......................................................................................... 140 

4.2.2.1. Extraction of orientation related descriptors .............................................................................. 141 

4.2.2.2. Linear regression for alevins orientations classification ............................................................ 145 

4.3. Features extraction for swim bladder characterization .................................................................... 150 

4.3.1. Swim bladder atlas generation ....................................................................................................... 150 

4.3.2. Swim bladder localization .............................................................................................................. 151 

4.3.2.1. ROI localization ......................................................................................................................... 152 

4.3.2.2. Extraction of the swim bladder most probable contour .............................................................. 152 

4.3.2.3. Adaptation of the swim bladder localization method to the alevin orientation .......................... 154 

4.3.3. Swim bladder characterization ....................................................................................................... 160 

4.3.3.1. Intensity descriptors ................................................................................................................... 160 

4.3.3.2. Morphological descriptors ......................................................................................................... 161 

4.4. Assessment of the classification of alevins with and without a swim bladder ................................ 162 

4.4.1. Experimental setup ......................................................................................................................... 162 

4.4.1.1. Experimental protocol and ground truth .................................................................................... 162 

4.4.1.2. Software and libraries ................................................................................................................ 162 

4.4.1.3. Dataset description and ground truth ......................................................................................... 162 

4.4.1.4. Tested classification method ...................................................................................................... 163 

4.4.2. Classification results ...................................................................................................................... 163 

4.4.3. Discussion ...................................................................................................................................... 164 

5. DISCUSSION ............................................................................................................. 167 

5.1. Ground truth subjectivity .................................................................................................................... 169 

5.1.1. Subjectivity quantification ............................................................................................................. 169 

5.1.2. Deep learning for embryos classification ....................................................................................... 171 

5.2. The technical challenge of information loss from 3D interactive observations under a microscope 

and 2D image-based observations .................................................................................................................... 174 

5.2.1. Assessing the amount of information loss between 3D and 2D observations ................................ 175 



16 
 

5.2.2. Global morphological assessment instead of individual malformation assessment to limit the 

information loss from 3D to 2D observations ................................................................................................. 176 

5.2.3. Consequences of the 3D-2D information loss on TI calculation .................................................... 178 

5.2.4. A perspective to overcome information loss for morphological assessment: tomography 

reconstruction for 3D atlas building ................................................................................................................ 178 

5.3. Improvement of the teratogenicity test performance ........................................................................ 182 

5.3.1. Case of alevins edemas .................................................................................................................. 182 

5.3.2. Orientation as a descriptor of alevin health? .................................................................................. 184 

5.3.3. Eggs particular case ........................................................................................................................ 185 

5.3.4. Quantitative assessment of cardiovascular function ....................................................................... 186 

5.3.5. Behavioral assessment.................................................................................................................... 189 

5.4. Assessment of the teratogenicity test ................................................................................................... 190 

6. APPENDIX ................................................................................................................. 193 

6.1. Material and methods .......................................................................................................................... 195 

6.1.1. Embryo culture ............................................................................................................................... 195 

6.1.2. Chemical exposure ......................................................................................................................... 195 

6.1.3. Behavioral assessment.................................................................................................................... 197 

6.1.4. Image acquisition for morphological assessment ........................................................................... 198 

6.2. Optimization of image acquisition: development of a personalized sample rack ........................... 199 

6.2.1. Context ........................................................................................................................................... 199 

6.2.2. Objective and constraints ............................................................................................................... 199 

6.2.3. Description of the device ................................................................................................................ 201 

6.2.4. Prototypes validation in experimental conditions .......................................................................... 203 

6.2.4.1. Alevins behavioral analysis ........................................................................................................ 203 

6.2.4.2. Alevins morphological analysis ................................................................................................. 205 

6.2.5. Conclusion and perspectives .......................................................................................................... 207 

BIBLIOGRAPHY ................................................................................................................ 209 

 

 

 

  



17 
 

List of Figures 

 

Figure 1. Main stages of the development of fish with corresponding regulatory OECD tests.

 ........................................................................................................................................... 33 

Figure 2. Medaka alevin at 9 days post-fertilization. .............................................................. 35 

Figure 3. Stages of the medaka embryonic development. ....................................................... 36 

Figure 4. EC50 and LC50 calculation from dose response curves of the lethality and of the 

malformations appearance. ................................................................................................ 40 

Figure 5. Examples of morphological abnormalities observed under a stereomicroscope for 

alevins seen in dorsal and lateral view. ............................................................................. 43 

Figure 6. Demonstration of subjectivity. ................................................................................. 44 

Figure 7. Supported vector machines classifier. ...................................................................... 50 

Figure 8. Non-linear classification with a support vector machines classifier. ....................... 50 

Figure 9. Decision tree composed of a set of hierarchically organized nodes (in grey) with 

ending leaves (in blue). ..................................................................................................... 53 

Figure 10. Otsu threshold. ....................................................................................................... 59 

Figure 11. Examples of image filtering with Gaussian and median filter. .............................. 59 

Figure 12. Binary morphological operators. ........................................................................... 62 

Figure 13. Greyscale dilation and erosion.. ............................................................................. 62 

Figure 14. Skeletonisation process. ......................................................................................... 64 

Figure 15. Acquisition set-up. ................................................................................................. 72 

Figure 16. Flowchart of the embryo mortality image processing assay. ................................. 76 

Figure 17. Bottom-hat application. .......................................................................................... 81 

Figure 18 . Segmentation of the inner part of the well. ........................................................... 81 

Figure 19. Segmentation of the well and location of the embryo. .......................................... 84 

Figure 20. Segmentation of the embryo. ................................................................................. 84 

Figure 21. Alevin’s head, trunk and tail segments. ................................................................. 87 

Figure 22. Segmentation of the initial frame to locate the trunk of the alevin. ....................... 88 

Figure 23. Steps of heartbeat detection method on two alevins and two eggs. ....................... 92 

Figure 24. Distance assessment between areas of cyclic motion and the alevin’s eyes. ......... 94 

Figure 25. Incorrect segmentations due to fluttering............................................................... 99 

Figure 26. Heart segmentation in the presence of large edemas and axial malformations. .. 100 

Figure 27. Flowchart of the alevin morphological abnormalities detection assay based on image 

processing. ....................................................................................................................... 106 

Figure 28. Images of 9dpf medaka alevins as acquired by our set-up. ................................. 108 

Figure 29. Flowchart of alevin’s spine approximation. ......................................................... 110 

Figure 30. Spine approximation steps on the cropped image of an alevin. ........................... 111 



18 
 

Figure 31. Graphical representation of the curvilinear skeleton 𝒮 in a direct orthonormal frame.

 ......................................................................................................................................... 114 

Figure 32. Alevin’s spine approximation by a piecewise affine function. ............................ 117 

Figure 33. Datasets establishment for the assessment of axial malformation detection.. ..... 119 

Figure 34. Results of alevin’s spine classification. ............................................................... 127 

Figure 35. Evolution of the program results over 100 successive 10-fold cross-validations.128 

Figure 36. Flowchart of the swim bladder detection assay. .................................................. 134 

Figure 37. Medaka alevins with or without swim bladder and seen in different orientations 

from the dorsal view (left) to the lateral view (right). ..................................................... 137 

Figure 38. Alevin compartmentation. .................................................................................... 139 

Figure 39. Partition refinement algorithm for automated alevin compartmentation. ............ 140 

Figure 40. Measurement of the gap between alevin’s eyes. .................................................. 142 

Figure 41. Representation of the region of interest of the alevin’s tail in the primal frame 

𝓜𝒕𝒂𝒊𝒍 and its associated dual representation ℳ𝑡𝑎𝑖𝑙. ..................................................... 144 

Figure 42. Generation of the dual representation of the alevin’s tail ℳ𝑡𝑎𝑖𝑙 for an alevin seen in 

dorsal view (left) and for an alevin seen in lateral view (right). ..................................... 144 

Figure 43. Extraction of alevin orientation related descriptors for alevins of the dorsal class 

𝑶𝑫, of the almost dorsal class 𝑂𝐴𝐷, of the almost lateral class 𝑂𝐴𝐿 and of the lateral class 

𝑶𝑳 presented from the left to the right. ........................................................................... 146 

Figure 44. Results of the linear regression on alevins orientation. ....................................... 149 

Figure 45. Results of the orientation classification on images of alevins presenting ambiguous 

orientations……………………………………………………………………………149 

Figure 46. Atlas 𝒜 = (𝐼𝑚𝑒𝑑, 𝑝𝑠𝑏) obtained for fish embryos seen in dorsal view. .............. 151 

Figure 47. Projection of the atlas 𝒜 on an embryo image. ................................................... 152 

Figure 48. Representation of the ROI 𝒞 in the primal frame and of its associated image 𝒞𝑑 in 

the dual frame. ................................................................................................................. 153 

Figure 49. Swim bladder segmentation results on the primal frame of the image and associated 

shortest path in the dual polar frame. .............................................................................. 155 

Figure 50. Generation of the atlas 𝒜∝  by rotation of the atlas 𝒜𝐷  from angle 

∝  =  0.78 𝑟𝑎𝑑 (45°). .................................................................................................... 157 

Figure 51. Results of atlas generation. .................................................................................. 157 

Figure 52. Swim bladder segmentation results on medaka alevins with or without a swim 

bladder and seen in different orientations from the dorsal view (left) to the lateral view 

(right). .............................................................................................................................. 158 

Figure 53. Histograms of the inner part 𝒮ℬ𝑖 and the contour 𝒮ℬ𝑐 of the segmented shape 𝒮ℬ.

 ......................................................................................................................................... 160 

Figure 54. Histograms of the results of the swim bladder classification method after 500 

successive 5-folds cross validations in terms of accuracy, sensitivity and specificity. .. 164 

Figure 55. Principle of an Artificial Neural Network (ANN). .............................................. 172 

Figure 56. Consequence of the embryos assessment results on the TI calculation. .............. 179 



19 
 

Figure 57. Tomography principle. ......................................................................................... 181 

Figure 58. Principle of reconstruction tomography of a 3D alevin from the 2D dorsal and lateral 

projections. ...................................................................................................................... 181 

Figure 59. Variability of the edema appearance for alevins seen in dorsal view in a, and for 

alevins seen in lateral view in b, compared to healthy alevins........................................ 183 

Figure 60. Representation of a complex continuous one-dimensional signal in the time domain 

and on the frequency domain by application of the Fourier Transform. ......................... 187 

Figure 61. Flowchart of the final automated teratogenicity assessment assay. ..................... 191 

Figure 62. Zebrabox video acquisition system for alevin behavioral analysis. .................... 197 

Figure 63. Conception of the rounded bottom 24-well plates. .............................................. 200 

Figure 64. First version of the sample rack developed. ......................................................... 202 

Figure 65. Three versions of the developed sample rack. ..................................................... 202 

Figure 66. Results of the acquisition during behavioral assessment. .................................... 203 

Figure 67. Refraction of light on the glass tubes. .................................................................. 204 

Figure 68. Example of image acquired for the morphological assessment with sample rack V2.

 ......................................................................................................................................... 205 

Figure 69. Removing process of the well imprint by image registration and image subtraction.

 ......................................................................................................................................... 206 

  



20 
 

  



21 
 

 

List of Tables 

 

Table 1. Establishment of ground truth datasets.  .................................................................... 97 

Table 2. Results and error rates calculated on Dataset 3 (200 usable videos). ........................ 98 

Table 3. List of features extracted from alevin segmentations and used during axial 

classification. ................................................................................................................... 116 

Table 4. Parameters determination for alevin’s spine segmentation and geometrical description 

of classification features. ................................................................................................. 121 

Table 5. Result presentation in the form of confusion matrix for the method under study. .. 123 

Table 6. Results obtained by the automated classifier 𝐴𝐶 and the human classifier 𝐻𝐶 on the 

complete database of 1,459 images. ................................................................................ 126 

Table 7. Results and error rates obtained for each observer and for the automated classifier 

versus the microscope-based ground truths during subjectivity assessment on a sample of 

200 images. ...................................................................................................................... 130 

Table 8. Parameters definition for the extraction of the swim bladder most probable contour 

depending on the embryo orientation. ............................................................................. 159 

Table 9. List of descriptors extracted for swim bladder characterization. ............................ 161 

Table 10. Example of classification results after 5-fold cross validation performed on 380 tested 

images. ............................................................................................................................. 164 

Table 11. List of chemicals used during this project. ............................................................ 196 

  



22 
 

  



23 
 

Preamble 

 

In the last decades, the demographic growth and the evolution of the way of life has led to the 

increase of chemical compounds production. Among numerous possible applications, 

compounds are often considered as solutions for sustainability purposes. They are useful for 

energetic storage and for reducing energetic costs by increasing the performance of thermal 

insulation or by lightening vehicles structures for example. Synthesis chemistry allows the 

preservation of natural resources, by proposing alternatives to the extraction of natural 

substances from plants or animals. In food industry, as purchases are more and more spaced, 

the use of packaging and preservatives are required for obvious logistic and sanitary reasons. 

In agriculture, it seems unrealistic to feed the almost nine billion of individuals present on the 

earth without resorting to chemical compounds for crops protection. Synthetic textiles also take 

a dominating place in the fields of dressing, furniture, soundproofing and thermal insulation. 

Finally, compounds are necessary for the development of new medicines. Nonetheless, the 

increase in the number of produced compounds also causes an increase of the pollution, as many 

compounds are rejected on the environment after use or manufacture. Among them, some are 

biodegradable, some are accumulated in organisms or oceans, some are recyclable, some can 

be eliminated in safe and controlled conditions, other are not destructible. Thus, while the 

chemicals production increased, new interrogations have appeared concerning the potential 

harmful effect of these chemicals, and their future after their rejection on the environment. 

These suspicions were reinforced by several environmental and health scandals that occur 

during the twentieth century. An example of the most impacting environmental contaminations 

is the mercury poisoning at Minamata, Japan. After the opening of the Chisso Corporation 

chemicals factory in 1908, waste products resulting from the manufacture of chemicals were 

released into Minamata Bay, through the factory wastewater. During the following decades, 

thousands of cases were identified in the local population as presenting serious alterations of 

the central nervous system. Searching for the cause of these new disease, wastewater 

was revealed as containing several heavy metals in concentrations sufficiently high to bring 

about serious environmental degradation. The poisoning of the population was caused by the 

consumption of large quantities of fish and shellfish living in Minamata Bay and its 

surroundings, the major causative agent being organic mercury compound. The neurological 

https://en.wikipedia.org/wiki/Wastewater
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syndrome caused by mercury poisoning was named Minamata disease. A congenital form of 

the Minamata disease also affects fetuses in the womb, and leads to the birth of malformed 

babies. This disease was a striking example of an environmental contamination that also had 

consequences on human health. It revealed the importance of assessing the impact of chemicals 

on environment. Ecotoxicology is a relatively recent science that appeared to face this new 

problematic. This term was firstly introduced by Pr. Truhaut in 1969 and is derived from the 

words “ecology” (the study of environmental spheres and of their relations with living 

organisms) and “toxicology” (the study of harmful effects of chemicals on living organisms).  

Another mediatized health scandal is the thalidomide case which occurred during the fifties. At 

this period, the assessment of developmental toxicity, meaning the impact of chemicals on the 

embryonic development, was only performed on mouse that did not allow to reveal a toxic 

effect of thalidomide. It was commercialized in many countries as an over-the-counter sedative 

and marketed to pregnant women who suffered from nausea. In the following years, over 

10,000 babies were born that present serious morphological abnormalities, essentially in the 

limbs. Further tests performed on rabbit and monkey allowed to reveal that thalidomide causes 

alterations on the embryonic development, which is responsible for the appearance of 

malformations on children of the exposed mothers.  

Such societal scandals led to urgent research in toxicological field and initiated an evolution in 

the regulation of environmental and safety assessment of chemicals. Nowadays, regulations 

require from chemicals industries to assess the impact of their chemicals on both the 

environment (ecotoxicological assessment) and human health (safety assessment). In particular, 

for the safety assessment, which includes assessment of developmental toxicity, regulations 

now require to perform tests on two different animal species, usually mouse and rabbit, for 

increasing the sensitivity of the tests. 

However, in the meanwhile, the consideration of animal welfare increased. It was formalized 

in 1959 by W.M.S. Russell et R.L. Burch through the 3Rs rule, which establishes guidelines 

for animal testing. The aim of the 3Rs rule is to Replace, to Reduce and to Refine the tests 

currently performed on animals. This concept still constitutes the basis of the ethical approach 

on animal testing applied in Europe. It is increasingly adopted by scientific institutions and 

industries that try to develop alternative methods for the assessment of their chemicals. One of 

these alternative methods is the subject of this dissertation. 

https://en.wikipedia.org/wiki/Congenital
https://en.wikipedia.org/wiki/Fetus
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However, at digital age, one is no longer satisfied with only manual assessment methods which 

are often considered as time-consuming, less accurate, operator-dependent (subjective) and 

consequently less robust. In particular, for screening methods that involve the analysis of a large 

number of data, automation appears necessary. Among scientific fields that help biologists for 

the automation or the semi-automation of their screening and assessment methods, image 

analysis is widely used. Image analysis is the process that consists of extracting a characteristic 

information related to objects of interest that are present in the image. For example, image 

analysis allows to count or to study the shape of cells in a histological image (i.e. a microscopy 

image representing cells and structures of living tissues). This research field followed the 

development of image acquisition devices since their appearance in the sixties. At this period, 

the rise of computer science led to the increasing production of digital images, also called 

discrete images, referring to the set of points with different brightness (pixels) aligned on a grid. 

With digital image proliferation came the modern problematics of image analysis, such as 

image segmentation and classification. Image segmentation refers to the gathering of pixels 

which share a same predefined property. Pixels of a same group form a partition of the image. 

For example, pixels of a same object can be separated from the background. Image 

segmentation is used for extracting information (features) from images and describe them. 

According to the obtained image description, objects or images can be classified into several 

classes. For example, a segmented shape corresponding to a cell in a histological image can be 

described in terms of size (number of pixel in the segmented shape), of color, etc. Cells which 

are identified as dark will be classified as dead cells (necrosis), while the light ones will be 

classified as living cells. Conclusion can thus be made on the health status of the considered 

tissue depending on the number of dead and living cells in the image. Nonetheless, in some 

cases, object or image description is complicated, meaning the number of features used to 

describe images is too important to make possible a direct interpretation. In such case, human 

often needs to refer to more data that correspond to one class or to the other, in order to compare 

them, and to deduce rules from them to predict the class of a future data. In other words, human 

needs to train on a set of images previously and reliability labeled by an expert. This is the 

principle also used by the so-called supervised machine learning methods to perform complex 

classification problems. 

Machine learning also raised in the second half of the twentieth century and is part of artificial 

intelligence. Nowadays, this scientific field is one of the most flourishing. It aims to elaborate 

algorithms able to learn from experience, without being explicitly programmed for that. In other 
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world, a machine learning algorithm will not be programmed to analyze a specific feature, such 

as cell color, at a specific moment of the image analysis. Instead, supervised machine learning 

will scan many already classified data and learn from them the best way of considering each 

feature to reach the most accurate classification in the training sample. The resulting learned 

classification process could then be applied to classify future data. 

In this dissertation, automated methods based on image analysis and machine learning are used 

to automate a test currently developed at L’Oréal to detect the teratogenic effect of chemicals, 

i.e., their ability to provoke developmental anomalies. The test is performed on an alternative 

model which is the medaka fish embryo (Oryzias latipes), and relies on the classification of 

medaka images according to the presence or the absence of an abnormality. This project is a 

collaboration between the cosmetics company L’Oréal and the Laboratoire d’Informatique Gaspard 

Monge (LIGM) based in ESIEE Paris, in the context of a CIFRE Ph. D contract. 

The topic of this dissertation is introduced in Section 1, which begins by introducing the 

regulatory context of the chemicals assessment for industry, in particular for the cosmetics 

industry. The alternative fish embryo model is then presented, before describing the use of fish 

embryo model for assessing toxicity. In particular, the teratogenicity test is described. As this 

test is based on the classification between healthy and abnormal embryos, the objective is to 

develop robust and efficient computerized procedures for embryos images classification. 

Section 1.2 introduces the computerized aspects of automated classification. The main 

principles of data classification are exposed, before focusing on machine learning classification. 

As all classifications rely on data characterization, some image processing tools used for 

features extraction from images are also described. The problematics of this work are presented 

in Section 1.3. 

We then focus on three main points which constitute the three following sections. Section 2 

describes the method we developed to automatically classify embryos into two classes: alive 

and dead. In this section, the method developed to detect dead embryos based on the detection 

of cardiac arrests is exposed. In Section 3 and 4, we take an interest to the automated detection 

of some types of malformations in hatched eggs (also called alevins), using machine learning. 

More precisely, Section 3 describes the method developed to automatically classify alevins 

according to the presence or the absence of an axial malformation. Section 4 describes the 

methodology that allows to classify alevins according to the presence or the absence of a swim 

bladder. Results are then discussed in Section 5. 
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1. Introduction  

 

This Section introduces the topic of this dissertation, beginning with the presentation of general 

aspects related to the toxicological assessment of chemical compounds in Section 1.1. The 

international regulations relative to the safety assessment of compounds for human and for 

environment are described in 1.1.1. This section explains the need of the scientific community 

to develop alternative methods to animal testing for the toxicological assessment of chemicals. 

The fish embryo model, that promises to be a relevant alternative to animal models, is then 

presented in 1.1.2. In 1.1.3, we focus on the existing tests based on fish embryos to assess 

toxicity. Regulatory tests are presented. Then, the test currently developed to assess the 

teratogenicity of chemicals is exposed. Section 1.2 introduces computerized classification 

procedures that can be used for automating the test. It begins with the definition of general 

principles of data classification in 1.2.1, before focusing on some machine learning-based 

approaches in 1.2.2. Image processing tools used for image characterization are then described 

in 1.2.3. Section 1.3 formalizes the problematics. Existing automated methods for toxicological 

assessment performed from images are presented in 1.3.1. Finally, the objectives and challenges 

of the project are exposed in 1.3.2.  
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1.1. Toxicological assessment of chemicals  

1.1.1. Regulatory context  

1.1.1.1. Toxicity assessment of chemicals for industry 

Chemical compounds are widely used in the world for many applications (agriculture, 

pharmacology, textile, etc.), making people and environment continuously exposed to 

chemicals. This societal problem makes the toxicological assessment of chemicals necessary, 

both for human (safety assessment) and for environment (ecotoxicological assessment). 

Toxicological assessment is regulated. The REACH (Registration Evaluation and Assessment 

of CHemicals) European regulation (n° 1907/2006/CE) was designed in 2007 in order to 

protect human and aquatic organisms against the hazards of chemicals commercialized in the 

European Union. This regulation requires from industries to perform safety and 

ecotoxicological assessments of the chemicals they use and produce. If the ecotoxicological 

assessment concerns every chemical agent or compound produced at the rate of 100 metric 

tons per year or more, safety assessment is required for every chemical that is produced at 

more than 1 metric ton per year. To perform toxicological assessment, industries need to 

gather all available data for example from epidemiological, in silico studies (mathematical 

modelling), in vitro and in vivo tests, in a so-called read-across process [1]. If gathered 

information is not sufficient, the REACH regulation requires complementary tests to be 

conducted in order to assess the toxicity of chemicals on both human and aquatic organisms. 

The type and number of tests are determined depending on the chemical tonnage. They are 

conducted according to experimental protocols that respect guidelines made by the 

Organization of Economic Cooperation and Development (OECD). Most of these tests require 

animal testing (see Section 1.1.3.1). 

Toxicological assessment must be distinguished from toxicological screening which is not 

formally regulated. The term screening describes the practice of subjecting a high number of 

new chemicals to one or several tests designed to detect particular properties of these 

chemicals. Screening allows to sort these chemicals and to directly eliminate some of them 

according to the results of the tests. In the development chain of a new product, toxicological 

screening is thus a first-line process performed on a high number of compounds in order to 

alert and to eliminate those which have a detected toxicological effect. Chemicals which are 
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not eliminated during toxicological screening will then be subject to a regulatory toxicological 

assessment, including the read-across process and potential complementary regulated tests. 

Several toxicity effects are analyzed during toxicological screening and assessment of 

chemicals, including acute, chronic and reproductive toxicities. Acute toxicity refers to the 

adverse effects that occur following administration of a single dose of a chemical, or multiple 

doses given within 24 hours. Acute toxicity consists of measuring the short-term toxicity of 

the tested chemical (in a few minutes or hours). In contrast, chronic toxicity describes the 

adverse health effects that occur following repeated exposures to a lower dose of the tested 

chemical, over a longer time period (months or years). Finally, reproductive toxicity refers to 

the potential of some chemicals to interfere with normal reproduction. We define a reprotoxic 

chemical as a substance or a preparation which, by inhalation, ingestion or skin penetration, 

can adversely affect sexual function and fertility of adult males and females, or cause non-

hereditary developmental abnormalities in the offspring. The potential of a chemical to cause 

such congenital malformations is called teratogenicity. This term has its origin in the Greek 

𝜏𝜀𝜌𝛼𝜍́  teras, meaning “monster”.  

In international regulations, a particular attention is paid to the assessment of the teratogenic 

potential of chemicals after several scandals as the one of Thalidomide [2]. Thalidomide was 

commercialized in the fifties and prescribed to pregnant women who suffered from nausea. It 

caused the birth of thousands of malformed babies. This scandal revealed the need of 

reinforcing the evaluation of the developmental toxicity of chemicals as previous 

teratogenicity assessment tests performed only on mouse did not allow to reveal a teratogenic 

effect of Thalidomide. Further studies have revealed that mouse was less sensitive to 

Thalidomide than non-human primates or rabbits for example. For this reason, the 

teratogenicity assessment required by regulations now involves tests made on two models 

species: a rodent and a non-rodent (usually mouse and rabbit). The final analysis of all the 

available reprotoxicity data must allow to calculate the dose which has no effect on fertility 

and the dose which has no effect on development. Teratogenicity is also assessed for aquatic 

organisms and aim to propose a safe estimate of the highest concentration which has no effect 

on survival, on fertility and on development of the tested population. 

The REACH regulation also asks to industries to reduce animal testing as much as possible. 

Alternative models and methods should be preferably used, in compliance with the Russel and 

Burch’s 3Rs rule, that recommends to: 
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- Replace in vivo methods performed on laboratory animals by in vitro (studies on 

human cells or animal cells) and in silico methods; 

- Reduce the number of laboratory animal used in experimentation; 

- Refine protocols in order to limit the pain and the suffering of laboratory animals, 

while preserving the quality of produced information [3, 4]. 

The ambition of the REACH regulation is to progressively exclude animal testing from the 

safety assessment of chemicals, by encouraging industries to develop and validate new 

alternative methods. For now, a few alternative methods are developed for the toxicological 

screening of chemicals, and none have been validated for the developmental toxicity 

assessment. As regulatory tests related to reprotoxicity and teratogenicity assessment are the 

costliest and the most demanding of animal testing, the development of alternative methods 

for the prediction of teratogenic effects of chemicals would be a benefit for scientific and 

industrial society. 

 

1.1.1.2. Specific case of the cosmetics industry  

The cosmetics industry is part of the chemical industry. Consequently, it falls not only under 

the jurisdiction of the REACH regulation, but also to some specific regulations, such as the 

regulation n° 1223/2009/CE relative to cosmetics [5]. A cosmetic is defined by this regulation 

as a substance or a mixture, intended to be in contact with the superficial layers of human body 

(epidermis, hair system, nails…), or with the teeth and the buccal mucosa, with the exclusive 

or principal aim to clean them, to perfume them, to change their aspect, to preserve or protect 

them or to correct body odors. This regulation forbids the use of carcinogenic, mutagen or 

reprotoxic chemicals and requires the safety assessment of chemicals used in cosmetics 

(through the Cosmetic Products Safety Report CPSR). Moreover, since 2013, this regulation 

totally forbids tests on animals that are protected by the directive 2010/63/UE of the European 

parliament and of the council relative to the protection of animals used for scientific 

purposes [6]. This directive defines animals used for scientific purposes as: 

1. live non-human vertebrate animals, including:  

(i) independently feeding larval forms; and  

(ii) foetal forms of mammals as from the last third of their normal development;  

2. live cephalopods 
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These tests are forbidden for final products, for ingredients or ingredients combinations. In 

contrast, some regulations related to other industrial fields, such as pharmaceutical, require 

animal testing for their safety assessment. As many cosmetics ingredients are also included in 

the composition of pharmaceutical products, data obtained from animal experimentations that 

were performed with respect to regulations not related to the cosmetics industry may be used 

for the safety assessment of cosmetics if they are relevant and the data quality is proved. 

Nevertheless, in such context, the cosmetics industry remains limited to the use of chemicals 

that are already used for other applications, making the innovation perspectives also limited. 

Thus, developing new methods for the assessment of chemicals toxicity, according to the 3R 

rules, appears to be a competitive and innovation challenge for the cosmetics industry. 

In a context where animal testing is forbidden for the required safety assessment of cosmetics, 

the cosmetics industry is especially interested in developing screening and assessment methods 

based on alternative models. Moreover, even if animal testing is not forbidden for the 

environmental toxicity assessment of cosmetics, the company L’Oréal decided, in compliance 

with the 3R principle, to not use animal testing for ecotoxicological assessment of their 

chemicals. In the following section, we introduce one possible alternative model which is the 

fish embryo model. 

 

1.1.2. Fish embryos as an alternative model for toxicological 

assessment  

1.1.2.1. Model description and advantages  

In the definition of a laboratory animal, as presented in the European directive n°2010/63/UE, 

“autonomous larval stages” refers to the development stages where the larva is autonomously 

feeding. The larva is the development stage following the embryonic stages. Thus, this 

definition does not include the embryonic stages of organisms such as of fishes and amphibians.  
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Figure 1. Main stages of the development of fish with corresponding regulatory OECD tests. 

The embryonic period finishes with the resorption of the yolk sac. Unless the FET (acute 

toxicity test), all OECD tests lasts during the larval, juvenile or adult stages which are concerned 

by the definition of a laboratory animal according to the Directive 2010/63/EU. 

 

More precisely, embryonic development in fish continues after hatching through the 

eleutheroembryo stage. At this stage, the energetic supply to the developing organism is 

provided by the yolk. The transition to the larval stage starts with the onset of exogenous feeding 

(Figure 1) [7, 8, 9]. Eggs (before hatching) and eleutheroembryos do not meet the European 

regulatory definition of animals used for scientific purposes and are therefore considered an 

alternative to (adult) animal testing [10, 11, 12]. In the present manuscript, eleutheroembryos 

are referred to as alevins and we will refer to both eggs and alevins as embryos. 

The fish embryo model presents several advantages. As an aquatic organism, this model is 

useful for assessing waterway pollution levels. Thus, it can provide relevant information 

regarding the environmental impact of chemicals [13, 14]. Moreover, fishes are vertebrates and 

key mechanisms of embryonic development are conserved throughout evolution from fishes to 

human [15, 16]. Several studies based on the classification between teratogenic and non-

teratogenic substances have demonstrated a high correlation between zebrafish and mammalian 

developmental toxicity (overall correlation of 72-92%) [17, 18, 19, 20]. For this reason, fish 

embryos are considered a relevant model for studying the potential impact of chemicals on 

human embryonic development [21, 22]. Among fish species that are widely used in 

developmental biology and to study vertebrate organogenesis, zebrafish (Danio rerio) and 
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medaka (Oryzias latipes) are two well-established models. Not only their embryonic 

development is well documented [23], but their early developmental stages are transparent, 

which simplifies the direct observation of their organogenesis without requiring invasive 

procedures. Compared to mammalian models, they develop quickly so tests can be performed 

in a shorter time. They do not require difficult husbandry techniques so they are cheap and easy 

to obtain from farms. For all these reasons, fish embryo models are widely used in both 

environmental and human toxicology as well as for assessment of chemicals efficacy [10, 13]. 

Most toxicological and pharmaceutical studies are conducted on zebrafish, a freshwater fish, 

native from the Himalayan region, and belonging to the minnow family (Cyprinidae) of the 

order of Cypriniformes. The zebrafish model is highly documented [24]. Another useful and 

widely used model is medaka. Medaka is a fish belonging to the Adrianichthyidae family, native 

from East Asia. It is a member of the genus Oryzias, the only genus of the subfamily Oryziinae. 

These two small fishes (up to 4-5 cm) live in rice field, marshes, ponds, slow-moving streams 

and tide pools. Even if comparatively fewer studies are conducted in medaka embryo, it presents 

some advantages compared to zebrafish. To begin with, medaka is more resistant than zebrafish 

to temperature changes. In particular, this point is an advantage in cases where medaka embryos 

are transported from the farm location to the location where experiments are conducted. 

Moreover, the autotrophic period, i.e. the duration before yolk resorption, is longer for medaka 

(9 days at 27°C) than for zebrafish (5 days at 27°C). Medaka organism is also more developed 

when yolk resorption occurs. The longer embryonic development of medaka enables the 

exposure of more stages of development and during a longer time period compared to zebrafish, 

that may improve the likelihood of detecting an adverse effect. 

To conduct the study presented in this manuscript, the medaka fish embryo model was chosen 

(Figure 2). The following section will thus describe in more detailed the embryonic 

development of medaka. 
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Figure 2. Medaka alevin at 9 days post-fertilization (dpf). 
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Figure 3. Stages of the medaka embryonic development. Organs development last from the 

beginning of neurulation at stage 17 until hatching at stage 40. 
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1.1.2.2. The medaka embryonic development  

The duration of the medaka embryonic development depends on the incubation temperature. At 

27°C, medaka embryos hatch between 7 and 8 days. This embryonic period is divided into 

several main steps that are illustrated in Figure 3 [23]. 

- Fertilization (stage 1): this stage is characterized by the ovum activation and the fusion 

of both nuclei from male and female gametes (ovum and spermatozoon). 

- Segmentation (stages 2 to 11): the fertilized egg is divided into two undifferentiated 

cells (blastomeres), that carry on successively dividing until there are a few thousands 

of cells (stages 10 and 11). 

- Gastrulation (stages 12 to 16): this stage is characterized by the invagination of the 

blastomeres and their repartition into three different layers: ectoderm, mesoderm and 

endoderm. 

- Neurulation (stages 17 to 20): the set-up of the central nervous system begins. 

- Somitogenesis (stages 21 to 32): somites is a transitional structure that forms along the 

dorsoventral axis and that latter will give rise to the three essential structures which are 

the vertebra, striated skeletal muscles and skin connective tissues. 

- Heart development (stage 36). 

- Formation of the pericardial cavity (stage 37). 

- Spleen formation (stage 38). 

- Hatching (stage 40). 

When studying developmental toxicity, we are interested in analyzing the development of 

organs. For this reason, we especially take an interest in stages 17 to 38. 

 

1.1.3. The fish embryo model to assess toxicity 

As explained in Section 1.1.1, the safety and ecotoxicological assessments of chemicals are 

required for the cosmetics industry. In particular, as most of cosmetics are used by potentially 

pregnant women, it is essential for the cosmetic industry to eliminate any chemical that could 

have an effect on the embryonic development, by performing teratogenicity assessment. In a 

context where animal testing is forbidden for the safety assessment of chemicals, the fish 

embryo model appears promising for the development of alternative methods. For now, a few 
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regulatory tests allow to assess the environmental toxicity on alternative models, and none exist 

to assess the teratogenicity. 

 

1.1.3.1. Regulatory assays for ecotoxicological assessment 

As previously said, the Organisation for Economic Co-operation and Development (OECD) 

provides standardized international directives for the regulatory toxicological assessment of 

chemicals. Among the directives that are required by the REACH regulation for the toxicity 

assessment of aquatic organisms, several tests are performed on fish. Depending on the tests, 

the specie can be specified or it can be chosen by the industry which performs the test, among 

four recommended species: zebrafish (Danio rerio), medaka (Oryzias latipes), rainbow trout 

(Oncorhynchus mykiss) and fathead minnows (Pimephales promelas). 

The directive n°305 on bioaccumulation allows to measure the bioconcentration potential after 

an exposure phase (uptake) and a post-exposure phase (depuration) in adult fish, using an 

aqueous or a dietary exposure. The directive n°203 is an acute toxicity test, that relies on the 

lethality assessment on adult stages of fishes. Another test is performed to assess the acute 

toxicity in fish embryos: the Fish Embryo Test (FET) is described by the directive n°236. 

Finally, the directive n°210 consists of assessing malformations in fish. It is performed on the 

first life stages of fish and lasts from the day of egg fertilization until all controls could 

autonomously feed. 

Except the FET, all these tests require the use of laboratory animals according to the definition of 

the European Directive on animals used for scientific purposes (Figure 1). As L’Oréal chose to not 

use laboratory animals, even for the ecotoxicological assessment of their chemicals, these tests 

cannot be used. Thus, to predict the toxicity on adult fish, indicators must be found during the 

embryonic development, which is equivalent to study the developmental toxicity on fish embryo. 

Moreover, for now, the only regulatory tests used for assessing teratogenicity on human are 

tests performed on laboratory animals. Some alternative methods are currently developed and 

concern in vitro tests. Such tests are limited by their inability to model effects that occur in a 

complex living organism. Studying the developmental toxicity on fish embryos could have a 

dual advantage, allowing the prediction of the ecotoxicity without the use of adult stages of 

fishes, and raising teratogenic alerts that could be indicators of a potential teratogenic effect on 

human. 
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1.1.3.2. Development of a teratogenicity assessment test  

In this dissertation, we describe a test developed to study the developmental toxicity on medaka 

fish embryos. Several reasons explain the choice of medaka instead of zebrafish for this study. 

First, as l’Oréal does not have any farming in their premises, fish embryos must be delivered 

from an external society. As explained in Section 1.1.2.1, medaka are more resistant than 

zebrafish to the transportation. Second, since medaka development is slower, it can be exposed 

for a longer time period to the tested chemical. This may improve the likelihood of detecting 

an adverse effect, and makes medaka more suited for the analysis of the chemical impact on its 

embryonic development. 

