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IUAPC = union for pure and applied 

chemistry 
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KIE = kinetic isotope effect 

KR = kinetic resolution 

L = ligand 

LDA = Lithium diisopropylamine 

M = metal 

m-CPBA = meta-chloroperoxybenzoic acid 

MNBA = 2-methyl-6-nitrobenzoic anhydride 

Ms = mesyl 

NBO = Natural Bonding Orbital 

NBS = N-bromo succinimide 

NBSA = N-((S)-1-(4-(tert-butyl)phenyl)-2-((R)-

p-tolylsulfinyl)ethyl)acetamide 

NCI = Noncovalent interactions 

NIS = N-iodo succinimide 

Ns = nosyl 

Nu = Nucleophile 

o = ortho 

m = meta 

p = para 

PCPA = (E)-3-((1S,2S)-2-propylcyclopropyl) 

acrylic acid 

Phth = phthaloyl 

Piv = trimethylacetyl 

PMP = para-methoxyphenyl 

pTol = para-tolyl 

rt = room temperature 

SAM = S-adenosyl-methionine 

SCF = Self-consistent field 

T °C = Temperature in Celsius 

T3P = Propylphosphonic anhydride 

TADDOL = α,α,α',α'-tetraaryl-2,2-

disubstituted 1,3-dioxolane-4,5-dimethanol 

TBAB = tert-butyl ammonium bromide 

TBDMS = tert-butyldimethylsilyl 

tBu = tert-butyl 

TDG = transient directing group 

TEMPO = 2,2,6,6-Tetramethylpiperidinyloxyl 

TES = triethylsilyl 

Tf = triflate 

TFA = trifluoroacetic acid  

THF = tetrahydrofuran 

TM = transient mediator 

TMEDA = N,N,N’,N’-

tetramethylethylenediamine 

TMS = trimethylsilyl 

TMSO = tetramethylene sulfoxide 

Tol = Toluene 
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1. Généralités 

Pendant de nombreuses années, les liaisons C-H aliphatiques ont été considérées comme 

dormantes, très difficilement exploitables dans le contexte de la chimie organique.[1] Le défi le 

plus important en considerant la fonctionnalisation directe via la conversion d'une liaison C-H 

vers une liaison C-X est de sélectionner une liaison C-H parmi toutes celles que contient une 

molécule. L’approche la plus utilisée à ce jour est l’utilisation d’un groupement directeur, qui 

permet, en se chélatant à un métal, de diriger l’activation d’une liaison C-H en particulier. Les 

premiers groupements directeurs développés, basés sur des pyridines fortement coordinantes 

ont peu à peu laissé place à d’autres auxiliaires plus modulables. En particulier, la découverte du 

potentiel particulier des groupements bicoordinants tels que la 8-aminoquinoline, l’acide 

picolinique ou la 2-(methylthio)aniline a permis de réaliser des avancées majeures dans 

l’activation de liaisons C(sp3)-H catalysée par un métal de transition (Figure 1).[2–5]  

 

Figure 1 Exemples de groupements directeurs bicoordinants utilisés pour l'activation de liaisons C-H 

De plus, la chiralité et son contrôle occupent une place majeure dans l’industrie pharmaceutique 

car deux énantiomères peuvent avoir des propriétés biologiques bien différentes. Ainsi le 

thalidomide, médicament utilisé dans les années 1950 comme anti-nauséeux chez les femmes 

enceintes, entraînait également de graves malformations chez le fœtus causées par l’un de ses 

énantiomères.[6] Dans ce cas particulier, même une synthèse asymétrique n’a pas résolu le 

problème puisque le centre stéréogène se racémise in vivo (Figure 2).[7] Plus de 50% des 

nouveaux médicaments ayant obtenu une autorisation de mise sur le marché après 2000 sont 

énantiopurs et il existe de nombreux exemples où un énantiomère a montré un effet 

thérapeutique supérieur à l’autre.[8] 

 

Figure 2 Structure de la thalidomide 
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Depuis quelques années, dans notre laboratoire, nous nous intéressons à l’activation 

asymétrique de liaisons C-H en utilisant un sulfoxyde comme inducteur chiral hautement 

modulable. Par exemple, l’utilisation du p-tolylsulfoxyde à la fois comme groupement directeur 

de fonctionnalisation C-H et comme auxiliaire de chiralité a permis d’accéder à des motifs 

triaryles à double chiralité axiale avec d’excellents rendements et de hautes puretés 

diastéréomériques (Figure 3).  

 

Figure 3 Synthèse d'un ligand à double axe de chiralité 

Les composés obtenus peuvent être utilisés en tant que précurseurs de ligands pour des 

transformations asymétriques comme illustré dans la Figure 4.[9–11] La conception et l’utilisation 

de ligands originaux similaires est en cours de développement. 

 

Figure 4 Exemples de ligands à chiralité axiale synthétisés au laboratoire et leurs applications   
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Par ailleurs, les voies de synthèse pour accéder à des sulfoxydes énantiopurs étant de plus en 

plus efficaces, ceux-ci sont aujourd’hui couramment utilisés en tant que ligands pour l’induction 

asymétrique de réactions métallo-catalysées, par White ou Itami par exemple (Schéma 1).[12,13]  

 

Schéma 1 Cyclisation oxydante asymétrique utilisant un ligand sulfinyloxazoline chiral 

Un autre axe de recherche dans notre laboratoire porte sur la synthèse totale énantiosélective 

de produits naturels. Ainsi, la chiralité du sulfoxyde a été exploitée pour permettre d’accéder à 

des squelettes complexes et sa modularité a permis de parvenir à des synthèses efficaces.[14] 

 

Schéma 2 Synthèse du fragment de Paquette, intermédiaire clé dans la synthèse de l'amphidinol 3 

En nous inspirant à la fois des travaux du laboratoire et de Babu qui décrit l’utilisation d’un 

groupement directeur d’activation de liaisons C-H de type thioaniline,[3] nous nous sommes 

intéressés au développement de stratégies de fonctionnalisation C(sp3)-H stéréosélectives en 

utilisant une sulfinylaniline énantiopure à la fois comme inducteur de chiralité et groupement 

directeur d’activation de liaisons C-H (Figure 5). C’est dans ce contexte que s’inscrit le projet Sulf-

As-CH. 

 

Figure 5 Rôle du sulfoxyde en tant qu'inducteur de chiralité pour l’activation de liaisons C-H 
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2. Résultats et discussions 

Ces travaux ont été initié par Dr Faouzi Chahdoura, post-doctorant, ainsi qu’Arnaud Ferraro, 

étudiant en Master 2. La fonctionnalisation des cyclopropanes a été réalisée avec la participation 

de Clémence Rose, étudiante en Master 2. La synthèse totale de l’hoshinolactame a été réalisée 

avec la participation de Pauline Poutrel, étudiante en Master 2. 

Afin de débuter ce projet, nous avons mis au point un nouvel auxiliaire chiral, bicoordinant, APS. 

Les premiers travaux en catalyse effectués au laboratoire ont porté sur la fonctionnalisation 

diastéréosélective de cycloalcanes, en particulier cyclopropane, en utilisant une copule chirale 

de type sulfinylaniline (Schéma 3). 

 

Schéma 3 Premier test d'arylation diastéréosélective utilisant une copule chirale de type sulfinylaniline 

Les essais catalytiques préliminaires effectués avec le 4-iodoanisole en tant que partenaire de 

couplage n’ont pas conduit au produit souhaité et ceci quel que soit le catalyseur, la base, 

l’additif ou le solvant utilisés. Toutefois, en changeant le partenaire de couplage pour la 4’-

iodoacetophenone dans les conditions décrites par Babu, le produit souhaité a été obtenu avec 

un rendement encourageant de 21%. Par ailleurs l’utilisation du 1,1,1,3,3,3-

hexafluoroisopropanol (HFIP) comme solvant a permis de nettement améliorer le rendement 

jusqu’à 80%, et ce à une température plus faible de 80 °C.[15] Toutefois, la diastéréosélectivité de 

la réaction est faible (excès diastéréomèrique de 20%). 

Afin d’améliorer l’induction asymétrique, nous avons tenté d’optimiser l’encombrement du 

sulfoxyde en modifiant le groupement p-tolyl. De manière intéressante, en fonction des 

différents substituants sur le soufre (p-tolyl, t-butyl, cyclohexyl, 3,5-dimethylphenyl) le 

logarithme de l’excès diastéréomérique log (d.e.) est proportionnel à la conversion dans les 

mêmes conditions réactionnelles, avec un coefficient de corrélation R² > 0,99 (Figure 6). 
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Figure 6 Corrélation entre encombrement stérique du groupement directeur, rendement et stéréosélectivité 

Ainsi, une conversion et un excès diastéréomérique élevés n’ont malheureusement jamais pu 

être atteints. A la fois, les rendements obtenus avec le substituant p-tolyle et la possibilité 

d’isoler séparément les deux diastéréomères obtenus nous ont incité à choisir le motif ortho-(p-

tolylsulfinyl)aniline comme groupement directeur. Nous avons ainsi réalisé l’arylation et 

l’alkylation de substrats aliphatiques cycliques avec d’excellents rendements et des rapports 

diastéréomériques modérés à élevés (Schéma 4).  

 

Schéma 4 Panel de transformations sur les cycloalcanes 
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Nous avons également pu isoler le diastéréomère majoritaire du palladacycle formé lors de la 

réaction d’arylation du cyclopropane et obtenir des monocristaux qui ont été analysés par 

diffraction des rayons X (Figure 7). Un de nos produits d’arylation ayant également cristallisé, les 

structures obtenues ont permis d’élucider une partie du mécanisme réactionnel par des études 

DFT. L’ensemble de ces résultats sera détaillé dans le Chapitre 2 et a fait l’objet d’une publication 

scientifique dans Chemistry – A European Journal en 2016, sélectionnée comme Hot Paper.[16] 

 

Figure 7 Structure aux rayons X du palladacycle isolé 

À la suite de ces travaux, nous avons développé une voie de synthèse de produits naturels 

possédant un squelette cyclopropane. Nous avons notamment synthétisé l’hoshinolactame, un 

produit naturel découvert en 2017 et possédant d’intéressantes propriétés médicinales contre la 

maladie du sommeil.[17] Après introduction de notre copule chirale sur un acide 2-

propylcyclopropane-1-carboxylique, nous avons effectué une transformation difficile : 

l’oléfination directe stéréospécifique. Après cette étape, nous avons pu déprotéger 

sélectivement la copule chirale dans des conditions très douces ;[18] celle-ci a pu être recyclée 

sans perte d’excès énantiomérique et avec un excellent rendement. Une décarboxylation dans 

les conditions de Barton-Motherwell[19] suivie d’une saponification puis d’une estérification nous 

a permis d’obtenir le composé désiré avec un excellent rendement global d’environ 30% et une 

totale pureté énantiomérique (Schéma 5).  
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Schéma 5 Synthèse totale diastéréospécifique de l'hoshinolactame 

Cette méthodologie de synthèse innovante, également appliquée à d’autres cyclopropanes 

naturels comme l’acide cascarillique ou la grenadamide, est également détaillée dans le Chapitre 

2 et a fait l’objet d’une publication scientifique dans Organic Chemistry Frontiers en 2018.[20] 
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En parallèle de ces travaux, nous nous sommes intéressés à l’extension de notre méthodologie 

aux substrats aliphatiques linéaires. Après optimisation des conditions réactionnelles, en 

particulier les solvants utilisés, nous avons réalisé l’arylation et l’acétoxylation sur un large panel 

de substrats aliphatiques avec des rendements et ratios diastéréomériques modérés à bons 

(Schéma 6). Notre méthodologie a pu être appliquée à la synthèse de bioisostères de l’acide 2,2-

diméthylcyclopropanoïque, pouvant potentiellement être utilisés comme insecticides. Ces 

travaux sont détaillés dans le Chapitre 3 et ont fait l’objet d’une publication scientifique dans 

Chemistry – A European Journal en 2017, sélectionnée comme Hot Paper.[21] 

 

Schéma 6 Panel de transformations sur les substrats aliphatiques 
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Forts de nos connaissances concernant l’activation C-H diastéréosélective dirigée par un 

sulfoxyde chiral, nous nous sommes ensuite intéressés à une transformation plus difficile mais 

également plus innovante : l’activation C(sp3)-H énantiosélective.[22,23] En corrolaire de nos 

travaux diastéréosélectifs, nous avons choisi de tester des ligands chiraux de type 

aminosulfoxyde. Nous avons tout d’abord testé un large panel de familles de ligands pour 

l’arylation de cyclopropanes (Schéma 7). Seuls les ligands flexibles de type LX (L2, L3 et L4) ont 

montré une bonne réactivité et une induction de chiralité prometteuse. 

 

Schéma 7 Familles de ligands testées pour l'arylation énantiosélective de cyclopropanes 
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Les résultats préliminaires encourageants obtenus avec L4 nous ont conduit à l’optimisation de 

sa structure. En particulier, l’encombrement stérique sur le phényle joue un rôle crucial dans 

l’induction de chiralité, puisque le ligand L12 par exemple donne un excellent excès 

énantiomérique de 92% (Schéma 8).[24–26] Les conditions réactionnelles optimisées, l’arylation 

des cycloalcanes a pu être effectuée avec d’excellents rendements et excès énantiomériques 

(jusqu’à 94 % de rendement et 94 % d’excès énantiomérique pour l’arylation avec le 4-

iodobenzotrifluorure).  

 

Schéma 8 Arylation énantiosélective de cyclopropanes utilisant L12  

La cristallisation d’un des produits d’arylation et sa structure par diffraction des rayons X nous a 

permis d’attribuer avec certitude la configuration absolue des produits obtenus (Figure 8). La 

configuration absolue du cyclopropane est en accord avec nos études DFT préliminaires et 

résulte de l’intermédiaire palladacyclique le plus stable. 

 

Figure 8 Structure aux rayons X d'un produit d'arylation 

 

 

 

 

 



Avant-propos 

27 
 

Les travaux qui ont suivi ont notamment porté sur l’optimisation de réactions plus difficiles, à 

savoir l’alkylation et l’alcynylation de cyclopropanes en utilisant L12 (Schéma 9).  

 

Schéma 9 Alkynylation énantiosélective de cyclopropanes utilisant L12 

Il est important de noter que la réaction peut être effectuée à l’échelle du gramme avec de 

bonnes conversions et excès énantiomérique et que la déprotection de l’auxiliaire 2,3,4,5,6-

pentafluoroanilide peut être effectuée dans des conditions douces, et sans racémisation du 

cyclopropane (Figure 9). 

 

Figure 9 Arylation et déprotection énantiosélective du cyclopropane 

L’un des composés déprotégés a cristallisé dans un mélange éther diéthylique/hexane et 

l’analyse des cristaux a montré la conservation de la configuration absolue des centres 

stéréogènes du cyclopropane et a permis l’enrichissement optique du composé (Figure 10). 

 

Figure 10 Structure aux rayons X d'un produit déprotégé 

Des études mécanistiques préliminaires ont été menées afin de comprendre l’origine de 

l’excellent excès énantiomérique observé ainsi que le rôle de ce ligand original dans 

l’accélération de la réaction. Tous ces résultats feront l’objet d’une publication scientifique et 

sont détaillés dans le Chapitre 4. 
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3. Conclusion générale 

Durant ces trois ans, nous avons développé un auxiliaire chiral, (S)-2-(p-tolylsulfinyl)aniline ou 

APS, que nous avons utilisé pour l’activation diastéréosélective de liaisons C-H sur des substrats 

aliphatiques, cycliques ou non. De multiples transformations ont alors été effectuées, telles que 

l’arylation, l’acétoxylation ou l’oléfination, et ont été appliquées à la synthèse stéréospécifique 

de produits naturels. 

Suite à ces travaux, nous nous sommes intéressés au développement de nouveaux ligands 

chiraux, tel que N-((S)-1-(4-(tert-butyl)phenyl)-2-((R)-p-tolylsulfinyl)ethyl)acetamide ou NBSA, 

que nous avons utilisé pour l’arylation et l’alcynylation énantiosélective de cycloalcanes. En 

perspective, la structure du ligand NBSA sera encore optimisée pour obtenir de meilleures 

stéréosélectivités, mais aussi diversifier les applications de ce ligand en l’utilisant dans d’autres 

transformations énantiosélectives plus délicates comme les alkylations.  
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C(sp3)-H bond activation and sulfoxides, 
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I.1. Introduction 

This chapter aims to introduce the general context of this PhD work. Accordingly, two main 

topics are described: first and foremost, the C(sp3)-H bond activation, focusing also on the main 

mechanistic studies; then, the second part of the introduction will focus on the sulfoxides with 

their synthesis and application in asymmetric synthesis and catalysis. For more details about 

these concepts, readers are invited to consult the reviews by Yu, Davies, Kagan and Trost.[1,2,27,28]  

I.2. On the C(sp3)-H bond activation 

I.2.i. Definition of C-H activation 

C-H activation refers to the cleavage of an unreactive C-H bond by transition metal complexes to 

form a C-M linked intermediate as described by Labinger and Bercaw in 2002.[29] It should be 

noted that the definition of C-H activation divides in two groups the reactions leading to C-H 

bond functionalization and involving transition metal: outer and inner sphere reactions (Scheme 

1.1). Inner sphere C-H bond functionalization involves initial reaction of the C-H bond with the 

transition metal center [M] to form a C-M bond. Concerning outer sphere reactions, they are 

typically represented by carbene insertion into C-H bonds.[30]  

 

Scheme 1.1 a) Inner and b) outer sphere mechanisms 
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C-H functionalization represents the overall process where the hydrogen is replaced by a 

functional group (Figure 1.11). This must not be confounded with processes such as Friedel-

Crafts transformation in which the C-H bond cleavage follows an initial electrophilic attack on an 

aromatic π-system and is mediated by a base.  

 

Figure 1.11 Difference between C-H bond activation and functionalisation 

I.2.ii. Challenges of C(sp3)-H activation 

Carboxylic acids are ubiquitous building blocks for pharmaceutical or agrochemical applications 

and many of them are produced industrially on a large scale. They are involved in many chemical 

reactions and their diversification is a huge challenge for organic chemistry. 

Ipso-functionalisation of a carboxylic acid derivative is described with Grignard reactions for 

example. -functionalization of a carboxylic acid derivative has been known and developed since 

decades (Scheme 1.2). Due to the low pKA of −C-H bonds, no metal catalyst is needed. This 

chemistry is based on the formation of a reactive enolate, bearing an electron rich double bond. 

It behaves as a nucleophile and reacts which various electrophiles allowing a selective 

functionalization in  position to the carbonyl. Claisen condensation is one notable example of 

this strategy.[31,32]  

 

Scheme 1.2 Ipso- and -functionalisation to carbonyl group 
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However, - or even more distal C-H functionalisation remains difficult because of multiple 

challenges: 

- Low reactivity of aliphatic C-H bonds: Indeed, one of the tremendous difficulties stands in 

their high bond energy (typically around 100 kcal/mol), unreactive molecular orbital 

profile and low acidity (pKA around 50-60). Moreover, sp3 hybridized carbons lack π-

orbitals to interact with metal centre; 

- Regioselectivity: C-H bonds are ubiquitous and targeting one particular bond to break 

still persists to be one key challenge of metal-catalysed reactions. For some molecules, 

the control can be intrinsic (for example, in the case of indoles, C2 and C3 are more 

reactive), intramolecular or permitted by the use of directing groups (I.3); 

- Harsh conditions. Often, metal-catalysed transformations require high temperature and 

use of a base, which could be not compatible with other functional groups.  

I.2.iii. Synthetic utility of C-H activation 

Over the last decades, C-H bond activation has developed significantly, and various advances 

have been achieved. Consequently, C-H activation approach has been establishing itself as a 

useful tool for organic synthesis.  

C-H bond activation is currently amongst the methodology of choice to build complex molecules 

or to post-functionalize active ingredients. Because of these reasons, the number of publications 

reporting C-H activation has increased dramatically since 2000 (Figure 1.12).   

 

Figure 1.12 Growth of C-H activation research since 1926 
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I.2.iv. Mechanism of C(sp3)-H activation: Concerted Metalation 

Deprotonation  

In general, and in contrast with the outer sphere mechanism, inner sphere type transformations 

will involve generation of a M-C bond, typically as a metalacyclic intermediate. C(sp3)-H bond 

functionalisation such as arylation with Ar-I (one of the most often reported reaction) typically 

proceeds by a Pd(II) – Pd(IV) catalytic cycle. After coordination of the substrate with the catalyst, 

the C-H bond is activated through cyclometallation and then oxidative addition occurs to 

generate Pd(IV) species. After reductive elimination and generation of a C-H functionalised 

product, an inactive IPdOAc species may be formed. However, the cycle is rendered catalytic due 

to the presence of silver salts used as iodide scavenger from the palladium coordination sphere.   

 

Scheme 1.3 Typical catalytic cycle for directed C-H functionalisation 

Three principal mechanisms are described for C-H activation: oxidative addition and σ-bond 

metathesis are often found for aromatic C-H bond activation while concerted metalation 

deprotonation occurs with both aromatic and aliphatic ones (Chart 1.1). 

 

Chart 1.1 Three types of C-H bond activation mechanisms 
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Except for some rare examples detailed later, the cyclometallation is facilitated by pre-

coordination of the substrate, usually by nitrogen or oxygen atom. This coordinating motif, 

typically called DG (Scheme 1.4), is essential for the regioselective activation and it also enhances 

the efficiency of a catalytic system as the local concentration of a M increases significantly in a 

proximity to a C-H bond. Then, the carboxylate on the palladium helps the deprotonation by 

electrophilic assistance, concomitantly with Pd-C bond formation: that is the concerted 

metalation deprotonation (CMD). 

 

Scheme 1.4 Focus on the inner-sphere CMD mechanism 
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I.3. Preliminary examples of non-directed C-H bond activation 

Early in 1989 and 1992, Fujiwara and co-workers showed that palladium complexes were able to 

activate aliphatic C-H bonds to enhance carbonylation. However, this system was not 

regioselective and a mixture of regioisomers was observed (Scheme 1.5).[33,34] 

 

Scheme 1.5 Pd(II)-catalyzed carbonylation of propane 

Due to the difficulty of activating C(sp3)-H bonds, the pioneering examples disclosed by Dyker 

and co-workers corresponded to intramolecular reactions.[35] In this case, intramolecular C(sp2)-

C(sp3) coupling occurred as a side reaction during the expected Ar-Ar cross coupling. One 

possible pathway to the formation of this unexpected product could be explained by the 

formation of a Pd(IV) intermediate Int-1 by intramolecular aliphatic C-H activation followed by 

oxidative addition with the arylbromide and further reductive elimination to give the Pd(II) 

species Int-2. Reductive elimination of palladacycle Int-3 would give the corresponding 

cyclobutabenzene W (Scheme 1.6). 

 

Scheme 1.6 Dyker's domino reaction 
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Following this pioneering work, Baudoin and co-workers demonstrated the synthetic utility of 

intramolecular C(sp3)-H bond functionalization by constructing interesting bicycles such as 

octahydroindoles key intermediates to obtain aeruginosin marine natural products (Scheme 1.7). 

No homocoupling or polymerisation side products were observed due to the effect of the 

phosphine ligand.[36–38] 

 

Scheme 1.7 Baudoin's key step for the synthesis of aeruginosin 98B 

Since 2012, Cramer and co-workers developed a variety of interesting methodologies based on 

Pd(0)-catalysed intramolecular C(sp3)-H arylation. Importantly, they have focused on 

stereoselective transformations targeting synthesis of chiral aliphatic substrates. The use of a 

chiral phosphine ligand allowed for example the enantioselective formation of 

tetrahydroquinoline scaffolds with good yields and enantiomeric excesses (Scheme 1.8). They 

also more recently used these TADDOL-type ligands for the enantioselective cyclization of 

chloroacetamides to lactames, with moderate to excellent yield and enantiomeric excess.[39–44] 

These ligands derive from natural (R,R)-tartaric acid and bind the metal through phosphorus 

atom. 

 

Scheme 1.8 Cramer's enantioselective synthesis of tetrahydroquinolines 
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More recently, Yu and co-workers disclosed the use of a simple 2-pyridone ligand for the 

olefination and carboxylation of arenes and heterocycles (Figure 1.13). The development of non-

directed C-H functionalisation with one equivalent of arene is a highly appealing opportunity for 

late-stage functionalisation of C-H bonds not accessible by directing group strategies and opens 

new interesting perspectives for non-directed C(sp3)-H bond functionalisation.[45] 

 

Figure 1.13 Yu's ligand-accelerated non-directed C-H functionalisation of arenes 
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I.4. Regioselective C(sp3)-H activation 

I.4.i. C(sp3)-H activation directed by a monocoordinating group 

The first example of directed aliphatic C-H bond activation was reported by Shaw and co-workers 

in 1978 and concerned the non-catalytic C-H bond cleavage of tert-butyl methyl ketone oxime, 

assisted by the strong coordination of the oxime with the palladium, to form a metalacyclic 

species (Scheme 1.9).[46] Following this work, Hiraki and co-workers demonstrated that pyridine 

and N,N-dimethylamine auxiliaries were also effective as directing entities for C(sp3)-H bond 

cleavage.[47–49] However, these directing group strongly coordinates the metal centre due to 

large π-backbonding thus limiting the scope of available transformations. 

 
Scheme 1.9 Oxime-directed C-H activation 

Selective -functionalisation of carboxylic acid derivatives has not been described until the end 

of the twentieth century, due to the difficulty of activating these C-H bonds. The necessity of 

using transition metal catalysts has been demonstrated in the first example of carboxyl-directed 

functionalization of simple aliphatic acids by Yu and co-workers in 2007 (Scheme 1.10).[50]  

 

Scheme 1.10 Free acid-directed C-H functionalisation 

It was hypothesized that this reaction proceeds thanks to Thorpe-Ingold effect as substrates 

bearing substituent on the -position did not undergo arylation. Additionally, the intermediate 

Pd(II)-alkyl could undergo β-hydride elimination with the α-hydrogen atom resulting in a 

decomposition of the starting material. Thus, many synthetically useful carboxylic acid 

substrates, such as amino acids, could not be functionalized.[1,51] 
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Then, Baudoin and co-workers described the -arylation of esters using a palladium(0)/lithiated 

base system (Scheme 1.11).[52,53]  

 

Scheme 1.11 Ester-directed C-H functionalisation 

In this system, the authors assumed that after α-palladation, the β-hydride elimination is much 

more energetically stable than the corresponding reductive elimination which would lead to the 

α-arylation, thus favouring -arylation over α-arylation. More precisely with DavePhos, the rate 

limiting step of the β-arylation is the Pd-enolate to homoenolate isomerization which occurs 

through a β-H elimination, followed by olefin-rotation and olefin-insertion sequence (Figure 

1.14). 

 

Figure 1.14 Mechanistic pathway for the α- and β-arylation (Gibbs free energies are omitted for more clarity)  
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These methods are however highly specific. After screening of the reaction parameters, 

especially the protecting group on the carboxylic acid moiety, Yu and co-workers discovered that 

a significantly more general system is obtained when hydroxamic acid is used as DG for the C-H 

arylation of cycloalkanes (Scheme 1.12).[54] 

 

Scheme 1.12 Hydroxamic acid-directed C-H functionalisation 

An elegant methodology was described by Fagnou and co-workers in 2005 and related the 

selective C(sp3)-H or C(sp2)-H bond arylation of azine N-oxides using a Pd(0)/Pd(II) catalytic cycle. 

Under finely optimized catalytic system (choice of a base), total regioselectivity for aromatic of 

benzylic position was observed (Scheme 1.13). [55,56] This methodology was also applied for the 

total synthesis of two natural products: papaverine and cryskonisine. 

 

Scheme 1.13 Fagnou's divergent sp2/sp3 arylation 
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They also studied the role of the base and proposed two different mechanisms: with NaOtBu, 

abstraction of one benzylic proton would lead to the five-membered palladacycle and to the 

C(sp3)-H bond functionalisation. However, with a coordinating base such as potassium 

carbonate, the CMD mechanism is favoured and mainly leads to C(sp2)-H bond functionalisation 

(Scheme 1.14). 

 

Scheme 1.14 Role of the base during the azine N-oxide promoted C-H cleavage 

Monodentate directing groups were progressively supplanted by more robust bidentate 

directing groups, however only few methodologies were developed in the past few years. As 

notable example, Yu and co-workers developed an alkoxythiocarbonyl auxiliary for the iridium-

catalysed alkylation of azacycles through monocoordination with the sulphur (Scheme 1.15). This 

practical approach uses an easily removable directing group and allows α-alkylation of important 

medicinally relevant motifs such as proline derivatives.[57]  

 

Scheme 1.15 Yu's iridium-catalysed alkylation of azacycles 
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I.4.ii. Directed by a bidentate group 

In 2005, only a few methods are dealing with the activation of C(sp3)-H bonds and the 

development of new approaches leading to C-C bond formation was highly appealing. Daugulis 

and co-workers were the first to design a new class of auxiliary, 8-aminoquinoline (Scheme 1.16). 

This bidentate directing group allows highly efficient β-arylation of carboxylic acid derivatives 

and even γ-arylation of amine derivatives using iodoarenes as coupling partners.[4,58] 

Importantly, this auxiliary allowed activation of methylene unit, which was not possible using 

monodentate directing groups. A particular efficiency of the bidentate directing groups is 

probably due to improved stabilisation of high oxidation state metal catalysts (such as PdIV 

species). Moreover, in the case of aliphatic C-H activation, such double coordination is prompt to 

retard a β-hydride elimination by saturating the coordination sites of the metal. 

 

Scheme 1.16 Aminoquinoline-directed C-H functionalisation 
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The 8-aminoquinoline auxiliary is nowadays one of the most widely used bidentate directing 

group, allowing various challenging transformations and using a broad range of metal catalysts 

(Figure 1.15).[59] Furthermore, its high chelating ability, cheap price (322 € per mole at 

Fluorochem supplier) and easy deprotection are the main reasons why it gained much attention 

for the metal-catalysed direct C-H bond functionalisation.  

 

Figure 1.15 Scope of transformations using the aminoquinoline as directing group 

The pioneering use of aminoquinoline as directing group opened new perspectives in C(sp3)-H 

bond functionalisation and many other auxiliaries were designed in the past few years (Chart 

1.2).[58,60–63] 

 

Chart 1.2 Non-exhaustive list of bidentate directing groups for C(sp3)-H bond functionalisation 
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From the perspective of using cheap and easily accessible scaffolds as bidentate directing 

groups, Yu and co-workers were the first ones to use amino-acids and peptides for their ability to 

chelate metals.[64] Excellent regioselectivity for terminal C-H bonds was observed, even for more 

complex tri- and tetra-peptides. This methodology allowed straightforward post-synthetic 

modification, such as arylation or acetoxylation (Scheme 1.17). 

 

Scheme 1.17 Yu's metal-catalysed post-functionalisation of peptides 
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I.4.iii. C(sp3)-H activation using a transient DG 

The covalent installation and removal of mono- or bi-dentate directing groups is a major 

drawback for synthetic use. Indeed, not only additional steps are required but also the 

compatibility of the installation and removal with other functional groups needs to be taken into 

consideration.  

In this context, Hong and co-workers developed a chelation-assisted hydroacylation catalysed by 

Wilkinson’s catalyst and promoted by in situ imine formation between the aldehyde starting 

material and 2-amino-3-picoline.[65] The advantage of this method is the catalytic use as well as 

in situ removal of the directing group (Scheme 1.18). 

 

Scheme 1.18 Rhodium-catalysed hydroacylation of aldehydes 

This pioneering work was extended by Mo and Dong who used 7-azaindoline as ligand for the α-

alkylation of ketones.[66] The reaction is tolerant with various aryl and alkyl moieties in position 3 

and various olefins react with moderate to high turnover number (Scheme 1.19). 

 

Scheme 1.19 Rhodium-catalysed α-alkylation of ketones 

In 2016, Yu and co-workers reported a breakthrough in C(sp3)-H bond activation by using amino-

acids as transient directing groups for the arylation of methylene unit.[67] Indeed, under 

appropriate conditions, the amino group can be tethered to an aldehyde or ketone and 

subsequently form a bidentate directing group to promote selective C-H bond functionalisation 

(Scheme 1.20). Remarkably, this reaction occurs with high enantioselectivity, delivering the 

expected product with up to 96 % enantiomeric excess. It should also be noted that only 
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catalytic amount of the amino acid auxiliary is necessary, clearly showing the transient character 

of the imine intermediate and the regeneration of this chiral moiety during the reaction. 

 

Scheme 1.20 Amino-acid directed γ-arylation of aliphatic chains 

This work was followed by the development of new classes of ligands suitable for in situ imine 

formation and subsequent functionalisation (Chart 1.3).[68–71] 

 

Chart 1.3 Non-exhaustive list of transient directing groups 

I.4.iv. Ligand-accelerated C-H activation 

Pyridines early showed a high ability to coordinate metals and direct C-H functionalisation.[72,73] 

Indeed, Matsumoto and co-workers showed that a bis-pyridylpalladium complexe promote the 

intramolecular C-H activation and this type of molecule was further characterized in 2000 by 

White (Scheme 1.21).[48,74] 

 

Scheme 1.21 Pyridine cyclopalladated complex of Matsumoto 

As acidic N-perfluoroarylamides has been demonstrated to be versatile weakly coordinating 

groups,[75] a ligand that strongly coordinates the metal centre and yet allows the amide moiety 

to bind the same centre is needed. Yu in 2009 and Sanford in 2012 showed that pyridine-type 

ligands permit olefination of arenes with high yields.[76,77] Guided by these encouraging works, Yu 

and co-workers started screening pyridine derivatives for the regioselective C(sp3)-H activation 

of aliphatic chains. Simple pyridine showed 8% conversion to the desired product and further 
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optimisation established that optimal reactivity was achieved using 2-isobutoxyquinoline as 

ligand (Scheme 1.22).[78] Due to the high coordinating ability of pyridine derivatives, ortho-

substituents are essentials to avoid formation of unreactive PdL2 dimers. A closely related 

methodology was developed for the coupling of arylsilanes with alkyl chains.[79] In 2017, a similar 

analogue of this ligand afforded mono-arylation on α-N-protected amino acids without installing 

the perfluoroamide moiety.[80]  

 

Scheme 1.22 Yu's quinoline-promoted C-H activation 

This methodology was recently extended using either 2-picoline or a quinoline derivative to 

perform mono-, di-arylation and olefination of amino acid derivatives (Scheme 1.23).[81] 

Preliminary mechanistic studies highlighted the crucial role of the ligand in every stage of the 

reaction, as for example in the stabilisation of the pre-catalyst.[82] 

 

Scheme 1.23 Yu's pyridine-promoted C-H activation 

Pyridine and quinoline-type ligands also demonstrated a drastic improvement in other 

challenging reactions, such as alkynylation, alkylation or halogenation (Chart 1.4).[83–86] 

 

Chart 1.4 Quinoline ligands for C(sp3)-H bond functionalisation 
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I.4.v. From regio- to stereo-control 

Yu and co-workers were the first to use a chiral auxiliary to provide asymmetric induction during 

the C(sp3)-H insertion event forming a chiral palladacycle intermediate. Following the pioneering 

work of Clinet and co-workers on the cyclopalladation of oxazoline-protected carboxylic acid 

derivative,[87] they developed their own chiral auxiliary: (S)-4-(tert-butyl)-4,5-

dihydrooxazole.[88,89] They performed the diastereoselective iodination and acetoxylation under 

mild conditions and with moderate to high diastereomeric ratios (Scheme 1.24). 

 

Scheme 1.24 Oxazoline-directed diastereoselective C-H functionalisation 

Further insights on diastereo- and enantio-selective C-H bond activation will be detailed in both 

chapter 2 and 4, in their respective introductions. 
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I.5. Sulfoxide as auxiliaries for organic transformations 

I.5.i. General introduction on sulfoxides 

Sulfoxides are chemical compounds containing a sulfinyl group (S-O) attached to two carbon 

atoms. Regarding these two substituents, sulfoxides can be chiral or not and feature a trigonal 

pyramidal shape (Chart 1.5). 

 

Chart 1.5 Common representation of sulfoxides 

There are few examples of sulfoxide present in nature, as illustrated by alliin, a constituent of 

fresh garlic. When garlic is crushed or chopped, the enzyme alliinase converts it to allicin, which 

is responsible for the aroma of fresh garlic (Scheme 1.25).[90,91] 

 

Scheme 1.25 Biosynthesis of allicin 
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I.5.ii. Synthesis of chiral sulfoxides 

Chiral sulfoxides are crucial elements both in asymmetric synthesis and medicinal chemistry. 

They are often compared with phosphines as both phosphorus and sulphur atoms are close in 

the periodic table of elements and phosphines and sulfoxides disclose comparable properties as 

ligands. There are two main approaches to synthesize such compounds: enantioselective 

oxidation via chiral ligand and asymmetric induction using a chiral auxiliary. 

The most common precursors for the stereoselective synthesis of sulfoxides are chiral sulfinates. 

The first reports were disclosed by Andersen and co-workers in the early 1960s.[92,93] Using 

menthol as chiral source and in situ generated p-tolyl sulfinyl chloride in presence of a base, two 

diastereomers of menthyl p-tolylsulfinate were obtained. The major diastereomer is solid and 

crystallized in acetone, while the minor liquid diastereomer remained in the filtrate (Scheme 

1.26). 

 

Scheme 1.26 Andersen synthesis of menthyl p-tolylsulfinate 

Then, Solladié and co-workers significantly improved the Andersen methodology by epimerising 

the sulphur stereocenter in the mother liquor after each crystallization in presence of 

concentrated hydrochloric acid (Scheme 1.27). In consequence, the thermodynamic resolution 

allows high yielding procedure to access enantiopure menthyl sulfinate.[94] However, this 

ingenious method is limited by the scope, as none of the alkyl sulfinates is crystalline.  
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Scheme 1.27 Solladié's synthesis of menthyl p-tolylsulfinate 

In 1987, Klunder and Sharpless disclosed a new procedure to obtain various menthyl sulfinates 

using sulfonyl chloride as coupling partners, which are more readily available than the 

corresponding sulfinic acids used in Andersen’s synthesis (Scheme 1.28).[95]  

 

Scheme 1.28 Sharpless' synthesis of menthyl sulfinates 

Later, Toru and co-workers extended this methodology, using triphenylphosphine as reducing 

agent, to form various sulfinates with menthol, diacetone D-glucose (DAG) and non-chiral 

alcohols (Scheme 1.29).[96] They obtained comparable yields and diastereomeric ratios and the 

main difference was the reaction time, lowered to 1 h in general. Selective crystallisation of the 

major diastereomer was sometimes possible but, using hydrochloric acid as racemizing agent, no 

sulphur epimerisation was possible, limiting the use of these sulfinates. 
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Scheme 1.29 Toru's synthesis of menthyl sulfinates 

Taking inspiration from Ridley and Smal who also utilized carbohydrates to prepare optically 

active sulfoxides, Llera and co-workers showed that, according to the reaction conditions and 

especially the base used during the transformation, the stereoselectivity can be tuned.[97,98] Yet 

access to DAG-tert-butyl sulfinate gave lower diastereomeric ratios (Scheme 1.30).[99] 

 

Scheme 1.30 Diastereoselective synthesis of DAG-sulfinates 

Various other powerful methodologies were developed the past few years. Early in 1991, Kagan 

and co-workers accessed chiral sulfoxides from chiral sulphites, delivered by reaction between 

thionyl chloride and a chiral diol obtained from the chiral pool. [100] Oppolzer described a new 

chiral sulfinyl transfer agent derived from a versatile bornane-1,2-sultam.[101,102] Excellent 

enantiomeric excesses were obtained for the resulting sulfoxides and the chiral auxiliary could 

be recovered in high yields. Therefore, Evans and co-workers used its oxazolidinones, coupled 

with a sulfinyl chloride, to access separable sulfinamides which are 100 times more reactive with 

respect to nucleophiles than their corresponding menthyl sulfinate.[103] More recently, 

Senananyake and co-workers developed oxathiazolidine-2-oxide as chiral precursors for 

sulfoxides.[104]  
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Scheme 1.31 Various auxiliaries bearing a chiral sulfoxide 

All the previous cited methods involve the diastereoselective formation of an intermediate 

which is then converted to a chiral sulfoxide. These methods are however not suitable for the 

synthesis of enantioenriched tert-butyl-thiosulfinate which would give access to enantiopure 

tert-butylsulfoxide moiety by addition of an organometallic reagent. Ellman and co-workers 

reported the synthesis of tert-butyl-thiosulfinate with high enantiomeric excess by means of 

asymmetric oxidation using low catalytic amount of both vanadium acetate and chiral Schiff 

base.[105,106] Further repeated recrystallizations in hexane allowed the obtention of the 

enantiopure tert-butyl-thiosulfinate and the procedure could be applied on kilogram scale with 

high yield. One of the advantages of the method is the easy preparation of the ligand, 

synthesized in one step from commercially available, enantiopure cis-1-amino-indan-2-ol and 

3,5-di-tert-butylsalicylaldehyde. Notably, tert-butyl-thiosulfinate is the key precursor to chiral 

tert-butylsulfinamide, used in asymmetric additions of nucleophiles on imines for example.[107] 

 

Scheme 1.32 Ellman' synthesis of tert-butyl-thiosulfinate  
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I.5.iii. Mechanistic insights about sulfoxide epimerization and its 

optical stability 

Sulfoxides essentially racemize by pyramidal inversion and the racemization barrier is much 

higher than phosphines (Chart 1.6).[108–110]  

 

Chart 1.6 Racemization barriers of some phosphines and sulfoxides 

Thermal inversion usually occurs after 200 °C over a few hours by pyramidal inversion, but other 

mechanisms are described: 

- Sigmatropic rearrangement occurs with allylsulfoxides (Scheme 1.33);[111,112] 

 

Scheme 1.33 Sigmatropic rearrangement on sulfoxides 

- Homolytic cleavage with benzylsulfoxides; 

- Photochemical racemization (Scheme 1.34);[113] 

 

Scheme 1.34 Photochemical racemization of sulfoxides 

- Racemization by reversible oxygen leaving under acidic conditions as observed in the 

synthesis of menthylsulfinate.[94] Noteworthy, sulfoxides are very stable under basic 

conditions, as shown by Oae and co-workers in 1966 (Scheme 1.35).[114] 

 

Scheme 1.35 Stability of the sulphur stereocentre under basic conditions 
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I.5.iv. Sulfoxides and their use in asymmetric transformations 

I.5.iv.1. General considerations 

As this manuscript highlights the use of sulfoxides as chiral auxiliaries for asymmetric 

transformations, their overall application field will be quickly detailed. For a more exhaustive 

presentation, readers are invited to consult the nice reviews dealing with this topic.[28,115,116] In a 

first part, we will focus on some notable examples of the utilization of sulfoxides for the total 

synthesis of natural products. Then, we will discuss their use as ligand for both metal-catalysed 

diastereoselective and enantioselective transformations.  

I.5.iv.2. Chiral sulfoxides for the synthesis of biologically active 

molecules 

Sulfoxides are often used as chiral inductors in diastereoselective transformations during a total 

synthesis of active ingredients.  

Back in 1978, Marquet and co-workers described the total synthesis of biotin and analogues, by 

diastereoselective α-alkylation followed by reduction (Scheme 1.36). Although the introduction 

of the sulfoxide did not occur with total stereoselectivity, column chromatography followed by 

recrystallisation in dichloromethane/diethyl ether afforded pure diastereomer.[117] We can 

hypothesize that the total diastereoselectivity for the next step may be explained by the 

coordination of the lithium with the oxygen of the sulfoxide, thus favouring one configuration. 

 

Scheme 1.36 Sulfoxide-directed total synthesis of biotin 
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Keaveney and co-workers published a new concise synthetic route involving sulfoxides for the 

total synthesis of (±)-podophyllotoxin, which involves a remarkable one-pot stereoselective 

three-component reaction. To complete the synthesis, they displaced the sulfoxide by water in 

presence of triflic anhydride and sym-collidine; the resulting crude alcohol was lactonized in one-

pot to afford the expected product with 38% yield from the adduct (Scheme 1.37).[118] 

 

Scheme 1.37 Total synthesis of (±)-podophyllotoxin 

In 2008, Colobert, Carreño and co-workers used the ability of the sulfoxide to coordinate a silane 

to direct a diastereoselective reductive deoxygenation process for the total synthesis of 

nebivolol (Scheme 1.38). Removal of the sulfoxide moiety was possible with excellent yield and 

complete retention of other stereocentres by means of an analogue displacement as used by 

Keaveney.[119]  

 

Scheme 1.38 Key step for the total synthesis of nebivolol as hydrochloride salt 
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Within the SynCat team in Strasbourg, sulfoxides proved to be highly efficient directing groups 

enabling the control of stereoselective transformations such as cycloadditions,[120] Reformatsky 

reactions,[121] reduction of ketones[14,122] or conjugate additions.[123] For example, Hanquet and 

co-workers disclosed in 2011 the use of p-tolylsulfoxide moiety for a diastereoselective Diels-

Alder cycloaddition as the key step for the synthesis of salvinorin A and analogues (Scheme 

1.39).[120,124]   

 

Scheme 1.39 Hanquet's formal synthesis of salvinorin A using asymmetric Diels-Alder reaction 

Colobert and co-workers also more recently reported an efficient pathway for the 

stereoselective synthesis of a key intermediate to access (-)-steganone via stereoselective Suzuki 

cross-coupling (Scheme 1.40).[125]  

 

Scheme 1.40 Colobert's first stereoselective access of a key intermediate for the synthesis of (-)-steganone 
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I.5.iv.3. Sulfoxides in metal-catalysed diastereoselective reactions 

Sulfoxides can usually bind both soft metals like palladium or copper through the sulphur and 

hard metals like iron through the oxygen. Their high stereo-stability under harsh reaction 

conditions makes them auxiliaries of choice for metal-catalysed asymmetric transformations. 

Carretero and co-workers developed in 2011 a 2-pyridylsulfoxide directing group for the 

olefination of arenes. Good control on mono- and di-functionalisation was observed, and their 

methodology was applied for the synthesis of the key fragment of resveratrol (Scheme 1.41). 

Interestingly, removal of the auxiliary occurred smoothly using n-butyllithium.[126] 

 

Scheme 1.41 Carretero's synthesis of a key intermediate of resveratrol  

In 2013, Colobert and co-workers exploited the existing sulphur stereogenic centre in biaryl 

moieties to couple it with acrylates and induce atropoisomerism via dynamic kinetic resolution 

(Scheme 1.42).[127] 

 

Scheme 1.42 Diastereoselective olefination of biaryl scaffolds using a chiral sulfoxide 
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In 2014, two other procedures for the stereoselective iodination and acetoxylation of biaryls 

were developed.[9] Mild C(sp2)-H bond activation occurred and both excellent yields and 

diastereomeric ratios were observed (Scheme 1.43). 

 

Scheme 1.43 Colobert’s atroposelective acetoxylation and iodination 

Atroposelective Heck oxidative addition was later used for an expedient access of the key 

intermediate for the synthesis of (-)-steganone (Scheme 1.44).[128] Under extremly mild reaction 

conditions, full conversion of the biaryl precursor into the olefinated profuct was achieved and 

the atropopure product was isolated in 92 % yield. 

 

Scheme 1.44 Colobert's first stereoselective access of a key intermediate of (-)-steganone 

In 2018, sulfoxide proved to be an excellent chiral inductor for atroposelective synthesis of 

multiarene scaffolds; Colobert and co-workers discovered a route towards new terphenyl ligands 

with two atropoisomeric axes. After functionalisation of the terphenyl moiety, completed or not 

by traceless removal of the sulfoxide, the resulting ligands showed excellent enantiomeric 

induction for various reactions (Scheme 1.45).[9–11] 

 

Scheme 1.45 Asymmetric hydrogenation using new terphenyl-type ligands 
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I.5.iv.4. Sulfoxides as ligands in metal-catalysed transformations 

Sulfoxides were early used as ligands for a large variety of transformations. Many metal 

complexes were prepared since the 1970s, with ruthenium,[129] iridium,[130] rhodium[131,132] and 

palladium[131] for example (Chart 1.7). The following part will mainly relate on bis-sulfoxide and 

aminosulfoxide type ligands. For more exhaustive information, readers are invited to consult the 

reviews of Dorta, Procter and Trost.[28,115,133] 

 

Chart 1.7 Two metal-sulfoxide complexes 

Early in 1993, Khiar and co-workers synthesized the first chiral sulfoxide ligand bearing chirality 

only on the sulphur atom and used it for iron-catalyzed Diels-Alder reaction (Scheme 1.46).[134] In 

this case, the metal-ligand complex was preliminary formed by reaction between iron, iodine 

and the bis-sulfoxide. 

 

Scheme 1.46 Khiar's asymmetric Diels-Alder reaction 

The same year, Carreño and co-workers disclosed the enantioselective addition of diethylzinc on 

benzaldehyde using β-hydroxysulfoxide ligands.[135] 

 

Scheme 1.47 Carreño’s asymmetric addition of diethylzinc on benzaldehyde 
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The pioneering studies of Khiar and Carreño were followed in 1995 by the synthesis of another 

bis-sulfoxide ligand used by Shibasaki and co-workers for an enantioselective Tsuji-Trost reaction 

which showed moderate activity.[136] An array of bidentate ligands bearing a chiral sulfoxide 

were then synthesized and some of them showed excellent enantiomeric induction for this type 

of reaction (Figure 1.16).[137,138] 

 

Figure 1.16 Examples of chiral ligands for the asymmetric Tsuji-Trost reaction 

Chelucci and co-workers also developed a sulfoxide-containing ligand for the asymmetric Tsuji-

Trost reaction, although showing moderate enantiomeric induction. Interestingly, the very same 

ligand is also capable of induing a chiral information during an addition of diethyl zinc to 

benzaldehyde (Scheme 1.48).[139] 

 

Scheme 1.48 Asymmetric addition to benzaldehyde using a pyridylsulfoxide ligand 

 

 

 

 

 

 



Chapter 1: C(sp3)-H bond activation and sulfoxides, a short bibliographic study 

65 
 

In 2007, White and co-workers developed a new air-stable catalyst, known today as White 

catalyst, used in numerous allylic C-H bond functionalisation reactions of olefins and oxidative 

Heck additions.[140,141] Challenging allylic amination could be performed with this exceptional 

catalyst using methyl N-tosyl carbamate as nucleophile to obtain linear E-allylic amine products 

(Scheme 1.49).[142] 

 

Scheme 1.49 White allylic amination using bis-sulfoxide-Pd(II) catalyst 

Later, Dorta and co-workers used a chiral atropopure bis-sulfoxide ligand for the asymmetric 1,4-

addition of boronic acids to cyclohexenone.[143] A comparison of this ligand with the bis-

phosphine analogue revealed that the sulfoxide complex is far more reactive and give better 

enantiomeric excess than the corresponding phosphine (Figure 1.17). The authors suggest that 

the high σ-donation of sulfoxides improves the reactivity of the system. 