This test relies on the calculation of a Teratogenicity Index TI, defined as follow: 

TI =  
LC50

EC50
.                                                            (1.1) 

where LC50 (Lethal Concentration 50) corresponds to the concentration that causes the death 

of 50% of the exposed embryos, and EC50  (Effective Concentration 50) refers to the 

concentration that induces a response, including malformations appearance and death, in 50% 

of the exposed embryos. According to these definitions, LC50 and EC50 calculations are based 

on a series of binary classifications of medaka embryos according to a lethality or a 

malformation criterion, for different tested concentrations. More precisely, the classification 

between alive and dead embryos at each tested concentration allows to draw a dose-response 

curve that represents the percentage of mortality depending on the concentration in the tested 

sample of embryos. The LC50 index is measured from this dose-response curve. Alive embryos 

are also classified into two classes: healthy and malformed. At each concentration, the 

classification between (i) alive healthy embryos and (ii) dead embryos and alive malformed 

embryos allows to draw the dose-response curve representing of the percentage of effect, and 

thus to calculate EC50 (Figure 4). 

The value of LC50 is always higher or equal to EC50, and so the teratogenicity index TI is 

greater or equal to 1. TI value expresses the degree of the chemical teratogenicity. A chemical 

is considered highly teratogenic if it causes malformations appearance for a wide range of 

concentrations without provoking death. Thus, the higher the teratogenic effect is, the wider 

the gap between LC50 and EC50 is, and so the greater TI we have. In contrast, a TI value close 

to 1 means that LC50 is close to EC50, and that there is no concentration that causes malfor- 
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Figure 4. EC50 and LC50 calculation from dose response curves of the lethality and of the 

malformations appearance. LC50 is the concentration that provoks death in 50% of the tested 

population. EC50 is the concentration that provoks an effect, including malformations and 

death, in 50% of the tested population. 
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mations appearance without also provoking the death of exposed embryos, so the chemical is 

judged as non-teratogenic. Thus, to conclude about the teratogenic effect of the tested 

chemical, a threshold must be set on TI. 

As this test is expected to be used for alerting one about the potential teratogenic effect of a 

chemical on human, a TI threshold was determined according to the results obtained on a list 

of reference chemicals, i.e., a list of chemicals whose teratogenic effects are known on human. 

In a context of toxicological assessment or screening, this test is also expected to include a 

series of tests in an Integrated Testing Strategy. An Integrated Testing Strategy (ITS) is 

defined as the process of combining results from different tests to take a decision about the 

tested chemical. For example, the combination may not be formally structured and apply 

different weights depending on the tests (weight of evidence), a conclusion can be raised if 

any of the test is positive (battery of tests), or tests may be applied or not, depending on the 

results of the previous tests (tiered strategy). According to the strategy of L’Oréal, the 

objective of the teratogenicity test is to enable the assessment of a high amount of chemicals 

and to eliminate chemicals with a high teratogenicity hazard. Then, further tests will be able 

to detect toxic chemicals that were not detected at this step. This implies to fix some 

constraints related to the test performance. 

Assessing the efficacy of a toxicological screening assay implies to pay attention to both its 

sensitivity and its specificity. Sensitivity is the capacity of a test to indicate a correct positive 

result. For a test intended to detect chemicals that have a toxic effect on human, this 

corresponds to the proportion of toxic chemicals correctly detected. Specificity refers to the 

ability of a test to correctly indicate a negative result, i.e. the ratio of chemical correctly 

detected as having no toxic effect. The overall accuracy is the average of both numbers 

weighted by their population. In our case, the teratogenicity assay is expected to be very 

specific, in order to avoid wrongly eliminating non-teratogenic chemicals, and to be sensitive 

enough to detect strong teratogenic chemicals. For this reason, the test conducted on 

references chemicals was defined with a specificity of 100%, allowing to fix a TI threshold of 

2.5. The assay result allows to directly take a decision: in the case of a chemical with a 

measured TI higher than this threshold, it is highly suspected to have a teratogenic effect and 

it will be eliminated. On the contrary, if the measured TI is lower than this threshold, the result 

is not sufficient to conclude about the safety of the chemical. Thus, the chemical development 

will continue through further assessment tests [1]. 
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In practice, the teratogenicity test relies on the visual assessment of medaka embryos state, after 

a 9-day incubation (authorized stages of development) in increasing concentrations of the tested 

chemical, including none for control. Medaka embryos are individually incubated into wells of 

a 24-well plate (Section 6.1 in the Appendix). The day of analysis, each fish embryo is 

anesthetized. Then embryos are observed under a microscope to detect potential alterations of 

the embryonic development. Microscope observations allow to manipulate the embryo and to 

see it under all possible orientations (dorsoventral, lateral and all intermediary orientations). 

The expert annotates each embryo as presenting an abnormality or not, and which ones if any. 

The developmental alterations currently considered are the following: 

• functional abnormalities (presence or absence of heartbeat) allow to calculate LC50 

and EC50; 

• morphological abnormalities (pigmentation, alevin size, presence of eye 

malformations, edemas or spine malformations, absence of swim bladder) allow to 

calculate EC50. Examples are shown in Figure 5. 

Currently, this test is manually performed at l’Oréal, meaning the embryo classification is 

manually performed by the expert. It takes around 1 minute in order to rigorously analyze each 

functional and morphological endpoint and label it. Since each chemical assessment requires 

the analysis of 144 embryos, this means that more than 2 hours are necessary to screen only one 

chemical, monopolizing an operator during all this time. Moreover, this assessment is 

subjective, as it involves visual analysis that depends on the experience and of the accuracy of 

the operator. An experiment was performed to assess the subjectivity between operators on a 

same sample, also called inter-operator subjectivity. Three different operators observed the 

same sample of 143 medaka embryos. This revealed a difference rate on observations of 20%. 

This difference has a direct impact on the TI  calculation and on the result of the test. 

Observations of a same operator can also lead to different conclusions depending on the 

conditions, on the operator’s experience or on its fatigue for example. For example, an embryo 

with a small malformation may be detected if it is surrounded by many healthy embryos, while 

the same embryo may not be detected if it is surrounded by many strongly malformed embryos 

(Figure 6).  This is what we call intra-operator subjectivity. As computer is not influenced but 

programmed to do a specific task always the same way, it could help to improve this process 

which is time-consuming and prone to error. This is what constitutes the subject of this work. 
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Figure 5. Examples of morphological abnormalities observed under a stereomicroscope for 

alevins seen in dorsal and lateral view. a and b: healthy alevins. c to f: alevins with an axial 

malformation. In c, the alevin shows an axial torsion visible as the head appears in dorsal view 

whereas the tail appears in lateral view. In d, e and f, the alevins show a curved spine. e to h: 

alevins without a swim bladder. The yellow arrows indicate the location where a swim bladder 

should be present. g and h: alevins with a large edema on the yolk, indicated by red arrows. The 

alevin in h also shows a curved spine. 
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Figure 6. Demonstration of subjectivity. The same embryo with an edema marked with a red 

arrow is shown surrounded by healthy embryos in a, and surrounded by strongly malformed 

embryos in b. In b, malformed embryos especially show large edemas and important 

malformations of the spine. The malformation of the marked embryo does not appear as visible 

in b as in a.  
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1.2. Automated classification for toxicological 

assessment  

Computerized procedures could help to overcome the limitations linked to the duration and the 

subjectivity of the teratogenicity test, by automating the visual assessment made on medaka 

embryos. As explained in the previous section, the visual assessment and the TI calculation rely 

on classification of embryos according to functional and morphological criteria. Existing 

classification procedures appear promising for detecting abnormalities in medaka embryos and 

so, for automating the teratogenicity assessment test. 

 

1.2.1. Classification main principles  

Classification is a difficult task for both human and computer, but for different reasons. Training 

human to perform delicate classifications is difficult and expensive, even experts may not 

always agree, and human get tired and tend to make mistakes. In contrast, computers typically 

never tire and they give results that are more robust and sometimes even better than human. 

Nevertheless, as computer classification is often based on human expertise, it may inherit biases 

and limited expertise. Typically, computers are less able to generalize from few examples and 

require much more data and annotations to perform as well as human. For this reason, 

automated object classification according to some predefined criteria is an important and 

challenging task within the field of computer vision and artificial intelligence. It is used in 

various application fields including biometry, vehicle and robot navigation, remote sensing, and 

biomedical imaging [25, 26, 27]. 

Intuitively, classification is the process of grouping individuals with the same or similar 

characteristics (features) into a consistent set: e.g. domestic animals may be classified into dogs, 

cats, guinea pigs, goldfish, etc. A class is a set defined by a certain property stemming from the 

data features, and consequently all data having features that respect this property are deemed 

elements of this class. In order to build a classification, one must find the property of each class 

(e.g. cats have retractable claws). Classification algorithms can model a problem differently 

depending on the input data and the desired outcome. We can categorize classification 

methodologies in three main classes:  
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• Unsupervised: This category concerns all approaches that operate on unlabeled training 

data (i.e. a dataset without any information on classes of the data). The aim of these 

approaches is to cluster them in different classes or categories by extracting patterns 

from the inherent structure of the input data without explicitly-provided labels (e.g. an 

untrained operator who tries to distinguish healthy and malformed embryos in a sample). 

Unsupervised learning is useful for exploratory analysis as it may highlight the inherent 

structures in the data. Hierarchical cluster analysis (HCA) and K-means are common 

examples of unsupervised classification algorithms [28, 29, 30]. 

 

• Supervised: The main difference with unsupervised classification is that supervised 

algorithms rely on ground truth, i.e. on data that are labeled according to the desired 

result, and that constitute the training database (e.g. a human can be trained to assess 

embryos malformations by observing 100 training embryos under a microscope that 

were previously labeled as “malformed” or “healthy” by an expert). In other words, the 

training database is composed of a set of pairs (𝑥𝑖, 𝑦𝑖) where 𝑥𝑖 is the input vector that 

contains features of the data 𝑖 and 𝑦𝑖 = 𝑓(𝑥𝑖) is the associated desired result (label), 

linked to the input 𝑥𝑖 by the mapping 𝑓. In supervised classification, finding each class 

property is equivalent to finding the relationship between all inputs and associated labels 

of the training set, by searching for the function that best approximates the target 

mapping 𝑓. It is used for prediction purposes. Once the mapping is found based on a set 

of training data, this mapping is then applied to new data of a testing set in order to 

predict to which class these new data belong (if the operator notices on training embryos 

that malformed embryos have smaller eyes than healthy ones, the operator will classify 

new unlabeled embryos of the testing set according to the size of their eyes). Thus, 

supervised classification is one of the two key principles used for prediction purposes, 

the regression being the second. The distinction between both is made on the type of the 

predicted result which is categorical for classification (e.g.: presence or absence of a 

malformation), and real-valued for regression (orientation degree of the alevin).  

 

• Semi-supervised: semi-supervised learning is a newer form of machine learning where 

only some of the data are labeled, possibly with noisy ground truth. Semi-supervised 

uses a combination of supervised and unsupervised learning techniques as well as 

exploration techniques for first finding the good labels in the ground truth, and then 
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reinforces these by using the clustered unlabeled data near the labeled ones as new 

training data [31]. 

When classification is performed in a supervised way, two methods can permit to determine the 

mapping function 𝑓 that links the input vector of data features and the desired outcome: the 

empirical and the machine learning-based method. The first one consists of building its own 

rules in an empirical way on training data. Most of the time, this method is equivalent to find 

accurate thresholds to apply on features in order to correctly classify the data in the expected 

classes (which size must the eyes have to be considered too small, which size must the swim 

bladder have to be considered inflated?). This method is suited for classification tasks that 

involve a low number of features, or features that are easy to discriminate with data 

visualization. However, for most classification tasks, we often note an increase in the data size, 

in the number of classes, or in the features dimension, that make the classification rules difficult 

to build in an empirical way, and thus affect the classification accuracy. Such classification 

process built with explicit rules tend to handle problems with a high complexity relatively 

poorly. For this reason, we extensively rely on the second method which involves machine 

learning-based approaches to solve complex classification problems. The principles of machine 

learning-based approaches are described in the next section. 

 

1.2.2. Learning rules from the data: machine learning approaches  

1.2.2.1. Machine learning principle 

Machine learning (ML) is defined as a subset of artificial intelligence (AI) that allows 

computers to learn rules, decisions making processes and other cognitive tasks without these 

being explicitly and specifically programmed in. Instead, machine-learning algorithms and 

methods manufacture these directly from input training data. ML is used in data analysis in 

order to automatically develop analytical models. This technology is adaptive, in the sense that 

machine learning-based programs can provide answers in the presence of new, previously 

unseen data. Machine learning related methods have been extensively used for classification 

problems in biology and biomedical purposes [32, 33, 34]. For example, machine learning can 

help doctors for medical diagnosis or for predicting the evolution of a disease [35, 36]. In 

toxicological screening, machine learning can help interpret the large amount of data that results 
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from the combination of mainly in vitro, in vivo and in silico assays performed on a chemical. 

Of course, there are limitations. ML algorithms do not learn like humans: they need a lot of 

well-labeled training data to achieve good performance. However, in the last few decades and 

particularly since the early 2010s with the advent of popular, effective frameworks for what is 

known as “deep learning”, ML has made tremendous progress, that have sometime exceeded 

human-level performance [37]. 

With classification tasks, machine learning approaches are used in order to automatically build 

a decision-making model [26]. In the case of supervised classification described in the previous 

section, this is equivalent to building a mapping function 𝑓 making a correspondence between 

the input features vector and a desired output. For this purpose, supervised learning relies on 

optimizing the function parameters with respect to a distance between the function output and 

the expected answer. Depending on the form of the approximated function, classification 

methods can also be grouped in two categories: 

• Parametric model. This refers to classification methods that simplify the function into 

a mathematical form that depends on a known number of parameters. Resolving such 

problems consists of selecting a form for the mapping 𝑓 , and then learning the 

parameters of the function from the training data. Linear Support Vector Machines are 

a typical example. Making an assumption on the form of the function 𝑓 can greatly 

simplify the process of function approximation. Moreover, these parametric 

classification models are quick and can learn from little data. This makes them useful 

for classification problems where the data are easy to characterize, as less features are 

necessary to characterize them and less data are necessary for representing the entire 

population. They are often resistant to data bias, meaning that any sufficiently 

representative training data will give robust results. However, the choice of mapping 

clearly constrains the solution.  In some complex classification problems, this implies 

limits on what can be learned and may result in comparatively poor results, as the 

problem may not be approximated by a well-known parametric function. It is often the 

case in image classification problems, because it is difficult to propose a generic image 

model. 

 

• Non-parametric model. In contrast, a non-parametric machine learning model refers 

to models that do not make strong assumptions about the form of the mapping function 𝑓. 

The number of parameters of 𝑓 can be very large, potentially infinite. These methods 
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are flexible, as they are free to learn any functional form from the training data, and the 

complexity of the model can grow with the size of the training data. If more training 

data are available to estimate the mapping function, this generally results in higher 

performances. K-nearest neighbors, Decision trees, RBF Kernel Support Vector 

Machine and Neural Networks are examples of non-parametric learning algorithms. 

While it may seem that these methods are superior, they do require more data to train, 

and they often learn a biased model, meaning that classification results on new, unseen 

data may be poor, if the training data is insufficient or does not represent the entire 

population well. 

The difference between supervised/unsupervised; parametric/non-parametric models and the 

various sources of errors and biases give rise to many important issues in machine learning that 

would take too long to report here. The interested reader will find an excellent reference in [38]. 

In the following, we present two of the most documented supervised learning classification 

methods, which are also the most frequently used in the context of toxicological assessment of 

chemicals: Support Vector Machines, which are typically used for the classification of basic 

phenotype such as dead, hatched of unhatched embryo [39, 40], and Random Forest, which is 

used for the recognition of more complex morphological phenotypes such as axial or yolk 

malformations [41]. 

 

1.2.2.2. Support vector machines  

Among existing supervised learning methods, Support Vector Machines (SVM) are suitable for 

recognizing multivariate patterns and thus are one of the most widely used methods for 

classification and regression purposes [42, 43, 44, 45]. Considering training data that are 

characterized by a set of features and classified into two known categories, the binary SVM 

classifier aims at assigning one of these two categories to new unlabeled data based on the 

comparison between the new data features and training data features. For this purpose, the SVM 

algorithm relies on the projection of training data in the features representation space (see an 

example in a 2D features space in Figure 7a). The SVM result model is defined by a hyperplane 

of the features space that separates the two classes of training data with the widest possible gap 

between the hyperplane and each of the two categories. For that, we define the margin as the 

distance between the hyperplane and the closest training examples of each class (called support 

vectors). Maximizing this margin allows to ensure a high generalization of the classifier.  Thus,  
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Figure 7. Support vector machines classifier. a: a 2D example of linearly separable data. b: the 

two classes could be separated using multiple lines. But being too close to some training data 

such lines are more sensitive to noise and will not generalize correctly. c: the better hyperplane 

separating the two training subsets is the one maximizing the margin distance as it will be able 

to better classify new samples that are close to the current decision boundary. 

 

 

 

Figure 8. Non-linear classification with a support vector machines classifier. The data are not 

linearly separable in the 2D representation space. A non-parametric kernel function is used to 

map each data from the 2D representation space to a 3D space in which data are linearly 

separable by a hyperplan shown in grey.  
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when classifying new unlabeled data, these data are mapped into the same features space and 

then, each data is assigned a label that depends on the side of the hyperplane this data falls on. 

In case of linear discrimination problem, the result hyperplane ℎ can be formally defined as the 

linear combination of the features vector of training data 𝑥 = (𝑥1, … , 𝑥𝑛)
𝑇 and of the weight 

vector of training data 𝑤 = (𝑤1, … , 𝑤𝑛)
𝑇: 

ℎ(𝑥) = 𝑤0 + 𝑤𝑇𝑥,                                                        (1.2) 

where 𝑛 is the number of features and thus the dimension of the representation space, and 𝑤0 

is the bias of the hyperplane ℎ (Figure 7b). The margin is equivalent to twice the distance to the 

closest training data and is expressed by 
2

‖𝑤‖
 (Figure 7c). The SVM algorithm aims to find 𝑤0 

and 𝑤 that define the optimal hyperplane, meaning such that the margin is maximized. It is 

equivalent to minimizing the constraint function 𝐶(𝑤): 

min
𝑤,𝑤0

1

2
‖𝑤‖2, subject to 𝑦𝑖(𝑤0 + 𝑤𝑇𝑥𝑖 , ) ≥ 1, ∀𝑖,                               (1.3) 

where 𝑦𝑖  is the label of the training data 𝑥𝑖 . Lagrange multipliers can be used to solve this 

problem. Figure 7 shows an example of SVM application in a 2D example of linearly separable 

training data (so 𝑛 = 2). 

The SVM classification principle was also extended to nonlinear classification (Figure 8). This 

relies on the transformation, defined by a non-parametric kernel function, of the data 

representation space into a space of higher dimension (potentially into an infinite-dimensional 

space). The probability of finding a linear separation hyperplane in such a higher dimension 

space increases dramatically [42], but may introduce data bias into the method. 

 

1.2.2.3. Decision trees and random forests  

Decisions trees are hierarchical piecewise constant models that allows to make a final decision 

from input data based on multiple variable analysis. They are often used as predictive models 

for classification purposes in supervised learning [46]. 

A decision tree is a directed binary tree where non-leaf nodes carry decision rules and where 

the leaves carry target labels. The decision rules associated with each node take the form of a 

Boolean test function pointed toward the children of the considered node. The label associated 

to a leaf corresponds to a final class. More formally, a decision tree is a 4-tuple (𝑁, 𝑃, 𝐹, 𝐿) 
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defined by the ensemble of nodes 𝑁, the ensemble of parent relations between them 𝑃, the 

mapping 𝐹 which associates a Boolean test function to each non-leaf node and a mapping 𝐿 

that provides a label to each leaf node. A decision tree-based algorithm classifies data based on 

a set of features (a.k.a. descriptors). At each non-leaf node, an associated test function takes a 

single feature as argument and compares it to a fixed threshold. Depending on the result of the 

comparison, either the right or the left child node is chosen. Thus, starting from the root of the 

tree and given a feature vector, a path is created from the root through the nodes until it reaches 

a leaf. The algorithm returns as result, the label of this leaf (Figure 9). 

The accuracy of a decision tree-based algorithm is assessed on a data sample by comparing 

the predicted values on this sample with a corresponding set of correctly labeled data. On a 

sample of size 𝑛sample, we respectively call 𝑦 and 𝑦̂ the series of labeled and predicted values. 

If 𝑦𝑖 is the label of the ith data and 𝑦𝑖̂ is the corresponding predicted value, then we calculate 

the accuracy of the algorithm on this sample as the fraction of correct predictions over the 

total number of data in this sample. More precisely, the accuracy of the sample is given by: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, 𝑦̂) =  
1

𝑛sample
∑ 1(𝑦𝑖, 𝑦𝑖̂)

𝑛sample

𝑖=1
,                                     (1.4) 

where 1(𝑦𝑖, 𝑦𝑖̂) is equal to 1 if 𝑦𝑖 is equal to 𝑦𝑖̂ and 0 otherwise. 

Fitting a Boolean test function to a training set of labeled data consists of finding the most 

relevant feature and its associated optimal threshold, according to certain criteria, like optimal 

accuracy on a training set. Then, the training set is split into two parts according to this 

Boolean test function and the process is carried out recursively on the two child nodes, until 

another criterion is met. Examples of stop criteria are reaching a desired accuracy or a 

maximum branch depth. A limitation of decision trees is their tendency to overfit the data. 

Overfitting is defined as the tendency of a classifier to correspond too closely to a particular 

set of training data, jeopardizing its ability to correctly classify future observations. For this 

reason, it is recommended to not train decision trees on the entire available dataset but to train 

and test respectively on a collection of subsets and their complement in multiple ways. This 

process is called cross-validation. 

Overfitting can also be reduced significantly by training multiple decision trees, using multiple 

subsets of features and submitting the results of these trees to a voting process. This process is 

what forms the basis of Random Forests (RF). 
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Figure 9. Decision tree composed of a set of hierarchically organized nodes (in grey) with 

ending leaves (in blue). Each node corresponds to a test function (hi) used to decide whether to 

send the input data to the left child node or to the right one. Each path on the tree leads to a leaf 

point corresponding to a final decision Di (prediction) on the input object. 
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Random Forest are defined as an ensemble of decision trees that outputs a final prediction class 

corresponding to a function of every tree output classes. This principle is based on the idea that, 

as a single entity, a decision tree is not effective for high dimensional data. However, the 

combination of many weaker decision trees can produce a stronger and more reliable classifier. 

The Random Forest algorithm was first formulated by Leo Breiman and combines two levels 

of randomness : each decision tree is computed (node split functions are defined) (i) on a 

random subset of the training dataset, according to the general technique of bootstrap 

aggregating, or bagging, and (ii) using a randomly selected set of features [47]. This technique 

allows to reduce misclassification error due to single application of the partitioning clustering 

procedure by ensuring a low correlation level between the trees [48, 49]. Moreover, the 

selection of a subset of training data for each tree building allows the algorithm to reduce the 

search space dimension and thus to enhance efficiency. 

As any other supervised learning classification technique, the Random Forest algorithm relies 

on two successive steps which are the training (or learning) step and the testing step. 

• Training step. During this step, the parameters of the Random Forest model are 

optimized. We search for the ensemble 𝑁 of nodes, the parent relations 𝑃 between them 

and the set 𝐹  of test functions associated with each node. For each tree, we firstly 

consider a single root node to which we associate all the labeled data from the training 

sample. Then, we recursively decide if the node needs to be split with the associated 

dataset. To decide if a node needs to be split or if the learning model needs to be stopped, 

the standard entropy criterion can be used. Applied to a sample, entropy measures its 

level of impurity, in term of label distribution. A sample with an entropy of zero means 

this sample only contains elements with the same label. Conversely, entropy is maximal 

when uniform label distribution is observed in the sample. The entropy of a binary 

sample 𝑆 of labeled data is defined by: 

𝐻(𝑆) = −(𝑝𝐿−
log2𝑝𝐿−

) − (𝑝𝐿+
log2𝑝𝐿+

),                                   (1.5) 

where 𝑝𝐿+
 and 𝑝𝐿−

 are respectively the relative frequencies of the positive label 𝐿+ and 

the negative label 𝐿−  in 𝑆 . For example, in a binary sample containing 20% of 

malformed embryos (label 𝐿−) and 80% of healthy embryos (label 𝐿+), where each data 

is equally weighted, the relative frequencies 𝑝𝐿−
 and 𝑝𝐿+

 are 0.2 and 0.8 respectively. If 

the entropy of 𝑆  is higher than a given threshold, we divide the sample into two 



55 
 

subsamples. In order to determine these two subsamples, we search for the related 

splitting function 𝑠 defined as follows. Given a feature function Φ and a threshold 𝜗, 

the splitting function 𝑠 associated with Φ and 𝜗 is the map 𝑠Φ,𝜗 from the set of data 𝑆 

and into the set {True, False} such as 𝑠Φ,𝜗(𝑥) =  True whenever the feature Φ(x) is 

higher than the value 𝜗 i.e.  Φ(x) >  𝜗. 

To any set 𝑆 of data and any splitting function 𝑠Φ,𝜗, the information gain function 

Gain(𝑆, 𝑠𝛷,𝜗) is associated, defined as the difference between the entropy of 𝑆 and the 

weighted mean of the entropies of the subsets 𝑆True and 𝑆False made of the elements of 

𝑆 for which the splitting function is True and for which the splitting function is False 

respectively: 

Gain(𝑆, 𝑠Φ,𝜗) = 𝐻(𝑆) − [
𝑛True

𝑛
× 𝐻(𝑆True)  + 

𝑛False

𝑛
× 𝐻(𝑆False)],                (1.6) 

where 𝑛, 𝑛True  and 𝑛False  are the numbers of elements in 𝑆, in 𝑆True , and in 𝑆False, 

respectively. The information gain is interpreted as encoding the information that would 

be gained by branching the node on the attribute Φ with threshold 𝜗. At each node, all 

features Φ  and thresholds 𝜗  are tested and we select the splitting function that 

maximizes the gain. This leads to a new partition, for which child nodes are then 

analyzed recursively in the same way. 

Some parameters control the size and the complexity of the trees. One can specify the 

maximal tree depth, the minimum number of elements required to split an internal node 

and to be at a leaf node. Such parameters appear as stop criteria in the tree growing 

process. Optimization algorithms allow to determine the most accurate combination of 

parameters according to a predefined criterion (accuracy optimization for example). 

A weighting system can be used in order to favor one of the two labels. Such weighting 

intervenes in the calculation of the label’s relative frequencies 𝑝𝐿−
 and 𝑝𝐿+

. If we denote 

𝑤𝐿−
 and 𝑤𝐿+  the weights respectively associated with labels 𝐿− and 𝐿+, then the final 

relative frequency of each label is given by: 

𝑝𝐿−
=  

𝑤𝐿−× 𝑛𝐿−

(𝑤𝐿−× 𝑛𝐿−)+ (𝑤𝐿+ × 𝑛𝐿+)
 ; 𝑝𝐿+

= 
𝑤𝐿+× 𝑛𝐿+

(𝑤𝐿−× 𝑛𝐿−)+ (𝑤𝐿+ × 𝑛𝐿+)
.               (1.7) 

For example, a sample containing 20% of malformed embryos (label 𝐿−) and 80% of 

healthy embryos (label 𝐿+ ) can be balanced by applying a weight of 𝑤𝐿−
= 4  to 
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malformed embryos. We obtain the relative frequencies 𝑝𝐿−
= 𝑝𝐿+

= 0.5. The training 

step results in the construction of a forest where each optimized tree represents a 

hierarchical test to apply to new unlabeled data to classify them during the testing step. 

• Testing step. A new sample of unlabeled data is sent to the root of all trees of the forest. 

For each tree, this sample is pushed through the inner nodes. At each node, the input 

data is sent either to the left or to the right child node depending on the result of the 

associated test function, until reaching a leaf node. Parallelizing this process reduces its 

computational cost. For each testing data, we obtain as many predictions as the number 

of trees in the forest. In order to choose the final prediction for the input data, a decision 

function is applied to all the predictions. Most commonly, the mode of all predictions is 

taken as the final decision. 

 

While many computerized methods exist to automatically classify data, all these methods 

essentially rely on data characterization, meaning associating characteristic features to these 

data. These features, also called descriptors, are used as input to the classification algorithm, 

which will look for the relationship between the input features and the final output prediction. 

There are many ways to obtain features from the data. They can be manually generated by 

experts during a manual annotation process, or it can be automatically extracted from the data 

itself. When the data to classify are images, the classification process includes object detection 

and segmentation, features extraction, and object classification [27]. Some basic principles of 

image processing used for object detection, segmentation and features extraction are provided 

in the next section of this manuscript. 

 

1.2.3. Automated features extraction for image classification  

A greyscale image is defined as an application 𝑓: {(𝑥, 𝑦) ∈ ℤ2, 0 ≤ 𝑥 < 𝑀, 0 ≤ 𝑦 < 𝑁} in a set 

of values 𝑉, where 𝑀 and 𝑁 are two integers called width and height of the image respectively. 

Each element of an image is called a pixel. The corresponding digital image is defined as the 

numerical representation of the image into a two-dimensional matrix, where each element is 

identified by its spatial coordinates and represents a pixel of the image. With each pixel is 

associated a value for a scalar image, or a vector for a multivariate image (such as a color image), 

This value can represent anything, but most often is associated with the amount of light received 
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on the image sensor at the location of the pixel, also called the intensity. The pixel intensity is 

equivalent to a shade of grey from darkest (black) to lightest (white). The pixel depth is defined 

as the number of possible values that a pixel intensity can have. It is equivalent to the size of 

the set 𝑉. The pixel depth is determined according to the number of bits (binary digit) on which 

each pixel of the image is encoded: an image encoded in 𝑥 bits means each pixel can take 2𝑥 

different values. A 1-bit image (also called binary image) is a digital image where each pixel 

can take 21 = 2 possible values: 0 or 1. These values are typically represented in black and 

white respectively. In a 8-bit image, the most common type used in this dissertation, each pixel 

can take 28 =  256 different values. 

In a similar way, a video can be interpreted as a 3D signal, with the third dimension representing 

a temporal variable (also called 2𝐷 + 𝑡 image). It represents the evolution of a greyscale image 

through time. A video is numerically represented as a three-dimensional matrix for which each 

plane corresponds to the digital image at time.  

In this dissertation, we mostly use 8-bit greyscale images and 8-bit 2𝐷 + 𝑡 images. Features 

extraction from such images requires shape extraction (segmentation) and shape description. 

 

1.2.3.1. Shape extraction  

In image analysis, shape extraction refers to an ensemble of techniques, including filtering and 

segmentation methods, that consist of identifying and representing patterns on the analyzed 

image. This section introduces the main operators used in this dissertation for shapes extraction. 

In computer vision, image segmentation refers to the process of partitioning a digital image into 

several regions, called segments, with similar characteristics or semantic content, allowing to 

simplify the image representation. Resulting segments are expected to be meaningful and suited 

for further analysis. Image segmentation is used to locate object boundaries (edge detection) 

and thus is used for shape extraction in image processing. Depending on the characteristics of 

the shape we aim to segment, specific techniques can be used. 

Thresholding is the simplest method used for image segmentation. This process allows us to 

create binary images from greyscale images, by defining a threshold value and by comparing 

each pixel intensity to this threshold value. If the pixel intensity is greater than the fixed 

threshold, then the pixel is attributed the value 1 in the resulted thresholded image, 
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corresponding to a white pixel. If the pixel intensity is lower than the fixed threshold, then the 

pixel is attributed a zero intensity in the resulted thresholded image, corresponding to a black 

pixel. Formally defined, let I be a 𝑀 × 𝑁 pixels grey level image, taking 8-bit discrete values, 

i.e. 𝐼: {1, … , 𝑁} ×  {1, … ,𝑀} →  ℤ ∩  [0, 255] . The thresholded image above value 𝜃  is 

denoted (𝐼)≥𝜃:  

𝑥 ∈ [1, 𝑁] × [1,𝑀], (𝐼)≥𝜃 = {
1 𝑖𝑓 𝐼(𝑥) ≥  𝜃

0 𝑖𝑓 𝐼(𝑥) <  𝜃
 .                             (1.8) 

The threshold value can be empirically or automatically determined. A thresholding algorithm 

is called adaptive when it modifies the fixed threshold depending on the content of the 

considered image. A typical an effective example of an adaptive thresholding algorithm is 

Otsu’s method, used to automatically cluster an image into two classes of pixels corresponding 

to the foreground and the background. This method relies on the analysis of the image histogram, 

assuming that this histogram is bi-modal (the mode being the value with the highest number of 

occurrences) (Figure 10b). Considering a threshold 𝜃 that results in two classes of pixels in the 

image (0 and 1), the intra-class variance 𝜎𝑤
2  is defined as the weighted sum of pixel intensity 

variances of the two classes: 

𝜎𝑤
2(𝜃) = 𝑤0(𝜃)𝜎0

2(𝜃) + 𝑤1(𝜃)𝜎1
2(𝜃)                                        (1.9) 

where 𝑤0 and 𝑤1 refer to the probabilities of being in the classes 0 and 1 respectively; and 𝜎0
2 

and 𝜎1
2 are greyscale variances of the pixels that belong to the classes 0 and 1 respectively. The 

algorithm calculates the optimal threshold such that the intra-class variance is minimal. It can 

be shown that this algorithm also maximizes the inter-class variance (Figure 10) [50]. 

Image segmentation generally implies a filtering step, i.e., a process to alter image 

characteristics as the size, shading or morphology. A frequently used method for blurring, 

sharpening (edge enhancement) or for edge detection in images consists of modifying the value 

of each pixel according to the values of its local neighbors. A window is used to define the 

neighborhood. The median filter replaces each pixel with the median value in its local window. 

The median filter is often used to reduce the number of pixels with extreme values and thus to 

denoise images (Figure 11c). Many filtering methods rely on the convolution between a kernel 

and the image. A kernel is simply a collection of values associated with a window. Generally, 

these values are normalized so that they sum to 1, in order to keep the image overall contrast  
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Figure 10. Otsu threshold. a: original greyscale image. b: the histogram of the image shows the 

distribution of the pixel intensities with two relative modes. The red line shows the threshold 

which best discriminate the two modes of the histogram. c: resulted binary thresholded image. 

 

 

 

 

 

Figure 11. Examples of image filtering with Gaussian and median filter. a: original noisy image 

of Lena. b: image filtered with a Gaussian kernel. c: image filtered with a median filter. 
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unchanged. Convolution is the process of summing each element of the image to its window, 

multiplied by the values in the kernel. Here is presented the general expression of a convolution: 

𝑔(𝑥, 𝑦) = (𝜔 ∗ 𝑓)(𝑥, 𝑦) = ∑ ∑ 𝜔(𝑠, 𝑡)𝑓(𝑥 − 𝑠, 𝑦 − 𝑡)𝑏
𝑡=−𝑏

𝑎
𝑠=−𝑎 ,                    (1.10) 

where 𝑓(𝑥, 𝑦)  is the original image, 𝑔(𝑥, 𝑦)  is the filtered image, 𝜔  is the filter kernel. 

Depending on the desired result, various kernels can be used to filter the image. The simplest 

kernels are fixed for the entire image, such as the Gaussian kernel, which yields a low-pass 

filter (i.e. a filter that keeps the low frequencies in the image, meaning the region with low 

contrast), good for filtering noise at the cost of introducing blurring in the image. We define the 

image 𝐺𝜎(𝐼) as the image filtered with a zero-mean Gaussian kernel of standard deviation 𝜎, 

defined by 𝐺𝜎(𝑝) =
1

𝜎√2𝜋
𝑒𝑥𝑝

−𝑝2

2𝜎2. Other, more complex filters use kernels that vary depending 

on the image content. For example, the bilateral filter is an edge-preserving and noise-reducing 

smoothing filter [51]. 

Morphological filtering is also often used in image processing to grow, shrink, remove or fill 

image regions based on shape characteristics. To perform morphological filtering, 

Mathematical Morphology provides relevant tools. If Morphology refers to the study of shapes, 

Mathematical Morphology refers to the theory based on mathematics and informatics that 

describes shapes using sets which is particularly used in image processing purposes 

[52, 53, 54, 55]. The most basic morphological operators are erosion and dilation, that aim to 

describe the interaction between the considered image and a structuring element, at each 

possible position of the structuring element on the studied image. In practice, the structuring 

element is a neighborhood window as described above, associated with the max operator for 

the dilation, and the min operator for the erosion, as for the median or convolutions above. This 

structuring element is often small compared to the studied image. Erosion and dilation are often 

used for removing noise or artefactual structures from images. The principle of erosion can 

basically be described as the removal of points of the object where the structuring element does 

not fit, allowing to remove noise or concavities of the object. Dilation is the dual operator that 

removes points of the background where the structuring element does not fit, allowing to fill 

convexities of the object. For binary images, these operators as defined as follow. Considering 

a set 𝑋 of a binary image, and a structuring element 𝛤, both subsets of ℤ2. The erosion of 𝑋 

by 𝛤 is defined by:  

𝜖𝛤(𝑋) = {𝑥|𝛤𝑥 ⊂ 𝑋},                                                     (1.11) 
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where 𝛤𝑥  is the structuring element 𝛤  translated by the vector 𝑂𝑥⃗⃗⃗⃗  ⃗ , where 𝑂  is the point of 

coordinate (0,0). The dual operation yields to the dilation of 𝑋 by the structuring element 𝛤 

defined by: 

𝛿𝛤(𝑋) = {𝑥|𝛤̆𝑥 ∩ 𝑋 ≠ ∅},                                                (1.12) 

where 𝛤̆ = {−𝑠|𝑠 ∈ 𝛤} is the symmetric of 𝛤. Erosions and dilations are dual to one another, 

in the sense that if we refer to 𝑋 as the background, or complement of 𝑋, i.e. 𝑋 =  𝕫2\𝑋, then 

𝛿𝛤(𝑋) = 𝜖𝛤(𝑋), and vice-versa. Most morphological operators come in dual pairs in this 

fashion (Figure 12). 