 

Figure 1.17 Dorta 1,4-addition using chiral sulfoxide and phosphine ligands 
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S,N bidentate ligands with chirality present at both the carbon backbone and sulphur atom have 

emerged as valuable ligands for asymmetric catalysis. In 1994, Williams and co-workers 

synthesized the first sulfinyloxazoline ligands for asymmetric Tsuji-Trost reaction; the desired 

compound was afforded in 96% yield and 88% enantiomeric excess.[144] This skeleton was later 

used by Hiroi and co-workers for an asymmetric Diels-Alder reaction between protected 

acrylamide and cyclopentadiene; high yield and selectivity were observed.[145] More recently, 

Itami and co-workers reported an asymmetric Suzuki-type coupling using William’s ligand to get 

axial chirality with good yield and moderate 61% enantiomeric excess.[12] In 2016, White and co-

workers optimized the structure of sulfinyloxazoline ligands for the enantioselective allylic C-H 

oxidation of olefins to isochromans (Chart 1.8).[13] Many other types of ligands have also been 

disclosed, such as (S,O), (S,S) or (S,P). 

 

Chart 1.8 Examples of sulfinyloxazoline-type ligands 

More exotic ligands such as sulfoxide-olefin or ferrocene hybrid ligands,[146] were developed for 

rhodium catalysed 1,4-additions (Chart 1.9). Du and co-workers established that both sulfoxide 

and olefin were bound to the metal centre during catalysis.[147] 

 

Chart 1.9 Examples of hybrid ligands 
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I.5.v. Sulfoxides: traceless directing groups 

One of the key advantages of using the sulfoxide in particular as chiral auxiliary is its traceless 

character due to the ability to cleave or to transform it into a myriad of functionalities. This 

appealing feature was often used in total synthesis, as mentioned before.  

Desulfinylation is usually performed using Raney Nickel.[148,149] This reaction has found numerous 

applications as for example in the total synthesis of lasiodiplodin (Scheme 1.50).[150] 

 

Scheme 1.50 Raney Ni desulphurisation in the total synthesis of lasiodiplodin 

Another important transformation regarding these moieties is the Pummerer reaction whereby 

alkylsulfoxides rearrange to α-acyloxy-thioethers.[151–153] Originally developed with acetic 

anhydride as promoter, many variants have been published as for example using Lewis acids 

which allow the reaction to proceed smoothly at lower temperatures.[154] Acylation of the 

sulfoxide followed by elimination of acetic acid produces a reactive thionium ion. Then, acetate 

adds to the sulfonium to give the final product (Figure 1.18). 

 

Figure 1.18 General mechanism for Pummerer rearrangement 

For example, Procter and co-workers remarkably used other nucleophiles than acetate to 

interrupt the Pummerer rearrangement and promote other challenging transformations such as 

[3+3] sigmatropic rearrangements (Scheme 1.51).[155,156]  
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Scheme 1.51 Procter synthesis of 3-thioindoles 

But sulfoxides are also easily transformed by exchange with lithium species (without affecting 

other functions or stereocentres) and quenching with numerous electrophiles as shown by 

Fujihara and co-workers in 1991.[157] From chiral auxiliary, the sulfoxide thus becomes an 

interchangeable functional group. As only few target products bear this motif, this reaction 

reaches high significance to broaden their application scope.  

Remarkably, Colobert and co-workers showed recently that removal of the sulfoxide on axially 

chiral C-N scaffolds did not affect the chiral axis.[158] Generation of the lithium species after 

addition of excess tert-butyllithium followed by quenching with a formyl source afforded the 

desired aldehyde with good yield and excellent enantiomeric excess (Scheme 1.52). 

 

Scheme 1.52 Lithium-promoted sulfoxide exchange 

Finally, Julia and co-workers also developed a methodology to remove tert-butylsulfoxide 

moieties by oxidizing them to sulfones and then performing a nickel-catalysed cross-coupling 

with Grignard reagents (Scheme 1.53).[159,160] While interesting, this reaction suffers from a 

limited field of application. 

 

Scheme 1.53 Julia's sulfoxide coupling with Grignard reagents 
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I.6. Objectives of the doctoral thesis 

First and foremost, the emergence of numerous methodologies for auxiliary-assisted C(sp3)-H 

bond activation and the high potential of sulfoxides to promote highly efficient asymmetric 

transformations urged us to design and explore a new chiral bicoordinating directing group. 

When the Sulf-As-CH project started, there were only two examples of chiral auxiliary for the 

asymmetric C(sp3)-H bond functionalisation and none was containing a chiral sulfoxide. This 

innovative project originally aimed to design a new bidentate directing group bearing a chiral 

sulfoxide and to apply it for the arylation of the most reactive aliphatic skeleton: cyclopropanes. 

Rewardingly, we were able to construct stereoselectively complex scaffolds via arylation and 

even challenging alkylation and olefination using (S)-2-(p-tolylsulfinyl)aniline (APS) as the DG 

(Figure 1.19). This work will be detailed in the next chapter. 

 

Figure 1.19 Scope of transformations allowed by (S)-2-(p-tolylsulfinyl)aniline 

In the continuity of this first work, we developed a new methodology to access enantiopure 

cyclopropane key intermediate for natural product synthesis. We performed challenging 

olefination and alkylation and obtained three intermediates for the synthesis of cyclopropane-

based biologically active scaffolds: hoshinolactam, cascarillic acid and grenadamide total 

synthesis. To exemplify our method, the total synthesis of hoshinolactam was achieved with 

good yield and excellent enantiomeric excess (Figure 1.20). This work will also be detailed in the 

next chapter. 
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Figure 1.20 APS-based strategy for the synthesis of cyclopropane-containing natural products 

With our knowledge in diastereoselective APS-promoted C-H activation of cycloalkane, we then 

studied the functionalisation of simple aliphatic chains. We succeded in developing a catalytic 

system for performing arylation with good yields and moderate to good diastereomeric ratios, 

but also more challenging acetoxylation or one-pot double functionalisation of hydrocinnamic 

acid derivatives. This work will be detailed in the third chapter.  

Finally, even if APS showed high potential in promoting various transformations, the moderate 

diastereoselectivity observed for the different transformations is a major limitation of this 

technology. Accordingly, targeting more efficient, powerful and stereoselective protocols, we 

endeavoured on developing an enantioselective transformation. Consequently, we developed a 

new scaffold for the ligand-enabled enantioselective arylation and alkynylation of cycloalkanes. 

This study will be developed in the fourth chapter and opens new perspectives for the synthesis 

of highly functionalised enantioenriched products. 

 

Figure 1.21 From diastereo- to enantio-selective sulfinylamine-promoted C-H activation  



Chapter 1: C(sp3)-H bond activation and sulfoxides, a short bibliographic study 

71 
 

I.7. Conclusion 

Over the years, sulfoxides proved to be excellent ligands and chiral inductors for metal-catalysed 

asymmetric transformations. In parallel, the ingenious development of numerous efficient 

catalytic systems unlocked the door towards direct metalation of C(sp3)-H bonds. A widespread 

use of C-H activation is yet hampered by the need for finely designed starting material bearing, 

often hardly transformable, directing groups. Encouraged by our pioneering work on 

diastereoselective C(sp2)-H bond functionalisation, the design of new sulfoxide-bearing ligands 

for the C(sp3)-H bond activation seems appealing.  

In this context, the Sulf-As-CH project was dedicated to the design, the synthesis and the 

applications of new sulfoxide scaffolds for highly stereoselective transformations and the 

following will disclose 1) the design and use of (S)-2-(p-tolylsulfinyl)aniline (APS) as chiral 

auxiliary for the  diastereoselective C(sp3)-H bond arylation, acetoxylation, alkylation and 

olefination as well as 2) the  development of N-((S)-1-(4-(tert-butyl)phenyl)-2-((R)-p-

tolylsulfinyl)ethyl)acetamide (NBSA) as ligand for the enantioselective C(sp3)-H bond arylation 

and alkynylation (Figure 1.22). 

 

Figure 1.22 Merging C-H activation and sulfoxides to design new efficient ligands 
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II.1. Introduction 

II.1.i. Summary of this work 

This chapter is dedicated to the diastereoselective -functionalization of cycloalkanes, by means 

of the C-H activation and using a bidentate sulfinylaniline auxiliary as the chiral inductor. Our 

first objective was to develop for such transformation a suitable directing group bearing a chiral 

sulfoxide as a potential chiral source. Our second objective was the application of this directing 

group to the C-H activation of cycloalkane carboxylic acid derivatives to access complex 

scaffolds. In the course of this work, we developed an efficient reaction for the synthesis of 

trisubstituted cycloalkanes, showing a cis-configuration between the carbonyl motif and the 

newly installed functional group. In addition, we applied this methodology to the obtention of 

trans-disubstituted cyclopropanes key intermediates for the total synthesis of natural products. 

This part of our work will focus on three natural products, hoshinolactam, cascarillic acid and 

grenadamide. 

II.1.ii. Biological interest and properties of cyclopropanes 

Most organic compounds found in nature contains rings in their molecule (Chart 2.10). Among all 

these natural products, which are important medicinal molecules or pigments, all size of 

cycloalkane can be found, in particular cyclopropane core in insecticides.[161] There is a strong 

interest in first synthesizing these natural products in an efficient way, considering their 

numerous stereocentres; secondly synthesizing analogues of these compounds for medicinal 

chemistry applications. 

 

Chart 2.10 Representative cyclopropane natural products 
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Cyclopropanes have unique properties and reactivity related to their high ring strain, which also 

render their synthesis highly challenging. The triangular structure of the molecule imposes the 

bond angles to be 60 °, almost twice less than the thermodynamically most stable angle of   

109.5 ° computed for sp3 hybridized orbitals. The distortion of the bonds due to the orbitals is 

called bent bonds and is typical from cyclopropane rings.[162,163]  

They also exhibit unique properties related to this distortion: a pseudo-aromatic character and a 

specific reactivity (Figure 2.23).[164,165] In an analogy to epoxides, Walsh proposed that 

cyclopropanes could be considered as insertion of methylene into ethylene.[166]  

 

Figure 2.23 Pseudo-aromaticity of cyclopropane 

The Walsh orbital diagram of the cyclopropane explains the full delocalization of the electrons all 

over the ring, giving it a pseudo-aromaticity also called -aromaticity.[167] Therefore the 

significant sp2 character of the cyclopropane ring explains their particular reactivity that may be 

considered as olefin surrogates (Figure 2.24). 

 

Figure 2.24 Orbital diagram of cyclopropane 
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For instance, methylcyclopropane can open and rearrange in cyclobutene under heat, as well as 

the vinylcyclopropane will rearrange to cyclopentene (Figure 2.25). These reactions proceed 

through radical processes and allow the formation of numerous interesting rings.[164,168–171] 

 

Figure 2.25 Representative thermal rearrangements of cyclopropane rings 

Hudlicky and co-workers used this methodology for the total synthesis of an important 

sesquiterpene precursor, hirsutene, in 1980 (Scheme 2.54).[172,173] 

 

Scheme 2.54 Key step of the total synthesis of hirsutene 

Among all types of reactivity found with small rings, reactions related to donor-acceptor 

cyclopropanes are also of major importance as they allow access to various complex 

scaffolds.[174,175] As previously, the main driving force for these transformations is the high ring 

strain of the cyclopropane that enhances its opening (Figure 2.26).    

 

Figure 2.26 Representative reactions with donor-acceptor cyclopropanes 
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II.1.iii. Standard methods to build up functionalized cyclopropanes 

As seen before, cyclopropanes are important motives in organic chemistry.[176]  

One of the first example of cyclopropanation was achieved by Simmons and Smith in 1958.[177] 

Alkenes react with diiodomethane in presence of activated zinc to afford substituted 

cyclopropanes in high yield (Scheme 2.55). This reaction is tolerant with various alkenes and the 

relative stereochemistry of the cyclopropane depends on the configuration of the double bond, 

allowing the formation of cis- and trans-cyclopropanes. 

 

Scheme 2.55 Simmons-Smith cyclopropane synthesis 

Discovered by Johnson in 1961 and further improved by Corey and Chaykovsky in 1965, the 

eponym transformation uses the addition of in situ generated sulphur ylide on ketone and 

aldehyde, imine or enone to get the corresponding epoxide, aziridine or cyclopropane (Scheme 

2.56).[178,179] This efficient method is an alternative to the Simmons-Smith reaction. 

 

Scheme 2.56 Corey-Chaykovsky cyclopropane, epoxide and aziridine synthesis 

To perform an asymmetric Simmons-Smith reaction, a few chiral auxiliaries have been reported. 

For example, based on zinc-mediated reaction, Iglesias-Guerra and co-workers recently 

developed a sugar chiral auxiliary for diastereoselective Simmons-Smith cyclopropanation 

reaction.[180–182] In 2007, Hsung and co-workers used a chiral oxazolidine-2-one derivative to 

achieve, with high diastereoisomeric excess, the cyclopropanation reactions.[183] Bull and co-

workers designed a similar system and applied it to the synthesis of natural products.[184] In 

2012, Yun and co-workers employed a chiral 1,3-oxathiane 3-oxides derived from (+)-camphor to 

obtain with high diastereoselectivity and moderate yield trans-cyclopropanes (Scheme 2.57).[185] 
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Scheme 2.57 Iglesias-Guerra cyclopropane synthesis 

With the development of ligand-assisted chemistry, Simmons-Smith cyclopropanation reaction 

has also been carried out with several asymmetric systems involving different ligands, such as 

Charette’s chiral dioxaborolane, Nugent’s isoborneol-based amino alcohol ligand or Deng-gao’s 

sulfonamide (Chart 2.11).[186–189] 

 

Chart 2.11 Representative chiral ligands for the asymmetric Simmons-Smith reaction 

Intramolecular asymmetric cyclopropanation was also performed by Ku and co-workers via 

displacement of an enantiopure benzylic mesylate moiety by intramolecular addition of a 

potassium enolate delivering the corresponding trans-cyclopropane with high enantiomeric 

purity (Scheme 2.58).[190] 

 

Scheme 2.58 Ku’s asymmetric cyclopropanation 
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In recent years, many elegant organocatalyzed approaches for the asymmetric cyclopropanation 

were published. They involved different type of catalysts, such as carbenes, diamines or more 

complex oxazaborolidinium ions and camphor derivatives (Chart 2.12). 

 

Chart 2.12 Representative chiral organocatalysts for cyclopropanation 

With the tremendous development of metal-catalysed transformations, some research groups 

reported organometallic synthesis of cyclopropanes. Numerous asymmetric reactions were 

developed using rhodium and ruthenium catalysts and carbene precursors as starting materials. 

For example, Davies and co-workers developed a rhodium-catalysed C-H bond activation 

strategy to build trisubstituted cyclopropane rings (Scheme 2.59).[191] 

 

Scheme 2.59 Davies asymmetric cyclopropanation 
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The synthesis of cyclopropane rings using a diazo as carbene precursor and an olefin as 

precursors was also performed with other systems, such as copper and a chiral ligand reported 

by Pfaltz (Scheme 2.60) or a complex cobalt/porphyrin catalyst reported by Zhang.[192–194] Most 

of these methods to build enantioenriched cyclopropanes proved their efficiency on a large 

panel of systems but generally limited to the synthesis of trans-cyclopropanes because of the 

poor availability and stability of (Z)-alkenes to construct cis-cyclopropanes. 

 

Scheme 2.60 Pfaltz cyclopropane synthesis 

Finally, in nature, cyclopropane can be built in many ways. For example, the coenzyme S-

adenosyl-methionine (SAM) can give its methylene to a double bond to generate a three-

membered ring. Iron contained in metalloenzymes can also promote a radical cyclization.[165] 

Due to the formation of covalent intermediates, most of the cyclopropanes contained in natural 

products are in relative trans configuration (Scheme 2.61). 

 

Scheme 2.61 Biosynthesis of cyclopropane rings  
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II.1.iv. C-H functionalisation of cyclopropanes using a bidentate DG 

As previously mentioned (I.2.ii), selective ipso- and -functionalization to carbonyl group are 

widely described. To facilitate the activation of unreactive -C(sp3)-H bond in carboxylic acid 

derivatives, and with the emergence of nitrogen-directed cyclopalladation, many research 

groups started working on the selective -functionalization of amides as masked carboxylic acids 

and developed bidentate directing groups, which would promote the metal chelation and 

indirectly assist the proton abstraction (Scheme 2.62). These directing groups were applied for 

the selective cis-arylation of substituted cycloalkanes due to the steric constraints which force 

the intermediate palladacycle to adopt a cis-geometry.[3,195]  

 

Scheme 2.62 cis-Arylation of cyclopropane using a bidentate directing group 
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These methodologies, widely using 8-aminoquinoline as powerful directing group, were also 

applied for the total synthesis of various cyclobutane-containing natural products (Scheme 

2.63).[196,197] 

 

Scheme 2.63 Arylation and olefination of cyclobutane using a bidentate directing group for the total synthesis of 

pipercyclobutanamide A 

In 2017, Babu and co-workers developed a new bidentate directing group based on a 

benzothiadiazole core, allowing arylation and alkylation of cycloalkanes, and arylation of simple 

alkyl chains (Scheme 2.64). However, this system suffers from the lack of control over the rate of 

arylation, resulting in a mixture of mono and biarylated species.[198] 

 

Scheme 2.64 cis-Arylation of cyclopropane using a bidentate directing group 
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Besides these contributions to the C-H bond activation of masked cyclopropane carboxylic acids, 

Charette and co-workers developed a practical approach for the functionalisation of 

cyclopropylmethanamine, masked as picolamide derivatives, with excellent yields and broad 

scope tolerance (Scheme 2.65).[5] 

 

Scheme 2.65 cis-Arylation of cyclopropane using a bidentate directing group 

Now if we consider a diastereoselective approach, chiral DG must be designed considering that 

accessing stereogenic carbons by means of asymmetric C(sp3)-H bond functionalisation presents 

an additional difficulty. Recently, Yu and Hong independently performed the diastereoselective 

arylation of chiral amino-acid derivatives and hence the stereoselectivity was imposed by the 

proximal stereogenic centre (Scheme 1.23).[81,199] Hong and co-workers designed a chiral 

bidentate directing group for the C(sp3)-H bond functionalization of cycloalkanes (Scheme 2.66). 

In 2016, these two reports were the only examples of diastereoselective cyclic C-H bond 

activation described in the literature.  

 

Scheme 2.66 Hong diastereoselective arylation of cyclopropanes 
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II.2. On the way to the first diastereoselective sulfoxide-directed C(sp3)-H 

activation of cyclopropanes 

II.2.i. Development of a new sulfinyl aniline chiral directing group 

The following was realized with Dr Faouzi Chahdoura, post-doctoral student. 

II.2.i.1.  Background of the work 

Regarding the widely recognized potential of bicoordinating directing groups to facilitate 

challenging functionalisation of aliphatic substrates, the conception of original chiral bidentate 

directing groups, implying various sources of chirality, is highly appealing. Indeed, and when we 

started working on this subject, no chiral bicoordinating directing group has ever been disclosed 

for the C(sp3)-H bond activation. Drawing inspiration from Daugulis and Babu’s work on C-H 

bond functionalization of cycloalkanes using 2-(methylthio)-aniline as directing group, we 

designed a 2-(sulfinyl)-aniline as potential directing group and chiral inductor for the asymmetric 

functionalisation of cycloalkanes (Figure 2.27).[3,4] 

 

Figure 2.27 From regio- to diastereo-selective C-H bond activation 
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II.2.i.2. Synthesis of the substrates and chiral auxiliaries 

The first synthesis of the sulfinylaniline directing group was performed by coupling the 2-

bromoaniline with cyclopropane carbonyl chloride in presence of triethylamine as base. Then, 

the newly formed amide was deprotonated with one equivalent of n-butyllithium, and another 

equivalent promoted the halogen-metal exchange. The generated aryllithium species were 

quenched with chiral electrophiles such as menthyl sulfinate S or tert-butyl thiosulfinate T to 

access various sulfoxide substrates (Scheme 2.67). 

 

Scheme 2.67 First synthesis of cyclopropane substrates 

As described by O’Brien and co-workers, the second step follows certainly a nucleophilic 

mechanism with the formation of an ate-complex, which then attacks the sulfoxide to release 

the leaving group (Scheme 2.68).[200] 

 

Scheme 2.68 Mechanistic insights for the ortho-functionalization of aniline derivatives 
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Then, we tried to improve the synthesis of the (S)-2-(p-tolylsulfinyl)aniline (APS), as no general 

way to access chiral ortho-sulfinylaniline has been disclosed in the literature. Accordingly, 

different strategies were evaluated using (-)-menthyl-(S)-p-toluenesulfinate S as chiral precursor. 

An appealing one-pot approach, inspired by Booker-Milburn and co-workers, consisted of the 

ortho-lithiation of an in-situ generated urea, followed by quenching with S. Deceivingly, no 

product formation was ever observed (Scheme 2.69).[201,202] 

 

Scheme 2.69 APS synthesis using Booker-Milburn conditions 

Concerned about atom economy, we envisaged the ortholithiation of a protected aniline to get 

our chiral auxiliary. These methodologies only gave low yields (Scheme 2.70). 

 

Scheme 2.70 APS synthesis from protected aniline 

All other methods consisted in the lithium/halogen exchange of a protected 2-bromoaniline or 

ortho-lithiation of a protected aniline. Using 2-bromo-N-pivanilide as substrate, lithium/halogen 

exchange with n-butyllithium followed by trapping with S afforded the pivaloyl-protected 

directing group, which was subsequently deprotected under basic conditions to deliver 

enantiopure APS with 70% isolated yield over three steps (Scheme 2.71). This convenient 

methodology is only limited by the reaction time for the deprotection of the pivaloyl group, 

stable under mild basic conditions. 

 

Scheme 2.71 APS synthesis from 2-bromoaniline 
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During our optimization of the APS synthesis and drawing inspiration from Terry-Lorenzo and co-

workers who studied metal/halogen exchange on mono-acetamide-protected anilines, the 

amide group was selected instead of pivalamide to acetamide, which would be more easily 

deprotected under basic conditions.[203] Cheap and commercially available 2-bromo-N-

acetanilide was thus used as starting material and in one-pot procedure APS was obtained with 

an excellent 83% yield and total enantiomeric purity (Scheme 2.72). Other easily removable 

amino-protecting groups, such as trifluoroacetamide, did not give any conversion to the desired 

product, but side reactions such as nucleophilic attack of the n-butyllithium on the carbonyl 

group were observed.  

 

Scheme 2.72 APS synthesis from 2'-bromoacetanilide and associated chiral HPLC chart 

Recently He and co-workers also reported an efficient two-step methodology for the synthesis of 

enantiopure APS by the usual metal/halogen exchange to introduce the sulfoxide on a Boc-

protected iodoaniline (Scheme 2.73).[204] However, the N,N’-di-Boc-2-iodoaniline used in this 

method is rather expensive compared to the 2’-bromoacetanilide precursor used in our protocol. 

 

Scheme 2.73 He's APS synthesis from N,N-di-Boc-2-iodoaniline 
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II.2.i.3. First catalytic tests using sulfinylaniline directing groups 

Using our protocol described in Scheme 2.72, we accessed the first substrate II-1a with an 

excellent enantiomeric excess. Usually, our substrates were obtained by simple coupling with an 

acyl chloride in presence of triethylamine or with an acid under standard peptidic coupling 

conditions (Scheme 2.74).[205] 

 

Scheme 2.74 Obtention of the substrates 

Rapidly, we initiated our catalytic testes by studying arylation of cyclopropane ring with 4’-

iodoacetophenone in presence of palladium catalyst and a silver salt in toluene (Scheme 2.75). 

 

Scheme 2.75 First test of palladium-catalysed C-H arylation using the APS directing group 

Drawing inspiration from a clear improvement of the reactivity assessed by the drastic jump 

reported by other research groups when performing the direct functionalisation in polar 

solvents, we attempted the arylation reaction in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) at 

lower temperature. Rewardingly, the mixture of the two diastereomers II-2aA and II-2aB was 

afforded in high 80% yield and encouraging 20% diastereoisomeric excess. Further insights about 

the optimisation of the reaction conditions will be detailed later (II.2.ii). 
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As first attempts to improve the diastereomeric excess of the diastereoselective C(sp3)-H bond 

activation of cyclopropane, a screening of various alkyl and aryl groups on the sulfoxide moiety 

for the diastereoselective C(sp3)-H bond activation of cyclopropane showed an interesting 

logarithmic correlation between the conversion and the diastereoselectivity: generally, using aryl 

sulfoxides high conversions could be reached, nevertheless to the detriment of the 

diastereomeric ratio; in contrary, alkyl sulfoxides suffered from low yield but high 

diastereoisomeric excess. Using highly hindered groups such as adamantane on the sulfoxide 

resulted in total inhibition of the reaction (Figure 2.28).  

 

Figure 2.28 Relation between conversion, diastereomeric excess and steric hindrance of the directing group 
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During this study, SOtBu moiety appeared highly promising as the desired product was furnished 

with a good stereoselectivity of about 9:1 and 30 % conversion. However, despite extensive 

optimisation study, we did not manage to improve the reactivity of this catalytic system. Indeed, 

while the diastereomeric ratio was maintained around 90/10, the reactivity was not better as 

the initial conditions (Table 2.1). This drastic difference in reactivity could be explained by the 

difficulty of the aryl iodide to approach the palladacycle for oxidative addition because of the 

steric hindrance of the tert-butyl group. 

Table 2.1 Optimization of the arylation using (tert-butylsulfinyl)aniline as directing group 

 

 

As the reasonable level of conversion of II-1b was not achieved, we retained (S)-2-(para-tolyl-

sulfinyl)aniline (APS) as directing group for our transformation for two mains reasons: first of all, 

high yielding reactions compared to the tert-butyl moiety would allow the efficient access to 

arylated compounds; secondly, the two diastereisomers obtained during the reaction are easily 

separable by simple column chromatography on silica gel, yielding to two enantiopure 

diastereoisomers, useful for medicinal chemistry applications. 
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II.2.i.4. Ineffective bidentate directing groups 

Apart from sulfinyl-aniline-based directing group, various other bidentate auxiliaries were 

synthesized and tested for C-H bond arylation of aliphatic cyclic substrates (Chart 2.13). 

 

Chart 2.13 Other classes of directing groups considered 

All these compounds were generally synthesized as racemates by functionalisation of an arylthiol 

precursor, followed by nucleophilic addition to (bromomethyl)cyclopropane and racemic 

oxidation of the thioether into sulfoxide either using m-CPBA or FeCl3/H5IO6 as oxidizing agents 

(Scheme 2.76).[206] 

 

Scheme 2.76 General racemic synthesis of the other substrates 
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Unfortunately, under various reaction conditions described in the literature,[22,50,207] the desired 

arylation product could not be observed (Table 2.2). Moreover, this type of substrate suffers 

from a tedious asymmetric synthesis as the starting (bromomethyl)cyclopropane tends to 

rearrange to the corresponding methylenecyclopropane in the presence of lithium bases or 

Grignard reagents. 

Table 2.2 Arylation tests with other directing groups 
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II.2.ii. Optimization of the C-H functionalization of cyclopropane 

carboxylic acid 

With a first hit in term of reactivity and an optimized synthesis for the chiral directing group APS, 

we endeavoured on optimizing the yield for the arylation of II-1a with 4’-iodoacetophenone. 

First of all, using palladium(II) acetate as catalyst and HFIP as solvent, we optimized the base and 

additive. Using a silver salt as base no matter its counter anion, gave good NMR yield. When 

using an N-heterocyclic carbene precursor imidazolium salt as additive, the conversion dropped 

drastically, surely explained by the strongly coordinating character or the carbene that could 

avoid formation of the desired metalacyclic species (Entry 3). It was found that adding 0.5 

equivalents of sodium trifluoroacetate in the reaction mixture helped rising the conversion up to 

90% while diminishing the amount of expensive silver acetate (Entry 4). Its exact action mode is 

yet not known but we can suspect the formation of a hybrid Pd(OAc)(TFA) species that would be 

more reactive that both Pd(OAc)2 and Pd(TFA)2 (Table 2.3). 

Table 2.3 Optimisation of the base and additive for cyclopropane arylation 
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Then we investigated the catalyst source. We showed that the reaction need a palladium(II) 

catalyst to proceed, as with a source of Pd(0) (Entry 2) or without catalyst (Entry 3) no reaction 

occurred. Thus, the catalytic cycle certainly involves Pd(II)/Pd(IV) species. Based on the previous 

results concerning the addition of NaTFA in the reaction mixture, we tried using palladium(II) 

trifluoroacetate, however only low conversion was obtained, supporting the theory of the 

formation of a dual Pd(OAc)(TFA) species (Entry 5). The efficiency of the system allowed us to 

decrease the catalyst loading from 10 to 5 mol% (Table 2.4). 

Table 2.4 Optimisation of catalyst for cyclopropane arylation 
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Final optimization was done on both solvent and reaction time, while keeping the mixture at 80 

°C. Compared to other solvents like 1,2-dichloroethane or 1,1,1-trifluoroethanol (Entries 1 and 

2), HFIP showed a drastic beneficial effect in term of reactivity. Interestingly, by adding a small 

amount of water in the reaction mixture, the conversion was further improved, and the reaction 

time could be decreased to only 8 h (Entry 5). Based on the experimental observations done 

during the experiments, we suspect a better dissolution of all compounds, in particular the silver 

and sodium salts, in this pseudo-homogeneous mixture. When rising the proportions of water 

from 9:1 to 4:1 and 1:1, the mixture started to be biphasic and the reactivity was lowered. 

However, the reactivity was high in a mixture of surfactant and HFIP, suggesting that in our 

system, HFIP may also form micelles as suggested in various studies (Table 2.5).[208,209]  

Table 2.5 Optimisation of solvent and time for cyclopropane arylation 

 

 

At the end, we could even lower the excess of iodoarene coupling partner from 2 to 1.2 

equivalent, using 5 mol% of Pd(OAc)2 as catalyst, 50 mol% of NaTFA as additive and 2.2 

equivalents of AgOAc as base in a 9:1 mixture of HFIP and water, to get efficient arylation of non-

substituted cyclopropane substrate while maintaining the diastereoisomeric ratio to 60/40.
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II.3. Non-substituted cycloalkane functionalization 

II.3.i. Arylation of naked cyclopropane 

Under the optimized reaction conditions, direct arylation of II-1a with a large panel of iodoarene 

coupling partners was performed, affording selectively mono-cis-arylated cyclopropanes II-2 

with good to excellent total yield and moderate to good diastereoselectivity (Table 2.6).[16] All 

type of functional groups on the iodoarene coupling partner were well tolerated, from ketone to 

sensitive aldehyde or halogen. However, the reactivity of the system dropped while using 

electron-rich coupling partners such as iodoanisole. Moreover, the diastereoselectivity was 

influenced by the substitution of the coupling partner: para-substituted ones gave generally 20 

% diastereomeric excess, meta-susbtituted from 30 to 40 % and ortho-susbtituted up to 40 %. 

Table 2.6 Scope of arylation on naked cyclopropane ring using APS as chiral directing group (total yields are given; 

between bracket, yield of the major diastereomer, with the diastereomeric ratio) 
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In almost all the cases (except for II-2m), the major diastereomer was easily separated from the 

minor diastereomer by silica gel chromatography. The relative cis-configuration was proved by 

NOESY analysis of compound II-2fA (Figure 2.29). 

 

Figure 2.29 NOE experiment on arylated product II-2fA 

Notably, II-2aA crystallized in CH2Cl2/CHCl3/Et2O affording single crystals suitable for X-Ray 

diffraction analysis (Figure 2.30.a). The absolute configuration for the other products was 

attributed accordingly. In the asymmetric unit, the absolute configuration of both chiral carbons 

on the cyclopropane was proven to be (1R, 2S). The amide moiety is antiparallel to the adjacent 

C-H bond in the cyclopropane ring, which can be explain by the orbital repulsion between these 

atoms. Furthermore, the distance between the tolyl and the acetylphenyl (around 3.7 Å) 

suggests a possible -interaction between these two rings.[210] Unit packing shows multiple 

hydrogen bonds between the sulfoxide and the amide moiety (Figure 2.30.b).  
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Figure 2.30 ORTEP views of II-2aA 

To illustrate the synthetic value of this methodology, deprotection of one of the products was 

performed under basic conditions, to regenerate arylated cyclopropane carboxylic acid. One of 

the advantages of our method is the ability to recover in quantitative yield the chiral auxiliary 

with no loss of its enantiomeric purity, by a simple acido-basic work-up after deprotection. The 

carboxylic II-4A could not be separated by chiral HPLC but optical rotation suggested full 

enantiomeric purity (Scheme 2.77). 

 

Scheme 2.77 Deprotection of APS under basic conditions 

 



Chapter 2: Development and applications of an enantiopure sulfinyl aniline as 
chiral directing group for the C(sp3)-H activation of cycloalkanes 

106 
 

II.3.ii. Extension to the arylation of larger cycloalkanes 

Encouraged by the excellent directing ability of our chiral auxiliary for the arylation of 

cyclopropane carboxylic acid, we pursued by extending the scope to the arylation towards larger 

cycloalkanes (Scheme 2.78). Selective cis-arylation of cyclobutane ring was achieved with a 

modest yield of 40% and the two diastereomers were not separable in this case. Surprisingly, 

low reactivity was observed using cyclopentane carboxamide derivative. When using 

cyclohexane-derived as substrate, four products were isolated: two cis- and two trans- 

diastereomers in around a 4:1 cis:trans ratio. Indeed, the ring constraints are lower in the 

cyclohexane, which allowed the trans- functionalization.[211]   

 

Scheme 2.78 Diastereoselective arylation of larger cycloalkanes  
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II.3.iii. Limitation of the scope 

Even though our method proved to be efficient for the functionalisation of small ring substrates 

and using various iodoarenes bearing electron-withdrawing functional groups, the reaction 

performed poorly using electron-donating functional groups on the aromatic ring, such as 4-

iodoanisole or 4-iodotoluene. However, regarding the high yields and good diastereomeric ratio 

obtained using nitro-substituted iodobenzene, an alternative solution could consist in the 

conversion to aniline by simple reduction or to phenol by diazotization followed by hydrolysis, 

thus allowing access to a larger variety of compounds (Scheme 2.79).[212] 

 

Scheme 2.79 Post-modification of nitro derivatives 

One other serious limitation relates to the low reactivity with linear alkyl chains under our 

optimized reaction conditions. Even more activated benzylic position did not undergo any C-H 

bond activation (Chart 2.14). Fortunately, we overcame this issue and another part of this 

manuscript will be devoted to the functionalization of linear chains using modified conditions 

(III.2.i). 

 

Chart 2.14 Unreactive substrates for diastereoselective arylation  
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II.3.iv. Extension to the arylation of substituted cyclopropanes 

The following was realized with Clémence Rose, Master student. 

Encouraged by the high reactivity of our catalytic system and the easy separation of the two 

diastereomers formed, we investigated the more challenging stereoselective C(sp3)-H bond 

arylation of disubstituted cyclopropanes to access original trisubstituted cyclopropanes (Scheme 

2.80). Notably, cyclopropane carboxylic acids bearing both alkyl and aryl substituents are key 

biologically active scaffolds, involved in cardiovascular disease treatment, pyrethroid insecticides 

and peptide isosters.[213–215] 

 

Scheme 2.80 Stereospecific functionalisation of substituted cyclopropanes 
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Thus, we investigated the cis-arylation of trans-2-methylcyclopropane-1-carboxylic acid 

derivative with 4’-iodoacetophenone. The system is less reactive due to the steric hindrance of 

the methyl and both low coupling partner and catalyst loading afforded only traces of the 

desired product (Entry 1). Nevertheless, with an excess of iodoarene (Entry 4), the reaction 

proceeds smoothly under our conditions. Further increase of the reaction time allowed full 

conversion to two isolable diastereomers (Entry 5, Table 2.7). 

Table 2.7 Optimisation of the arylation of substituted cyclopropane derivatives 
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With optimised reaction conditions in hand, we applied our strategy to the synthesis of novel 

enantiopure 1,2,3-trisubstituted cyclopropane carboxylic acid derivatives from racemic 

precursors. Independently from the alkyl chain size, arylation could be performed with high yield 

and complete separation of the two diastereomers. The reaction is tolerant with various 

functional groups on the arene moiety regardless their position (Table 2.8). Among all described 

methods to access 1,2,3-trisubstituted cyclopropanes carboxylic acid derivatives, our method 

offers large tolerance in the aryl substituents and allow access to the two enantiomers that are 

both valuable considering medicinal chemistry applications (II.5).[216–218] 

Table 2.8 Scope of the diastereoselective arylation of substituted cyclopropanes using APS as directing group 
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We were also interested in the arylation of 2,2-dimethylcyclopropane carboxamide substrate II-

1h in order to synthesize analogues of chrysanthemic acid. However, II-1h revealed to be a 

strong donor-acceptor cyclopropane and we found that it underwent arylation, followed by ring-

opening and addition of one HFIP molecule in one-pot (Scheme 2.81). We suspected that the 

arylation occurred first, followed by ring opening. The in situ generated tertiary carbocation 

could then be attacked by HFIP to get to II-10. Nonetheless interesting, this transformation was 

restricted to a small scope of electron-poor iodoarenes and no conditions proved to be efficient 

to avoid ring opening. 

 

Scheme 2.81 Arylation of 2,2-dimethylcyclopropane derivative  
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II.3.v. Other challenging transformations: alkylation and olefination 

Palladium-catalysed alkylation reactions have already been performed in a regioselective way, 

either on sp2 or sp3 carbons.[4,219] Using our chiral APS, we succeeded in performing challenging 

C(sp3)/C(sp3) coupling using various alkyl iodides as coupling partners, and even with a more 

sterically hindered disubstituted cyclopropane as substrate (Entry 3). Even if the yields are 

relatively moderate, these are one of the first examples of diastereoselective and 

diastereoselective alkylation on cyclopropane ring (Table 2.9). Using the ATS chiral auxiliary with 

the tert-butyl group on the sulphur atom, low yield of 13% of II-13 was isolated, however with a 

high diastereomeric ratio of 90:10 (Entry 4). Selective mono-alkylation of cyclobutene II-1c was 

also effective and the two diastereomers II-14A and II-14B were obtained with 46 and 21% yield 

respectively (Entry 5). 

Table 2.9 Alkylation of cycloalkanes 
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Direct olefination of the aliphatic substrates is particularly challenging with only few precedents. 

Various examples of catalytic olefination lead a side reaction, ie. irreversible Michael addition of 

the amide to the alkene and further transformations need to be performed to regenerate the 

double bond (Scheme 2.82).[81,220–222]  

 

Scheme 2.82 Yu's methodology to access olefins 

In pursuance of evaluating the potential of our bicoordinating DG in this transformation, the 

diastereoselective olefination was performed on an aromatic ring, rewardingly with no 1,4-

addition, delivering II-15 in promising 37% total yield and moderate 65/35 diastereomeric ratio 

(Scheme 2.83). 

 

Scheme 2.83 Diastereoselective C(sp2)-H olefination using APS as chiral directing group 

Following this hit, we applied the same reaction conditions to II-1a and were pleased to observe 

formation of the desired product in good total yield (Scheme 2.84). The major diastereomer II-

16A was isolated by column chromatography. 

 

Scheme 2.84 First diastereoselective C(sp3)-H olefination using APS as chiral directing group 
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II.4. Mechanistic aspects 

In order to elucidate the mechanism and the mode of action of our sulfinylaniline DG, 

preliminary mechanistic studies have been undertaken.  

Firstly, the reversibility of the C-H bond activation step was investigated. Deuterated substrate II-

1a-d2 was efficiently obtained using acetic acid-d as internal source of deuterium. Using a similar 

protocol to our arylation, nonetheless without coupling partner, full conversion to II-1a was 

observed after 8 h (Scheme 2.85). This suggests total reversibility of the C-H bond activation 

step. 

 

Scheme 2.85 Deuteration experiment on naked cyclopropane 

Kinetic isotopic effects were also studied by reacting separately II-1a and II-1a-d2 in our reaction 

conditions with 4’-iodoacetophenone as model coupling partner. The kinetic isotope effect was 

found to be 1.2, which is coherent with the hypothesis that the C-H bond activation step is not 

the rate-determining step of the transformation (Figure 2.31). 

 

Figure 2.31 KIE effects on non-substituted cyclopropane 

Subsequently, attempts to isolate palladacyclic species were undertaken to support the 

mechanism of this transformation. Isolation of stabilized palladacycle II-17 was possible using 

conditions developed by Rao and co-workers (Scheme 2.86).[211] 
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Scheme 2.86 Palladacycle I-17A synthesis and comparison between the starting material and palladacycle NMR 

Crystallisation in benzene of the major diastereomer II-17A afforded mono-crystals, suitable for 

X-Ray diffraction analysis (Figure 2.32). The crystallographic data give several key information 

about the original cyclopropane-derived palladacycle. Firstly, the bidentate character of the APS 

directing group is proven and amide group coordinates via its deprotonated form. Moreover, 

although the sulfoxide moiety contains potentially two chelating atoms, i.e. O- and S-, the Pd-S 

coordination is favored resulting in a formation of 5,5-bicyclic species. Importantly, the rare 

examples of isolated palladacyclic intermediates generated via C(sp3)-H activation of aliphatic, 

linear substrates bearing quinolin-8-amine derived N,N-bicoordinating directing group show a 

related, 5,-5-bicyclic structure.[4] A rapid comparison of II-17A with the literature described 

structures show that APS moiety leads to a formation of larger metallacyclic species; for II-17A 

the amide-Pd bond is of 2.014 Å, whereas for quinolone-type intermediates, the values of 1.971 

Å and 1.969 Å were determined. Besides, S-Pd bond of 2.329 Å is significantly longer than the 
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N(quinoline)-Pd linkages (2.126 Å and 2.124 Å). In contrast, Pd-C bond in II-17A is shorter in 

comparison to its quinolin-8-amine congeners (2.001 Å vs. 2.023 Å and 2.012 Å). The N(1)-Pd-

C(17) angle of 83.1° shows distortion from an idealized square planar geometry at the palladium 

center as is coherent with the literature. In addition, slight torsion of the second ring is also 

observed, as suggested by the S(1)-Pd-N(1) angle of 84.09 Å and S(1)-C(8)-C(13) and C(8)-C(13)-

N(1) angles of 118.92° and 117.09° respectively, together with S(1)-C(8)-C(13)-N(1) torsion of -

0.90°. Finally, the X-ray structure of the palladacyclic compound clearly shows that pTol 

substituent of the sulfoxide moiety points in an opposite direction to the cyclopropane ring, yet 

impacting only moderately the steric hindrance between diastereotopic positions at C(17) and 

C(16), resulting in low stereoselectivity observed.  

 

Figure 2.32 ORTEP view of the palladacycle II-17A 

Furthermore, preliminary density functional theory (DFT-D) computations were carried out 

without thorough investigation of the reaction energy profile.  Given the conditions required for 

the catalysis to take place and the central role of palladacyclic intermediates in the overall 

process, a mere comparison of the energies of metallacycles Int-2aA-1 and Int-2aB-1 (Figure 

2.34) that are formed indicated that they were almost all isoenergetic within 2 kcal/mol (gas 

phase ground state geometries at 298.15 K, ZORA-PBE-D3(BJ)/all electron TZP), with a slight bias 

in favour of the tridentate complex II-17A depicted in Figure 2.32 where the cyclopropyl's 

methylene orientation is antara-facial with respect to the sulfoxide's oxygen atom. As a matter 

of fact, in the present stage of the study, it was not possible to confirm that the deprotonation of 

the amidic NH position that leads to neutral II-17 takes place before the cyclopalladation step or 

after.[223,224] Computation of the energies of the two-low lying tridentate palladium acetate 

chelates, i.e. the precursors of Int-2a-1 (noted pre-Int-2a-1), indicates however that the N-bound 

proton bears a rather high positive charge that makes it potentially prone to abstraction by any 

moderate base such as the acetate. This can be intuitively noted from the map of electrostatic 

potential drawn in Figure 2.33 which denotes a dark blue coloured isosurface area symptomatic 

here of an important charge density depletion at the amide's proton.  Deprotonation of this 



Chapter 2: Development and applications of an enantiopure sulfinyl aniline as 
chiral directing group for the C(sp3)-H activation of cycloalkanes 

117 
 

position is key to the stabilization of the palladacycle as it releases nitrogen's lone electron pair 

leading to enhanced electron conjugation and planarization of the whole chelate.  Natural 

charges (extracted from Natural Bonding Orbital - Natural Population analysis)[225] clearly 

support the acidic character of this position (q(Hamide) = +0.43, q(H)average~+0.22) in pre-Int-2aA-1.  

When comparing relevant interatomic distances around the central Pd atom on going from pre-

Int-2aA-1 to Int-2aA-1, one can note that the largest variation of distance is observed by order of 

importance for the Namide-Pd bond (shortening by 0.10 Å), the S-Pd bond (shortening by 0.05 Å) 

and the C-Pd bond (shortening by 0.01 Å). Therefore, the amide's C-O and sulfoxide's S-O 

distances undergo a slight elongation by ca. 0.010-0.020 Å.  Further NBO analysis of Int-2aA-1 

indicates that in the assumed Lewis structure the lowest bond electron populations around the 

the Pd center are found for the S-Pd and Npyridine-Pd bonds, which fall below the detection 

threshold of 1.7 e.  Their Wiberg bond indices w (NBO) are respectively w(S-Pd) = 0.14 and 

w(Npyridine-Pd) = 0.05.  Interestingly, in the computed NBO Lewis structure the bonds that actually 

seem to scaffold the chelate are the Namide-Pd and Ccyclopropyl-Pd, which are both computed as the 

following linear combinations of atom centered orbitals:  Namide-Pd) (1.89 e)= 0.90(sp2.99)N + 

0.43(sd0.95)Pd,  w(Namide-Pd)= 0.10; Ccyclopropyl-Pd) (1.83 e)= 0.78(sp3.54)C + 0.62(sd1.21)Pd , w(C-Pd)= 

0.53. 

 

Figure 2.33 Palladacyclic intermediates and the associated charge density maps over an isosurface of the SCF electron 

density 

Based on this study and in accordance with literature precedents, a simplified catalytic scenario 

can be proposed. A substrate binding to the metal by coordinating S- and N-atoms is believed to 

initiate the overall transformation. The chelation with the deprotonative amide group, bearing a 

negative charge, enhances formation of Pd-intermediate pre-Int-2aA-1 bearing one anionic 

acetate ligand and allows the C-H preactivation via favourable Pd-CH agostic geometry.  

However, at the moment, the order of the elemental steps of NH-deprotonation and palladation, 

remains ambiguous. This intermediate could not be isolated, though it was possible to observe 

by infrared spectrometry analysis shifts in the S-O and C-O stretches, as well as disappearance of 
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the N-H stretch. Subsequently, the reversible C-H activation takes place, probably via Concerted 

Metalation-Deprotonation Pathway, enhanced in a presence of NaTFA additive. This metalation 

step is believed to be stereodeterminant, as the same diastereomeric ratio of the palladacyclic 

intermediates Int-2aA-1 and the arylated products is usually observed. Subsequent oxidative 

addition of Ar-I leads to a formation of the Pd(IV) intermediates Int-2aA-2 and a final reductive 

elimination delivers both diastereomers of the product and the catalyst is regenerated in a 

presence of AgOAc. Noteworthy, the scope of the arylation of II-1a clearly indicates that the 

diastereoselectivity is improved when meta- and ortho-substituted iodoarenes are used. It can 

be hypothesized that when more sterically demanding iodoarenes are used, the rate of the 

reductive elimination from the two diastereomeric metallacycles Int-2aA-2 is different. 

Accordingly, one diastereomer of Int-2aA-2 is converted into the final product more rapidly and 

the reversibility of the previous steps allows the re-equilibration of the ratio Int-2aA-1: Int-2aB-

1. Therefore, in this case the overall stereoinduction would be impacted by both, the 

diastereoselectivity of the C-H activation step and the rate of the reductive elimination from the 

two diastereomeric intermediates (Figure 2.34). 
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Figure 2.34 Mechanism for C-H activation of cycloalkanes using APS as chiral directing group 

In this catalytic cycle, the role of HFIP remains ambiguous although we suspect the formation of 

a coordination sphere around the sulfoxide that could enhance its coordinating ability.[15] 

Regarding its low pKa (9.3) compared to 2,2,2-trifluoroethanol (12.9) or isopropanol (17.1), HFIP 

could also play a role in the assisted deprotonation mechanism (Scheme 2.87).  

 

Scheme 2.87 Possible role of HFIP in the CMD 
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Transition state from pre-Int-2aA-1 to Int-2aA-1 has been calculated and shows coherent 

distances for a CMD mechanism (I.2.iv). However, integration of one HFIP molecule in this model 

was not successful and resulted in high destabilisation of the system (Figure 2.35).  

 

Figure 2.35 Calculated transition state for the diastereoselective C-H bond activation of cyclopropane ring 

Concerning the tert-butyl substrate, even though no palladacycle was isolated, we hypothesized 

its similarity with II-17, and supposed that one of the C-H bonds in the cyclopropane, by clashing 

sterically with the directing group, would be the origin of the diastereoselectivity. The increased 

stereoselectivity arises from the important steric hindrance between of the cyclopropane C-H 

bonds and the directing group. In contrast, the flat nature of the p-tolyl moiety, the C(16)-H 

would not lead to high destabilisation of the minor diastereomer (Chart 2.15). 

 

Chart 2.15 Origin of the diastereoselectivity in APS-based systems 
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II.5. Application to the synthesis of natural products 

II.5.i. Introduction 

As mentioned before (II.1.ii), many natural products bear cyclopropane and cyclobutane 

skeletons. In particular, the smallest cycloalkanes are fascinating subunits, privileged scaffolds in 

medicinally active compounds, drugs, agrochemicals, food and fragrances but have also been 

widely exploited as versatile synthetic blocks and intermediates.[175]  

II.5.ii. Isolation and synthesis of hoshinolactam 

Hoshinolactam was discovered recently by Japanese scientists near Hoshino, Okinawa. As many 

other compounds isolated from marine cyanobacterium, it showed biological activity, 

particularly antitrypanosomal activity.[17,226]  

Retrosynthetic analysis of hoshinolactam clearly indicates two fragments: (E)-3-((1S,2S)-2-

propylcyclopropyl) acrylic acid (PCPA) and (3R,4R,5S)-4-hydroxy-5-isobutyl-3-methylpyrrolidin-2-

one (HIMP) (Chart 2.16). The optimized synthesis of the HIMP moiety has already been described 

and hence will not be detailed in this manuscript.[227–229] 

 

Chart 2.16 Hoshinolactam 

The unique synthesis developed by Ogawa and co-workers started with the enantioselective 

construction of the cyclopropane unit using Charette’s methodology from the corresponding 

allylic alcohol.[186] The intermediate was subsequently oxidized under Swern conditions followed 

by Homer-Wadsworth-Emmons reaction. The key intermediate II-21A was then saponified and 

coupled with HIMP unit to afford hoshinolactam with 20% overall yield and assumed 93% 

enantiomeric excess (Scheme 2.88).  
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Scheme 2.88 Ogawa's synthesis of hoshinolactam 

II.5.iii. APS-based total synthesis of hoshinolactam 

The following was realized with Pauline Poutrel, Master student. 

In this project, our aim was to develop a new synthetic approach towards the PCPA unit of 

hoshinolactam. The key trans-cyclopropane II-21A is obtained from the decarboxylation of a 

1,2,3-trisubstituted cyclopropane. This carboxylic acid results from the deprotection of our chiral 

auxiliary, which allows installing the olefin moiety through C(sp3)-H bond functionalization on a 

racemic-trans-cyclopropane carboxamide derivative.  

 

Scheme 2.89 Retrosynthetic pathway for APS-based synthesis of hoshinolactam 
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To debute this synthesis, the racemic trans-n-propyl-cyclopropane carboxylic acid was prepared 

according to a modified Corey-Chaykowsky procedure, using ethyl 2-(E)-hexenoate as starting 

material and trimethylsulfoxonium iodide as carbanion source. We screened different bases and 

protocols to optimize the conditions and we found that the procedure implying sodium hydride 

in the first step followed by direct hydrolysis of the ester after cyclopropanation was the most 

efficient. The reaction proceeded smoothly, and the pure carboxylic acid was furnished in almost 

50% yield over two steps. Moderate yields can be explained by the high affinity of the compound 

to the aqueous medium, thus resulting in a difficult extraction. 

 

Scheme 2.90 APS-based synthesis of hoshinolactam 

The crude carboxylic acid was subsequently coupled with our chiral auxiliary APS using 

propylphosphonic anhydride (T3P) as coupling agent and triethylamine as base. This coupling 

reagent presents many advantages; racemization of the C1 could be avoided and smooth 

purification via extraction (high solubility in the aqueous layer) was performed. However, the 

main drawback results in its price (100€/mole compared to 40€/mole for N,N’-

dicyclohexylcarbodiimide). The desired product was obtained, however with low yield compared 

to the conversion. Optimization of the stoichiometry of the starting material, nature of the base 

and reaction time allowed full conversion to the desired carboxamide II-1g derivative as a 1:1 

mixture of diastereomers. Switch from nucleophilic base (Entry 1, triethylamine) to non-

nucleophilic base (Entry 2, pyridine), even in absence of 4-(dimethylamino)-pyridine as catalyst, 

significantly raised the conversion (Entries 3 and 4, Table 2.10).  
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Table 2.10 Optimisation of the peptidic coupling between APS-H and cyclopropane acid 

 

According to the mechanistic studies of Skobridis and co-workers, we can hypothesize a side-

reaction occurring in presence of triethylamine and due to the specific reactivity of the 

cyclopropane ring (Scheme 2.91).[230] The resulting product has never been isolated, however 

presence of olefinic protons and amide carbon suggests the legitimacy of this pathway, 

promoted by the mild donor-acceptor character of the activated carboxylic acid. 

 

Scheme 2.91 Cyclopropane ring-opening with triethylamine 
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Encouraged by our promising preliminary results on direct olefination of non-substituted 

cyclopropanes, we investigated the Heck-type reaction on substrate II-1g.[231] Our initial 

conditions proved to be efficient and water was indeed necessary to achieve high reactivity. 

Screening of different acrylates showed that only methyl and ethyl acrylate were reactive 

(Entries 1, 4, 5 and 6). Finally, key improvements were achieved by decreasing the expensive 

silver acetate amount concomitantly with using an oxygen atmosphere reaction as co-oxidant 

(Entries 9 and 10, Table 2.11). 

Table 2.11 Optimisation of the olefination 
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Based on our previous studies concerning the diastereoselective arylation of cyclopropane (II.4), 

a catalytic cycle for this diastereoselective olefination may be proposed (Figure 2.36). After 

metalation of the cyclopropane, ligand exchange between acetate and acrylate allows insertion 

of the double bond into the σ-Pd-C bond. β-hydride elimination and decoordination of the 

product delivers II-18. 

 

Figure 2.36 Mechanism for APS-directing olefination 
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With the first steps optimised, we performed a one-pot procedure to convert ethyl 2-(E)-

hexenoate into the expected interesting diastereomer II-18A. A simple purification of the crude 

mixture after the Heck-type reaction delivered diastereo- and enantio-pure 1,2,3-trisubstituted 

cyclopropane derivative II-18A in 31% yield over three steps (58% for both diastereomers) 

(Scheme 2.92). 

 

Scheme 2.92 APS-based synthesis of hoshinolactam 

Methyl and ethyl acrylate ester derivatives were used for the next challenging step, i.e. the 

selective deprotection of the amide bearing our chiral auxiliary without affecting the ester 

moiety. Ideally, we would be able to recover our chiral auxiliary with no loss of enantiomeric 

purity. The first test involved already described basic and acidic conditions to remove the chiral 

auxiliary.[16,204] However, the acrylate ester did not survive these conditions and furthermore, 

under acidic conditions, the APS was degraded. 

Therefore, based on interesting work of Evans and co-workers, we investigated the mild 

deprotection of the APS using Boc-protection of the amide prior to lithium peroxide mediated 

cleavage (Table 2.12 and Figure 2.37).[18,232] Using lithium hydroxide in presence of the methyl 

acrylate ester, even at low temperature, resulted in partial saponification (Entries 1 and 3, Table 

2.12). However, when adding hydrogen peroxide and thus forming in situ lithium peroxide, the 

methyl ester was totally recovered (Entry 2). This could be explained by the lower basicity of 

peroxide anions (pkA(HOOH) = 11.6 vs pkA(HOH) = 15.8). Higher stability of the ethyl acrylate 

ester allowed us to remove completely hydrogen peroxide while conserving good reactivity for 

the amide cleavage and, most importantly, avoiding overoxidation of the sulfoxide functional 

group (Entry 6).   
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Table 2.12 Optimisation of the selective APS-deprotection 

 

Entry R x y T (°C) 
Time 

(min) 
Conversion 

Ratio II-

19A/II-20A 

Ratio Boc-

APS/Boc-APSO 

1 Me 3 5 25 90 100 40/60 10/90 

2 Me 3 0 25 120 80 25/75 100/0 

3 Me 3 5 0 80 100 100/0 0/100 

4 Me 3 0 0 270 50 20/80 100/0 

5 Et 3 5 0 90 100 95/5 20/80 

6 Et 2 0 0 90 90 >95/5 100/0 

 

In general, 1H NMR of the crude mixture was clean enough to determine both ratios and 

determine the formation of the different by-products (Figure 2.37). 

 

Figure 2.37 Representative 1H NMR of the crude after deprotection of the APS with in situ generated LiOOH 

 

C-H alkene of 

the diacid II-20a 
C-H alkene of the 

monoacid II-19a 

N-H of the 

Boc-APSO N-H of the 

Boc-APS  
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With the efficient way of selective deprotection and recovering of the chiral auxiliary in hands, 

we explored the decarboxylation of the free carboxylic acid to get the key intermediate II-19A. 

Our initial test, using Barton’s conditions, gave full conversion to the expected product.[19,233–235] 

Following this protocol, II-18A was thus converted to II-21A with an excellent yield of 84% over 

four steps, with only one column chromatography (Scheme 2.93).  

 

Scheme 2.93 APS-based synthesis of hoshinolactam 

As shown previously, II-21A is the key intermediate already described by Ogawa and co-workers. 

Optical rotation showed its full enantiomeric purity and subsequent saponification and 

esterification with the lactam unit afforded hoshinolactam II-22A (Scheme 2.94). 

 

Scheme 2.94 APS-based synthesis of hoshinolactam 
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Optical rotation of II-22A was coherent with the literature data and the proton and carbon NMRs 

showed good coherence with the extracted compound (Table 2.13). Only small shifts were 

observed in the HIMP part, probably attributed to the presence of a trace amount of water. 

Table 2.13 Comparison of the 1H and 13C NMRs of extracted and synthesized hoshinolactam 

Unit Position C (Lit.)1 C (Exp.)1 H (Lit.), couplings1 H (Exp.), couplings1 

HIMP 

1 177.8 176.1   

2 44.1 43.8 2.51, dq (5.2, 7.6) 2.48, dq (5.2, 7.5) 

3 80.8 80.8 4.94, dd (4.6, 5.2) 4.92, dd (4.5, 5.3) 

4 57.3 56.7 3.49, ddd (4.6, 4.7, 9.4) 3.34, ddd (4.5, 4.6, 9.3) 

5a 
44.6 44.4 

1.21, m 
1.34, m 

5b 1.36, m 

6 25.0 25.1 1.61, m 1.41, m 

7 21.7 21.7 0.74, d (6.2) 0.65, d (6.2) 

8 23.2 23.2 0.76, d 6.3) 0.71, d (6.3) 

9 15.0 14.9 1.33, d (7.6) 1.32, d (7.5) 

NH   7.65, s 6.04, s 

PCPA 

1 166.0 166.0   

2 117.4 117.4 5.88, d (15.5) 5.88, d (15.5) 

3 155.0 155.1 6.59, dd (10.3, 15.5) 6.60, dd (15.5, 10.2) 

4 22.4 22.4 0.91, m 0.90, m 

5 23.3 23.2 0.59, m 0.59, m 

6 35.7 35.7 0.96, m 0.96, m 

7 22.5 22.6 1.20, tq (7.1, 7.3) 1.19, m 

8 14.0 14.0 0.78, t (7.3) 0.78, t (7.3) 

9a 
16.1 16.1 

0.35, ddd (4.5, 6.0, 8.2) 0.35, ddd (8.5, 6.2, 4.4) 

9b 0.42, ddd (4.5, 4.5, 8.8) 0.41, ddd (8.8, 4.4, 4.4) 

 

 

 

                                                        
1 Proton NMRs were recorded at 500 MHz, carbon NMRs at 125 MHz, in benzene-d6. The comparison is done 
with extracted hoshinolactam, recorded at 400 MHz for proton and 100 MHz for carbon. 
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II.5.iv. Synthesis of the key intermediates of cascarillic acid and 

grenadamide 

As described previously, many other natural products bear a cyclopropane ring and most of 

them are trans-substituted cyclopropanes (Chart 2.17). Based on our new synthetic approach to 

access hoshinolactam, we envisaged to apply the strategy to the synthesis of other natural 

products. 

 

Chart 2.17 Representative cyclopropane-based natural products 

Cascarillic acid was discovered in 1972 by Sedmera and co-workers.[236,237] It is found in cascarilla 

essential oil and has been used for many years as a symptomatic treatment for various 

respiratory diseases. Grenadamide, a metabolite isolated from cyanobacterium Lyngbya 

majuscula, shows modest cannabinoid receptor-binding activity and brine shrimp toxicity.[238,239] 
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Multiple total syntheses of these compounds are described, but only few are 

enantioselective.[240–244] They are usually multi-steps and require expensive starting materials 

(Scheme 2.95). Also, and except for the method described in Scheme 2.95.c, only a disubstituted 

cyclopropane is built, thus limiting the possible diversification of such scaffolds for further 

medicinal chemistry applications. 

 

Scheme 2.95 Non-exhaustive syntheses of cascarillic acid and grenadamide 

Applying the retrosynthetic analysis disclosed for hoshinolactam (II.5.iii), we endeavoured on 

preparing the two key intermediates II-23B and II-24B to access respectively cascarillic acid and 

grenadamide. Substrates II-1j and II-1k were obtained thanks to Corey-Chaykovsky 

cyclopropanation followed by peptidic coupling with APS (Scheme 2.96). Subsequently, C-H bond 

functionalisation of II-1j and II-1k was performed. In the case of II-1j, challenging C(sp3)-C(sp3) 

coupling occurred.  
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Scheme 2.96 Cascarillic acid and grenadamide key intermediate synthesis 

 

In contrast, olefination of II-1k was performed, followed by hydrogenation of II-24B to the 

corresponding alkyl chain. This transformation proceeded smoothly at room temperature 

without racemization of the cyclopropane chiral skeleton (Scheme 2.97). II-25B could also be 

obtained by direct alkylation of II-1k with ethyl β-iodopropionate, however with lower yield and 

high difficulty to isolate the two diastereomers of the product. 

 

Scheme 2.97 Hydrogenation of I-24B 

II.5.v. New methodology for the synthesis of cyclic natural products 

Using APS as chiral auxiliary, we managed to perform challenging reactions such as alkylation 

and olefination to build key 1,2,3-trisubstituted cyclopropane intermediates for the synthesis of 

three natural products, hoshinolactam, cascarillic acid and grenadamide (Scheme 2.98). 

Hoshinolactam was synthesized with an overall 25% yield and complete enantiomeric purity 

while cascarillic acid and grenadamide key intermediates were obtained with approximately 40% 

yield. Accordingly, our methodology allows access to various cyclopropane-containing natural 

products, with high variability on: 1) the alkyl chain by changing the starting crotonate; 2) on the 

functional group by changing the coupling partner used for the C-H bond functionalisation and 

even 3) on the third carbon of the cyclopropane, initially grafted to a masked carboxylic acid 

function. 

 

Scheme 2.98 APS-based total synthesis of cyclopropane-containing natural products
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II.6. Conclusion 

This first project was dedicated to the C(sp3)-H bond functionalization of cycloalkanes, mainly 

cyclopropane derivatives. We performed arylation reactions using various coupling partners, 

affording di- or tri-substituted cyclopropanes with good to excellent yields and moderate to 

good diastereoselectivity. After the C-H functionalisation step and separation of the 

diastereomeric product via simple column chromatography on silica gel, the chiral auxiliary can 

be cleaved under basic conditions, delivering on one hand the functionalized carboxylic acid with 

excellent yield and total enantiomeric purity, and on the other hand our chiral auxiliary APS with 

no loss of enantiomeric purity. Together with another challenging reaction, alkylation, these 

results were published in Chemistry – A European Journal in 2016 and selected as Hot Paper.[16] 

With these results in hand, we applied this synthetic approach based on C(sp3)-H bond 

functionalization of cyclopropane rings to access various key intermediates of natural products. 

We developed an interesting methodology starting from trans-alkenes to access trans-

disubstituted cyclopropanes in high enantiomeric purity. This new methodology was published in 

Organic Chemistry Frontiers in 2018. 
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II.7. Experimental section  

II.7.i. General considerations 

These general considerations are available for all experimental sections in this manuscript. 

Anhydrous conditions term denotes reactions conducted under argon in dry glassware using dry 

solvents. THF was distilled over Na/benzophenone. Anhydrous dichloromethane, diethylether 

and acetonitrile were purchased from Aldrich (Sure/Seal packaging, kept over 3Å molecular 

sieves).  Molecular sieves were activated by heating at 250°C under vacuum overnight. 

Palladium(II) acetate, sodium trifluoroacetate and silver(I) acetate were kept in a desiccator prior 

to use. 

Purification on column chromatography either refers to manual column chromatography loaded 

with silica 60 (40 – 63 μm) or to flash chromatography using Armen Flash Instrument and 

Biotage SNAP Cartridge KP – Silica 60 μm. 

NMR experiments were recorded on a Brucker 500, 400 or 300 MHz, FID treated with NMR 

Notebook or MestReNova softwares. The chemical shift δ is given relatively to the residual 

solvent. Fluorine NMR experiments were recorded decoupled from proton, unless otherwise 

specified. Broad = br, singulet = s, doublet = d, triplet = t, quadruplet = q, multiplet = m. 

Melting points were taken on a Buchi M-560 apparatus, with three measures per compound.  

Infrared experiments were done on a PerkinElmer UATR Two FT – IR C92778 spectrometer, neat 

or in solution in dichloromethane or diethylether. Broad = br, weak = w, medium = m, strong = s. 

Optical rotations were measured with an Anton Paar Polarimeter MCP 200. 

Chiral HPLC measurements were performed on a Shimadzu system with a quaternary low-

pressure LC – 20AD pump, an automatic SIL – 20A HT injector, a CTO – 10 AS oven and a SPD – 

M20 A diode array detector (DAD). The injection volume was 1 μL, the temperature of the oven 

set to 35°C and the concentration of the sample around 1 g/L. 

HMRS measurements were performed by the Service de Spectrométrie de Masse de l’Institut de 

Chimie at the University of Strasbourg. 

X-Ray crystallographic experiments were performed by the Crystallography Service of the 

University of Strasbourg. The crystals were placed in oil, and a single crystal was selected, 
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mounted on a glass fibre and placed in a low-temperature N2 stream. Data collection could be 

carried out on two instruments: 

- A Bruker APEX II DUO Kappa-CCD diffractometer equipped with an Oxford Cryosystem 

liquid N2 device, using Cu-Kα radiation (λ = 1.54178 Å). The crystal-detector distance was 

40mm. The cell parameters were determined (APEX3 software) from reflections taken 

from tree sets of 20 frames, each at 10s exposure. The structure was solved using the 

program SHELXT-2014;  

- A Nonius Kappa-CCD diffractometer equipped with an Oxford Cryosystem liquid N2 

device, using Mo-Kα radiation (λ = 0.71073 Å). The crystal-detector distance was 36mm. 

The cell parameters were determined (Denzo software) from reflections taken from one 

set of 10 frames (1.0° steps in phi angle), each at 20s exposure. The structure was solved 

by Direct methods using the program SHELXS-2014. 

The refinement and all further calculations were carried out using SHELXL-2014. The hydrogen 

atom of the NH group was located from Fourier difference. The other H-atoms were included in 

calculated positions and treated as riding atoms using SHELXL default parameters. The non-H 

atoms were refined anisotropically, using weighted full-matrix least-squares on F². A semi-

empirical absorption correction was applied using SADABS in APEX3; transmission factors: 

Tmin/Tmax = 0.5751/0.7528. 

Computations were performed with methods of the Density Functional Theory, i.e. the Perdew-

Burke-Ernzerhof (PBE) GGA functional[245] implemented in the Amsterdam Density Functional 

package[246] (ADF2013 version) and augmented with Grimme’s DFT-D3(BJ) implementation of 

dispersion with a Becke-Johnson (BJ) damping function.[223,224] Within the PBE scheme, electron 

correlation was treated within the local density approximation (LDA) in the PW92 [247] 

parametrization.  Unless otherwise stated all computations were carried out using scalar 

relativistic corrections within the Zeroth Order Regular Approximation for relativistic effects[248–

250] with ad hoc all-electron (abbr. ae) polarized triple- (TZP) Slater type basis sets.  Geometry 

optimizations by energy gradient minimization were carried out in all cases with grid accuracy 

comprised between 4.5 and 7.5, an energy gradient convergence criterion of 10−3 au and a tight 

to very tight SCF convergence criterion. Counterpoise correction for basis set superposition error 

(BSSE) was neglected throughout this study. Vibrational modes were analytically computed to 

verify that the optimized geometries were related to energy minima: statistical thermodynamic 

data at 298.15 K were extracted for further determination of enthalpies and variations of Gibbs 
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free enthalpies by conventional methods.  The ground state geometries were computed at the 

ZORA-PBE-D3(BJ)/ae-TZP level and their minimum energy nature confirmed by the absence of 

any imaginary frequency above 50 cm-1 in their computed vibrational modes.  Natural population 

analyses (NPA) as well as Wiberg indice determination were performed with geometries of 

models relaxed at the ZORA-PBE-D3(BJ) level using all electron TZP basis sets with the GENNBO 

6.0 module of ADF.  Representations of molecular structures and isosurfaces were produced 

with ADFview 2013. 

II.7.ii. Optimization of the directing group synthesis 

Pathway A to access (S)-2-(p-tolylsulfinyl)aniline APS 

 

N-pivaloyl-2-bromoaniline 

To a stirred solution of 2-bromoaniline (2.6 mL, 22.9 mmol, 1 equiv.) and triethylamine (3.5 mL, 

25.2 mmol, 1.1 equiv.) in 20 mL of anhydrous DCM was added dropwise pivaloyl chloride (3 mL, 

24.4 mmol, 1.05 equiv.) while maintaining the internal temperature below 10°C. The mixture 

was stirred 2h at room temperature. 1M HCl solution (20 mL) was added. The organic layer was 

extracted, washed with sat. NaHCO3 solution (30 mL), brine (30 mL), dried (Na2SO4), filtered off 

and evaporated under reduced pressure. Petroleum ether was added and the residue was 

allowed to crystallize at 0°C. Crystals were filtered off and dried in vacuo to afford the title 

compound (5.67 g, 97%) as white needles. 

1H NMR (400 MHz, CDCl3): 8.38 (1H, dd, J=8.3, 1.7 Hz), 7.99 (1H, br, NH), 7.51 

(1H, dd, J=7.9, 1.6 Hz), 7.25-7.32 (1H, m), 6.94 (1H, td, J=7.8, 1.7 Hz), 1.33 (9H, 

s, C(CH3)3); other data match the described ones. 

(S)-2-(p-tolylsulfinyl)aniline APS (from 2’-bromo-pivaloyl-protected aniline) 

N-pivaloyl-2-bromoaniline (3.16 g, 12.36 mmol, 1 equiv.) was dissolved in 50 mL of freshly 

distilled THF and cooled to -78°C. To the resulting solution was added dropwise n-BuLi (17 mL, 

1.6 M in hexane, 27.2 mmol, 2.2 equiv.) while maintaining the temperature below -65°C. The 

resulting pale yellow mixture was stirred 1h at -78°C. Then, a solution of compound 2 (4.73 g, 
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16.06 mmol, 1.3 equiv.) in 20 mL of freshly distilled THF was added slowly to the previous 

mixture, which was allowed to stir 30 min at -78°C. MeOH (few drops) was added to the mixture. 

After slow warming to room temperature, saturated NH4Cl solution (50 mL) was added and the 

mixture was extracted with EtOAc (30 mL), then washed with brine (20 mL), dried (Na2SO4), 

filtered off and evaporated in vacuo. The crude was dissolved in 20 mL of ethanol and NaOH 

solution (10 M) was added. The mixture was stirred overnight at 80°C. EtOH was evaporated in 

vacuo. Then, Et2O (40 mL) was added. The organic layer was extracted, washed with brine (20 

mL), dried (Na2SO4), filtered off and evaporated under reduced pressure. The crude product can 

be used as such for the next step or purified by a short column chromatography on silica gel with 

CyHex/EtOAc (8:2) to afford the title compound (2,01 g, 70%) as a white solid. 

1H NMR (400 MHz, CDCl3): 7.39-7.47 (3H, m), 7.18-7.26 (3H, m), 6.75 (1H, 

td, J=7.6, 1.1 Hz), 6.57 (1H, d, J=8.2 Hz), 4.89 (2H, br s, NH2), 2.35 (3H, s, 

PhCH3); 13C NMR (100 MHz, CDCl3): 147.69, 140.85, 140.28, 132.99, 129.81, 

128.48, 124.94, 124.02, 111.75, 111.42, 21.51; FT-IR (cm-1): 3421 (br, NH), 3328 (br, NH), 3214 

(br, NH), 3053 (w), 2921 (w), 1907 (w), 1618 (s), 1593 (s), 1481 (s), 1451 (s), 1318 (m), 1079 (m), 

1007 (s), 807 (s), 747 (s), 619 (m), 537 (s); MP: 112°C; HRMS (ESI-TOF): m/z calcd for C13H14NOS+: 

232.0791, found: 232.0816; [𝛼]𝐷
20= +40.4° (c=1.10, CHCl3); EA: calcd for C13H13NOS: C 67.50, H 

5.67, N 6.06, found: C 67.55, H 5.70, N 6.06; Rf (CyHex/EtOAc 3:2): 0.40; Rt (min, IC, Hex/IPA 

80/20, 0.5 mL/min): 64.58 (99.5%), 79.57 (0.5%). 

(S)-2-(p-tolylsulfinyl)aniline APS (from 2’-bromoacetanilide) 

A stirred solution of 2-bromo-N-acetanilide (5g, 23.36 mmol, 1 equiv.) in 100 mL of anhydrous 

THF was cooled to -78 °C, before dropwise addition of n-butyllithium (30 mL, 1.6 M in hexane, 48 

mmol, 2.05 equiv.). The resulting yellow mixture was stirred at -78 °C during 1h, before slow 

addition of a solution of (-)-Menthyl (S)-p-toluenesulfinate (14g, 47.55 mmol, 2 equiv.) in 50 mL 

of anhydrous THF. Then, the resulting mixture was further stirred 2h at -78 °C. MeOH (few 

drops) was added. After warming up to 0°C, sat. ammonium chloride solution (50 mL) and 

diethyl ether (50 mL) were added. The organic layer was washed with brine, dried (Na2SO4), 

filtered off and evaporated under reduced pressure. 

The crude was directly taken up and dissolved in 100 mL of a 1:1 mixture of ethanol and water. 

Potassium hydroxide (10g, 178.2 mmol, excess) was added. The resulting mixture was stirred at 

90 °C during 2h (monitored by GCMS). After cooling down to room temperature, solvents were 

removed under reduced pressure. Diethyl ether (50 mL) and water (50 mL) were added. The 
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organic layer was extracted, washed with brine (10 mL), dried (Na2SO4), filtered off and 

evaporated under reduced pressure. Column chromatography on silica gel with CyHex/EtOAc 

(9:1) afforded the title product as a yellow oil (4.5 g, 83%). 

1H NMR (400 MHz, CDCl3): 7.44 (2H, d, J=8.3 Hz), 7.41 (1H, dd, J=7.7, 1.5 

Hz), 7.17-7.25 (3H, m), 6.74 (1H, td, =7.4, 1.1 Hz), 6.57 (1H, dd, J=8.2, 1.0 

Hz), 4.89 (1H, br s, NH), 2.34 (3H, s, PhCH3) ; Rt (min, IC, Hex/iPrOH, 80/20, 

0.5 mL/min): 64.50 (99%), 79.66 (1%); other data match the reported ones. 

Pathway B to access (S)-2-(p-tolylsulfinyl)aniline APS  

 

N-pivaloylaniline 

To a cold-stirred solution of aniline (5 mL, 54.83 mmol, 1 equiv.) and triethylamine (8 mL, 57.56 

mmol, 1.05 equiv.) in 20 mL of anhydrous DCM was added dropwise pivaloyl chloride (7 mL, 

56.89 mmol, 1.04 equiv.) while maintaining the internal temperature below 5°C. The mixture 

was stirred overnight at room temperature. 1M HCl solution (30 mL) was added. The organic 

layer was extracted, washed with sat. NaHCO3 solution (30 mL), brine (30 mL), dried (Na2SO4), 

filtered off and evaporated under reduced pressure. Petroleum ether was added and the residue 

was allowed to crystallize at 0°C. Crystals were filtered off and dried in vacuo to afford the title 

compound (9.48 g, 98%) as pale white needles. 

1H NMR (400 MHz, CDCl3): 7.51 (2H, d, J=8.2 Hz), 7.30 (2H, d, J=8.0 Hz), 7.08 

(1H, t, J=7.4 Hz), 1.30 (9H, s, C(CH3)3); other data match the described ones. 

 

N-pivaloyl-(S)-2-(p-tolylsulfinyl)aniline 

To a stirred solution of N-pivaloylaniline (250 mg, 1.41 mmol, 1 equiv.) in 10 mL of anhydrous 

THF and at 0°C was added dropwise n-BuLi (2 mL, 1.6 M in hexane, 3.2 mmol, 2.3 equiv.) . The 

resulting yellow mixture was stirred at 0°C during 2h and then cooled to -78°C. A solution of 

compound 2 (550 mg, 1.87 mmol, 1.3 equiv.) in 5 mL of anhydrous THF was then added 

dropwise to the previous mixture, which was stirred 2h at -78°C. MeOH (few drops) was added. 
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The mixture was allowed to warm to room temperature and NH4Cl sat. solution (20 mL) and 

EtOAc (20 mL) were added. The organic layer was extracted, washed with brine (15 mL), dried 

(Na2SO4), filtered off and evaporated in vacuo. The crude was purified by flash chromatography 

with CyHex/EtOAc (95:5) to get the title compound (174 mg, 39 %) as a white solid. 

1H NMR (400 MHz, CDCl3): 10.33 (1H, br, NH), 8.52 (1H, d, J=8.3 Hz), 7.44-

7.50 (2H, m), 7.33 (2H, d, J=8.2 Hz), 7.21 (2H, d, J=8.0 Hz), 7.13 (1H, td, J=7.6, 

1.1 Hz), 2.34 (3H, s, PhCH3), 1.17 (9H, s, C(CH3)3); 13C NMR (100 MHz, CDCl3): 

177.72, 141.54, 141.06, 140.16, 133.23, 130.10, 128.21, 127.55, 125.04, 

123.02, 123.00, 40.17, 27.57, 21.46; FT-IR (cm-1): 3254 (w), 2965 (m), 2870 (w), 1688 (s), 1584 (s), 

1533 (s), 1433 (s), 1300 (s), 1162 (s), 1021 (s), 1010 (s), 818 (s), 760 (s), 534 (s); HRMS (ESI-TOF): 

m/z calcd for C18H22NO2S+: 316.1366, found: 316.1399; [𝛼]𝐷
20= +25.0° (c=0.5, CHCl3); Rf 

(CyHex/EtOAc, 3:2): 0.45. 

(S)-2-(p-tolylsulfinyl)aniline APS 

To a stirred solution of N-pivaloyl-(S)-2-(p-tolylsulfinyl)aniline (150 mg, 0.475 mmol, 1 equiv.) in 5 

mL of EtOH was added 5 mL of 1M KOH solution. The resulting mixture was stirred at reflux 

overnight. EtOH was evaporated in vacuo. Then, DCM (15 mL) was added. The organic layer was 

extracted, washed with brine (10 mL), dried (Na2SO4), filtered off and evaporated under reduced 

pressure to get the title compound as a thick white solid (98 mg, 89%). 

1H NMR (400 MHz, CDCl3): 7.39-7.47 (3H, m), 7.18-7.26 (3H, m), 6.75 (1H, 

td, J=7.6, 1.1 Hz), 6.57 (1H, d, J=8.2 Hz), 4.89 (2H, br s, NH2), 2.35 (3H, s, 

PhCH3); other data match the described ones; Rt (min, IC, Hex/IPA 80/20, 

0.5 mL/min): 64.55 (99.5%), 79.46 (0.5%). 

Pathway C to access (S)-2-(p-tolylsulfinyl)aniline APS[202] 

 

To a stirred solution of phenyl isocyanate (100 µL, 0.92 mmol, 1 equiv.) in 5 mL of anhydrous 

Et2O was added N-tert-butyl-isopropyl-amine (160 µL, 1.01 mmol, 1.1 equiv.). The resulting clear 

solution was stirred at room temperature during 3h, until all the starting material was 

consumed. Then, it was cooled to 0°C, TMEDA (300 µL, 1.99 mmol, 2.2 equiv.) was added, 



Chapter 2: Experimental section 
 

141 
 

followed by dropwise addition of n-BuLi (1.2 mL, 1.6 M in hexane, 1.92 mmol, 2.1 equiv.). The 

resulting mixture was stirred at 0°C during 3h. Then, the mixture was cooled to -78°C and a 

solution of compound 2 (406 mg, 1.38 mmol, 1.5 equiv.) in 2 mL of anhydrous Et2O was added 

slowly to the previous mixture, which was allowed to stir at -78°C during 2h. Then, 4 mL of EtOH 

were added and the mixture was allowed to warm to room temperature and stirred 1h. Solvent 

were evaporated in vacuo. The yellow crude was dissolved in 10 mL of a 1:1 mixture of 

H2O/EtOH. KOH (515 mg, 9.19 mmol, 10 equiv.) was added and the mixture was stirred under 

vigorous stirring at 80°C overnight. LCMS analysis showed aniline and only traces of desired 

product. 

Pathway D to access functionalized sulfinylalkylcarboxamide 

 

Peptidic coupling followed by usual lithium/halogen exchange also allowed efficient access to 

different substrates. 

II.7.iii. Substrate syntheses 

trans 2-methylcyclopropane-1-carboxylic acid 

This compound was prepared according to the literature procedure.[47] 

1H NMR (400 MHz, CDCl3): 11.5 (1H, br s, CO2H), 1.38 (1H, m), 1.26 (1H, ddd, 

J=8.0, 4.8, 4.1 Hz), 1.05 (3H, d, J=6.0 Hz, CH3), 1.16 (1H, ddd, J=8.5, 4.3, 4.2 Hz), 

0.68 (1H, ddd, J=8.1, 6.5, 4.1 Hz); other data match the described ones. 

trans 2-propylcyclopropane-1-carboxylic acid 

This compound was prepared according to the literature procedure.[251] 

1H NMR (400 MHz, CDCl3): 9.17 (1H, br s, CO2H), 1.13-1.52 (6H, m), 0.69-

0.99 (5H, m); other data match the described ones. 
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(S)-((1R,2S,5R)-5-methyl-2-(propan-2-yl)cyclohexyl 4-methylbenzene-1-sulfinate) S 

This compound was prepared according to the literature procedure.[252]  

1H NMR (400 MHz, CDCl3): 7.58 (2H, d, J=8.2 Hz), 7.30 (2H, d, J=8.2 Hz), 

4.10 (1H, td, J=10.7, 4.6 Hz), 2.39 (3H, s, PhCH3), 2.22-2.30 (1H, m), 2.05-

2.16 (1H, m), 1.62-1.70 (2H, m), 1.40-1.53 (1H, m), 1.29-1.38 (1H, m), 

1.15-1.26 (1H, m), 0.96-1.08 (1H, m), 0.94 (3H, d, J=6.6 Hz), 0.77-0.91 

(4H, m), 0.69 (3H, d, J=6.9 Hz); [𝛼]𝐷
20= -199.0° (c=1.00, (CH3)2CO); other 

data match the described ones. 

2-[(S)-tert-butylsulfinyl]sulfanyl-2-methyl-propane T 

This compound was prepared according to the literature procedure.[105,253]  

1H NMR (400 MHz, CDCl3): 1.52 (9H, s, S(O)C(CH3)3), 1.34 (9H, s, SC(CH3)3); [𝛼]𝐷
20= 

-148.0° (c=0.51, CH2Cl2); other data match the described ones. 

(S)-N-(2-(p-tolylsulfinyl)phenyl)cyclopropanecarboxamide II-1a 

To a stirred solution of N-(2-bromophenyl)cyclopropanecarboxamide (3.1 g, 12.91 mmol, 1 

equiv.) in 40 mL of freshly distilled THF was added dropwise and at -78°C n-BuLi (18 mL, 1.6 M in 

hexane, 28.6 mmol, 2.2 equiv.). The resulting mixture was stirred at -78°C during 1h, followed by 

slow addition of a solution of S (4.6 g, 15.6 mmol, 1.2 equiv.) in 30 mL of freshly distilled THF. 

The resulting yellow mixture was stirred 30min at -78°C. Methanol (few drops) was added to the 

mixture. After slow warming to room temperature, saturated NH4Cl solution (50 mL) was added 

and the mixture was extracted with EtOAc (30 mL), then washed with brine (20 mL), dried 

(Na2SO4), filtered off and evaporated in vacuo. To the crude was added Et2O. The precipitate was 

collected, washed with cold Et2O and dried to afford the title compound as a white solid (2.73 g, 

71%). 

1H NMR (400 MHz, CDCl3): 10.37 (1H, br s, NH), 8.30 (1H, d, J=8.4 Hz), 7.50 

(1H, d, J=7.7 Hz), 7.37-7.48 (3H, m), 7.23 (2H, d, J=8.1 Hz), 7.12 (1H, t, J=7.5 

Hz), 2.35 (3H, s, PhCH3), 1.46-1.54 (1H, m), 0.97-1.04 (1H, m), 0.74-0.88 (3H, 

m); 13C NMR (100 MHz, CDCl3): 172.32 (C=O), 141.54, 140.58, 139.79, 

133.12, 130.16, 127.82, 124.58, 123.22, 123.19, 21.52 (CH3), 16.22, 8.17, 

8.11; FT-IR (cm-1): 3250 (w), 3015 (m), 1690 (s, C=O), 1585 (s), 1525 (s), 1435 (s), 1392 (s), 1298 

(s), 1176 (s), 1021 (s), 1011 (s), 954 (s), 809 (s), 758 (s), 547 (s), 531 (s), 493 (m); MP: 151°C; 
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HRMS (ESI-TOF): m/z calcd for C17H18NO2S+: 300.1053, found: 300.1051; EA: calcd for C17H17NO2S: 

C 68.20, H 5.72, N 4.68, found: C 68.12, H 5.73, N 4.73; [𝛼]𝐷
20= +59.8° (c=0.98, CHCl3); Rf 

(CyHex/EtOAc 3:2): 0.47; Rt (min, ODH, Hex/iPrOH 80/20, 0.5 mL/min): 13.19 (<1%), 15.479 min 

(>99%). 

(S)-N-(2-(tert-butylsulfinyl)phenyl)cyclopropanecarboxamide II-1b 

To a stirred solution of N-(2-bromophenyl)cyclopropanecarboxamide (1.13 g, 4.72 mmol, 1 

equiv.) in 15 mL of freshly distilled THF was added dropwise and at -78°C n-BuLi (6.5 mL, 1.6 M in 

hexane, 10.3 mmol, 2.2 equiv.). The resulting mixture was stirred at -78°C during 1h, followed by 

slow addition of a solution of  (1.1 g, 5.66 mmol, 1.2 equiv.) in 15 mL of freshly distilled THF. 

The resulting yellow mixture was stirred 2h at -78°C. Methanol (few drops) was added to the 

mixture. After slow warming to room temperature, saturated NH4Cl solution (50 mL) was added 

and the mixture was extracted with EtOAc (30 mL), then washed with brine (20 mL), dried 

(Na2SO4), filtered off and evaporated in vacuo. To the crude was added Et2O. The precipitate was 

collected, washed with cold Et2O and dried to afford the title compound as a white solid (456 

mg, 36%). 

1H NMR (400 MHz, CDCl3): 11.18 (1H, br s, NH), 8.47 (1H, dd, J=8.5, 1.0 Hz), 

7.42 (1H, ddd, J=8.5, 6.9, 1.7 Hz), 7.01-7.09 (2H, m), 1.52-1.59 (1H, m), 1.27 (9H, 

s, S(O)C(CH3)3), 0.96-1.08 (2H, m), 0.79-0.84 (2H, m); 13C NMR (100 MHz, 

CDCl3): 172.47 (C=O), 142.76, 132.43, 128.75, 122.79, 121.13, 120.78, 59.19, 

23.61, 16.40, 8.10, 8.07; FT-IR (cm-1): 3169 (w), 3101 (w), 3012 (w), 2979 (w), 

1688 (s, C=O), 1585 (s), 1521 (br s), 1433 (s), 1390 (s), 1295 (s), 1197 (m), 1173 (s), 1062 (m), 

1034 (m, S=O), 1007 (s), 953 (s), 823 (m), 758 (s), 669 (w), 524 (m); MP: 147°C; HRMS (ESI-TOF): 

m/z calcd for C14H19NNaO2S+: 288.1029, found: 288.1060; [𝛼]𝐷
20= -98.2° (c=0.68, CHCl3); Rf 

(CyHex/EtOAc 3:2): 0.42; Rt (min, ODH, Hex/iPrOH 80/20, 0.5 mL/min): 9.78 (<1%), 13.18 (>99%). 

(S)-N-(2-(p-tolylsulfinyl)phenyl)cyclobutanecarboxamide II-1c 

To a stirred solution of N-(2-bromophenyl)cyclobutanecarboxamide (1.31 g, 5.14 mmol, 1 equiv.) 

in 20 mL of freshly distilled THF was added dropwise and at -78°C n-BuLi (7.0 mL, 1.6 M in 

hexane, 11.31 mmol, 2.2 equiv.). The resulting mixture was stirred at -78°C during 1h, followed 

by slow addition of a solution of S (1.97 g, 6.68 mmol, 1.3 equiv.) in 10 mL of freshly distilled 

THF. The resulting yellow mixture was stirred 1h at -78°C. Methanol (few drops) was added to 

the mixture. After slow warming to room temperature, saturated NH4Cl solution (50 mL) was 
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added and the mixture was extracted with EtOAc (30 mL), then washed with brine (20 mL), dried 

(Na2SO4), filtered off and evaporated in vacuo. To the crude was added Et2O. The precipitate was 

collected, washed with cold Et2O and dried to afford the title compound as a white solid (1.12 g, 

70%). 

 1H NMR (CDCl3, 400 MHz): 10.06 (1H, br s, NH), 8.42 (1H, d, J=8.4 Hz), 7.50 

(1H, dd, J=7.8, 1.4 Hz), 7.42-7.47 (1H, m), 7.33 (2H, d, J=8.2 Hz), 7.21 (2H, d, 

J=8.2 Hz), 7.12 (1H, td, J=7.6, 1.1 Hz), 3.07 (1H, quintd, J=8.6, 1.0 Hz), 2.24-

2.36 (4H, m), 2.10-2.21 (3H, m), 1.91-2.02 (1H, m), 1.76-1.96 (1H, m); 13C 

NMR (CDCl3, 100 MHz): 173.72, 141.50, 140.68, 139.85, 133.21, 130.10, 

127.99, 127.92, 124.60, 123.14, 122.93, 41.30, 25.57, 25.18, 21.48, 18.21; FT-IR (cm-1): 3245 (w), 

2982 (m), 2864 (w), 1688 (s), 1583 (s), 1525 (br s), 1022 (s), 1011 (s), 727 (s), 550 (s), 461 (m); 

MP: 108 °C; HRMS (ESI-TOF): m/z calcd for C18H19NNaO2S+: 336.1029, found: 336.0998; [𝛼]𝐷
20= 

+26.1° (c=0.50, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.55. 

(S)-N-(2-(p-tolylsulfinyl)phenyl)cyclopentanecarboxamide II-1d 

To a stirred solution of cyclopentanecarboxylic acid (275 mg, 2.14 mmol, 1 equiv.), APS (500 mg, 

2.16 mmol, 1 equiv., prepared according to Pathway C) and 4-(dimethylamino)pyridine (660 mg, 

5.40 mmol, 2.5 equiv.) in 10 mL of anhydrous DCM was added EDC.HCl (622 mg, 3.24 mmol, 1.5 

equiv.) portionwise at room temperature. The resulting mixture was stirred 4 h at room 

temperature. Water (10 mL) was added. The organic layer was extracted, washed with brine (20 

mL), dried (Na2SO4), filtered off and evaporated under reduced pressure. The crude was purified 

by a short column chromatography on silica gel with CyHex/EtOAc (9:1) to afford the title 

compound (620 mg, 84%) as a clear oil. 

1H NMR (400 MHz, CDCl3): 10.13 (1H, br s, NH), 8.37 (1H, d, J=8.4 Hz), 7.30-

7.47 (4H, m), 7.19 (2H, d, J=8.2 Hz), 7.04 (1H, td, J=7.5, 1.1 Hz), 2.52-2.59 

(1H, m), 2.28 (3H, s, PhCH3), 1.71-1.78 (1H, m), 1.51-1.68 (7H, m); 13C NMR 

(100 MHz, CDCl3): 174.9, 141.4, 140.6, 139.8, 132.9, 130.1, 127.9, 124.6, 

122.9, 122.8, 47.3, 30.4, 30.2, 25.9, 21.3; FT-IR (cm-1): 3240 (w), 2940 (m), 1690 (s), 1024 (s); MP: 

147 °C; HRMS (ESI-TOF): m/z calcd for C19H21NNaO2S+: 350.1191; found: 350.1187; [𝛼]𝐷
20= +11.0° 

(c=1.0, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.6. 
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 (S)-N-(2-(p-tolylsulfinyl)phenyl)cyclohexanecarboxamide II-1e 

To a stirred solution of cyclohexanecarboxylic acid (277 mg, 2.16 mmol, 1 equiv.), APS (500 mg, 

2.16 mmol, 1 equiv., prepared according to Pathway C) and 4-(dimethylamino)pyridine (660 mg, 

5.40 mmol, 2.5 equiv.) in 10 mL of anhydrous DCM was added EDC.HCl (622 mg, 3.24 mmol, 1.5 

equiv.) portionwise at room temperature. The resulting mixture was stirred 4 h at room 

temperature. Water (10 mL) was added. The organic layer was extracted, washed with brine (20 

mL), dried (Na2SO4), filtered off and evaporated under reduced pressure. The crude was purified 

by a short column chromatography on silica gel with CyHex/EtOAc (9:1) to afford the title 

compound (656 mg, 89%) as a clear oil. 

1H NMR (400 MHz, CDCl3): 10.11 (1H, br s, NH), 8.43 (1H, dd, J=8.3, 1.1 Hz), 

7.42-7.51 (2H, m), 7.35 (2H, d, J=8.3 Hz), 7.21 (2H, d, J=8.3 Hz), 7.12 (1H, td, 

J=7.6, 1.3 Hz), 2.34 (3H, s, PhCH3), 2.12 (1H, tt, J=11.5, 3.5 Hz), 1.83-1.91 

(1H, m), 1.72-1.81 (2H, m), 1.63-1.69 (2H, m), 1.13-1.45 (5H, m); 13C NMR 

(100 MHz, CDCl3): 174.80, 141.37, 139.80, 133.03, 129.91, 127.90, 127.68, 

124.55, 122.94, 122.89, 46.84, 29.38, 29.18, 25.71, 25.64, 25.61, 21.28; FT-IR (cm-1) :3245 (w), 

1687 (s), 1033 (s); HRMS (ESI-TOF): m/z calcd for C20H24NO2S+: 342.1522, found: 342.1525; 

[𝛼]𝐷
20= +76.1° (c=0.80, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.7. 

trans-2-methyl-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-1f 

To a stirred solution of trans 2-methylcyclopropane-1-carboxylic acid (216 mg, 2.16 mmol, 1 

equiv.), APS (500 mg, 2.16 mmol, 1 equiv., prepared according to Pathway C) and 4-

(dimethylamino)pyridine (660 mg, 5.40 mmol, 2.5 equiv.) in 10 mL of anhydrous DCM was added 

EDC.HCl (622 mg, 3.24 mmol, 1.5 equiv.) portionwise at room temperature. The resulting 

mixture was stirred 4 h at room temperature. Water (10 mL) was added. The organic layer was 

extracted, washed with brine (20 mL), dried (Na2SO4), filtered off and evaporated under reduced 

pressure. The crude was purified by a short column chromatography on silica gel with 

CyHex/EtOAc (92:8) to afford the title compound (512 mg, 76%) as a thick yellow solid. 1H and 

13C NMRs are given for a racemic mixture of trans-(S)-II-1f. 

1H NMR (400 MHz, CDCl3): 10.16-10.44 (1H, br m, NH), 8.24-8.32 (1H, m), 

7.47-7.53 (1H, m), 7.37-7.45 (3H, m), 7.19-7.24 (2H, m), 7.10 (1H, td, J=7.6, 

1.0 Hz), 2.32-2.36 (3H, m), 1.33-1.42 (0.6H, m), 1.15-1.29 (1.8H, m), 1.09-

1.13 (3H, m), 0.99-1.06 (0.6H, m), 0.57-0.68 (1H, m); 13C NMR (100 MHz, 
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CDCl3): 172.06, 171.97, 141.52, 141.50, 140.63, 140.55, 139.77, 133.14, 133.09, 130.13, 130.06, 

127.85, 127.79, 124.56, 124.55, 123.14, 123.08, 24.96, 24.78, 21.50, 18.27, 18.08, 17.11, 16.97, 

16.66, 16.56; FT-IR (cm-1): 3251 (w), 2956 (w), 1688 (s), 1585 (s), 1529 (br s), 1436 (s), 1181 (s), 

1022 (s, S=O), 1011 (s), 809 (m), 759 (s), 547 (m), 532 (m); HRMS (ESI-TOF): m/z calcd for 

C18H20NO2S+: 314.1209, found: 314.1217; Rf (CyHex/EtOAc, 3:2): 0.50.  

trans-2-propyl-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-1g 

To a stirred solution of trans 2-propylcyclopropane-1-carboxylic acid (110 mg, 0.86 mmol, 1 

equiv.), APS (199 mg, 0.86 mmol, 1 equiv., prepared according to Pathway C) and 4-

(dimethylamino)pyridine (262 mg, 2.15 mmol, 2.5 equiv.) in 6 mL of anhydrous DCM was added 

EDC.HCl (247 mg, 1.29 mmol, 1.5 equiv.) portionwise at room temperature. The resulting 

mixture was stirred 18 h at room temperature. Water (10 mL) was added. The organic layer was 

extracted, washed with brine (20 mL), dried (Na2SO4), filtered off and evaporated under reduced 

pressure. The crude was purified by a short column chromatography on silica gel with 

CyHex/EtOAc (95:5) to afford the title compound (210 mg, 72%, mixed with 5% of impurity 

resulting of the preparation of the carboxylic acid) as a thick yellow solid. 1H and 13C NMRs are 

given for a racemic mixture of trans-(S)-II-1g. 

1H NMR (400 MHz, CDCl3): 10.22-10.50 (1H, m), 8.25-8.39 (1H, m), 7.48-

7.51 (1H, m), 7.36-7.46 (3H, m), 7.19-7.23 (2H, m), 7.10 (1H, tt, J=7.6, 1.2 

Hz), 2.33-2.37 (3H, m), 0.98-1.46 (7H, m), 0.88-0.94 (3H, m), 0.59-0.71 

(1H, m); 13C NMR (100 MHz, CDCl3): 172.17, 172.14, 141.50, 141.44, 

140.71, 139.83, 133.14, 133.07, 130.12, 127.84, 127.77, 124.54, 123.17, 

123.06, 122.94, 122.79, 35.46, 35.38, 23.78, 23.65, 22.66, 22.54, 22.52, 22.49, 21.48, 15.66, 

15.31, 14.11, 14.05; FT-IR (cm-1): 3251 (w), 2925 (m), 1688 (s), 1585 (s), 1530 (br s), 1436 (s), 

1288 (s), 1178 (s), 1021 (s), 1011 (s), 808 (s), 757 (s), 546 (s), 531 (s); HRMS (ESI-TOF): m/z calcd 

for C20H23NNaO2S+: 364.1342, found: 364.1342; Rf (CyHex/EtOAc, 3:2): 0.55.     

2,2-dimethyl-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-1h 

1H and 13C NMRs are given for a racemic mixture of trans-(S)-II-1g. 
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1H NMR (400 MHz, CDCl3): 10.18 (1H, m, NH), 8.32 (0.5H, d, J=8.2 Hz), 8.25 

(0.5H, d, J=8.2 Hz), 7.27-7.76 (6H, m), 6.98-7.18 (2H, m), 2.29 (3H, s, PhCH3), 

1.32-1.38 (0.5H, m), 1.28 (0.5H, dd, J=7.8, 5.4 Hz), 0.79-1.20 (7H, m), 0.75 

(1H, dd, J=7.8, 4.4 Hz), 0.70 (0.5H, dd, J=7.9, 4.3 Hz); 13C NMR (100 MHz, 

CDCl3, given for one diastereomer): 171.25, 132.84, 127.74, 127.62, 123.87, 

122.91, 122.90, 28.94, 22.32, 24.12, 15.40, 12.32; FT-IR (cm-1): 3248 (br m, N-

H), 1637 (s, C-O), 1020 (s, S-O); Rt (min, CHIRALPAK ® IA, Hex/iPrOH 80/20, 

0.5 mL/min): 8.61 (0.3%), 9.45 (0.4 %), 14.20 (49.8 %), 15.64 (49.5 %) Rf (CyHex/EtOAc, 3:2): 0.6. 

(S)-2,2-diphenyl-N-(2-(p-tolylsulfinyl)phenyl)acetamide II-1i 

The title compound (169 mg, 13 %) was obtained as a beige solid. 