Binary mathematical morphology can also be generalized to greyscale images (Figure 13). In 

this case, the erosion of a point 𝑥 by a structuring element 𝛤 that delimits a neighborhood is 

defined as the minimum of the neighbor points: 

[𝜖𝛤(𝐼)](𝑥) =  min {𝐼(𝑦)|𝑦 ∈ 𝛤𝑥}.                                        (1.13) 

Similarly, the dilation of a point 𝑥 by a structuring element 𝛤 that delimits a neighborhood of 𝑥 

is defined as the maximum of the neighbor points: 

[𝛿𝛤(𝐼)](𝑥) = max {𝐼(𝑦)|𝑦 ∈ 𝛤̆𝑥}.                                        (1.14) 

Many morphological operators derive from these elementary operators. Among them, we 

introduce the morphological gradient of the image 𝐼 by a structuring element 𝛤. This operator 

is commonly used for edge detection, and is defined by: 

𝑔𝑟𝑎𝑑𝑀(𝐼) ≡  𝛿𝛤 (𝐼) −  𝜀𝛤 (𝐼).                                      (1.15) 

An illustration is shown in Figure 12 for binary images. In this dissertation, the morphological 

gradient is used with a disk-shape structuring element 𝛤𝑟1 of radius 𝑟1 =  1. 

The morphological opening of 𝑋 by the structuring element 𝛤 is defined as the composition of 

erosion and dilation by the same structuring element 𝛤: 𝛾𝛤(𝑋) = 𝛿𝛤(𝜀𝛤(𝑋)).   Openings are used 

to suppress small bright structures in a dark background. The morphological closing of 𝑋 by a 

structuring element 𝛤 is defined as the composition of dilation and erosion of 𝑋 by the same 

structuring element 𝛤: 𝜑𝛤(𝑋) =  𝜀𝛤(𝛿𝛤(𝑋)). Morphological closing allows to remove small  
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Figure 12. Binary morphological operators. A morphological closing is applied to an image 

with white noise (up left), allowing to remove the white artefact pixels. A morphological 

opening is applied to an image with black noise (down left), allowing to fill the black holes. 

Both lead to the centered denoised image. This image is then either dilated or eroded. The 

subtraction of the dilation and the erosion leads to the morphological gradient (right). 

 

 

 

 

Figure 13. Greyscale dilation and erosion. a: the initial greyscale image. b: the image dilated 

by a disk-shaped structuring element. c: the dual eroded image. 
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dark objects over a light background. Openings and closings with the same structuring elements 

are dual to one another like erosions and dilations (Figure 12). 

Algebraic openings are an extension to the notion of morphological openings, referring to a 

transformation that has the three properties of being increasing (that is, they preserve the order 

of the sets they are applied on), anti-extensive (that is, the transformed image is less than or 

equal to the original image), and idempotent (that is, multiple applications of a same operation 

do not change the result of the initial application). Algebraic openings can always be interpreted 

as the supremum (or union) of morphological openings with several structuring elements. 

Algebraic closings can similarly be interpreted as the infimum (or intersection) of 

morphological closings. Several types of algebraic openings are used in this dissertation to filter 

or extract particular structures from images. The area opening of 𝑋 with area parameter 𝛼 is 

denoted 𝛾⋋
𝛼(𝑋) and is an algebraic opening that removes from the image all the light structures 

that are smaller than the area 𝛼 [56]. We now present the notion of radial opening [57]. Let 𝜌𝜗
𝜏  

be a line segment of length 𝜏 and orientation 𝜗. The radial opening 𝛾𝜏
𝜌
 is the algebraic opening 

obtained by taking the supremum (i.e. the pointwise maximum) of all the morphological 

openings 𝛾𝜌𝜗
𝜏  using  𝜌𝜗

𝜏  as structuring element, with 𝜗 varying between 0 and 𝜋: 

𝛾𝜏
𝜌(𝐼) =  ⋁ 𝛾𝜌𝜗

𝜏 (𝐼)𝜗𝜖[0,𝜋] .                                          (1.16) 

Intuitively, this opening preserves all structures in the image that can contain at least one 

segment of length 𝜏  in at least one orientation. When 𝐼  is a binary image, the supremum 

operator ∨ reduces to the set union ∪. 

Algebraic closing refers to a transformation that has the three properties of being increasing, 

extensive (that is, the transformed image is greater than or equal to the original image), and 

idempotent. Among them, we introduce the convex hull of a component of a binary image that 

corresponds to the smallest convex set containing this component [94]. 

Derived from morphological opening and closing, we then introduce the top hat transform by 

a structuring element 𝛤, defined by: 𝑇𝑜𝑝𝐻𝑎𝑡𝛤 = 𝐼 − 𝛾Γ(𝐼), and its dual bottom hat transform, 

defined by: 𝐵𝑜𝑡𝑡𝑜𝑚𝐻𝑎𝑡𝛤 = 𝜑Γ(𝐼) − 𝐼. These operators are used to extract small bright objects 

and small dark objects respectively, from an image. 

Such morphological filtering and thresholding are sometimes not sufficient to extract 

interesting edges and shapes from images, in particular, when luminosity and contrast are not 
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the same everywhere on the image.  In this case, a more robust transformation need to be applied. 

The watershed transformation was firstly introduced in the seventies as a tool for greyscale 

image segmentation [58]. This operator is intuitively defined as in hydrology, in a greyscale 

image whose intensity can be assimilated to a three-dimensional terrain where valleys 

correspond to dark areas of the image, and peaks correspond to the light areas of the image. 

This representation of the image as a topographic relief allows to take the intensity gradient into 

account for edges detection. Shapes borders (watershed line) can be intuitively considered as 

the set of points that delimit adjacent catchment basins. Thus, a drop of water falling in this line 

may flow down towards these adjacent catchment basins. The morphological gradient is often 

taken as the relief on which to compute the watershed. The intuitive reason for this is that the 

morphological gradient is an edge detection method, and the watershed can be used to form 

closed contours based on this detection. Watershed transformation is considered as a 

fundamental tool used for many segmentation procedures [59, 60]. 

Among process that derive from basic morphological operators, skeletonisation consists of 

thinning an initial shape, until obtaining a one-pixel-thick shape composed of an ensemble of 

curves that are centered in the initial shape. This ensemble of curves is called the skeleton of 

the initial shape. Skeletons are often used as a simplification of the original data, which 

facilitates shape recognition or registration. Thinning operators can be defined as similar to 

erosions, but with a topological constraint. Thus the resulting skeleton has the same topological 

structure as the input object, i.e. the same number of holes. With this simple definition, a unique 

finite connected component without any hole in 2D is reduced to a single point (ultimate 

homotypic thinning, also called ultimate skeleton). Additional constraints can be used to modify 

the aspect of the skeleton, such as defining a constraint set which is preserved from the thinning  

 

 

Figure 14. Skeletonisation process. a: initial binary image representing one connected 

component without any hole. b: the ultimate skeleton of the initial image is reduced to a single 

point. c: curvilinear skeleton, that preserves the protrusions of the initial image. 

 



65 
 

process. For example, a constraint set can be used to keep curve extremities to create a 

curvilinear skeleton. This skeleton preserves, in addition to the topology, the geometrical 

characteristic of the object, such as protrusions [61]. An illustration of an ultimate skeleton and 

of a curvilinear skeleton is shown in Figure 14 for a binary image. 

 

1.2.3.2. Shape description  

Once shapes of interest are identified on the image, they delimit a region from which 

information can be extracted. This is the principle of shape description or characterization. We 

call features (or descriptors) the measured parameters that are representative of the information 

we aim to extract. Thus shape description involves the identification and measurements of these 

parameters. 

Shape characterization can rely on geometric features. Parameters related to size, such as area, 

length, perimeter can be measured directly from the pixels of the region on interest. The 

circularity descriptor is defined by: 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
4𝜋×𝑎𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2, and can be used to characterize 

the elongation of a shape. This ratio is maximal and equal to 1 for a disk, and decreases as the 

elongation becomes more pronounced. When analyzing a one-pixel-thick shape, such as the 

skeleton, approximation by a parametric function with a known shape (parabolic or sinusoidal 

for example) can help to characterize the curve shape. Regularity can be described by angles 

between two segments. Convexity and concavity can be characterized with some morphological 

operators, such as convex hull described in the previous section: the shape is convex if it is 

identical to its convex hull. 

Relevant features can be extracted from the intensity distribution of an image 𝐼  or of a 

considered shape in an image 𝐼. Among them, we define the scalar average of an image 𝐼: 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒({𝑝, ∀𝑝 ∈ 𝐼})  and the scalar median of an image 𝐼 : 𝑚𝑒𝑑𝑖𝑎𝑛({𝑝, ∀𝑝 ∈ 𝐼}) . The 

scalar variance of an image 𝐼 is denoted 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒({𝑝, ∀𝑝 ∈ 𝐼}) and measures the spread of 

the intensity distribution of an image. It is defined as the average of the squared deviations from 

the average intensity. When working on images only, these three parameters are referred to as 

average, median and variance respectively. When working on a 2𝐷 + 𝑡 video sequence 𝒱 (as 

in Section 2 of this dissertation), an intensity distribution is obtained for each pixel of the video 

through time, allowing to measure a scalar average, a scalar median or a scalar variance for  
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each pixel. The respective resulting 2D images are referred to as the sequential average: 

∀𝑝, 𝑆𝑒𝑞𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑝) =  𝑎𝑣𝑒𝑟𝑎𝑔𝑒({𝒱𝑖(𝑝), 𝒱𝑖 ∈ 𝒱}),                       (1.17) 

the sequential median: 

∀𝑝, 𝑆𝑒𝑞𝑀𝑒𝑑𝑖𝑎𝑛(𝑝) =  𝑚𝑒𝑑𝑖𝑎𝑛({𝒱𝑖(𝑝), 𝒱𝑖 ∈ 𝒱}),                       (1.18) 

and the sequential variance: 

∀𝑝, 𝑆𝑒𝑞𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑝) =  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒({𝒱𝑖(𝑝), 𝒱𝑖 ∈ 𝒱}).                       (1.19) 

Computerized procedures have been introduced to work on image classification purposes. We 

will see in the following section how such procedures can be applied to embryos classification, 

and thus to the development of automated toxicological assessment methods on embryos. 

 

1.3. Automating embryos classification 

As said before (Section 1.1.3.2), teratogenicity assessment of chemicals consists of classifying 

alevins according to the presence or the absence of anomalies and is performed manually by 

observing each embryo under a microscope. This process is time-consuming and subjective. 

The core problematic of this work is to propose ways to improve these assays by automating 

them. To do so, image analysis appears promising. 

 

1.3.1. Image analysis applied to fish analysis: state of the art   

Automated image classification is a complex issue frequently met in toxicological screening. 

In cells analysis for example, various simple segmentation tools combined with mathematical 

morphology operations have been widely used in the context of histopathology, with cells 

aggregates segmentation, quantification and clustering [62, 63, 64, 65, 66, 67]. Recently, new 

image processing software packages have been developed in order to simplify some of the most 

tedious biologists tasks as cells counting and differentiating, determination of tissue topology, 

wound healing, etc. [68]. Nevertheless, such methods concern the analysis of cell, which is 

transparent, unchanging regardless to orientation and thus simple. As a complete organism, the 



67 
 

fish embryo model is more complex. Three axes allow to characterize it: dorsoventral, 

anteroposterior and left-right (Figure 2). All parts of the model do not have the same optical 

properties. In particular, some organs are more or less transparent, making analysis of the fish 

embryo model by image processing more challenging. In the last decades, progress in image 

processing enabled the development of new automated methods for fish embryo analysis. 

Nonetheless, the literature shows that almost all automated fish embryo-based toxicological 

studies are only performed on the zebrafish model [92]. Thus, these protocols will have to be 

adapted before using them on the medaka model. 

 

1.3.1.1. Fish analysis using fluorescence microscopy 

While developmental toxicology assessments on fish embryos are still often manually 

performed [69, 70, 71], image processing tools and pattern recognition have been increasingly 

used in alevins studies [72]. Many functional and structural studies focus on fluorescence 

imaging. This involves the use of transgenic lines of fish embryos that express fluorescent 

protein in a specific cells population of a specific organ. This process facilitates observations 

of the structure of interest and makes it easier to identify chemicals that modulate gene 

expression [73]. Some examples are the quantification of neural patterns in the spinal cord of 

zebrafish, or the detection of chemicals that cause yolk malabsorption [74, 75]. In [76], the 

authors provide a semi-automated imaging pipeline for the analysis of zebrafish kidney. The 

process requires manual positioning of embryo in a custom designed tool made in agarose, 

which limits throughput due to increased handling complexity. Many studies focus on the 

analysis of the development of the cardiovascular function and on angiogenesis. Blood vessel 

morphology is studied for example by quantifying intersegmental vessel [77, 78, 79]. This 

requires a high resolution that our experimental setting do not provide. The performance of the 

circulatory system is also measured by detecting heart beats or studying the circulation based 

on video motion analysis [78, 80, 81, 82]. In [78] and [83], authors propose a complete pipeline 

to assess body length, heart rate, intersegmental vessel area, circulation, pericardial area and 

circulation. Nevertheless, the processing of most of these features are not fully automated, 

which implies to take time to manually correct the data. A whole system is also described in [84] 

for high throughput screening of zebrafish embryos, including embryo dispensation, compound 

delivery, incubation, imaging and analysis. 
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From a general point of view, fluorescence studies are complicated to automate. They require 

costly fluorescence microscopes and high-sensitivity cameras for fluorescence imaging. The 

study must be conducted in a dark room. In particular, these studies are limited to the use of 

transgenic lines of zebrafish embryos. Transgenic lines of medaka embryos are more 

complicated to provide than zebrafish, as this model is less frequently used. For these reasons, 

fluorescence studies are not adapted to our experimental settings. For our purpose, we need to 

develop automated methods based on bright-field microscopy. 

 

1.3.1.2. Fish analysis using bright-field microscopy  

For now, only a few studies were published that propose automated phenotype recognition of 

fish embryo using bright-field microscopy, avoiding fluorescence and staining. These studies 

mostly focus on the analysis of basic phenotypes such as the lethality [39, 85], hatching [39], 

eyes [40], and pigmentation [40, 86]. Based on histogram analysis for the extraction of image 

color and texture-related information, the authors of [39] propose a phenotype recognition 

model for high throughput screening based on the classification of zebrafish images according 

to three basic phenotypes which are hatched, unhatched and dead. Nevertheless, when 

performing toxicological screening, other more complex phenotypes are visible, such as axial 

malformations, swim bladder alterations or edemas, that are not handled with these approaches. 

A methodology is proposed to detect two different types of tail malformations: up and 

down [87]. This method performs classification with an accuracy of 95%. Nevertheless, this 

method is limited to the analysis of embryos seen in lateral view, which implies to manually 

position each embryo in the well. This process takes time and is not compatible with our 

experimental constraints. Indeed, when embryos are immerged, they generally maintain a 

balanced orientation, that cannot be changed during manipulation. The software Cellomics® 

Zebratox V4 BioApplication of Thermofisher is a commercialized tool developed for the 

morphological analysis of fish embryos. This application is used in [88] to detect a wide range 

of malformations, by combining the endpoints of a basic visual assessment made by humans 

with the Cellomics® data parameters. This results in a linear regression model named 

Computational Malformation Index used for the detection of alevin’s malformations in tested 

images. The software allows to reduce the 30-minute long detailed visual assessment to a brief 

10-minute long basic visual assessment per 96 well plates, which is promising. Nevertheless, 

visual inspection remains a necessity with this protocol, which implies to assess gross 
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abnormalities in head/eye, pectoral fins, swim bladder inflation, organ definition and well as 

position (i.e., floating, upside down, on side). In addition, this studie implies to fix embryos 

after killing. Fixation is a technique used for conserving and stabilizing cells and tissues. It 

requires the embryos incubation in a solution composed of highly toxic agents 

(paraformaldehyde) during a whole night at 4°C. Embryos delivery is not adjustable as it 

depends on the husbandry conditions, which is external. Thus, the analysis must be performed 

on Friday, which prevents from extending the manipulation duration. 

A very recent study proposes the first automated method for assessing heartbeats of multiple 

zebrafish per well, at 2 days post-fertilization, in bright-field images. The ability of the method 

to analyze several alevins in a same well allows to increase the screening throughput, while 

circumventing both the fluorescence and anesthesia required for previous studies made on 

heartbeat detection. Nevertheless, this method implies to record 10-second-long high-resolution 

videos. Such data are heavy and require a high storage capacity. In particular, our current 

settings do not allow to record video with such a high resolution (pixel size in our images is 

about 12μm, instead of 2μm in [89]). 

Recently, the FishInspector software was developed aiming to assess several functional and 

morphological markers of the zebrafish development using the VAST BioImager™ Platform 

Overview from Union Biometrica for alevin manipulation and orientation control. The 

Vertebrate Automated Screening Technology (VAST) system is a high-throughput platform 

designed for cellular-resolution in vivo screening of zebrafish alevins. In particular, it is 

designed for the automation of zebrafish alevins manipulation. The system loads each alevin 

from reservoirs of multiwell plates into a capillary. The alevin is positioned and oriented into 

the capillary before imaging takes place. This instrument can yield images of alevins in multiple 

orientations as required by the user  [90, 91]. However, several limitations make the use of this 

tool incompatible with the assay described in this manuscript. Firstly, it is designed for zebrafish 

and is not compatible with medaka, which are larger and cannot be loaded into the capillary. 

Secondly, even if the assay was adapted to zebrafish, this tool imposes the analysis of straight 

sedated alevins that can fit in the capillary. However, under the conditions of our teratogenicity 

test, some tested chemicals can cause important malformations on the alevin, such as a high 

spine curvature or a large edema. These strongly malformed embryos would not fit into the 

capillary. Even without using the VAST Bioimager for alevins manipulation, the FishInspector 

software can adapt to the analysis of images acquired in other experimental conditions. 

Adjustable parameters are included to compensate for camera or microscope-dependent 
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differences. The software provides a user-friendly interface that allows features annotations 

with flexibility, and with a high future development potential. Currently, the features already 

proposed include alevin shape (length and area), tail curvature, eye, yolk and head size, pericard 

analysis for heart rate quantification, swim bladder and jaw anomalies. If the process remains 

supervised, in the sense that manual interaction is still frequently required to correct the 

detection of some features, such as pericard and jaw, it can also be conducted blind. Nonetheless, 

the main limitation for our purpose is that analyzed images must be acquired after a precise 

orientation of the embryo in lateral view, which is the less frequent orientation met in our 

experimental conditions [92]. 

Several articles have shown the efficiency of supervised learning techniques in the scope of fish 

embryos phenotypes classification. Among the machine learning-based classification methods 

that are most often used, we find Support Vector Machines (SVM), as described in 

Section 1.2.2.2. In [39], an accuracy of about 97% is obtained for the recognition of basic 

zebrafish embryos phenotypes which are dead, hatched and unhatched. The authors of [40] 

detect alevins without eyes with an accuracy of 89% and over-pigmented phenotypes with an 

accuracy of 99%. Indeed, these basics phenotypes are easy to characterize with a few and well-

discriminative descriptors, that makes SVM reliable to achieve good classification results. 

Nevertheless, for the recognition of under-pigmented alevins for example, the presence of 

shadows interferes with features extraction, leading to a lower accuracy of 79% [40]. This 

example demonstrates the complexity of data characterization for the analysis of a specific 

phenotype. Thus, for the detection of more complex phenotypes, non-parametric methods could 

be tested for improving the results. 

In [41], a supervised learning approach of extremely randomized trees is applied to distinguish 

a wide range of phenotypes, from dense random subwindows extracted from images. The 

classification is performed in two times. First, a classifier distinguishes 3 basic phenotypes 

which are “dead” (necrosis), “chorion” (non-hatched eggs) and “other”, with almost 100% of 

accuracy. Second, a binary classifier is applied on images of the “other” category, to separate 

images into two classes: the “normal” (healthy) phenotype, and more complex defects, 

including axial abnormality, necrosed yolk, edema and hemostasis (small amount of blood 

which can be located everywhere in the embryo). This results in a success rate between 90 and 

95%. This study demonstrates the sensitivity of supervised learning algorithms for the 

classification of various defects, that could be used for our purpose. Nevertheless, as for most 

of the methods proposed to classify complex fish embryos phenotypes, it is limited to the 
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analysis of alevins seen from a specific orientation [87, 88]. Each alevin is manually positioned 

and oriented on a high-viscosity support (melt of methylcellulose) before starting the image 

acquisition. Such process requires manual intervention and is time consuming. Moreover, 

validation is performed only by comparing classifier results and annotations made on the 

acquired images. As 2D images only represent a single point of view, it may occult some 

abnormalities that would be visible by observing in all possible points of view under a 

microscope. 

 

1.3.2. Objectives and challenges  

In this project, we aim to automate a screening test developed for the assessment of chemicals 

teratogenicity, by developing robust and efficient automated methods based on image 

processing and machine learning. These methods must result in the automated classification of 

embryos according to the presence or the absence of abnormalities. The automation must 

minimize the time taken by manual operation during the screening test, and increase the results 

subjectivity. Mortality assessment is required to calculate LC50, and malformations assessment 

to calculate EC50 (Section 1.1.3.2). 

To do so, an image acquisition platform has been designed by the Environmental Research 

Department of L’Oréal for acquisition of bright-field images of the plates. This platform is 

composed of a light platform and a moving camera (Figure 15a). The plates, which contain one 

embryo per well, are put directly on the light platform. During acquisition, the camera records 

one image and one video per well, each well containing one embryo (Figure 15c). The acquired 

image represents the whole well (Figure 15b). Because the embryo is immerged in its medium, 

it may end up in any possible orientation from the dorsal to the lateral view and anywhere in 

the well after anesthesia. As the acquired image is in 2D, a single alevin orientation is visible 

on it, which is not the same for every alevin. Depending on the alevin orientation on the image, 

all abnormalities are not visible. For example, a malformation of the alevin’s spine may be 

visible when looking at the dorsal view and not when looking at the lateral view. The alevin’s 

pigmentation is not homogeneous on the whole body and may sometimes occult information 

like the heartbeat. This is especially true for eggs in which the embryo is strongly folded. Some 

anomalies may be visible but not the same way depending on the orientation. For example, the  
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Figure 15. Acquisition set-up. a: images and video acquisition device with a light platform and 

a moving camera. b: example of image acquired with the acquisition device. c: diagram of the 

acquisition set-up. The camera moves above each well of the 24-well plates and takes a picture 

and a video of the whole well with one anesthetized embryo inside. 
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swim bladder does not have the same shape when seen in dorsal and in lateral view. In contrast, 

observations made under a microscope allow to see the embryo in any possible orientation, to 

zoom in and to focus on it. In this work, a significant challenge is to handle the issue of 

information loss between microscope-based observations and information which is visible on 

2D images. In particular, this information loss must be quantified, and adaptive methodologies 

must be developed. 

Another technical challenge concerns the subjectivity linked to the ground truth. Subjectivity 

is a reason of the teratogenicity assessment automation, but it also causes difficulties during the 

development of automated methods. As the ground truth relies on observations made by an 

operator, inter-operator and intra-operator subjectivities, as defined in Section 1.1.3.2, have an 

impact on the reliability of the ground truth. For this reason, subjectivity must be assessed and 

quantified. Moreover, ground truth will change through time with the experience of the operator 

that makes the observations. Thus, a strategy must be set up to adapt the program to the ground 

truth. 

Data recording may sometimes fail, leading to an empty or a partially recorded image or video, 

that must be eliminated. As medium renewals are automatically performed with a device during 

the 9-day long incubation, some embryos may be sucked up, leading to an empty well, that 

must be detected. Embryos may end up anywhere in the well after anesthesia, even close to the 

well borders. On the image, such embryo appears partially hidden by the well borders, and is 

not usable. Sometimes, an embryo close to the well border may take the curved shape of the 

border, that could be wrongly attributed to an effect of the chemical. For these reasons, embryos 

which are too close to the well borders must also be detected. Moreover, the plates often contain 

dust and the remaining chorion after hatching, i.e. the membrane that covers the embryo when 

still in egg form. Thus, another challenge consists of developing a strong and robust pre-

processing task in order to obtain a workable image of the embryo for further treatment. Such 

pre-processing task must take into account the sorting of images according to their usability, 

including the detection of empty images, of empty wells, of partially hidden embryos, and the 

distinction between the embryo under study and artefact objects in the well. Finally, as both 

eggs and hatched eggs (alevins) are present on studied images, the pre-processing also must 

distinguish between them to adapt further image processing methods. 

As with any screening test, the efficacy of our automated classifiers must be assessed in terms 

of sensitivity and specificity. Sensitivity corresponds to the proportion of abnormal alevins 
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correctly detected, and specificity is the ratio of healthy alevins correctly detected. Chemicals 

safety assessment involves reducing the number of false negatives, i.e. high sensitivity. On the 

other hand, in particular in an industrial context, specificity also needs to be high because false 

detection of abnormalities could penalize production. Consequently, in this manuscript, both 

specificity and sensitivity must be optimized, which corresponds to the conventional choice of 

optimizing the overall accuracy. Nevertheless, as explained in Section 1.1.3.2, our assays are 

expected to detect strongly teratogenic chemicals, while avoiding raising alarm on other 

chemicals without an actual toxic effect. For this reason, at equivalent overall accuracy, we 

decided to favor the specificity. 
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2. Mortality assessment: automated 

classification of medaka embryos 

according to the detection of cardiac 

arrests 

 

In this section, we describe a mortality assay for automatically classify video sequences of 

medaka embryos in two classes: dead or alive. After a pre-processing step that includes the 

detection of unusable videos, the differentiation between eggs and alevins, and the localization 

of the region of interest in the embryo, the algorithm relies on intensity variation on this region 

of interest to detect a heartbeat. From an initial dataset of 3192 videos, 660 were discarded as 

unusable (20.7%), 655 of them correctly so (99.25%) and only 5 incorrectly so (0.75%). The 

2532 remaining videos were used for our test. Compared to videos observations, 45 errors were 

made, leading to a success rate of 98%. 

The work presented in this section has appeared in the following publications: 

• E. Puybareau, D. Genest, E. Barbeau, M. Léonard, H. Talbot. “An automated assay for 

the assessment of cardiac arrests in fish embryo”, in World Congress on Alternatives 

and Animal Use in the Life Sciences, Seattle, United States, 2017 (poster). 

• E. Puybareau, D. Genest, E. Barbeau, M. Leonard, H. Talbot. “An automated assay for 

the assessment of cardiac arrests in fish embryo”, in Computer in Biology and Medicine, 

pp 32-44, 2017. 
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Figure 16. Flowchart of the embryo mortality image processing assay 
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2.1. Introduction to the detection of cardiac arrests 

With respect to the development of a toxicological assay based on the analysis of medaka 

embryos, the first considered endpoint is the viability of the embryos that will allow to 

calculate the LC50 described in Section 1.1.3.2. In this section, we aim to classify embryos 

into classes which are alive and dead embryos. As medaka embryos are transparent, their 

cardio-vascular system is readily visible, making possible the direct visual analysis of the 

heartbeat and thus, the detection of cardiac arrest. At these early stages of development, 

cardiac arrest may not induce an immediate death due to the blood gas exchanges that occur 

through skin diffusion [93, 94]. Nonetheless, we will refer to cardiac arrests as an indicator of 

mortality, since it can be considered as a prediction of mortality at later stages of development. 

Here we describe an automated image-processing pipeline to detect a beating heart with 

minimal human interaction, maximum speed, and reliability. The proposed procedure, based 

on mathematical morphology [53, 54, 55], improves on a previous feasibility study [95], 

which had some limitations. In particular, it required a significant workload involving gel 

preparation and the manual positioning of embryos on the support gel. In addition, the number 

of plates used was limited due to a moving light platform. 

Our procedure is part of a complex process for detecting morphological and functional 

abnormalities in fish embryos after a 9-day exposure. This endeavor imposes some 

experimental constraints: we have to deal with both eggs and alevins at the analysis level. 

Because this process is intended to be fully automated, and image processing procedures may 

change depending on if the analyzed embryo is an egg or an alevin, a differentiating procedure 

between eggs and alevins must be developed. Medaka hearts normally beat at a frequency of 

around 130 beats per minute (bpm) i.e. 2.2Hz [96]. However, this can vary between 0 and 300 

bpm, i.e. 0-5Hz, in extreme cases. To avoid incorrect measurements, our recordings must be 

made using a frame rate that is high enough for our purpose. Our current camera records one-

second-long videos at 30Hz, corresponding to a Nyquist cutoff frequency of 15Hz, which is 

sufficient. Recorded videos are 1500 × 1500 pixels in size, covering the whole well. Because 

the incubation medium is liquid, undesirable motion may be present during acquisition. 

Embryos may also slide to the edge of each well, rendering them partially or totally invisible. 

To minimize this, the platform is fixed and we use a moving camera (Section 1.3.2). The 

quantity of liquid in the well is also carefully adjusted, so that the embryo moves as 
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infrequently as possible once it is placed in the well. Incomplete or otherwise corrupted videos 

may occasionally be acquired. Shadows and undesirable objects are also a risk. These 

unusable sequences must be identified at the start of processing. 

Even with the above precautions and even if all of the embryos were to remain immobile 

under anesthesia, some residual movement is still possible. Such motion may be caused by 

involuntary reflex swimming or it may be induced by vibrations and shocks in the lab 

environment, which are easily transmitted by the liquid in the well. As we rely on variance 

measures to detect the heartbeat, artefactual motion caused by even the slightest 

uncompensated frame motion may induce areas of high variance and, in the end, generate 

false positives. In particular, the eyes can cause significant difficulties as they constitute the 

darkest part of the embryos’ bodies and are not transparent. As a result, their contours have 

high contrast that may induce false positives on dead embryos in case of eyes vibration. 

Unfortunately, the heart is fairly close to the eyes in medaka, so this problem needs to be 

handled carefully. Moreover, while still in egg form, embryos appear tightly wound and the 

eyes can obscure the heart, making the detection of a heartbeat impossible. More generally, 

eggs have different visual characteristics compared to alevins. This is why it is important for 

the application to determine whether a well contains an egg or an alevin so that the processing 

procedures can be adjusted accordingly. 

During the nine-day incubation period in the chemical compound under study, the medium is 

regularly changed. The ninth day, a fixed quantity of medium is removed from the well so that 

only 0.5mL of liquid remains during image acquisition. The medium may still contain dejection 

products, impurities, or even the chorion if the egg hatched during incubation. The real embryo 

must be carefully distinguished from these impurities during image processing. 

We aim to complete the sequence analysis within the same time-frame as the acquisition, i.e., 

in under 10 seconds. We therefore propose a robust pipeline suitable for production usage. It 

consists of simple operators, which are fast and, for the most part, available in off-the-shelf 

image analysis software packages. Figure 16 presents the flowchart of our assay. It is split 

into two phases: a pre-processing step for sequence stabilization and denoising, and an actual 

processing step for detecting significant periodic changes in the embryo assuming they are 

caused by its beating heart. Videos are read as raw data interpreted as grey-level values. 
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The video pre-processing step is described in Section 2.2. The image analysis solution 

developed to detect heartbeats based on the intensity variation of the video sequence is then 

described in Section 2.3, including the detection of the region of interest for heartbeat research, 

and the heartbeat detection within this region of interest. The classification method is assessed 

and discussed in Section 2.4. 

 

2.2. Video pre-processing  

We present our notations and image processing operators, mostly from mathematical 

morphology as described in Section 1.2.3.1 [52, 97]. Let 𝐼 be a 𝑀 × 𝑁 pixels grey level image, 

taking 8-bit discrete values, i.e. 𝐼: {1, … ,𝑁} ×  {1, … ,𝑀} →  ℤ ∩  [0, 255] .  Γ𝑟𝑖
 is a disk 

structuring element of radius 𝑟𝑖 of size 𝑖; 𝛿Γ𝑟𝑖
(𝐼) is the dilation of 𝐼 by the structuring element 

Γ𝑟𝑖
. єΓ𝑟𝑖

(𝐼) is the dual erosion, 𝛾Γ𝑟𝑖
(𝐼) and 𝜑Γ𝑟𝑖

(𝐼) the corresponding morphological opening 

and closing. The notation 𝛾⋋
𝛼(𝑋) denotes the area opening of the set 𝑋 with area parameter 

𝛼 [56]. We also introduce the radial opening 𝛾𝜏
𝜌
 defined from the line segment 𝜌𝜗

𝜏  of length 𝜏 

and orientation 𝜗 as structuring element [57]. The binary image which is the thresholded 

image of 𝐼 above value 𝜃 is denoted (𝐼)≥𝜃. 

We introduce the notation 𝒱𝑙 to refer to a video sequence 𝑙 of 𝑛 images. We note 𝒱𝑖
𝑙 the frame 

𝑖  of this sequence. For clarity reasons, we write ℱ𝑙 = 𝒱0
𝑙  the first frame of the video 

sequence 𝒱𝑙. 
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2.2.1.  Video quality control and detection of unusable videos  

We begin by determining which videos present important and undesirable changes during the 

sequence. These changes may be due to the presence of black frames, shadows, or large 

uncontrolled motion. For this, on each difference di between two successive frames of the 30-

frames long video sequence 𝒱𝑜  we compute the statistical variance (as defined in 

Section 1.2.3.2): 

∀𝑖 ∈ [1,29], 𝑑𝑖 = 𝒱𝑖
𝑜 − 𝒱𝑖+1

𝑜 ,                                             (2.1) 

𝑉𝑖 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑑𝑖).                                                 (2.2) 

In the case of a correctly recorded video, two successive frames should be very similar, and 

their pixelwise difference yields a near-zero output, so its variance remains small. On the 

contrary, if a large motion appears on a frame, the difference will show a high contrast. If at 

least one of all computed variances is higher than the experimentally determined threshold 

(set to 30), the video sequence is deemed unusable. 

 

2.2.2. Segmentation of the well and selection of a region of interest  

Embryo segmentation is crucial for several reasons. For speed and reduced memory usage, 

we crop the area of interest to a small window centered on the embryo. During this step, we 

also detect sequences where the embryo is not fully visible, i.e., too close to the edges of the 

well. Moreover, motion stabilization must be performed on the embryo itself, and not on other 

elements in the field of view. We first isolate the region of interest by finding the disk area 

corresponding to the inner part of the well. This step also removes all objects connected to the 

edges of the well. The procedure for finding the area of this disk is as follows: edges of the 

disk appear dark, so we first compute a so-called bottom-hat filter: see Figure 17a and 

Section 1.2.3.1 for a definition. In this equation, a disk structuring element 𝛤𝑟20
  is chosen to 

remove small artefacts in the well. This yields image 𝐴0 (Figure 17b), which we binarize via 

an automated thresholding operation to obtain image 𝐴1 in Figure 17c. The Otsu automated 

thresholding, described in Section 1.2.3.1, is chosen [50], with the added constraint that the 

foreground area must be in the interval [20,000; 40,000]. This interval is experimentally 

determined to guarantee that the edges of the well are present in the foreground. Thi s  
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Figure 17. Bottom-hat application. a: frame ℱ0 before bottom-hat. b: result of bottom-hat 𝐴0. 

c: subsequent thresholded image 𝐴1. 

 

 

Figure 18 . Segmentation of the inner part of the well. a: the image before application of 

watershed algorithm (image 𝐴2). b: result of watershed (image 𝐴3). c: result of convex hull 

(image 𝐴4). d: outline of the final result 𝐷 superimposed on ℱ0. 
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constraint is convex and easily implemented: we consider all thresholds in order from the 

highest to the lowest. The foreground area necessarily increases during this process. In the 

acceptable foreground area interval, we select the threshold with the highest Otsu criterion. 

We call this threshold 𝜃co (for constrained-Otsu): 

𝐴𝑂 = 𝐵𝑜𝑡𝑡𝑜𝑚𝐻𝑎𝑡𝛤𝑟20
 (ℱ0),                                            (2.3) 

𝐴1 = (𝐴0) 𝜃𝑐𝑜.                                                    (2.4) 

We remove small components from the well with an area opening 𝛾𝛼
100 of parameter 𝜆  = 100, 

followed by a morphological closing with a ball 𝛤𝑟40
 to reconstruct fragmented edges of the 

well. Then a radial opening 𝛾𝑝
100 with linear element p of length 𝜏 = 100 is applied to remove 

short artefacts from the well, while retaining the thin well borders [57]. This yields image 𝐴2: 

𝐴2 = 𝛾100
𝑝 (𝜑𝛤𝑟40

(𝛾100
𝛼 (A1))).                                             (2.5) 

From this result shown on Figure 18a, we only want to keep the internal ring that represents 

the separation between the interior of the well and its edges. For this, we use a well-established 

morphological approach to segmentation, based on the Watershed transform [59, 98]. We 

compute the magnitude of the Derivative of Gaussian filter: 𝐷𝑜𝐺 =    𝐺𝜎  using the 

Deriche recursive implementation of the gradient operator for speed with parameter 

𝑎 =  10 [99] (see Section 1.2.3.1 for a definition of the Gaussian filter). We then use a 

markers-based Watershed algorithm on the magnitude of this gradient [59]. A disk at the 

center of the frame is taken as internal marker 𝑚𝑒𝑥𝑡
1  and the frame corners are the external 

marker 𝑚𝑒𝑥𝑡
1 . We write: 

𝐴3  =  𝑤𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 (|| 𝐷𝑜𝐺10(𝐴
2)||,  𝑚𝑖𝑛𝑡

1 ,  𝑚𝑒𝑥𝑡
1 ).                          (2.6) 

The resulting contour is shown on Figure 18b. The result may be incorrect if the embryo is 

too close to the edge of the well. To avoid this, we expand the contour using the smallest 

convex set that contains 𝐴3 [100]. We call 𝐴4 the resulting image (see Figure 18c) and 𝐺4 the 

set of points contained in the central component of 𝐴4 . We compute the barycenter 𝐶  of 

coordinates (𝑎, 𝑏) and the diameter 2𝑟 of 𝐺4 as the largest width or height of its bounding  
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box. The final well segmentation is the disk 𝐷 centered in 𝐶 and of radius 𝑟: 

𝐷 = {(𝑥, 𝑦), (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 ≤ 𝑟2,                                      (2.7) 

with (𝑎, 𝑏) = 𝑏𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟(𝐺4)  and  𝑟 =
𝑚𝑎𝑥(𝑤𝑖𝑑𝑡ℎ (𝐺4),ℎ𝑒𝑖𝑔ℎ𝑡 (𝐺4))

2
. 

Its contour is shown on Figure 18d. 