1H NMR (400 MHz, CDCl3): 10.57 (1H, br s, NH), 8.49 (1H, d, 

J=8.4 Hz), 7.45-7.51 (2H, m), 7.24-7.41 (10H, m), 7.12 (2H, d, 

J=8.1 Hz), 7.02 (1H, td, J=7.6, 1.2 Hz), 4.95 (1H, s), 2.31 (3H, s, 

PhCH3); 13C NMR (100 MHz, CDCl3): 170.59, 141.21, 139.51, 

138.93, 138.85, 132.96, 130.07, 129.12, 129.00, 128.79, 

128.77, 128.19, 127.62, 127.46, 127.38, 124.31, 123.55, 122.89, 60.35, 21.42; FT-IR (cm-1): 1674 

(s, C-O), 1042 (s, S-O); Rf (CyHex/EtOAc, 3:2): 0.7. 

trans-2-hexyl-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-1j 

A solution of trans 2-hexylcyclopropane-1-carboxylic acid (644 mg, 3.78 mmol, 1.2 equiv.) and 

APS (729 mg, 3.15 mmol, 1 equiv.) were dissolved in 3 mL of anhydrous DMF, followed by 

addition of pyridine (700 µL, 8.66 mmol, 2.7 equiv.) and propylphosphonic anhydride (2.6 mL, 

4.32 mmol, 1.4 equiv., 50% weight solution in DMF). The resulting mixture was stirred 18 h at 

room temperature. Brine (20 mL) and diethyl ether (20 mL) were added to the mixture and the 

phases were separated. The organic layer was washed with brine (2x 10 mL), sat. NaHCO3 sol. 

(3x 10 mL), 1M HCl sol. (3x 10 mL), brine (2x 10 mL), dried (Na2SO4), filtered off and evaporated 

under reduced pressure to give the title compound (1.2 g, 99%, mixed with around 5% of 

impurity coming from the cyclopropane) as a yellowish oil as an approximate 1:1 mixture of 

diastereomers. 
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1H NMR (400 MHz, CDCl3): 10.20-10.45 (1H, m, NH), 8.35 and 8.29 (1H, 

d, J=8.4 Hz), 7.47-7.52 (1H, m), 7.36-7.45 (3H, m), 7.22 (2H, d, J=8.4 Hz), 

7.08-7.13 (1H, m), 2.34 (3H, s, PhCH3), 0.98-1.39 (13H, m), 0.82-0.92 

(3H, m), 0.58-0.70 (1H, m); 13C NMR (100 MHz, CDCl3): 172.18 and 

172.15 (1C), 141.49 and 141.45 (1C), 140.73 and 140.62 (1C), 139.81 and 139.76 (1C), 133.11 and 

133.08 (1C), 130.13, 127.78, 124.55, 123.21 and 123.07 (1C), 122.95 and 122.80 (1C), 33.45 and 

33.30 (1C), 32.07 and 32.00 (1C), 29.35 and 29.33 (1C), 29.31 and 29.22 (1C), 23.80 and 23.70 

(1C), 22.91 and 22.87 (1C), 22.83 and 22.73 (1C), 21.48, 15.76 and 15.41 (1C), 14.32 and 14.29 

(1C); FT-IR (cm-1): 1694 (s, C=O), 1025 (m, S=O); HRMS (ESI-TOF): m/z calcd for C23H30NO2S+: 

384.1992, found: 384.1979. 

trans-2-heptyl-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-1k 

A solution of trans 2-heptylcyclopropane-1-carboxylic acid (779 mg, 4.23 mmol, 1.2 equiv.) and 

APS (800 mg, 3.46 mmol, 1 equiv.) were dissolved in 3 mL of anhydrous DMF, followed by 

addition of pyridine (750 µL, 9.32 mmol, 2.7 equiv.) and propylphosphonic anhydride (2.8 mL, 

4.74 mmol, 1.4 equiv., 50% weight solution in DMF). The resulting mixture was stirred 18 h at 

room temperature. Brine (20 mL) and diethyl ether (20 mL) were added to the mixture and the 

phases were separated. The organic layer was washed with brine (2x 10 mL), sat. NaHCO3 sol. (3x 

10 mL), 1M HCl sol. (3x 10 mL), brine (2x 10 mL), dried (Na2SO4), filtered off and evaporated 

under reduced pressure to give the title compound (1.35 g, 98%) as a brownish oil as an 

approximate 1:1 mixture of diastereomers. 

1H NMR (400 MHz, CDCl3): 10.22-10.46 (1H, m, NH), 8.35 and 8.29 (1H, 

d, J=8.4 Hz), 7.47-7.54 (1H, m), 7.37-7.46 (3H, m), 7.21 (2H, d, J=8.3 

Hz), 7.07-7.13 (1H, m), 2.34 (3H, s, PhCH3), 0.97-1.38 (15H, m), 0.82-

0.92 (3H, m), 0.59-0.71 (1H, m); 13C NMR (100 MHz, CDCl3): 172.21 and 

172.19 (1C), 141.52 and 141.49 (1C), 140.73 and 140.71 (1C), 140.63 and 140.61 (1C), 139.82 and 

139.77 (1C), 133.13 and 133.10 (1C), 130.14, 127.80 and 127.79 (1C), 124.57, 123.24 and 123.10 

(1C), 122.99 and 122.84 (1C), 33.47 and 33.32 (1C), 32.10 and 32.05 (1C), 29.63 and 29.54 (1C), 

29.48, 29.41 and 29.39 (1C), 23.81 and 23.71 (1C), 22.94 and 22.92 (1C), 22.88 and 22.76 (1C), 

21.50, 15.79 and 15.44 (1C), 14.32; FT-IR (cm-1): 1691 (m, C=O), 1020 (m, S=O); HRMS (ESI-TOF): 

m/z calcd for C24H32NO2S+: 398.2148, found: 398.2131. 
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II.7.iv. Other bidentate directing groups 

8-((cyclopropylmethyl)sulfinyl)quinoline 

1H NMR (400 MHz, CDCl3): 8.75-8.91 (1H, m), 8.27 (1H, d, J=7.2 Hz), 8.21 (1H, 

d, J=8.3 Hz), 7.91 (1H, d, J=8.1 Hz), 7.72 (1H, t, J=7.7 Hz), 7.46 (1H, dd, J=8.3, 

4.2 Hz), 3.23 (1H, dd, J=13.3, 7.7 Hz), 2.94 (1H, dd, J=13.4, 6.8 Hz), 1.23 (1H, tt, J=13.5, 6.2 Hz), 

0.55-0.73 (1H, m), 0.29-0.50 (2H, m), -0.07-0.11 (1H, m); 13C NMR (100 MHz, CDCl3): 150.00, 

144.07, 141.86, 136.41, 130.01, 128.05, 126.69, 121.94, 60.40, 5.25, 5.14, 4.11; FT-IR (cm-1): 

1024 (s, S-O). 

2-((cyclopropylmethyl)sulfinyl)benzoic acid 

1H NMR (400 MHz, DMSO-d6): 7.92 (1H, d, J=7.8 Hz), 7.86 (1H, d, J=7.7 Hz), 

7.71 (1H, t, J=7.1 Hz), 7.47 (1H, t, J=7.5 Hz), 2.71 (1H, dd, J=13.1, 8.3 Hz), 2.44 

(1H, dd, J=13.1, 6.5 Hz), 0.88-1.08 (1H, m), 0.42 (1H, tt, J=8.8, 4.8 Hz), 0.33 

(1H, tt, J=8.8, 4.9 Hz), 0.14-0.27 (1H, m), -0.04-0.03 (1H, m); 13C NMR (100 MHz, DMSO-d6): 

170.3, 144.9, 131.2, 131.1, 130.1, 127.4, 127.3, 66.4, 22.3, 7.4, 5.2; FT-IR (cm-1): 3247 (br m, O-

H), 1712 (s, C-O), 1034 (s, S-O). 

N-(2-((cyclopropylmethyl)sulfinyl)phenyl)acetamide 

1H NMR (400 MHz, CDCl3): 10.70 (1H, br s, NH), 8.48 (1H, d, J=8.4 Hz), 7.41-

7.51 (1H, m), 7.21-7.31 (1H, m), 7.05-7.14 (1H, m), 3.09 (1H, dd, J=13.1, 7.2 

Hz), 2.96 (1H, dd, J=13.1, 7.5 Hz), 2.19 (3H, s, C(O)CH3), 0.74-0.94 (1H, m), 

0.51-0.73 (2H, m), 0.26-0.38 (1H, m), 0.14-0.23 (1H, m); 13C NMR (100 MHz, CDCl3): 170.5, 135.3, 

133.6, 131.7, 127.2, 125.2, 122.2, 66.3, 24.5, 6.5, 5.1; FT-IR (cm-1): 1684 (s, C-O), 1035 (s, S-O). 

2-(2-((cyclopropylmethyl)sulfinyl)phenyl)-4,4-dimethyl-4,5-dihydrooxazole 

1H NMR (400 MHz, CDCl3): 8.00 (1H, d, J=7.9 Hz), 7.65 (1H, d, J=7.7 Hz), 7.41-7.51 (1H, m), 7.29 

(1H, d, J=7.5 Hz), 3.79-3.89 (2H, m), 2.90 (1H, dd, J=12.9, 8.6 Hz), 2.55 (1H, dd, J=12.9, 6.2 Hz), 

1.15 (6H, app d, J=5.8 Hz), 0.40-0.51 (2H, m), 0.32 (1H, td, J=5.4, 7.5 Hz), -

0.02-0.21 (2H, m); 13C NMR (100 MHz, CDCl3): 158.47, 143.23, 131.32, 

129.40, 127.49, 126.26, 78.07, 68.07, 66.32, 28.11, 6.21, 5.01; FT-IR (cm-1): 

1047 (s, S-O). 
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II.7.v. Determination of the diastereomeric ratio using crude 1H NMR 

analysis 

In each experiment, one characteristic proton for the substrate and each diastereomer of the 

product are distinguishable. This allows the determination of the diastereomeric ratio and 

conversion using the crude NMR.  

Example of the coupling with 3,5-dinitroiodobenzene to afford II-2lA and II-2lB: 

Using 3,5-dinitroiodobenzene as coupling partner afforded for example a crude NMR in which 

starting material is easily found (FC-SJ0087.1612, in blue in the spectra below) and distinct from 

the two products (FC-SJ287-1.1612, in red, minor diastereomer and FC-SJ287-2, in green, major 

diastereomer): 
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Especially in the aromatic region: 

  

And in the aliphatic region: 

  

According to the 1H crude NMR, there is a 0.7/0.7/0.3 ratio between the starting material, the 

major diastereomer and the minor diastereomer, corresponding to approximatively 60% 

conversion and 70/30 diastereomeric ratio. 
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II.7.vi. Asymmetric C(sp3)-H bond arylation 

General procedure A for the coupling catalysis of unsubstituted cycloalkanes 

In a Schlenk were added cycloalkanecarboxamides (0.23 mmol, 1 equiv.), coupling partner (0.28 

mmol, 1.2 equiv.), silver(I) acetate (86 mg, 0.52 mmol, 2.2 equiv.), sodium trifluoroacetate (17 

mg, 0.12 mmol, 50 mol%) and palladium(II) acetate (2.6 mg, 0.012 mmol, 5 mol%). HFIP (2 mL) 

and water (0.2 mL) were then added and the mixture was stirred at 80°C during the appropriate 

time (typically between 8 and 18h) under air. The mixture was then allowed to cool to room 

temperature, diluted with EtOAc, filtered over celite and evaporated in vacuo. The crude was 

purified by column chromatography on silica gel with CyHex/EtOAc to get the two diastereomers 

of the title compound as pure enantiomers. Only are presented the analysis of pure compounds 

as in few examples the minor diastereomer comes was isolated as a mixture with remaining 

starting material. In those cases, the estimation of the yield is based on the 1H NMR of the 

mixture. 

General procedure B for the arylation of substituted cyclopropanes 

In a Schlenk and under air were added the substituted cyclopropanecarboxamides (0.22 mmol, 1 

equiv.), aryliodide (0.87 mmol, 4 equiv.), palladium(II) acetate (4.9 mg, 0.02 mmol, 10 mol%), 

silver(I) acetate (146 mg, 0.87 mmol, 4 equiv.) and sodium trifluoroacetate (16 mg, 0.12 mmol, 

50 mol%). Solids were then dissolved in HFIP (1.8 mL) and water (0.2 mL). The resulting mixture 

was stirred at 80°C during 24h under air. After cooling to room temperature, the mixture was 

diluted with EtOAc, filtered through a pad of celite and evaporated in vacuo. The crude was 

purified by a short column chromatography on silica gel with CyHex/EtOAc to obtain the two 

diastereomers of the title compound as pure enantiomers. Usually, the minor diastereomer 

comes first, followed by the major diastereomer. 

2-(4-acetylphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-2a 

The general procedure A was followed using 4’-iodoacetophenone (70 mg) as coupling partner 

and with a reaction time of 8h. Column chromatography on silica gel with CyHex/EtOAc (3:2) 

afforded the minor diastereomer (35 mg, 36%) as a pale yellow solid and the major diastereomer 

(53 mg, 54%) as a yellow solid. The diastereomeric ratio determined by analysis of the crude 1H 

NMR is 60/40. For the major diastereomer, suitable crystals for X-Ray diffraction were grown in 

CHCl3/DCM/Et2O at 0°C. 
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Minor diastereomer II-2aB: 1H NMR (400 MHz, CDCl3): 10.53 (1H, 

br s, NH), 8.19 (1H, d, J=8.2 Hz), 7.65 (2H, d, J=7.7 Hz), 7.44 (1H, 

d, J=7.5 Hz), 7.31-7.41 (3H, m), 7.27 (2H, d, J=7.9 Hz), 6.98-7.10 

(3H, m), 2.45-2.56 (4H, m), 2.41 (3H, s, PhCH3), 2.02-2.12 (1H, 

m), 1.73-1.82 (1H, m), 1.36-1.44 (1H, m); 13C NMR (100 MHz, 

CDCl3): 197.83, 167.81, 142.72, 141.66, 140.54, 140.08, 135.47, 133.21, 130.28, 129.48, 128.15, 

127.94, 126.78, 124.76, 122.99, 122.56, 26.68, 25.95, 24.98, 21.58, 11.59; FT-IR (cm-1): 3243 (w), 

2923 (w), 1679 (s), 1604 (s), 1585 (s), 1534 (s), 1436 (s), 1295 (s), 1266 (s), 1177 (s), 1021 (m), 

1009 (s), 813 (m), 765 (m), 529 (m); MP: 203 °C; HRMS (ESI-TOF): m/z calcd for C25H24NO3S+: 

418.1471, found: 418.1430; [𝛼]𝐷
20= -212.0° (c=0.42, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.30; Rt (min, 

CHIRALPAK ® IA, Hex/iPrOH 80/20, 0.5 mL/min): 26.46 (99.4 %), 54.37 (0.6 %). 

Major diastereomer II-2aA: 1H NMR (400 MHz, CDCl3): 10.41 (1H, 

br s, NH), 7.98 (1H, d, J=8.4 Hz), 7.80 (2H, d, J=8.4 Hz), 7.43 (1H, 

dd, J=7.7, 1.3 Hz), 7.37 (2H, d, J=8.4 Hz), 7.26-7.34 (3H, m), 7.23 

(2H, J=8.1 Hz), 7.05 (1H, dd, J=7.5, 1.1 Hz), 2.50-2.60 (4H, m), 

2.35 (3H, s, PhCH3), 2.00-2.09 (1H, m), 1.70-1.77 (1H, m), 1.29-

1.37 (1H, m); 13C NMR (100 MHz, CDCl3): 198.04, 167.57, 142.69, 141.64, 140.30, 139.88, 135.62, 

133.03, 130.23, 129.58, 128.24, 127.72, 127.67, 124.58, 123.23, 123.00, 26.77, 25.89, 25.50, 

21.52, 11.01; FT-IR (cm-1): 3250 (w), 3055 (w), 2924 (w), 1678 (s), 1606 (m), 1585 (m), 1522 (br s), 

1435 (m), 1297 (m), 1266 (s), 1174 (br s), 1011 (m), 732 (s), 701 (m), 532 (m); MP: 184°C; [𝛼]𝐷
20= 

+28.3° (c=1.05, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.25; Rt (min, CHIRALPAK ® IA, Hex/iPrOH 80/20, 

0.5 mL/min): 28.42 (96 %), 38.62 (4 %). 

methyl 4-(2-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)benzoate II-2b 

The general procedure A was followed using methyl 4-iodobenzoate (92 mg) as coupling partner 

and with a reaction time of 8h. Column chromatography on silica gel with CyHex/EtOAc (7:3) 

afforded the minor diastereomer (37 mg, 37%) as a white solid and the major diastereomer (55 

mg, 54%) as a yellow oil. The diastereomeric ratio determined by analysis of the crude 1H NMR is 

60/40. 

Minor diastereomer II-2bB: 1H NMR (400 MHz, CDCl3): 10.50 (1H, 

br s, NH), 8.14 (1H, d, J=8.4 Hz), 7.67 (2H, d, J=7.9 Hz), 7.35-7.41 

(1H, m), 7.25-7.34 (3H, m), 7.21 (2H, d, J=7.9 Hz), 7.06 (1H, t, J=7.5 
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Hz), 6.98 (2H, d, J=7.9 Hz), 3.82 (3H, s, C(O)OCH3), 2.46-2.55 (1H, m), 2.40 (3H, s, PhCH3), 2.01-

2.09 (1H, m), 1.73-1.79 (1H, m), 1.33-1.40 (1H, m); 13C NMR (100 MHz, CDCl3): 167.77, 167.16, 

142.44, 141.65, 140.58, 140.09, 133.23, 130.29, 129.34, 129.28, 128.36, 127.94, 126.73, 124.76, 

122.94, 122.57, 52.11, 25.96, 24.98, 21.54, 11.50; FT-IR (cm-1): 3245 (w), 2924 (s), 2854 (s), 1714 

(s, C=O ester), 1692 (s, C=O amide), 1585 (s), 1293 (s), 1278 (s), 1175 (s), 1104 (s), 1019 (s), 1009 

(s), 757 (s), 527 (m); MP: 224°C; HRMS (ESI-TOF): m/z calcd for C25H23KNO4S+: 472.0979, found: 

472.0969; [𝛼]𝐷
20= -186.4° (c=0.83, CHCl3); Rf (CyHex/EtOAc 3:2): 0.33. 

Major diastereomer II-2bA: 1H NMR (400 MHz, CDCl3): 10.40 (1H, 

br s, NH), 7.98 (1H, d, J=8.3 Hz), 7.89 (2H, d, J=8.0 Hz), 7.44 (1H, d, 

J=7.9 Hz), 7.38 (2H, d, J=8.3 Hz), 7.28-7.34 (3H, m), 7.24 (2H, d, 

J=7.9 Hz), 7.06 (1H, t, J=7.6 Hz), 3.86 (3H, s, C(O)OCH3), 2.52-2.60 

(1H, m), 2.36 (3H, s, PhCH3), 2.04 (1H, ddd, J=9.2, 7.8, 5.7 Hz), 

1.74 (1H, ddd, J=7.5, 5.4, 5.2 Hz), 1.29-1.37 (1H, m); 13C NMR (100 MHz, CDCl3): 167.52, 167.27, 

142.38, 141.60, 140.31, 139.88, 133.04, 130.21, 129.41, 129.38, 128.50, 127.71, 127.61, 124.57, 

123.17, 123.04, 52.13, 25.86, 25.48, 21.50, 10.91; FT-IR (cm-1): 3250 (w), 2922 (m), 2852 (m), 

1717 (s, C-O ester), 1692 (s, C-O amide), 1610 (s), 1585 (s), 1435 (s), 1277 (s), 1177 (s), 1110 (s), 

1019 (s), 1010 (s), 809 (s), 734 (s), 531 (s); [𝛼]𝐷
20= +26.5° (c=1.13, CHCl3); Rf (CyHex/EtOAc 3:2): 

0.22. 

2-(4-cyanophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-2c 

The general procedure A was followed using 4-iodobenzonitrile (64 mg) as coupling partner and 

with a reaction time of 8h. Column chromatography on silica gel with CyHex/EtOAc (7:3) 

afforded the minor diastereomer (31 mg, 33%) as a pale yellow solid and the major diastereomer 

(49 mg, 52%) as an off-white solid. The diastereomeric ratio determined by analysis of the crude 

1H NMR is 60/40. 

Minor diastereomer II-2cB: 1H NMR (300 MHz, CDCl3): 10.54 (1H, br 

s, NH), 8.16 (1H, d, J=8.2 Hz), 7.45 (1H, dd, J=7.5, 1.6 Hz), 7.33-7.40 

(3H, m), 7.31 (2H, d, J=8.2 Hz), 7.26 (2H, d, J=8.1 Hz), 7.09 (1H, t, 

J=7.5 Hz), 6.99 (2H, d, J=8.1 Hz), 2.44-2.53 (1H, m), 2.40 (3H, s, 

PhCH3), 2.07 (1H, ddd, J=9.0, 7.8, 5.5 Hz), 1.70-1.77 (1H, m), 1.36-

1.45 (1H, m); 13C NMR (75 MHz, CDCl3): 167.57, 142.75, 141.57, 140.41, 140.13, 133.32, 131.73, 

130,20, 130.06, 128.05, 126.78, 124.79, 123.16, 122.59, 119.18, 110.30 (CN), 25.81, 24.94, 21.59, 

11.68; FT-IR (cm-1): 2924 (s), 2854 (s), 2223 (m, CN), 1729 (m), 1686 (s), 1585 (s), 1535 (s), 1436 
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(s), 1294 (s), 1177 (s), 1021 (m), 1009 (s), 743 (s), 560 (m), 470 (m); MP: 225°C; [𝛼]𝐷
20= -157.7° 

(c=0.85, CHCl3); Rf (CyHex/EtOAc 3:2): 0.33. 

Major diastereomer II-2cA: 1H NMR (300 MHz, CDCl3): 10.47 (1H, br 

s, NH), 7.97 (1H, d, J=8.3 Hz), 7.5 (2H, d, J=8.2 Hz), 7.45 (1H, dd, 

J=7.7, 1.8 Hz), 7.29-7.42 (5H, m), 7.25 (2H, d, J=8.2 Hz), 7.09 (1H, t, 

J=7.6 Hz), 2.52-2.60 (1H, m), 2.37 (3H, s, PhCH3), 2.08 (1H, ddd, 

J=9.1, 7.8, 5.6 Hz), 1.69-1.77 (1H, m), 1.33-1.40 (1H, m); 13C NMR 

(75 MHz, CDCl3): 167.27, 142.61, 141.66, 140.18, 139.77, 133.05, 131.82, 130.21, 130.14, 127.74, 

127.58, 124.54, 123.34, 122.89, 119.26, 110.36 (CN), 25.80, 25.54, 21.49, 10.98; FT-IR (cm-1): 

3149 (br), 2923 (m), 2854 (m), 2227 (m, CN), 1728 (br), 1673 (m), 1472 (s), 1430 (m), 1180 (m), 

1007 (s), 839 (m), 818 (m), 753 (s), 733 (s), 556 (s), 470 (s); MP: 114°C; HRMS (ESI-TOF): m/z calcd 

for C24H20KN2O2S+: 401.1318, found: 401.1290; [𝛼]𝐷
20= +36.4° (c=1.02, CHCl3); Rf (CyHex/EtOAc 

3:2): 0.10. 

N-(2-((S)-p-tolylsulfinyl)phenyl)-2-(4-(trifluoromethyl)phenyl)cyclopropane-1-carboxamide II-2d 

The general procedure A was followed using 4-trifluoromethyl-iodobenzene (40 µL) as coupling 

partner and with a reaction time of 8h. Column chromatography on silica gel with CyHex/EtOAc 

(8:2) afforded the minor diastereomer (17% estimated, unseparable mixture with the starting 

material) as a pale yellow oil and the major diastereomer (47 mg, 45%) as a brown oil. The 

diastereomeric ratio determined by analysis of the crude 1H NMR is 65/35. 

Major diastereomer II-2dA: 1H NMR (CDCl3, 400 MHz): 10.43 (1H, 

br s, NH), 7.98 (1H, d, J=8.4 Hz), 7.41-7.48 (3H, m), 7.29-7.40 (5H, 

m), 7.24 (2H, d, J=8.0 Hz), 7.06 (1H, t, J=7.4 Hz), 2.51-2.59 (1H, m), 

2.36 (3H, s, PhCH3), 2.04 (1H, ddd, J=9.1, 8.0, 5.6 Hz), 1.67-1.77 

(1H, m), 1.29-1.38 (1H, m); 13C NMR (CDCl3, 100 MHz): 167.52, 

141.65, 141.02, 141.00, 140.32, 139.86, 133.06, 130.23, 129.69, 128.81 (q, J=32 Hz), 127.73, 

125.01 (q, J=3.9 Hz), 124.57, 124.50 (q, J=272 Hz), 123.22, 122.98, 25.63, 25.31, 21.50, 10.91; 19F 

NMR (CDCl3, 377 MHz): -62.35; FT-IR (cm-1): 3246 (w), 3024 (w), 1693 (m), 1586 (m), 1297 (s), 

1323 (s), 1113 (s), 1069 (s), 1017 (s), 971 (m), 845 (m), 810 (m), 757 (m), 547 (m, ArCF3), 532 (m, 

ArCF3), 493 (w); HRMS (ESI-TOF): m/z calcd for C24H21F3NO2S+: 444.1240, found: 444.1185; [𝛼]𝐷
20= 

+23.3° (c=0.71, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.38. 
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2-(4-bromophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-2e 

The general procedure A was followed using 4-bromo-1-iodobenzene (80 mg) as coupling 

partner and with a reaction time of 24h. Column chromatography on silica gel with CyHex/EtOAc 

(8:2) afforded the major diastereomer (27 mg, 26%) as a pale brown oil. The diastereomeric ratio 

determined by analysis of the crude 1H NMR is 60/40.  

Major diastereomer II-2eA: 1H NMR (300 MHz, CDCl3): 10.38 (1H, br 

s, NH), 8.02 (1H, d, J=8.5 Hz), 7.44 (1H, dd, J=7.7, 1.1 Hz), 7.37 (2H, 

d, J=8.2 Hz), 7.32 (2H, d, J=8.3 Hz), 7.22-7.25 (3H, m), 7.12 (2H, d, 

J=8.4 Hz), 7.07 (1H, td, J=7.6, 1.0 Hz), 2.43-2.51 (1H, m), 2.36 (3H, s, 

PhCH3), 1.93-2.01 (1H, m), 1.61-1.69 (1H, m), 1.25-1.32 (1H, m); 13C 

NMR (100 MHz, CDCl3): 167.72, 140.64, 140.39, 139.87, 135.86, 133.09, 131.20, 131.14, 130.24, 

127.73, 124.60 (2C), 123.14, 123.02, 120.64, 25.42, 25.07, 21.54, 10.78; FT-IR (cm-1): 3248 (w), 

2924 (m), 2854 (w), 1693 (m), 1585 (m), 1524 (m), 1490 (m), 1435 (s), 1296 (m), 1173 (br s), 1074 

(m), 1021 (m), 1010 (s), 970 (m), 808 (s), 756 (s), 532 (m), 473 (m); HRMS (ESI-TOF): m/z calcd for 

C23H21BrNO2S+: 454.0471, found: 454.0474; [𝛼]𝐷
20= +10.0° (c=0.50, CHCl3); Rf (CyHex/EtOAc, 3:2): 

0.45. 

2-(4-nitrophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-2f 

The general procedure A was followed using 4-nitroiodobenzene (87 mg) as coupling partner 

and with a reaction time of 8h. Column chromatography on silica gel with CyHex/EtOAc (4:1 to 

7:3) afforded the minor diastereomer (28 mg, 28%) as a pale yellow oil and the major 

diastereomer (53 mg, 54%) as a yellow solid. The diastereomeric ratio determined by analysis of 

the crude 1H NMR is 60/40. 

Minor diastereomer II-2fB: 1H NMR (400 MHz, CDCl3): 10.58 (1H, 

br s, NH), 8.16 (1H, d, J=8.4 Hz), 7.88 (2H, d, J=8.7 Hz), 7.45 (1H, 

dd, J=7.6, 1.4 Hz), 7.32-7.39 (3H, m), 7.28 (2H, d, J=8.2 Hz), 7.09 

(1H, t, J=7.5 Hz), 7.03 (2H, d, J=8.7 Hz), 2.43-2.51 (1H, m), 2.42 

(3H, s, PhCH3), 2.10 (1H, ddd, J=9.1, 7.9, 5.6 Hz), 1.77 (1H, ddd, 

J=7.4, 5.5, 5.4 Hz), 1.43 (1H, ddd, J=9.1, 7.4, 5.3 Hz); 13C NMR (100 MHz, CDCl3): 167.47, 146.62, 

144.94, 141.68, 140.44, 140.19, 133.34, 130.26, 130.09, 128.10, 126.70, 124.82, 124.81, 123.20, 

122.63, 25.61, 25.06, 21.55, 11.83; FT-IR (cm-1): 2924 (w), 1687 (m), 1585 (m), 1514 (s, N-O), 
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1436 (m), 1389 (w), 1341 (s, N-O), 1295 (m), 1176 (m), 1008 (m, S-O), 755 (m), 735 (m), 473 (w); 

[𝛼]𝐷
20= +32.2° (c=0.29, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.30. 

Major diastereomer II-2fA: 1H NMR (400 MHz, CDCl3): 10.49 (1H, 

br s, NH), 8.06 (2H, d, J=8.8 Hz), 7.97 (1H, d, J=8.5 Hz), 7.43 (1H, 

dd, J=7.7, 1.4 Hz), 7.34-7.41 (4H, m), 7.31 (1H, td, J=7.8, 1.5 Hz), 

7.22-7.26 (2H, m), 7.07 (1H, td, J=7.6, 1.1 Hz), 2.49-2.57 (H, m), 

2.36 (3H, s, PhCH3), 2.09 (H, ddd, J=8.6, 8.2, 5.6 Hz), 1.70 (H, ddd, 

J=7.2, 5.5, 5.6 Hz), 1.39 (H, ddd, J=9.0, 7.6, 5.2 Hz); 13C NMR (100 MHz, CDCl3): 167.23, 146.78, 

144.88, 141.70, 140.17, 139.80, 133.06, 130.23, 130.19, 127.75, 127.60, 124.56, 123.39, 123.28, 

122.91, 25.72, 25.60, 21.49, 11.34; FT-IR (cm-1): 3249 (w), 1693 (br m), 1598 (m), 1586 (m, C-C 

aromatic), 1516 (s, N-O), 1436 (m), 1343 (s, N-O), 1298 (m), 1178 (m), 1012 (m), 811 (w), 757 

(m), 533 (w), 473 (w); MP: 135°C; HRMS (ESI-TOF): m/z calcd for C23H21N2O4S+: 421.1217, found: 

421.1194; [𝛼]𝐷
20= +45.9° (c=0.47, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.11. 

2-(3-acetylphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-2g 

The general procedure A was followed using 3’-iodoacetophenone (40 µL, 71 mg) as coupling 

partner and with a reaction time of 8h. Column chromatography on silica gel with CyHex/EtOAc 

(6:4) afforded the minor diastereomer (21 mg, 22%) as a yellow solid and the major 

diastereomer (54 mg, 55%) as an orange oil. The diastereomeric ratio determined by analysis of 

the crude 1H NMR is 70/30. 

Minor diastereomer II-2gB: 1H NMR (400 MHz, CDCl3): 10.57 (1H, 

br s, NH), 8.19 (1H, d, J=8.4 Hz), 7.78 (1H, s), 7.67 (1H, d, J=8.3 Hz), 

7.38-7.44 (3H, m), 7.32 (1H, t, J=7.7 Hz), 7.25 (2H, d, J=8.3 Hz), 7.12 

(1H, t, J=7.6 Hz), 7.00-7.07 (2H, m), 2.50-2.60 (1H, m), 2.47 (3H, s, 

C(O)CH3), 2.35 (3H, s, PhCH3), 2.01 (1H, ddd, J=9.2, 8.1, 5.5 Hz), 

1.77 (1H, ddd, J=7.5, 5.4, 5.2 Hz), 1.38-1.46 (1H, m); 13C NMR (100 MHz, CDCl3): 198.28, 168.17, 

141.77, 140.57, 139.95, 137.55, 137.03, 133.95, 133.12, 130.31, 129.51, 128.18, 127.73, 126.78, 

124.74 (2C), 123.03, 122.42, 26.85, 25.85, 24.85, 21.54, 11.81; FT-IR (cm-1): 3248 (w), 2924 (m), 

2854 (m), 1682 (s), 1585 (s), 1533 (br s), 1435 (s), 1398 (s), 1356 (m), 1174 (s), 1021 (s), 1010 (s), 

913 (w), 808 (s), 758 (s), 689 (s), 546 (s), 492 (m); [𝛼]𝐷
20= -104.5° (c=0.76, CHCl3); Rf (CyHex/EtOAc 

3:2): 0.25. 
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Major diastereomer II-2gA: 1H NMR (400 MHz, CDCl3): 10.43 (1H, 

br s, NH), 7.97 (1H, d, J=8.4 Hz), 7.88 (1H, s), 7.77 (1H, dd, J=7.7, 

1.8 Hz), 7.43-7.49 (2H, m), 7.39 (2H, d, J=8.4 Hz), 7.28-7.35 (2H, m), 

7.25 (2H, d, J=7.9 Hz), 7.07 (1H, t, J=7.6 Hz), 2.55-2.63 (1H, m), 2.54 

(3H, s, C(O)CH3), 2.37 (3H, s, PhCH3), 2.03 (1H, ddd, J=8.9, 7.8, 5.6 

Hz), 1.69-1.77 (1H, m), 1.32-1.38 (1H, m); 13C NMR (100 MHz, CDCl3): 198.41, 167.76, 141.61, 

140.32, 139.85, 137.44, 137.01, 134.11, 132.99, 130.21, 129.72, 128.32, 127.73, 126.71, 124.57, 

124.57, 123.17, 122.95, 26.86, 25.74, 24.96, 21.51, 10.96; FT-IR (cm-1): 3248 (w), 2924 (w), 2854 

(w), 1681 (s), 1584 (s), 1522 (br s), 1435 (s), 1296 (s), 1263 (s), 1173 (s), 1021 (s), 1010 (s), 807 (s), 

757 (s), 733 (s), 589 (m), 492 (m) ; HRMS (ESI-TOF): m/z calcd for C25H23NNaO3S+: 440.1291, 

found: 440.1293; [𝛼]𝐷
20= +31.5° (c=0.76, CHCl3); Rf (CyHex/EtOAc 3:2): 0.17. 

2-(3-nitrophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-2h 

The general procedure A was followed using 3-nitroiodobenzene (87 mg) as coupling partner 

and with a reaction time of 8h. Column chromatography on silica gel with CyHex/EtOAc (3:1 to 

7:3) afforded the minor diastereomer (21 mg, 21%) as a yellow oil and the major diastereomer 

(69 mg, 70%) as a pale yellow solid. The diastereomeric ratio determined by analysis of the crude 

1H NMR is 80/20. 

Minor diastereomer II-2hB: 1H NMR (400 MHz, CDCl3): 10.65 (1H, 

br s, NH), 8.18 (1H, d, J=8.1 Hz), 7.97 (1H, s), 7.91-7.96 (1H, m), 

7.44 (1H, dd, J=7.9, 1.4 Hz), 7.41 (2H, d, J=8.3 Hz), 7.33 (1H, td, 

J=7.9, 1.4 Hz), 7.28 (2H, d, J=7.9 Hz), 7.2 (2H, d, J=5.2 Hz), 7.06 

(1H, td, J=7.6, 0.9 Hz), 2.53-2.60 (1H, m), 2.37 (3H, s, PhCH3), 2.09 

(1H, ddd, J=9.0, 8.0, 5.7 Hz), 1.79 (1H, ddd, J=7.4, 5.4, 5.3 Hz), 1.46 (1H, ddd, J=8.8, 7.9, 5.2 Hz); 

13C NMR (100 MHz, CDCl3): 167.77, 148.15, 141.96, 140.51, 139.83, 139.12, 135.39, 133.24, 

130.31, 128.76, 127.88, 126.93, 124.73, 124.69, 123.20, 122.45, 121.89, 25.51, 24.87, 21.56, 

12.00; FT-IR (cm-1): 3247 (m), 3060 (m), 2924 (m), 2854 (m), 1692 (s, C-O), 1586 (s), 1525 (s, N-

O), 1436 (s), 1348 (s, N-O), 1298 (s), 1178 (s), 1010 (s), 808 (s), 758 (s), 732 (s), 682 (s), 546 (s), 

531 (s); [𝛼]𝐷
20= -93.6° (c=0.27, CHCl3); Rf (CyHex/EtOAc 3:2): 0.30. 

Major diastereomer II-2hA: 1H NMR (400 MHz, CDCl3): 10.48 (1H, 

br s, NH), 8.14 (1H, s), 8.00 (1H, d, J=8.5 Hz), 7.93 (1H, d, J=8.5 Hz), 

7.57 (1H, d, J=8.5 Hz), 7.43 (2H, d, J=8.5 Hz), 7.38 (2H, d, J=7.8 Hz), 
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7.29 (1H, t, J=8.5 Hz), 7.23 (2H, d, J=7.7 Hz), 7.06 (1H, t, J=7.4 Hz), 2.54-2.63 (1H, m), 2.35 (3H, s, 

PhCH3), 1.99-2.11 (1H, m), 1.69-1.76 (1H, m), 1.33-1.43 (1H, m); 13C NMR (100 MHz, CDCl3): 

167.28, 147.98, 141.50, 140.01, 139.64, 138.94, 135.53, 132.83, 130.05, 130.02, 128.66, 127.56, 

124.43, 124.40, 123.21, 122.86, 121.70, 25.21, 24.84, 21.34, 11.06; FT-IR (cm-1): 3248 (m), 2924 

(m), 1692 (s, C-O), 1585 (s), 1526 (s, N-O), 1436 (s), 1348 (s, N-O), 1298 (s), 1178 (s), 1010 (m), 

809 (s), 759 (s), 733 (s), 683 (s), 546 (s), 532 (s); MP: 104°C; HRMS (ESI-TOF): m/z calcd for 

C23H21N2O4S+: 421.1217, found: 421.1215; [𝛼]𝐷
20= +16.1° (c=0.59, CHCl3); Rf (CyHex/EtOAc 3:2): 

0.17. 

N-(2-((S)-p-tolylsulfinyl)phenyl)-2-(3-(trifluoromethyl)phenyl)cyclopropane-1-carboxamide II-2i 

The general procedure A was followed using 3-trifluoromethyl-iodobenzene (40 µL) as coupling 

partner and with a reaction time of 18h. Column chromatography on silica gel with CyHex/EtOAc 

(5:1 to 4:1) afforded the minor diastereomer (25% estimated, unseparable mixture with the 

starting material) as a brown oil and the major diastereomer (57 mg, 55%) as an orange oil. The 

diastereomeric ratio determined by analysis of the crude 1H NMR is 70/30. 

 Major diastereomer II-2iA: 1H NMR (400 MHz, CDCl3): 10.41 (1H, 

br s, NH), 7.94 (1H, d, J=8.4 Hz), 7.52 (1H, s), 7.36-7.47 (5H, m), 

7.27-7.35 (2H, m), 7.21-7.26 (2H, m), 7.06 (1H, td, J=7.6, 1.1 Hz), 

2.52-2.60 (1H, m), 2.35 (3H, s, PhCH3), 2.02 (1H, ddd, J=9.0, 7.8, 5.5 

Hz), 1.66-1.72 (1H, m), 1.33 (1H, ddd, J=8.9, 7.7, 5.0 Hz); 13C NMR 

(100 MHz, CDCl3): 167.54, 141.60, 140.28, 139.85, 137.96, 133.00, 132.76, 130.20, 130.35 (q, 

J=32 Hz), 128.44, 127.72, 126.39 (q, J=3.6 Hz), 124.56 (2C), 124.35 (q, J=272 Hz), 123.54 (q, J=3.8 

Hz), 123.22, 123.13, 25.58, 24.97, 21.49, 10.99; 19F NMR (CDCl3, 377 MHz): -62.51; FT-IR (cm-1): 

3248 (w), 2925 (w), 1694 (m), 1586 (m), 1524 (br s), 1325 (s), 1121 (s), 1021 (m), 807 (m), 700 

(m), 546 (m, ArCF3), 531 (m, ArCF3), 472 (m); HRMS (ESI-TOF): m/z calcd for C24H21F3NO2S+: 

444.1240, found: 444.1199; [𝛼]𝐷
20= +14.9° (c=1.03, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.42. 

2-(3-chlorophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-2j 

The general procedure A was followed using 3-iodo-1-chlorobenzene (35 µL) as coupling partner 

and with a reaction time of 8h. Column chromatography on silica gel with CyHex/EtOAc (9:1 to 

8:2) afforded the minor diastereomer (18% estimated, unseperable mixture with the starting 

material) as an orange oil and the major diastereomer (54 mg, 56%) as a brownish froth. The 

diastereomeric ratio determined by analysis of the crude 1H NMR is 80/20. 
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Major diastereomer II-2jA: 1H NMR (400 MHz, CDCl3): 10.37 (1H, br, 

NH), 8.00 (1H, d, J=8.2 Hz), 7.44 (1H, dd, J=7.7, 1.5 Hz), 7.38 (2H, d, 

J=8.3 Hz), 7.29-7.35 (1H, m), 7.21-7.26 (3H, m), 7.10-7.14 (3H, m), 

7.03-7.09 (1H, m), 2.45-2.53 (1H, m), 2.35 (3H, s, PhCH3), 1.95-2.01 

(1H, m), 1.63-1.69 (1H, m), 1.24-1.32 (1H, m); 13C NMR (100 MHz, 

CDCl3): 167.63, 141.61, 140.34, 139.88, 138.97, 133.88, 133.03, 130.22, 129.70, 129.27, 127.72, 

127.59, 126.95, 124.59 (2C), 123.19, 123.17, 25.54, 25.00, 21.52, 10.83; FT-IR (cm-1): 3246 (w), 

3024 (w), 1693 (s), 1585 (s), 1525 (br s), 1436 (s), 1177 (s), 1022 (s), 1011 (s), 809 (m), 794 (m), 

756 (s), 546 (m); MP: 167 °C; HRMS (ESI-TOF): m/z calcd for C23H20ClNNaO2S+: 432.0795, found: 

432.0782; [𝛼]𝐷
20= +54.6° (c=0.34, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.44. 

2-(3,5-dichlorophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-2k 

The general procedure A was followed using 3-iodo-1,5-dichlorobenzene (109 mg) as coupling 

partner and with a reaction time of 24h. Column chromatography on silica gel with CyHex/EtOAc 

(8:2) afforded the minor diastereomer (11% estimated, unseparable mixture with the starting 

material) as a yellow oil and the major diastereomer (38 mg, 32%) as a salmon froth. The 

diastereomeric ratio determined by analysis of the crude 1H NMR is 75/25. 

Major diastereomer II-2kA: 1H NMR (400 MHz, CDCl3): 10.42 (1H, 

br, NH), 8.01 (1H, d, J=8.4 Hz), 7.45 (1H, dd, J=7.7, 1.6 Hz), 7.32-7.40 

(3H, m), 7.21-7.27 (2H, m), 7.13-7.15 (3H, m), 7.08 (1H, td, J=7.6, 

1.2 Hz), 2.40-2.49 (1H, m), 2.36 (3H, s, PhCH3), 1.94-2.03 (1H, m), 

1.58-1.65 (1H, m), 1.29 (1H, ddd, J=8.8, 7.8, 5.2 Hz); 13C NMR (100 

MHz, CDCl3): 167.36, 141.64, 140.49, 140.24, 139.83, 134.45, 133.08, 130.22, 128.11, 127.74, 

127.05, 124.59, 124.52, 123.37, 123.26, 25.21, 24.93, 21.53, 11.09; FT-IR (cm-1): 3244 (w), 3059 

(w), 1694 (m), 1585 (s), 1525 (br m), 1435 (s), 1296 (s), 1176 (s), 1021 (s, S-O), 1011 (s), 799 (s, 

Ar-Cl), 678 (m), 472 (m); MP: 121°C; HRMS (ESI-TOF): m/z calcd for C23H20Cl2NO2S+: 444.0586, 

found: 444.0557; [𝛼]𝐷
20= +46.7° (c=0.76, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.43. 

2-(3,5-dinitrophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-2l 

The general procedure A was followed using 3,5-dinitroiodobenzene (82 mg) as coupling partner 

and with a reaction time of 24h. Column chromatography on silica gel with CyHex/EtOAc (8:2 to 

7:3) afforded the minor diastereomer (19 mg, 17%) as a yellow oil and the major diastereomer 
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(45 mg, 41%) as a yellow froth. The diastereomeric ratio determined by analysis of the crude 1H 

NMR is 70/30. 

Minor diastereomer II-2lB: 1H NMR (400 MHz, CDCl3): 10.86 (1H, 

br, NH), 8.77 (1H, t, J=2.1 Hz), 8.26 (2H, dd, J=2.1, 0.6 Hz), 8.14 

(1H, d, J=8.3 Hz), 7.40-7.45 (3H, m), 7.27-7.36 (3H, m), 7.08 (1H, 

td, J=7.6, 1.2 Hz), 2.62-2.71 (1H, m), 2.37 (3H, s, PhCH3), 2.15-2.22 

(1H, m), 1.84-1.91 (1H, m), 1.56-1.64 (1H, m); 13C NMR (100 MHz, 

CDCl3): 167.33, 148.14, 142.36, 141.80, 140.26, 139.37, 133.16, 130.29, 129.75, 127.73, 126.94, 

124.56, 123.53, 122.26, 117.30, 25.20, 25.15, 21.47, 12.69; FT-IR (cm-1): 3104 (w), 1691 (w), 1586 

(m), 1539 (s, N-O), 1438 (m), 1343 (s, N-O), 1299 (m), 1182 (m), 1011 (m), 729 (s), 663 (m); 

[𝛼]𝐷
20= -125.5° (c=0.82, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.26. 

Major diastereomer II-2lA: 1H NMR (400 MHz, CDCl3): 10.63 (1H, 

br, NH), 8.82 (1H, t, J=2.1 Hz), 8.46 (2H, dd, J=2.1, 0.5 Hz), 7.87 

(1H, d, J=8.4 Hz), 7.42 (1H, dd, J=7.6, 1.6 Hz), 7.37 (2H, d, J=8.3 

Hz), 7.30 (1H, td, J=7.9, 1.7 Hz), 7.21-7.26 (2H, m), 7.08 (1H, td, 

J=7.6, 1.2 Hz), 2.63-2.72 (1H, m), 2.37 (3H, s, PhCH3), 2.12-2.20 

(1H, m), 1.73-1.80 (1H, m), 1.47-1.56 (1H, m); 13C NMR (100 MHz, CDCl3): 167.25, 148.15, 141.87, 

141.80, 139.86, 139.74, 133.04, 130.25, 129.97, 128.35, 127.75, 124.60, 123.88, 123.19, 117.26, 

25.17, 25.11, 21.54, 12.07; FT-IR (cm-1): 3174 (w), 3104 (w), 1688 (m), 1586 (m), 1537 (s, N-O), 

1436 (m), 1342 (s, N-O), 1297 (m), 1180 (m), 1022 (m, S-O), 1011 (m), 729 (s), 662 (m), 472 (m); 

MP : 192°C; HRMS (ESI-TOF): m/z calcd for C23H20N3O6S+: 466.1067, found: 466.1101; [𝛼]𝐷
20= -4.6° 

(c=0.73, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.13. 

methyl 2-(2-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)benzoate II-2m 

The general procedure A was followed using methyl 2-iodobenzoate (40 µL) as coupling partner 

and with a reaction time of 18h. Column chromatography on silica 

gel with CyHex/EtOAc (3:2) afforded a mixture of the two 

diastereomers (46 mg, 45%) as a brown oil. The diastereomeric ratio 

determined by analysis of the crude 1H NMR is 80/20. 

II-2mA and II-2mB: 1H NMR (400 MHz, CDCl3): 10.12-10.27 (1H, br s, 

NH), 7.75-8.13 (2H, m), 7.33-7.48 (5H, m), 7.08-7.31 (4H, m), 6.99-

7.07 (1H, m), 3.65-3.86 (3H, m, C(O)OCH3), 2.84-3.03 (1H, m), 2.32-
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3.38 (3H, m, PhCH3), 2.04-2.14 (1H, m), 1.63-1.75 (1H, m), 1.29-1.38 (1H, m); 13C NMR (100 MHz, 

CDCl3): 168.93, 168.20, 167.95, 167.91, 141.64, 141.19, 139.97, 139.77, 138.14, 138.01, 132.72, 

132.49, 131.61, 131.53, 131.35, 130.83, 130.39, 130.14, 130.09, 129.97, 129.93, 127.46, 126.88, 

126.62, 126.52, 125.09, 124.35, 123.10, 122.94, 122.40, 52.10, 51.84, 30.95, 29.72, 26.93, 25.87, 

25.79, 24.92, 21.38, 21.32, 12.72, 11.60; FT-IR (cm-1): 3250 (w), 2924 (w), 1770 (m), 1720 (s), 

1694 (s), 1585 (s), 1528 (br s), 1435 (s), 1295 (s), 1260 (s), 1173 (br s), 1080 (s), 1022 (s), 1011 (s), 

757 (s), 547 (m), 472 (m); HRMS (ESI-TOF): m/z calcd for C25H24NO4S+: 434.1421, found: 

434.1370; Rf (CyHex/EtOAc, 3:2): 0.36. 

2-(2-formylphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-2n 

The general procedure A was followed using 2-iodobenzaldehyde (65 mg) as coupling partner 

and with a reaction time of 24h. Column chromatography on silica gel with CyHex/EtOAc (4:1) 

afforded the minor diastereomer (12 mg, 13%) as a yellow oil and the major diastereomer (38 

mg, 40%) as a pale yellow solid. The diastereomeric ratio determined by analysis of the crude 1H 

NMR is 80/20. 

Minor diastereomer II-2nB: 1H NMR (400 MHz, CDCl3): 10.38 (1H, s, 

CHO), 10.34 (1H, br, NH), 7.84 (1H, dd, J=8.4, 1.4 Hz), 7.75 (1H, dd, 

J=7.6, 1.5 Hz), 7.32-7.53 (7H, m), 7.20-7.25 (2H, m), 7.05 (1H, td, J=7.5, 

1.3 Hz), 2.91-3.00 (1H, m), 2.36 (3H, s, PhCH3), 2.17-2.22 (1H, m), 1.69-

1.77 (1H, m), 1.38-1.46 (1H, m); 13C NMR (100 MHz, CDCl3): 192.28, 

168.02, 141.48, 140.07, 139.99, 139.25, 135.40, 133.64, 132.79, 131.49, 130.88, 130.14, 127.62, 

127.37, 127.06, 124.61, 123.29, 123.10, 25.07, 23.80, 21.50, 11.71; FT-IR (cm-1): 2925 (m), 2855 

(w), 1751 (m), 1694 (s), 1289 (s), 1194 (s), 1103 (s), 1038 (s), 1012 (s), 757 (s), 472 (w); [𝛼]𝐷
20= -

77.0° (c=0.66, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.41. 