 

2.2.3.  Localization of the embryo in the well  

Our image analysis procedure is intended to work for both alevins and eggs, but some eggs 

do not develop at all and differ markedly from healthy eggs and alevins (Figure 19a,c). They 

feature low contrast, which makes them look like empty chorions or impurities that can 

develop in the wells. An early pipeline challenge is to reliably detect and identify the embryo 

in each well. To achieve this, we begin by performing an initial segmentation adapted to all 

components in the well, whatever their level of intensity or variance. In the previously 

calculated bottom-hat image 𝐴0 (Figure 17b), all components of interest are easy to classify 

as connected components located strictly inside the segmented well. We call h the 

contrast significance, understood as the intensity variation that connected components must 

have to be considered significant [55]. The value h is experimentally set to ignore the 

irrelevant intensity variations due to noise, while still detecting the dimmest components that 

cannot be ignored (i.e. the undeveloped eggs). We call 𝑝𝑝𝑒𝑎𝑘
𝑖  the local maximum of intensity 

in the neighborhood of the pixel 𝑝𝑖. Image 𝐵1 contains the so-called h-maxima of 𝐴0 ∩ 𝐷, 

defined as follows: 

𝐵1 = {𝑝𝑖 ∈  𝐴0 ∩ 𝐷 𝑤𝑖𝑡ℎ  𝑝𝑖 = {
0 if (𝑝𝑝𝑒𝑎𝑘

𝑖 − 𝑝𝑖) > ℎ

𝑝𝑖if (𝑝𝑝𝑒𝑎𝑘
𝑖 − 𝑝𝑖) > ℎ

.                       (2.8) 

The image 𝐵1  of the h-maxima can be efficiently computed using a morphological 

reconstruction operator, as explained in [56]. 

Several components can be detected in the resulting frame 𝐵1. These components may be 

embryos, empty chorions, or some type of impurity. To identify the embryo, we use several 

criteria: presence of eyes, minimal and average intensities, variance, and circularity. A  
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Figure 19. Segmentation of the well and location of the embryo. a and b: the red lines show the 

outlines of 𝐷 and 𝑀1 on the initial frame ℱ0. c and d: first frames of cropped sequences 𝒱1. 

 

 

Figure 20. Segmentation of the embryo. a and b: the red line shows the outline of the mask 

𝑀1 (before adjustment). c and d: the red line shows the outline of ℳ (after adjustment).  
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component is considered to have an eye if an extremely dark spot, representing less than a 

quarter of its total area, is present. Since impurities are generally homogeneous, this procedure 

filters out dark impurities, that are uniformly dark, and light impurities and chorions that are 

evenly bright. However, it can also filter out under-developed eggs. To avoid this problem, 

we add further classification criteria: a high average intensity or a low variance. We also verify 

circularity to differentiate between undeveloped eggs, chorions, and bright impurities. Finally, 

this process enables us to classify components as either "under-developed eggs," "other 

embryos," or "impurities and chorions." We delete components identified as impurities or 

chorions. There must only be one embryo per well. Therefore, if several components classified 

as "under-developed eggs" remain after this step, only the largest is kept. If several 

components of the other classes remain, we only keep the largest component among those 

from the "other embryo" class. Indeed, we have experimentally found that it is more difficult 

to distinguish underdeveloped eggs from chorions than other embryos from impurities. Thus, 

the probability of making a mistake from the "undeveloped egg" class is higher. The result 𝑀1 

is a binary mask (with values in {0, 1}) containing only one component expected to locate the 

embryo in the well (see its red contour in Figure 19a,b). If the result is empty, this means that 

the embryo intersects the edges of the well and the sequence cannot be reliably analyzed. If 

we find an embryo instead, we crop the sequence and the mask 𝑀1 by defining a bounding 

box around our segmentation, dilated by 𝛤𝑟2. This results in a new video sequence denoted 𝒱1 

centred on the embryo (Figure 19c). However, because of contrast variations and the large 

variability of grey levels between embryos, the mask 𝑀1 is only approximate. In particular, 

for alevins, it delimits a rough area with the tail included (Figure 19b) and potentially contains 

some shadows and impurities if they are too close to the embryo. For the purpose of heartbeat 

detection, we need to exclude the tail from the search field. 

 

2.2.4.  Differentiation between eggs and alevins  

Because they have different visual properties, it is necessary to identify the embryo type for 

further processing. The differentiation step is based on the morphological analysis of the 

embryo contours previously detected. The previous segmentation provides a reliable 

localization of the embryo, but only a rough approximation of its contours (Figure 20a,b), so 

these need to be refined. For this, we consider the first frame ℱ1 of the cropped sequence 𝒱1. 
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In particular, it is crucial to weed out potential shadows and impurities, which may have been 

segmented with the embryo, while retaining the tail segmentation for the alevins. We apply 

the bottom-hat procedure defined in Equation 2.3 of section 2.2.2 to eliminate the background.  

Then we experimentally define an adaptive threshold slightly above the average pixel intensity 

near the border of the cropped frame. For our images, with a 8-bit depth, an increment of 5 

was experimentally determined as appropriate: 𝜃 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (ℱ1) + 5. We obtain a binary 

image, whose small components are filtered out with an area opening with parameter 𝜆 = 5. 

We apply the morphological gradient to the resulting image (as defined in Section 1.2.3.1), to 

obtain image 𝐶1: 

𝐶1 = 𝑔𝑟𝑎𝑑𝑀 (𝛾5
𝛼((𝜑𝛤𝑟40

(ℱ1) − ℱ1)≥𝜃)).                                (2.9) 

In order to properly extract the contours of the embryo, without confusing them with residual 

artefacts that may still be present in the background, we again use a markers-based watershed 

methodology on the image 𝐶1 as follows: 

𝑚𝑖𝑛𝑡
2 = 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 (𝛾𝛤𝑟8

 (𝜀𝛤𝑟15
 (𝑀1))),                                  (2.10) 

ℳ = 𝑤𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑(𝐶1, 𝑚𝑖𝑛𝑡
2 , 𝑚𝑒𝑥𝑡

2 ).                                     (2.11) 

The image outline is set as the external marker 𝑚𝑒𝑥𝑡
2 , and the ultimate binary skeleton of the 

eroded and opened mask 𝑀1 is set as the internal marker 𝑚𝑖𝑛𝑡
2  [101]. The erosion and the 

morphological opening are respectively performed with a radius-15 and a radius-8 disk, in 

order to remove potential thin impurities linked to the previous embryo segmentation. The 

outline of the resulting binary mask ℳ is shown in Figure 20c,d. 

We now use the shape of ℳ to differentiate between the eggs and the alevins. Eggs are highly 

circular, so we can use the classical circularity attribute, that depends on the area and the 

perimeter of the binary shape under study: 

𝑐𝑖𝑟𝑐 =  
4𝜋×𝑎𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2.                                                         (2.12) 

This ratio is at most equal to 1 for a disk and decreases as the elongation becomes more 

pronounced. However, it is still possible for some alevins to be so tightly wound that their 
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associated binary shape presents a high circularity. Eggs also possess hairs on their chorion 

that may reduce the circular aspect of their associated mask. To correctly differentiate between 

both cases, we also consider two other criteria. We have experimentally determined that a 

healthy well-segmented egg has a radius of around 60 pixels. Therefore, allowing for some 

margin of error, we apply a morphological opening 𝛾Γ𝑟40
 that deletes the alevins’mask, as 

alevins are much thinner than eggs. If the component under study is filtered out during this 

step, it is considered to be an alevin. If it is not, we determine the minimum enclosing disk of 

the mask and we calculate the area difference 𝑑 between this disk and the mask ℳ. Indeed, 

since the eggs’s hairs are uniformly distributed on the chorion, the difference between the 

mask area and the area of its minimum enclosing disk is higher for hatched alevins than for 

eggs. Below an experimentally determined threshold of 3,000 pixels, we consider the 

component under study to be an egg. Otherwise, we conclude that it is an alevin. 

 

2.3. Image analysis solution  

2.3.1. Search of the heart region  

2.3.1.1. Segmentation of the alevin’s body 

In this manuscript, three main segments of the alevin are referred to as the head, the trunk and 

the tail. We use the term body to refer to both the head and the trunk. These segments are 

illustrated in Figure 21. 

 

Figure 21. Alevin’s head, trunk and tail segments. 
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For the purpose of heartbeat detection, it is essential to restrict the region of interest to the 

alevin’s body, in order to minimize the probability of false detection due to electronic noise or 

blood flow in the bright tail regions. Therefore, after the differentiation step, we refine embryo 

segmentation in the case of alevins. Alevins are darker than the background and their eyes, in 

particular, are very dark. They are fairly easy to segment as a large connected component 

associated with the darkest minima in the body region. We apply the same threshold process as 

in Equation 2.4. Because we have experimentally determined that the minimal area of an 

alevin’s body region is approximately 600 square pixels, we apply a morphological area 

opening using the criterion 𝜆 = 100 to eliminate small components. Moreover, we limit the 

body region to 𝑀1, by computing the intersection: 

𝑀2 = 𝑀1  ∩  (𝛾100
∝  ((ℱ0)≤ 𝜃𝑜𝑐

)).                                   (2.13) 

The result 𝑀2 is a new binary mask representing the alevin’s body (Figure 22b). We crop the 

sequence and obtain a new sequence 𝒱2 centered on this area (Figure 22c). These remained 

unchanged for egg sequences, and 𝑀2 and 𝒱2 are respectively equivalent to ℳ and 𝒱1. 

 

 

 

 

Figure 22. Segmentation of the initial frame to locate the trunk of the alevin. a: initial frame 

ℱ0. b: trunk mask 𝑀2. c: first frame of 𝒱2. 
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2.3.1.2. Registration  

Even when anesthetized and subject to vibration isolation, embryos may still move slightly 

during acquisition. In order to eliminate false positives, all sequences need to be stabilized. 

For efficiency, we chose a keypoint based methodology, specifically using SIFT [102]. SIFT 

detects and matches pairs of significant points 𝑃1 and 𝑃2 between pairs of frames. This allows 

us to solve the equation for rigid transformations: 

𝑃1 = 𝑃2  × 𝑅 + 𝑇.                                                        (2.14) 

Here, 𝑇 = (𝑑𝑥, 𝑑𝑦) is the translation vector, and 𝑅 is the rotation matrix. Since embryos do not 

deform significantly, it is sufficient to consider this class of transforms. Our model can select 

between translation-rotations and translation-only transformations. Model selection is a useful 

feature, because simpler models are usually more robust. Here we distinguish between pure 

translation (where 𝑅 is the identity matrix) and translation-rotation by computing the sum of 

square difference between the two model outputs. If they do not differ significantly, we choose 

the simpler model. This latter outcome is the more frequent in our experiments. Pure rotation 

never occurred in our experiments so we do not consider that model. Since impurities may be 

present in the well, movement is often visible around the embryo. Thus, in order to stabilize the 

sequence with respect to the embryo and not the other moving components in the well, we 

ensure that keypoints in the embryo only are selected, restricting key-points to the mask 𝑀2. 

Taking the first frame of the sequence as reference, the selected model transform is applied to 

all the following frames. In order that the whole stabilized sequence be of constant width and 

height, we consider the bounding box of the sequence, and crop it by the maximum 

displacement in both 𝑥 and 𝑦, which are respectively  𝑚𝑎𝑥 (|𝑑𝑥|) and 𝑚𝑎𝑥 (|𝑑𝑦|). We call 𝒱3   

the stabilized and cropped video sequence of the embryo. 

 

2.3.1.3. Denoising  

Depending on the illumination, the sequence may be more or less degraded by noise. We use 

a bilateral filter in the 2D+t domain to reduce noise [51]. We can interpret the bilateral filter 

as a neighborhood-dependent convolution (Section 1.2.3.1). 
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At each pixel (𝑖, 𝑗) belonging to a window 𝑊, the filtered frame 𝐼𝐷 is given by: 

𝐼𝐷(𝑖, 𝑗, 𝑡) =
1

∑ 𝜔(𝑖,𝑗,𝑡,𝑘,𝑙,𝑚)(𝑘,𝑙,𝑚)∈𝑊
∑ 𝐼(𝑘, 𝑙,𝑚) × 𝜔(𝑖, 𝑗, 𝑡, 𝑘, 𝑙, 𝑚)(𝑘,𝑙,𝑚)∈𝑊 ,          (2.15) 

where: 

𝜔 (𝑖, 𝑗, 𝑡, 𝑘, 𝑙, 𝑚) = exp(  −
((𝑖−𝑘)2+(𝑗−𝑘)2+(𝑡−𝑚)2)+

2𝜎𝑑
2 −

𝐼(𝑖,𝑗,𝑡)−𝐼(𝑘,𝑙,𝑚)2

2
𝜎𝛾
2 ).          (2.16) 

In this formula, 𝐼 is the original input image. Depending on parameters, this filtering could be 

too strong and could cause the heartbeat to become undetectable. Experimentally, the best 

parameters for removing the noise without altering the heartbeat are: 

𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 =   3 ×  3 ×  3 , 𝜎𝑟  =  0.5  , 𝜎𝑑 =  0.6 . The outcome of this process is a 

restored video sequence 𝒱4. Because the bilateral filter is not as effective on the borders of 

the sequence, it is preferable to remove them. This implies that we lose the first and the last 

frames, and so 𝒱4 is only 28-frames long. 

 

2.3.1.4. Segmentation of the inner parts of the embryo  

To ascertain the presence of a heartbeat in the body region, we look for cyclic motion in this 

region only. To prevent false motion detection in unrelated areas, we develop a mask 𝑀3 

corresponding to the region of interest. This eliminates areas most subject to noise, such that 

the eyes. We define 𝐷1  as the sequential average image of the video sequence 𝒱4 

(Section 1.2.3.2): 

𝐷1 = 𝑆𝑒𝑞𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝒱4).                                         (2.17) 

Blood causes the heart and vessel to appear darker, so they are easy to segment as a large 

connected component associated with the darkest minima, simultaneously maximizing the 

inter-class variance 

𝐷2 = (𝐷1)< (𝜃𝑂+𝜃𝑐).                                                  (2.18)  

Here 𝜃𝑂 is obtained using the Otsu criterion. Because the heart and vessels are thin compared 

with the rest of the body, we need to bias the threshold to encompass a larger region, so we add 

a constant 𝜃𝑐 to the Ostu threshold, experimentally optimized to 20. The resulting 𝐷2 is a binary 
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mask of the registered body of the alevin. Considering 𝐷2 as a geodesic mask, we now extract 

the eyes from 𝐷2 as the one or two most prominent minima from its min-tree [103]. We cannot 

rely on the eyes being separated. Depending on the pose of the embryo, they may be merged. 

We write: 

𝑀3 = 𝜖Γ𝑟1
(𝛾Γ𝑟3

((𝐷2. 𝐷1)≥(𝜃𝑂−𝜃𝑑))                              (2.19) 

In this equation, 𝜃𝑂 is again the Otsu optimal threshold, which depends on the distribution of 

grey-levels within 𝐷2. Because we want to bias the threshold nearer to the eyes, which are 

very dark, we subtract an experimentally optimized constant 𝜃𝑑, which turns out to be equal 

to 20 as well, from 𝜃𝑂. The outline of the resulting mask 𝑀3 in alevins is exemplified in Figure 

23a,b. This procedure is used only on alevins in order to restrict the region of interest to detect 

heartbeats. It is not suitable for eggs, due to the folded aspect of the embryo. For these, we 

compute 𝑀3  using the same procedure for segmenting the eyes but consider 𝑀2  as the 

geodesic mask (Figure 23c,d). 

 

2.3.2.  Heartbeat detection  

2.3.2.1. Elimination of spurious, non-cyclic motion  

So far we have assumed that heartbeats can be associated with significant variations of grey-

levels in the body region of the alevin. For this, we estimate a time-wise, grey-level variance at 

every location in this region. However, a significant variance during a sequence may be also 

due to a single, large, spurious motion instead of a regular, periodic heartbeat. To distinguish 

between these two cases, we split 𝒱4 into four equal length sub-sequences. Each subsequence 

is 7-frames long, which is enough to record a typical, single heartbeat. The subsequences are 

called 𝒱𝑖
4 , i ∈ {1…4}. We now consider the sequential variance image 

𝑉𝑖 =  𝑆𝑒𝑞𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝒱𝑖
4), 𝑖 ∈  {1…4} , and the sequential median 𝑉 =  𝑆𝑒𝑞𝑀𝑒𝑑𝑖𝑎𝑛{𝑉𝑖} 

(see Section 1.2.3.2 for a definition). 
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Figure 23. Steps of heartbeat detection method on two alevins and two eggs. a to d: 

segmentation of the inner parts 𝑀3. e to h: false-color rending of the temporal variance 𝐸1. i to l: 

segmentation of cyclic motion detection in embryos 𝐻1. The first and the third columns are 

alive embryos; the second and the fourth are dead embryos. 
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We see if that a single, large, spurious record high values. The median 𝑉 of the 𝑉𝑖 will still be 

low. In contrast, if a regular, significant variations occurs in the majority of the 𝑉𝑖, then 𝑉 will 

have high values that we assume to be due to periodic motion:  

𝒱4 = 𝒱1
4 ∪ 𝒱2

4 ∪ 𝒱3
4 ∪ 𝒱4

4,                                                 (2.20) 

∀𝑖 ∈ [1,4], 𝑉𝑖 = 𝑆𝑒𝑞𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝒱𝑖
4),                                         (2.21) 

𝐸1 = 𝑀3. 𝑆𝑒𝑞𝑀𝑒𝑑𝑖𝑎𝑛({𝑉𝑖,𝑖 ∈ [1.4]}).                                      (2.22) 

The result is shown on Figure 23e to h. 

 

2.3.2.2. Segmentation of cyclic motion areas  

We obtain a binary image of 𝐸1 via a small morphological closing, a threshold by the scalar 

median value 𝜇 of all strictly positive variances present in 𝐸1, and a small area opening: 

𝜇 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐸1),                                                         (2.23)  

𝐻1 = 𝛾4
𝛼(𝜑Γ𝑟1

(𝐸1))≥𝜇).                                                    (2.24) 

Because the visual properties of eggs are not the same as those of alevins, we notice more 

residual cyclic motion due to noise in the case of eggs. Therefore, we add an area opening 

with 𝛾 = 8 only for eggs. If the number of non-zero pixels in 𝐻1 is zero, we consider the 

embryo to be dead, otherwise, it is considered to be alive (Figure 23i to l). 

 

2.3.3.  Detection of cyclic motion associated with the mouth  

Some alevins have no detectable heartbeat in the sequence due to significant pigmentation in 

the body region. However, sometimes cyclic mouth motion induced by natural reflex 

demonstrates that the alevin is alive. To allow for these specific cases, we recommend the 

detection of cyclic mouth motion. Once again, we apply our cyclic motion detection and 

segmentation based on variance, but this time on the inverted mask 𝑀3. If an area of cyclic 

motion is detected (𝑀𝑚𝑜𝑢𝑡ℎ), we estimate the distance between each component in this area 

and the alevin’s eyes ( 𝑀𝑒𝑦𝑒𝑠 ), by superposing both corresponding masks: 
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𝐺1 =  𝑀𝑒𝑦𝑒𝑠 ∪  𝑀𝑚𝑜𝑢𝑡ℎ , then performing a dilation of 𝐺1  by a radius-14 disk: 

𝐺2 =  𝛿𝛤𝑟14
(𝐺1). If a single area remains, the area of cyclic motion is close enough to the 

eyes to be the mouth. In terms of implementation, we keep the component of 𝐺2 that contains 

the eyes, which we call 𝐺3, and check to see if it also contains a component exhibiting cyclic 

motion (Figure 24): 

𝐺4 = 𝐺3. 𝐺1.                                                                (2.25) 

If the number of components in 𝐺4 is higher than the number of eye components, we consider 

it a cyclic mouth motion area. An alevin with no heartbeat detected but mouth motion present 

is considered to be alive. 

 

 

Figure 24. Distance assessment between areas of cyclic motion and the alevin’s eyes. 

a: superposed eyes and areas of cyclic motion masks 𝐺1. b: dilation 𝐺2. c: component of 𝐺3 

which contains 𝑀𝑒𝑦𝑒𝑠. d: the result 𝐺4. 



95 
 

2.4. Assessment of the classification between dead and 

alive alevins  

In this section, we present the results obtained using a total of 3,192 videos, 2,532 of which 

were actually usable to test for heartbeat detection. We begin describing the experimental setup 

in part 2.4.1, before moving on to discuss processing. Our results are presented in part 2.4.2 We 

tackle the problem of remaining limitations in part 2.4.3 and finally discuss about the quality 

of our validation method in part 2.4.4. 

 

2.4.1. Experimental setup  

2.4.1.1. Experimental protocol  

On the first day of the experiment, the individual fish eggs are manually placed in a 24-well 

plate, one egg per well, in an incubation medium that contains or not a pre-determined 

concentration of the water-soluble chemical under study [104]. After a 9-day exposure, 1.5mL 

of the incubation medium is removed from each well, and the fish embryos are anesthetized 

with tricaine. The final concentration of 0.18g/L has been shown not to affect the heart beats 

frequency within the time frame used for analysis [78]. The plate is then placed under the 

connector board, and the acquisition is automatically performed under the control of a Visilog 

Visual Basic script (Figure 15 in Section 1.3.2). For each well, 30 uncompressed video frames 

at a resolution of 1500 ×  1500  pixels are recorded over a duration of 1 second with a 

monochrome camera. More details about embryo culture, exposure and video acquisition are 

provided in Section 6.1 of the Appendix.  

 

2.4.1.2. Software and libraries  

We used the Python 2.7 environment under Windows 7 (64 bits) in an HP computer with a 3.60 

GHz Intel® Core™ i7-4790 CPU and 32 GB of RAM. We used Numpy, Scipy, and Scikit-

image [105], Python Imaging Library (PIL), Pink [106], and Open CV for Python [107].  
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2.4.1.3. Database description and ground truth 

For this study, as for all studies presented in this manuscript, the used database has not been 

gathered with the aim of a thorough toxicological test, but for developing and testing computer 

programs. It means that each image was selected according to the presence or the absence of 

the anomaly that is to be automatically detected, i.e. cardiac arrest in this part of the manuscript. 

The pictured alevins have been exposed to a wide variety of chemicals, including none. The 

nature of the chemical used is not significant for the purpose. 

In the context of our test validation, two possible types of ground truth exist: observations under 

a microscope and those directly on acquired videos. Each present different advantages and 

drawbacks. The strongest way of assessing the quality of the complete embryo analysis process, 

including plate preparation, data acquisition, and data treatment, is to compare our results to the 

observations of embryos under a microscope. On the other hand, the automated method we 

developed works on video sequences whose information may be much different from the 

observations made under microscope. Several aspects linked to the experimental protocol or 

the acquisition method can explain this fact. (i) Video quality is such that some weak heart beats 

may be undetectable on video even if they are visible under a microscope. (ii) Observations 

made while using a microscope also depend on operator fatigue and subjectivity. (iii) Because 

there is a time gap between the observations made under microscope and videos acquisition, an 

embryo may also die during the interval. (iv) observations made under microscope facilitate 

scrutiny of the heart since embryos can be moved to a favorable position, whereas in videos the 

embryo's posture may obscure the heart. For these reasons, it appears that the most relevant 

way to assess the program's quality is through direct video observation. 

For this study, both possible ground truths were considered. Table 1 summarizes the 

establishment of ground truth datasets. The first expert (named “expert 0”) originally observed 

the embryos under a microscope before the total set of 3,192 videos were acquired. We refer to 

these microscope-based observations as “Dataset 0”. The expert identified each case as an alive 

or dead embryo by checking for the presence of a heartbeat. Another expert (named “expert 1”) 

analyzed the resulting 3,192 acquired videos (“Dataset 1”). He began manually assessing the 

usability of the videos, by checking that they were complete, well-recorded, that the well was 

not empty, and that the embryo was not too close to the well boundary. From this selection 

process, 655 unusable videos were identified. Then, for the remaining 2,537 usable videos only, 
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 Dataset 0 Dataset 1 Dataset 2 

Screening method Microscope Videos Videos 

Dataset size 3,192 3,192 200 

Experts in charge  

of the analysis* 
Expert 0 Expert 1 

Experts 1, 2,  

and 3 

Classification  

labels used 
"Alive" or "Dead" 

"Unusable,"  

"Alive," or "Dead" 
"Alive" or "Dead" 

* Each expert screened the entire dataset. 

Table 1. Establishment of ground truth datasets. For Dataset 2, a consensus was reached 

between the three experts and a final set of 200 ground truth data was obtained. 

 

this expert determined if the embryo was alive or dead. However, whereas determining videos 

usability is easy and thus reliable, detecting a beating heart is sometimes difficult and therefore 

subject to errors. For this reason, we selected a subset of only 200 usable videos (“Dataset 2”) 

so that the health status of the embryo could be reassessed by two other independent observers 

(“experts 2 and 3”). In the end, three different observers were involved in analyzing the 200 

usable data subset. Because the experts' observations pertaining to Dataset 2 were not always 

identical, a consensus was then reached between these three observers concerning the videos 

that they assessed differently. The 200 data resulting from this consensus represent the ground 

truth we use to validate our automated method, as explained in the following Section 2.4.2. 

 

2.4.2. Results  

Our heartbeat detection method returns three possible results: "unusable," "alive," or "dead." 

This method processes a sequence in approximately 10 seconds, in accordance with our initial 

constraints. All parameters were hand optimized using a training sample of 100 sequences. 

Using Dataset 2 that contains 200 videos, the results of our program are compared to the 

previously established consensus data ground truth. We consider the program to be erroneous 

if it detects a dead embryo that was identified as alive according to expert consensus (false 
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positive) or if, on the other hand, it detects an alive embryo that was identified as dead by expert 

consensus (false negative). We detected 3 errors made by the program for a corresponding error 

rate of 1.5% (Table 2a). This error rate only corresponds to false positive, meaning the 

corresponding sensitivity is 100% and the specificity is 98.1%. In toxicity tests, this is a more 

acceptable type of error since it does not provide a false sense of security with regard to the 

tested molecule. Moreover, the specificity is maximized, which meet the constraint exposed in 

the introduction of this manuscript. In Table 2b, we present the error rates that were calculated 

for each expert as compared to the final consensus based on Dataset 2. Expert 1, who processed 

the 3,192 videos (Dataset 1), has a similarity rate of 98.5% with respect to the consensus data. 

Consequently, the experts’ observations can be considered sufficiently reliable to analyze the 

results of the entire program. The results of this analysis (program vs. expert 1) are described 

below. 

Out of the initial Dataset 1 of 3,192 videos, the program correctly flagged 655 as unusable and 

incorrectly flagged another 5 as unusable due to some error within the program itself. If we 

consider the entire set, 3,187 videos were correctly flagged, leading to a success rate of 99.85%.  

 

a.   

Program results: 

Ground truth (consensus): 

Dead Alive 

Dead 38 (19%) 0 (0%) 

Alive 3 (1,5%) 159 (79,5%) 

b. 

 Expert 1 Expert 2 Expert 3 Program 

Error rates between  

expert observations 
1.5% 2.5% 1.5% 1.5% 

Table 2. Results and error rates calculated on Dataset 3 (200 usable videos). a: distribution of 

dead and alive embryos in the program results compared to the ground truth data of the 

consensus. It shows that 1.5% of the Dataset 3 embryos were wrongly identified as dead by the 

program. b: error rates calculated for each expert and for the program versus consensus data, 

used as ground truth. 



99 
 

 

The remaining 2,532 videos were used for mortality test validation. There were 45 errors in this 

set, for an error rate of 1.77%. Such an error rate is low and can be considered satisfactory. We 

noticed that 11 of these 45 errors were due to embryos that had died a long time before 

acquisition and had consequently absorbed the blue marker. These embryos appear very dark 

on the video and are therefore more affected by noise, which was incorrectly labeled as periodic 

motion. This is something we can improve in a future version of our software pipeline. 

 

2.4.3.  Limitations and further optimizations  

In some cases, even embryos that are dead may appear to move. This may be caused by 

movement in the water, fluttering, shadows, or embryo rotation inside the well (Figure 25). In 

dark areas, acquisition noise is proportionally more troublesome [108], and may be confused 

with cyclic motion. Sometimes, the embryo may appear to slide on the water. This happens if 

we do not correctly compensate for rotation in the sequence stabilization phase. The main 

remaining cause is ambiguity: in some cases, the heart beats so slowly or weakly that we 

cannot detect it. In most cases, a human operator would also have difficulties detecting it. 

 

 

 

Figure 25. Incorrect segmentations due to fluttering. 
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2.4.4.  Discussion  

An image analysis pipeline for detecting a beating heart on 1-second-long videos of fish 

embryos has been presented and tested on a total set of 3,192 videos acquired over several 

experimental runs. This is a significant number of videos containing healthy as well as 

diseased embryos: some with edemas and other malformations. Thus, this set reflects 

production usage and allows us to validate the robustness of our protocol (Figure 26). Our 

results on 2,532 usable sequences show an acceptably low error rate, near 1.5% overall. This 

proves the efficacy and reliability of our image analysis method. However, when considering 

its integration within the entire system of embryo preparation, image acquisition, and 

processing, several points remain to be discussed, especially with respect to the validation 

phase and the establishment of ground truth. 

Since we are discussing living organisms, establishing ground truth is not always easy. We 

rely on multiple visual observations of a subset of video sequences, which were not always 

consistent: expert observers did not always come to same conclusion. Indeed, we noticed 6 

differences between them for 200 assessed videos, a rate of 3%. A second viewing of these 

videos was consequently performed with all observers present to achieve a consensus. With 

respect to this consensus, each observer had made between 3 and 5 errors, a rate between 1.5% 

and 2.5%. We note that our program had also made 3 errors. We conclude that the rate of 

subjectivity assessment is near 1.5%, which is considered acceptable. 

 

 

Figure 26. Heart segmentation in the presence of large edemas and axial malformations. The 

heartbeat is correctly detected. 
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As explained in Section 2.4.1.3, we still face video quality and accuracy issues with the current 

acquisition procedure. For example, when comparing the manual health status determination 

under microscope on Dataset 0 and the videos on Dataset 1, we noticed a discrepancy in 282 

cases, for a rate of 11%. Consequently, the question of the overall accuracy of the automated 

method, including errors due to video acquisition and video treatment, raised. To assess this 

overall accuracy, a new validation was performed since the development of this mortality 

assessment test, on newly generated videos. The results were compared to both the reliable 

mortality assessment visually performed under a microscope, and to video-based observations. 

On 566 tested video sequences containing mixed eggs and alevins, a success rate of 92% is 

obtained compared to video-based observations, for a sensitivity of 94.4% and a specificity of 

91.4%. By comparing to microscope-based observations, a success rate of 82% was obtained, 

with 92% of sensitivity and 79% of specificity. The difference rate between these two 

evaluations almost only concern embryos that were seen alive by looking under a microscope, 

but that appear dead on the corresponding video, as no beating heart is visible. Most of these 

cases are eggs. Thus, the program detects more dead embryos as it must do. As a conclusion, 

low error rates obtained basing on video-based ground truth are only representative of the 

quality of the program itself. To assess the reliability of the entire procedure, including 

preparation, acquisition, and treatment, we need to establish ground truth by observing embryos 

under a microscope.  

Many sequences (20.5%) are correctly detected by the program as unusable.  Some of them 

are due to an empty well, and so are not an issue, but the majority are due to embryos being 

too close to the well boundary. This represents an actual problem for the efficiency of the 

global procedure. To solve it, we investigate the solution of using wells that have a rounded, 

rather than flat, bottom. They are compatible with our Hamilton MICROLAB automated 

filling system and with our acquisition device, and would solve the problem of embryos that 

are too close to the edges of the well. However, the presence of a centered imprint on the well 

bottom remains a problem for image treatment as the imprint appears superimposed to the 

alevin on acquired images. We hope that with some experimental protocol adjustments, we 

will be able to use them in production. The description of such wells development is described 

in the Appendix of this manuscript. 
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After having worked on the mortality assessment of medaka embryos from video sequences in 

the previous part, we then want to study the malformations of embryos that are detected as alive. 

For this purpose, the embryo morphology can be analyzed based on images. As introduced in 

the previous section, both types of embryos are seen the day of acquisition: eggs and alevins, 

depending on hatching occurred or not. Before hatching, the embryo appears highly folded in 

its chorion, making the malformations difficult or impossible to detect, even when looking 

under a microscope. For this reason, the two following parts will focus on the analysis of alevins 

for the detection of specific malformations. 
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3. Automated classification of 

alevins with and without an axial 

malformation by machine learning 

 

In this new section, an approach based on machine learning is developed to automatically 

classify alevins according to the presence of spine malformations. We built and validated our 

learning model on 1459 images with a 10-fold cross-validation by comparison with the gold 

standard of 3D observations performed under a microscope by a trained operator. Our pipeline 

results in correct classification in 85% of the cases included in the database, which is similar to 

the percentage of success of a trained human operator working on 2D images.  

 

The work presented in this section has appeared in the following publication: 

• D. Genest, E. Puybareau, M. Léonard, J. Cousty, N. De Crozé, H. Talbot. “High-

throughput automated detection of axial malformations in Medaka embryo”, in 

Computer in Biology and Medicine, pp 157-168, 2018. 
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Figure 27. Flowchart of the alevin morphological abnormalities detection assay based on image 

processing. This detection method is assessed by cross-validation in the presented study. 
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3.1. Introduction to axial malformation detection 

The objective of this part is to propose an automated method for classification of alevins with 

or without an axial malformation (abnormalities on the antero-posterior axis, including spine 

malformations), one of the most common developmental abnormalities observed in 

toxicological assays [74, 87]. This classification is based on the analysis of 2D images acquired 

according to the protocol described in Section 2.4.1.1 and Section 6.1.4 of the Appendix. 

In the acquired images, the alevins can appear in any orientation from the lateral view to the 

dorsal view (Figure 28a to c). Moreover, axial malformations cover an important variety of 

phenotypes, from the most obvious malformation to slightest defects of the spine curvatures 

(Figure 28d and e). Indeed, if most of these malformations are characterized by abnormal spine 

curvature, some alevins also exhibit shortened tails or humps. Some specific cases of strongly 

bent alevins are referred to as hook-shaped (Figure 28f). This huge variety in alevins 

phenotypes and the single orientation acquired in 2D images make axial malformation 

complicated to characterize on 2D images. The first difficulty is thus to identify relevant 

parameters in order to characterize such a panel of malformations. We show in this part that 

mathematical morphology operators can provide an accurate description based on binary spine 

modelling in order to extract numerical values relative to axial malformation characterization. 

To this end, we consider an approach based on the morphological skeleton [61, 101]. Features 

such as size, curvature, angles are then deduced from this skeleton and gathered in a features 

vector in order to feed a random forest classifier [109]. The second difficulty is linked to the 

information loss when working with 2D images compared to 3D interactive observations made 

under a microscope. Here, the term “3D interactive” refers to the possibility of manipulating 

alevins, thus to see it on all positions, and zoom in on it to detect anomalies with a high precision, 

which is not possible in the single view shown in a 2D image. To validate the proposed set up, 

we challenge ground truth reliability by quantifying the gap between 3D interactive 

observations made under a microscope and observations made on 2D images. In addition, in 

order to quantify human subjectivity, we provide an estimation of the inter-operator subjectivity 

rate according to image-based observations made by three different observers. 

The proposed method comprises two phases. The learning phase builds the classification 

model, which is then used to classify data during the testing phase. Learning is based on a set 

of labeled data. It begins with a pre-processing step that reduces the acquired data to the  
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Figure 28. Images of 9dpf medaka alevins as acquired by our set-up. a to c: healthy alevins 

shown in lateral view in a, three-quarters view in b, and dorsal view in c. d to f: alevins showing 

different types of spine malformations, d being a major spine malformation (lateral view), 

e: slight “S-shaped” malformation (three quarters view) and of a hook-shaped alevin (dorsal 

view). 
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region of interest 𝑀1 (the process is described in detail from Section 2.2.2 to 2.2.4). In the 

feature extraction step, the alevin spine is segmented using mathematical morphology 

operators [54]. Following segmentation, morphological parameters are measured on the spine 

and the alevin mask. A random forest classifier is built and fitted to the set of labeled data. 

During the testing phase, features are also extracted from the testing dataset and images are 

classified according to the trained random forest model. The flowchart of our methodology is 

summarized in Figure 27.  

The method is described in 3.2, including spine segmentation and characterization with 

geometrical features. The classification method with a random forest model is then assessed 

in 3.3, including the description of the experimental setup, the classification results, and 

discussion. 

 

3.2. Feature extraction for alevins spine characterization  

We describe in this section a method for obtaining a geometric description of alevins from 2D 

images.  Image analysis, including mathematical morphology, is used to characterize the spinal 

shape of alevins from grey-scale images [52, 54]. Section 3.2.1 proposes a procedure to 

approximate the alevin’s spine. Then, feature characterization is presented in Section 3.2.2. 

 

3.2.1.  Alevin’s spine segmentation  

In this section, we start from the cropped image and the first segmentation of the whole alevin 

contour ℳ, both obtained at the end of the pre-processing step presented from Section 2.2.2 to 

2.2.4 (Figure 30a). Our aim is then to obtain, from the alevin’s mask ℳ, a segmentation which 

approximates the curve of the alevin’s spine. After smoothing the contour of the alevin, this 

methodology implements morphological skeletonisation (Section 1.2.3.1). More precisely, the 

spine approximation method uses the curvilinear skeleton principle described in [101] and [61]. 

An overview of the spine segmentation from the alevin mask ℳ is given in Figure 29. 
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Figure 29. Flowchart of alevin’s spine approximation. 

 

Firstly, in order to reduce any artefact ramification in the further skeleton, we begin by filling 

the convex areas on the alevin contour ℳ with a morphological closing 𝜑𝛤𝑟1
 by a disk-shaped 

structuring element 𝛤𝑟1 of size 𝑟1 [54]. In the following, we denote by ℳ′, the result of this 

process applied to ℳ: 

ℳ′ = 𝜑Γ𝑟1
(ℳ).                                                        (3.1) 

On the other hand, concave areas due to alevin abnormalities such as significant edemas or poor 

initial segmentation are more problematic because they may cause important ramifications in 

the subsequent skeleton application step. To filter out these concave areas, which can be more 

or less significant in size, we consider an iterative process which determines the smallest 

amount of filtering used to obtain a skeleton without any ramification. In our methodology, 

such filtering is performed with morphological openings by disk-shaped structuring elements. 

More precisely, we consider the curvilinear skeleton 𝑆𝑖(𝑋) of the largest connected component 

of the morphological opening of 𝑋 by a disk-shaped structuring element of radius 𝑖. 
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Figure 30. Spine approximation steps on the cropped image of an alevin. The red line represents 

the contour of the initial mask ℳ in a, the initial curvilinear skeleton 𝒮2 in b, the extended 

curvilinear skeleton 𝒮 in c and the straight line ℒ linking both ends. 

 

Hence, if we denote by 𝑟2 the minimal radius considered in the proposed setting, we consider 

the resulting skeleton 𝒮1 defined by: 

𝒮1 = 𝑆𝑟2+3.min(5,𝜆)(ℳ
′),                                               (3.2) 

where 𝜆 = min {𝑖 ∈ ℕ  such as 𝑆𝑟2+3𝑖(ℳ
′)  has two extremities } . A further pruning step 

removes potential residual ramifications in 𝒮1, by filtering out the skeleton branches with a 

length less than 𝛼 pixels. We write: 

𝒮2 = 𝑝𝑟𝑢𝑛𝑖𝑛𝑔𝛼(𝒮1),                                                        (3.3) 

where 𝑝𝑟𝑢𝑛𝑖𝑛𝑔𝛼 denotes the skeleton pruning strategy of parameter 𝛼. 

From its definition, the curvilinear skeleton 𝒮2 (Figure 30b) does not reach the borders of the 

alevin shape ℳ (Figure 30a). In order to more effectively approximate the alevin’s actual 

spine, both extremities of the skeleton 𝒮2 are detected and extended up to the mask boundaries. 

To achieve this, for each skeleton extremity 𝑝𝑖, we draw the straight line linking 𝑝𝑖  to the 
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point located five points behind the skeleton curve. This segment extends past 𝑝𝑖all the way 

to the border of ℳ. The resulting skeleton  is denoted by 𝒮 in the following (Figure 30c). This 

spine segmentation is accurate in cases of alevins seen in dorsal view because such alevins 

appear symmetric. However, in lateral view, the spine segmentation is systematically deviated 

near the yolk sac, instead of following the dorsal line. Nevertheless, it is not a problem for our 

purpose. Indeed, exact spine segmentation is not a goal per-se. It is a way to measure features 

for classification (Section 3.2.2), and the observed deviation does not highly impact the 

features measurement further described. Finally, both skeleton extremities are then linked via 

a line segment ℒ (Figure 30d). Because a healthy alevin is expected to present a straight spine 

when it is anesthetized, this segment is used in the following section as a reference to compare 

the actual alevin’s spine to a healthy spine. 

 

3.2.2.  Alevin’s spine geometrical description  

Classifying alevin’s malformations from images by using a learning-based approach requires 

an accurate description of the malformation that we want to detect. Hence, from the 

segmentations obtained as described in Section 3.2.1, we select relevant and discriminative 

features to reliably distinguish between alevins with and without a spine abnormality. Features 

are measured through the assessments of (i) the alevin size, (ii) the curvature, (iii) the 

regularity and (iv) the discontinuities of the alevin shape.  

 

3.2.2.1. Size measurement on the alevin masks 

A first set of parameters, namely 𝑎alevin, 𝑙alevin, 𝑤max, 𝑤mean, 𝑟image
1  and 𝑟image

2  described below 

are related to the size of the alevin. The alevin area 𝑎𝑎𝑙𝑒𝑣𝑖𝑛 is measured on mask ℳ in number 

of pixels. The parameter 𝑙alevin refers to the alevin length, measured as the Euclidean length of 

the skeleton 𝒮. Maximum and average widths are calculated using the maximal balls principle. 

For that, the Euclidean distance map is computed to the exterior of the alevin mask ℳ [110, 111] 

and restricted to the skeleton 𝒮. Thus, each point of the skeleton is associated with its distance 

to the external part of the alevin mask1. The largest and the average values are extracted and 

                                                   
1 This weighted skeleton is called the extinction function [54] 
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multiplied by two to obtain the maximal and average widths denoted by 𝑤max  and 𝑤mean , 

respectively. We compute the ratios 𝑟image
1  and 𝑟image

2  between the alevin length and width as 

follow: 

𝑟image
1 =

𝑤mean

𝑙alevin
 ; and 𝑟image

2 =
𝑤max

𝑙alevin
.                                                 (3.4) 

 

3.2.2.2. Curvature assessment from the graphical representation of the 

alevin’s spine 

 

The aim of this section is to extract features related to spine deviation from the straight line 

joining its two extremities. The relevant parameters are denoted by 𝐴𝑈𝐶, 𝑑max, 𝑑mean, 𝑟graph
1 ,  

𝑟graph
2 , and 𝑟graph

3 . We build an image representation of the alevin’s spine in order to simplify 

its analysis in a direct orthonormal frame. We aim to lay both the spine extremities on the 

abscissa axis. To this end, we search for the composition of the translation 𝑇⃗  and the rotation 

𝑅  that register the line segment joining the extremities of the spine curve to the 

segment  [(0,0), (𝑙, 0)] where 𝑙  is the distance between the two extremities. The result is 

shown on Figure 31b. 

Depending on the curve shape, it is not always possible to represent the detected alevin’s spine 

as an explicit function. In particular, when multiple points of the curve, representing the alevin’s 

spine in the presenting orthonormal frame, have the same abscissa, the spine is considered to 

have a hook. This case is described in Section 3.1. and Figure 28f. In the normal case, we 

consider the spine curve as the graphic representation of a function 𝑓 in an orthonormal frame. 

We write (𝑥𝑖, 𝑓(𝑥𝑖)) the coordinates of the ith point of the curve. The total number of points on 

the curve is 𝑛. This representation is used to measure several numerical parameters, which are 

chosen for their ability to characterize the spine shape. In particular, the abscissas axis is taken 

as reference and spine deviation is estimated with the following features. 
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Figure 31. Graphical representation of the curvilinear skeleton 𝒮 in a direct orthonormal frame. 

a: spine curve represented after translation 𝑇⃗ . b: spine curve represented after translation 𝑇⃗  and 

rotation 𝑅. 

 

The area under the curve (𝐴𝑈𝐶) of the function |𝑓| is computed using the trapezoidal rule [112], 

where |𝑓| is the absolute value of 𝑓(𝑥) for every points 𝑥 of the domain: 

𝐴𝑈𝐶 = ∑
(|𝑓(𝑥𝑖−1)|+|𝑓(𝑥𝑖)|)

2

𝑛
𝑖=1 × (𝑥𝑖 − 𝑥𝑖−1).                                     (3.5) 

The use of the absolute value allows analyzing every alevin equally, even those with S-shaped 

spinal cord, i.e., those for which function 𝑓 is somewhere above and somewhere below the line 

segment joining the extremities of the alevin’s spine. The maximal deviation 𝑑𝑚𝑎𝑥  and the 

average deviation 𝑑𝑚𝑒𝑎𝑛  are calculated considering the maximal and average distances 

between the spine curve and the abscissas axis respectively, meaning the maximum and average 

values of the curve ordinates: 

 𝑑max = max(𝑓(𝑥𝑖)) 𝑓𝑜𝑟 𝑖 ∈ [0, 𝑛] ; and                                        (3.6) 

𝑑mean =
1

𝑛
∑ 𝑓(𝑥𝑖)

𝑛
𝑖=0 .                                                       (3.7) 

From these parameters, three ratios 𝑟graph
1 , 𝑟graph

2 , and 𝑟graph
3  are considered to characterise the 

flatness of the spine: 

𝑟graph
1 =

𝑑max

𝑙alevin
 ; 𝑟graph

2 =
 𝑑max

𝑑mean
 ; and 𝑟graph

3 =
AUC

𝑙alevin
.                               (3.8) 
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3.2.2.3. Curve regularity assessment 

The spine shape can also be discriminant even if no important deviation is detectable. Even a 

slight curve in the alevin’s spine can be representative of an anomaly depending on the 

regularity of the curve. Indeed, a recently anesthetized alevin or immediately after hatching and 

still undergoing deployment could have such an appearance without this necessarily pointing 

to a malformation. We now describe parameters 𝑟𝑝
2 and 𝑟𝑐

2 that represent information about the 

regular appearance of the spine curve. For this purpose, we approximate the function 𝑓 (defined 

in previous Section) by a parabola. Hence, we define the parabolic function 𝑓𝑝 defined by: 

𝑓𝑝(𝑥) = 𝑎1𝑥
2 + 𝑏1𝑥 + 𝑐1,                                                     (3.9) 

where the triplet (𝑎1, 𝑏1, 𝑐1) is chosen to most effectively approximate the initial function 𝑓 via 

least-squares. We then consider the determination coefficient 𝑟𝑝
2 as follows: 

𝑟𝑝
2 = 1 −

∑ (𝑓(𝑥𝑖)−𝑓𝑝(𝑥𝑖))
2𝑛

𝑖=0

∑ (𝑓(𝑥𝑖) −𝑚)2𝑛
𝑖=0

,                                                    (3.10) 

where 𝑚 =
1

𝑛
∑ 𝑓(𝑥𝑖)

𝑛
𝑖=0  is the average of the function ordinates. In a similar way, we compute 

the determination coefficient 𝑟𝑐
2  of the cubic function 𝑓𝑐  defined by the equation 

𝑓𝑐(𝑥) =  𝑎2𝑥
3 +  𝑏2𝑥

2 +  𝑐2𝑥 +  𝑑2  and that most effectively approximates the initial 

function 𝑓: 

𝑟𝑐
2 = 1 −

∑ (𝑓(𝑥𝑖)−𝑓𝑐(𝑥𝑖))
2𝑛

𝑖=0

∑ (𝑓(𝑥𝑖) −𝑚)2𝑛
𝑖=0

.                                                 (3.11) 

Both 𝑟𝑝
2 and 𝑟𝑐

2 coefficients are used as descriptors of spine curve regularity. 

 

3.2.2.4. Curve discontinuities assessment 

Some alevins exhibit disruptions in their spine, that can be detected by the presence of large, 

abrupt angles. Such irregularities may not cause important deviations with respect to the straight 

line linking both extremities. As a result, they cannot be sufficiently characterized by the 

previously described features. To reveal such irregularities, an algorithm was developed in 

order to approximate the skeleton by a broken line and to assess the main angles in the alevin’s 
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curve. It consists of searching for the significant extrema of the piecewise affine function that 

best represents the spine curve and of linking them by line segments. 

We consider the skeleton curve as a 1D signal that is smoothed by a convolution with a Gaussian 

kernel of size 𝜎. This step reduces the number of spurious angular variations that are mostly 

due to the discrete aspect of the pixel-supported signal. Reflective boundary conditions are used 

to limit border effects on the skeleton signal. We then search for local extrema. Their 

coordinates are gathered in a vector v. Both extremities are added at the beginning and at the 

end of v. 

Because of the discrete domain representation, or due to some oscillations on the segmentation, 

some of these extrema are close to each other and do not represent significant angular changes. 

To filter out extrema that are not significant, we search for steady portions of the spine curve. 

We define as a steady portion a subsequence in vector v that is as long as possible and whose 

successive points are close to each other. A vertical distance threshold 𝑑1 is defined below 

which two successive points of v are considered to be within a steady portion. From the vector v, 

all the extrema located between the two extremities of a steady portion are removed. A 

horizontal distance threshold 𝑑2 is then defined, below which a steady portion is simplified by 

replacing its extremities with a unique centered point. The broken line that links the selected 

extrema is finally considered. An example of this process is presented in Figure 32. The number 

of angles 𝑛𝑎𝑛𝑔𝑙𝑒𝑠 detected on the broken line created, the minimal angle 𝜃𝑚𝑖𝑛, and the maximal 

angle 𝜃𝑚𝑎𝑥 are saved as features. 

We summarize the parameters characterizing the alevin’s spine and used during classification 

in Table 3. 

 

Alevin’s size descriptors 𝑎alevin ; 𝑙alevin ; 𝑤mean ; 𝑤max ; 𝑟image
1  , 𝑟image

2  

Curvature descriptors 𝐴𝑈𝐶 ; 𝑑max, 𝑑mean ; 𝑟graph
1 , 𝑟graph

2 , 𝑟graph
3  

Curve regularity descriptors 𝑟𝑝
2 ; 𝑟𝑐

2 

Curve break descriptors 𝑛angles ; 𝜃min ; 𝜃max 

Table 3. List of features extracted from alevin segmentations and used during axial 

classification. 
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Figure 32. Alevin’s spine approximation by a piecewise affine function. The red line shows 

the spine segmentation 𝒮 in a, the approximated spine in b, superimposed on the cropped image. 

The approximated spine is represented in a direct orthonormal frame in c. In b and c: the areas 

(i) and (ii) are detected as steady portions of the curve whose only extremities are maintained 

as the broken line angles. The red crosses represent the extrema deleted from the initial spine 

graphical representation. In fine, the retained angles and the delineation of the approximated 

broken line appear in blue. For this alevin, the following parameters are measured: 

𝑛𝑎𝑛𝑔𝑙𝑒𝑠 =  5, 𝜃𝑚𝑖𝑛 = 149°, and 𝜃𝑚𝑎𝑥 = 172°.  
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3.3. Assessment of the learning classification of alevins 

with and without a spine malformation  

The axial malformations detection method is assessed in this section. Section 3.3.1 presents the 

experimental set-up. Results are then presented in Section 3.3.2. before discussing them in 

Section 3.3.3. 

 

3.3.1.  Experimental set-up  

The experimental set-up includes the dataset and ground truth establishment, the relevant tested 

methods and the performance measures. 

 

3.3.1.1. Experimental protocol 

The experimental protocol is the same as the one described in Section 2.4.1.1 and Section 6.1 

of the Appendix. For each well, we record one photograph at a resolution of 1500×1500 pixels. 

 

3.3.1.2. Software and libraries 

We use the same Python 2.7 environment as described in Section 2.4.1.2. We used Numpy, 

Scipy and Pink libraries [106] for segmentation and features extraction, and Scikit-learn [113] 

for machine learning-based classification. 

 

3.3.1.3. Database description  

As seen in Section 3.2.2.2, feature characterization of our abnormality detection test depends 

on the alevin skeleton representation on an orthonormal coordinate system. Such a 

representation implies that each abscissa is linked to a single ordinate. However, some alevins 

are not compatible with this graphic representation process and so the geometric description 

cannot be obtained. It can apply to some alevins that are so tightly wound that their spine form  
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Figure 33. Datasets establishment for the assessment of axial malformation detection. 

 

a hook (Figure 28). To deal with these cases, alevins identified as such are directly labeled as 

having a hook-shaped spinal malformation without undergoing the learning-based classification. 

Thus, in our validation process, several subsets of our datasets need to be considered. From a 

total dataset of 1,471 images of alevins (called “Dataset 0”), 12 are identified before feature 

extraction as being hook-shaped by the early malformation detection step of our program. The 

remaining dataset of 1,459 usable images (called “Dataset 1”) constitutes the database used 

for the machine learning validation step. The datasets establishment process is summarized in 

Figure 33. 

 

3.3.1.4. Ground truth establishment  

On the day of image acquisition, each alevin is interactively observed under a microscope by 

an expert who manually and visually assesses the presence or the absence of any malformation. 

Interactive visual inspection using a microscope means that the alevin can be manipulated by 

the experts and thus observed from any relevant angle. Also, there is no discrete artefact due to 

image acquisition. This allows the operator to detect a malformation with a high accuracy. For 

these reasons, this method is the most reliable way to assess whether an alevin has a 

morphological abnormality or not. It can be used to validate the automated classification 

method but also, more generally, to evaluate the quality of the complete alevin abnormalities 

detection assay, including plate preparation, data acquisition and data processing. 
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For our purpose, these microscope-based observations serve as ground truth. We focus on the 

expert observations that concern the presence or the absence of axial malformations. According 

to this ground truth and as it is shown in Figure 33, the dataset of 1,459 images contains 270 

images of alevins with a spine malformation and 1,189 images of alevins without. 

 

3.3.1.5. Tested classification methods  

This section introduces the details and the setup of the classification methods tested on the 

dataset and on the ground truth previously described in Sections 3.3.1.1 and 3.3.1.4. More 

precisely, we describe the setting of parameters presented in Section 3.2.1 as well as 

classification performed by an expert which is used for comparison purposes with the proposed 

automated method. 

Since microscope-based observations are considered as ground truth for assessing axial 

malformations, it is necessary to point out that our proposed assay suffers from inherent 

limitations due to the 2D imaging acquisition system. Indeed, our data acquisition is restricted 

to a single 2D image, and so we observe one orientation only. Because some axial 

malformations are not visible from every point of view, it can happen that some abnormalities 

may not be detectable on the acquired images. As our automated classification (named 𝐴𝐶) 

relies on image analysis, only considering the program misclassifications rate compared to 

ground truth does not paint the whole picture. To characterize the misclassification rate linked 

to data acquisition limitations, we compare our results with visual classification performed by 

an expert observing only 2D images. We term this “human classification” or 𝐻𝐶 . The 

following results of 𝐴𝐶 and 𝐻𝐶 are compared in the Section 3.3.2. 

The automated classifier parameters are set up as follow. All parameters described in 

Section 3.2.2 are experimentally determined in order to optimize segmentation results. 

Segmentation and geometric parameters are listed in Table 4 To set up the classifier parameters 

as described Section 1.2.2, an implementation of the Iterative Grid Search algorithm is used 

that performs hyperparameter optimization by cross-validated grid-search over a specified 

parameters grid. We begin by defining a grid of parameters that will be searched during the 

process. Each grid parameter presents a range of test values. The algorithm exhaustively 

generates candidates from the specified parameters of this grid and fits the estimator on the 

whole dataset until finally retaining the best parameters combination. Manual specification of 
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a limited set of hyperparameters reduces memory consumption during search. This method was 

used to set up the following parameters: the number of trees in the forest and the maximum 

depth of each tree are set to 30, the minimum number of samples required to split an internal 

node is set to 3 and the minimum number of samples required to be at a leaf node is set to 2. At 

each node, the quality of a split is measured with the entropy criterion presented in Section 1.2.2. 

In our program, we use the implemented algorithm GridSearch from the scikit-learn 

library [113]. 

By testing different values for the weights 𝑤𝐿−
 and 𝑤𝐿+

 (see Equation 1.8) associated with the 

negative positive dataset 𝐿− (non-malformed alevins) and to the true dataset 𝐿+ (malformed 

alevins) respectively, we discovered that overall classification accuracy is stable. For 

14 different weightings, overall accuracy varies by less than 1%. Since overall accuracy is 

essentially constant, given the screening nature of the assay, priority is given to specificity. In 

terms of methodology, that means minimizing the number of errors within the dataset 𝐿−. It 

is equivalent with associating with the dataset 𝐿− the highest relative frequency 𝑝𝐿−
, which  

 

Parameter name Description Value 

𝑟1 

Radius of Γ𝑟1 , the disk structuring element of the 

morphological closing 𝜑Γ𝑟1
 (Equation 3.1)  

10 

𝑟2 

Minimal opening radius used for skeletonisation 

𝑆𝑟2+3.min (5,𝜆) (Equation 3.2) 
14 

𝛼 

Minimal branch length used for skeleton pruning 

(Equation 3.3) 
25 

𝜎 

Size of the convolution scaled window used for skeleton 

curve smoothing (Section 3.2.2.4.) 
11 

𝑑1 

Minimal vertical distance that must separate two 

successive extrema to maintain them during spine 

approximation by a piecewise affine function 

(Section 3.2.2.4.) 

4 

𝑑2 

Minimal horizontal distance required by a steady portion 

to be considered during spine approximation by a 

piecewise affine function (Section 3.2.2.4.) 

10 

Table 4. Parameters determination for alevin’s spine segmentation and geometrical description 

of classification features. 
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depends on both its number of data 𝑛𝐿−
 and the weight of each data 𝑤𝐿− as it is described in 

Equation 1.8. According to the ground truth described in Section 3.3.1.4, the total database of 

1,459 images contains 270 alevins with a spine malformation (positive dataset 𝐿+) and 1,189 

alevins without (negative dataset 𝐿−). The relative frequencies are initially 80% for 𝐿− and 

20% for 𝐿+. In order to partially balance them, a higher weight value is given to the data of 

the sparsest sample 𝐿+ than to the largest one 𝐿−. Nevertheless, weighting remains in favour 

of dataset 𝐿− that is prioritized. The following weighting is chosen: 1 for the negative dataset 

𝐿− and 2 for the positive dataset 𝐿+. The following final relative frequencies are reached: 69% 

of negative data and 31% of positive data according to Equation 1.8. 

 

Once all the model parameters are set up, the model can be trained. All features are gathered 

in a matrix and corresponding ground truths constitute a binary data vector used as true labeled 

data. Both are used as input for the training algorithm and the model is fitted as explained in 

Section 1.2.2. 

 

3.3.1.6. Performance measurement  

In machine learning-based approaches, constructing a classifier involves optimizing its 

parameters on a predetermined training data sample with their associated labels. The classifier 

is then run on a test sample. In order to optimally use available data and minimize adverse 

training effects, we apply a cross-validation splitting strategy for our study. The basic k-fold 

approach is chosen [114]. During this process, the total database is split into 𝑘 smaller equal-

sized datasets. For each of the k consecutive iterations, the following procedure is applied: we 

train the model on 𝑘 − 1 subsets and then, we validate the resulting model on the remaining 

testing subset. As a result, at the end of the k iterations, results can be considered on the whole 

database, as the gathering of the results obtained on each testing data subset. Depending on the 

dataset size and thus the number of splits, cross-validation can suffer from bias and variance 

effects. When increasing the number of splits and therefore the size of the training sets, bias is 

reduced in the testing set, but we also reduce the number of test data so the output of the 

classifier is less certain. The variance of the classifier is thus said to be high. It is especially true 

if outliers happen to be selected in the limited testing set. On the contrary, the classifier has a 

lower variance by testing the model on more data. This implies a lower number of splits. In our  
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                      Results: 

Ground truth: 

No axial malformation Axial malformation 

No axial malformation 
𝑇𝑁 𝐹𝑃 

Axial malformation 
𝐹𝑁 𝑇𝑃 

Table 5. Result presentation in the form of confusion matrix for the method under study. TN, 

TP, FN and FP respectively denote the true negative, the true positive, the false negative and 

false positive resulting with the considered method. 

 

method (called 𝐴𝐶 for “automated classifier”), the parameter 𝑘 is set to 10 as an acceptable 

trade-off between both bias and variance optimization. We ensure the data split in each dataset 

respects the proportions of malformed and non-malformed alevins previously described in 

Sections 3.3.1.1 and 3.3.1.4. 

As for the human classifier (𝐻𝐶), the same cross-validation process cannot be applied, as it is 

not possible for the expert to forget what they have learned during a previous iteration. Iterations 

would not be independent. For this reason, expert results are obtained in a single run by 

observing the whole database. The optimistic assumption behind this is that human observations 

have inherent low bias. 

For both methods, the results are presented in the following section in the form of confusion 

matrices. A confusion matrix [115] is defined as a classifier validation tool that represents 

distribution of correct and wrong classifications. Each column shows the number of occurrences 

for a predicted label whereas each line refers to the number of appearances of a true label. A 

predicted label is considered to be correct when it is the same as the true label according to the 

microscope-based ground truth (true negative 𝑇𝑁  or true positive  𝑇𝑃 ). Otherwise, it is 

considered to be incorrect (false negative 𝐹𝑁 or false positive 𝐹𝑃). See Table 5 for standard 

representation of a confusion matrix. 
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Performance criteria are derived from this matrix. We calculate the percentages of true 

negatives, true positives, false positives and false negatives as follow: 

specificity = true negative rate =  100 × (
𝑇𝑁

𝑇𝑁+𝐹𝑃
),                        (3.12) 

sensitivity = true positive rate =  100 × (
𝑇𝑃

𝑇𝑃+𝐹𝑁
),                         (3.13) 

FPR = false positive rate =  100 × (
𝐹𝑃

𝑇𝑁+𝐹𝑃
),                              (3.14) 

FNR = false negative rate =  100 × (
𝐹𝑁

𝑇𝑃+𝐹𝑁
).                             (3.15) 

We specifically call sensitivity the rate of true positives and specificity the rate of true negatives. 

According to these definitions, true negative and false positive rates amount to 100% and 

represent the totality of negative data in the dataset according to ground truth. Symmetrically, 

true positive and false negative rates also amount to 100% and represent the totality of positive 

data in the dataset according to ground truth. 

For both classifiers 𝐴𝐶 and 𝐻𝐶, the percentage accuracy is measured from the accuracy score 

previously described in Section 1.2.2: accuracy percentage(𝑦, 𝑦̂) = accuracy(𝑦, 𝑦̂) × 100 . 

This scoring metric corresponds to the percentage of correct classifications among the total 

number of images in the database. It is also a performance criterion for the validation of our 

method. 

 

3.3.2.  Classification results  

Based on the setup described in the previous section, we present the results of the 𝐴𝐶 and 𝐻𝐶 

methods. We assess their accuracy, before presenting the robustness, the quality control of 

early malformations detection and finally discussing our results. 

 

 

3.3.2.1. Accuracy of the spine detection assay  

We now present the results of classifiers 𝐴𝐶 and 𝐻𝐶 compared to the microscope-based ground 

truths. A result is considered incorrect if it detects a spine malformation that is not present in 
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the ground truth (false positive), or on the contrary, if it does not return a malformation when a 

spine abnormality is visible in the ground truth (false negative). Table 6a,b show the confusion 

matrices obtained for 𝐴𝐶  and 𝐻𝐶  respectively, on the 1,459 tested images of the database. 

Performance criteria are then derived from the confusion matrices and reported in Table 6d. 

For 𝐴𝐶, we achieve a sensitivity of 40.4% and a specificity of 96%. False positive and false 

negative rates are 4.0% and 59.6% respectively. The corresponding percentage accuracy is 

85.7%. For 𝐻𝐶, a sensitivity of 47.4% and a specificity of 97.8% are measured, for a false 

positive percentage of 2.2% and a false negative ratio of 55.6%. The corresponding percentage 

accuracy is 88.5%. Without any model retraining, the results of 𝐴𝐶 vs. 𝐻𝐶 were also compared, 

leading to a third confusion matrix. In this case, accuracy is equal to 91.2%, FPR and FNR are 

equal to 5% and 40.1% respectively, and sensitivity and specificity are equal to 59% and 95% 

respectively. 

It can be seen, for both the 𝐴𝐶 and 𝐻𝐶 classifiers, that specificity is maximized. On the other 

hand, we can see that sensitivity is low for both classifiers. Taking human observations as a 

gold standard, the error metrics of 𝐻𝐶 gives an insight into the amount of information loss 

between interactive observations under a microscope and what is achievable using only 2D 

images. The overall accuracy of 𝐻𝐶 is 88.5%, which is quite high. This result suggests that 

spine deformation can be detected with an acceptable accuracy from 2D images only, which 

has considerable implications for the automation of this test. Moreover, specificity is high, 

meaning very few false deformations are detected (2.2%). Concerning 𝐴𝐶, very similar results 

are observed, when compared to the human observer, with an accuracy of 85.7%. This 

comforts us in the intermediate conclusion that automating the spine deformation assay is 

indeed feasible. The FPR of 𝐴𝐶 is 4.0%, which is twice as much as the human observer but is 

still acceptable. The comparison of 𝐴𝐶  vs. 𝐻𝐶  shows an accuracy of 91.2%. This can be 

interpreted as saying that humans and computers do not make exactly the same mistakes but 

that they make them in similar numbers. In particular, 𝐴𝐶 agrees in 95% of the cases when 

𝐻𝐶 detects no axial deformation, and 𝐴𝐶 agrees in 59% of the cases when 𝐻𝐶 does detect an 

axial deformation. This latter number may seem low, but axial deformations are relatively 

uncommon, so overall few errors are made. True negatives, true positives and false positives 

of 𝐴𝐶 results are illustrated in Figure 34. 
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a 

    Classifiers results: 
𝐴𝐶 𝐻𝐶 

Ground truth: 

No axial 

malformation 

Axial 

malformation 

No axial 

malformation 

Axial 

malformation 

No axial 

malformation 

1142 47 1163 26 

Axial malformation 
161 109 142 128 

 

b 

                     

 𝐴𝐶 Results 

𝐻𝐶 results 

No axial 

malformation 
Axial malformation 

No axial malformation 
1240 65 

Axial malformation 
63 91 

 

c 

  

Performance criterion 𝑓 𝑓𝐴𝐶  𝑓𝐻𝐶  𝑓𝐴𝐶 𝑣𝑠 𝐻𝐶 

Specificity (%) 96.0 97.8 95.0 

Sensitivity (%) 40.4 47.4 59.0 

False Positive (%) 4.0 2.2 5.0 

False Negative (%) 59.6 52.6 41.0 

Accuracy (%) 85.7 88.5 91.2 

Table 6. Results obtained by the automated classifier 𝐴𝐶 and the human classifier 𝐻𝐶 on the 

complete database of 1,459 images. The tables represent the confusion matrices of alevins 

with and without a spine malformation according to the 𝐴𝐶 and 𝐻𝐶 results compared to the 

microscope-based ground truth after 10-fold cross validation in a, the confusion matrix of 𝐴𝐶 

vs. 𝐻𝐶, without any retraining in b, and the classifier comparison metrics in c. 
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Figure 34. Results of alevin’s spine classification. The red line represents the result of the spine 

segmentation 𝓢. The method leads to proper classification (a and b: no spine malformation; 

c and d: spine malformation) or to a false positive (e: false detection of a spine malformation). 

a and c are presented in dorsal view while b, d and e are presented in lateral views. 

 

3.3.2.2. Robustness of the method and time efficiency  

With machine learning, the results of classification models currently vary depending on the 

partitioning data selected to train and test the model. Thus, assessing the robustness of our 

model means estimating the variability in the performance criteria obtained for several 

successive iterations of training and testing steps made on randomly determined splitting. For 

our purpose, two aspects are considered. Through the 10 iterations of the cross-validation, 10 

different estimators are built and tested on 10 different subsets that do not overlap. We begin 

by testing the variance of the models results by calculating the standard deviation of the 

percentage accuracy. In our experiments, the 𝐴𝐶 percentage accuracy varies between 81.5% 

and 91.0%, for an average of 85.7% over the 10 iterations and a standard deviation 𝜎𝑋 of 2.6. 

Such a low variability is acceptable. 

For scaling up, close attention is paid to analyzing the change in the program results over 100 

new 10-fold cross-validations. Each time, a new partitioning is made, splitting the total dataset 

into 10 subsets and a new cross-validation is applied. The corresponding true negative, true  
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Figure 35. Evolution of the program results over 100 successive 10-fold cross-validations. At 

each new cross-validation, we calculate the rates of true negatives (the specificity), true 

positives (sensitivity), false negative and false positive on the whole database of 1459 images. 

Since we favor specificity, the false positive rate is minimized. 

 

positive, false positive and false negative ratios are calculated according to Equations 3.12 

to 3.15. As shown in Figure 35, all the ratios were remarkably stable and argues that the cross-

validation principle applied in this validation process minimizes the partition’s influence on the 

results. 

 

3.3.2.3. Quality control of early data sorting  

As previously explained in Section 3.3.1.1, some images were excluded before applying the 

spine malformation detection test. On the dataset of 1,459 images, 12 are detected early as not 

being representative of our method on a direct orthonormal system due to the presence of a 

hook in the spine. However, referring to our ground truth, only 4 of them actually present a 

hooked spine. The other 8 cases detected were therefore wrongly excluded from the learning-

based classification process due to the presence of impurities in the well that causes alevin 

segmentation errors during pre-processing. Segmentation improvements in pre-processing are 
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worth taking into consideration, but were not implemented yet since the resulting improvement 

would be insignificant when taking into account the whole dataset (around 0.5%). 

 

3.3.2.4. Inter-operator subjectivity  

This last section of our study concerns inter-operator variability on a single data subset due to 

subjectivity. Indeed, as for microscope and for image-based observations, annotations from 

several experts can differ from each other. Several reasons can explain this fact, including 

operator fatigue and degree of expertise. For a single dataset observed by a unique operator, 

results can also differ depending on the data previously observed. For instance, a malformed 

alevin can appear healthy for an operator who previously saw an important number of highly 

abnormal alevins. On the contrary, when comparing to healthy alevins, an expert can 

sometimes interpret a slight curve due to natural positioning on the well as a malformation. 

For these reasons, quantifying inter-operator subjectivity is considered to be relevant. 

Practicality aspects make the assessment complicated to perform on microscope observations. 

As the latter can take place only on the day of data acquisition, they require the presence of 

several available experts on the same day, unlike images that can be registered and analyzed 

later. For this reason, our inter-operator assessment is performed on 2D images. Among the 

1,459 images annotated by our main expert, named Expert 1, a subset of 200 images was 

annotated by two additional experts, named Expert 2 and Expert 3. In this subset, the 2D 

observations of Expert 1 exactly match those made under the microscope. In this sense, we 

can consider this dataset as non-ambiguous. On such a dataset, we could reasonably expect 

Experts 2 and 3 to concur with the microscope. However, we note in Table 7b that Experts 2 

and 3 recorded errors at a respective rate of 11.5% and 5.5%. This is comparable with the 8.0% 

percentage error by the proposed automated method on this data. 

The subjectivity rate is defined as the percentage of images on which experts disagree. In our 

case, discrepancies are observed on 28 images, for a subjectivity rate of 14%. In addition, 

nearly all discrepancies are false positives. This rate is close to the programed error rate of 

14.5% calculated on the whole database. This observation enables us to argue that operator 

subjectivity is a significant problem, which in particular may call into question the reliability 

of our ground truth. In addition, on the 200 data sample, we note that the error rate of our 

proposed method is 8.0%, which is in between the Experts 2 and 3 respective error rates of  
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a 

Results: Operator 2 Operator 3 Program 

 

No axial 

malfor-

mation 

Axial 

malfor-

mation 

No axial 

malfor-

mation 

Axial 

malfor-

mation 

No axial 

malfor-

mation 

Axial 

malfor-

mation 

Ground truth:       

No axial 

malformation 
154 23 167 10 

169 7 

Axial 

malformation 
0 23 1 22 

9 15 

 

b 
 

 Operator 2 Operator 3 Program 

Percentage errors between expert 

observations and ground truths on the 200 

data samples 

11,5 5,5 8,0 

Table 7. Results and error rates obtained for each operator and for the automated classifier 

versus the microscope-based ground truths during subjectivity assessment on a sample of 200 

images. a: distribution of alevins with and without a spine malformation according to the results 

of operators 2 and 3 compared to the microscope-based ground truths. We report in b the 

percentage error calculated for each operator and for the automated classifier on this 200 data 

sample. 

 

5.5% and 11.5%. We also note that the results distribution in Table 7a shows that errors made 

by the program are more balanced between false positives and false negatives. These results 

can be considered to be acceptable. 

 

3.3.2.5. Execution time  

The program is executed on a standard computer with a 3.60 GHz Intel® Core™ i7-4790 CPU 

and 32 GB of RAM. Features calculation takes about a few seconds for each image (up to 

5 seconds, including pre-processing). The classifier training step can be repeated as much as 

necessary on the calculated features in about one second. Our program then classifies an image 

in only about 1 second. 
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3.3.3. Discussion  

This work aimed to develop an automated image processing-based assay for the detection of 

spine malformations in medaka alevins. As for every study presented in this manuscript, the 

emphasis was put on the overall accuracy of the test. As shown in Section 3.3.2.1 , we reached 

our objective by achieving a false positive rate of only 4% and a total accuracy of 85.7%. 

Nevertheless, optimizing overall accuracy first and specificity second inevitably implies 

lowering sensitivity, which is defined as the assay’s ability to correctly detect a malformation. 

In our assay, only 40% of the actual spine malformations are detected according to what is 

visible under a microscope. Since 𝐻𝐶 results are a little better at 47%, this seems to imply that 

many of these kinds of deformation cannot always be reliably detected from 2D images. To 

improve this, better acquisition devices would be needed, or more simply, experiments could 

be repeated or other deformation tests used. Eventually, the proposed assay is intended to be 

made part of a series of abnormality detection programs (including eyes, edemas and swim 

bladder abnormalities) that could improve the sensitivity of the whole detection assay. Thus, 

in spite of these shortcomings, this program remains relevant and useful as a screening tool 

with regard to its high specificity. 

As introduced in Section 1.3.1, several methodologies have been published in the context of 

alevin spinal cord analysis using image processing. Most were conducted on zebrafish 

embryos. In [74], the authors assessed the development of specific neuron population by 

extracting a quantitative information from fluorescent proteins labeled spinal cord neurons in 

transgenic zebrafish. An automatic system for the detection of abnormal curvature zebrafish 

tail is described in [87]. However, the study is limited to the classification of obvious 

abnormalities in tail curvature (up or down). A method is proposed in [41] to classify multiple 

zebrafish phenotypes, including tail abnormalities, by applying supervised machine learning. 

This approach does not need features characterization as it is based on the extraction of dense 

random subwindows their description in raw pixel values and classification by extremely 

randomized tree. If the study shows result with a good correlation with that from experts on 

nine different zebrafish phenotypes, the error rates do not take into account the information 

loss from manual observations under microscope to those on 2D images, as every ground truth 

is obtained by looking directly on acquired images. In particular, in these two latest studies, 

the analysis is limited to the detection of defects specifically visible on the lateral side of the 

zebrafish, that implies to pay a particular attention to embryo positioning. Contrary to these 
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techniques, the methodology proposed in this article relies on a simple experimental setup, 

compatible with the high-throughput screening related constraints. The day of image 

acquisition, each alevin remains in its growing medium and the image is recorded without 

manual positioning of the alevin, minimizing human manual intervention. The test is then 

based on a morphological analysis of the alevin on brightfield images, and was validated on 

more than 1400 images. 