Major diastereomer II-2nA: 1H NMR (400 MHz, CDCl3): 10.57 (1H, br, 

NH), 10.25 (1H, s, CHO), 8.17 (1H, d, J=8.6 Hz), 7.68 (2H, d, J=7.5 Hz), 

7.46 (2H, d, J=8.3 Hz), 7.39 (1H, td, J=8.2, 2.2 Hz), 7.25-7.34 (4H, m), 

7.21 (1H, d, J=7.8 Hz), 7.03 (1H, t, J=7.2 Hz), 2.88-2.97 (1H, m), 2.38 (3H, 

s, PhCH3), 2.16-2.25 (1H, m), 1.77-1.84 (1H, m), 1.49-1.56 (1H, m); 13C 

NMR (100 MHz, CDCl3): 191.97, 168.67, 141.89, 140.39, 139.89, 139.26, 

135.31, 133.60, 132.84, 131.15, 130.75, 130.43, 127.41, 127.28, 127.09, 124.78, 123.07, 122.21, 

25.09, 23.91, 21.60, 13.07; FT-IR (cm-1): 3249 (w), 2925 (w), 1690 (s), 1598 (m), 1585 (m), 1437 

(m), 1294 (m), 1021 (m), 1011 (m), 755 (s), 734 (s), 546 (m); MP: 147°C; HRMS (ESI-TOF): m/z 
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calcd for C24H21NNaO3S+: 426.1134, found: 426.1086; [𝛼]𝐷
20= -41.9° (c=0.64, CHCl3); Rf 

(CyHex/EtOAc, 3:2): 0.32. 

2-(2-nitrophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-2o 

The general procedure A was followed using 2-nitro-iodobenzene (88 mg, 0.35 mmol, 1.5 equiv.) 

as coupling partner and with a reaction time of 48h. Column chromatography on silica gel with 

CyHex/EtOAc (8:2 to 7:3) afforded the minor diastereomer (12% estimated, unseparable mixture 

with remaining starting material and biarylation product) as a yellow oil and the major 

diastereomer (65 mg, 66%) as a bright yellow solid. The diastereomeric ratio determined by 

analysis of the crude 1H NMR is 70/30. 

Major diastereomer II-2oA: 1H NMR (400 MHz, CDCl3): 10.32 (1H, br, 

NH), 7.80-7.89 (2H, m), 7.41-7.51 (3H, m), 7.26-7.40 (4H, m), 7.22 (2H, 

d, J=8.2 Hz), 7.07 (1H, td, J=7.6, 1.1 Hz), 2.80-2.90 (1H, m), 2.34 (3H, s, 

PhCH3), 2.10-2.17 (1H, m), 1.53-1.58 (1H, m), 1.38-1.45 (1H, m); 13C 

NMR (100 MHz, CDCl3) : 168.08, 150.72, 141.42, 140.04, 140.00, 

132.79, 132.68, 132.48, 130.25, 130.11, 128.80, 127.80, 127.61, 124.60, 124.36, 123.55, 123.45, 

24.46, 24.21, 21.50, 12.38; FT-IR (cm-1) : 3247 (w), 3059 (w), 2924 (w), 1691 (m, C=O), 1585 (m), 

1519 (s, N-O), 1177 (m), 1021 (m, S=O), 757 (m), 547 (m), 472 (m); HRMS (ESI-TOF): m/z calcd for 

C23H20KN2O4S+: 459.0775, found: 459.0775; [𝛼]𝐷
20= -116.0° (c=0.13, CHCl3); Rf (CyHex/EtOAc, 3:2): 

0.41. 

2-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-2p 

The general procedure A was followed using iodobenzene (80 µL, 0.71 mmol, 3 equiv.) as 

coupling partner and with a reaction time of 18h. Column chromatography on silica gel with 

CyHex/EtOAc (4:1) afforded the minor diastereomer (17% estimated, unseparable mixture with 

the starting material) as a yellow oil and the major diastereomer (27 mg, 31%) as a yellow oil. 

The diastereomeric ratio determined by analysis of the crude 1H NMR is 60/40. 

Major diastereomer II-2pA: 1H NMR (400 MHz, CDCl3): 10.31 (1H, br, 

NH), 7.99 (1H, d, J=8.4 Hz), 7.44 (1H, dd, J=7.5, 1.5 Hz), 7.38 (2H, d, J=8.3 

Hz), 7.27-7.32 (1H, m), 7.11-7.27 (7H, m), 7.05 (1H, td, J=7.6, 1.2 Hz), 

2.50-2.59 (1H, m), 2.36 (3H, s, PhCH3), 1.93-2.02 (1H, m), 1.70 (1H, ddd, 

J=7.5, 5.3, 5.0 Hz), 1.24-1.31 (1H, m); 13C NMR (100 MHz, CDCl3): 167.97, 

141.55, 140.44, 139.88, 136.72, 132.99, 130.19, 129.39, 128.61, 128.10, 127.69, 126.70, 124.58, 
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123.04, 122.98, 26.01, 25.06, 21.52, 10.57; FT-IR (cm-1): 3252 (w), 3027 (w), 2925 (w), 1697 (s), 

1586 (s), 1528 (br s), 1437 (s), 1297 (s), 1173 (s), 1022 (s), 1011 (s), 969 (m), 810 (m), 756 (s), 697 

(s), 546 (m), 531 (m), 474 (w); HRMS (ESI-TOF): m/z calcd for C23H22NO2S+: 376.1366, found: 

376.1333; [𝛼]𝐷
20= +21.3° (c=0.2, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.42. 

2-(4-acetylphenyl)-N-(2-((S)-tert-butylsulfinyl)phenyl)cyclopropane-1-carboxamide II-3a 

The general procedure A was followed using compound II-1b (200 mg) as substrate, 4-

iodoacetophenone (280 mg, 1.14 mmol, 1.5 equiv.) as coupling partner and with a reaction time 

of 18h, under argon atmosphere. Column chromatography on silica gel with CyHex/EtOAc (7:3) 

afforded a mixture of two diastereomers (75 mg, 26%) as a clear oil. The diastereomeric ratio 

determined by analysis of the crude 1H NMR is 90/10. 

Major diastereomer II-3aA: 1H NMR (400 MHz, CDCl3): 11.20 (1H, 

br s, NH), 8.12 (1H, dd, J=8.4, 1.0 Hz), 7.82 (2H, d, J=8.4 Hz), 7.36 

(2H, d, J=8.4 Hz), 7.28 (1H, ddd, J=8.6, 7.2, 1.8 Hz), 6.93-7.06 (2H, 

m), 2.51-2.60 (4H, m), 2.12 (1H, ddd, J=9.1, 7.8, 5.6 Hz), 1.83 (1H, 

ddd, J=7.5, 5.3, 5.0 Hz), 1.37 (1H, ddd, J=8.7, 7.8, 5.1 Hz), 1.25 (9H, 

s, C(CH3)3); 13C NMR (100 MHz, CDCl3): 198.08, 167.59, 142.82, 142.46, 135.57, 132.32, 129.65, 

129.37, 128.57, 128.20, 122.63, 122.13, 59.18, 26.75, 25.89, 25.65, 23.55, 10.99; FT-IR (cm-1): 

2958 (m), 2924 (m), 2855 (m), 1680 (s, C=O), 1606 (s), 1585 (s), 1531 (br s), 1458 (m), 1434 (s), 

1295 (s), 1267 (s), 1176 (s), 1106 (w), 1007 (s, S=O), 969 (m), 843 (m), 761 (s); HRMS (ESI-TOF): 

m/z calcd for C22H25KNO3S+: 422.1187, found: 422.1145; [𝛼]𝐷
20= +0.3° (c=0.93, CHCl3); Rf 

(CyHex/EtOAc, 3:2): 0.35. 

2-(4-acetylphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclobutane-1-carboxamide II-5a and 2,4-

bis(4-acetylphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclobutane-1-carboxamide 

The general procedure A was followed using compound II-1c (70 mg) as 

substrate and 4-iodoacetophenone (66 mg) as coupling partner. Column 

chromatography on silica gel with CyHex/EtOAc (8:2 to 7:3) afforded the 

mixture of the two diastereomers (39 mg, 40%) as a clear oil and the 

product of biarylation (22 mg, 18%) as a yellow oil. The diastereomeric ratio 

determined by analysis of the crude 1H NMR is 70/30. 

 II-5aA and II-5aB: 1H NMR (400 MHz, CDCl3): 10.22 (0.3H, br s, NH), 9.87 

(0.7H, br s, NH), 8.20 (0.3H, d, J=8.2 Hz), 7.87 (0.7H, dd, J=8.4, 1.2 Hz), 7.76 (1.4H, d, J=8.4 Hz), 
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7.63 (0.6H, d, J=8.4 Hz), 7.34-7.40 (1H, m), 7.25-7.33 (4.6H, m), 7.21 (1.4H, d, J=8.4 Hz), 6.99-7.07 

(2H, m), 3.87-4.08 (1H, m), 3.40-3.52 (1H, m), 2.52-2.67 (1H, m), 2.47 (3H, s, C(O)CH3), 2.29-2.41 

(5H, m), 2.13-2.26 (1H, m); 13C NMR (400 MHz, CDCl3): 198.03 (0.7C), 197.89 (0.3C), 171.35 

(0.3C), 170.90 (0.7C), 147.26 (0.3C), 146.73 (0.7C), 141.84 (0.3C), 141.56 (0.7C), 140.32 (0.3C), 

140.17 (0.3C), 140.02 (0.7C), 139.84 (0.7C), 135.43 (0.7C), 135.15 (0.3C), 133.05 (0.3C), 132.92 

(0.7C), 130.33 (0.6C), 130.13 (1.4C), 128.43 (1.4C), 128.39 (0.6C), 127.81 (0.3C), 127.76 (0.7C), 

127.72 (1.4C), 127.21 (0.6C), 124.87 (0.6C), 124.58 (1.4C), 123.20 (0.7C), 123.12 (0.3C), 122.80 

(0.7C), 122.34 (0.3C), 47.40 (0.3C), 47.20 (0.7C), 43.02 (0.7C), 42.66 (0.3C), 26.72 (2.1C), 26.66 

(0.9C), 24.84 (0.3C), 24.68 (0.7C), 21.76 (0.3C), 21.54 (0.9C), 21.48 (2.1C), 20.51 (0.7C); FT-IR (cm-

1): 3251 (w), 2948 (w), 1680 (s), 1605 (m), 1585 (m), 1528 (br m), 1435 (m), 1295 (m), 1269 (s), 

1182 (m), 1012 (m), 759 (m), 598 (w); HRMS (ESI-TOF): m/z calcd for C26H25NNaO3S+: 454.1447, 

found: 454.1490; Rf (CyHex/EtOAc, 1:1): 0.29. 

1H NMR (400 MHz, CDCl3): 10.25 (1H, br s, NH), 7.81 (2H, d, 

J=8.3 Hz), 7.69 (1H, dd, J=8.4, 1.2 Hz), 7.61 (2H, d, J=8.3 Hz), 

7.32-7.37 (5H, m), 7.29 (2H, d, J=8.5 Hz), 7.16 (1H, td, J=7.8, 

1.8 Hz), 6.99 (1H, td, J=7.6, 1.3 Hz), 6.93 (2H, d, J=8.3 Hz), 

3.99-4.07 (1H, m), 3.83-3.95 (2H, m), 3.40 (1H, q, J=10.6 

Hz), 2.67-2.77 (1H, m), 2.49 (3H, s), 2.47 (3H, s), 2.45 (3H, 

s);13C NMR (400 MHz, CDCl3): 197.89, 197.59, 168.24, 

147.05, 145.57, 141.58, 139.73, 139.65, 135.32, 134.76, 

132.84, 130.18, 128.27, 128.19, 127.63, 127.30, 126.73, 126.20, 124.51, 123.09, 122.38, 53.99, 

39.22, 37.93, 29.80, 26.59, 26.44, 21.43; FT-IR (cm-1): 3247 (w), 2943 (w), 1678 (s), 1605 (s), 1586 

(m), 1435 (m), 1358 (m), 1269 (s), 1176 (m), 1012 (m), 816 (m), 758 (m), 598 (m), 548 (m); HRMS 

(ESI-TOF): m/z calcd for C34H31NNaO4S+: 572.1866, found: 572.1843; [𝛼]𝐷
20= +44.7° (c=1.1, CHCl3); 

Rf (CyHex/EtOAc, 1:1): 0.29. 

2-(4-acetylphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclohexane-1-carboxamide II-7a 

The general procedure A was followed using compound II-1e (105 mg) as substrate and 4-

iodoacetophenone (120 mg) as coupling partner. Column chromatography on silica gel with 

CyHex/EtOAc (8:2 to 7:3) afforded the major cis-diastereomer (23 %) as a clear oil. The 

diastereomeric ratio determined by analysis of the crude 1H NMR is 70/30 and the cis-trans ratio 

determined by NOESY experiment is 75/25. 
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1H NMR (400 MHz, CDCl3): 10.23 (1H, br s, NH), 8.26 (1H, d, J=8.3 Hz), 

7.74 (2H, d, J=8.4 Hz), 7.24-7.32 (4H, m), 7.13 (2H, d, J=8.3 Hz), 6.95-7.00 

(3H, m), 2.80-2.91 (2H, m), 2.52-2.66 (1H, m), 2.47 (3H, s, PhC(O)CH3), 

2.23 (3H, s, PhCH3), 2.06-2.13 (1H, m), 1.79-1.91 (2H, m), 1.60-1.76 (2H, 

m), 1.53-1.59 (1H, m), 1.32-1.43 (1H, m); 13C NMR (100 MHz, CDCl3): 

197.81, 172.42, 150.45, 141.63, 140.40, 139.57, 134.89, 132.56, 130.00, 

128.29, 128.04, 127.13, 127.03, 124.31, 122.89, 122.10, 48.07, 44.71, 

30.17, 26.98, 26.55, 25.62, 21.85, 21.26; FT-IR (cm-1): 1665 (s), 1032 (s); 

[𝛼]𝐷
20= +89.3° (c=0.54, CHCl3); Rf (CyHex/EtOAc, 1:1): 0.41. 

2-(4-acetylphenyl)-3-methyl-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-8a 

The general procedure B was followed using compound II-1f (70 mg) as substrate and 4’-

iodoacetophenone (215 mg) as coupling partner. Column chromatography on silica gel with 

CyHex/EtOAc (4:1) afforded the minor diastereomer (30 mg, 31%) as a yellow oil and the major 

diastereomer (50 mg, 52%) as an orange oil. The diastereomeric ratio determined by analysis of 

the crude 1H NMR is 60/40. 

Minor diastereomer II-8aB: 10.48 (1H, br, NH), 8.19 (1H, d, J=8.6 

Hz), 7.65 (2H, d, J=8.3 Hz), 7.44 (1H, dd, J=7.6, 1.6 Hz), 7.30-7.40 

(3H, m), 7.21-7.26 (2H, m), 7.06 (1H, td, J=7.5, 1.2 Hz), 7.00 (2H, d, 

J=8.4 Hz), 2.48 (3H, s, C(O)CH3), 2.39 (3H, s, PhCH3), 2.30 (1H, dd, 

J=9.0, 6.9 Hz), 2.08-2.17 (1H, m), 1.80 (1H, dd, J=9.0, 5.2 Hz), 1.31 

(3H, d, J=6.0 Hz, CHCH3); 13C NMR (100 MHz, CDCl3): 197.80, 167.77, 143.00, 141.60, 140.54, 

140.04, 135.39, 133.30, 130.23, 129.31, 128.13, 127.92, 124.70 (2C), 122.94, 122.58, 34.48, 

33.43, 26.64, 21.55, 20.26, 17.87; FT-IR (cm-1): 3248 (w), 2925 (w), 1678 (s), 1604 (m), 1585 (m), 

1297 (m), 1266 (s), 1172 (s), 1020 (m, S-O), 1010 (s), 809 (m), 547 (m); [𝛼]𝐷
20= -156.2° (c=0.8, 

CHCl3); Rf (CyHex/EtOAc, 3:2): 0.31. 

Major diastereomer II-8aA: 1H NMR (400 MHz, CDCl3): 1H NMR 

(400 MHz, CDCl3): 10.32 (1H, br, NH), 7.99 (1H, d, J=8.5 Hz), 7.80 

(2H, d, J=8.3 Hz), 7.43 (1H, dd, J=7.9, 1.6 Hz), 7.35-7.40 (2H, m), 

7.27-7.33 (3H, m), 7.21-7.25 (2H, m), 7.05 (1H, td, J=7.6, 1.1 Hz), 

2.52 (3H, s, C(O)CH3), 2.31-2.39 (4H, m), 2.03-2.12 (1H, m), 1.75 

(1H, dd, J=9.0, 5.1 Hz), 1.28 (3H, d, J=6.1 Hz, CHCH3); 13C NMR (100 

MHz, CDCl3): 198.00, 167.58, 142.94, 141.62, 140.25, 139.96, 135.52, 133.01, 130.16, 129.42, 
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128.21, 127.73, 124.63, 123.18, 123.14, 123.09, 34.58, 33.95, 26.72, 21.50, 19.71, 17.89; FT-IR 

(cm-1): 3248 (w), 2958 (w), 1678 (s), 1605 (m), 1436 (m), 1266 (s), 1172 (s), 1020 (m), 1011 (s), 

809 (m), 733 (s), 598 (m), 532 (m); HRMS (ESI-TOF): m/z calcd for C26H25NNaO3S+: 454.1447, 

found: 454.1484; [𝛼]𝐷
20= +19.9° (c=1.08, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.15. 

2-methyl-3-(3-acetylphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-8g 

The general procedure B was followed using compound II-1f (70 mg) as substrate and 3’-

iodoacetophenone (193 mg) as coupling partner. Column chromatography on silica gel with 

CyHex/EtOAc (8:2 to 7:3) afforded the minor diastereomer (31 mg, 36%) as a yellow oil and the 

major diastereomer (49 mg, 56%) as an orange oil. The diastereomeric ratio determined by 

analysis of the crude 1H NMR is 60/40. 

Minor diastereomer II-8gB: 1H NMR (400 MHz, CDCl3): 10.52 (1H, 

br s, NH), 8.19 (1H, d, J=8.4 Hz), 7.75 (1H, s), 7.63-7.67 (1H, m), 

7.38-7.44 (3H, m), 7.29-7.34 (1H, m), 7.20-7.24 (2H, m), 7.11 (1H, t, 

J=7.7 Hz), 6.99-7.07 (2H, m), 2.46 (3H, s, C(O)CH3), 2.28-2.37 (4H, 

m), 2.07-2.15 (1H, m), 1.79 (1H, dd, J=9.0, 5.2 Hz), 1.32 (3H, d, 

J=6.1 Hz) ; 13C NMR (400 MHz, CDCl3): 198.31, 168.11, 141.70, 

140.54, 139.85, 137.75, 136.97, 133.80, 133.11, 130.24, 129.29, 128.13, 127.73, 126.96, 126.68, 

124.66,, 122.95, 122.41, 34.40, 33.19, 26.82, 21.49, 20.44, 18.01; FT-IR (cm-1): 3249 (w), 2971 

(w), 2868 (w), 1682 (s), 1585 (s), 1532 (br s), 1435 (s), 1297 (s), 1172 (s), 1021 (s, S=O), 1010 (s), 

757 (s), 691 (s), 546 (s), 530 (s); [𝛼]𝐷
20= -131.2° (c=0.5, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.37; Rt 

(min, CHIRALPAK ® IA, Hex/iPrOH 80/20, 0.5 mL/min): 21.37 min (99 %), 30.37 (1 %). 

 Major diastereomer II-8gA: 1H NMR (400 MHz, CDCl3): 

10.32 (1H, br s, NH), 7.96 (1H, d, J=8.2 Hz), 7.83 (1H, s), 7.74 (1H, 

dt, J=7.6, 1.7 Hz), 7.36-7.46 (4H, m), 7.31 (2H, d, J=7.8 Hz), 7.21-

7.26 (2H, m), 7.05 (1H, td, J=7.6, 1.1 Hz), 2.53 (3H, s, C(O)CH3), 

2.33-2.39 (4H, m), 2.02-2.10 (1H, m), 1.71 (1H, dd, J=9.0, 5.1 Hz), 

1.28 (3H, d, J=6.0 Hz); 13C NMR (400 MHz, CDCl3): 198.51, 167.83, 

141.63, 140.30, 139.92, 137.67, 137.00, 134.04, 133.03, 130.18, 129.54, 128.30, 127.78, 127.74, 

126.66, 124.63, 123.15, 123.06, 34.51, 33.39, 26.89, 21.54, 19.71, 17.96; FT-IR (cm-1): 3248 (w), 

2960 (w), 2926 (w), 1682 (s), 1584 (s), 1435 (s), 1173 (s), 1021 (s, S=O), 810 (m), 758 (m), 692 

(m), 547 (m); HRMS (ESI-TOF): m/z calcd for C26H26NO3S+: 432.1628, found: 432.1598; [𝛼]𝐷
20= 



Chapter 2: Experimental section 
 

168 
 

+23.7° (c=0.8, CHCl3);Rf (CyHex/EtOAc, 3:2): 0.28; 7; Rt (min, CHIRALPAK ® IA, Hex/iPrOH 80/20, 

0.5 mL/min): 20.37 min (99 %), 26.39 (1 %). 

2-methyl-3-(3-nitrophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-8h 

The general procedure B was followed using compound II-1f (70 mg) as substrate and 3-nitro-

iodobenzene (217 mg) as coupling partner. Column chromatography on silica gel with 

CyHex/EtOAc (4:1 to 7:3) afforded the minor diastereomer (30 mg, 31%) as an orange oil and the 

major diastereomer (52 mg, 54%) as a pale yellow oil. The diastereomeric ratio determined by 

analysis of the crude 1H NMR is 60/40. 

Minor diastereomer II-8hB: 1H NMR (400 MHz, CDCl3): 10.60 (1H, 

br s, NH), 8.17 (1H, d, J=8.3 Hz), 7.89-7.97 (2H, m), 7.45 (1H, dd, 

J=7.7, 1.3 Hz), 7.40 (2H, d, J=8.3 Hz), 7.33 (1H, td, J=8.1, 1.7 Hz), 

7.27 (2H, d, J=8.2 Hz), 7.15-7.22 (2H, m), 7.06 (1H, td, J=7.5, 1.1 

Hz), 2.31-2.39 (4H, m), 2.13 (1H, dqd, J=6.8, 6.1, 5.0 Hz), 1.82 (1H, 

dd, J=8.9, 5.1 Hz), 1.34 (3H, d, J=6.0 Hz); 13C NMR (100 MHz, 

CDCl3): 167.66, 148.09, 141.87, 140.47, 139.76, 139.27, 135.21, 133.18, 130.22, 128.67, 127.83, 

126.94, 124.64, 124.47, 123.09, 122.42, 121.71, 33.86, 33.18, 21.47, 20.65, 17.82; FT-IR (cm-1): 

3247 (w), 1690 (m), 1585 (m), 1525 (s, N-O), 1436 (m), 1348 (s, N-O), 1179 (m), 1021 (m, S-O), 

1010 (m), 757 (m), 547 (m); [𝛼]𝐷
20= - 90.9° (c=1.07, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.24. 

Major diastereomer II-8hA: 1H NMR (400 MHz, CDCl3): 10.40 (1H, 

br s, NH), 8.11 (1H, s), 7.98-8.03 (1H, m), 7.95 (1H, d, J=8.3 Hz), 

7.54 (1H, dt, J=7.6, 1.1 Hz), 7.44 (1H, dd, J=7.8, 1.4 Hz), 7.36-7.41 

(3H, m), 7.28-7.33 (1H, m), 7.24 (2H, d, J=8.2 Hz), 7.06 (1H, td, 

J=7.5, 1.1 Hz), 2.34-2.41 (4H, m), 2.03-2.10 (1H, m), 1.76 (1H, dd, 

J=8.8, 5.1 Hz), 1.30 (3H, d, J=6.1 Hz); 13C NMR (100 MHz, CDCl3): 

167.46, 148.14, 141.66, 140.16, 139.90, 139.29, 135.56, 133.02, 130.23, 130.16, 128.79, 127.76, 

124.62, 124.46, 123.31, 123.10, 121.75, 33.93, 33.39, 21.50, 20.01, 17.78; FT-IR (cm-1): 3243 (w), 

2955 (w), 1690 (m, C-O), 1585 (m, C-C aromatic), 1526 (s, N-O), 1348 (s, N-O), 1022 (m, S-O), 

1012 (m); HRMS (ESI-TOF): m/z calcd for C24H22KN2O4S+: 473.0932, found: 473.0880; [𝛼]𝐷
20= 

+18.0° (c=1.12, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.15. 
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2-methyl-3-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-8p 

The general procedure B was followed using compound II-1f (70 mg) as substrate and 

iodobenzene (90 µL) as coupling partner. Column chromatography on silica gel with 

CyHex/EtOAc (9:1) afforded the minor diastereomer (28 mg, 36%) and the major diastereomer 

(39 mg, 50%) as clear oils. The diastereomeric ratio determined by analysis of the crude 1H NMR 

is 60/40. 

 Minor diastereomer II-8pB: 1H NMR (400 MHz, CDCl3): 10.38 (1H, br, 

NH), 8.21 (1H, d, J=8.6 Hz), 7.44 (1H, dd, J=7.7, 1.4 Hz), 7.39 (2H, d, J=8.4 

Hz), 7.30-7.36 (1H, m), 7.21-7.26 (2H, m), 7.02-7.08 (4H, m), 6.90-6.96 

(2H, m), 2.37 (3H, s, PhCH3), 2.29 (1H, dd, J=9.2, 6.8 Hz), 2.08 (1H, dqd, 

J=6.9, 6.1, 5.1 Hz), 1.73 (1H, dd, J=9.2, 5.1 Hz), 1.29 (3H, d, J=6.1 Hz, 

CHCH3); 13C NMR (100 MHz, CDCl3): 168.26, 141.50, 140.68, 140.04, 137.05, 133.18, 130.24, 

129.17, 128.01, 127.86, 126.51, 124.72 (2C), 122.75, 122.60, 34.83, 33.10, 21.56, 20.00, 18.06; 

FT-IR (cm-1): 3252 (w), 2924 (m), 1694 (s), 1585 (s), 1530 (br s), 1437 (s), 1296 (s), 1170 (s), 1021 

(s, S-O), 1011 (s), 756 (s), 697 (s), 532 (m), 474 (w); [𝛼]𝐷
20= -89.4° (c=0.53, CHCl3); Rf 

(CyHex/EtOAc, 3:2): 0.73. 

Major diastereomer II-8pA: 1H NMR (400 MHz, CDCl3): 10.23 (1H, br, 

NH), 8.01 (1H, d, J=8.3 Hz), 7.44 (1H, dd, J=8.0, 1.5 Hz), 7.39 (2H, d, J=8.3 

Hz), 7.26-7.33 (1H, m), 7.18-7.25 (6H, m), 7.10-7.17 (1H, m), 7.04 (1H, 

td, J=7.5, 1.2 Hz), 2.30-2.37 (4H, m), 2.00-2.09 (1H, m), 1.68 (1H, dd, 

J=9.0, 5.3 Hz), 1.26 (3H, d, J=6.1 Hz, CHCH3); 13C NMR (100 MHz, CDCl3): 

167.98, 141.54, 140.40, 140.00, 136.96, 132.97, 130.15, 129.24, 128.08, 

127.69, 126.59, 125.06, 124.63, 123.10, 122.93, 34.89, 33.56, 21.51, 19.24, 18.01; FT-IR (cm-1): 

3250 (w), 2956 (w), 2888 (w), 1693 (s), 1436 (s), 1375 (m), 1295 (s), 1170 (s), 1021 (s, S-O), 1010 

(s), 696 (s), 531 (s); HRMS (ESI-TOF): m/z calcd for C24H23NNaO2S+: 412.1342, found: 412.1320; 

[𝛼]𝐷
20= +45.9° (c=1.0, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.70. 

2-(4-acetylphenyl)-3-propyl-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-9a 

The general procedure B was followed using compound II-1g (75 mg) as substrate and 4’-

iodoacetophenone (217 mg) as coupling partner. Column chromatography on silica gel with 

CyHex/EtOAc (8:2 to 7:3) afforded the minor diastereomer (34 mg, 34%) as a yellow oil and the 
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major diastereomer (57 mg, 56%) as a pale yellow oil. The diastereomeric ratio determined by 

analysis of the crude 1H NMR is 60/40. 

Minor diastereomer II-9aB: 1H NMR (400 MHz, CDCl3): 10.47 (1H, 

br, NH), 8.18 (1H, d, J=8.3 Hz), 7.65 (2H, d, J=8.3 Hz), 7.45 (1H, dd, 

J=7.7, 1.6 Hz), 7.31-7.40 (3H, m), 7.23-7.37 (2H, m), 7.06 (1H, td, 

J=7.6, 1.3 Hz), 6.99 (2H, d, J=8.2 Hz), 2.48 (3H, s, C(O)CH3), 2.39 

(3H, s, PhCH3), 2.31 (1H, dd, J=9.3, 7.0 Hz), 2.06-2.14 (1H, m), 1.82 

(1H, dd, J=9.1, 5.1 Hz), 1.47-1.61 (3H, m), 1.35-1.45 (1H, m), 0.98 

(3H, t, J=7.0 Hz, CH2CH2CH3); 13C NMR (100 MHz, CDCl3): 197.75, 167.81, 143.06, 141.56, 140.52, 

140.02, 135.35, 133.17, 130.19, 129.32, 128.11, 127.90, 124.67 (2C), 122.89, 122.58, 35.04, 

33.42, 32.17, 26.60, 25.76, 22.39, 21.52, 14.05; FT-IR (cm-1): 3249 (w), 2959 (w), 2925 (w), 2871 

(w), 1679 (s), 1606 (m), 1585 (m), 1532 (br m), 1435 (m), 1266 (s), 1020 (m, S-O), 808 (m), 548 

(m), 531 (m); [𝛼]𝐷
20= -98.0° (c=0.65, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.41. 

Major diastereomer II-9aA: 1H NMR (400 MHz, CDCl3): 10.35 (1H, 

br, NH), 8.01 (1H, d, J=8.4 Hz), 7.80 (2H, d, J=8.3 Hz), 7.44 (1H, dd, 

J=7.8, 1.5 Hz), 7.37 (2H, d, J=8.2 Hz), 7.28-7.34 (3H, m), 7.19-7.24 

(2H, m), 78.05 (1H, t, J=7.6 Hz), 2.52 (3H, s, C(O)CH3), 2.31-2.38 

(4H, m), 2.01-2.10 (1H, m), 1.76 (1H, dd, J=9.1, 5.2 Hz), 1.38-1.55 

(4H, m, CH2CH2CH3), 0.96 (3H, t, J=7.0 Hz, CH2CH2CH3); 13C NMR 

(100 MHz, CDCl3): 197.94, 167.57, 143.00, 141.51, 140.27, 139.90, 135.47, 132.99, 130.12, 

129.44, 128.18, 127.74, 124.53 (2C), 123.07, 122.95, 35.03, 33.55, 32.66, 26.69, 25.24, 22.30, 

21.43, 14.06; FT-IR (cm-1): 3253 (w), 2958 (w), 2925 (w), 2871 (w), 1679 (s), 1605 (m), 1585 (m), 

1524 (br m), 1435 (m), 1296 (m), 1267 (s), 1170 (br m), 1020 (s), 809 (m), 757 (m), 598 (m); 

HRMS (ESI-TOF): m/z calcd for C28H30NO3S+: 460.1941, found: 460.1947; [𝛼]𝐷
20= +31.5° (c=0.65, 

CHCl3); Rf (CyHex/EtOAc, 3:2): 0.30. 

2-(4-nitrophenyl)-3-propyl-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-9f 

The general procedure B was followed using compound II-1f (75 mg) as substrate and 4-nitro-

iodobenzene (219 mg) as coupling partner. Column chromatography on silica gel with 

CyHex/EtOAc (9:1 to 8:2) afforded the minor diastereomer (41 mg, 40%) as a yellow oil and the 

major diastereomer (48 mg, 47%) as a clear oil. The diastereomeric ratio determined by analysis 

of the crude 1H NMR is 60/40. 
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Minor diastereomer II-9fB: 1H NMR (400 MHz, CDCl3): 10.51 (1H, 

br, NH), 8.16 (1H, d, J=8.5 Hz), 7.88 (2H, d, J=8.7 Hz), 7.46 (1H, dd, 

J=7.7, 1.6 Hz), 7.32-7.40 (3H, m), 7.26 (2H, d, J=8.3 Hz), 7.08 (1H, 

td, J=7.6, 1.2 Hz), 7.00 (2H, d, J=8.6 Hz), 2.40 (3H, s, PhCH3), 2.31 

(1H, dd, J=9.3, 7.2 Hz), 2.05-2.14 (1H, m), 1.85 (1H, dd, J=9.1, 5.1 

Hz), 1.41-1.60 (4H, m, CH2CH2CH3), 0.98 (3H, t, J=7.0 Hz, 

CH2CH2CH3); 13C NMR (100 MHz, CDCl3): 167.53, 146.54, 145.33, 141.63, 140.45, 140.13, 133.36, 

130.22, 129.96, 128.12, 126.78, 124.78, 123.22, 123.14, 122.70, 34.92, 32.99, 32.28, 26.12, 

22.41, 21.55, 14.08; FT-IR (cm-1): 3250 (w), 2958 (w), 2871 (w), 1691 (m, C-O), 1514 (s, N-O), 

1435 (m), 1341 (s, N-O), 1021 (m, S-O), 1010 (m), 854 (m), 757 (m), 548 (m), 472 (w); [𝛼]𝐷
20= - 

167.7° (c=0.70, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.29. 

Major diastereomer II-9fA: 1H NMR (400 MHz, CDCl3): 10.43 (1H, 

br, NH), 8.06 (2H, d, J=8.6 Hz), 8.01 (1H, d, J=8.4 Hz), 7.45 (1H, dd, 

J=7.6, 1.5 Hz), 7.30-7.40 (5H, m), 7.20-7.25 (2H, m), 7.07 (1H, td, 

J=7.6, 1.2 Hz), 2.34-2.41 (4H, m), 2.02-2.11 (1H, m), 1.81 (1H, dd, 

J=9.1, 5.2 Hz), 1.41-1.54 (4H, m, CH2CH2CH3), 0.96 (3H, t, J=7.1 Hz, 

CH2CH2CH3); 13C NMR (100 MHz, CDCl3): 167.33, 146.72, 145.29, 

141.66, 140.25, 139.89, 133.13, 130.21, 130.12, 127.85, 127.52, 124.59, 123.32, 122.93, 34.95, 

33.22, 32.97, 25.71, 22.33, 21.50, 14.09; FT-IR (cm-1): 3249 (w), 2958 (w), 2872 (w), 1691 (m), 

1596 (m), 1514 (s, N-O), 1342 (s, N-O), 1296 (m), 1169 (m), 1021 (m, S-O), 854 (m), 533 (m); 

HRMS (ESI-TOF): m/z calcd for C26H27N2O4S+: 463.1686, found: 464.1640; [𝛼]𝐷
20= +53.8° (c=0.80, 

CHCl3); Rf (CyHex/EtOAc, 3:2): 0.14. 

II.7.vii. Asymmetric C(sp3)-H bond alkylation and olefination 

ethyl 2-(2-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acetate II-11a 

The general procedure A was followed using iodo ethylacetate (100 µL, 3.6 equiv.) as coupling 

partner and with a reaction time of 24h. Column chromatography on silica gel with CyHex/EtOAc 

(8:2) afforded the minor diastereomer (22 mg, 24%) and the major diastereomer (31 mg, 34%) as 

clear oils. The diastereomeric ratio determined by analysis of the crude NMR is 60/40. 
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Minor diastereomer II-11aB: 1H NMR (400 MHz, CDCl3): 10.42 (1H, br s, 

NH), 8.28 (1H, d, J=8.5 Hz), 7.50 (1H, dd, J=7.7 Hz, 1.4 Hz), 7.40-7.46 (3H, 

m), 7.25 (2H, d, J=8.3 Hz), 7.12 (1H, td, J=7.6 Hz, 1.1 Hz), 3.96-4.12 (2H, 

m, CH2CH3), 2.12-2.39 (5H, m), 1.64-1.72 (1H, m), 1.47-1.57 (1H, m), 

1.15 (3H, t, J=7.2 Hz, CH2CH3), 1.03-1.13 (2H, m); 13C NMR (100 MHz, 

CDCl3): 172.93 (C=O ester), 169.83 (C=O amide), 141.41, 140.21, 139.82, 132.92, 130.06, 127.97, 

127.70, 124.55, 123.12, 122.84, 60.26, 31.90, 21.26, 20.61, 16.80, 14.22, 12.75; FTIR (cm-1): 3248 

(w), 2981 (m), 2925 (m), 1732 (s, C=O ester), 1687 (s, C=O amide), 1585 (s), 1524 (br s), 1436 (s), 

1397 (s), 1296 (s), 1171 (br s), 1034 (s), 1021 (s), 1010 (s), 809 (s), 758 (s), 547 (m), 531 (m), 473 

(m); [𝛼]𝐷
20= -1.27° (c=0.87, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.44. 

Major diastereomer II-11aA: 1H NMR (400 MHz, CDCl3): 10.39 (1H, br s, 

NH), 8.29 (1H, d, J=8.5 Hz), 7.50 (1H, dd, J=7.7, 1.3 Hz), 7.35-7.46 (3H, 

m), 7.22 (2H, d, J=8.3 Hz), 7.12 (1H, t, J=7.7 Hz), 4.07 (2H, q, J=7.1 Hz, 

CH2CH3), 2.56-2.70 (2H, m), 2.34 (3H, s, PhCH3), 1.49-1.69 (2H, m), 1.16 

(3H, t, J=7.2 Hz, CH2CH3), 1.01-1.09 (1H, m), 0.93-0.99 (1H, m); 13C NMR 

(100 MHz, CDCl3): 173.08 (C=O ester), 169.99 (C=O amide), 141.54, 140.49, 139.86, 133.05, 

130.17, 128.04, 128.02, 127.83, 124.56, 123.21, 60.60, 32.29, 21.51, 20.98, 17.31, 14.38, 12.48; 

FTIR (cm-1): 3250 (w), 2924 (m), 2854 (m), 1732 (s, C=O ester), 1688 (s, C=O amide), 1585 (s), 

1525 (br s), 1436 (s), 1398 (s), 1297 (s), 1174 (br s), 1022 (s), 1011 (s), 855 (w), 809 (s), 758 (s), 

731 (m), 547 (m), 532 (m), 472 (m); HRMS (ESI-TOF): m/z calcd for C21H24NO4S+: 386.1421, found: 

386.1418; [𝛼]𝐷
20= +15.2° (c=0.73, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.40. 

2-methyl-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-11b and 2,3-dimethyl-

N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide 

The general procedure A was followed using iodomethane (100 µL, 3.4 equiv.) as coupling 

partner, silver(I) acetate (184 mg, 1.10 mmol, 2.2 equiv.), sodium trifluoroacetate (36 mg, 0.26 

mmol, 50 mol%), palladium(II) acetate (11 mg, 0.05 mmol, 10 mol%) in 4,5 mL of HFIP and 500 µL 

of water, and with a reaction time of 24h. Column chromatography on silica gel with 

CyHex/EtOAc (9:1) afforded the bi alkylated product (47 mg, 29%) and the mono alkylated 

product as a mixture of diastereomers (53 mg, 34%) as clear oils. The diastereomeric ratio 

determined by analysis of the crude NMR is 60/40. 
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1H NMR (400 MHz, CDCl3): 10.28 (1H, br, NH), 8.39 (0.6H, d, J=8.4 Hz), 8.29 

(0.4H, d, J=8.4 Hz), 7.46-7.54 (1H, m), 7.36-7.45 (3H, m), 7.20-7.29 (2H, m), 

7.07-7.13 (1H, m), 2.32-2.36 (3H, m), 1.49-1.61 (1H, m), 1.20-1.30 (1H, m), 

1.14 (1.9H, d, J=6.1 Hz), 0.90-1.08 (2H, m), 0.87 (1.1H, d, J=6.2 Hz); 13C NMR 

(100 MHz, CDCl3): 170.33, 170.24, 141.53, 141.41, 140.63, 140.52, 139.86, 

139.82, 133.20, 133.10, 130.16, 130.06, 129.11, 127.99, 127.84, 124.57, 

123.03, 122.95, 22.16, 21.94, 21.49, 21.44, 16.24, 16.05, 13.37, 13.17, 12.16, 

11.97; FTIR (cm-1): 3256 (w), 2926 (m), 1691 (s), 1585 (s), 1529 (br s), 1436 (s), 1394 (m), 1298 (s), 

1182 (m), 1165 (s), 1079 (m), 1022 (s), 1012 (s), 810 (m), 757 (m), 547 (m), 532 (m); HRMS (ESI-

TOF): m/z calcd for C18H19NNaO2S+: 336.1029, found: 336.1021; Rf (CyHex/EtOAc, 3:2): 0.50. 

1H NMR (400 MHz, CDCl3): 10.12 (1H, br, NH), 8.26 (1H, d, J=8.4 Hz), 7.51 (1H, 

dd, J=7.7, 1.6 Hz), 7.36-7.46 (3H, m), 7.20-7.24 (2H, m), 7.09 (1H, td, J=7.6, 1.2 

Hz), 2.35 (3H, s, PhCH3), 1.29-1.43 (3H, m), 1.22 (3H, d, J=5.8 Hz), 1.00 (3H, d, 

J=6.1 Hz); 13C NMR (100 MHz, CDCl3): 170.37, 141.37, 140.56, 139.91, 133.09, 

130.06, 127.95, 124.60, 123.26, 122.84, 23.63, 21.48, 19.28, 19.08, 7.12, 7.03; 

FTIR (cm-1): 3250 (w), 2926 (m), 1691 (s), 1585 (s), 1524 (s), 1435 (s), 1296 (s), 

1088 (s), 1022 (s), 1012 (s), 804 (m), 758 (s), 548 (m), 533 (m), 492 (m), 471 

(m); HRMS (ESI-TOF): m/z calcd for C19H21NNaO2S+: 350.1185, found: 350.1162; Rf (CyHex/EtOAc, 

3:2): 0.56. 

ethyl 2-(2-propyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acetate II-12 

The general procedure B was followed using compound II-1g (75 mg) as substrate and ethyl 

iodoacetate (105 µL) as coupling partner. Column chromatography on silica gel with 

CyHex/EtOAc (95:5 to 9:1) afforded the minor diastereomer (21 mg, 22%) and the major 

diastereomer (38 mg, 40%) as clear oils. The diastereomeric ratio determined by analysis of the 

crude NMR is 60/40. 

Minor diastereomer II-12B: 1H NMR (400 MHz, CDCl3): 10.35 (1H, br, 

NH), 8.27 (1H, dd, J=8.6, 1.6 Hz), 7.5 (1H, d, J=8.1 Hz), 7.35-7.46 (3H, 

m), 7.22-7.27 (2H, m), 7.11 (1H, t, J=7.3 Hz), 3.96-4.11 (2H, m, 

C(O)OCH2CH3), 2.29-2.44 (4H, m), 2.11-2.20 (1H, m), 1.26-1.46 (7H, 

m), 1.16 (3H, t, J=7.2 Hz, C(O)OCH2CH3), 0.90 (3H, t, J=7.1 Hz, 

CH2CH2CH3); 13C NMR (100 MHz, CDCl3): 173.15, 170.03, 141.57, 140.40, 139.90, 133.11, 130.20, 

127.89, 124.68, 123.23, 123.07, 123.03, 60.39, 35.18, 31.99, 27.91, 27.30, 24.47, 22.42, 21.43, 
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14.40, 14.07; FTIR (cm-1): 3251 (w), 2958 (w), 1733 (s, C-O ester), 1688 (s, C-O amide), 1585 (s), 

1436 (s), 1295 (s), 1022 (s, S-O), 809 (s), 547 (s); [𝛼]𝐷
20= -11.7° (c=0.3, CHCl3); Rf (CyHex/EtOAc, 

3:2): 0.53. 

Major diastereomer II-12A: 1H NMR (400 MHz, CDCl3): 10.34 (1H, 

br, NH), 8.31 (1H, d, J=8.0 Hz), 7.50 (1H, dd, J=7.6, 1.8 Hz), 7.40-7.46 

(1H, m), 7.34-7.40 (2H, m), 7.21 (2H, d, J=8.0 Hz), 7.11 (1H, td, 

J=7.6, 1.2 Hz), 4.07 (2H, q, J=7.2 Hz, C(O)OCH2CH3), 2.57-2.74 (2H, 

CH2CO2Et), 2.34 (3H, s, PhCH3), 1.28-1.43 (6H, m), 1.20-1.27 (1H, m), 

1.17 (3H, t, J=7.1 Hz, C(O)OCH2CH3), 0.89 (3H, t, J=7.1 Hz, CH2CH2CH3); 13C NMR (100 MHz, CDCl3): 

173.15, 170.03, 141.46, 140.54, 139.92, 133.11, 130.13, 127.92, 127.81, 124.55, 123.06, 123.03, 

60.55, 35.18, 32.08, 28.19, 27.08, 25.01, 22.24, 21.49, 14.40, 14.10; FTIR (cm-1): 3251 (w), 2959 

(w), 2926 (w), 2872 (w), 1733 (s, C-O ester), 1687 (s, C-O amide), 1585 (s), 1436 (s), 1022 (s, S-O), 

809 (m), 533 (m), 493 (w); HRMS (ESI-TOF): m/z calcd for C24H29NNaO4S+: 450.1710, found: 

450.1712; [𝛼]𝐷
20= +5.7° (c=0.5, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.50. 

ethyl 2-(2-((2-((S)-tert-butylsulfinyl)phenyl)carbamoyl)cyclopropyl)acetate II-13 

The general procedure A was followed using compound II-1b (240 mg) as substrate and iodo 

ethylacetate (400 µL, 3.6 equiv.) as coupling partner and with a reaction time of 24h. Column 

chromatography on silica gel with CyHex/EtOAc (7:3) afforded a mixture of two diastereomers 

(42 mg, 13%) as a yellow oil. The diastereomeric ratio determined by analysis of the crude NMR 

is 90/10. 

Major diastereomer II-13: 1H NMR (400 MHz, CDCl3): 11.20 (1H, br s, 

NH), 8.44 (1H, dd, J=8.5, 1.1 Hz), 7.37-7.43 (1H, m), 7.00-7.10 (2H, m), 

4.06 (2H, qd, J=7.1, 0.9 Hz, CH2CH3), 2.67 (2H, dd, J=7.2, 3.8 Hz), 1.67-

1.77 (1H, m), 1.49-1.60 (1H, m), 1.25 (9H, s, C(CH3)3), 1.15 (3H, t, J=7.1 

Hz, CH2CH3), 1.03-1.11 (2H, m); 13C NMR (100 MHz, CDCl3): 173.14, 

170.07, 142.64, 132.36, 128.74, 122.81, 122.18, 120.82, 60.55, 59.17, 32.31, 23.59, 21.17, 17.25, 

14.36, 12.48; FTIR (cm-1): 3169 (w), 2980 (m), 1732 (s, C=O ester), 1687 (s, C=O), 1585 (m), 1526 

(br m), 1435 (s), 1295 (s), 1174 (s), 1033 (m, S=O), 1007 (s), 761 (m), 526 (w); HRMS (ESI-TOF): 

m/z calcd for C18H25NNaO4S+: 374.1397, found: 374.1350; [𝛼]𝐷
20= -58.4° (c=1.1, CHCl3); Rf 

(CyHex/EtOAc, 3:2): 0.44. 
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ethyl 2-(2-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclobutyl)acetate II-14 

The general procedure A was followed using compound II-1c (70 mg) as substrate and ethyl 

iodoacetate (60 µL, 0.49 mmol, 2 equiv.) as coupling partner. Column chromatography on silica 

gel with CyHex/EtOAc (9:1 to 8:2) afforded the minor diastereomer (20 mg, 21%) and the major 

diastereomer (45 mg, 46%) as clear oils. The diastereomeric ratio determined by analysis of the 

crude NMR is 70/30. 

Minor diastereomer II-14B: 1H NMR (400 MHz, CDCl3): 10.06 (1H, br, 

NH), 8.47 (1H, d, J=8.4 Hz), 7.43-7.52 (2H, m), 7.33 (2H, d, J=8.2 Hz), 

7.20-7.25 (2H, m), 7.14 (1H, td, J=7.6, 1.1 Hz), 3.96-4.10 (2H, m, 

CH2CH3), 3.15-3.23 (1H, m), 2.89-3.00 (1H, m), 2.32-2.45 (2H, m), 2.30 

(3H, s, PhCH3), 2.17-2.25 (1H, m), 2.01-2.12 (1H, m), 1.87 (1H, dd, 

J=16.1, 5.0 Hz), 1.68-1.77 (1H, m), 1.17 (3H, t, J=7.1 Hz, CH2CH3); 13C NMR (100 MHz, CDCl3): 

172.55, 171.56, 141.58, 140.34, 139.91, 133.28, 130.23, 128.12, 127.78, 124.60, 123.28, 122.71, 

60.36, 43.54, 35.40, 34.12, 24.71, 21.39, 20.88, 14.40; FTIR (cm-1): 3250 (w), 2941 (m), 1730 (s, 

C=O ester), 1692 (s, C=O amide), 1584 (s), 1529 (br s), 1435 (s), 1294 (s), 1179 (s), 1022 (s), 1011 

(s), 808 (s), 757 (s), 493 (m); [𝛼]𝐷
20= -20.8° (c=0.58, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.52. 

Major diastereomer II-14A: 1H NMR (400 MHz, CDCl3): 10.01 (1H, br, 

NH), 8.36 (1H, d, J=8.3 Hz), 7.43-7.53 (2H, m), 7.33 (2H, d, J=8.3 Hz), 

7.21 (2H, d, J=8.3 Hz), 7.14 (1H, td, J=7.6, 1.2 Hz), 4.02 (2H, q, J=7.2 Hz, 

CH2CH3), 3.02-3.20 (2H, m), 2.60 (1H, dd, J=16.2, 6.8 Hz), 2.29-2.38 (4H, 

m), 2.11-2.23 (2H, m), 1.99-2.08 (1H, m), 1.75-1.85 (1H, m), 1.14 (3H, t, 

J=7.1 Hz); 13C NMR (100 MHz, CDCl3): 172.54, 171.83, 141.54, 140.26, 139.91, 133.12, 130.15, 

128.36, 128.04, 124.61, 123.41, 123.32, 60.48, 43.68, 36.06, 34.25, 25.04, 21.47, 20.90, 14.36; 

FTIR (cm-1): 3249 (w), 2929 (m), 1730 (s, C=O ester), 1690 (s, C=O amide), 1585 (s), 1526 (br s), 

1294 (s), 1179 (s), 1022 (s), 1012 (s), 809 (m), 759 (s), 473 (m); HRMS (ESI-TOF): m/z calcd for 

C22H25NNaO4S+: 422.1397, found: 422.1386; [𝛼]𝐷
20= +22.4° (c=0.53, CHCl3); Rf (CyHex/EtOAc, 3:2): 

0.48. 

methyl (E)-3-(2-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acrylate II-16 

The general procedure A was followed using compound methyl acrylate (22 µL) as coupling 

partner and with a reaction time of 24h. Column chromatography on silica gel with CyHex/EtOAc 
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(8:2) afforded the minor diastereomer (9 mg, 14%) and the major diastereomer (28 mg, 44%) as 

clear oils. The diastereomeric ratio determined by analysis of the crude NMR is 75/25. 

Minor diastereomer II-16B: 1H NMR (400 MHz, CDCl3): 10.56 (1H, br, 

NH), 8.23 (1H, d, J=8.3 Hz), 7.36-7.45 (2H, m), 7.32 (2H, d, J=8.2 Hz), 7.12 

(2H, d, J=8.2 Hz), 7.07 (1H, td, J=7.6, 1.1 Hz), 6.71 (1H, ddd, J=15.6, 8.3, 

1.9 Hz), 5.88 (1H, d, J=15.6 Hz), 3.58 (3H, s, C(O)OCH3), 2.24 (3H, s, 

PhCH3), 1.93-2.02 (2H, m), 1.43-1.50 (1H, m), 1.28-1.35 (1H, m); 13C 

NMR (100 MHz, CDCl3): 167.96, 166.43, 146.87, 141.74, 140.31, 139.46, 

133.06, 130.23, 128.00, 127.66, 124.45, 123.47, 123.11, 121.76, 51.50, 25.36, 23.98, 21.36, 

14.79; FTIR (cm-1): 3251 (w), 2951 (w), 1716 (s), 1693 (s), 1649 (s), 1585 (s), 1529 (br s), 1436 (s), 

1174 (s), 1021 (s), 1011 (s), 758 (m), 548 (m); [𝛼]𝐷
20= -5.2° (c=0.82, CHCl3); Rf (CyHex/EtOAc, 3:2): 

0.33. 

Major diastereomer II-16A: 1H NMR (400 MHz, CDCl3): 10.47 (1H, br, 

NH), 8.32 (1H, d, J=8.4 Hz), 7.36-7.45 (2H, m), 7.33 (2H, d, J=8.4 Hz), 

7.16-7.20 (2H, m), 7.08 (1H, td, J=7.5, 1.2 Hz), 6.93 (1H, dd, J=15.6, 10.0 

Hz), 5.93 (1H, d, J=15.6 Hz), 3.63 (3H, s, C(O)OCH3), 2.30 (3H, s, PhCH3), 

1.86-2.01 (2H, m), 1.35-1.41 (1H, m), 1.22-1.28 (1H, m); 13C NMR (100 

MHz, CDCl3): 167.91, 166.51, 146.65, 141.48, 140.18, 139.67, 132.95, 

130.03, 127.56, 124.38 (2C), 123.24, 123.10, 121.79, 51.38, 26.92, 25.27, 23.89, 21.32, 14.49; 

FTIR (cm-1): 3250 (w), 2951 (w), 1716 (s), 1693 (s), 1435 (s), 1297 (s), 1147 (s), 1020 (s), 1011 (s), 

808 (m), 758 (s), 548 (m), 473 (m); HRMS (ESI-TOF): m/z calcd for C21H22NO4S+: 384.1264, found: 

384.1256; [𝛼]𝐷
20= +32.0° (c=0.59, CHCl3); Rf (CyHex/EtOAc, 3:2): 0.27. 

II.7.viii. Gram-scale and deprotection experiments 

Gram-scale experiment to get II-2a 

In a Schlenk were added compound 3 (1.0 g, 3.34 mmol, 1 equiv.), 4’-iodoacetophenone (1.0 g, 

4.06 mmol, 1.2 equiv.), silver(I) acetate (1.23 g, 7.39 mmol, 2.2 equiv.), sodium trifluoroacetate 

(240 mg, 1.77 mmol, 0.5 equiv.) and palladium(II) acetate (37.1 mg, 0.165 mmol, 5 mol %). HFIP 

(27 mL) and water (3 mL) were then added and the mixture was stirred at 80°C during 10h under 

air. The mixture was then allowed to cool to room temperature, diluted with EtOAc, filtered over 

celite and evaporated in vacuo. The crude was purified by column chromatography on silica gel 
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with CyHex/EtOAc (8:2 to 6:4) to get the remaining starting material (56 mg, 6%) as a white solid, 

II-2aB (504 mg, 36%) as an off-white solid and II-2aA (754 mg, 54%) as a yellow solid. 

 (S)-2-(p-tolylsulfinyl)aniline APS and (1R,2S)-2-(4-acetylphenyl)cyclopropanecarboxylic acid II-4A 

To a stirred solution of compound II-2aA (100 mg, 0.24 mmol, 1 equiv.) in 5 mL of ethanol was 

added 5 mL of KOH (1M in water). The resulting mixture was stirred overnight at 80°C. The 

mixture was cooled to room temperature and solvent were evaporated in vacuo. Diethylether (5 

mL) and water (5 mL) were added. The organic layer was extracted, washed with brine (10 mL), 

dried (Na2SO4), filtered off and evaporated under reduced pressure to afford the free aniline APS 

(54 mg, 97%) as a yellow powder. 

1H NMR (400 MHz, CDCl3): 7.39-7.47 (3H, m), 7.18-7.26 (3H, m), 6.75 (1H, 

td, J=7.6, 1.1 Hz), 6.57 (1H, d, J=8.2 Hz), 4.89 (2H, br s, NH2), 2.35 (3H, s, 

PhCH3); other data match the described ones; Rt (min, CHIRALPAK ® IC, 

Hex/iPrOH 80/20, 0.5 mL/min): 64.902 min (99.5 %), 79.84 (0.5 %). 

The previous aqueous layer was carefully acidified with HCl (1M in water). Diethylether (10 mL) 

was added. The organic layer was extracted, washed with brine (10 mL), dried (Na2SO4), filtered 

off and evaporated under reduced pressure to afford the free carboxylic acid II-4A (42 mg, 86%) 

as an off-white solid.  

1H NMR (400 MHz, CDCl3): 9.21 (1H, br s, COOH), 7.83 (2H, d, J=8.4 

Hz), 7.31 (2H, d, J=8.0 Hz), 2.58-2.67 (1H, m), 2.55 (3H, s, C(O)CH3), 

2.10 (1H, ddd, J=9.4, 7.8, 5.7 Hz), 1.66-1.74 (1H, m), 1.36-1.47 (1H, 

m); 13C NMR (100 MHz, CDCl3): 198.25, 176.67, 141.91, 135.81, 

129.69, 128.24, 26.77, 26.53, 22.04, 12.50; FT-IR (cm-1): 3100 (br w, COOH), 2922 (w), 1679 (s, C-

O), 1606 (s), 1268 (s), 1180 (m), 843 (m); HRMS (ESI-TOF): m/z calcd for C12H11O3
+: 203.0714, 

found: 203.0741; [𝛼]𝐷
20= -60.2° (c=0.8, CHCl3);[245] Rf (CyHex/EtOAc, 3:2): 0.12. 

II.7.ix. Kinetic isotopic effects and intermediate isolation 

N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-2,3-d2-1-carboxamide II-1a-d2 

Compound 3 (100 mg, 0.33 mmol, 1 equiv.), palladium(II) acetate (3.75 mg, 0.017 mmol, 5 mol%) 

were dissolved in acetic acid-d (400 µL) and 2 mL of anhydrous acetonitrile. The resulting orange 

mixture was stirred at 80°C during 8h. After cooling to room temperature, the mixture was 

filtered and evaporated in vacuo. 1H NMR of the crude mixture showed approximatively 75% to 
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80% deuteration. The reaction was launched a second time on the crude and in the same 

conditions to achieve full deuteration. Then, solvents were evaporated under reduced pressure 

and the residue was purified by a short column chromatography on silica gel with CyHex/EtOAc 

(4:1) to afford the title compound (89 mg, 88%, >99% cis-D) as a white solid. 

1H NMR (400 MHz, CDCl3): 10.36 (1H, br s, NH), 8.29 (1H, d, J=8.4 Hz), 

7.49 (1H, dd, J=7.7, 1.6 Hz), 7.36-7.45 (3H, m), 7.19-7.24 (2H, m), 7.11 

(1H, td, J=7.6, 1.2 Hz), 2.34 (3H, s, PhCH3), 1.49 (1H, t, J=7.9 Hz), 0.73-

0.83 (2H, m); 13C NMR (100 MHz, CDCl3): 172.33, 141.54, 140.49, 

139.77, 133.11, 130.16, 127.82, 124.58, 123.22, 123.20, 21.51, 16.04, 

7.82 (t, J=25.3 Hz), 7.75(t, J=25.5 Hz); HRMS (ESI-TOF): m/z calcd for C17H16D2NO2S+: 302.1178, 

found: 302.1149. 

Kinetic study: stability of II-1a-d2 in the reaction conditions 

 

In a Schlenk and under air were added compound II-1a-d2 (25 mg, 0.08 mmol, 1 equiv.), silver(I) 

acetate (31 mg, 0.18 mmol, 2.2 equiv.), sodium trifluoroacetate (5.6 mg, 0.04 mmol, 50 mol%) 

and palladium(II) acetate (0.93 mg, 0.004 mmol, 5 mol%). The solids were dissolved in 840 µL of 

a 9:1 mixture of HFIP and water and heated at 80°C during 8h. The mixture was cooled to room 

temperature, diluted with EtOAc, filtered over celite and evaporated under reduced pressure. 

Analysis of the crude by 1H NMR experiment showed no more deuterated product. 

Kinetic study: conversion between 0 and 25 min 

In a microwave tube and under air were added compound II-1a (60 mg, 0.20 mmol, 1 equiv.), 4’-

iodoacetophenone (60 mg, 0.24 mmol, 1.2 equiv.), sodium trifluoroacetate (14 mg, 0.10 mmol, 

50 mol%), silver(I) acetate (74 mg, 0.44 mmol, 2.2 equiv.), palladium(II) acetate (2.2 mg, 0.009 

mmol, 5 mol%) and mesitylene (one drop) as internal standard. The compounds were dissolved 
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in 1 mL of a 9:1 mixture of HFIP/H2O. The tube was sealed and after 1 minute of stirring, a 

sample was taken from the reaction mixture, diluted with DCM and filtered through a small pad 

of celite. The sample was evaporated under reduced pressure and analyzed by 1H NMR. The tube 

was then stirred at 80°C during 20 min and samples were taken every 3 to 5 min, following the 

same procedure, to get the KH. The same procedure as above was repeated using compound II-

1a-d2 (60 mg, 0.20 mmol, 1 equiv.) as substrate, to get the KD. All the results are reported in the 

tables below. 

t (min) H 
int substrat 

(H or D) 
int dia 

1 H 
int dia 

2 H 
Conversion H 

0 1 0 0 0,00 

3 1 0,03 0,06 0,08 
7 1 0,07 0,12 0,16 

11 1 0,09 0,19 0,22 

16 1 0,14 0,26 0,29 
20 1 0,17 0,35 0,34 

 

t(min) D int dia 1 D int dia 2 D Conversion D 

0 0 0 0 

3 0,03 0,06 1,00 

6 0,05 0,09 1,00 

10 0,07 0,14 1,00 

16 0,11 0,21 1,00 

20 0,13 0,26 1,00 

Palladacycle II-17 

To a degassed and argon-purged Schlenk, compound 3 (50 mg, 0.17 mmol, 1 equiv.) was 

dissolved in 5 mL of anhydrous acetonitrile. Pyridine (30 µL, 0.37 mmol, 2.2 equiv.) and 

palladium(II) acetate (38 mg, 0.17 mmol, 1 equiv.) were added and the resulting orange mixture, 

which turned slowly to bright yellow, was stirred 4h at 60°C. The reaction mixture was cooled to 

room temperature and evaporated in vacuo. The residue was purified by column 

chromatography on silica gel with CyHex/EtOAc (20:80) to afford the mixture of the two 

diastereomers of the palladacycle (41 mg, 51%) as a yellow oil. The diastereomeric ratio 

determined by analysis of the crude 1H NMR is 60/40. Single crystals suitable for X-Ray 

diffraction were grown in benzene. 
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1H NMR (Benzene-d6, 400 MHz): 9.92 (0.6H, d, J=8.7 Hz), 9.79 (0.4H, dd, 

J=8.7, 0.9 Hz), 8.21-8.44 (2H, m), 7.69-7.88 (2H, m), 7.49 (0.4H, dd, J=7.9, 

1.6 Hz), 7.46 (0.6H, dd, J=7.9, 1.6 Hz), 7.03-7.11 (1H, m), 6.66-6.76 (2H, m), 

6.55-6.61 (1H, m), 6.50-6.54 (1H, m), 6.19-6.28 (2H, m), 2.29-2.40 (1H, m, 

CHPd), 1.82 (1.2H, s, PhCH3), 1.77 (1.8H, s, PhCH3), 1.21-1.50 (1H, m), 0.94-

0.99 (1H, m), 0.63-0.85 (1H, m); 13C NMR (Benzene-d6, 100 MHz): 188.39 

and 187.94 (C=O), 152.83, 152.71, 152.08, 152.05, 142.87, 142.66, 142.15, 142.00, 137.86, 

137.81, 136.80, 136.56, 134.50, 134.44, 130.66, 130.55, 126.58, 126.39, 125.605, 125.20, 125.04, 

124.22, 124.19, 121.56, 121.51, 28.65 and 27.77 (C-Pd), 21.34 and 21.27 (CH3), 18.39, 17.64, 

15.76, 11.49; FT-IR (cm-1): 2976 (w), 1617 (s, C=O), 1581 (m), 1487 (w), 1457 (s), 1341 (s), 1294 

(s), 1261 (s), 1099 (m), 1069 (m, S=O), 809 (m), 756 (m), 696 (m), 553 (m), 499 (m); HRMS (ESI-

TOF): m/z calcd for C22H21N2O2PdS+: 481.0359, found: 481.0166; Rf (CyHex/EtOAc, 3:2): 0.10. 

II.7.x. Total synthesis of cyclopropane bearing natural products 

 (3R,4R,5S)-4-hydroxy-5-isobutyl-3-methylpyrrolidin-2-one  

This compound was synthesized according to the literature procedure.[1] 

1H NMR (400 MHz, MeOD): 3.50 (1H, dd, J=7.9, 6.1 Hz), 3.37 (1H, ddd, J=8.4, 

6.1, 5.2 Hz), 2.30 (1H, dq, J=7.4, 7.3 Hz), 1.74-1.85 (1H, m), 1.50 (1H, ddd, 

J=13.7, 8.5, 5.1 Hz), 1.38 (1H, ddd, J=13.6, 8.3, 6.0 Hz), 1.19 (3H, d, J=7.2 Hz), 

0.97 (3H, d, J=6.7 Hz), 0.95 (3H, d, J=6.6 Hz); 13C NMR (100 MHz, MeOD): 179.68, 82.04, 59.89, 

46.80, 45.19, 26.30, 23.88, 22.60, 13.88; [𝛼]𝐷
25 − 21.0° (𝑐 = 0.9,  𝐶𝐻𝐶𝑙3);2 other data match the 

reported ones. 

methyl (E)-2-propyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acrylate II-18                    

trans-II-1g (500 mg, 1.5 mmol, 1 equiv.), methyl acrylate (750 µL, 8.3 mmol, 5.6 equiv.), silver 

acetate (489 mg, 2.9 mmol, 2 equiv.), palladium(II) acetate (33 mg, 0.15 mmol, 10 mol%) and 

sodium trifluoroacetate (100 mg, 0.73 mmol, 50 mol%) were dissolved in 10 mL of HFIP/H2O 

(4:1). The resulting mixture was flushed with oxygen and then stirred 24 h at 80 °C under oxygen 

atmosphere. After cooling down to room temperature, the mixture was diluted with DCM, 

filtered over celite and evaporated under reduced pressure. The crude was purified by column 

chromatography on silica gel with CyHex/EtOAc (95:5 to 85:5) to afford the two 

                                                        
2 Litt. [𝛼]𝐷

27.9 − 21° (𝑐 = 1.0,  𝐶𝐻𝐶𝑙3). 
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diastereoisomers methyl II-18A (262 mg, 42%) as a clear oil and methyl II-18B (300 mg, 48%) as 

a yellow solid.            

1H NMR (400 MHz, CDCl3): 10.56 (1H, s, NH), 8.28 (1H, d, J=8.4 Hz), 

7.42-7.52 (2H, m), 7.37 (2H, d, J=8.4 Hz), 7.18 (2H,d, J=8.4 Hz), 7.13 

(1H, td, J=7.6, 0.8 Hz), 6.82 (1H, dd, J=15.6, 9 Hz, CH=CH-CO2Me), 

5.90 (1H, d, J=15.6 Hz, CH=CH-CO2Me), 3.64 (3H, s, C(O)OCH3), 2.30 

(3H, s, PhCH3), 1.78-1.89 (3H, m), 1.23-1.53 (4H, m), 0.92 (3H, t, J=7.2 

Hz, CH2CH2CH3); 13C NMR (100 MHz, CDCl3): 167.97, 166.49, 146.77, 141.66, 140.28, 139.35, 

133.01, 130.16, 127.95, 127.61, 124.36, 123.34, 123.09, 120.98, 51.41, 34.60, 32.44, 31.64, 

29.00, 22.10, 21.29, 13.90; HRMS (ESI-TOF): m/z calcd for C24H27NNaO4S+: 448.1553, found: 

448.1495; [𝛼]𝐷
20 − 16.5° (𝑐 = 0.7,  𝐶𝐻𝐶𝑙3); Rt (min, IC, Hex/IPA 80/20, 0.5 mL/min): 49.21 (99%), 

63.37 (1%).  

1H NMR (400 MHz, CDCl3): 10.46 (1H, s, NH), 8.39 (1H, d, J=8.8 Hz), 

7.42-7.53 (2H, m), 7.39 (2H, d, J=8 Hz), 7.23 (2H, d, J=8.4 Hz), 7.13 

(1H, td, J=7.6, 1.2 Hz), 7.06 (1H, dd, J=16, 8.2 Hz, CH=CH-CO2Me), 

5.95 (1H, d, J=16 Hz, CH=CH-CO2Me), 3.69 (3H, s, C(O)OCH3), 2.36 

(3H, s, PhCH3), 1.66-1.90 (3H, m), 1.22-1.46 (4H, m), 0.91 (3H, t, J=7 

Hz, CH2CH2CH3); 13C NMR (100 MHz, CDCl3): 168.08, 166.75, 146.70, 141.52, 140.34, 139.88, 

133.10, 130.11, 127.75, 127.53, 124.51, 123.23, 123.11, 121.21, 51.47, 34.66, 32.65, 31.91, 

29.04, 22.08, 21.41, 13.93; mp: 76 °C [𝛼]𝐷
20 + 23.3° (𝑐 = 0.8,  𝐶𝐻𝐶𝑙3); Rt (min, IA, Hex/IPA 

80/20, 0.5 mL/min): 16.02 (99%), 31.72 (1%). 

ethyl (E)-3-(2-propyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acrylate II-18A 

trans-4 (1 g, 2.9 mmol, 1 equiv.), ethyl acrylate (1 mL, 9.2 mmol, 3.1 equiv.), silver acetate (1 g, 

6.0 mmol, 2 equiv.), palladium(II) acetate (35 mg, 0.16 mmol, 5 mol%) and sodium 

trifluoroacetate (200 mg, 1.47 mmol, 50 mol%) were dissolved in 20 mL of HFIP/H2O (4:1). The 

resulting mixture was flushed with oxygen and then stirred 24 h at 80 °C under oxygen 

atmosphere. After cooling down to room temperature, the mixture was diluted with DCM, 

filtered over celite and evaporated under reduced pressure. The crude was purified by column 

chromatography on silica gel with CyHex/EtOAc (95:5 to 85:5) to afford the two 

diastereoisomers ethyl II-18A (564 mg, 44%) and ethyl II-18B (597 mg, 46%) as yellow oils.            
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1H NMR (400 MHz, CDCl3): 10.53 (1H, br s, NH), 8.28 (1H, d, J=8.4 

Hz), 7.41-7.50 (2H, m), 7.36 (2H, d, J=8.2 Hz), 7.17 (2H, d, J=8.4 

Hz), 7.11 (1H, td, J=7.6, 0.8 Hz), 6.80 (1H, dd, J=15.6, 9.4 Hz), 5.88 

(1H, d, J=15.6 Hz), 4.03-4.16 (2H, m, C(O)OCH2CH3), 2.29 (3H, s, 

PhCH3), 1.74-1.86 (3H, m), 1.29-1.49 (4H, m), 1.21 (3H, t, J=7.2 Hz, 

C(O)OCH2CH3), 0.91 (3H, t, J=7.1 Hz, CH2CH2CH3); 13C NMR (100 MHz, CDCl3): 168.07, 166.21, 

146.51, 141.75, 140.37, 139.47, 133.09, 130.25, 127.99, 127.69, 124.48, 123.40, 123.15, 121.50, 

60.26, 34.71, 32.54, 31.75, 29.07, 22.18, 21.40, 14.50, 13.98; FT-IR (cm-1): 1716 (s, C=O ester), 

1689 (s, C=O amide), 1021 (s, S=O); HRMS (ESI-TOF): m/z calcd for C25H30NO4S+: 440.1890, found: 

440.1871; [𝛼]𝐷
20 − 18.6° (𝑐 = 0.9,  𝐶𝐻𝐶𝑙3). 

1H NMR (400 MHz, CDCl3): 10.43 (1H, br s, NH), 8.37 (1H, d, J=8.4 

Hz), 7.48 (1H, dd, J=7.8, 1.1 Hz), 7.44 (1H, ddd, J=8.6, 7.3, 1.8 Hz), 

7.37 (2H, d, J=8.2 Hz), 7.21 (2H, d, J=8.3 Hz), 7.12 (1H, td, J=7.5, 0.7 

Hz), 7.04 (1H, dd, J=15.6, 10.2 Hz), 5.93 (1H, d, J=15.6 Hz), 4.07-

4.19 (2H, m, C(O)OCH2CH3), 2.34 (3H, s, PhCH3), 1.83 (1H, ddd, 

J=10.2, 8.3, 6.3 Hz), 1.72-1.79 (1H, m), 1.68 (1H, dd, J=8.2, 5.6 Hz), 1.27-1.39 (4H, m), 1.24 (3H, t, 

J=7.2 Hz, C(O)OCH2CH3), 0.89 (3H, t, J=7.1 Hz, CH2CH2CH3); 13C NMR (100 MHz, CDCl3): 168.17, 

166.47, 146.46, 141.59, 140.43, 139.92, 133.21, 130.19, 127.85, 127.59, 124.58, 123.30, 123.21, 

121.73, 60.30, 34.75, 32.69, 32.02, 29.05, 22.17, 21.50, 14.52, 14.02; FT-IR (cm-1): 1711 (s, C=O 

ester), 1687 (s, C=O amide), 1025 (s, S=O); [𝛼]𝐷
20 + 36.5 (𝑐 = 1.1,  𝐶𝐻𝐶𝑙3). 

tert-butyl (2-((S)-p-tolylsulfinyl)phenyl)carbamate Boc-APS and (1S,2R,3R)-2-((E)-3-ethoxy-3-

oxoprop-1-en-1-yl)-3-propylcyclopropane-1-carboxylic acid II-19A 

To a stirred solution of ethyl II-18A (500 mg, 1.14 mmol, 1 equiv.) in 1 mL of anhydrous THF was 

added 4-(dimethylamino)-pyridine (12.5 mg, 0.102 mmol, 10 mol%), followed by di-tert-butyl 

dicarbonate (248 mg, 1.14 mmol, 1 equiv.). The resulting orange mixture was stirred 10 min at 

room temperature. The previous mixture was cooled to 0 °C with an ice-bath, followed by slow 

addition of a solution of lithium hydroxide monohydrate (100 mg, 2.391 mmol, 2.1 equiv.) in 1 

mL of water. The resulting yellow mixture was stirred at 0 °C during 2 h. 

1M HCl sol. (10 mL) was added to reach pH 1-2, followed by diethyl ether (10 mL). The organic 

layer was extracted and washed with 1M HCl sol. (10 mL). Then, sat. NaHCO3 solution (10 mL) 

was added to the organic layer, which was stirred 5 min at room temperature. It was extracted 

twice with sat. NaHCO3 solution (5 mL). The organic layer was washed with water, dried 
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(Na2SO4), filtered off and evaporated under reduced pressure to afford tert-butyl (2-((S)-p-

tolylsulfinyl)phenyl)carbamate (345 mg, 92 %) as a yellow oil. 

1H NMR (400 MHz, CDCl3): 9.11 (1H, br s, NH), 8.02 (1H, d, J=8.4 Hz), 

7.51 (1H, dd, J=7.6, 1.6 Hz), 7.37-7.44 (3H, m), 7.22 (2H, d, J=8.3 Hz), 

7.06 (1H, td, J=7.6, 1.2 Hz), 2.34 (3H, s, PhCH3), 1.42 (9H, s, NHBoc); 13C 

NMR (100 MHz, CDCl3): 152.76, 141.31, 140.66, 139.80, 133.05, 129.99, 

128.92, 127.87, 124.65, 122.49, 122.09, 80.71, 28.50, 21.50; FT-IR (cm-1): 1033 (m, S=O); HRMS 

(ESI-TOF): m/z calcd for C18H22NO3S+: 332.1315, found: 332.1312; [𝛼]𝐷
20 + 74.2° (𝑐 =

1.0,  𝐶𝐻𝐶𝑙3); Rt (min, IA, Hex/iPrOH 98/2, 0.5 mL/min): 35.84 (99%), 38.34 (1%). 

The combined aqueous layers were carefully acidified with 1M HCl sol. to pH ca. 1. Diethyl ether 

(20 mL) was added. The organic layer was extracted, and the aqueous layer back-extracted with 

diethyl ether (2 x 10mL). The combined organic layers were washed with water (10 mL) and 

brine (10 mL), dried (Na2SO4), filtered off and evaporated under reduced pressure to get the 

crude carboxylic acid (255 mg) as a yellow oil. 

1H NMR (400 MHz, CDCl3): 9.10 (1H, br s, COOH), 6.95 (1H, dd, J=15.5, 9.9 Hz), 

5.96 (1H, d, J=15.6 Hz), 4.15 (2H, qd, J=7.1, 0.6 Hz, C(O)OCH2CH3), 1.72-1.93 

(3H, m), 1.31-1.48 (4H, m), 1.25 (3H, t, J=7.1 Hz, C(O)OCH2CH3), 0.90 (3H, t, 

J=7.1 Hz, CH2CH2CH3); 13C NMR (100 MHz, CDCl3): 177.58, 166.40, 145.78, 

122.32, 60.47, 34.67, 32.13, 30.70, 29.02, 22.06, 14.46, 13.88; FT-IR (cm-1): 3143 (br w, OH acid), 

1694 (s, C=O); HRMS (ESI-TOF): m/z calcd for C12H19O4
+: 227.1278, found: 227.1274; [𝛼]𝐷

20 +

41.0° (𝑐 = 0.9,  𝐶𝐻𝐶𝑙3).3 

ethyl (E)-3-((1S,2S)-2-propylcyclopropyl)acrylate II-21A 

Under dark, 2-mercaptopyridine-N-oxide (144 mg, 1.14 mmol, 1 equiv.) and DCC (234 mg, 1.14 

mmol, 1 equiv.) were added to a solution of the crude acid II-18A (255 mg, 1.14 mmol, 1 equiv.) 

in 20 mL of anhydrous DCM. The resulting mixture was stirred under argon atmosphere at room 

temperature during 3 h. The previous mixture was then evaporated under reduced pressure 

under dark and then redissolved in 20 mL of benzene. 2-methyl-2-propanethiol (205 mg, 0.256 

mL, 2.27 mmol, 2 equiv.) was added and the solution was degassed under dark, before being 

lightened with two sun lamps (distance around 20 - 30 cm) during 3 h. 

                                                        
3 For the other enantiomer, [𝛼]𝐷

20 − 40.8° (𝑐 = 1.0,  𝐶𝐻𝐶𝑙3). 
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The mixture was evaporated in vacuo. Diethyl ether (20 mL) and 1M HCl sol. (10 mL) were 

added. The organic layer was extracted, washed with 1M HCl sol. (2x 5 mL), sat. NaHCO3 sol. (2x 

5 mL), brine (10 mL), dried (Na2SO4), filtered off and evaporated under reduced pressure. The 

crude was purified by a short column chromatography on silica gel with CyHex/EtOAc (95:5) to 

afford the title compound (174 mg, 84% over four steps) as a clear oil.  

1H NMR (400 MHz, CDCl3): 6.45 (1H, dd, J=15.4, 10.1 Hz), 5.80 (1H, d, J=15.4 

Hz), 4.14 (2H, q, J=7.2 Hz), 1.32-1.43 (2H, m), 1.21-1.30 (5H, m), 0.93-1.02 

(1H, m), 0.89 (3H, t, J=7.3 Hz), 0.79 (1H, ddd, J=8.3, 4.6, 4.6 Hz), 0.73 (1H, ddd, 

J=8.1, 6.1, 4.6 Hz); 13C NMR (100 MHz, CDCl3): 167.13, 154.03, 117.68, 60.20, 

35.87, 23.31, 22.57, 22.33, 16.19, 14.56, 14.08; [𝛼]𝐷
25 + 65.9° (𝑐 = 1.0,  𝐶𝐻𝐶𝑙3);4 other data 

match the reported ones. 

(2S,3R,4R)-2-isobutyl-4-methyl-5-oxopyrrolidin-3-yl (E)-3-((1S,2S)-2-propylcyclopropyl)acrylate 

II-22A 

II-21A (10 mg, 54.9 µmol, 1 equiv.) was dissolved in 1 mL of a 1:1 mixture of 1,4-dioxane/H2O. 

Lithium hydroxide monohydrate (10 mg, 238 µmol, 4.3 equiv.) was added and the mixture was 

stirred 3 h at 90 °C. After cooling to room temperature, the mixture was carefully acidified with 

1M HCl sol. to reach pH ca 1-2. Ethyl acetate (10 mL) was added. The organic layer was 

extracted, washed with brine (2x 10 mL), dried (Na2SO4), filtered off and evaporated under 

reduced pressure. 

The crude acid (8.4 mg, 54 µmol, 1 equiv.), (3R,4R,5S)-4-hydroxy-5-isobutyl-3-methylpyrrolidin-

2-one (10 mg, 58.4 µmol, 1.1 equiv.) and 2-methyl-6-nitrobenzoic anhydride (60 mg, 174 µmol, 

3.2 equiv.) were dissolved in 1 mL of anhydrous DCM. Triethylamine (50 µL, 360 µmol, 6.5 

equiv.) and 4-(dimethylamino)-pyridine (1 mg, 8.2 µmol, 15 mol%) were added and the mixture 

was stirred 2 h at room temperature. Sat. NaHCO3 sol. (5 mL) was added. The organic layer was 

extracted, washed with brine (5 mL), dried (Na2SO4), filtered off and evaporated under reduced 

pressure. The crude was purified by preparative thin layer chromatography with CyHex/EtOAc 

(1:1) to afford the title compound (11 mg, 87% over two steps) as a clear oil. 

 

                                                        
4 Litt. [𝛼]𝐷

29.6 + 64° (𝑐 = 1.0, 𝐶𝐻𝐶𝑙3). 
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1H NMR (500 MHz, C6D6): 6.60 (1H, dd, J=15.5, 10.2 Hz), 6.04 (1H, br s, 

NH), 5.88 (1H, d, J=15.5 Hz), 4.92 (1H, dd, J=5.3, 4.5 Hz), 3.34 (1H, ddd, 

J=9.3, 4.6, 4.5 Hz), 2.48 (1H, dq, J=7.5, 5.2 Hz), 1.39-1.45 (1H, m), 1.32 

(3H, d, J=7.5 Hz), 1.25-1.42 (2H, m), 1.16-1.21 (2H, m), 0.93-1.01 (2H, 

m), 0.89-0.92 (1H, m), 0.78 (3H, t, J=J=7.3 Hz), 0.71 (3H, d, J= 6.3 Hz), 

0.65 (3H, d, J=6.2 Hz), 0.55-0.61 (1H, m), 0.41 (1H, ddd, J=8.8, 4.4, 4.4 Hz), 0.35 (1H, ddd, J=8.5, 

6.2, 4.4 Hz); 13C NMR (125 MHz, C6D6): 176.07, 166.02, 155.11, 117.41, 80.79, 56.66, 44.43, 

43.78, 35.68, 25.12, 23.22, 23.18, 22.58, 22.41, 21.71, 16.14, 14.94, 14.00; [𝛼]𝐷
25 + 63.7° (𝑐 =

0.4,  𝐶𝐻𝐶𝑙3);5 other data match the reported ones. 

ethyl 2-(2-hexyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acetate II-23 

trans-11 (200 mg, 0.52 mmol, 1 equiv.), ethyl iodoacetate (186 µL, 1.6 mmol, 3 equiv.), silver 

acetate (180 mg, 1.1 mmol, 2 equiv.), palladium(II) acetate (12 mg, 0.05 mmol, 10 mol%) and 

sodium trifluoroacetate (35 mg, 0.26 mmol, 50 mol%) were dissolved in 2 mL of HFIP/H2O (4:1). 

The resulting mixture was stirred 24 h at 80 °C. After cooling down to room temperature, the 

mixture was diluted with DCM, filtered over celite and evaporated under reduced pressure. The 

crude was purified by column chromatography on silica gel with CyHex/EtOAc (95:5 to 90:10) to 

afford II-23A (116 mg, 47%) as a yellow oil and the key intermediate diastereoisomer II-23B (107 

mg, 44%) as a clear oil.            

1H NMR (400 MHz, CDCl3): 10.36 (1H, br s, NH), 8.27 (1H, d, J=8.5 

Hz), 7.50 (1H, dd, J=7.7, 1.6 Hz), 7.37-7.45 (3H, m), 7.25 (2H, d, 

J=7.2 Hz), 7.11 (1H, td, J=7.6, 0.8 Hz), 4.04 (2H, qq, J=10.8, 7.2 Hz, 

C(O)OCH2CH3), 2.38 (1H, dd, J=16.5, 8.2 Hz), 2.33 (3H, s, PhCH3), 

2.15 (1H, dd, J=16.8, 5.1 Hz), 1.20-1.42 (13H, m), 1.16 (3H, t, J=7.2 

Hz, C(O)OCH2CH3), 0.85 (3H, t, J=6.9 Hz); 13C NMR (100 MHz, CDCl3): 173.13, 170.04, 141.57, 

140.43, 139.94, 133.10, 130.22, 130.17, 127.89, 124.69, 123.22, 123.07, 60.39, 33.12, 32.02, 

31.99, 29.23, 29.02, 27.95, 27.56, 24.53, 22.83, 21.43, 14.42, 14.30; FT-IR (cm-1): 1736 (s, C=O 

ester), 1688 (m, C=O amide), 1023 (m, S=O); [𝛼]𝐷
20 − 1.8° (𝑐 = 0.7,  𝐶𝐻𝐶𝑙3). 

 

 

                                                        
5 Litt. [𝛼]𝐷

27.5 + 66° (𝑐 = 0.25,  𝐶𝐻𝐶𝑙3) 
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1H NMR (400 MHz, CDCl3): 10.32 (1H, br s, NH), 8.26 (1H, d, J=8.6 

Hz), 7.45 (1H, dd, J=7.5, 1.3 Hz), 7.31-7.40 (3H, m), 7.17 (2H, d, 

J=8.1 Hz), 7.06 (1H, td, J=7.6, 1.1 Hz), 4.02 (2H, q, J=7.1 Hz, 

C(O)OCH2CH3), 2.51-2.70 (2H, m), 2.23-2.36 (4H, m), 1.16-1.37 

(12H, m), 1.12 (3H, t, J=7.2 Hz, C(O)OCH2CH3), 0.83 (3H, t, J=7.0 

Hz); 13C NMR (100 MHz, CDCl3): 172.93, 169.84, 141.27, 140.35, 139.65, 132.88, 129.94, 127.68, 

127.63, 124.34, 122.87, 122.80, 60.34, 32.95, 31.92, 31.86, 29.07, 28.81, 27.98, 27.08, 24.91, 

22.66, 21.30, 14.20, 14.13; FT-IR (cm-1): 1736 (s, C=O ester), 1688 (m, C=O amide), 1023 (m, S=O); 

HRMS (ESI-TOF): m/z calcd for C27H36NO4S+: 470.2360, found: 470.2338; [𝛼]𝐷
20 + 35.0° (𝑐 =

0.6,  𝐶𝐻𝐶𝑙3). 

ethyl (E)-3-(2-heptyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acrylate II-24 

trans-8 (100 mg, 0.25 mmol, 1 equiv.), ethyl acrylate (100 µL, 0.92 mmol, 3.6 equiv.), silver 

acetate (85 mg, 0.51 mmol, 2 equiv.), palladium(II) acetate (5.6 mg, 0.03 mmol, 10 mol%) and 

sodium trifluoroacetate (17 mg, 0.13 mmol, 50 mol%) were dissolved in 1 mL of HFIP/H2O (4:1). 

The resulting mixture was flushed with oxygen and then stirred 24 h at 80 °C under oxygen 

atmosphere. After cooling down to room temperature, the mixture was diluted with DCM, 

filtered over celite and evaporated under reduced pressure. The crude was purified by column 

chromatography on silica gel with CyHex/EtOAc (95:5 to 9:1) to afford II-24A (57 mg, 46%) and 

the key diastereomer II-24B (52 mg, 43%) as clear oils.            

1H NMR (400 MHz, CDCl3): 10.52 (1H, br s, NH), 8.27 (1H, d, J=8.3 

Hz), 7.40-7.49 (2H, m), 7.36 (2H, d, J=8.3 Hz), 7.16 (2H, d, J=8.2 

Hz), 7.10 (1H, td, J=7.6, 1.0 Hz), 6.79 (1H, dd, J=15.6, 9.1 Hz), 5.88 

(1H, d, J=15.6 Hz), 3.99-4.19 (2H, m, C(O)OCH2CH3), 2.28 (3H, s, 

PhCH3), 1.76-1.87 (3H, m), 1.15-1.50 (15H, m), 0.85 (3H, t, J=6.9 

Hz); 13C NMR (100 MHz, CDCl3): 168.06, 166.20, 146.53, 147.74, 140.34, 139.44, 133.08, 130.22, 

128.01, 127.68, 124.46, 123.39, 123.16, 121.46, 60.24, 32.69, 32.59, 31.95, 31.78, 29.39, 29.37, 

29.31, 28.96, 22.83, 21.38, 14.49, 14.28; FT-IR (cm-1): 1722 (s, C=O ester), 1687 (s, C=O amide), 

1027 (m, S=O); [𝛼]𝐷
20 − 5.4° (𝑐 = 0.5,  𝐶𝐻𝐶𝑙3). 
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1H NMR (400 MHz, CDCl3): 10.45 (1H, br s, NH), 8.34 (1H, d, J=8.4 

Hz), 7.46 (1H, dd, J=7.6, 1.3 Hz), 7.35-7.43 (3H, m), 7.20 (2H, d, 

J=8.1 Hz), 7.10 (1H, td, J=7.6, 1.1 Hz), 7.03 (1H, dd, J=15.6, 10.1 

Hz), 5.92 (1H, d, J=15.6 Hz), 4.06-4.18 (2H, m, C(O)OCH2CH3), 2.33 

(3H, s, PhCH3), 1.83 (1H, ddd, J=8.3, 6.2, 2.4 Hz), 1.72-1.78 (1H, 

m), 1.65-1.71 (1H, m), 1.14-1.41 (14H, m), 0.85 (3H, t, J=6.9 Hz); 13C NMR (100 MHz, CDCl3): 

168.13, 166.41, 146.45, 141.55, 140.39, 139.86, 133.12, 130.15, 127.71, 127.62, 124.54, 123.27, 

123.14, 121.66, 60.25, 32.75, 32.68, 32.07, 31.97, 29.42, 29.41, 29.25, 28.93, 2.85, 21.47, 14.50, 

14.27; FT-IR (cm-1): 1717 (s, C=O ester), 1687 (m, C=O amide), 1021 (m, S=O); [𝛼]𝐷
20 + 51.5° (𝑐 =

1.0,  𝐶𝐻𝐶𝑙3). 

ethyl 3-((1S,2S,3R)-2-heptyl-3-((2-((S)-p-tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)propanoate 

II-25B 

II-24B (54 mg, 0.11 mmol, 1 equiv.) was dissolved in 5 mL of EtOH. The solution was flushed with 

argon and vacuum few times, before addition of Pd/C (10 wt. % loading, matrix activated carbon 

support, 20 mg). The resulting mixture was flushed with argon and vacuum before being put 

under hydrogen atmosphere and stirred 24 h at room temperature. The mixture was carefully 

filtered over celite, washed with EtOH and evaporated under reduced pressure to yield the title 

compound (54%, 99%) as a clear oil.  

1H NMR (400 MHz, CDCl3): 10.35 (1H, br s, NH), 8.31 (1H, d, J=8.5 

Hz), 7.51 (1H, dd, J=7.6, 1.6 Hz), 7.37-7.46 (3H, m), 7.26 (2H, d, 

J=8.2 Hz), 7.10 (1H, td, J=7.6, 1.1 Hz), 4.09 (2H, q, J=7.1 Hz), 2.34 

(3H, s), 2.03-2.19 (2H, m), 1.50-1.72 (2H, m), 1.19-1.39 (17H, m), 

1.03-1.13 (1H, m), 0.86 (3H, t, J=6.9 Hz); 13C NMR (100 MHz, 

CDCl3): 173.43, 170.15, 141.60, 140.62, 139.77, 133.18, 130.22, 127.96, 127.81, 124.52, 123.00, 

122.83, 60.39, 34.25, 33.29, 32.02, 29.53, 29.46, 29.29, 29.17, 28.75, 27.46, 22.86, 22.07, 21.43, 

14.51, 14.31; FT-IR (cm-1): 1732 (C=O ester), 1690 (C=O amide), 1022 (S=O); HRMS (ESI-TOF): m/z 

calcd for C29H39NNaO4S+: 520.2492, found: 520.2510; [𝛼]𝐷
20 + 8.5° (𝑐 = 0.5,  𝐶𝐻𝐶𝑙3). 
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II.7.xi. X-Ray Data 

(1R,2S)-2-(4-acetylphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)cyclopropane-1-carboxamide II-2aA 

  

Compound II-2aA 

Structure identifier fcsj160718 

CCDC identifier 1495369 

Formula C25H23NO3S 

Space group C2 

Cell lengths a 23.0809(9) b 10.7934(4) c 18.1795(7) 

Cell angles α 90 β 109.6230(10) γ 90 

Cell volume 4265.88 

Z, Z’ Z: 8 Z’:0 

Symmetry cell setting Monoclinic 

Flack parameter 0.00 (3) 

R1 4.4% 
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Palladacycle II-17A 

  

Compound II-17A 

Structure identifier fcsj160526 

CCDC identifier 1495368 

Formula C22H20N2O2PdS 

Space group P 21 21 21 

Cell lengths a 10.4585(3) b 11.3232(4) c 16.8119(5) 

Cell angles α 90 β 90 γ 90 

Cell volume 1990.93 

Z, Z’ Z: 4 Z’:0 

Symmetry cell setting Orthorhombic 

Flack parameter -0.012 (10) 

R1 4.7% 
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methyl (E)-3-((1S,2S,3R)-2-propyl-3-((2-((S)-p-

tolylsulfinyl)phenyl)carbamoyl)cyclopropyl)acrylate II-18B 

 

Compound methyl II-18B 

Structure identifier fcsj170918 

CCDC identifier Not submitted 

Formula C24H27NO4S 

Space group P 21 

Cell lengths a 22.1340(6) b 4.95080(10) c 24.5460(6) 

Cell angles  90  115.741(2)  90 

Cell volume 2422.86 

Z, Z’ Z: 4 Z': 0 

Symmetry cell setting Monoclinic 

R1 5.79 
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III.1. Introduction 

III.1.i. Summary of this work 

When we developed and applied the methodology for diastereoselective C(sp3)-H bond 

activation on cycloalkane derivatives, one of the main limitations was the total lack of reactivity 

using linear alkyl chains (II.3.iii). Accordingly, the goal of this work was to extend the previous 

methodology using our (S)-2-(p-tolylsulfinyl)aniline (APS) directing group for the C(sp3)-H bond 

activation of linear, acyclic alkanes. We performed not only arylation but also challenging 

diastereoselective acetoxylation. 

III.1.ii. Diastereoselective C(sp3)-H bond arylation 

As mentioned before, the early development in 2005 of chiral oxazoline directing groups (I.4.v) 

suffered from an important limitation in terms of scope and no arylation was possible using this 

auxiliary.[89] Following this pioneering study and in order to access more complex structures, 

Corey and co-workers published their work on diastereoselective β- and γ- acetoxylation and 

arylation of aminoquinoline-protected amino-acids.[254] The stereochemistry of the newly 

formed stereocentre was induced by the existing proximal chiral centre on the amino acid. 

Diastereomeric ratios varied between 5:1 and > 20:1 depending on the substrate (Scheme 3.99). 

 

Scheme 3.99 Corey γ-functionalisation of amino acid derivatives 

Using this methodology, Chen and co-workers reported the elegant total synthesis of celogentin 

C, a bicyclic peptide with rare architecture, bearing two unusual Trp C6 to Leu Cβ and Trp C2 to 

His N1 linkages.[255] The C-C bond between the indole and the lateral chain of leucine was 

constructed thanks to C-H functionalization (Scheme 3.100). 
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Scheme 3.100 Chen's total synthesis of celogentin C 

In the same manner, Baran and co-workers used the 2-(methylthio)aniline auxiliary originally 

developed by Daugulis and Babu to promote twice cis-arylation on a cyclobutane ring, thus 

affording the key intermediate for the total synthesis of piperaborenine B (Scheme 3.101).[3,4,256] 

The predefined absolute stereochemistry on the cyclobutane ring and the higher stability of the 

cis-five-membered palladacyclic intermediate allowed total diastereoselectivity for the arylation. 

Complete epimerization of the amide using potassium tert-butoxide permitted a second cis-

arylation and subsequently the obtention of the key skeleton of the molecule. 

 

Scheme 3.101 Baran's total synthesis of piperaborenine B 
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In 2014, a breakthroughing work was published by Yu and co-workers, disclosing the use of a 

chiral amino acid derivative as directing group and stereoinductor (I.4.iii).[64] As presented in 

chapter 2, Hong and co-workers extended this strategy and published the first diastereoselective 

synthesis of cis-cyclopropanes (Chart 3.18).[199] High level of diastereomeric induction were 

obtained (up to 70:1), however the two diastereomers were not separable by simple column 

chromatography. 

 

Chart 3.18 Chiral amino acid directing groups for the asymmetric C-H bond activation 

The same year, an amino-oxazoline directing group was developed by Shi for the 

functionalisation of alkyl chains.[257] Initially, the authors demonstrated that their auxiliary is an 

efficient tool to control regioselectivity. Besides, they also disclosed few diastereoselective 

examples, obtaining the chiral compounds with good diastereomeric ratios (Scheme 3.102). 

 

Scheme 3.102 Shi's diastereoselective C-H bond functionalisation 
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Finally, in 2017, when we were developing the herein presented project, He and co-workers 

disclosed the use of APS-directing group for the functionalisation of aliphatic chains with a large 

panel of iodoarenes including sterically hindered ones. However, the majority of examples 

concerned used of a racemic chiral auxiliary and low diastereomeric excesses were observed.[204] 

 

Scheme 3.103 He's diastereoselective C-H activation using APS directing group 

Accordingly, considering the scarcity of catalytic systems allowing diastereoselective C-H bond 

activation and in the continuity of our recent work on the asymmetric functionalisation of 

cycloalkane rings, we embarked on the diastereoselective C-H bond functionalisation of aliphatic 

acyclic substrates. 
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III.2. Reaction condition optimization 

III.2.i. From cycloalkanes to linear alkyl chains 

In our optimisation of diastereoselective C(sp3)-H bond functionalisation using the APS as chiral 

directing group, we faced some difficulties to activate the linear alkyl chains under the previously 

optimised protocol. 

We chose as model substrate III-1a to optimise the β-arylation (Table 3.14). This substrate was 

obtained by a standard peptidic coupling (II.2.i.4) between the APS and valeroyl chloride and 

indeed showed no reactivity under our previously developed conditions (Entry 1). However, 

omitting water in the reaction mixture allowed partial conversion to the desired diastereomers 

(R)-III-2aA and (S)-III-2aA with 60:40 ratio between the two diastereomers (Entry 2). Change of a 

silver salt from acetate to carbonate counterion did not allow to improve the efficiency of the 

reaction as shown in Entry 3. 

Table 3.14 Optimisation of the β-C-H arylation of alkyl chains 

 

Entry Cat. Base Additive Solvent T °C Conversion dr 

1 Pd(OAc)2 AgOAc NaTFA HFIP/H2O (4:1) 80 0 -  

2 Pd(OAc)2 AgOAc - HFIP 80 30 3:2 

3 Pd(OAc)2 Ag2CO3 - HFIP 80 25 1:1 

 

Following these preliminary results, solvent screening showed that toluene was crucial to 

achieve good reactivity (Entry 1, Table 3.15). When performing the reaction in 1,2-

dichloroethane using potassium bases, a low conversion of 30 and 40% was observed (Entries 2 

and 3). Addition of a small amount of HFIP in the reaction mixture improved both conversion and 

diastereomeric ratio (Entry 4). This could be explained by the hydrogen-bonding between the 

solvent and the sulfoxide, thus enhancing its properties and permitting better coordination and 
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chiral induction.[15] Other polar protic solvents like acetic acid or trifluoroacetic acid did not give 

better results (Entries 6 and 7). Surprisingly, although we found that direct functionalisation of 

cycloalkanes might be enhanced adding sodium trifluoroacetate, this additive seriously 

decreased the reactivity of the system in this case as the conversion dropped to 30 % (Entry 14). 

Likewise, using the optimal solvent system, no other base than silver acetate was well tolerated, 

and conversions dropped below 20% (Entries 10 to 13).  

Table 3.15 Optimisation of the β-C-H arylation of alkyl chains 

 

Entry Cat. Base Additive Solvent T °C Conversion dr 

1 Pd(OAc)2 AgOAc - Toluene 100 60 1:1 

2 Pd(OAc)2 K2CO3 - DCE 120 30 3:2 

3 Pd(OAc)2 K3PO4 - DCE 120 40 3:2 

4 Pd(OAc)2 AgOAc - Toluene/HFIP (4:1) 100 65 3:2 

5 Pd(OAc)2 AgOAc - Xylene 130 55 1:1 

6 Pd(OAc)2 AgOAc - Toluene/TFA (4:1) 100 50 3:2 

7 Pd(OAc)2 AgOAc - Toluene/AcOH (4:1) 100 <5 - 

8 Pd(OAc)2 Ag2CO3 KF6 HFIP 110 65 1:1 

9 Pd(OAc)2 AgOAc PivOH Toluene/HFIP (4:1) 110 20 3:2 

10 Pd(OAc)2 AgTFA - Toluene/HFIP (4:1) 110 0 - 

11 Pd(OAc)2 K2CO3 - Toluene/HFIP (4:1) 110 0 - 

12 Pd(OAc)2 Cs2CO3 - Toluene/HFIP (4:1) 110 0 - 

13 Pd(OAc)2 Ag3PO4 - Toluene/HFIP (4:1) 110 15 1:1 

14 Pd(OAc)2 AgOAc NaTFA HFIP 80 30 3:2 

 

                                                        
6 3 equiv. were used. 
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Then, we studied the stoichiometry of the reaction’s partners as well as the reaction time and 

the temperature.  