In this study, a fast and automated procedure was proposed to detect malformations in the 

spinal cord of medaka alevins with minimal operator interaction, maximum speed and 

reliability. The objective of this procedure is to devise an image-based waterway pollution 

and toxicology assay. Based on mathematical morphology, our image-processing pipeline 

best approximates the spine of alevins in order to extract representative features. Based on 

these, a Random Forest model is trained to detect the presence or the absence of a spine 

malformation. This work illustrates the main difficulties linked to ground truth definition and 

the limitations of the data acquisition device to obtain a reliable automated process. 
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4. Automated classification of 

alevins with and without a swim bladder 

based on atlas and machine learning 

classification  

 

The objective of this section is to present the method developed in order to automatically 

classify images of medaka alevins according to the presence or the absence of a swim bladder. 

The main challenge consists of developing a method which is accurate, regardless to the alevin 

orientation. The methodology relies on an adaptive features extraction step with a 2D atlas of a 

healthy alevin, and machine learning-based classification. An average precision rate of 95% is 

obtained in the total dataset of 380 images following 5-fold cross-validation. 

 

The work described in this section has appeared in the following publication: 

• (submitted) D. Genest, M. Léonard, J. Cousty, N. De Crozé, H. Talbot. “Atlas-based 

automated detection of swim bladder in Medaka embryo”, in International Symposium 

on Mathematical Morphology, Saarbrücken, Germany, 2019 (oral presentation). 
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Figure 36. Flowchart of the swim bladder detection assay. 
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4.1. Introduction to swim bladder detection  

Among abnormalities that can be visible in medaka alevins at 9dpf (days post fertilization), the 

absence of swim bladder, an internal gas-filled organ that allows the embryo to control its 

buoyancy is one of the most sensitive marker of developmental toxicity [23, 116]. In particular, 

it is known that blood circulation is a key factor in normal development of the swim bladder. 

The absence of an inflated swim bladder could be a marker of a heart failure [117].  In this 

section, we focus on the automated detection of an inflated swim bladder on 2D images of 

medaka fish embryos at 9dpf. As uninflated swim bladder is simply not visible on images, we 

will further refer to our method as a swim bladder detection method. Thus, alevins will be 

classified into those with a detected swim bladder and those without. 

The proper detection of the swim bladder depends on the orientation of fish embryos. This 

implies to manually place the fish embryo before the image acquisition which is tedious and 

time consuming. Here, a methodology based on morphological operators is proposed to 

automatically detect the swim bladder on 2D images of fish embryos regardless of the fish 

embryo position. The first challenge of this study consists in automatically identifying the 

orientation of the alevin in the tested image. Then, the second challenge consists in developing 

an adaptive swim bladder analysis method, according to the orientation previously identified. 

After a pre-processing step (Section 2.2),  the methodology consists of (i) the automated 

determination of the embryo orientation, (ii) the generation of an atlas representative of a 

healthy embryo in the detected orientation, (iii) the swim bladder segmentation using this atlas, 

(iv) the descriptors calculation and (v) the embryos classification according to these descriptors, 

between alevins with and without a swim bladder.  

As for the detection of axial malformations presented in the previous part of this manuscript, 

we work on images that were cropped after applying the pre-processing step described in 

Section 2.2.2 to 2.2.4, that includes well borders extraction, embryo localization in this 

previously delimited area, and differentiation between eggs and alevins. As the swim bladder 

is not visible on eggs, even when looking them under a microscope, the further treatment is 

only made on alevins. On the cropped image of the alevin, a new pre-processing step is applied 

that is composed of a compartmentation step, during which the alevin is divided into three parts 

representative of the three segments presented in Figure 21 in Section 2.3.1: the head, the trunk 

and the tail, and of an orientation identification step based on features extraction and linear 
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regression. We then identify a region of interest (ROI) in which the swim bladder is searched. 

For this purpose, an atlas of a healthy embryo is built for each studied orientation and used to 

extract the center of the circular ROI [118, 119, 120]. Because a swim bladder is not always 

visible on studied images, the following step of the method consists of extracting what we call 

the most probable contour of a swim bladder, relying on a geodesic active contours algorithm 

applied on the previously identified ROI. As visible in Figure 37, the swim bladder is 

characterized by a high contrast between dark contours and light inner part. On the contrary, 

embryos without a swim bladder present a homogeneous body in the location where the swim 

bladder should be present. For this reason, the detection method relies on the extraction of the 

polar intensity profile of the circular ROI (the intensity profile of each radius is extracted and 

concatenated), its representation by a direct weighted graph, and the determination of a circular 

shortest path, meaning a path of minimum energy cost of the intensity profile [121, 122]. This 

methodology expects to segment the swim bladder if present. If not, the segmented shape 

corresponds to a random part of the embryo body. Descriptors are subsequently extracted from 

this segmentation in order to conclude if the segmented shape is a swim bladder or not. An 

automated random forest classifier is finally trained on these descriptors in order to classify 

embryos with respect to the presence or absence of a swim bladder. The successive steps of the 

method are represented in Figure 36. 

Section 4.2 describes the pre-processing step including alevin compartmentation and 

orientation identification. Section 4.3 introduces the swim bladder localization step. This 

includes the atlas generation, the identification, using this atlas, of a region of interest (ROI) for 

the search of the swim bladder and the swim bladder segmentation, and the description of how 

the segmented shape is characterized with intensity and morphological descriptors extraction. 

Finally, Section 4.4 presents the process of embryos classification by a random forest classifier 

according to the presence or absence of a swim bladder [109]. 

 

4.2. Pre-processing  

From images initially acquired (see Sections 1.3.2), the pre-processing described in 

Sections 2.2.2 to 2.2.4 is applied. This pre-processing allows to obtain the cropped image 𝐼 of  
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Figure 37. Medaka alevins with or without swim bladder and seen in different orientations 

from the dorsal view (left) to the lateral view (right). The blue arrow indicates the swim bladder 

location for embryos with a swim bladder in a to d, and the red arrow indicates the location 

where a swim bladder should be present for embryos without a swim bladder in e to h. 
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the studied alevin and the mask of the alevin contour ℳ (Figure 38c), that will undergo the pre-

processing treatment described in this section. The aim of this section is to automatically 

determine the orientation of the considered embryo, in order to adapt the method of the swim 

bladder detection. To do so, a compartmentation step is described in Section 4.2.1, that allows 

to divide the alevin into three different region of interest. These regions are then used in 

Section 4.2.2 to determine the alevin orientation, by extracting descriptors related to the eyes 

and to the tail in 4.2.2.1, and applying a linear regression on these descriptors in 4.2.2.2. 

 

4.2.1. Alevin compartmentation  

A first basic compartmentation was already used in Section 2.3.1.1 to extract the alevin’s body 

(alevin’s trunk and head). This process is here refined and completed in order to divide the 

binary mask of the alevin contour ℳ into three segments: the head, the trunk and the tail (as 

introduced in Section 2.3.1). The process is described as the succession of three steps: markers 

extraction (in 4.2.1.1), markers superposition (in 4.2.1.2), and partition refinement (in 4.2.1.3). 

 

4.2.1.1. Markers extraction  

The aim of this subsection is to define markers that will be used for the segmentation of the 

three alevin’s parts. We search for the marker of the alevin’s head 𝑚ℎ𝑒𝑎𝑑, and the marker of 

the alevin’s body 𝑚𝑏𝑜𝑑𝑦. For this purpose, we use an adaptative Otsu threshold described in 

Section 1.2.3 to segment the darkest areas of the alevin from the original image 𝐼 [50]. These 

darkest areas correspond to the alevin’s body. We only keep the largest connected component 

of the resulting mask and fill any of its holes. The result is dilated geodesically by a 10-radius 

disk in the limit of the alevin mask ℳ (see [54] for a definition). We name the resulting mask 

𝑚𝑏𝑜𝑑𝑦, illustrated in Figure 38d. In a similar way, alevin’s eyes are segmented and dilated 

geodesically by a 20-radius disk, in the limit of the alevin mask ℳ, leading to the mask 𝑚ℎ𝑒𝑎𝑑 

(Figure 38e). We must underline that the radii of the structuring elements used to dilate the 

markers 𝑚𝑏𝑜𝑑𝑦 and 𝑚ℎ𝑒𝑎𝑑 are experimentally determined so that they are sufficient to separate 

wrongly labeled pixels from the well labeled connected components. 
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Figure 38. Alevin compartmentation. a: initial image 𝐼. b: final result of the compartmentation 

process ℳ𝑐𝑜𝑚𝑝 appears in red, superimposed on the initial image 𝐼. c to g: compartmentation 

steps. c: whole alevin mask ℳ. d: body marker 𝑚𝑏𝑜𝑑𝑦 . e: head marker 𝑚ℎ𝑒𝑎𝑑. f: result 𝑚𝑠𝑢𝑝 

of the superposition and labeling of ℳ , 𝑚𝑏𝑜𝑑𝑦  and 𝑚ℎ𝑒𝑎𝑑 . g: final result after completion 

ℳ𝑐𝑜𝑚𝑝, whose the yellow part corresponds to the head compartment ℳℎ𝑒𝑎𝑑, the blue part to 

the trunk compartment ℳ𝑡𝑟𝑢𝑛𝑘 and the green part to the tail compartment ℳ𝑡𝑎𝑖𝑙. 

 

The masks ℳ, 𝑚𝑏𝑜𝑑𝑦 and 𝑚ℎ𝑒𝑎𝑑 are then used as markers of the whole alevin, the alevin’s 

body and the alevin’s head respectively as described in the following section. 

 

4.2.1.2. Markers superposition  

The masks ℳ, 𝑚𝑏𝑜𝑑𝑦 and 𝑚ℎ𝑒𝑎𝑑 are labeled 1, 2 and 3 respectively. The background of each 

image is labeled 0. The supremum, i.e. the pointwise maximum, of the three labeled images is 

calculated: 

𝑚𝑠𝑢𝑝 = ⋁(ℳ,𝑚𝑏𝑜𝑑𝑦, 𝑚ℎ𝑒𝑎𝑑)                                                   (4.1) 

The resulting labeled image 𝑚𝑠𝑢𝑝 corresponds to a first approximation of the three alevin’s 

parts (head, trunk and tail). It is represented in Figure 38f. 
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4.2.1.3. Partition refinement  

After markers superposition, each label does not correspond to a single connected component, 

as shown in Figure 38f. Some pixels in the areas of the alevin’s head or trunk are still wrongly 

labeled. An algorithm is used to merge each wrongly labeled pixel to the connected component 

it actually belongs to. It is based on the assumption that wrongly labeled pixels always represent 

the smallest components with the considered label (Figure 39). At the end, only one connected 

component remains for each labeled component. We name ℳ𝑐𝑜𝑚𝑝 the resulting labeled image 

which is composed of the head compartment ℳℎ𝑒𝑎𝑑, the trunk compartment ℳ𝑡𝑟𝑢𝑛𝑘 and the 

tail compartment ℳ𝑡𝑎𝑖𝑙 (Figure 38b and g). 

 

 

Figure 39. Partition refinement algorithm for automated alevin compartmentation. 

 

4.2.2. Determination of the alevin orientation  

The aim of this step is to automatically determine in which orientation the alevin appears in the 

studied image. Because, alevins can appear in every possible orientation between the most 

distant dorsal to the most distant lateral position, it corresponds to an infinity of orientations. 

For this reason, we aim to obtain an orientation related index. For this purpose, the orientation 

determination method relies on the extraction of descriptors related to the alevin orientation and 

linear regression. 
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4.2.2.1. Extraction of orientation related descriptors  

When the orientation of an alevin changes, it is especially visible by looking on the eyes or on 

its tail. As shown in Figure 37, alevin’s eyes are separated as the alevin is seen from an 

orientation close to the dorsal view whereas they overlap when it is seen in lateral view. 

Moreover, the tail pigmentation is not homogeneous. Alevins present a dark pigmented line 

along their dorsal line. This line is centered if the alevin is seen in dorsal orientation, whereas 

it is shifted to one side of the alevin when it is seen in lateral orientation. For these reasons, the 

method for alevins orientation determination is focused on the extraction of descriptors related 

to eyes morphology and tail intensity. 

 

Eyes related descriptors 

From the image I of the alevin, a median filter is firstly applied in order to remove the 

background noise. An adaptative Otsu threshold is then applied in order to perform the 

clustering-based image thresholding between dark intensities of the alevin’s body, including 

eyes, and light intensities of the background and alevin’s tail [50]. The obtained value 𝜃 is 

reduced from 100, up to the limit of 40. This calculation was experimentally determined in 

order to correctly distinguish alevins’s eyes to the other parts of the alevin. We name the 

resulting constrained value 𝜃𝑐𝑜2: 

𝜃𝑐𝑜2 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝜃 − 100, 40),                                            (4.2) 

ℳ1 = (𝐼)≥𝜃𝑐𝑜2
.                                                             (4.3) 

A morphological closing 𝜑Π𝑟4
 is used with a polygonal structural element 𝑟4 of radius 4 and we 

take the inverse of the resulting binary image: 

ℳ2
= 𝑖𝑛𝑣𝑒𝑟𝑠𝑒(𝜑Π𝑟4

(ℳ1)).                                                      (4.4) 

The resulting image ℳ2 is expected to contain either one connected component if the alevin is 

seen close to lateral view and that one eye is occulted by the second, or two connected 

components if not. Thus, if more than two 8-connexity connected components are present in 

ℳ2, we measure the difference between the areas of the two largest connected components. In 

case of a difference inferior to 500 pixels, experimentally determined, we consider both 
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components are too different to correspond to properly segmented eyes, and we only keep the 

biggest one as the alevin’s eyes. In case of a difference superior to 500 pixels, the two largest 

connected components are kept, each of them standing for an alevin’s eye. The result is denoted 

ℳ3 hereafter. 

Two different descriptors are derived from ℳ3: the size of the gap between the detected eyes 

𝑔𝑎𝑝 and a binary orientation indicator 𝑖𝑜𝑟𝑖𝑒𝑛𝑡 which is equal to 1 if the eyes totally overlap and 

0 else. We determined their values as follow. If two connected components are detected,  the 

𝑔𝑎𝑝  value is the shortest distance between the contours of the detected components. It is 

calculated by linking both connected components centroids by a line segment and by measuring 

the length of the subsegment bounded by the intersection points with the connected components 

contours, as shown in Figure 40. If only one connected component was detected, then the 

descriptor 𝑔𝑎𝑝 is set to 0. Concerning the orientation related indicator 𝑖𝑜𝑟𝑖𝑒𝑛𝑡, we set it to 0 if 

two connected components have been detected on ℳ3 . However, if only one connected 

component was previously detected, it is analyzed in the aim to distinguish cases of alevins 

seen in lateral view from others seen in an intermediary orientation between dorsal and lateral. 

When seen in perfect lateral orientation, the visible connected component appears circular since 

the two circular eyes should theoretically overlap completely. In contrast, in an intermediary 

orientation, the connected component appears in the form of a “8-shape” component (i.e. with 

two lobes). For this reason, we expand the contour of the detected eye in ℳ3 by taking its 

convex hull, meaning the smallest convex set containing this component [100]. If ℳ3 is convex, 

then 𝑖𝑜𝑟𝑖𝑒𝑛𝑡 is set to 1, meaning that the alevin is considered in a lateral orientation, whereas if 

ℳ3 is not convex, then 𝑖𝑜𝑟𝑖𝑒𝑛𝑡 is set to 0, meaning that the alevin is considered in a non-lateral 

orientation. These descriptors will then be combined to other descriptors related to alevin’s tail 

to characterize the alevin orientation. 

 

Figure 40. Measurement of the gap between alevin’s eyes. Both eyes are represented in blue, 

with black crosses indicating their centroids. The red line shows the distance between both 

centroids. The gap between eyes corresponds to the distance shown by the whole part of the red 

line. 
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Tail intensity related descriptors 

The pigmentation in the alevin’s tail varies from the dorsal line to the belly line (along the 

dorsoventral axis). When seen in a dorsal orientation, the dorsoventral axis is not visible, and 

the pigmentation appears centered on the left-right axis (see alevin axis in Figure 2 in the 

introduction). Thus, our aim is to characterize the distribution of the pixel intensity along the 

axis that transversally crosses the alevin’s tail. The methodology relies on the representation of 

the region of interest that delimits the pixels of the alevin’s tail ℳ𝑡𝑎𝑖𝑙  (obtained in 

Section 4.2.1), in a dual frame. This dual representation is denoted ℳ𝑑
𝑡𝑎𝑖𝑙 and results from the 

concatenation of all cross sections extracted from the tail along the anteroposterior axis of the 

alevin. Features will then be extracted from this dual representation. 

We firstly want to extract the mask ℳ𝑠𝑖𝑑𝑒 that will be used to orient each tail cross section. For 

this purpose, the mask of the alevin contour ℳ4, which is the contour of ℳ (Section 2.2.4), 

and the alevin skeleton 𝒮  (see Section 3.2.1) are used. The skeleton 𝒮  is considered 

representative of the anteroposterior axis of the alevin. It crosses the mask ℳ4 in two points 

corresponding to the two extremities of the skeleton. Thus, the skeleton 𝒮 is used to cluster and 

label the pixels of ℳ4  into two different components corresponding to both side of the 

anteroposterior axis. Among the two connected components of ℳ4 , only the one with the 

highest area ℳ𝑠𝑖𝑑𝑒 is retained. Such binary image will allow to obtain directed cross sections 

of the alevin’s tail. 

We now want to build the image ℳ𝑑
𝑡𝑎𝑖𝑙 which is the dual representation of the tail image ℳ𝑡𝑎𝑖𝑙. 

Considering the region of interest ℳ𝑡𝑎𝑖𝑙, we define its associated representation in the dual 

frame ℳ𝑑
𝑡𝑎𝑖𝑙 as the concatenation of all cross sections, i.e., organized and oriented lines that are 

perpendicular to the skeleton 𝒮  and limited to the contour of the tail ℳ𝑡𝑎𝑖𝑙 . Each cross 

section 𝑠𝑥 of the image ℳ𝑡𝑎𝑖𝑙, defined by a distance 𝑥 in pixels from one of the intersection 

points between ℳ𝑡𝑎𝑖𝑙 and 𝒮, is then precisely the 𝑥𝑡ℎ column of the dual image representation 

ℳ𝑑
𝑡𝑎𝑖𝑙 . It is oriented by finding its extremity that belongs to ℳ𝑠𝑖𝑑𝑒 . The intersection point 

between the skeleton 𝒮  and the cross section 𝑠𝑥  is denoted by 𝑂𝑥 . Hence, to each 

pixel 𝑝 =  (𝑥𝑝, 𝑦𝑝) in ℳ𝑑
𝑡𝑎𝑖𝑙 , we associate the intensity 𝑐(𝑝) of the pixel 𝑝′  of the primal 

image ℳ𝑡𝑎𝑖𝑙  such that 𝑝′ is on the cross section 𝑠𝑥𝑝
, and ‖𝑝𝑂𝑥𝑝

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ = 𝑦𝑝 (Figure 41). During 

ℳ𝑑
𝑡𝑎𝑖𝑙 normalization, the length of each section 𝑠𝑥 of ℳ𝑑

𝑡𝑎𝑖𝑙 is extended, taking the maximal  
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Figure 41. Representation of the region of interest of the alevin’s tail in the primal frame ℳ𝑡𝑎𝑖𝑙 

and its associated dual representation ℳ𝑑
𝑡𝑎𝑖𝑙. The yellow line represents the skeleton 𝒮. 

 

 

Figure 42. Generation of the dual representation of the alevin’s tail ℳ𝑑
𝑡𝑎𝑖𝑙 for an alevin seen in 

dorsal view (left) and for an alevin seen in lateral view (right). a: result of the compartmentation 

ℳ𝑐𝑜𝑚𝑝 is shown in red, superimposed on the initial cropped image 𝐼 of the alevin. The right 

component of ℳ𝑐𝑜𝑚𝑝 delimits the tail’s contour ℳ𝑡𝑎𝑖𝑙. b: dual representation of the tail ℳ𝑑
𝑡𝑎𝑖𝑙 

obtained after concatenation of all the cross sections extracted along the alevin’s tail, and before 

normalization. c: dual representation ℳ𝑑
𝑡𝑎𝑖𝑙 obtained after normalization. 
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column length as reference. The value of newly inserted pixel is calculated by linear 

interpolation. To each pixel 𝑝 =  (𝑥, 𝑦𝑝) of a section 𝑠𝑥 in ℳ𝑑
𝑡𝑎𝑖𝑙, we associate the intensity 

𝑐𝑛𝑜𝑟𝑚(𝑝) such that: 

𝑐𝑛𝑜𝑟𝑚(𝑝) =
𝑦𝑏−𝑦𝑝

𝑦𝑏−𝑦𝑎
𝑐(𝑎) +

𝑦𝑝−𝑦𝑎

𝑦𝑏−𝑦𝑎
𝑐(𝑏),                                            (4.5) 

with  𝑎 = (𝑥, 𝑦𝑎) and 𝑏 = (𝑥, 𝑦𝑏) are pixels of the section 𝑠𝑥 in ℳ𝑑
𝑡𝑎𝑖𝑙 such that 𝑦𝑎 < 𝑦𝑝 < 𝑦𝑏 

and 𝑐(𝑎) and 𝑐(𝑏) are known values. We call this process normalization of the image ℳ𝑑
𝑡𝑎𝑖𝑙. 

The process of ℳ𝑑
𝑡𝑎𝑖𝑙 generation and normalization is illustrated in Figure 42. 

After ℳ𝑑
𝑡𝑎𝑖𝑙 normalization, the average intensity profile is computed along the 𝑥 axis as shown 

in Figure 43, and descriptors are extracted. Concerning the tail morphology, the maximal width 

of the tail 𝑤𝑖𝑑𝑡ℎ𝑡𝑎𝑖𝑙 is selected and corresponds to the number of rows in ℳ𝑑
𝑡𝑎𝑖𝑙. Concerning 

the intensity variation along the tail cross section, the averaged intensity profiles shown in 

Figure 43 reveal that the location of the global minimum tends to move to the tail edges as the 

alevin is visible from a more lateral view. Moreover, considering the global minimum peak as 

a Gaussian, we note that the standard deviation also reduces when the alevin is seen in lateral 

view. For these reasons, we extract the position, the mean and the standard deviation of the 

global minimum from the averaged intensity profile. Combined to 𝑤𝑖𝑑𝑡ℎ𝑡𝑎𝑖𝑙 , these 

measurements are used as features of the alevin’s tail.  

Combined with eyes-related descriptors previously presented, these features will allow to 

predict the orientation of a concerned alevin. 

 

4.2.2.2. Linear regression for alevins orientations classification  

In the previous section, features were extracted from the eyes and from the tail of the alevin, 

that allow to characterize the alevin orientation. From these features, we now want to predict 

the alevin orientation, by performing a linear regression. 

 

Ground truth 

Establish ground truth in order to reliably represent all orientation samples is a difficult task as 

it exists an infinity of possible orientations that the alevin can have from the extreme dorsal to  
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Figure 43. Extraction of alevin orientation related descriptors for alevins of the dorsal class 𝑂𝐷, 

of the almost dorsal class 𝑂𝐴𝐷 , of the almost lateral class 𝑂𝐴𝐿  and of the lateral class 𝑂𝐿 

presented from the left to the right. a: initial images 𝐼. b:  dual representations of the tail ℳ𝑑
𝑡𝑎𝑖𝑙. 

c: graphical representations on a direct orthonormal frame of the averaged intensity variation 

along the tail cross section (averaged intensity profile) and descriptors extraction. The black 

dotted line indicates the location of the global minimum along the cross section and the blue 

double arrow shows its standard deviation. 
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the extreme lateral orientation. It is not feasible to manually associate a continuous value related 

to the alevin orientation on observed images. For this reason, we decide to manually classify 

images into four easily definable classes. A first class, named dorsal orientation class 𝑂𝐷 , 

include all images where alevin’s eyes are clearly separated, where the whole alevin appears 

symmetric, with a centered dark pigmented line on the alevin’s tail. A second class refers to 

alevins seen in an intermediary orientation close to dorsal view. Alevins of this class appear 

with separated eyes but their tail does not appear symmetric, with a most peripheral pigmented 

line. We refer to this second class as the almost dorsal orientation class 𝑂𝐴𝐷. A third class 

includes alevins seen in an intermediary orientation close to lateral view. It corresponds to 

alevins whose eyes appear superimposed and thus are not separated anymore. Such alevins are 

not symmetric. In particular, the tail appears wider and lighter than in previous class, with a 

peripheral pigmented line almost merged with the tail contour. This third class is called 𝑂𝐴𝐿 for 

almost lateral orientation class. The final lateral orientation class 𝑂𝐿 gathers all alevins seen 

in lateral view. These alevins present a wide and light tail, with a pigmented line totally merged 

with the tail contour, and their eyes are totally superimposed such that only one circular eye is 

actually visible. An example of this manually generated distribution is represented in Figure 37 

whose the first column present alevins from 𝑂𝐷, the second column present alevins from 𝑂𝐴𝐷, 

the third show alevins from 𝑂𝐴𝐿 and the last column contains alevins from 𝑂𝐿. 

 

Dataset description 

A dataset of 293 images was constituted. According to the predefined ground truth, this includes 

197 alevins that belong to 𝑂𝐷 (where 151 are healthy and 46 are malformed), 16 alevins that 

belong to 𝑂𝐴𝐷  (12 healthy and 4 malformed), 67 that belong to 𝑂𝐴𝐿 

(35 healthy and 32 malformed), and 13 that belong to 𝑂𝐿  (7 healthy and 6 malformed). 

Malformed alevins included in this dataset present malformations such as spine malformations, 

absence of a swim bladder or presence of edemas. As the output of a regression is continuous 

instead of categorical, each data is associated to a real value that depends on the orientation 

class it belongs to (Section 1.2.1).Real values comprised in the interval [0,1] are associated to 

the 293 data depending on the class they belong to. Images of  𝑂𝐷 are associated to a value of 

0.25, images of  𝑂𝐴𝐷 are associated to a value of 0.5, images of 𝑂𝐴𝐿 are associated to a value of 

0.75, and images of  𝑂𝐿 are associated to 1. 
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Linear regression results  

A linear regression is then performed on this labeled dataset using the previously described 

features. 

The results of the linear regression applied on the dataset previously described are presented in 

Figure 44. In the further analysis, the predicted value is referred to as the orientation coefficient 

𝑐𝑜𝑟𝑖𝑒𝑛𝑡. In this figure, we observe that the values of 𝑐𝑜𝑟𝑖𝑒𝑛𝑡 are generally distributed into four 

staggered intervals. We observe that all data of 𝑂𝐷 are associated with a value of 𝑐𝑜𝑟𝑖𝑒𝑛𝑡 less 

than 0.4. Data of 𝑂𝐴𝐷  are distributed between 0.2 and 0.6, all data of 𝑂𝐴𝐿  are distributed 

between 0.6 and 1 and all data of  𝑂𝐿 are distributed between 0.8 and 1. Finally, these four 

intervals appear superimposed at the transition between two successive orientation classes only, 

making these errors less significant. Applying the following thresholds on the predicted value 

𝑐𝑜𝑟𝑖𝑒𝑛𝑡, an orientation-based classification can be made according to the linear regression results. 

We classify in predicted 𝑂𝐷  the images with 𝑐𝑜𝑟𝑖𝑒𝑛𝑡 ≤ 0.4. In the same way, images with 

0.4 <  𝑐𝑜𝑟𝑖𝑒𝑛𝑡 ≤ 0.6 are classified into predicted 𝑂𝐴𝐷 , images with 0.6 < 𝑐𝑜𝑟𝑖𝑒𝑛𝑡 ≤ 0.8 are 

classified into predicted 𝑂𝐴𝐿, and remaining images with  0.8 < 𝑐𝑜𝑟𝑖𝑒𝑛𝑡 ≤ 1 are classifies into 

predicted 𝑂𝐿 . According to this classification, a second observation was made only on the 

wrongly classified data and revealed their ambiguity, as the sort criteria previously described 

do not allow to perfectly and reliably classify these data in a manual way into the four classes. 

In particular, some of them present axial malformation or torsion that prevent from determining 

a precise orientation. Actually, regarding these ambiguous cases, classification results remain 

consistent. Examples of such ambiguous data are represented in Figure 45. 

In the following treatment, this linear regression model is retained as a model for alevins 

orientation determination. The model returns an index, called the orientation coefficient 𝑐𝑜𝑟𝑖𝑒𝑛𝑡, 

included in the interval [0,1]. In further treatment, we decide to use this coefficient to classify 

alevins in three orientation-related classes defined as follow: the dorsal orientation class is 

defined by 0 ≤  𝑐𝑜𝑟𝑖𝑒𝑛𝑡 ≤  0.4 , the three quarters orientation class is defined by 

0.4 <  𝑐𝑜𝑟𝑖𝑒𝑛𝑡 ≤  0.6, and the lateral orientation class by 0.6 < 𝑐𝑜𝑟𝑖𝑒𝑛𝑡 ≤ 1. This classification 

will allow to adjust the further treatment applied on alevins to detect the swim bladder. Indeed, 

images of each class will undergo a specific swim bladder localization method, described in the 

following section. 
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Figure 44. Results of the linear regression on alevins orientation. The four ground truth 

categories are labeled with real values from 0.25 to 1 to perform the linear regression. Four 

intervals are obtained for predicted values. The red circles point out the ambiguous data where 

these intervals are superimposed, that corresponds to wrongly classified data according to the 

ground truth. For ambiguous data, ground truth and associated predicted value always concern 

adjacent classes. 

 

 

Figure 45. Results of the orientation classification on images of alevins presenting ambiguous 

orientations. a and b: alevins manually classified as almost dorsal and automatically classified 

as dorsal and almost lateral respectively. c and d: alevins manually classified as almost lateral 

and automatically classified as almost dorsal and lateral respectively. 
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4.3. Features extraction for swim bladder 

characterization  

This Section describes how we perform the swim bladder detection and characterization. 

Because the swim bladder is not always present in studied images and the purpose is to 

distinguish cases of alevins with a swim bladder from cases of alevins without, the method 

relies on the extraction of the most probable contour of the swim bladder, and is adapted to the 

orientation coefficient previously calculated in Section 4.2.2.2. To this aim, we begin by 

identifying the region of interest (ROI) in which the swim bladder will be localized. To this end, 

we use an atlas of a healthy alevin. Then the most probable contour of the swim bladder is 

extracted before analyzing it in order to identify if this contour is the one of a swim bladder or 

not. For practical reasons, the swim bladder segmentation method is firstly described in this 

section with respect to the embryo orientation that appears the most frequently in our database, 

i.e. the dorsal view. The adjustments made to adapt the methodology to other the orientations 

coefficient is further described in Section 4.3.2.3. 

 

4.3.1. Swim bladder atlas generation 

The objective here is to build a median image 𝐼𝑚𝑒𝑑 representative of a typical healthy embryo 

with respect to the diversity of embryos that exists in experimental conditions, and a probability 

function 𝑝𝑠𝑏  defined on the ensemble of 𝐼𝑚𝑒𝑑  pixels coordinates and that represents the 

likelihood of each pixel of the represented image to belong to the swim bladder. In the following, 

such pair (𝐼𝑚𝑒𝑑, 𝑝𝑠𝑏) is called an atlas of the swim bladder for medaka embryo images and will 

be denoted by 𝒜. 

In order to build the atlas, 𝑛 images of healthy embryos are selected and their swim bladder are 

manually segmented. Among these images, one is randomly chosen as being the fixed reference 

image 𝐼𝐹. Then, the 𝑛 − 1 remaining images, called the moving images hereafter, are aligned 

on 𝐼𝐹 by applying an affine image registration algorithm. It consists of finding, for each moving 

image, an affine transformation that minimizes a similarity measure between the fixed image 

and the transformed moving image [123, 124, 125]. The mutual information is used as a 

similarity measure in this process. It aims at maximizing the measure of the mutual dependence  
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Figure 46. Atlas 𝒜 = (𝐼𝑚𝑒𝑑, 𝑝𝑠𝑏) obtained for fish embryos seen in dorsal view. The three red 

lines show the isocontours that delimit the areas where the pixels have a probability equal to 1, 

to 0.5 and to 0,05 to belong to the swim bladder. 

 

between the pixel intensity distributions of the fixed and of the moving images, defined 

in [126] by: 

 𝑀𝐼(𝐼𝐹,𝐼𝑀) = ∑ ∑ 𝑝(𝑓,𝑚)𝑓 𝑙𝑜𝑔2𝑚 (
𝑝(𝑓,𝑚)

𝑝𝐹(𝑓)𝑝𝑀(𝑚)
)                           (4.6) 

where 𝑚 and 𝑓 are the intensities of the fixed and moving image respectively, 𝑝 is the discrete 

joint probability, and 𝑝𝐹 and 𝑝𝑀 are the marginal discrete probabilities of the fixed image 𝐼𝐹 

and the moving image 𝐼𝑀  [127]. The multiresolution affine registration algorithm from the 

Elastix toolbox is used to perform such process [128] . The median 𝐼𝑚𝑒𝑑 of the 𝑛 registered 

images is calculated. For each moving image 𝐼𝑀, the optimal transformation 𝜇 is also applied 

to the corresponding manual segmentation of the swim bladder. The average image 𝐼𝑎𝑣 of the 

𝑛 registered swim bladder segmentations is calculated. We define the probability function 𝑝𝑠𝑏 

as the mapping which maps to each pixel of coordinates (𝑥, 𝑦) of a new image 𝐼 with the same 

dimensions as 𝐼𝑚𝑒𝑑, the value 𝐼𝑎𝑣(𝑥, 𝑦) (Figure 46). The atlas 𝒜 =  (𝐼𝑚𝑒𝑑, 𝑝𝑠𝑏) will then be 

used in order to identify, in a new image 𝐼, the ROI where to search the swim bladder. 

 

4.3.2. Swim bladder localization  

After registering the atlas on a new image 𝐼, we observe that the registered atlas does not 

segment the contour of the swim bladder with precision, as shown in Figure 47. As our 

methodology relies on the characterization of the swim bladder most probable contours to 

distinguish embryos with and without a swim bladder, we need to obtain a more accurate 

delineation of the swim bladder, when it is present. 
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Figure 47. Projection of the atlas 𝒜 on an embryo image. The three red lines are the isocontours 

that delimit the areas where pixels have a probability equal to 1, to 0.5 and to 0.05 to belong to 

the swim bladder according to the probability function 𝑝𝑠𝑏 of the atlas. 

 

4.3.2.1. ROI localization  

The atlas 𝒜 = (𝐼𝑚𝑒𝑑, 𝑝𝑠𝑏) is used on an embryo image 𝐼 in order to identify the ROI in which 

the swim bladder will be searched. To this aim, we search for the transformation 𝜇′  that 

optimally registers 𝐼𝑚𝑒𝑑 to the analyzed image 𝐼. We apply the same affine registration process 

as described in the previous section. This transformation 𝜇′ is then applied to the probability 

function 𝑝𝑠𝑏, leading to a transformed probability function 𝑝𝑠𝑏
′ . We consider the isocontour that 

delimits the area where the pixels have a probability equal to 1 to belong to the swim bladder, 

if a swim bladder is present (Figure 46). The barycenter of this area is extracted and considered 

as the center 𝐶 of the ROI. The ROI 𝒞 is then defined as the circle of center 𝐶 and of diameter 

40 pixels, experimentally determined (Figure 48). 

 

4.3.2.2. Extraction of the swim bladder most probable contour 

As visible in Figure 37, the swim bladder is characterized by a high contrast between dark 

contours and light inner part that cannot be too small. On the contrary, embryos without a swim 

bladder present a homogeneous body in the location where the swim bladder should be present. 
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For this reason, the swim bladder detection method relies on the determination of a circular 

shortest path extracted from the image 𝒞 represented in a dual polar frame defined as follow. 

Considering 𝒞 of center 𝐶 = (x𝐶 , y𝐶) and of radius 𝑟 in the primal frame of the image 𝐼, we 

define its associated representation in a dual polar frame 𝒞𝑑 , as the image that is the 

concatenation of all the ROI radial sections, starting from a radial section 𝑠1  that is 

perpendicular to the embryo skeleton obtained during pre-processing. 

Each radial section 𝑠𝜃 of 𝒞, defined by an angle 𝜃 in degrees from the initial section, is then 

precisely the 𝜃𝑡ℎ  column of the dual image representation 𝒞𝑑  (Figure 48). Hence, to each 

pixel  𝑝 =  (𝜃𝑝, 𝑟𝑝)  in 𝒞𝑑 , we associate the intensity 𝑐(𝑝)  of the pixel 

𝑝′ =  (𝑟𝑝 cos 𝜃𝑝 , 𝑟𝑝 sin 𝜃𝑝) in the primal image 𝒞. 

 

 

 

 

Figure 48. Representation of the ROI 𝒞 in the primal frame and of its associated image 𝒞𝑑 in 

the dual frame. The angle 𝜃𝑝 varies from 0 (section 𝑠1) to 360, and all radial sections of 𝒞 are 

concatenated to create the dual representation 𝒞𝑑. 
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We then consider circular shortest paths in the image 𝒞𝑑, i.e., paths corresponding to contours 

of minimum energy in the primal image [121, 122]. For this purpose, the image 𝒞𝑑 is equipped 

with a directed graph such that a pair (𝑎, 𝑏) of two pixels of 𝒞d is a directed arc if  𝑎1 = 𝑏1 − 1 

and |𝑎2 − 𝑏2| ≤ 1, where 𝑎 = (𝑎1, 𝑎2) and 𝑏 =  (𝑏1, 𝑏2). In this graph, a circular path is a 

sequence (𝑝0, … , 𝑝𝑙) of pixels of 𝒞d such that: 

- for any i in {1, … , 𝑙}, the pair (𝑝𝑖−1, 𝑝𝑖) is an arc; 

- the first coordinate of 𝑝0 is equal to 0; 

- the first coordinate of 𝑝𝑙 is equal to 360 (i.e. the maximal possible value); and 

- the second coordinate of 𝑝0 and of 𝑝𝑙 are the same. 

The energy cost 𝐸𝐶(𝜋) of a circular path 𝜋 = (𝑝0, … , 𝑝𝑙) is defined as the sum of the intensities 

of the pixels in the path: 𝐸𝐶(𝜋) = ∑ 𝑐(𝑝𝑖)𝑖∈{0,…,𝑙} . A circular path 𝜋 =  (𝑝0, … , 𝑝𝑙) is called 

optimal whenever the energy cost of 𝜋 is less than or equal to the energy cost of any circular 

path from 𝑝0  to 𝑝𝑙 . Such circular optimal path can be found with any graph shortest path 

algorithm such as the one of Dijkstra [121]. 