Using 3 equivalents of the coupling iodide allowed to increase the yield up to 80 % (Entries 1 and 

2, Table 3.16). Interestingly, the coupling works better under air atmosphere and thus does not 

require strictly anhydrous conditions (Entries 3 and 4). Final optimisation rewardingly showed 

that increasing the reaction time to 36 h concomitantly with adding more equivalents of 

iodoarene coupling partner allowed us to get 85 % conversion to the desired product (Entry 5). 

The two diastereomers were separated by column chromatography on silica gel. It is important 

to precise that the same conditions were applied with the (S)-2-(tert-butylsulfinyl)aniline ATS 

chiral auxiliary and only gave less than 10 % conversion, thus the diastereomeric excess could 

not be exactly determined, but assumed to 9:1 (Entry 8). Moreover, further increase of the 

reaction temperature was detrimental to both, efficiency and stereoselectivity (Entry 6), and 

arylbromides were not tolerated as we assumed that they did not undergo oxidative addition 

(Entry 7). 

Table 3.16 Optimisation of the β-C-H arylation of alkyl chains 

 

Entry x y T °C Variations from standard conditions Conversion dr 

1 2 10 100 - 65 3:2 

2 3 10 110 - 80 3:2 

3 3 10 110 Ar atm. 55 3:2 

4 3 10 110 Ar atm. and 4 Å mol. sieves. 50 3:2 

5 3 5 110 36 h reaction time 85 3:2 

6 3 5 130 - 70 1:1 

7 3 5 110 ArBr as coupling partner 0 - 

8 3 5 110 ATS chiral auxiliary 10 9:1 
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III.2.ii. Rationalization of the solvent role 

Optimisation of the conditions for the asymmetric C(sp3)-H activation of simple alkyl chains 

revealed that presence of water poisoned the reaction. Also, polar protic solvents other than 

HFIP were inadequate (Table 3.14 and Table 3.15). However, setting up an argon atmosphere 

and/or using molecular sieves in the reaction mixture was deleterious and the yield dropped 

from 80 to 50 %. 

Interestingly, when carrying out the reaction with toluene/HFIP/water (64:16:1), the reaction 

proceeded well, showing the tolerance of small amount of water.  

The high lipophilicity of the alkyl chain used for the optimisation may not be compatible with 

high amounts of water. Indeed, HFIP and water can form micelles and substrate III-1a is not 

likely to enter these micelles for the C-H activation, while a homogenous mixture of toluene and 

HFIP will 1) better solubilize this hydrophobic substrate and 2) improve the properties of the 

sulfoxide by creating hydrogen bonds and an HFIP sphere around the sulfoxide. 

Another argument is related to the pKA of the species: indeed, cyclopropane rings have a pKA 

around 46 while aliphatic chains are around 50.  Thus, the pH of the reaction mixture may be 

crucial for the reactivity and the buffer created by either HFIP, water and toluene may tune the 

reactivity of the system.  
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III.3. C(sp3)-H arylation and application to the synthesis of biologically active 

molecules 

III.3.i. Arylation of simple alkyl chains 

With the optimised reaction conditions in hand, we explored the scope of this transformation 

regarding both, the influence of the aliphatic substituent of the C-H substrate and the nature of 

the iodoarenes. The mono-arylation of III-1a occurred smoothly using electron-rich and -poor 

iodoarenes, delivering the expected products with high yields. However, the diastereoselectivity 

remained low. Remarkably, this catalytic system tolerates well the steric hindrance on the 

iodoarene and with ortho-substitued coupling partners slight increase of the diastereomeric 

excess was observed. However, further improvement was achieved by rising the steric hindrance 

on the aliphatic chain. Rewardingly, the stereoinduction went up to 4:1 with III-2f and the only 

deceiving example was III-2g which showed poor reactivity, assumed to the high steric hindrance 

of the tert-butyl group (Figure 4.38). 

 In most cases, the major diastereomer could be isolated from the other one, delivering 

enantiopure valuable compounds in interesting yields. Indeed, not only a large variety of 

iodoarenes was tolerated, but also a panel of substrates, bearing sensitive moieties such as 

methyl ester in III-2i and phthalimide in III-2j on the aliphatic chain. This last compound may be 

seen as a precursor for derivatives of γ-amino butyric acid (GABA), the main inhibitory 

neurotransmitter in the mammalian central nervous system, like Baclofen[258] or Phenibut.[259] 
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Figure 4.38 Scope of arylation on acyclic aliphatic chains 
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In order to further delimitate the potential of our catalytic system, we focused on the direct 

arylation of benzylic positions of substrates III-1k, III-1l and III-1m. Due to the better reactivity of 

these C-H bonds, the reaction temperature could be lowered to 80 °C as well as the reaction 

time to 16 h (Figure 4.39).  

Coupling with hydrocinnamic acid derivative III-1k was highly efficient and the diastereomeric 

ratio went up to 9:1 using electron-rich coupling partners such as iodoanisole. Many iodoarene 

coupling partners were tolerated, such as a sensitive nitro for III-2kA and III-2kI or halogen 

groups in III-2kL and III-2kN. Starting from other commercial derivatives such as III-1l and III-1m, 

the arylation proceeded smoothly and allowed obtention of complex compounds with an 

average yield of 84 % and good diastereomeric ratio.  

Interestingly, no δ-C-H activation on the aryl moiety was observed. Despite fairly good 

diastereomeric ratios, none of the coupling products except III-2kA was obtained as a single 

diastereomer. Multiple elution systems on column chromatography and recrystallisation 

solvents were attempted without success. Moreover, the methodology was poorly tolerant with 

ortho-substituted coupling partners, arguably due to high steric hindrance of the palladacycle, 

resulting in a difficult oxidative addition. 

However, this easy access to various complex 3-aryl-hydrocinnamic acid derivatives could for 

example allow concise synthesis of turmerone bioisosters (Scheme 3.104).[260] 

 

Scheme 3.104 Access to turmerone bioisosters 
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Figure 4.39 Scope of arylation on hydrocinnamic acid derivatives 
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Rewardingly, the major diastereomer of racemic III-2kO afforded mono-crystals suitable for X-

Ray diffraction analysis by slow evaporation of a mixture of dichloromethane and chloroform. 

This crystallographic data allows unambigously the determination of the absolute configuration 

of the newly formed stereocentre with respect to the known (S) configuration of the sulfoxide 

and the absolute configuration of all products was attributed accordingly (Figure 3.40). 

 

Figure 3.40 ORTEP view of III-2kO 
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III.3.ii. Efficient synthesis of enantioenriched 2,2-

dimethylcyclopropane bioisosters 

In order to highlight the synthetic value of our methodology, we next focused on the 

diastereoselective arylation of substrate III-1n, a 2,2-dimethylcyclopropane bioisoster (Figure 

3.41). During the past few years, the expanding use of pyrethroids as insecticides was 

concomitantly accompanied with growing resistance in the insect populations. Therefore, new 

derivatives are urgently needed and hence structures have been designed, some of them 

showing good activity against insects.[261]  

 

Figure 3.41 Design of novel chiral esters derived from fluthrin derivatives 

Using substrate III-1n, diastereoselective arylation afforded various functionalised product III-2n 

which are key intermediate for pyrethroid analogues (Figure 3.42).   

 

Figure 3.42 Diastereoselective β-C-H arylation of III-1n 

Particularly, we focused on the expedient synthesis of III-3, compound known in the literature 

and showing a promising insecticide activity. Following our general protocol, the arylated 

compound was generated with excellent yield and high diastereomeric ratio of 9:1. Subsequent 

removal of the chiral auxiliary followed by esterification afforded the desired compound with a 

remarkable 81% yield and conserved 9:1 enantiomeric ratio. Moreover, the chiral auxiliary was 

cleaved and recovered without loss of optical purity (Scheme 3.105). III-3 is the only example in 

which both enantiomers exhibit excellent insecticidal activity even at low doses (between 70 and 
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90% mortality at 11.1 mg/L), nevertheless in all other compounds only the (R)-enantiomer 

demonstrated good activity, showcasing the interest of a diastereoselective pathway.[261] This 

new route opens interesting perspectives for the synthesis of pyrethroid bioisosters. 

 

Scheme 3.105 Synthesis of insecticide derivative III-3 
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III.4. One-pot double functionalisation of propionic acid derivatives 

Regarding the high activity of our catalytic system, we hypothesized that a sequential 

functionalisation could be performed on a simple propionic acid substrate. Such two-step C-H 

activation would be particularly appealing as it allows in situ construction of a variety of 3,3-

disubstituted propionic acid derived scaffolds that are difficult to access via other synthetic 

routes.  

We estimated the feasibility of such double functionalisation by reacting an excess of aryliodide 

coupling partners with III-1o, accordingly yielding non-chiral 3,3-diaryl moieties. Interestingly, 

the reaction worked well even with more sterically hindered meta-substituted coupling partner 

(Scheme 3.106). 

 

Scheme 3.106 Non-chiral double-arylation of III-1o 

Subsequently, we explored the mono-arylation of propionic acid substrate to access 

uncommercial hydrocinnamic acid derivatives. Using one equivalent of a coupling partner, the 

reaction furnished a variety of non-chiral coupling products with excellent yields (Scheme 3.107). 

It is important to highlight the exceptional tolerance towards hindered iodoarenes such as in III-

2oG.  

 

Scheme 3.107 Non-chiral mono-arylation of III-1o 
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Regarding the efficiency of these transformations, a one-pot, two-step difunctionalisation of III-

1o was thus explored. Rewardingly, after initial total conversion of the starting material into the 

desired mono-arylated product III-2oP, 3-iodoanisole was added to the reaction mixture 

alongside with an additional portion of silver acetate and the temperature was raised to 130 °C, 

affording the asymmetric diarylated propionic acid derivative III-2oPC in 78% isolated yield and 

encouraging 3:1 diastereomeric ratio (Scheme 3.108). Using chloro- or bromo-coupling partners, 

this strategy could offer an original synthetic pathway to chiral ligands for asymmetric synthesis. 

 

Scheme 3.108 Asymmetric one-pot double-arylation of III-1o 

Besides, this interesting methodology could allow easy access to natural product key 

intermediates from ubiquitous propionic acid, like the podophyllotoxin intermediate drawn in 

Chart 3.19, as described by Peng and co-workers in 2018.[262] Indeed, arylation of propionic acid 

derivative with sterically hindered 5-bromo-6-iodobenzo[d][1,3]dioxole followed by 3,4,5-

trimethoxyiodobenzene should afford the key amide. 

 

Chart 3.19 A key intermediate in the total synthesis of podophyllotoxin 
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III.5. Diasteroselective acetoxylation 

III.5.i. Inter- and intramolecular acetoxylation 

Alkoxylation and acetoxylation were widely investigated with monodentate directing groups. 

However, diastereoselective C-O bond formation by means of C(sp3)-H bond activation remains 

elusive and only one procedure has been reported by Yu and co-workers in 2005 (Figure 3.43).[89]  

 

Figure 3.43 Diastereoselective acetoxylation using a chiral oxazoline directing group 

Following Yu’s condition, but using toluene/HFIP/Ac2O (12:2:1) as solvent mixture, the desired 

acetoxylated product III-4 was isolated in 32 % yield. Encouragingly, when using 

(diacetoxyiodo)benzene as acetate source in presence of acetic anhydride, III-4 was obtained 

with excellent yield of 91% starting from hydrocinnamic acid derivatives (Scheme 3.109). Despite 

low diastereoselectivity, this reaction can still be considered as a proof a concept showcasing the 

potential of the C-H bond activation concept to generate stereoselectively C-O bonds. 

 

Scheme 3.109 Acetoxylation of hydrocinnamic acid derivative 
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Interestingly, applying the very same reaction conditions to III-1i, bearing a methyl ester in the 

side chain, the desired product was not observed. In contrast, deprotection of the methyl ester 

occurred, followed by intramolecular acetoxylation. Addition of silver acetate and sodium 

acetate promoted both deprotection and lactonization, delivering III-5 in 84% yield (Scheme 

3.110). The 1H and 13C NMRs seem to indicate only one diastereomer but we failed in separating 

the diastereomers in chiral HPLC to prove it. No cyclization product was observed using tert-

butyl ester, suggesting that the deprotection occurs first, followed by directed C-H bond 

activation. 

 

Scheme 3.110 Lactonisation of III-1i 

III.5.ii. One-pot arylation and acetoxylation 

The same one-pot procedure as mentioned before (III.4) was followed to access other type of 

acetoxylated hydrocinnamic acid derivatives. However, the diastereomeric ratio was deceivingly 

low, thus limiting the potential of this methodology (Scheme 3.111). This drop in 

diastereoselectivity may be explained by the elevated temperature during the second step. 

 

Scheme 3.111 Asymmetric one-pot arylation and acetoxylation of III-1o 

  



Chapter 3: Diastereoselective sulfoxide-enabled activation of aliphatic C(sp3)-H 
bonds 

216 
 

III.5.iii. Limitation of the scope 

The scope of this reaction was unfortunately limited to hydrocinnamic and adipic acid analogues 

and attempts on other substrates were ineffective (Table 3.17). The reaction conditions adapted 

from Yu and co-workers did not work (Entry 2),[64] and other modification of the catalytic system 

either resulted in the lack of conversion or decomposition of the substrate (Entry 5). 

Table 3.17 Attemps of acetoxylation of III-1a 

 

Entry [OAc] (x) Additive (y) Solvent Conversion (%) 

1 PhI(OAc)2 (2) - Toluene/HFIP/Ac2O (12:2:1) 0 

2 PhI(OAc)2 (4) Under air Ac2O 0 

3 PhI(OAc)2 (2) - Toluene/Ac2O (30:1) 0 

4 PhI(OAc)2 (2) AcOH (10) HFIP/Ac2O (5:1) 0 

5 PhI(OAc)2 (2) HCl (10) HFIP/Ac2O (5:1) 0 
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III.6. Conclusion 

This second main project was dedicated to the C(sp3)-H bond functionalisation of acyclic 

substrates. Thanks to the fine tuning of the reaction conditions, we succeeded in designing a 

catalytic system allowing excellent reactivity by changing the solvent system from HFIP/H2O to 

toluene/HFIP and performed arylation using various coupling partners, bearing electron-

donating or -withdrawing groups. Rewardingly, our catalytic system was powerful enough to 

promote acetoxylation and lactonization with excellent yield and moderate diastereomeric ratio. 

These results were published in Chemistry – A European Journal in 2017 and selected as Hot 

Paper.[21] With our expertise in diastereoselective C-H bond functionalisation in hand, knowing 

that sulfinylaniline directing group could promote various reactions such as arylation, alkylation 

and acetoxylation,  we  consequently endeavoured on designing an enantioselective system for 

the C-H bond functionalisation. 
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III.7. Experimental section 

III.7.i. Substrate synthesis 

General procedure for the substrate synthesis 

To a stirred solution of enantioenriched APS (250 mg, 1.08 mmol, 1 equiv.), carboxylic acid (1.08 

mmol, 1 equiv.), triethylamine (300 µL, 2.16 mmol, 2 equiv.) and 4-(dimethylamino)-pyridine 

(one or two crystals) in 5 mL of anhydrous DMF was added propylphosphonic anhydride (700 µL, 

1.19 mmol, ≥50% wt. in DMF, 1.1 equiv.). The resulting mixture was stirred 16h at room 

temperature, before addition of water (10 mL) and diethyl ether (10 mL). The organic layer was 

extracted, washed with brine (3x 10 mL), dried (Na2SO4), filtered off and evaporated under 

reduced pressure. The crude was purified by column chromatography on silica gel to get the 

corresponding amide. 

When available, the amide coupling was done using enantioenriched APS (250 mg, 1.08 mmol, 1 

equiv.), acyl chloride (1.08 mmol, 1 equiv.) and triethylamine (200 µL, 1.44 mmol, 1.5 equiv.) in 5 

mL of DCM. When the solution became colorless (generally after 1h), water (10 mL) was added. 

The organic layer was extracted, washed with brine (10 mL), dried (Na2SO4), filtered off and 

evaporated under reduced pressure, before purification. 

(S)-N-(2-(p-tolylsulfinyl)phenyl)pentanamide III-1a 

Reaction was carried out using valeryl chloride (125 µL) as coupling partner. Purification with 

CyHex/EtOAc (4:1) afforded the title compound (252 mg, 81%) as a yellow solid. 

1H NMR (400 MHz, CDCl3): 10.10 (1H, br s, NH), 8.39 (1H, d, J=8.5 

Hz), 7.42-7.53 (2H, m), 7.34 (2H, d, J=8.4 Hz), 7.22 (2H, J=8.2 Hz), 

7.13 (1H, td, J=7.5, 1.1 Hz), 2.34 (3H, s, PhCH3), 2.14-2.30 (2H, 

m), 1.50-1.61 (2H, m), 1.22-1.33 (2H, m), 0.88 (3H, t, J=7.3 Hz); Rt 

(min, ODH, Hex/iPrOH, 98/2, 0.5 mL/min): 36.20 (99%), 43.22 

(1%); other data match the reported ones. 
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(S)-N-(2-(p-tolylsulfinyl)phenyl)butyramide III-1b 

Reaction was carried out using propionic acid (80 µL) as coupling partner. Purification with 

CyHex/EtOAc (4:1) afforded the title compound (297 mg, 96%) as a white solid. 

1H NMR (400 MHz, CDCl3): 10.12 (1H, br s, NH), 8.39 (1H, d, J=8.2 

Hz), 7.51 (1H, dd, J=7.9, 1.5 Hz), 7.43-7.47 (1H, m), 7.35 (2H, d, 

J=8.2 Hz), 7.22 (2H, d, J=8.3 Hz), 7.13 (1H, td, J=7.5, 1.2 Hz), 2.34 

(3H, s, PhCH3), 2.13-2.31 (2H, m), 1.58-1.65 (2H, m), 0.89 (3H, t, 

J=7.0 Hz);  other data match the reported ones. 

(S)-N-(2-(p-tolylsulfinyl)phenyl)decanamide III-1c 

Reaction was carried out using decanoyl chloride (250 µL) as coupling partner. Purification with 

CyHex/EtOAc (9:1) afforded the title compound (362 mg, 87%) as a clear oil. 

 1H NMR (400 MHz, CDCl3): 10.06 (1H, br s, NH), 8.33 (1H, d, J=8.3 

Hz), 7.46 (1H, dd, J=7.6, 1.7 Hz), 7.37-7.41 (1H, m), 7.30 (2H, d, 

J=8.4 Hz), 7.17 (2H, d, J=8.3 Hz), 7.08 (1H, td, J=7.7, 1.1 Hz), 2.29 

(3H, s, PhCH3), 2.07-2.26 (2H, m), 1.44-1.62 (2H, m), 1.20 (12H, app 

s), 0.81 (3H, t, J=6.9 Hz); 13C NMR (100 MHz, CDCl3): 171.97, 141.52, 

140.53, 139.90, 133.23, 130.16, 128.05, 124.59, 123.22, 123.10, 38.29, 32.11, 29.68, 29.61, 

29.53, 29.45, 25.53, 22.90, 21.50, 14.34; FT-IR (cm-1): 1698 (s, C=O), 1022 (s, S=O); HRMS (ESI-

TOF): m/z calcd for C23H31KNO2S+: 424.1707, found: 424.1694; [𝛼]𝐷
20= +5.4° (c=0.35, CHCl3); Rf 

(CyHex/EtOAc, 7/3): 0.45. 

(S)-N-(2-(p-tolylsulfinyl)phenyl)palmitamide III-1d 

Reaction was carried out using palmitoyl chloride (330 µL) as coupling partner. Purification with 

CyHex/EtOAc (95:5) afforded the title compound (408 mg, 80%) as a white solid. 

 1H NMR (400 MHz, CDCl3): 10.11 (1H, br s, NH), 8.38 (1H, d, 

J=8.2 Hz), 7.50 (1H, dd, J=7.6, 1.5 Hz), 7.46 (1H, ddd, J=8.4, 

7.4, 1.6 Hz), 7.35 (2H, d, J=8.3 Hz), 7.22 (2H, d, J=8.3 Hz), 7.13 

(1H, td, J=7.6, 1.2 Hz), 2.34 (3H, s, PhCH3), 2.14-2.31 (2H, m), 

1.51-1.63 (2H, m), 1.24 (24H, app s), 0.86 (3H, t, J=6.8 Hz); 13C NMR (100 MHz, CDCl3): 171.94, 

141.49, 140.53, 139.90, 133.21, 130.15, 128.03, 124.57, 123.02, 123.07, 38.27, 32.13, 29.91, 

29.87, 29.72, 29.60, 29.57, 29.44, 25.51, 22.90, 21.48, 14.34; HRMS (ESI-TOF): m/z calcd for 
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C29H43KNO2S+: 508.2646, found: 508.2631; FT-IR (cm-1): 1698 (s, C=O), 1023 (s, S=O); mp (°C): 74; 

[𝛼]𝐷
20= +2.1° (c=0.50, CHCl3); Rf (CyHex/EtOAc, 4/1): 0.39. 

4-phenyl-(S)-N-(2-(p-tolylsulfinyl)phenyl)butyramide III-1e 

Reaction was carried out using 4-phenylbutyric acid (178 mg) as coupling partner. Purification 

with CyHex/EtOAc (9:1) afforded the title compound (297 mg, 70%) as a clear oil. 

1H NMR (400 MHz, CDCl3): 10.09 (1H, br s, NH), 8.36 (1H, d, J=8.2 

Hz), 7.43-7.56 (2H, m), 7.25-7.33 (4H, m), 7.11-7.19 (6H, m), 

2.54-2.61 (2H, m), 2.17-2.32 (5H, m), 1.85-1.94 (2H, m); 13C NMR 

(100 MHz, CDCl3): 171.46, 141.69, 141.55, 140.43, 139.84, 

133.27, 130.17, 128.70, 128.62, 128.15, 126.19, 124.55, 123.33, 

123.22, 37.50, 35.41, 27.05, 21.45; HRMS (ESI-TOF): m/z calcd for C23H23NNaO2S+: 400.1342, 

found: 400.1322; FT-IR (cm-1): 1695 (s, C=O), 1022 (s, S=O); [𝛼]𝐷
20= +23.7° (c=0.50, CHCl3); Rf 

(CyHex/EtOAc, 7/3): 0.65. 

3-cyclohexyl-(S)-N-(2-(p-tolylsulfinyl)phenyl)propionamide III-1f 

Reaction was carried out using 3-cyclohexylpropionic acid (170 µL) as coupling partner. 

Purification with CyHex/EtOAc (9:1) afforded the title compound (317 mg, 79%) as a brown oil. 

1H NMR (400 MHz, CDCl3): 10.09 (1H, br s, NH), 8.38 (1H, d, 

J=8.4 Hz), 7.43-7.52 (2H, m), 7.35 (2H, d, J=8.2 Hz), 7.22 (2H, 

d, J=8.2 Hz), 7.13 (1H, td, J=7.6, 1.1 Hz),  2.35 (3H, s, PhCH3), 

2.16-2.31 (2H, m), 1.58-1.73 (5H, m), 1.42-1.49 (2H, m), 1.09-

1.28 (4H, m), 0.83-0.91 (2H, m) ; 13C NMR (100 MHz, CDCl3): 172.23, 141.53, 140.59, 139.92, 

133.26, 130.20, 128.08, 126.53, 124.60, 123.20, 123.07, 37.44, 35.73, 33.24, 32.83, 26.78, 26.72, 

26.46, 26.43, 21.52;  HRMS (ESI-TOF): m/z calcd for C22H27NNaO2S+: 392.1655, found: 392.1674; 

FT-IR (cm-1): 1697 (s, C=O), 1022 (m, S=O); [𝛼]𝐷
20= +2.4° (c=0.50, CHCl3); Rf (CyHex/EtOAc, 7/3): 

0.6. 

4,4-dimethyl-(S)-N-(2-(p-tolylsulfinyl)phenyl)pentanamide III-1g 

Reaction was carried out using 4,4-dimethyl-pentanoic acid (141 mg) as coupling partner. 

Purification with CyHex/EtOAc (9:1) afforded the title compound (274 mg, 74%) as a brownish 

oil. 
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1H NMR (400 MHz, CDCl3): 10.05 (1H, br s, NH), 8.36 (1H, d, J=8.4 

Hz), 7.52 (1H, dd, J=7.7, 1.6 Hz), 7.46 (1H, ddd, J=8.3, 7.5, 1.6 

Hz), 7.34 (2H, d, J=8.4 Hz), 7.22 (2H, d, J=8.4 Hz), 7.13 (1H, td, 

J=7.5, 1.1 Hz), 2.34 (3H, s, PhCH3), 2.09-2.26 (2H, m), 1.36-1.51 

(2H, m), 0.88 (9H, s, C(CH3)3); 13C NMR (100 MHz, CDCl3): 172.39, 

141.47, 140.52, 139.96, 133.27, 130.17, 128.17, 124.58, 123.20, 123.16, 39.10, 33.89, 30.32, 

29.26, 21.47; HRMS (ESI-TOF): m/z calcd for C20H25NNaO2S+: 366.1498, found: 366.1494; FT-IR 

(cm-1): 1698 (s, C=O), 1022 (s, S=O); [𝛼]𝐷
20= +5.6° (c=0.22, CHCl3); Rf (CyHex/EtOAc, 4/1): 0.45. 

3-cyclopentyl-(S)-N-(2-(p-tolylsulfinyl)phenyl)propionamide III-1h 

Reaction was carried out using 3-cyclopentylpropionic acid (150 µL) as coupling partner. 

Purification with CyHex/EtOAc (9:1) afforded the title compound (281 mg, 73%) as a yellow oil. 

1H NMR (400 MHz, CDCl3): 10.04 (1H, br s, NH), 8.34 (1H, d, 

J=8.1 Hz), 7.46 (1H, dd, J=7.7, 1.4 Hz), 7.39-7.44 (1H, m), 7.30 

(2H, d, J=8.3 Hz), 7.17 (2H, d, J=8.3 Hz), 7.06 (1H, td, J=7.6, 1.1 

Hz), 2.30 (3H, s, PhCH3), 2.10-2.27 (2H, m), 1.62-1.72 (3H, m), 

1.37-1.59 (6H, m), 0.97-1.08 (2H, m); 13C NMR (100 MHz, 

CDCl3): 171.87, 141.32, 140.36, 139.72, 133.06, 129.97, 127.90, 124.42, 123.00, 122.89, 39.67, 

37.34, 32.48, 31.49, 25.17, 21.29; HRMS (ESI-TOF): m/z calcd for C21H25KNO2S+: 394.1238, found: 

394.1235; FT-IR (cm-1): 1698 (s, C=O), 1022 (s, S=O); [𝛼]𝐷
20= +10.5° (c=0.70, CHCl3); Rf 

(CyHex/EtOAc, 7/3): 0.5. 

methyl (S)-6-oxo-6-((2-(p-tolylsulfinyl)phenyl)amino)hexanoate III-1i 

Reaction was carried out using methyl adipoyl chloride (150 µL) as coupling partner. Purification 

with CyHex/EtOAc (7:3) afforded the title compound (347 mg, 92%) as a white solid. 

1H NMR (400 MHz, CDCl3): 10.14 (1H, br s, NH), 8.31 (1H, d, J=8.3 

Hz), 7.46 (1H, dd, J=7.7, 1.5 Hz), 7.41 (1H, td, J=8.0, 1.5 Hz), 7.29 

(2H, d, J=8.4 Hz), 7.20-7.24 (2H, m), 7.09 (1H, td, J=7.6, 1.0 Hz), 3.65 

(3H, s, C(O)OCH3), 2.34 (3H, s, PhCH3), 2.26-2.32 (3H, m), 2.16-2.25 

(1H, m), 1.57-1.65 (4H, m); 13C NMR (100 MHz, CDCl3): 173.72, 171.01, 141.34, 140.21, 139.66, 

133.02, 130.00, 127.84, 127.78, 124.34, 123.14, 122.91, 51.56, 37.43, 33.75, 24.63, 24.43, 21.28; 

HRMS (ESI-TOF): m/z calcd for C20H24NO4S+: 374.1421, found: 374.1411; FT-IR (cm-1): 1732 (s, C-O 
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ester), 1695 (s, C-O amide), 1021 (s, S-O); mp (°C): 74; [𝛼]𝐷
20= -24.7° (c=0.50, CHCl3); Rf 

(CyHex/EtOAc, 7/3): 0.2. 

(S)-4-(1,3-dioxoisoindolin-2-yl)-N-(2-(p-tolylsulfinyl)phenyl)butanamide III-1j 

Reaction was carried out using 4-phthalimidobutyric acid (250 mg) as coupling partner. 

Purification with CyHex/EtOAc (3:1) afforded the title compound (357 mg, 75%) as a white solid. 

1H NMR (400 MHz, CDCl3): 10.07 (1H, br s, NH), 8.26 

(1H, d, J=8.4 Hz), 7.79-7.85 (2H, m), 7.66-7.73 (2H, m), 

7.49 (1H, dd, J=7.7, 1.8 Hz), 7.43 (1H, ddd, J=8.6, 7.6, 

1.7 Hz), 7.33 (2H, d, J=8.1 Hz), 7.21 (2H, d, J=8.2 Hz), 

7.13 (1H, td, J=7.6, 1.3 Hz), 3.70 (2H, t, J=7.2 Hz), 2.19-

2.40 (5H, m), 1.87-2.05 (2H, m); 13C NMR (100 MHz, CDCl3): 170.33, 168.48 (2C), 141.58, 140. 15, 

139.80, 134.16, 133.14, 132.28, 130.21, 128.41, 127.98, 124.53, 123.47 (2C), 123.35, 37.51, 

35.07, 24.37, 21.45; FT-IR (cm-1): 2961 (m), 1770 (w, C-O amide), 1709 (s, C-O phthalimide), 1032 

(m, S-O); HRMS (ESI-TOF): m/z calcd for C25H22N2NaO4S+: 469.1192, found: 469.1202; [𝛼]𝐷
20= 

+41.7° (c=1.0, CHCl3); Rf (CyHex/EtOAc, 7/3): 0.22. 

(S)-3-phenyl-N-(2-(p-tolylsulfinyl)phenyl)propanamide III-1k 

Reaction was carried out using hydrocinnamic acid (150 µL) as coupling partner. Purification with 

CyHex/EtOAc (9:1) afforded the title compound (357 mg, 91%) as a yellow oil. 

1H NMR (400 MHz, CDCl3): 10.20 (1H, br s, NH), 8.37 (1H, d, 

J=8.4 Hz), 7.51 (1H, dd, J=7.7, 1.9 Hz), 7.44-7.49 (1H, m), 7.33 

(2H, d, J=8.4 Hz), 7.25-7.30 (2H, m), 7.17-7.22 (5H, m), 7.14 

(1H, td, J=7.5, 1.2 Hz), 2.84-2.99 (2H, m), 2.47-2.67 (2H, m), 

2.34 (3H, s, PhCH3); Rt (min, ODH, Hex/iPrOH, 80/20, 0.5 mL/min): 19.13 (1%), 24.60 (99%); other 

data match the reported ones. 
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(S)-3-(4-chlorophenyl)-N-(2-(p-tolylsulfinyl)phenyl)propanamide III-1l 

Reaction was carried out using 3-(4-chlorophenyl)propionic acid (188 mg) as coupling partner. 

Purification with CyHex/EtOAc (9:1) afforded the title compound (363 mg, 90%) as a yellow oil. 

1H NMR (400 MHz, CDCl3): 10.26 (1H, br s, NH), 8.36 (1H, d, J=8.1 

Hz), 7.43-7.52 (2H, m), 7.30 (2H, d, J=8.2 Hz), 7.22 (2H, d, J=8.3 

Hz), 7.08-7.19 (5H, m), 2.88 (2H, t, J=7.5 Hz), 2.60 (1H, td, J=15.2, 

7.6 Hz), 2.48 (1H, td, J=15.2, 7.6 Hz), 2.34 (3H, s, PhCH3); 13C NMR 

(100 MHz, CDCl3): 170.10, 140.17, 139.60, 139.08, 132.99, 131.98, 130.00, 129.74, 128.63, 

127.74, 127.69, 124.29 (2C), 123.25, 122.85, 39.15, 30.29, 21.31; FT-IR (cm-1): 1670 (s, C-O), 1036 

(s, S-O), 931 (s, C-Cl); HRMS (ESI-TOF): m/z calcd for C22H20ClNNaO2S+: 420.0795, found: 

420.0800; [𝛼]𝐷
20= +21.7° (c=0.5, CHCl3); Rf (CyHex/EtOAc, 7/3): 0.43. 

(S)-3-(3-trifluoromethylphenyl)-N-(2-(p-tolylsulfinyl)phenyl)propanamide III-1m 

Reaction was carried out using 3-(3-trifluoromethylphenyl)propionic acid (235 mg) as coupling 

partner. Purification with CyHex/EtOAc (95:5) afforded the title compound (402 mg, 86%) as a 

clear oil. 

1H NMR (400 MHz, CDCl3): 10.24 (1H, br s, NH), 8.36 (1H, d, J=7.8 Hz), 

7.41-7.54 (4H, m), 7.35-7.42 (2H, m), 7.32 (2H, d, J=8.3 Hz), 7.19 (2H, 

d, J=8.3 Hz), 7.15 (1H, td, J=7.6, 0.9 Hz), 2.89-3.02 (2H, m), 2.63 (1H, 

ddd, J=15.3, 8.6, 6.9 Hz), 2.51 (1H, ddd, J= 15.4, 8.9, 6.6 Hz), 2.33 (3H, 

s, PhCH3); 13C NMR (100 MHz, CDCl3): 169.90, 141.53, 141.47, 140.11, 139.63, 133.04, 131.78, 

130.82 (q, J=33.2 Hz), 129.99, 128.97, 127.84, 125.11 (q, J=3.8 Hz), 124.76 (q, J=272.0 Hz), 

124.32, 123.32, 123.17 (q, J=3.8 Hz), 122.95, 122.80, 38.95, 30.79, 21.27; 19F NMR (377 MHz, 

CDCl3): -62.56; FT-IR (cm-1): 1697 (m, C-O), 1328 (s, C-F), 1120 (s, C-F), 1022 (s, S-O); HRMS (ESI-

TOF): m/z calcd for C23H21F3NO2S+: 432.1240, found: 432.1220; [𝛼]𝐷
20= +25.2° (c=0.5, CHCl3); Rf 

(CyHex/EtOAc, 7/3): 0.42. 

4-methyl-(S)-N-(2-(p-tolylsulfinyl)phenyl)pentanamide III-1n 

Reaction was carried out using 4-methylvaleric acid (140 µL) as coupling partner. Purification 

with CyHex/EtOAc (9:1) afforded the title compound (315 mg, 88%) as a clear oil. 
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1H NMR (400 MHz, CDCl3): 10.10 (1H, br s, NH), 8.37 (1H, d, J=8.4 

Hz), 7.50 (1H, dd, J=7.4, 1.1 Hz), 7.41-7.47 (1H, m), 7.35 (2H, d, 

J=8.3 Hz), 7.21 (2H, d, J=8.3 Hz), 7.12 (1H, td, J=7.5, 1.2 Hz), 2.33 

(3H, s, PhCH3), 2.14-2.30 (2H, m), 1.39-1.58 (3H, m), 0.84-0.91 

(6H, m); 13C NMR (100 MHz, CDCl3): 171.89, 141.34, 140.34, 139.82, 133.05, 130.01, 127.93, 

124.45, 123.11, 122.95, 36.04, 34.13, 27.76, 22.38, 21.33; HRMS (ESI-TOF): m/z calcd for 

C19H23NNaO2S+: 352.1342, found: 352.1307; FT-IR (cm-1): 1684 (s, C=O), 1025 (s, S=O); Rt (min, 

ODH, Hex/iPrOH, 98/2, 0.5 mL/min): 30.25 (99%), 36.17 (1%); [𝛼]𝐷
20= +28.6° (c=1.1, CHCl3); Rf 

(CyHex/EtOAc, 4/1): 0.50. 

(S)-N-(2-(p-tolylsulfinyl)phenyl)propionamide III-1o 

Reaction was carried out using propionic acid (80 µL) as coupling partner. Purification with 

CyHex/EtOAc (4:1) afforded the title compound (297 mg, 96%) as a white solid. 

1H NMR (400 MHz, CDCl3): 10.15 (1H, br s, NH), 8.41 (1H, d, J=8.3 Hz), 

7.53 (1H, d, J=7.6 Hz), 7.47 (1H, t, J=7.8 Hz), 7.39 (2H, d, J=8.2 Hz), 

7.26 (2H, d, J = 8.4 Hz), 7.18 (1H, t, J=7.5 Hz), 2.35 (3H, s, PhCH3), 2.20-

2.37 (2H, m), 1.16 (3H, t, J = 7.6 Hz); Rt (min, ODH, Hex/iPrOH, 98/2, 

0.5 mL/min): 51.81 (98%), 60.55 (2%); other data match the reported ones.   

N-(2-tert-butylsulfinyl)phenyl)pentanamide III-1a’ 

Reaction was carried out using racemic 2-(tert-butylsulfinyl)aniline (660 mg)7 as substrate and 

valeryl chloride (400 µL) as coupling partner. Purification with CyHex/EtOAc (9:1) afforded the 

title compound (814 mg, 88%) as a clear oil. 

1H NMR (400 MHz, CDCl3): 10.97 (1H, br s, NH), 8.55 (1H, dd, J=8.5, 

0.8 Hz), 7.43 (1H, ddd, J=8.5, 7.3, 2.0 Hz), 7.01-7.10 (2H, m), 2.30-2.37 

(2H, m), 1.63-1.72 (2H, m), 1.33-1.40 (2H, m), 1.25 (9H, s, C(CH3)3), 

0.92 (3H, t, J=7.4 Hz); 13C NMR (100 MHz, CDCl3): 171.87, 142.54, 

132.25, 128.54, 122.42, 122.02, 120.59, 58.60, 38.06, 27.41, 23.39, 22.37, 13.82; LC-MS:  m/z 

calcd for C15H23NO2S+: 281.14, found: 281.15; FT-IR (cm-1): 1697 (s, C=O), 1028 (s, S=O); Rf 

(CyHex/EtOAc, 7/3): 0.60.    

 

                                                        
7 Prepared by oxidation of 2-(tert-butylthio)aniline with m-CPBA. 
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5-bromo-(S)-N-(2-(p-tolylsulfinyl)phenyl)pentanamide III-1p 

Reaction was carried out using 5-bromovaleric acid (196 mg) as coupling partner. Purification 

with CyHex/EtOAc (4:1) afforded the title compound (384 mg, 90%) as a yellow oil. 

1H NMR (400 MHz, CDCl3): 10.16 (1H, br s, NH), 8.33 (1H, d, J=8.4 

Hz), 7.49 (1H, dd, J=7.7, 1.5 Hz), 7.40-7.46 (1H, m), 7.33 (2H, d, J=8.3 

Hz), 7.21 (2H, d, J=8.2 Hz), 7.12 (1H, td, J=7.5, 1.1 Hz), 3.28-3.337 

(2H, m), 2.15-2.37 (5H, m), 1.64-1.84 (4H, m); 13C NMR (100 MHz, 

CDCl3): 170.74, 141.40, 140.12, 139.67, 133.01, 130.02, 127.88, 

127.85, 124.34, 123.24, 122.91, 36.72, 33.08, 32.00, 23.73, 21.32; HRMS (ESI-TOF): m/z calcd for 

C18H20BrNNaO2S+: 416.0290, found: 416.0268; FT-IR (cm-1): 1696 (s, C=O), 1021 (s, S=O), 757 (s, 

C-Br); [𝛼]𝐷
20= -3.2° (c=0.10, CHCl3); Rf (CyHex/EtOAc, 7/3): 0.32. 
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III.7.ii. Optimization of the coupling reaction conditions 

III-1a (15 mg, 48 µmol, 1 equiv.), 4-iodonitrobenzene (24 mg, 96 µmol, 2 equiv.), catalyst (10 

mol%), base (2.2 equiv.) and additive (1 equiv.) were weighted in a pressure tube. 500 µL of 

solvent were added, the tube was then closed, stirred 10 min at room temperature and 18h at 

the appropriate temperature. After cooling to room temperature, the mixture was filtered 

through PTFE 45 µm filter with a syringe, evaporated under reduced pressure and analyzed by 1H 

NMR and LC-MS. Diastereomeric ratios are based on the integration of the terminal CH3.  

 

General optimization of the base, solvent and temperature 

Entry Cat. Base Additive Solvent T °C Conversion dr 

1 Pd(OAc)2 AgOAc - Toluene/HFIP (4:1) 100 65 3:2 

2 Pd(OAc)2 AgOAc - HFIP 80 30 3:2 

3 Pd(OAc)2 Ag2CO3 - HFIP 80 25 1:1 

4 Pd(OAc)2 AgOAc NaTFA HFIP/H2O (4:1) 80 0 -  

5 Pd(OAc)2 AgOAc - Toluene 100 60 1:1 

6 Pd(OAc)2 AgOAc - Xylene 130 55 1:1 

7 Pd(TFA)2 AgTFA - Toluene/HFIP (4:1) 100 0 - 

8 Pd(OAc)2 AgOAc - Toluene/TFA (4:1) 100 50 3:2 

9 Pd(OAc)2 AgOAc - Toluene/AcOH (4:1) 100 <5 - 

10 Pd(OAc)2 Ag2CO3 KF8 HFIP 110 65 1:1 

11 Pd(OAc)2 AgOAc PivOH Toluene/HFIP (4:1) 110 20 3:2 

12 Pd(OAc)2 K2CO3 - Toluene/HFIP (4:1) 110 0 - 

13 Pd(OAc)2 Cs2CO3 - Toluene/HFIP (4:1) 110 0 - 

14 Pd(OAc)2 Ag3PO4 - Toluene/HFIP (4:1) 110 15 1:1 

15 Pd(OAc)2 AgOAc NaTFA HFIP 80 30 3:2 

                                                        
8 3 equiv. were used. 
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Final optimization of the reaction conditions 

Entry Cat. Base Additive Solvent T °C Conversion dr 

1 Pd(OAc)2 AgOAc - Toluene/HFIP (4:1) 100 65 3:2 

29 Pd(OAc)2 AgOAc - Toluene/HFIP (4:1) 110 80 3:2 

310 Pd(OAc)2 AgOAc - Toluene/HFIP (4:1) 110 55 3:2 

44,11 Pd(OAc)2 AgOAc - Toluene/HFIP (4:1) 110 50 3:2 

512 Pd(OAc)2 AgOAc - Toluene/HFIP (4:1) 110 85 3:2 

66 Pd(OAc)2 AgOAc - Toluene/HFIP (4:1) 130 70 1:1 

76,13 Pd(OAc)2 AgOAc - Toluene/HFIP (4:1) 110 0 - 

  

                                                        
9 3 equiv. of coupling partner were used. 
10 Performed under argon atmosphere. 
11 Performed with an excess of 4Å molecular sieves. 
12 5 mol% of catalyst was used with a reaction time of 36h. 
13 In this case, the corresponding aryl bromide was used as coupling partner. 
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III.7.iii. 1H NMR determination of the conversion and 

diastereomeric ratio 

The conversion and diastereomeric ratio were determined by 1H NMR analysis of the crude 

mixture, after filtration and evaporation. 

 

For example, for the reaction of III-1n with iodobenzene, as shown above, the crude 1H NMR was 

the following (in dark: crude mixture, in green: starting material, in red: purified product 

obtained as a mixture of diastereomers): 

 

 

 

 

 

 

 



Chapter 3: Experimental section 

229 
 

More specifically, in the aromatic part here (still in dark: crude mixture, in green: starting 

material, in red: purified product): 

 

The diastereomeric ratio for this reaction was around 90/10 and the conversion around 91%. The 

same interpretation can be done with the terminal CH3, and other protons for some molecules.
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III.7.iv. Arylation of alkyl chains 

General procedure for the coupling reactions  

To a pressure tube were added the appropriate substrate (1 equiv.), coupling partner (2.5 - 3 

equiv.), silver acetate (2.2 equiv.) and palladium(II) acetate (5 mol%). The mixture was then 

dissolved in a 0.1 M of a 4:1 mixture of toluene and 1,1,1,3,3,3-hexafluoroisopropanol. The 

mixture was then stirred 10 min at room temperature, then at 110 °C during 36h. After cooling 

down to room temperature, the mixture was diluted with DCM, filtered through PTFE 45 µm 

filter with a syringe and evaporated under reduced pressure. The crude was purified by column 

chromatography on silica gel. 

3-(4-nitrophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)pentanamide III-2aA 

Reaction was carried out using III-1a (100 mg) as substrate and 4-iodonitrobenzene (200 mg, 2.3 

equiv.) as coupling partner. Purification with CyHex/EtOAc (7:3) afforded the major diastereomer 

(74 mg, 49%) as a yellow oil and the minor diastereomer as a mixture with some impurities 

(assumed 34%). 1H NMR of the crude showed a 6:4 diastereomeric ratio.  

Major diastereomer: 1H NMR (400 MHz, CDCl3): 10.42 (1H, br s, 

NH), 8.32 (1H, d, J=8.9 Hz), 8.07 (2H, d, J=8.7 Hz), 7.38-7.44 (2H, m), 

7.25-7.33 (4H, m), 7.16 (2H, d, J=8.2 Hz), 7.10 (1H, td, J=7.6, 1.1 Hz), 

3.16-3.26 (1H, m), 2.71 (1H, dd, J=15.3, 6.3 Hz), 2.50 (1H, dd, 

J=15.3, 8.8 Hz), 2.33 (3H, s, PhCH3), 1.69-1.79 (1H, m), 1.57-1.68 

(1H, m), 0.78 (3H, t, J=7.4 Hz); 13C NMR (100 MHz, CDCl3): 169.37, 

152.22, 146.74, 141.90, 140.37, 139.80, 133.10, 130.22, 128.58, 127.80, 127.04, 124.60, 123.88, 

123.44, 122.66, 44.22, 43.59, 29.18, 21.42, 12.01; HRMS (ESI-TOF): m/z calcd for C24H24N2NaO4S+: 

459.1349, found: 459.1353; FT-IR (cm-1): 1694 (m, C=O), 1516 (s, N-O), 1344 (s, N-O), 1021 (m, 

S=O); [𝛼]𝐷
20= +22.3° (c=0.10, CHCl3); Rf (CyHex/EtOAc): 0.34. 

methyl 4-(1-oxo-1-((2-((S)-p-tolylsulfinyl)phenyl)amino)pentan-3-yl)benzoate III-2aB 

Reaction was carried out using III-1a (100 mg) as substrate and methyl 4-iodobenzoate (200 mg, 

2.4 equiv.) as coupling partner. Purification with CyHex/EtOAc (7:3) afforded the major 

diastereomer (72 mg, 51%) as a yellow oil and the minor diastereomer (45 mg, 32%) as a clear 

oil. 1H NMR of the crude showed a 6:4 diastereomeric ratio. 
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Major diastereomer: 1H NMR (400 MHz, CDCl3): 10.34 (1H, br s, 

NH), 8.33 (1H, d, J=8.1 Hz), 7.92 (2H, d, J=8.2 Hz), 7.38-7.45 (2H, 

m), 7.28 (2H, d, J=8.2 Hz), 7.23 (2H, d, J=8.3 Hz), 7.15 (2H, d, J=8.2 

Hz), 7.09 (1H, td, J=7.7, 1.2 Hz), 3.88 (3H, s, C(O)OCH3), 3.14 (1H, 

dddd, J= 9.1, 8.1, 6.9, 6.1 Hz), 2.66 (1H, dd, J=15.2, 6.9 Hz), 2.50 

(1H, dd, J=15.1, 8.1 Hz), 2.32 (3H, s, PhCH3), 1.56-1.77 (2H, m), 0.75 

(3H, t, J=7.4 Hz); 13C NMR (100 MHz, CDCl3): 169.86, 167.22, 149.86, 141.72, 140.41, 139.82, 

133.07, 130.24, 130.03, 128.49, 127.82, 127.73, 127.44, 124.51, 123.33, 122.77, 52.17, 44.61, 

43.72, 29.12, 21.43, 12.05; HRMS (ESI-TOF): m/z calcd for C26H28NO4S+: 450.1734, found: 

450.1746; FT-IR (cm-1): 1719 (s, C=O ester), 1694 (s, C=O amide), 1020 (s, S=O); Rt (min, IA, 

Hex/iPrOH, 80/20, 0.5 mL/min): 25.79 (1%), 31.55 (99%); [𝛼]𝐷
20= +105.9° (c=0.12, CHCl3); Rf 

(CyHex/EtOAc, 7/3): 0.25. 

Minor diastereomer: 1H NMR (400 MHz, CDCl3): 10.15 (1H, br s, 

NH), 8.26 (1H, d, J=8.0 Hz), 7.93 (2H, d, J=8.2 Hz), 7.39-7.48 (2H, 

m), 7.34 (2H, d, J=8.3 Hz), 7.20-7.25 (4H, m), 7.12 (1H, td, J=7.6, 1.3 

Hz), 3.87 (3H, s, C(O)OCH3), 3.01-3.11 (1H, m), 2.45-2.57 (2H, m), 

2.35 (3H, s, PhCH3), 1.46-1.58 (2H, m), 0.69 (3H, t, J=7.4 Hz); 13C 

NMR (100 MHz, CDCl3): 169.93, 167.25, 149.54, 141.65, 140.27, 

140.03, 133.18, 130.22, 130.04, 129.65, 128.63, 128.02, 127.82, 124.70, 123.44, 123.15, 52.19, 

44.93, 44.09, 29.06, 21.49, 12.06; FT-IR (cm-1): 1719 (s, C=O ester), 1694 (s, C=O amide), 1020 (m, 

S=O); Rt (min, IA, Hex/iPrOH, 90/10, 0.5 mL/min): 63.62 (98%), 66.96 (2%); [𝛼]𝐷
20= -58.7° (c=0.22, 

CHCl3); Rf (CyHex/EtOAc, 7/3): 0.21. 

3-(3-methoxyphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)pentanamide III-2aC 

Reaction was carried out using III-1a (100 mg) as substrate and 3-iodoanisole (90 µL, 2.4 equiv.) 

as coupling partner. Purification with CyHex/EtOAc (9:1) afforded a mixture of diastereomers (97 

mg, 73%) as a brownish oil. 1H NMR of the crude showed a 6:4 diastereomeric ratio. 