In order to obtain the most probable contour of the swim bladder, we start by selecting the most 

peripheral local minimum of the first radial section 𝑟1, called 𝑎1. We also define 𝑟𝑚𝑖𝑛 as the 

minimal radius of 𝒞 below which the shortest path must not be searched. It is experimentally 

set to 10 pixels. We then consider a circular shortest path 𝜋 starting at 𝑎1.This circular shortest 

path found in the image 𝒞𝑑, corresponds to a closed contour 𝒮ℬ in the image 𝒞 which surrounds 

the centre 𝐶 and which is of minimal energy. Such optimal contour 𝒮ℬ is hereafter referred to 

as the most probable contour of the swim bladder (Figure 49). This methodology expects to 

segment the swim bladder if present, or a meaningless part of the embryo body otherwise.  

 

4.3.2.3. Adaptation of the swim bladder localization method to the alevin 

orientation  

Depending on the predetermined alevin orientation that depends on the previously described 

orientation coefficient 𝑐𝑜𝑟𝑖𝑒𝑛𝑡  (Section 4.2.2), the swim bladder localization parameters are 

adapted according to three different methods: the dorsal, the three quarters and the lateral 

methods. 
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Figure 49. Swim bladder segmentation results on the primal frame of the image and associated 

shortest path in the dual polar frame. The yellow circle delimits the ROI 𝒞  in which the red 

line shows the contour of the segmented shape 𝒮ℬ in case of embryos with a swim bladder (a 

and b) and embryos without a swim bladder (c and d). a and c: embryos seen in dorsal view. b 

and d: embryos seen in lateral view. 

 

Atlas generation 

Following the atlas generation process described in Section 4.3.1, different atlases are built. 

The first one, denoted by 𝒜𝐷  =  (𝐼𝑚𝑒𝑑𝐷
, 𝑝𝑠𝑏𝐷

), corresponds to the dorsal view of the alevin 

and is generated from images of the dorsal orientation class as defined in in Section 4.2.2. The 

second one, denoted by 𝒜𝐿 = (𝐼𝑚𝑒𝑑𝐿
, 𝑝𝑠𝑏𝐿

), corresponds to the lateral view of the alevin and 

is generated from images of the lateral orientation class. Concerning alevins images of the 

intermediary three quarters orientation class, the too important variability between individuals 

does not allow to generate a representative atlas. We solve this problem by creating an adaptive 

atlas 𝒜 ∝ = (𝐼𝑚𝑒𝑑∝
, 𝑝𝑠𝑏∝

)  that depends on the angle ∝ defined as ∝  =  𝑐𝑜𝑟𝑖𝑒𝑛𝑡 ×
𝜋

2
. Such 
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atlas is created by rotating the previously described 𝐼𝑚𝑒𝑑𝐷
 from the angle ∝  around the 

horizontal axis linking both extremities of the alevin’s head and tail, then by taking its 

projection on the initial plan of the atlas 𝒜𝐷, as illustrated in Figure 50. The same rotation is 

applied to the definition ensemble of the probability function 𝑝𝑠𝑏𝐷
. An illustration of 𝒜𝐷, of 

𝒜𝐿 and of an example of 𝒜 ∝ for ∝= 45° is given in Figure 51.  

 

ROI localization 

During the ROI extraction, the atlas must be registered on a new image 𝐼. If embryos seen in 

dorsal or three quarters views are relatively symmetric, it is not the case for embryos seen in 

lateral view that can be seen in either the right side or the left side. In order to select the correct 

side of the atlas in case of a lateral embryo analysis, two registrations are applied: we search 

for the transformation mapping 𝜇1′  between the image 𝐼   and the atlas 𝒜𝐿 , and for the 

transformation mapping 𝜇2′ between 𝐼 and the symmetric of the atlas 𝒜𝐿. For both results, the 

Dice Similarity Coefficient (DSC) is computed: 

DSC(X, Y) =
2×|X∩Y|

|X|+|Y|
                                                           (4.7) 

where 𝑋 represents the binary mask of the embryo of either the atlas or of the symmetric of the 

atlas, and 𝑌 represents the binary mask of the embryo in the image 𝐼. The transformation that 

maximizes the DSC is retained as the transformation 𝜇′, used to delimit the region 𝑅 in 𝐼 where 

the probability to find the swim bladder, if a swim bladder is present, is equal to 1. The center 𝐶 

of the ROI 𝒞 is extracted from 𝑅 in a different way depending on the orientation. For embryos 

seen in dorsal or three quarters views that do not present a huge variability in the swim bladder 

area and shape, we take the barycenter of 𝑅. However, embryos seen in lateral view can present 

a variability in their swim bladder shapes from the most flattened to the most inflated one. 

Taking the barycenter can lead to a false detection of 𝐶 on the dark swim bladder contour 

instead of in the light swim bladder inner part. To avoid that, the lightest point of the delimited 

region is taken as the center 𝐶 of the ROI. 
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Figure 50. Generation of the atlas 𝒜∝ by rotation of the atlas 𝒜𝐷 from angle ∝= 0.78rad (45°) 

The red straight line is the rotation axis linking both extremities of the alevin. The three thin 

red lines are the isocontours that delimit the area where the pixel have a probability equal to 1, 

0.5 and 0.05 to belong to the swim bladder. 

 

 

Figure 51. Results of atlas generation. a: dorsal atlas 𝒜𝐷. b: three quarters atlas 𝒜∝ obtained 

for ∝= 0.78rad (45°). c: lateral atlas 𝒜𝐿. The red lines show the isocontours that delimit the 

areas where the pixels have a probability equal to 1, to 0.5 and to 0.05 to belong to the swim 

bladder. 
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Figure 52. Swim bladder segmentation results on medaka alevins with or without a swim 

bladder and seen in different orientations from the dorsal view (left) to the lateral view (right). 

The yellow circle indicates the location of the ROI 𝒞 and the red inner line shows the segmented 

most probable contour 𝒮ℬ for alevins with a swim bladder from a to d, and for alevins without 

a swim bladder from e to h. 
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Extraction of the swim bladder most probable contour 

Finally, the step that consists of extracting the most probable contour of the swim bladder is 

adapted by modifying the parameters definition. Indeed, as some healthy embryos seen in dorsal 

view can present a dark area in the center of their swim bladder that we don’t want to detect, 

we selected as starting point of the shortest path 𝑎1 the most peripheral local minimum of the 

first radius section. To avoid the shortest path to be on this dark area contour, we experimentally 

determined the value of rmin = 10 pixels. For other embryos, this dark area is not visible in 

our dataset so we take the global minimum of the first radius section for 𝑎1, and 𝑟𝑚𝑖𝑛 is set 

to 0. All the parameters and their associated values depending on the embryo orientation are 

summarized in Table 8. 

As shown in Figure 52, each orientation-related method allows to optimally segment the most 

probable contour of the swim bladder 𝒮ℬ. Swim bladder characterization will now allow to 

distinguish cases where a swim bladder is present from those without a swim bladder. 

 

 Parameter name Dorsal method 
Three quarter 

method 
Lateral method 

Atlas 

generation 

Number of images used 

for atlas generation n 
20 20 6 

Used atlas Dorsal atlas 𝒜𝐷 

Atlas 𝒜∝ with 

∝= 𝑐𝑜𝑟𝑖𝑒𝑛𝑡 ×
𝜋

2
 

Lateral atlas 𝒜𝐿 

Swim bladder 

localization 

ROI center C R barycentre R barycentre R lightest point 

Starting point of the 

shortest path 𝑎1 

Most peripheral local 

minimum of the ROI 

first radius section 

Global minimum 

of the ROI first 

radius section 

Global minimum 

of the ROI first 

radius section 

Minimal radius of the 

shortest path research 

area 𝑟𝑚𝑖𝑛 

10 0 0 

Table 8. Parameters definition for the extraction of the swim bladder most probable contour 

depending on the embryo orientation. 
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4.3.3. Swim bladder characterization  

We now need to identify if the segmented shape 𝒮ℬ corresponds to a swim bladder or not, 

basing on descriptors of the swim bladder. 

 

4.3.3.1. Intensity descriptors  

A swim bladder is characterized by a high contrast between a dark contour and a light inner 

part, contrary to an embryo without any swim bladder that presents a more homogeneous 

intensity in the delimited shape. On the histograms of both the inner part 𝒮ℬi and the contour 

𝒮ℬc of the segmented shape 𝒮ℬ, this means that a shift is visible between both distributions of 

pixel intensities in case of an embryo with a swim bladder (Figure 53). The following intensity-

related parameters are extracted from both histograms: the minimal, maximal, average and 

median intensities, the intensity mode, and their piecewise differences are calculated in order 

to characterize the contrast between 𝒮ℬ inner part and contour. We also extract the two ranges, 

i.e., the difference between the maximal and the minimal intensities, and the ratio between them. 

We finally extract the pixel intensity variance of 𝒮ℬ, and the covering, defined as follow. We 

calculate the difference between the maximal value of 𝒮ℬc and the minimal value of 𝒮ℬi in one  

 

 

Figure 53. Histograms of the inner part 𝒮ℬ𝑖 and the contour 𝒮ℬ𝑐 of the segmented shape 𝒮ℬ. 

If a swim bladder is present, the contour is darker than the inner part, and a shift is visible 

between their corresponding histograms. If no swim bladder is present, this shift is not visible.  
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hand, and the difference between the maximal value of 𝒮ℬi and the minimal value of 𝒮ℬc on 

the other hand. The covering is defined as the ratio between both differences. These intensity-

related descriptors will then be combined with other descriptors characteristic of the swim 

bladder morphology which are described in the following section. 

 

4.3.3.2. Morphological descriptors  

In order to characterize the swim bladder shape, the following descriptors are extracted from 

𝒮ℬ. We refer to the convexity of a swim bladder, as the set difference between the convex hull 

of 𝒮ℬ and 𝒮ℬ itself [100]. We refer to the concavity of a swim bladder as the area of the deleted 

component after a morphological opening 𝛾Γ𝑟5
 of 𝒮ℬ by a disk-shape structuring element  Γ𝑟5 

of size 𝑟5 = 5 . We furthermore consider the elongation of 𝒮  defined by 
4×𝑎𝑟𝑒𝑎(𝒮)

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟(𝒮)2
. All 

descriptors related to intensity or morphological characterization of 𝒮ℬ  are summarized in 

Table 9. 

 

 

Table 9. List of descriptors extracted for swim bladder characterization. 
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4.4. Assessment of the classification of alevins with and 

without a swim bladder  

The method of swim baldder detection is assessed in this section. The experimental set-up is 

exposed, before presenting the classification results, and finally discussing the results. 

 

4.4.1. Experimental setup  

4.4.1.1. Experimental protocol and ground truth 

The used experimental protocol is the same as the one described in Section 2.4.1.1 and 

Section 6.1 of the Appendix. Without any manual determination of the orientation, we record 

one image of each embryo at size 1500×1500.  

 

4.4.1.2. Software and libraries 

We use the same Python 2.7 environment as described in Section 2.4.1.2. We used Numpy, 

Scipy, Elastix [128], NetworkX and Pink libraries [106] for swim bladder segmentation, and 

Scikit-learn [113] for machine learning-based classification. 

 

4.4.1.3. Dataset description and ground truth 

To establish the ground truth, each fish embryo is analyzed after image acquisition on day 9. 

An expert observes embryos under a microscope, allowing to manipulate them and thus to see 

them in all possible orientations. This expert annotates each fish embryo as having a swim 

bladder or not. 

Our experimental protocol allows to set up a total database of 406 images of embryos, among 

which 258 are seen in dorsal view according to the manually determined orientation (i.e. 63.5% 

belong to 𝑂𝐷), 119 are seen in three quarter view (29.3% belong to 𝑂𝐴𝐷or to 𝑂𝐴𝐿) and 29 in 

lateral view (7.1%). A subset of this database is used in order to generate the atlas described in 

Section 4.3.1 For reasons linked to the unbalanced proportions of both dorsal and lateral 
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orientations in our total available database, we select 𝑛 = 20 images of healthy embryos seen 

in dorsal view for dorsal and three quarter atlases generation, and 𝑛 = 6 healthy embryos seen 

in lateral position for lateral atlas generation. The remaining 380 images constitute the 

validation dataset. Among those, 282 present a swim bladder according to the ground truth, and 

98 do not present a swim bladder. In particular, the subset of 282 embryos with a swim bladder 

is composed of 195 images of fish embryos seen in dorsal view, 80 in three quarter view, and 

7 in lateral view. The subset of 98 embryos without a swim bladder is composed of 43 seen in 

dorsal view, 39 seen in three quarter, and 16 in lateral view. 

 

4.4.1.4. Tested classification method  

A random forest classifier is defined with the following parameters, determined with the 

GridSearch algorithm from the Scikit learn library [113]. The number of estimators is set to 20, 

the maximal depth is set to 6, the minimal number of samples required to split an internal node 

is set to 2 and the minimal number of samples required to be at a leaf node is set to 1. The 

entropy criterion is chosen. In order to partially balance the subsets of embryos with and without 

a swim bladder, a higher weight  𝑤− is attributed to the dataset of embryos without a swim 

bladder than the weight of those with a swim bladder 𝑤+. We set 𝑤+ =  1 and 𝑤− =  3. 

The same performance measures are used than those described in Section 3.3.1.6. 

 

4.4.2. Classification results 

An example of classification results obtained after a 5-fold cross validation process is presented 

in Table 10 in the form a confusion matrix that shows the distribution between embryos with 

and without a swim bladder according to the ground truth and to the prediction results. We 

reach an accuracy score of 95% in the total dataset. Moreover, the sensitivity is 90.8% and the 

specificity is 96.4%. For more precision, and in order to assess the results variation depending 

on the data partition into the training and the testing sets, a series of 500 successive 5-folds 

cross validations is performed. The results are presented in Figure 54 in the form of histograms 

of the calculated accuracy, sensitivity and specificity (as defined in Equations 3.12 to 3.15). For 

each of these performance criteria, a Gaussian distribution is obtained. The mean accuracy is  
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Prediction: 

Ground truth: 

Swim bladder No swim bladder 

Swim bladder 272 10 

No swim bladder 9 89 

Table 10. Example of classification results after 5-fold cross validation performed on 380 tested 

images. 

 

Figure 54. Histograms of the results of the swim bladder classification method after 500 

successive 5-folds cross validations in terms of accuracy, sensitivity and specificity. The 

average value is shown with a vertical red line and the associated standard deviation with the 

horizontal red line. We obtain an average accuracy of 95% with a standard deviation of 0.6; an 

average sensitivity 90% with a standard deviation of 1.8; and an average specificity of 97% 

with a standard deviation of 0.5. 

 

95% with a standard deviation of 0.6%, the mean sensitivity is 90% with a standard deviation 

of 1.8%, and the mean specificity is 97%, with a standard deviation of 0.5. 

 

4.4.3. Discussion  

To validate the automated method for swim bladder detection in medaka embryos, the program 

results have been compared to the gold standard of microscope-based observations. The overall 

accuracy of 95%, the overall sensitivity of 90.8% and the overall specificity of 96.6% reveal 
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the feasibility of the automatic detection of the swim bladder from 2D images of medaka 

embryos.  

The experimental protocol of our method presents the advantage to avoid the manual 

positioning of each embryo in the well whereas in many studies related to phenotypes 

classification, the protocol implies to manually place the fish embryo in either dorsal or lateral 

position [87, 41, 88]. After anesthesia, embryos remained in the incubation medium in their 

well and can have any possible orientation before images are acquired and treated. However, 

this protocol does not permit to control the orientation neither. In the studied database, a 

disproportion between natural positioning of embryos is revealed. Without any control on 

embryo positioning, we obtain far fewer alevins seen in lateral view compared to those seen in 

three quarter view and to dorsal view even more. In our total validation dataset of 380 images, 

we only have 23 images of embryos seen in lateral view (6%) against 119 embryos seen in three 

quarter view (31%) and 238 embryos in dorsal view (63%). Regarding the significant 

proportions of alevins seen in dorsal and three quarters orientation in the validation dataset and 

the overall accuracy, it can be can concluded that the classification correctly works on embryos 

seen in dorsal and three quarters position. Nevertheless, even if no systematic error is observed 

on laterally seen alevins through the cross validations, a most important subset of embryos seen 

in lateral view would improve the reliability of the validation process on lateral orientation. At 

final, the results of this study reveal that the presence or the absence of swim bladder can be 

detected with a satisfying accuracy in images of embryos, regardless of their orientation. For 

improving the precision and adapt the atlas-based method to the analysis of other relevant 

morphological parameters, a future work will consist in performing a three-dimensional atlas 

reconstruction of a healthy embryo, by making the reconstruction from dorsal and lateral atlases 

interpolation. 
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5. Discussion 

 

The aim of this work has been to develop image processing-based methodologies to automate 

the teratogenicity assessment assay on fish embryo. This assay has been developed to detect 

strong developmental abnormalities following exposure of medaka embryos at various 

concentrations of a teratogenic chemical. This test relies on the analysis of embryos morphology 

after a 9-day exposure. A teratogenic index TI is calculated that depends on both the estimation 

of the LC50 (the concentration that causes the death of 50% of the exposed embryos) and of the 

EC50  (the concentration inducing malformations or death of 50% of the embryos). These 

estimations depend on the proper detection of dead embryos. We thus have focused first on the 

development of an automated assessment of medaka embryos mortality. To achieve this, an 

assay was developed to detect cardiac arrests in medaka embryos based on the analysis of pixel 

intensity variation from video sequences. EC50 calculation also relies on detection of embryo 

malformations. We focused on two of the most observed malformations: axial malformations 

and the absence of a swim bladder. Robust detection assays were developed to assess these 

phenotypes with the objective of robust experimental conditions and minimizing the manual 

intervention from the operator.  

Section 5.1 is concerned with the first technical challenge, namely the ground truth subjectivity. 

We explain how subjectivity was quantified during our studies and its consequence on the 
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reliability of the results. We discuss the perspective of using Deep Learning to reduce the 

subjectivity impact on embryos classification. All the developed procedures rely on the analysis 

of images and videos. Plates with one embryo per well are placed on the acquisition platform 

and a camera moves above each well and takes an image and a video of the whole well. In such 

context, the second technical challenge is the information loss incurred going from interactive 

3D microscope-based to 2D image-based observations. This point is discussed in Section 5.2. 

In a third section 5.3, we present some perspectives for improving the test performance. In 

particular, functional assessment in medaka embryos could be developed by quantitative 

measurement of the cardiovascular function, and the embryos behavior should be analyzed. 

Finally, we discuss the way of assessing the whole teratogenicity method in Secti5.3.3on 5.4.   
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5.1. Ground truth subjectivity  

The first problematic raised during this dissertation is the subjectivity linked to manual 

annotations, and thus to the ground truth. This subjectivity raises the question of the annotations 

reliability, which has an influence on the program development. Indeed, annotations have an 

influence on features selection. Typically, when seeking features that are representative of an 

anomaly we need to detect, images are manually screened and classified according to the 

annotations (for example, images with and without an edema according to the microscope-

based ground truth). Image-based features, coefficients and thresholds applied on these features 

are then optimized to distinguish between both cases (for example, the distance between the 

swim bladder border and the beginning of the tail is a feature, and a minimal value can be 

associated to this feature to detect an edema). If the ground truth changes, the way of 

considering each feature is impacted, and thus, coefficients and thresholds also change. For this 

reason, subjectivity is a problem we need to carefully handle. 

 

5.1.1. Subjectivity quantification 

In this work, two different annotations were used: the image-based (or video-based) 

observations, used to assess the error of the detection programs, and the microscope-based 

observations, used as ground truth for assessing the efficacy of the whole automated method. 

Thus, two subjectivity assessments were conducted. 

A first assessment of the inter-operator subjectivity based on video observation was performed 

during the validation of the mortality test and is presented in Section 2.4.2. A dataset of 200 

video sequences of medaka embryos was observed by three operators. Each embryo was 

annotated by the three observers according to the presence or the absence of a beating heart, 

based solely on video. At the end of the experiment, differences were noted on 6 videos, for a 

rate of 3%. This subjectivity rate can be considered acceptable for the assessment of the 

program efficacy. 

In a similar way, the inter-operator subjectivity assessment was performed on microscope-

based annotations. A set of 143 embryos were successively analyzed under a microscope by 

three trained operators who observed the embryos under a microscope. The following endpoints 

were analyzed: mortality, presence of edemas, eyes, axial malformations, swim bladder, and 

any significant development delay. Size and pigmentation are also qualitatively analyzed. At 
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the end of mortality assessment, 2 embryos were differently classified by the different observers 

(1.3%), while at the end of the morphological assessment, 30 embryos were differently 

classified (20%). The percentages of malformed embryos measured by the three observers on 

the entire dataset varied from 40% to 60% depending on the operator. Inter-operator subjectivity 

seems to have a low impact on the mortality assessment, as the search for a beating heart is an 

easy task. By contrast, this study reveals the significant impact of subjectivity on the 

morphological assessment, which is a reason we decide to automate the process. 

During automation, the first impact of subjectivity, i.e. of annotations change, is on the choice 

of the features (which parameter to consider to detect an edema? The distance between the swim 

bladder bottom and the tail for example). The second impact is on the way to consider each 

feature to discriminate the data (which value must this distance have to reveal an edema?). In 

other worlds, annotations change impacts the coefficients and thresholds applied to features to 

correctly classify data. It is not conceivable to manually adapt coefficients and thresholds each 

time a change appears on the ground truth, as it is long and tedious. For this reason, we decide 

to use a supervised machine learning-based classification method for classifying healthy and 

malformed alevins with a method that can be retrained easily with new annotations.  Under this 

strategy, features are measured (distances, area, ratios, angles, etc.), then a random forest 

classifier is trained to automatically find the most relevant features and their associated 

thresholds (test functions optimization as described in Section 1.2.2), by learning from 

annotations, used as training labeled data. The training step is very fast and can be repeated as 

often as necessary in response to changes in the annotations.  

Random forest is an efficient way to quickly adapt the classification model to the annotations, 

by training the model on labeled data coming from these annotations. Nevertheless, if 

annotations are biased by subjectivity, the classification model may inherit this bias. To lessen 

the impact of inter-operator subjectivity on the morphological assessment, a morphological 

assessment could be performed on a set of embryos according to the following procedure: three 

observers would annotate a set of embryos under a microscope according to the presence or 

absence of a malformation. A consensus would be made between the three observers 

conclusions, and would constitute the final ground truth. As such a process is time-consuming 

and require the availability of several trained operators at the same time, it should be staggered 

through time. Resulting consensus data would progressively replace the labeled data coming 

from the analysis of a single operator and be used for the classification model training. The idea 

would be to progressively optimize the reliability of the classification model that would be 
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trained on these new consensus data. Alternatively, when multiple observers are not available 

at the same time, it is still useful to augment the training dataset based on new data annotated 

by different, trained observers, even if each annotation is only performed once. Assuming 

observers are reasonably consistent, this would progressively build a statistically significant 

ground truth. This would still progressively be improving the reliability of the classification 

model. This is the method we plan to use. 

While these strategies can help limit the influence of subjectivity on the classification results, 

the chosen features themselves are not adaptive. To improve the sensitivity of the test, new 

features will have to be developed. These features can be manually developed as we have done, 

or they could be automatically identified by using deep-learning-based methods. 

 

5.1.2. Deep learning for embryos classification 

In this manuscript, some alevins phenotypes classification problems were tackled by 

developing empirical (for mortality assessment) and machine learning-based approaches (for 

malformations detection). These studies illustrate the consensus in image-related research to 

the effect that different classification, recognition and learning tasks require different image 

representations in order to extract the desired information from data and interpret them. The 

central challenge when learning from images is thus to find relevant data representative features, 

which are specific to the purpose of the study [129]. In this work, we chose to manually design 

(to “engineer”) the features, which up to 2015 (when this work was started) was the most 

common practice to characterize data, but also requires time and significant domain knowledge 

in the concerned field. A more recent Machine Learning practice that does not require hand-

tuned features is Deep Learning [37, 130, 131]. 

Deep Learning refers to a subset of machine learning and artificial intelligence based on the 

building and the training of large artificial neural networks to represent data. An Artificial 

Neural Network (ANN) is defined as a computational model that approximates the structure 

and functions of biological neural networks. Each individual neuron of the ANN corresponds 

to a nonlinear processing unit. Neurons are arranged in layers within the ANN. Each layer takes  
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Figure 55. Principle of an Artificial Neural Network (ANN). The data is given as input to 

neuron of the input layer (left). Each neuron corresponds to a non-linear treatment unit that 

extracts features from the data. Outputs of all neurons of the input layer are given to neurons of 

the following layer, and so on, until reaching the final output layer. As the data is passed through 

deeper layer of the neural network, higher level parameters and thus features of the data are 

analyzed. 

 

as input the output of the previous layer and is responsible for extracting or grouping features. 

If most modern machine learning-based algorithms present such a structure in layers of 

processing units, learning algorithms, such as ANN architectures, are considered to be deep if 

they include more than 3 hidden layers, if they use modern activation layers, improved 

optimization algorithms and other techniques that make these architecture efficient and 

effective (Figure 55). Deep ANN have become better approximations of actual known neural 

architectures, particularly of the visual cortex, through the use of convolutional layers. As the 

data is passed through successive layers of the network, higher levels parameters of the data are 

grouped and higher levels of abstraction can be represented. For this reason, deep networks can 

model complex relationships between input and output and to extract useful patterns from data, 

without requiring feature engineering.  

In image recognition and classification, the principle of ANN could be vulgarized as follow. 

The input layer of the algorithm takes the initial image as input. The image is considered in its 

entirety, meaning as a spatial distribution of pixel intensities. Each pixel is treated by a neuron 
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of the first hidden layer that passes the corresponding intensity to all the neurons of the second 

hidden layer. Neurons of the second hidden layer analyze the intensity variations between 

neighbor pixels. Neurons of the third hidden layer begin to analyze intensity variations in a 

group of neighbor pixels, allowing to extract first basic shapes (as lines). Neurons of the fourth 

hidden layer analyze the links between them, allowing to extract more complex shapes by 

combination of several lines. The process continues until reaching the final output layer and 

obtaining a complex characterization of the image. 

Whereas ANNs have been proposed many decades ago (the prototype of a single artificial 

neuron, called the Perceptron, was proposed in 1958 [132]) and multi-layer architectures exists 

since the late 1980s [133], they have become popular in recent years in many research fields 

including speech recognition [134], natural language processing [135, 136], pattern recognition 

[137, 138], image and video recognitions [139, 140, 141], and life sciences [142, 143, 144, 145]. 

Deep learning has become a very successful branch of machine learning, that excels when the 

working data are unstructured, sparse, and large [146]. Among scientific fields that investigate 

the usefulness of deep learning, we find medical and pharmaceutical studies [147]. In particular, 

deep learning approaches can help to establish links between the modelling of a molecular 

structure of a chemical and a particular effect of this chemical. Thus, it is especially useful for 

drug design and toxicity prediction [148, 149, 150, 151, 152, 153].  Considering the 

applications of deep learning, in particular for image classification [154, 155], it appears 

promising for improving the test performance. Firstly, it would facilitate and accelerate the 

process of data characterization, in particular for the recognition of complex phenotypes such 

as edemas. Secondly, the idea behind deep learning is to discover multiple levels of 

representation in data, leading to more abstracted concepts. More abstract concepts are 

generally invariant to most local changes of the input data. For categorical concepts as our 

binary classification into healthy and malformed embryos, more abstract representations could 

detect categories that cover more varied phenomena and thus they could have greater predictive 

power [156]. Nevertheless, Deep-Learning approaches require vastly more annotated data than 

classical learning methods (around several hundreds of thousand data used for training). This 

implies a high computing power. Annotations are also typically required to be more precise, 

e.g. including segmentation masks to highlight the regions of interest. Such conditions are not 

easy to obtain and is likely to explain why deep learning techniques have not been commonly 

used in the scope of fish embryo studies for now. For our purpose, a higher number of data 
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would be necessary to investigate the use of deep learning approaches: a dataset 100 times 

larger than those used in this work should be reasonable. 

To conclude, if literature highlights the performance of deep learning approaches in many 

scientific domains including image analysis and pattern recognition, only a few applications are 

related to toxicity screening for now, and none on fish embryo phenotypes classification. 

Nevertheless, the development of high throughput screening assays based on the classification 

of a large number of fish embryos images definitely appears to be adapted to the development 

of deep learning techniques. After gathering a wider set of images, a research axis could consist 

in manually classify cropped images of several complex embryos phenotypes and train a neural 

network on this database. 

 

5.2. The technical challenge of information loss from 3D 

interactive observations under a microscope and 2D 

image-based observations  

The main technical issue raised by our experimental setup is the information loss between what 

can be observed under a microscope by manipulating embryos (termed here 3D interactive, 

since they can be observed from multiple points of view), and what remains visible on the 2D 

acquired images and videos processed by our proposed assays. Indeed, when observing 

embryos under a microscope, embryos are seen in color. The operator can zoom in on details 

and manually make the focus. Finally, he has the possibility to change the position of the 

anesthetized embryos in order to detect all anomalies. Thus, resulting annotations are more 

reliable. In comparison, when images and videos are acquired, the resolution is fixed, and each 

embryo is seen from a single orientation in its well. Depending on the orientation of the embryo 

in the image, some information can be occulted (for example an axial malformation, of a beating 

heart occulted by the dark eyes in eggs). For this reason, quantifying the information loss 

between 3D interactive observations under a microscope and 2D video- or image-based 

observations appears necessary. 
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5.2.1. Assessing the amount of information loss between 3D and 2D 

observations 

To assess the efficacy of an automated assessment method, it is important to quantify the error 

due to image processing (software classification error); the error due to the acquisition process 

(information loss), and the error of the whole anomaly detection method (overall error). 

To do so, two different annotations were considered during our studies: the microscope-based 

annotations, which we consider as the ground truth since the embryo can be observed from all 

possible orientations under a microscope, and image- or video-based annotations, where the 

embryo is observed solely on the acquired image or video. The following assessments were 

made. 

• On the one hand, the software classification error was quantified by comparing the 

programs results to the image- or video-based annotations. In the case of the detection 

of cardiac arrests, the obtained error rate is less than 2% (Section 2). For the axial 

malformations detection assay, the error rate is close to 3%. (Section 3). 

• On the other hand, the information loss was quantified by comparing the two 

annotations. For both the detection of cardiac arrests and the detection of axial 

malformations, they differ by 10-12%. Most of time, these differences correspond to a 

heartbeat that is not visible on video (especially for eggs where embryos are folded into 

the chorion), or an axial malformation that is not visible on images of alevins because 

of the orientation. For the swim bladder detection, no difference was noticed between 

the two annotations, meaning that the swim bladder is visible regardless to the alevin 

orientation. 

• Finally, the overall error was measured by comparing the program results to the 

microscope-based ground truth. For the mortality assessment, the overall error rate as 

measured on 566 newly generated videos was 18% (Section 2.4.4). For the axial 

malformations detection assay, we achieve an overall error rate of 15%. For the swim 

bladder detection, the overall error rate is equivalent to the software classification error 

rate, which is 5%. 

With software classification error rates no higher than 5%, we note that our assays always 

achieve results that are comparable to those obtained by human when the analysis is performed 

on the same data. This validates the relevance of the developed features for each anomaly.  
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When no significant information loss exists between the microscope-based and image-based 

observations, as it is the case for swim bladder detection, we obtain a satisfactory overall error 

rate of 5%. This highlights the fact that, when looking at an anomaly that is visible regardless 

to the alevin orientation on images, an acceptable overall error rate can be achieved. In contrast, 

for the detection of cardiac arrests and axial malformations, the overall error is in majority due 

to the information loss between microscope-based and video- or image-based observations: not 

all heartbeats or all axial malformations that are detectable under a microscope are visible in 

the corresponding videos or images. This results in a decrease in the overall specificity of the 

mortality assay (a few alive alevins are correctly identified) and in the overall sensitivity of the 

axial malformations detection assay, (a few axial malformations are detected). To compensate 

this information loss, malformations must be analyzed in their entirety, so that an embryo that 

presents an anomaly which is visible on image could be detected even if another anomaly is not 

visible on the image. 

 

5.2.2. Global morphological assessment instead of individual 

malformation assessment to limit the information loss from 3D 

to 2D observations 

Since each malformation is properly detected by the program when visible on images, it is 

pointless to try to improve this specific malformation detection. An option to improve the 

overall sensitivity of the test is to develop new features. Nonetheless, any new feature will be 

sensitive to the information loss. To limit this information loss, malformations must be analyzed 

in their entirety. 

Until now, studied malformations have been individually assessed, leading to an overall 

accuracy percentage for each detection test that is more or less satisfying. However, a screening 

test does not necessarily require the detection of each possible abnormality. Screening aims at 

alerting if at least one abnormality is detected, regardless of its type. If an exposed embryo 

shows several abnormalities, the absence of detection of a particular anomaly is not a problem 

since another one is detected. For example, an alevin may have an edema and an axial 

malformation which are difficult to detect on the image, but it may also not have a swim bladder, 

which could be more easily detected by the program. Thus, by combining all developed features 

and by gathering all malformations appearance into a binary pair of classes, i.e., “malformed” 
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vs. “healthy” may increase the sensitivity of the whole assessment method. An alevin with 

several anomalies will have a higher probability to be detected by the program. 

The study described in [41] tends to confirm this hypothesis. In this project, a so-called “Two-

third classification” is performed that consists of (i) classifying embryos images between 

“dead”, “chorion” and “other”, then (ii) classifying images of the “other” category according to 

the presence of defects. For the second classification, each phenotype was considered 

individually, including the “Normal” (healthy) phenotype and each analyzed defect (axial 

malformations, yolk, etc.). Each phenotype leads to a binary classifier, which classifies an 

image as positive if the concerned phenotype is detected and as negative otherwise. Two 

strategies were compared to evaluate the presence of a “Normal” phenotype. The first consists 

of considering that each image that has never been classified in the positive class for any defect 

phenotype belongs to the “Normal” class. If this procedure allows to distinguish each defect of 

alevins, it also tends to accumulate errors made by the other classifiers and thus results in 

extensive over- or under-estimation of the proportion of “Normal” phenotypes. The second 

strategy is to use the binary classifier built for the direct recognition of the “Normal” phenotype. 

This second strategy appeared more robust for this application. 

To test this hypothesis in our project, we should gather all features to build a random forest 

classifier based on a new training set of images of alive alevins where each image will be labeled 

as “malformed” or “healthy” according to the microscope-based ground truth. This means all 

possible malformations will be considered, even those that were not specifically studied in this 

work. Features combination is especially useful as a same feature can be relevant for the 

detection of different malformations. For instance, features related to the size of the alevin 

(Section 3.2.2.1) could be useful to detect large edemas. Some features related to the eyes (gap 

between eyes or eyes circularity in Section 4.2.2) were initially developed for orientation 

identification but can also be used for the detection of eyes malformations. In the first instance, 

we plan to train the classifier on around 500 available labeled images. Then, the classifier should 

be tested on new unlabeled data to estimate the accuracy of the automated malformation 

detection method. Second, as a classification model is more reliable when trained on more data, 

the classifier should be trained on a larger dataset. A training dataset of 3000 data is deemed 

reasonable, but it could be augmented as long as it improves the classification accuracy. If no 

evolution is noticed on the accuracy after three trainings, the classification model should be 

considered as stable, and training should be stopped. 
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This new model is expected to increase the sensitivity of our automated malformation detection 

method. Nonetheless, some alevins with a single malformation will probably remain undetected. 

To estimate the impact on the efficacy of the overall teratogenicity test, we need to assess the 

impact of this information loss on the calculation of the teratogenicity index. 

 

5.2.3. Consequences of the 3D-2D information loss on TI calculation  

The efficacy of the global teratogenicity test depends on its ability to correctly classify 

teratogenic and non-teratogenic chemicals, according to their teratogenicity index TI. Thus, to 

maximize the test performance, it is important to be as precise as possible in the teratogenicity 

index calculation. However, information loss between 3D interactive microscope- and 2D 

image-based observations has an impact on the automated detection of anomalies. Thus, it could 

have an impact on the precision of TI calculation. Detecting a higher number of dead embryos 

than reality for all concentrations of the tested chemical could result in a shift of the dose-

response curve, leading to a decrease of the measured LC50 (Figure 56a). In a similar way, 

automated malformations assessment is expected to be less sensitive than the one obtained with 

a visual assessment made under a microscope, as all malformations are not visible in images. 

This may result in an increase in the measured EC50 (Figure 56b). Combining both LC50 

decrease and EC50  increase could result in a decrease of the calculated TI  (according to 

Equation 1.1). Nonetheless, a change in TI does not necessarily result in a decrease of the global 

test sensitivity. In a further validation step, the efficacy of the manual and of the automated 

methods should be compared, and the impact of automation on the precision of the 

teratogenicity test should be assessed. This is discussed in Section 5.4. 

 

5.2.4. A perspective to overcome information loss for morphological 

assessment: tomography reconstruction for 3D atlas building  

To answer the problem related to the alevin orientation and information loss, a process was 

presented in Section 4 of this manuscript consisting of generating atlases of a healthy alevin 

seen in several orientations. Such atlases represent alevin anatomy. Automated registration to a 

reference alevin together with these atlases has allowed us to easily identify organs and body 

parts. For better accuracy, it would be useful to generate a 3D atlas of a healthy alevin. 
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Figure 56. Consequence of the embryos assessment results on the TI calculation. a: shift of the 

mortality curve when detecting too many dead embryos. b: shift of both the mortality and the 

malformations when detecting too many dead embryos and too many malformed embryos. We 

notice that the shifts result in a reduction of the teratogenicity index TI wich is the ratio between 

LC50 and EC50.  
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In the context of fish-embryos based studies, robust 3D atlas generation has been performed on 

zebrafish using confocal imaging. This optical imaging technique uses a spatial pinhole to block 

out-of-focus light in image formation, allowing to capture multiple two-dimensional images at 

different depths inside the alevin. These multiple images can then be used to perform three-

dimensional reconstruction of alevins [90]. In lieu of confocal imaging, a solution would consist 

of using a sparse tomographic reconstruction from the two dorsal and lateral atlases used as 2D 

projections of the alevin. Tomographic reconstruction is defined as a type of multidimensional 

inverse problem where the challenge is to yield an estimate of a specific 3D system from a finite 

number of 2D projections. In other worlds, the tomography process maps an internal parameter 

of an “object” using cross sections or slices, based on external non-invasive measurements and 

on computer-assisted calculations. The mathematical basis for tomographic imaging was 

introduced by Johann Radon [157, 158, 159] and is widely used in medical imaging [160, 161]. 

A notable example of applications is the reconstruction of computed tomography (CT) images 

where projection images of patients are obtained by propagating X-rays through many 

orientations of the patient [160, 162, 163]. More precisely, the system can be described as 

follow. The patient is placed into a rotating X-ray tube, composed of a X-ray source and a 

detector. The path of X-rays through the patient, from the source to the detector (at a distance 𝑑) 

constitutes the considered line section (Figure 57). When passing through the patient, the X-

rays are attenuated. The exit beam intensity depends on the crossed tissues and can be measured 

by integrating the signal intensity along the line section between X-ray source and the detector: 

𝐼𝑑 = 𝐼0exp [−∫ 𝜇(𝑠; 𝐸̅)𝑑𝑠
𝑑

0
],                                         (5.1) 

where 𝐼0 is the initial X-ray intensity, 𝐼𝑑 is the projected X-ray intensity after crossing the tissue, 

and 𝜇 is the linear attenuation coefficient which is function of the location s along the line 

section and of the effective energy 𝐸̅ at location 𝑠. This process is repeated for each rotation of 

angle 𝜙 of the rotated X-ray tube. 

In our study, the transparent alevin can be assimilated to the patient and the light to the X-rays 

beam. Consider the representation of the alevin on the three-dimensional space represented by 

the orthonormal frame (𝑂, 𝑥, 𝑦, 𝑧). Two perpendicular projections of the alevin are available in 

this frame (the two atlases) and correspond to the dorsal projection supported by the 

plan (𝑂, 𝑥, 𝑧) , and the lateral projection supported by the plan (𝑂, 𝑦, 𝑧) . Each pixel 

𝑝1(𝑥𝑝1
, 0, 𝑧𝑝1

) of the dorsal projection corresponds to an intensity 𝐼𝑑
𝐷(𝑝1). Similarly, each pixel  

https://en.wikipedia.org/wiki/Inverse_problem
https://en.wikipedia.org/wiki/Projection_(linear_algebra)
https://en.wikipedia.org/wiki/Johann_Radon
https://en.wikipedia.org/wiki/Operation_of_computed_tomography#Tomographic_reconstruction
https://en.wikipedia.org/wiki/CT_scan


181 
 

 

 

Figure 57. Tomography principle. The X-rays beam is transmitted along a distance 𝑑 from the 

source to the detector, and is attenuated by passing through the element with an attenuation 

coefficient 𝜇. 

 

 

 

Figure 58. Principle of reconstruction tomography of a 3D alevin from the 2D dorsal and lateral 

projections. a: representation of an alevin in the three-dimensional orthonormal frame 

(𝑂, 𝑥, 𝑦, 𝑧). b: representation of the 2D cross section at position 𝑧𝑝 in the orthonormal frame 

(𝑂, 𝑥, 𝑦). The relation between the point 𝑝(𝑥𝑝, 𝑦𝑝, 𝑧𝑝) and its corresponding intensities in the 

dorsal projection 𝐼𝑑
𝐷(𝑝) and in the lateral projection 𝐼𝑑

𝐿(𝑝) is shown.  
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𝑝2(0, 𝑦𝑝2
, 𝑧𝑝2

)  of the lateral projection corresponds to an intensity 𝐼𝑑
𝐿(𝑝2) . To each point 

𝑝(𝑥𝑝, 𝑦𝑝, 𝑧𝑝) of the three-dimensional space, a doublet of projected intensities (𝐼𝑑
𝐷(𝑝), 𝐼𝑑

𝐿(𝑝)) is 

associated. The predicted intensity of the point 𝑝 can be calculated by interpolation of these two 

projected intensities (Figure 58). Thus, reconstruction tomography could deliver the three-

dimensional internal structure of the entire medaka embryo organism (3D atlas). Note that 

classical reconstruction methods require a large number of projections. However, recent 

iterative reconstruction methods can cope with very few projections. These techniques are 

called tomosynthesis or limited-angle tomography rather than CT reconstruction. They are 

particularly used in medical imaging for breast imaging [164, 165]. 

Once the 3D atlas is built, it should be used for analyzing 2D images of alevins. The orientation 

coefficient 𝑐𝑜𝑟𝑖𝑒𝑛𝑡  previously described could be used to find the plan of the 3D atlas that 

corresponds to the analyzed 2D image. This plan would be considered as the 2D atlas for the 

considered orientation. Then, comparison would be made between the 2D image and this atlas 

to reveal abnormalities. Such process would allow to extend the detection programs already 

developed to the analysis of other organs, by optimizing the precision, and circumventing the 

difficulty linked to alevin orientation [166]. 

 

5.3. Improvement of the teratogenicity test performance  

In this work, we especially have focused on the development of the morphological assessment 

of medaka embryos. To improve its sensitivity, more features must be developed in order to 

analyze other malformations such as edemas. However, the analysis of the embryo morphology 

does not allow to detect every abnormality that could occur during the embryonic development 

of medaka. To detect subtle anomalies and to improve the performance of the teratogenicity 

test, a study could be conducted not only on the morphology, but on the function of organs, 

through functional assessment of embryos. 

 

5.3.1. Case of alevins edemas 

Among malformations that are considered during the visual assessment made under a 

microscope, the detection of edemas remains problematic. An edema is a swelling of the body  
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Figure 59. Variability of edemas appearance for alevins seen in dorsal view in a, and for alevins 

seen in lateral view in b, compared to healthy alevins. Red arrows indicate the location of edema 

which are thinner on the left side, and larger on the right side. 

 

due to an excess of fluid. This malformation represents about 40% of the malformed alevins, 

which is significant. However, even when observing medaka embryos under a microscope, 

edemas are not clearly visible. When visible, the high variability of their appearance 

complicates their detection. An edema can appear at different locations, around the heart 

(pericardiac edema) or within the trunk region. The size of the edemas varies from the most 

prominent swelling to the thinnest bubble (Figure 59). In this paragraphe, we refer to three 

different types of edemas: the large, the intermediary, and the thinnest edemas. If large edemas 

are easy to characterize by measuring the yolk size, other edemas remain difficult to detect, 

which is a problem since they represent around 75% of all edemas. Intermediary edemas refer 

to edemas which are visually detectable for a trained operator on images, but which cause 

minimal swelling of the yolk. They appear in the trunk region, and can easily be mistaken for a 

swim bladder. When seen in dorsal view, they have the form of a slight protrusion at the frontier 

between the trunk and the tail, whereas healthy alevins present a spindlely shape (Figure 59a). 

These edemas cannot be reliably detected with size related features and are difficult to 

characterize. Concerning thinnest edemas, they are especially difficult to detect even under a 

microscope. The information loss due to the 2D acquisition causes these edemas to become 
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invisible on the acquired image. In addition, all edemas are generally more visible on alevins 

seen in lateral view, which represent less than 10% of all embryos (Figure 59b). 

Thus, edema is a frequent malformation that should be considered by the automated method. 

Currently, some developed features related to alevin size, such as maximal width, may be useful 

for the detection of large edemas. Intermediary case of edema could also be detected by 

analyzing the protrusion of the yolk, especially when seen in dorsal view. Features such as 

length and width from the lower part of the trunk, should be extracted. However, most edemas 

remain very difficult to detect with the information loss due to the current acquisition settings. 

Other indirect features should be found to detect such anomaly. 

 

5.3.2. Orientation as a descriptor of alevin health? 

Alevin orientation is a recurrent concern for the correct morphological assessment of medaka 

embryos. Fir this reason, we proposed a method to automatically identify the orientation of 

alevins (described in Section 4.2.2). The program validation involved to build a validation 

dataset representative of the alevins orientations. Images were manually classified into four 

categories: the dorsal orientation class 𝑂𝐷 , the lateral orientation class 𝑂𝐿  and the two 

intermediary orientation classes 𝑂𝐴𝐷  and 𝑂𝐴𝐿  (for “almost dorsal” and “almost lateral” 

respectively). This step highlighted the disproportion between the different alevins orientations 

on images. In particular, two observations were made:  

- when looking at healthy alevins, we noticed that more than 80% are seen in dorsal view 

while less than 4% is seen in lateral view; 

- when looking at all alevins seen in lateral view, less than 15% are healthy. Most of the 

alevins seen in lateral view show important malformations, as axial malformations or 

edemas. Large edemas seem to make the alevin tip over in the lateral side. Similarly, 

axial malformations influence the alevin balance. 

While these observations have not been yet precisely quantified, they raise the hypothesis that 

the mere alevin orientation could be used as an indicator of the presence of a developmental 

anomaly in medaka embryo, even if no obvious malformation is present. Healthy alevins seem 

to naturally align themselves to the dorsoventral position. Alevins seen in lateral view and that 

do not present a visible malformation are sufficiently unusual that they raise the possibility that 
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they are victim of some anomaly that could explain their uncommon position. We could make 

the hypothesis that the disequilibrium is caused by a small asymmetrical edema. Following this 

assumption, alevins detected as seen in lateral view should be considered as malformed. 

 

5.3.3. Eggs particular case  

Assessment of eggs morphology is challenging for both the operator and the automated analysis. 

At 9dpf, if unhatched, the embryo is tightly folded inside the chorion, making the mortality and 

malformations assessment difficult to perform. As described in Section 2.2.4, the program is 

able to automatically distinguish eggs from alevins. However, in the acquired videos and 

images, heartbeat and malformations are generally occulted by the folded embryo’s body, 

making the automated analysis of eggs less reliable. A solution would be to manually remove 

the chorion and thus force the hatching before observation and image acquisition. Unfortunately, 

this process is tedious and complex, especially because medaka chorion is hard and there is a 

risk to wound the embryo during this process. Such lesions could be wrongly attributed to an 

effect of the tested chemical during the analysis. Another option is to use a protease treatment 

(pronase) to digest the chorion. However, this implies to expose embryos to the enzymatic 

solution, which could damage them.  

If no information can be obtained on eggs by assessing the mortality or the presence of 

malformations, it is necessary to obtain information in another way. Medaka eggs normally 

hatch between 8 and 9 days. Thus, a delay in the hatching process at day 9 might be considered 

as a developmental delay. Nevertheless, is such developmental delay leading to a 

developmental anomaly? Under normal husbandry conditions, a medaka embryo with a slight 

hatching delay generally develops without morphological abnormality afterwards. In this case, 

hatching delay is not a developmental abnormality. Nevertheless, when exposed to some 

compounds such as thyroid disruptors, embryos never hatch. In this case, the delayed hatching 

is relevant for teratogenic assessment. How to distinguish both cases? A way to identify a 

developmental delay that is caused by a tested chemical is to compare the number of eggs in 

the exposed population and in the control population. Indeed, a high number of eggs in the 

control group can reveal an artefact problem due to exposure conditions such as a shock during 

transportation or a temperature change. On the contrary, if eggs hatch normally in the control 

group whereas many eggs are present in the exposed population, this reveals an effect of the 

chemical on the development of embryos. In such cases, eggs are generally still not hatched a 
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few days later. This observation tends to confirm a significant effect of the chemical. To 

overcome this difficulty, the teratogenicity assessment must include a measurement of the 

hatching rate for each exposure condition. The hatching rate of exposed embryos would then 

be normalized by the hatching rate of controls. After normalization, if a low hatching rate is 

measured for a concentration of a studied chemical, the chemical could be considered as having 

an effect on medaka embryos at this concentration. As our software is able to distinguish eggs 

from alevins, it is possible to fully automate this process. As images are named depending on 

the exposure condition, hatching rates could be automatically calculated for each condition, and 

normalized by the hatching rate measured in controls. 

 

5.3.4. Quantitative assessment of cardiovascular function 

In our work, we limited the cardiac function assessment to the detection of a heartbeat. 

Nevertheless, other cardiovascular parameters may be indicators of an impaired cardiovascular 

system development such as arrhythmia. A quantitative study of cardiovascular parameters 

(measure of the heart frequency, of the blood flow throughput) would allow to complete the 

qualitative assessment currently performed on the medaka embryos. 

In our method, a signal of the pixel intensity related to time is recorded in the heart region of 

the alevin during 1 second. By recording the same videos during a longer duration, this signal 

would reveal the periodic heartbeat and may allow to measure a heart frequency. Medaka hearts 

normally beat at a frequency of around 130 beats per minute (bpm) [96]. We estimate that at 

least 10 beats are required to properly measure the frequency and detect arrhythmia, meaning 

5 seconds would be sufficient for a control. To ensure the correct analysis of embryos that show 

bradycardia, a 10-second-long video seems reasonable. This is the usual duration for such 

study [84, 89, 96]. The frequency can be measured by Fourier analysis of this signal. This 

method allows to decompose a potentially noisy and complex periodic signal in its frequency 

domain using the well-known Fourier Transform, and thus to extract the frequency which is the 

most represented in the signal (Figure 60). This method is fast to implement and so highly used 

in recent studies for heart frequency extraction [84, 89, 92, 96]. Nevertheless, it limits the 

analysis to the heart frequency. Another study analyzes the intensity signal in the time domain 

to reveal periodic intensity changes: the periodic heartbeat. The frequency is measured by calcu- 



187 
 

 

Figure 60. Representation of a complex continuous one-dimensional signal in the time domain 

and on the frequency domain by application of the Fourier Transform. a: the initial complex 

signal represented in the time domain. b: decomposition of the complex signal into a series of 

sinusoidal signals with increasing frequencies. c: resulting representation of the complex signal 

in the frequency domain. Each peak represents a sinusoidal signal, from the signal with the 

highest magnitude but the lowest frequency (the fundamental signal we want to extract), to the 

signal with the lowest magnitude but the highest frequency (noise). d: representation of the 

whole process of signal decomposition for representation in the frequency domain. 
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lating the average beat-to-beat interval (obtained by measuring the time interval between 

successive local maxima in the signal), and by calculating its reciprocal value. By comparing 

the frequencies measured in exposed embryos and in controls, we could reveal tachycardia and 

bradycardia. The regularity in heart contractions is also analyzed by the authors by measuring 

the Root Mean Square of Successive Differences (RMSSD) which is a time-domain method 

that can be applied for the short-term assessment of heart rate variability, and thus the detection 

of arrhythmia [80]. If this method requires more development, it bring information not only on 

the heart frequency but on the regularity of the heartbeat. 

In [96], the authors also highlight the feasibility of measuring the heart frequency by motion 

analysis performed on videos of the arteries in the alevin’s tail. The motion areas are segmented 

and the optical flow is analyzed using the Färneback’s algorithm [167]. Then, the analysis of 

speed variation in the blood flow allows to detect the heart contractions and to measure a heart 

frequency. This observation is relevant as we plan to investigate blood flow analysis from video 

sequences of the blood vessels of the embryo. Indeed, as illustrated in [81], blood vessels can 

be observed with high-resolution video to estimate the erythrocytes (red blood cells) velocity. 

In this study, a black and white CCD camera is used to record high-resolution videos of under-

pigmented zebrafish mutants observed with an inverted microscope using infrared illumination 

for optimizing embryo settling. Videos frames are interlaced, meaning two fields of lines are 

generated for a same frame: a field displaying the odd lines acquired during 20ms, and a second 

field displaying the even lines, acquired during the following 20ms. As erythrocytes move 

between the two fields acquisition, the subtraction of both fields of a same frame leads to the 

generation of a shift vector. The vector length gives the distance travelled by the cells during 

the 20ms. Extracting the motion from blood vessels also shows the vessel contour. Thus, the 

vessel diameter can be measured by analyzing the intensity profile on the vessel cross-section. 

Combining velocity estimation and vessel diameter could bring a quantitative information on 

the blood flow. 

Nevertheless, for blood vessels analysis, the spatial and temporal resolution must be sufficiently 

high to ensure motion smoothness, which requires the use of a high-resolution high-speed 

camera (In [96], the resolution is 2µm per pixel and the recorded frame rate is 100fps). The 

current experimental settings are not compatible with these requirements (about 12µm of 

resolution and a frame rate of 30fps) so additional steps must be added for such study. As many 

endpoints are already analyzed on day 9, involving a high experimentation time, additional 

steps cannot be performed this day. For this reason, we plan to record 10-second long videos of 
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6dpf embryos while still in egg form, observed under a motorized epifluorescence upright 

microscope (NIKON Eclipse Ni), and with a high-resolution camera recording 4 megapixels’ 

images at 100 frame per second (Hamamatsu ORCA-Flash4.0 V3 Digital CMOS C13440-

20CU). At this stage of development, the embryo is still in egg form, so easiest to manipulate 

as it does not move. We avoid the use of anesthesia that might disrupt the heart frequency. The 

embryo’s yolk is still prominent and blood vessels are easily visible. Information about the heart 

frequency and its regularity might be extracted from the analysis of periodic changes in the 

intensity signal in the vessels [96]. Moreover, at 100fps, a frame is recorded every 10ms, which, 

according to [81], is sufficient to extract shift vectors and cells velocity estimation. Thus, an 

estimation of the blood flow might be obtained by combining the cells velocity and the diameter 

of blood vessels. However, we know that studies aiming to analyze the blood flow and to extract 

a heart frequency from blood vessels are usually performed on arteries, where especially veins 

are visible on the yolk at this stage of development. If expected parameters cannot be measured 

by this process, the analysis of the periodic intensity variation should be performed on the heart 

region to extract the heart frequency and detect arrhythmia as done in [80]. 

 

5.3.5. Behavioral assessment  

Subtle abnormalities are not visible under a microscope. We may expect to detect some of them 

by another indirect way. We make the assumption that a developmental anomaly of the nervous 

system leads to an alteration of the embryo’s behavior. Based on this postulate, several 

laboratories have addressed the issue of behavioral analysis [168, 169, 170]. Behavior analysis 

is based on the observation of the effect observed on embryo’s behavior when subject to a light 

stimulus. It is mostly conducted on zebrafish. Two types are distinguished: Photo Motor 

Response (PMR) is measured before hatching, and Late Motor Response (LMR) is measured 

after hatching. On controls, PMR allows to detect the reflex movement provoked by the light 

change, while LMR allows to detect the decrease in the alevin activity when passing from a 

dark to a bright period. As most of embryos hatched the day of the assessment, the LMR 

measurement is the most adapted to our experimental setup. In our laboratory, an assessment 

test was developed that may reveal differences in 9dpf medaka alevins behavior that were 

exposed or not to teratogenic chemicals. Embryos are subject to a succession of bright and dark 

periods and parameters related to their motion, such as the duration spent in slow or fast motions, 

are automatically measured with a video acquisition system (Section 6.1.3 in the Appendix). 
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Comparing control alevins to alevins that were exposed to neuroactive chemicals revealed 

variations of some motion-related parameters that could be used as features for the behavioral 

assessment of medaka embryos. Nevertheless, a lot of data are recorded during this process and 

most of them are not interpreted yet. A supervised machine learning method could be tested to 

discriminate embryos that were exposed to neuroactive drugs or not, according to the presence 

of an effect on alevin locomotion. Behavior analysis should be performed on a set of embryos 

exposed to neuroactive drugs, and on controls, to measure parameters related to locomotion 

(the features). Data should be labeled according to the exposure condition. A model could be 

trained on these labeled data and tested on another set of unlabeled data. 

 

5.4. Assessment of the teratogenicity test  

An automated method has been developed for the assessment of chemical teratogenicity on 

medaka fish embryo. This method allows to assess the embryo mortality and to detect some of 

their malformations. To increase its sensitivity, the test may be completed by adding the 

analysis of new features representative of other malformations, of functional and behavioral 

alterations (Figure 61). The final validation of the automated teratogenicity assessment should 

assess the practical use of the automated method and its benefit compared to the manual method 

described in Section 1.1.3.2. We expect the teratogenicity assessment to detect and reject strong 

teratogenic chemicals while maximizing specificity. Thus, the performance of the automated 

and of the manual methods, meaning their ability to discriminate teratogenic from non-

teratogenic chemicals, should be assessed and compared. 

To do so, a list of reference chemicals, i.e., chemicals whose the teratogenic effect is known on 

human, will be used. For each chemical, a concentration range will have to be considered, 

including a control plate. The efficacy of the manual method will be assessed as described in 

Section 1.1.3.2. For the automated method, all recorded images and videos will be considered, 

including the unusable images and videos, eggs and alevins, alive and dead embryos, 

malformed and healthy embryos. The automated mortality and malformations assessments will 

have to be applied on the whole set of images and videos, allowing to identify each embryo as 

being an egg or an alevin (or untreated if the data is unusable), and each alevin as being 

malformed or healthy. The classification between alive and dead embryos will be used to 

calculate a LC50, and the classification between malformed and healthy embryos will be used  
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Figure 61. Flowchart of the final automated teratogenicity assessment assay. Each embryo 

should undergo behavioral assessment, cardiovascular assessment and morphological 

assessment to detect abnormalities and calculate a teratogenicity index, which will be used for 

the detection of teratogenic chemicals.  
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to calculate a EC50. The ratio between the two indices will give the teratogenicity index TI. A 

TI threshold should be determined that allows to discriminate teratogenic from non-teratogenic 

chemicals as well as possible. The performance of both manual and automated methods should 

be compared in terms of overall accuracy, sensitivity and specificity to assess the benefit of the 

automated method compared to the manual method. 
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6. Appendix 

 

Here, complementary data used during this work are exposed. Section 6.1 details the material 

and methods used for embryo culture, chemical exposure, behavioral assessment and image 

acquisition for morphological assessment. Section 6.2 describes the development of a 

personalized sample rack for optimization of the image acquisition conditions. 
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6.1. Material and methods  

6.1.1. Embryo culture  

Medaka eggs are bought from Amagen (UMS 3504 CNRS / UMS 1364 INRA). They are 

incubated in culture medium composed of: 

- 17.1mM NaCl, 

- 4.02mM KCl, 

- 3.6mM CaCl2, 

- 3.3mM MgSO4, 

dissolved in osmosis water. Methylene blue is added to the culture medium (about 4mg/L) for 

its antibacterial property. When medaka eggs are received at the laboratory, they are observed 

under a stereomicroscope (model Leica MZ 12 5 with objective Plan APO 0.63 ×) to eliminate 

dead eggs. Embryos are incubated for 9 days at a temperature of 27°C and subject to a light 

cycle composed of 14 hours of light and 10 hours of obscurity. The incubation medium is 

replaced every 2 days during these nine days using a Hamilton MICROLAB STAR automated 

device. 

 

6.1.2. Chemical exposure  

At day one, alive eggs at blastula stage (Section 1.1.2.2) are manually placed into a 24-well 

plate, one egg per well, and incubated in 2mL of culture medium containing increasing 

concentrations of the chemical of interest.  Five concentrations are tested for each chemical, 

plus a zero concentration for control. One plate is prepared for each concentration, for a total 

of six plates per chemical. Chemicals that were used for this study are listed in Table 11. 
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Chemical name CAS number 

Amantadine hydrochloride 665-66-7 

Amaranth 915-67-3 

6-Aminonicotinamide 329-89-5 

Azelaic acid 123-99-9 

Caffeine 58-08-2 

Captopril 62571-86-2 

Colchicine 64-86-8 

Cromolyn sodium 15826-37-6 

Cyclopamine 4449-51-8 

Cyclophosphamide 6055-19-2 

Dimethyl Sulfoxide 67-68-5 

Ethylene-d4 thiourea 106-18 

5-Fluorouracil 51-21-8 

Hydroxyurea 127-07-1 

Hydroxyzine dihydrochloride 2192-20-3 

Lactitol 585-86-4 

L-Ascorbic Acid 50-81-7 

Lithium chloride monohydrate 231-212-3 

Metoprolol 5692-17-7 

Sodium cyclamate 139-05-9 

Urethane 51-79-6 

Table 11. List of chemicals used during this project. 

  

https://www.sigmaaldrich.com/catalog/search?term=665-66-7&interface=CAS%20No.&lang=en&region=US&focus=product
https://www.sigmaaldrich.com/catalog/search?term=915-67-3&interface=CAS%20No.&lang=en&region=US&focus=product
https://www.sigmaaldrich.com/catalog/search?term=329-89-5&interface=CAS%20No.&lang=en&region=US&focus=product
https://www.sigmaaldrich.com/catalog/search?term=123-99-9&interface=CAS%20No.&lang=en&region=US&focus=product
https://www.sigmaaldrich.com/catalog/search?term=62571-86-2&interface=CAS%20No.&lang=en&region=US&focus=product
https://www.sigmaaldrich.com/catalog/search?term=64-86-8&interface=CAS%20No.&lang=en&region=US&focus=product
https://www.sigmaaldrich.com/catalog/search?term=15826-37-6&interface=CAS%20No.&lang=en&region=US&focus=product
https://www.sigmaaldrich.com/catalog/search?term=4449-51-8&interface=CAS%20No.&lang=en&region=US&focus=product
https://www.sigmaaldrich.com/catalog/search?term=6055-19-2&interface=CAS%20No.&lang=en&region=US&focus=product
https://www.sigmaaldrich.com/catalog/search?term=67-68-5&interface=CAS%20No.&lang=en&region=US&focus=product
https://www.sigmaaldrich.com/catalog/search?term=51-21-8&interface=CAS%20No.&lang=en&region=US&focus=product
https://www.sigmaaldrich.com/catalog/search?term=127-07-1&interface=CAS%20No.&lang=en&region=US&focus=product
https://www.sigmaaldrich.com/catalog/search?term=2192-20-3&interface=CAS%20No.&lang=en&region=US&focus=product
https://www.sigmaaldrich.com/catalog/search?term=585-86-4&interface=CAS%20No.&lang=en&region=US&focus=product
https://www.sigmaaldrich.com/catalog/search?term=139-05-9&interface=CAS%20No.&lang=en&region=US&focus=product
https://www.sigmaaldrich.com/catalog/search?term=51-79-6&interface=CAS%20No.&lang=en&region=US&focus=product
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6.1.3. Behavioral assessment  

After a 9-day exposure, the behavior of medaka embryos is assessed using the 4th generation 

model of Zebrabox video tracking system (Viewpoint, Lyon, France). The 24-well plates 

containing embryos are individually placed into the Zebrabox. The acquisition system is 

illustrated in Figure 62 and is composed of: 

• an infrared camera that acquires grey levels images even during dark periods, by 

receiving the light produced by an infrared LED; 

• a filter in front of the camera allows to avoid the captor saturation during light periods; 

• two mirrors that allow to lengthen the optical path and to record a video of the whole 

plate; 

• a diffusing light support to homogeneously illuminate the plate. 

When placing in the system, the embryos are left 10 minutes in light to limit the impact of the 

environment change on embryos behavior. The embryos are then subjected to a light stimulus 

which is a succession of 30 seconds of light periods and 30 seconds of dark periods. The 

embryos movement is recorded during 6 minutes. The recorded video is simultaneously treated 

by the image processing software Zebralab for the real time tracking of the embryos in their 

respective well. The tracking appears in real time in red on the video. In particular, three 

different movements are distinguished which are fast movement, slow movement and absence 

of movement (static). 

 

 

Figure 62. Zebrabox video acquisition system for alevin behavioral analysis. 
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Eleven parameters are analyzed during the behavioral assessment: 

- largdist ON, largdist OFF and largdist Tot are the distances in fast movement spent by 

the embryo during light period, during dark period and the total respectively; 

- smldist ON, smldist OFF and smldist Tot are the distances in slow movement spent by 

the embryo during light period, during dark period and the total respectively; 

- The total travelled distance totdist (sum of largdist Tot and smldist Tot); 

- largdur, smldur and inadur are the duration spent by the embryo in fast movement, the 

duration in slow movement and the duration being static respectively; 

- inact is the number of times the embryo is static. 

 

6.1.4. Image acquisition for morphological assessment  

The ninth day of incubation, 1.5mL of incubation medium is removed from each well before 

anesthetizing fish embryos with 70µL of tricaine (final concentration of 0,18 g/L in a total 

volume of 0.57mL). The plate is then placed under an acquisition platform composed of a light 

platform, for underneath illumination of the plate, and a moving monochrome camera (objective 

Nikkon AF MICRO NIKKOR 60mm 1:2:8D Kipon NIX-C). Embryos are manually centered 

on the well. Then, image and video recording is automatically performed under the control of 

a Visilog Visual Basic script. For each well, we record a 8-bit image of the whole well of size 

1500×1500 pixels, and a 8-bit video sequence at 30frames per second with the same dimensions 

over a duration of 1 second. The image resolution is about 12µm. Platform control and image 

data acquisition were performed using FEI Visilog 7. 
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6.2. Optimization of image acquisition: development of 

a personalized sample rack  

6.2.1. Context  

The teratogenicity assessment assay described in this thesis analyzes medaka embryos placed 

in flat bottom 24-well plates. Before image acquisition, embryos are anesthetized and finally 

fall at the bottom of the well. Most of time, the embryo touches the wall of the well. As 

explained in Section 2.2, such embryo appears partially occulted or deformed because of some 

border effects. Indeed, a healthy embryo may take the curved shape of the wall and be wrongly 

detected as malformed. Such artefacts can cause important bias for image analysis. The program 

developed allows to recognize and to reject such image. To avoid the rejection of too many 

images, each embryo is manually centered in its well before acquisition. This process is tedious 

and time-consuming. To optimize this step, we developed a rounded bottom 24-well plate. In 

such well, the anesthetized alevin falls at the center of the well without manual intervention. 

 

6.2.2. Objective and constraints  

Because of the different automates used during the test, the development of such device asks to 

meet shape and weight requirements (Figure 63a). 

To be compatible with the image and video acquisition platform, the device must be transparent 

so that light can cross the wall and spread inside the wells. The rounded bottom of the wells 

must be perfectly smooth as any defect or shadow on the curved wall would be visible on the 

acquired image. In particular, conical bottom are forbidden as the angle at the center would be 

visible and superimposed to the embryo on the acquired image. 

For incubation process, a lid is needed to limit medium evaporation. This lid must allow gas 

exchanges. Adsorption of the chemical’s molecule on the plate walls also has to be as limited 

as possible. Two solutions are the use of polypropylene single use plates (low adsorption), or 

the use of glass plates reusable after a cleaning process. 

A first prospection revealed that there is no plate that corresponds to all these criteria in the 

market. 
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Figure 63. Conception of the rounded bottom 24-well plates. a: standard 24-well plate 

COSTAR® used as model for shape requirements. b: design of the device by a computer-aided 

design software. 
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6.2.3. Description of the device  

To answer to all technical constraints, we decided to design and develop a sample rack 

specifically adapted to our needs. 

Several prototypes of the sample rack have been conceived (Figure 63b).  

• The first version of the prototype V1 is made in polymethyl methacrylate (PMMA), has 

24 holes with ledges, adapted to the inclusion of test tubes. Horizontal grooves were 

carved on both sides to ensure the grip during the rack manipulation by the Hamilton 

MICROLAB Star device (Figure 64a and Figure 65a). 

• A second version of the prototype V2 was designed with holes in between the wells for 

weight optimization and proper detection of alevins during the behavioral analysis as 

explained in Section 6.2.4.1 (Figure 65b). 

• A third version V3 limits the well movement with silicone ring-shaped seals. It was 

designed for optimization of image acquisition described in Section 6.2.4.2 (Figure 65c). 

In the market, it is feasible to find test tubes with the expected width and thickness, but not with 

the expected length of 2cm. Two solutions are possible: either truncate pre-existing test tubes 

to the expected length or to make them up from scratch by the glass maker (involves a mold 

creation). For the first test, sodocalcic glass test tubes were provided by Dutscher society and 

truncated by V.E.R.A.L. glass-maker society (Figure 64b). After the prototype validation, the 

creation of a tube mold could be planned depending on the prices. 

For rack covering, standard covers COSTAR® Universal square lid are supplied by Corning 

society (Figure 64a). 
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Figure 64. First version of the sample rack developed. a: sample rack with the standard 

COSTAR® cover. b: example of a truncated test tube in sodocalcic glass.  

 

 

 

Figure 65. Three versions of the developed sample rack. a: the sample rack V1. b: the drilled 

version of the sample rack V2. c: the sample rack V3 with silicone ring-shaped seals.  
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6.2.4. Prototypes validation in experimental conditions  

6.2.4.1. Alevins behavioral analysis 

When assessing the behavior using the prototype V1, the curved wall of the tubes causes the 

deviation of the light waves between light table, the air and the glass of the tubes (refraction 

phenomenon illustrated in Figure 67). The incident ray arrives on the medium boundary with 

an angle of incidence 𝑎𝑖, and is deflected into a refracted ray with an angle of refraction 𝑎𝑟. 

This phenomenon leads to a thick dark circle all around the well borders, as fewer light rays are 

received by the camera in this region (Figure 66b), compared to the image obtained by using a 

standard 24-well plate (Figure 66a). The pixel intensity in this circle is similar to the alevin 

intensity. As the alevin tracking is based on the detection of the variation of pixel intensity in 

the well, the software is unable to detect the alevin in the dark circle. Moreover, the presence 

of the dark circle causes a strong contrast in the circle border, which is very sensitive to 

vibrations due to external environment. These vibrations cause a high pixel intensity variation 

in the circle frontier, that is interpreted by the program as a movement of the alevin. 

 

 

Figure 66. Results of the acquisition during behavioral assessment. a: classical 24-well plate 

with flat bottom. b: sample rack V2. c: sample rack V2 immerged in water. We notice that the 

dark circles due to light refraction on the curved wall of the wells are reduced when the sample 

rack is immerged. 
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Figure 67. Refraction of light on the glass tubes. Upright incident rays come from the light 

platform located below the plate. At the center of the tube, rays are perpendicular to the glass. 

Thus, they are not deviated. On the curve, rays are not perpendicular. They are deviated twice: 

at the first interface between air and glass and at the second interface between glass and air. 

This results in an area where no ray is captured by the camera. 

 

 

To prevent the appearance of this circle, we decided to immerge the device in water to increase 

the value of the refracted angle 𝑎𝑟, and thus to partially realign the incident and the refracted 

rays. To do so, the second version of the rack was designed. This rack V2 was drilled to allow 

the immersion of wells into the water, avoiding air bubbles to be stuck between the glass wall 

of the wells and the rack itself (Figure 66c). 

A behavioral analysis was performed with this device on alevins exposed to increasing 

concentrations of an anesthetic (tricaine). The effect was revealed y the resulting dose-response 

curve, which allows to validate the use of the device in experimental conditions. 
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6.2.4.2. Alevins morphological analysis 

When images are recorded with the acquisition platform described in Section 6.1.4, and with 

the sample rack V2, all alevins are perfectly centered in the sample rack. Nevertheless, all 

truncated test tubes, used as wells, present an imprint in their center. This imprint is visible on 

the acquired image and is systematically superimposed to the centered alevins  (Figure 68). As 

the image properties of the imprint and the alevin are similar, the image processing program is 

not able to distinguish them. 

To remove the imprint from the well bottom, we decided to acquire two images of each well: 

one with the alevin inside and one without. The aim is to subtract the image of the empty well 

from the image with the alevin. 

 

 

Figure 68. Example of image acquired for the morphological assessment with sample rack 

V2. The alevin appears centered in the well without any manual intervention. The red arrow 

shows the imprint present at the bottom of the well and that appears superimposed with the 

alevin. 
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To ensure the two images are perfectly aligned before the subtraction, two different methods 

were tested: 

- the physical method which consists in adding silicone ring-shaped seals inside the rack 

holes so that the truncated test tubes are maintained unmoving inside their rack holes 

(sample rack V3 shown in Figure 65c). Tests revealed that the seals are not sufficient to 

ensure the wells alignment in the two successively acquired images, so this method was 

not retained;  

- the computerized method which consists of image registration.  

To perform image registration, points of reference are required to make the correspondence 

between the two images we want to register. Thus, glass wells were marked by pen. Then, two 

images of the sample rack V2 were successively acquired with and without alevins. The image 

with the alevin is denoted 𝐼𝑎𝑙𝑒𝑣𝑖𝑛 and the image of the empty well is denoted 𝐼𝑒𝑚𝑝𝑡𝑦. Marks are 

segmented in the two images, leading to the two binary masks 𝑀𝑎𝑙𝑒𝑣𝑖𝑛  and 𝑀𝑒𝑚𝑝𝑡𝑦 . The 

transformation 𝑇𝑀𝑎𝑙𝑒𝑣𝑖𝑛→𝑀𝑒𝑚𝑝𝑡𝑦  required to pass from the mask 𝑀𝑎𝑙𝑒𝑣𝑖𝑛 to the mask 𝑀𝑒𝑚𝑝𝑡𝑦. 

This transformation is then applied to 𝐼𝑎𝑙𝑒𝑣𝑖𝑛, leading to the registered image 𝐼𝑟𝑒𝑔
𝑎𝑙𝑒𝑣𝑖𝑛 that can 

be subtracted to 𝐼𝑒𝑚𝑝𝑡𝑦. The result is denoted 𝐼𝑓. This process is illustrated in Figure 69. 

 

 

 

 

Figure 69. Removing process of the well imprint by image registration and image subtraction. 
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Several steps still need to be performed. The process must be completed to obtain a proper 

image of the alevin without the imprint. Then, the analysis program must be tested on the 

resulting image to assess the impact of the imprint removing on the alevin segmentation and 

classification efficacy. Finally, the process will have to be performed on a more important 

number of images (about 30 images at least) for to validate the method.  

 

6.2.5. Conclusion and perspectives  

Several versions of a sample rack have been conceived and tested in different experimental 

conditions corresponding to the steps of the teratogenicity test. Currently, the use of the sample 

rack V2 was validated for the behavioral assessment and still need to be validated for the 

morphological assessment. The perspective at medium term is to test if image subtraction 

allows the correct segmentation and analysis of the alevin. If so, this step could be added as a 

pre-processing step to a future version of the software. At long term, the behavior and 

morphological analysis will have to be performed in a significant number of data by testing 

reference chemicals (positive and negative).  
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