1H NMR (400 MHz, CDCl3): 10.14 (0.6H, br s, NH), 10.00 (0.4H, br s, 

NH), 8.35 (0.6H, d, J=8.2 Hz), 8.29 (0.4H, d, J=8.2 Hz), 7.42-7.50 (1H, 

m), 7.37-7.42 (1H, m), 7.32-7.37 (2H, m), 7.02-7.23 (5H, m), 6.80-

6.92 (2H, m), 3.81-3.87 (3H, m, OCH3), 3.45-3.53 (1H, m), 2.41-2.68 

(2H, m), 2.30-2.40 (3H, m, PhCH3), 1.50-1.72 (2H, m), 0.67-0.79 (3H, 

m, CH2CH3); 13C NMR (100 MHz, CDCl3): 169.82 (0.6C), 169.80 (0.4C), 156.53 (0.6C), 156.48 
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(0.4C), 140.27 (0.6C), 140.23 (0.4C), 139.22 (0.6C), 139.07 (0.4C), 138.75 (0.6C), 138.73 (0.4C), 

131.87, 131.79, 130.95 (0.4C), 130.67 (0.6C), 128.96 (0.6C), 128.92 (0.4C), 127.23 (0.4C), 126.90 

(0.6C), 126.71 (0.4C), 126.45 (0.6C), 126.26 (0.4C), 126.15 (0.6C), 123.38, 122.08 (0.4C), 122.03 

(0.6C), 122.00 (0.6C), 121.74 (0.4C), 119.47, 54.35, 42.69 (0.4C), 42.59 (0.6C), 37.20, 36.32, 25.95 

(0.4C), 25.91 (0.6C), 20.27, 10.99 (0.4C), 10.84 (0.6C); HRMS (ESI-TOF): m/z calcd for C25H28NO3S+: 

422.1784, found: 422.1800; FT-IR (cm-1): 1687 (s, C=O), 1298 (s, C-O ether), 1023 (m, S=O); Rf 

(CyHex/EtOAc, 8/2): 0.40. 

3-(3-acetylphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)pentanamide III-2aD 

Reaction was carried out using III-1a (100 mg) as substrate and 3’-iodoacetophenone (100 µL, 

2.5 equiv.) as coupling partner. Purification with CyHex/EtOAc (9:1) afforded the major 

diastereomer (44 mg, 63%) as a yellow oil. 1H NMR of the crude showed a 7:3 diastereomeric 

ratio. 

Major diastereomer: 1H NMR (400 MHz, CDCl3): 10.30 (1H, br s, 

NH), 8.33 (1H, d, J=8.2 Hz), 7.74-7.80 (2H, m), 7.43 (2H, d, J=8.4 Hz), 

7.25-7.41 (4H, m), 7.06-7.19 (3H, m), 3.05-3.18 (1H, m), 2.44-2.68 

(5H, m), 2.31 (3H, s, PhCH3), 1.57-1.81 (2H, m), 0.75 (3H, t, J=6.9 

Hz); 13C NMR (100 MHz, CDCl3): 198.21, 169.82, 144.75, 141.51, 

140.20, 139.63, 132.87, 132.43, 130.04, 128.70, 127.56, 127.48, 

127.38, 127.32, 126.54, 124.40, 123.20, 122.66, 44.74, 43.61, 28.85, 26.73, 21.30, 11.91; HRMS 

(ESI-TOF): m/z calcd for C26H27NNaO3S+: 456.1604, found: 456.1652; FT-IR (cm-1): 1684 (s, C=O), 

1022 (s, S=O); [𝛼]𝐷
20= +23.1° (c=0.10, CHCl3); Rf (CyHex/EtOAc, 7/3): 0.23. 

3-(2-acetylphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)pentanamide III-2aE 

Reaction was carried out using III-1a (100 mg) as substrate and 3-iodoanisole (90 µL, 2.4 equiv.) 

as coupling partner. Purification with CyHex/EtOAc (9:1) afforded a mixture of diastereomers (92 

mg, 67%) as an orange oil. 1H NMR of the crude showed a 7:3 diastereomeric ratio. 

1H NMR (400 MHz, CDCl3): 10.09 (0.3H, br s, NH), 9.97 (0.7H, 

br s, NH), 8.22 (0.3H, d, J=8.2 Hz), 8.14 (0.7H, d, J=8.2 Hz), 

7.26-7.49 (7H, m), 7.07-7.23 (4H, m), 3.52-3.68 (1H, m), 2.58-

2.65 (1.4H, m), 2.55-2.58 (3H, m, PhC(O)CH3), 2.40-2.48 (0.6H, 

m), 2.33 (2.1H, s, PhCH3), 2.32 (0.9H, s, PhCH3), 1.54-1.75 (2H, 

m), 0.77 (1.1H, t, J=7.0 Hz), 0.72 (1.9H, t, J=6.9 Hz); 13C NMR (100 MHz, CDCl3): 203.91, 170.03, 
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142.75 (0.3C), 142.53 (0.7C), 141.34, 140.75 (0.7C), 140.56 (0.3C), 139.91 (0.3C), 139.83 (0.7C), 

139.73 (0.7C), 139.70 (0.3C), 132.82 (0.7C), 132.68 (0.3C), 130.98 (0.7C), 130.88 (0.3C), 130.00 

(0.3C), 129.96 (0.7C), 127.65 (0.7C), 127.62 (0.3C), 127.45 (0.7C), 127.27 (0.3C), 127.06 (0.7C), 

127.00 (0.3C), 125.99 (0.3C), 125.93, 125.86 (0.7C), 124.49 (0.3C), 124.46 (0.7C), 123.45 (0.3C), 

123.41 (0.7C), 123.21 (0.7C), 122.99 (0.3C), 44.87 (0.7C), 44.57 (0.3C), 38.41 (0.7C), 38.23 (0.3C), 

30.72 (0.7C), 30.69 (0.3C), 28.86 (0.3C), 28.80 (0.7C), 21.33 (0.3C), 21.31 (0.7C), 11.88; HRMS 

(ESI-TOF): m/z calcd for C26H27NNaO3S+: 456.1604, found: 456.1593; FT-IR (cm-1): 1688 (s, C=O), 

1021 (m, S=O); Rf (CyHex/EtOAc, 7/3): 0.20. 

3-(naphthalen-2-yl)-N-(2-((S)-p-tolylsulfinyl)phenyl)butanamide III-2bF 

Reaction was carried out using III-1b (20 mg) as substrate and 2-iodonaphthalene (50 mg, 3 

equiv.) as coupling partner. Purification by preparative thin layer chromatography with 

CyHex/EtOAc (9:1) afforded the major diastereomer (13 mg, 45%) as a clear oil and the minor 

diastereomer (4 mg, assumed 14%, mixed with some starting material). 1H NMR of the crude 

showed a 70:30 diastereomeric ratio. 

Major diastereomer: 1H NMR (400 MHz, CDCl3): 10.21 

(1H, br s, NH), 8.32 (1H, d, J=8.5 Hz), 7.69-7.81 (3H, m), 

7.64 (1H, d, J=1.4 Hz), 7.32-7.48 (7H, m), 7.21 (2H, d, 

J=8.4 Hz), 7.12 (1H, td, J=7.5, 1.0 Hz), 3.40-3.51 (1H, m, 

CHCH3), 2.72 (1H, dd, J=14.6, 6.4 Hz), 2.48 (1H, dd, 

J=14.7, 8.7 Hz), 2.33 (3H, s, PhCH3), 1.24 (3H, d, J=6.9 Hz, CHCH3); 13C NMR (125 MHz, CDCl3): 

169.08, 142.19, 140.44, 139.12, 138.78, 132.58, 131.94, 131.32, 129.01, 127.30, 127.21, 126.74, 

126.70, 126.57, 124.95, 124.54, 124.36, 123.89, 123.45, 122.18, 121.96, 45.33, 35.53, 20.69, 

20.27; HRMS (ESI-TOF): m/z calcd for C27H25NNaO2S+: 450.1498, found: 450.1519; FT-IR (cm-1): 

1709 (m, C-O), 1038 (m, S-O); [𝛼]𝐷
20= +74.5° (c=0.1, CHCl3); Rf (CyHex/EtOAc, 7/3): 0.48. 
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3-(2-bromophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)butyramide III-2bG 

Reaction was carried out using III-1b (100 mg) as substrate and 2-bromoiodobenzene (100 µL, 

2.3 equiv.) as coupling partner. Purification with CyHex/EtOAc (9:1) afforded the major 

diastereomer (86 mg, 57%) as a brown oil. 1H NMR of the crude showed a 6:4 diastereomeric 

ratio. 

Major diastereomer : 1H NMR (400 MHz, CDCl3): 10.17 (1H, br 

s, NH), 8.35 (1H, d, J=8.4 Hz), 7.42-7.57 (4H, m), 7.37 (2H, d, 

J=8.3 Hz), 7.19-7.26 (3H, m), 7.14 (1H, t, J=7.6 Hz), 7.08-7.08 

(1H, m), 3.71-3.82 (1H, m), 2.72 (1H, dd, J=15.2, 5.2 Hz), 2.26-

2.43 (4H, m), 1.16 (3H, d, J=6.9 Hz); 13C NMR (100 MHz, CDCl3): 169.70, 144.44, 141.43, 137.53, 

133.11, 133.00, 131.56, 130.02, 128.18, 127.86, 127.76, 127.16, 127.13, 126.14, 124.47, 123.27, 

123.10, 43.81, 35.23, 21.30, 20.06; HRMS (ESI-TOF): m/z calcd for C23H23BrNO2S+: 456.0627, 

found: 456.0646; FT-IR (cm-1): 1699 (s, C=O), 1023 (s, S=O), 754 (s, C-Br); [𝛼]𝐷
20= -3.2° (c=0.20, 

CHCl3); Rf (CyHex/EtOAc, 7/3): 0.6. 

3-(4-acetylphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)decanamide III-2cH 

Reaction was carried out using III-1c (100 mg) as substrate and 4’-iodoacetophenone (150 mg, 

2.4 equiv.) as coupling partner. Purification with CyHex/EtOAc (7:3) afforded the major 

diastereomer (52 mg, 40%) as an orange oil and the minor diastereomer (34 mg, 26%) as a clear 

oil. 1H NMR of the crude showed a 6:4 diastereomeric ratio. 

Major diastereomer: 1H NMR (400 MHz, CDCl3): 10.18 (1H, br s, 

NH), 8.25 (1H, d, J=8.4 Hz), 7.86 (2H, d, J=8.3 Hz), 7.45 (1H, dd, 

J=7.7, 1.4 Hz), 7.41 (1H, td, J=7.9, 1.5 Hz), 7.35 (2H, d, J=8.3 Hz), 

7.21-7.28 (4H, m), 7.11 (1H, td, J=7.7, 1.1 Hz), 3.12-3.20 (1H, m), 

2.49-2.57 (5H, m), 2.35 (3H, s, PhCH3), 1.46-1.57 (2H, m), 1.08-1.20 

(10H, m), 0.82 (3H, t, J=7.0 Hz); 13C NMR (100 MHz, CDCl3): 198.02, 

169.86, 150.15, 141.64, 140.26, 139.93, 135.77, 133.15, 130.23, 128.88, 127.95, 127.92, 127.78, 

124.64, 123.44, 123.07, 45.24, 42.44, 36.18, 31.98, 29.73, 29.38, 27.61, 26.77, 22.81, 21.51, 

14.27; HRMS (ESI-TOF): m/z calcd for C31H38NO3S+: 504.2567, found: 504.2605; FT-IR (cm-1): 1682 

(s, C=O), 1022 (m, S=O); [𝛼]𝐷
20= +2.8° (c=0.10, CHCl3); Rf (CyHex/EtOAc, 7/3): 0.35.  
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3-(3-nitrophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)decanamide III-2cI 

Reaction was carried out using III-1c (100 mg) as substrate and 3-iodonitrobenzene (150 mg, 2.3 

equiv.) as coupling partner. Purification with CyHex/EtOAc (7:3) afforded the major diastereomer 

(70 mg, 53%) as a yellow oil and the minor diastereomer (42 mg, 32%) as an orange oil. 1H NMR 

of the crude showed a 6:4 diastereomeric ratio. 

Major diastereomer: 1H NMR (400 MHz, CDCl3): 10.34 (1H, br 

s, NH), 8.32 (1H, d, J=8.2 Hz), 7.99-8.07 (2H, m), 7.47-7.54 

(1H, m), 7.34-7.45 (3H, m), 7.28 (2H, d, J=8.4 Hz), 7.07-7.17 

(3H, m), 3.26 (1H, dddd, J=9.1, 7.8, 6.8, 5.7 Hz), 2.68 (1H, dd, 

J=15.3, 6.8 Hz), 2.50 (1H, dd, J=15.3, 8.1 Hz), 1.52-1.73 (2H, 

m), 1.11-1.23 (10H, m), 0.83 (3H, t, J=6.9 Hz); 13C NMR (100 

MHz, CDCl3): 169.26, 148.42, 146.74, 141.56, 140.17, 139.53, 134.19, 132.92, 130.00, 129.29, 

127.64, 127.19, 124.37, 123.24, 122.61, 122.16, 121.51, 44.60, 41.69, 35.97, 31.75, 29.72, 29.40, 

29.10, 27.31, 22.61, 21.27, 14.07; HRMS (ESI-TOF): m/z calcd for C29H35N2O4S+: 507.231, found: 

507.232; FT-IR (cm-1): 1695 (m, C=O), 1528 (s, N-O), 1344 (s, N-O), 1025 (w, S=O); [𝛼]𝐷
20= +10.7° 

(c=0.10, CHCl3); Rf (CyHex/EtOAc, 7/3): 0.21. 

 3-(4-nitrophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)palmitamide III-2dA 

Reaction was carried out using III-1d (100 mg) as substrate and 4-iodonitrobenzene (160 mg, 3 

equiv.) as coupling partner. Purification with CyHex/EtOAc (4:1) afforded the major diastereomer 

(44 mg, 35%) as a clear oil and the minor diastereomer (30 mg, 24%) as a yellow oil. 1H NMR of 

the crude showed a 6:4 diastereomeric ratio. 

Major diastereomer: 1H NMR (400 MHz, CDCl3): 10.36 (1H, br 

s, NH), 8.27 (1H, dd, J=8.6, 1.0 Hz), 8.02 (2H, d, J=8.6 Hz), 

7.33-7.40 (2H, m), 7.25 (2H, d, J=8.6 Hz), 7.22 (2H, d, J=8.3 

Hz), 7.11 (2H, d, J=8.3 Hz), 7.05 (1H, td, J=7.7, 1.1 Hz), 3.18-

3.30 (1H, m), 2.65 (1H, dd, J=15.4, 6.3 Hz), 2.44 (1H, dd, 

J=15.4, 8.8 Hz), 2.28 (3H, s, PhCH3), 1.46-1.66 (2H, m), 1.06-

1.26 (24H, m), 0.80 (3H, t, J=6.9 Hz); 13C NMR (100 MHz, 

CDCl3): 169.38, 152.59, 146.72, 141.92, 140.41, 139.81, 133.13, 130.23, 128.53, 127.80, 127.04, 

124.61, 123.92, 123.43, 122.68, 44.60, 41.98, 36.30, 32.13, 29.88, 29.84, 29.81, 29.74, 29.63, 

29.55, 27.50, 22.90, 21.44, 14.33; HRMS (ESI-TOF): m/z calcd for C35H46N2NaO4S+: 613.3070, 
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found: 613.3084; FT-IR (cm-1) : 1698 (s, C=O), 1522 (s, N-O), 1345 (s, N-O), 1028 (m, S=O); [𝛼]𝐷
20= 

+1.2° (c=0.32, CHCl3); Rf (CyHex/EtOAc, 7/3): 0.45. 

3-(4-acetylphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)palmitamide III-2dH 

Reaction was carried out using III-1d (100 mg) as substrate and 4’-iodoacetophenone (100 mg, 2 

equiv.) as coupling partner. Purification with CyHex/EtOAc (4:1) afforded the major diastereomer 

(58 mg, 46%) as an orange oil and the minor diastereomer (38 mg, 30%) as a yellow oil. 1H NMR 

of the crude showed a 6:4 diastereomeric ratio. 

Major diastereomer: 1H NMR (400 MHz, CDCl3): 10.18 (1H, br 

s, NH), 8.25 (1H, d, J=8.2 Hz), 7.86 (2H, d, J=8.4 Hz), 7.46 (1H, 

dd, J=7.7, 1.4 Hz), 7.37-7.42 (1H, m), 7.35 (2H, d, J=8.3 Hz), 

7.19-7.30 (4H, m), 7.11 (1H, td, J=7.6, 1.1 Hz), 3.10-3.21 (1H, 

m),2.55 (3H, s, PhC(O)CH3), 2.51 (2H, dd, J= 7.3, 4.7 Hz), 2.35 

(3H, s, PhCH3), 1.48-1.54 (2H, m), 1.06-1.30 (22H, m), 0.85 

(3H, t, J=6.8 Hz); 13C NMR (100 MHz, CDCl3): 198.02, 169.85, 

150.15, 141.63, 140.26, 139.93, 135.76, 133.15, 130.24, 128.87, 127.95, 127.92, 127.78, 124.63, 

123.44, 123.06, 45.24, 42.43, 36.18, 32.12, 29.88, 29.84, 29.79, 29.77, 29.73, 29.55, 27.61, 26.77, 

22.89, 21.51, 14.33; HRMS (ESI-TOF): m/z calcd for C37H50NO3S+: 588.3506, found: 588.3516; FT-

IR (cm-1): 1683 (s, C=O), 1022 (m, S=O); [𝛼]𝐷
20= +6.1° (c=0.13, CHCl3); Rf (CyHex/EtOAc, 7/3): 0.47. 

3-tolyl-N-(2-((S)-p-tolylsulfinyl)phenyl)palmitamide III-2dJ 

Reaction was carried out using III-1d (100 mg) as substrate and 4-iodotoluene (100 mg, 2 equiv.) 

as coupling partner. Purification with CyHex/EtOAc (4:1) afforded a mixture of starting material 

and diastereomers (assumed 50% conversion) as an orange oil. 1H NMR of the crude showed a 

6:4 diastereomeric ratio. HRMS (ESI-TOF): m/z calcd for C36H50NO2S+: 560.3557, found: 560.3582. 

3-(3-nitrophenyl)-4-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)butanamide III-2eI 

Reaction was carried out using III-1e (100 mg) as substrate and 3-iodonitrobenzene (132 mg, 2 

equiv.) as coupling partner. Purification with CyHex/EtOAc (9:1 to 7:3) afforded the major 

diastereomer (73 mg, 55%) and the minor diastereomer (48 mg, 36%) as clear oils. 1H NMR of 

the crude showed a 6:4 diastereomeric ratio. 
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Major diastereomer: 1H NMR (400 MHz, CDCl3): 10.33 (1H, 

br s, NH), 8.26 (1H, d, J=8.6 Hz), 8.03 (1H, t, J=1.9 Hz), 7.99 

(1H, ddd, J=8.1, 2.3, 1.1 Hz), 7.37-7.44 (3H, m), 7.28-7.35 

(1H, m), 7.07-7.22 (8H, m), 7.05 (2H, d, J=8.2 Hz), 3.58-3.68 

(1H, m), 2.98 (1H, dd, J=13.7, 7.5 Hz), 2.90 (1H, dd, J=13.3, 

7.8 Hz), 2.74 (1H, dd, J=15.6, 6.0 Hz), 2.55 (1H, dd, J=15.5, 

8.8 Hz), 2.30 (3H, s, PhCH3); 13C NMR (100 MHz, CDCl3): 168.98, 148.30, 145.75, 141.52, 140.09, 

139.46, 138.52, 134.27, 132.92, 129.99, 129.22, 129.21, 128.48, 127.63, 127.22, 126.55, 124.31, 

123.26, 122.58, 122.19, 121.66, 43.37, 42.91, 42.62, 21.27; HRMS (ESI-TOF): m/z calcd for 

C29H27N2O4S+: 499.1686, found: 499.1697; FT-IR (cm-1): 1694 (m, C=O), 1526 (s, N-O), 1347 (s, N-

O), 1022 (m, S=O); [𝛼]𝐷
20= +67.1° (c=0.45, CHCl3); Rf (CyHex/EtOAc, 7/3): 0.54. 

3-cyclohexyl-3-(3-nitrophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2fI 

Reaction was carried out using III-1f (100 mg) as substrate and 3-iodonitrobenzene (132 mg, 2 

equiv.) as coupling partner. Purification with CyHex/EtOAc (95:5) afforded the major 

diastereomer (54 mg, 40%) as a brownish oil. 1H NMR of the crude showed a 4:1 diastereomeric 

ratio. 

Major diastereomer: 1H NMR (400 MHz, CDCl3): 10.36 (1H, br 

s, NH), 8.26 (1H, d, J=8.4 Hz), 7.96-8.01 (2H, m), 7.31-7.47 (4H, 

m), 7.28 (2H, d, J=8.3 Hz), 7.16 (2H, d, J=8.4 Hz), 7.08 (1H, td, 

J=7.6, 1.0 Hz), 3.13 (1H, ddd, J=9.8, 7.6, 5.1 Hz), 2.90 (1H, dd, 

J=15.7, 5.2 Hz), 2.52 (1H, dd, J=15.7, 9.6 Hz), 2.33 (3H, s, 

PhCH3), 1.79-1.86 (1H, m), 1.69-1.77 (1H, m), 1.50-1.60 (2H, 

m), 1.37-1.44 (1H, m), 1.02-1.24 (4H, m), 0.89-1.00 (1H, m), 0.75-0.86 (1H, m); 13C NMR (100 

MHz, CDCl3): 169.67, 148.18, 145.60, 141.62, 139.59, 134.89, 132.90, 130.04, 129.66, 128.91, 

127.58, 124.79, 124.45, 123.13, 122.75, 122.43, 121.38, 47.33, 42.69, 40.92, 30.93, 30.66, 26.33, 

26.22, 21.28; HRMS (ESI-TOF): m/z calcd for C28H31N2O4S+: 491.1999, found: 491.1986; FT-IR (cm-

1): 1697 (m, C=O), 1528 (s, N-O), 1348 (s, N-O), 1022 (m, S=O); [𝛼]𝐷
20= -4.9° (c=0.20, CHCl3); Rf 

(CyHex/EtOAc, 7/3): 0.31. 

3-cyclopentyl-3-(3-nitrophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2hI 

Reaction was carried out using III-1h (100 mg) as substrate and 3-iodonitrobenzene (132 mg, 2 

equiv.) as coupling partner. Purification with CyHex/EtOAc (9:1 to 7:3) afforded the major 
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diastereomer (81 mg, 56%) and the minor diastereomer (35 mg, 24%) as clear oils. 1H NMR of 

the crude showed a 7:3 diastereomeric ratio. 

Major diastereomer: 1H NMR (400 MHz, CDCl3): 10.09 (1H, br 

s, NH), 8.18 (1H, d, J=8.4 Hz), 8.00 (1H, ddd, J=7.9, 2.2, 1.3 Hz), 

7.96 (1H, t, J=2.0 Hz), 7.36-7.48 (4H, m), 7.34 (2H, d, J=8.2 Hz), 

7.26 (2H, d, J=8.2 Hz), 7.10 (1H, td, J=7.6, 1.2 Hz), 2.94 (1H, 

ddd, J=10.2, 9.9, 4.7 Hz), 2.70 (1H, dd, J=14.9, 4.8 Hz), 2.51 

(1H, dd, J=14.8, 9.9 Hz), 2.26-2.41 (4H, m), 1.98-2.09 (1H, m), 

1.76-1.85 (1H, m), 1.59-1.69 (1H, m), 1.40-1.53 (2H, m), 1.25-1.37 (2H, m), 0.90-1.01 (1H, m); 13C 

NMR (100 MHz, CDCl3): 169.40, 148.26, 146.35, 141.56, 140.03, 139.88, 134.08, 133.00, 130.07, 

129.18, 127.85, 127.39, 124.53, 123.21, 122.81, 122.78, 121.55, 47.91, 45.92, 43.86, 31.54, 

31.28, 25.25, 24.93, 21.32; HRMS (ESI-TOF): m/z calcd for C27H29N2O4S+: 477.1843, found 

477.1841; FT-IR (cm-1): 1695 (w, C=O), 1528 (s, N-O), 1348 (s, N-O), 1022 (w, S=O); [𝛼]𝐷
20= -21.8° 

(c=0.15, CHCl3); Rf (CyHex/EtOAc, 7/3): 0.25. 

methyl 4-(3-acetylphenyl)-6-oxo-6-((2-((S)-p-tolylsulfinyl)phenyl)amino)hexanoate III-2iD 

Reaction was carried out using III-1i (100 mg) as substrate and 3’-iodoacetophenone (170 mg, 

2.6 equiv.) as coupling partner. Purification using CyHex/EtOAc (3:2) afforded a mixture of 

diastereomers (112 mg, 85%) as a yellow oil. 1H NMR of the crude mixture showed a 60:40 

diastereomeric ratio. 

1H NMR (400 MHz, CDCl3): 10.30 (0.4H, br s, NH), 10.15 

(0.6H, br s, NH), 8.29 (0.4H, d, J=8.4 Hz), 8.21 (0.6H, d, 

J=8.4 Hz), 7.74-7.81 (2H, m), 7.32-7.47 (5H, m), 7.24-

7.29 (2H, m), 7.07-7.17 (2H, m), 3.54-3.58 (3H, m, 

C(O)OCH3), 3.16-3.29 (1.4H, m), 2.52-2.82 (4.6H, m), 

2.35 (1.8H, s, PhCH3), 2.30 (1.2H, s, PhCH3), 2.04-2.19 

(2H, m), 1.80-2.01 (2H, m); 13C NMR (100 MHz, CDCl3): 

198.14 (0.6C), 198.07 (0.4C), 173.37 (0.6C), 137.34 (0.4C), 169.21, 143.63 (0.4C), 143.36 (0.6C), 

141.60 (0.6C), 141.55 (0.4C), 137.71 (0.4C), 137.53 (0.6C), 137.49 (0.6C), 137.02 (0.4C), 135.01, 

132.90 (0.6C), 132.87 (0.4C), 132.41 (0.6C), 132.35 (0.4C), 130.12 (0.6C), 130.06 (0.4C), 128.99 

(0.6C), 128.97 (0.6C), 128.44, 127.70 (0.6C), 127.57 (0.4C), 127.46 (0.4C), 127.36 (0.6C), 127.05 

(0.6C), 126.91 (0.4C), 124.41 (0.4C), 124.38 (0.6C), 123.40 (0.6C), 123.37 (0.4C), 122.94 (0.6C), 

122.79 (0.4C), 51.60 (0.4C), 51.55 (0.6C), 45.52, 44.80 (0.6C), 44.60 (0.4C), 41.51 (0.6C), 41.32 
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(0.4C), 32.03 (0.4C), 30.90 (0.6C), 26.74 (0.6C), 26.65 (0.4C), 21.30 (0.6C), 21.29 (0.4C); HRMS 

(ESI-TOF): m/z calcd for C28H29NNaO5S+: 514.1659, found: 514.1676; FT-IR (cm-1): 1734 (C=O 

ester), 1683 (C=O amide and ketone), 1022 (S=O); Rf (CyHex/EtOAc, 7/3): 0.19. 

3-phenyl-4-(1,3-dioxoisoindolin-2-yl)-N-(2-((S)-p-tolylsulfinyl)phenyl)butanamide III-2jK  

Reaction was carried out using III-1k (120 mg) as substrate and iodobenzene (100 µL, 3.3 equiv.) 

as coupling partner. Purification with CyHex/EtOAc (4:1) afforded a mixture of diastereomers 

(105 mg, 75%) as a yellow oil. 1H NMR of the crude showed a 60:40 diastereomeric ratio. 

1H NMR (400 MHz, CDCl3): 10.21 (0.6H, br s, NH), 10.05 

(0.4H, br s, NH), 8.11 (0.4H, d, J=8.4 Hz), 8.01 (0.6H, d, J=8.4 

Hz), 7.70-7.79 (2H, m), 7.58-7.66 (2H, m), 7.39-7.45 (1H, m), 

7.00-7.36 (11H, m), 3.79-3.97 (2H, m), 3.66-3.77 (1H, m), 

2.53-2.79 (2H, m), 2.28 (1.8H, s, PhCH3), 2.24 (1.2H, s, 

PhCH3); 13C NMR (100 MHz, CDCl3): 168.95, 168.13 (0.6C), 

168.05 (0.4C), 141.31, 140.80 (0.6C), 140.22 (0.4C), 139.91 (0.6C), 139.78 (0.4C), 139.76 (0.4C), 

139.67 (0.6C), 133.92 (0.4C), 133.85 (0.6C), 132.80 (0.4C), 132.65 (0.6C), 131.92 (0.6C), 131.87 

(0.4C), 130.04 (0.4C), 130.01 (0.6C), 128.67 (0.6C), 128.65 (0.4C), 127.80 (0.4C), 127.71, 127.63 

(0.6C), 127.43 (0.6C), 127.26 (0.4C), 127.13, 124.44 (0.4C), 124.29 (0.6C), 123.29 (0.4C), 123.24 

(0.6C), 123.23 (0.6C), 123.14 (0.4C), 123.05 (0.4C), 122.61 (0.6C), 43.26 (0.6C), 42.97 (0.4C), 

41.83 (0.4C), 41.46 (0.6C), 40.94 (0.4C), 40.28 (0.6C), 21.30 (0.6C), 21.24 (0.4C); FT-IR (cm-1): 

1711 (s, C-O), 1022 (m, S-O); HRMS (ESI-TOF): m/z calcd for C31H26N2NaO4S+: 545.1505, found: 

545.1508; Rf (CyHex/EtOAc, 7/3): 0.25. 

3-(4-acetylphenyl)-4-(1,3-dioxoisoindolin-2-yl)-N-(2-((S)-p-tolylsulfinyl)phenyl)butanamide III-

2jH 

Reaction was carried out using III-1j (120 mg) as substrate and 4’-iodoacetophenone (200 mg, 3 

equiv.) as coupling partner. Purification with CyHex/EtOAc (6:4) afforded the major diastereomer 

(80 mg, 53%) as a yellow oil and the minor diastereomer (59 mg, 39%) as a brownish oil. 1H NMR 

of the crude showed a 60:40 diastereomeric ratio. 
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Major diastereomer: 1H NMR (400 MHz, CDCl3): 10.33 (1H, br 

s, NH), 8.08 (1H, d, J=8.4 Hz), 7.81 (2H, d, J=8.5 Hz), 7.76 (2H, 

dd, J=5.5, 3.0 Hz), 7.64 (2H, dd, J=5.5, 3.1 Hz), 7.40 (1H, dd, 

J=7.4, 1.6 Hz), 7.34 (2H, d, J=8.4 Hz), 7.25-7.31 (3H, m), 7.13 

(2H, d, J=8.3 Hz), 7.05 (1H, td, J=7.7, 1.1 Hz), 3.80-4.02 (3H, 

m), 2.74-2.86 (1H, m), 2.59-2.69 (1H, m), 2.51 (3H, s, 

PhC(O)CH3), 2.31 (3H, s, PhCH3); 13C NMR (100 MHz, CDCl3): 

196.58, 167.39, 167.00, 145.25, 140.49, 138.91, 138.60, 

135.00, 132.97, 131.70, 130.76, 129.01, 127.74, 127.30, 126.98, 126.45, 123.29, 122.34, 122.18, 

121.52, 41.79, 40.02, 39.32, 25.55, 20.25;  FT-IR (cm-1): 1713 (s, C-O), 1682 (s, C-O), 1022 (m, S-

O); HRMS (ESI-TOF): m/z calcd for C33H29N2O5S+: 565.1792, found: 565.1788; mp (°C): 187; [𝛼]𝐷
20= 

-35.0° (c=0.1, CHCl3); Rf (CyHex/EtOAc, 7/3): 0.17. 

methyl 4-(4-methyl-1-oxo-1-((2-(S)-(p-tolylsulfinyl)phenyl)amino)pentan-3-yl)benzoate III-2nB  

Reaction was carried out using III-1n (100 mg) as substrate and methyl 4-iodobenzoate (180 mg, 

2.3 equiv.) as coupling partner. Purification using CyHex/EtOAc (7:3) afforded the major 

diastereomer (93 mg, 66%) as a clear oil and the minor diastereomer (26 mg, 18%). 1H NMR of 

the crude mixture showed a 75:25 diastereomeric ratio. 

Major diastereomer: 1H NMR (400 MHz, CDCl3): 10.34 (1H, br s, 

NH), 8.28 (1H, d, J=8.4 Hz), 7.88 (2H, d, J=8.1 Hz), 7.35-7.43 (2H, 

m), 7.30 (2H, d, J=8.1 Hz), 7.15-7.21 (4H, m), 7.07 (1H, t, J=7.5 

Hz), 3.88 (3H, s, C(O)OCH3), 3.02-3.10 (1H, m), 2.85 (1H, dd, 

J=15.3, 5.2 Hz), 2.54 (1H, dd, J=15.4, 9.8 Hz), 2.35 (3H, s, PhCH3), 

1.83-1.92 (1H, m), 0.95 (3H, d, J=6.7 Hz), 0.76 (3H, d, J=6.7 Hz); 

13C NMR (100 MHz, CDCl3): 169.95, 167.05, 148.72, 141.59, 

140.26, 139.73, 132.86, 130.10, 129.51, 128.25, 128.13, 127.51, 124.39, 124.37, 123.03, 122.45, 

51.95, 48.26, 41.23, 33.11, 21.26, 20.57, 20.32; HRMS (ESI-TOF): m/z calcd for C27H29NNaO4S+: 

486.1710, found: 186.1713; FT-IR (cm-1): 1720 (s, C=O), 1020 (m, S=O); [𝛼]𝐷
20= +78.2° (c=0.20, 

CHCl3); Rf (CyHex/EtOAc): 0.32. 
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4-methyl-3-(3-methoxyphenyl)-N-(2-(S)-(para-tolylsulfinyl)phenyl)valeramide III-2nC 

Reaction was carried out using III-1n (100 mg) as substrate and 3-iodoanisole (100 µL, 2.8 equiv.) 

as coupling partner. Purification with CyHex/EtOAc (4:1) afforded the major diastereomer (89 

mg, 67%) and the minor diastereomer (22 mg, 17%) as clear oils. 1H NMR of the crude showed a 

7:3 diastereomeric ratio. 

Major diastereomer: 1H NMR (400 MHz, CDCl3): 10.23 (1H, br s, 

NH), 8.28 (1H, d, J=8.4 Hz), 7.35-7.47 (2H, m), 7.31 (2H, d, J=8.2 

Hz), 7.04-7.18 (4H, m), 6.68-6.77 (3H, m), 3.75 (3H, s, COCH3), 

2.96 (1H, ddd, J=9.1, 7.3, 5.7 Hz), 2.78 (1H, dd, J=15.2, 5.6 Hz), 

2.52 (1H, dd, J=15.3, 8.9 Hz), 2.32 (3H, s, PhCH3), 1.80-1.90 (1H, 

m), 0.94 (3H, d, J=6.7 Hz), 0.77 (3H, d, J=6.7 Hz); 13C NMR (100 

MHz, CDCl3): 170.46, 159.36, 144.79, 141.45, 140.25, 139.76, 132.76, 130.06, 129.02, 127.38, 

124.79, 124.42, 123.04, 122.60, 120.62, 114.11, 111.57, 55.09, 48.40, 41.75, 33.14, 21.32, 20.72, 

20.28; HRMS (ESI-TOF): m/z calcd for C26H29NNaO3S+: 458.1760, found: 458.1768; FT-IR (cm-1): 

1694 (m, C=O); 1159 (m, C-O ether), 1021 (m, S=O); [𝛼]𝐷
20= -55.2° (c=0.10, CHCl3); Rf 

(CyHex/EtOAc, 7/3): 0.41. 

4-methyl-3-(4-acetylphenyl)-N-(2-(S)-(para-tolylsulfinyl)phenyl)valeramide III-2nH 

Reaction was carried out using III-1n (100 mg) as substrate and 4’-iodoacetophenone (150 mg, 2 

equiv.) as coupling partner. Purification with CyHex/EtOAc (4:1) afforded the major diastereomer 

(100 mg, 74%) and the minor diastereomer (28 mg, 21%) as orange oils. 1H NMR of the crude 

showed a 7:3 diastereomeric ratio. 

Major diastereomer: 1H NMR (400 MHz, CDCl3): 10.34 (1H, br s, 

NH), 8.26 (1H, d, J=8.4 Hz), 7.80 (2H, d, J=8.2 Hz), 7.33-7.41 (2H, 

m), 7.29 (2H, d, J=8.4 Hz), 7.14-7.22 (4H, m), 7.07 (1H, t, J=7.6 

Hz), 3.07 (1H, ddd, J=9.7, 7.4, 5.0 Hz), 2.84 (1H, dd, J=15.3, 4.7 

Hz), 2.52 (3H, s, PhC(O)CH3), 2.28-2.40 (4H, m), 1.82-1.95 (1H, 

m), 0.95 (3H, d, J=6.8 Hz), 0.75 (3H, d, J=6.7 Hz); 13C NMR (100 

MHz, CDCl3): 197.78, 169.98, 148.97, 141.67, 135.61, 135.32, 132.86, 130.45, 130.11, 128.43, 

128.33, 128.16, 127.54, 124.45, 123.10, 122.48, 48.32, 41.16, 33.13, 26.53, 21.31, 20.57, 20.32; 

HRMS (ESI-TOF): m/z calcd for C27H30NO3S+: 448.1941, found: 448.1964; FT-IR (cm-1): 1683 (s, 

C=O), 1022 (m, S=O); [𝛼]𝐷
20= +172.1° (c=0.30, CHCl3); Rf (CyHex/EtOAc, 7/3): 0.27. 



Chapter 3: Experimental section 

242 
 

4-methyl-3-(3-nitrophenyl)-N-(2-(S)-(para-tolylsulfinyl)phenyl)valeramide III-2nI 

Reaction was carried out using III-1n (100 mg) as substrate and 3-iodonitrobenzene (151 mg, 2 

equiv.) as coupling partner. Purification using CyHex/EtOAc (4:1) afforded the major 

diastereomer (82 mg, 60%) as a yellow solid and the minor diastereomer (21 mg, 15%) as an 

orange oil. 1H NMR of the crude mixture showed a 75:25 diastereomeric ratio. 

Major diastereomer: 1H NMR (400 MHz, CDCl3): 10.17 (1H, br s, 

NH), 8.18 (1H, d, J=8.2 Hz), 8.02 (1H, ddd, J=7.9, 2.2, 1.2 Hz), 

7.95 (1H, t, J=2.2 Hz), 7.36-7.48 (4H, m), 7.34 (2H, d, J=8.4 Hz), 

7.24-7.27 (2H, m), 7.10 (1H, td, J=7.6, 1.1 Hz), 2.99 (1H, ddd, 

J=9.5, 7.7, 1.5 Hz), 2.71 (1H, dd, J=15.0, 5.3 Hz), 2.54 (1H, dd, 

J=15.0, 9.6 Hz), 1.81-1.91 (1H, m), 0.92 (3H, d, J=6.8 Hz), 0.72 

(3H, d, J=6.9 Hz); 13C NMR (100 MHz, CDCl3): 169.80, 148.41, 145.32, 145.31, 141.79, 140.27, 

140.09, 134.60, 133.19, 130.29, 129.26, 128.02, 124.75, 123.46, 123.42, 123.00, 121.80, 48.75, 

41.61, 33.17, 21.52, 20.75, 20.43; HRMS (ESI-TOF): m/z calcd for C25H26KN2O4S+: 489.1245, found: 

489.1281; FT-IR (cm-1): 1694 (m, C=O), 1528 (s, N-O), 1348 (s, N-O), 1022 (w, S=O); mp (°C): 145; 

[𝛼]𝐷
20= +125.2° (c=0.10, CHCl3); Rf (CyHex/EtOAc, 7/3): 0.37.  

4-methyl-3-phenyl-N-(2-(S)-(para-tolylsulfinyl)phenyl)valeramide III-2nK 

Reaction was carried out using III-1n (100 mg) as substrate and iodobenzene (100 µL) as coupling 

partner. Purification using CyHex/EtOAc (95:5) afforded a mixture of diastereomers (112 mg, 

91%) as a clear oil. 1H NMR of the crude showed a 90:10 diastereomeric ratio. 

1H NMR (400 MHz, CDCl3): 10.21 (0.9H, br s, NH), 10.01 (0.1H, br 

s, NH), 8.26 (0.9H, d, J=8.2 Hz), 8.19 (0.1H, d, J=8.4 Hz), 7.28-7.43 

(4H, m), 7.11-7.23 (7H, m), 7.07 (1H, t, J=7.6 Hz); 2.89-3.03 (1H, 

m), 2.80 (0.9H, dd, J=15.5, 6.0 Hz), 2.67 (0.1H, dd, J=15.6, 5.8 

Hz), 2.47-2.57 (1H, m), 1.79-1.92 (1H, m), 0.93 (2.7H, d, J=6.7 

Hz), 0.88 (0.3H, d, J=6.7 Hz), 0.76 (2.7H, d, J=6.7 Hz), 0.72 (0.3H, 

d, J=6.8 Hz); 13C NMR (100MHz, CDCl3): 170.53, 142.96 (0.9C), 142.73 (0.1C), 141.43, 140.22, 

139.72, 132.83, 130.42 (0.9C), 130.30 (0.1C), 130.07 (0.9C), 130.02 (0.1C), 128.27, 128.11 (0.9C), 

128.05 (0.1C), 127.54 (0.1C), 127.48 (0.9C), 126.17, 124.52 (0.1C), 124.44 (0.9C), 123.05, 122.65, 

48.30 (0.9C), 45.92 (0.1C), 41.64, 33.14, 21.33, 20.74 (0.1C), 20.68 (0.9C), 20.19 (0.9C), 19.75 
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(0.1C); HRMS (ESI-TOF): m/z calcd for C25H28NO2S+: 406.1835, found: 406.1846; FT-IR (cm-1): 1697 

(s, C=O), 1022 (s, S=O); Rf (CyHex/EtOAc, 4/1): 0.50. 
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III.7.v. Arylation of hydrocinnamic acid derivatives 

General procedure for the coupling reactions of hydrocinnamic acid derivatives 

To a pressure tube were added 1l (50 mg, 0.138 mmol, 1 equiv.), coupling partner (0.276 mmol, 

2 equiv.), silver acetate (50 mg, 0.304 mmol, 2.2 equiv.) and palladium(II) acetate (1.5 mg, 0.7 

µmol, 5 mol%). The mixture was then dissolved in a 0.1 M of a 4:1 mixture of toluene and 

1,1,3,3-hexafluoroisopropanol. The mixture was then stirred 10 min at room temperature, then 

at 80 °C during 16h. After cooling down to room temperature, the mixture was diluted with 

DCM, filtered through PTFE 45 µm filter with a syringe and evaporated under reduced pressure. 

The crude mixture was purified by column chromatography on silica gel. 

(R)-3-(4-nitrophenyl)-3-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2kA 

Reaction was carried out using 4-iodonitrobenzene (70 mg) as coupling partner. Column 

chromatography on silica gel with CyHex/EtOAc (9:1 to 7:3) afforded the major diastereomer (33 

mg, 50%) as a yellow oil. 

Major diastereomer: 1H NMR (400 MHz, CDCl3): 10.48 (1H, br 

s, NH), 8.24 (1H, d, J=8.4 Hz), 7.96 (2H, d, J=8.8 Hz), 7.29-7.39 

(2H, m), 7.20-7.28 (6H, m), 7.10-7.17 (5H, m), 7.06 (1H, td, 

J=7.6, 1.1 Hz), 4.69 (1H, dd, J=9.3, 6.5 Hz), 3.04 (1H, dd, 

J=15.6, 6.3 Hz), 2.92 (1H, dd, J=15.6, 9.2 Hz), 2.32 (3H, s, 

PhCH3); 13C NMR (100 MHz, CDCl3): 168.46, 151.19, 146.49, 

142.03, 141.81, 140.16, 139.71, 132.98, 130.14, 128.98, 

128.59, 127.68, 127.18, 124.51, 123.81, 123.40, 122.65, 46.36, 43.35, 21.30; HRMS (ESI-TOF): 

m/z calcd for C28H25N2O4S+: 485.1530, found: 485.1540; FT-IR (cm-1) 1694 (m, C=O), 1518 (s, N-

O), 1345 (s, N-O), 1020 (m, S=O); [𝛼]𝐷
20= -14.5° (c=0.21, CHCl3); Rf (CyHex/EtOAc, 7/3): 0.35. 

3-(3-methoxyphenyl)-3-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2kC 

Reaction was carried out using 3-iodoanisole (approx. 35 µL) as coupling partner. Column 

chromatography on silica gel with CyHex/EtOAc (9:1 to 7:3) afforded the title compound (50 mg, 

78%) as an orange oil as a 9:1 mixture of diastereomers. 
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1H NMR (400 MHz, CDCl3): 10.34 (1H, br s, NH), 8.27 (1H, d, 

J=8.4 Hz), 7.42 (1H, dd, J=7.7, 1.3 Hz), 7.36-7.40 (1H, m), 

7.31-7.35 (2H, m), 7.12-7.26 (8H, m), 7.07 (1H, td, J=7.5, 1.3 

Hz), 6.79-6.83 (1H, m), 6.76-6.79 (1H, m), 6.67-6.73 (1H, m), 

4.60 (1H, t, J=7.8 Hz), 3.73 (0.3H, s, OCH3), 3.72 (2.7H, s, 

OCH3), 3.05 (1H, dd, J=15.5, 8.1 Hz), 2.96 (1H, dd, J=15.2, 7.4 

Hz), 2.33 (3H, s, PhCH3); 13C NMR (100 MHz, CDCl3): 169.38, 159.82, 145.55, 143.43, 141.58, 

140.25, 139.90, 132.94, 130.21, 129.64, 128.74, 127.65, 127.57, 126.68, 124.52, 123.34, 122.93, 

120.07, 113.95, 111.79, 55.27, 46.90, 44.05, 21.46; HRMS (ESI-TOF): m/z calcd for C29H27KNO3S+: 

508.1343, found: 508.1398; FT-IR (cm-1): 1694 (m, C=O), 1259 (s, C-O), 1037 (m, C-O), 1022 (s, 

S=O); Rf (CyHex/EtOAc, 7/3): 0.28. 

3-(3-nitrophenyl)-3-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2kH 

Reaction was carried out using 3-iodo-nitrobenzene (100 mg) as coupling partner. Column 

chromatography on silica gel with CyHex/EtOAc (7:3) afforded the title compound (78 mg, 84%) 

as a yellow oil as a 75:25 mixture of diastereomers. 

1H NMR (400 MHz, CDCl3): 10.46 (1H, br s, NH), 8.27 (1H, d, 

J=8.4 Hz), 8.08 (1H, t, J=2.1 Hz), 7.98-8.03 (1H, m), 7.50-7.54 

(1H, m), 7.28-7.46 (7H, m), 7.17-7.24 (4H, m), 7.11 (1H, t, 

J=7.6, 1.1 Hz), 4.65-4.77 (1H, m), 3.04-3.15 (1H, m), 2.94-3.02 

(1H, m), 2.35 (0.8H, s, PhCH3), 2.34 (2.2H, s, PhCH3); 13C NMR 

(100 MHz, CDCl3): 168.47, 148.42, 145.97, 142.02, 141.65, 

140.11, 139.65, 134.09, 132.90, 130.09, 129.43, 128.99, 127.68, 127.61, 127.25, 127.17, 124.45, 

123.37, 122.73, 122.59, 121.61; HRMS (ESI-TOF): m/z calcd for C28H25N2O4S+: 485.1530, found: 

485.1503; FT-IR (cm-1): 1694 (m, C=O), 1528 (s, N-O), 1347 (s, N-O), 1022 (m, S=O); Rf 

(CyHex/EtOAc, 7/3): 0.2. 
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3-(p-tolyl)-3-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2kI 

Reaction was carried out using 4-iodotoluene (60 mg) as coupling partner. Column 

chromatography on silica gel with CyHex/EtOAc (9:1 to 8:2) afforded the title compound (54 mg, 

87%) as a clear oil as a 85:15 mixture of diastereomers. 

1H NMR (400 MHz, CDCl3): 10.33 (1H, br s, NH), 8.28 (1H, d, 

J=8.3 Hz), 7.42 (1H, dd, J=7.7, 1.5 Hz), 7.31-7.39 (3H, m), 7.06-

7.27 (11H, m), 7.03 (2H, d, J=8.1 Hz), 4.58 (1H, t, J=7.9 Hz), 

3.04 (1H, dd, J=15.3, 7.9 Hz), 2.95 (1H, dd, J=15.3, 7.9 Hz), 

2.34 (3H, s, PhCH3), 2.27 (2.6H, s, PhCH3), 2.25 (0.4H, s, 

PhCH3); 13C NMR (100 MHz, CDCl3): 169.51, 143.92, 141.54, 

140.89, 140.33, 139.95, 135.99, 132.97, 130.23, 129.44, 128.74, 127.85, 127.81, 127.75, 127.72, 

127.63, 126.59, 124.56, 123.30, 122.94, 46.48, 44.19, 21.50, 21.20; HRMS (ESI-TOF): m/z calcd 

for C29H27KNO2S+: 492.1394, found: 492.1391; FT-IR (cm-1): 1695 (s, C=O), 1021 (s, S=O); Rf 

(CyHex/EtOAc, 7/3): 0.6. 

3-(3-fluorophenyl)-3-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2kL 

Reaction was carried out using 3-fluoroiodobenzene (40 µL) as coupling partner. Column 

chromatography on silica gel with CyHex/EtOAc (95:5) afforded the title compound (77 mg, 87%) 

as a clear oil as a 4:1 mixture of diastereomers. 

1H NMR (400 MHz, CDCl3): 10.37 (1H, br s, NH), 8.29 (1H, d, 

J=8.2 Hz), 7.37-7.46 (2H, m), 7.33 (2H, d, J=8.2 Hz), 7.24-7.29 

(2H, m), 7.13-7.23 (6H, m), 7.10 (1H, td, J=7.7, 1.1 Hz), 7.02 

(0.2H, d, J=7.7 Hz), 6.98 (0.8H, d, J=7.8 Hz), 6.81-6.91 (2H, 

m), 4.57-4.66 (1H, m), 2.99-3.08 (1H, m), 2.93 (1H, dd, 

J=15.5, 8.1 Hz), 2.35 (3H, s, PhCH3); 13C NMR (100 MHz, 

CDCl3): 168.93 (0.2C), 168.90 (0.8C), 162.88 (d, J=246 Hz), 146.40 (0.8C), 146.33 (0.2C), 143.07 

(0.2C), 142.87 (0.8C), 141.56 (0.8C), 141.51 (0.2C), 140.15, 139.65, 132.89, 130.10 (0.8C), 130.01 

(0.2C), 129.93, 128.73 (0.8C), 128.70 (0.2C), 127.70 (0.8C), 127.66 (0.2C), 127.57 (0.8C), 127.43 

(0.2C), 126.78 (0.8C), 126.67 (0.2C), 124.43 (0.2C), 124.36 (0.8C), 123.48, 123.45, 123.24, 122.75, 

114.88 (0.2C, d, J=21.4 Hz), 114.60 (0.8C, d, J=21.4 Hz), 113.47 (0.2C, d, J=20.2 Hz), 113.34 (0.8C, 

d, J=20.2 Hz), 46.38 (0.2C), 46.30 (0.8C), 43.73 (0.2C), 43.66 (0.8C), 21.34 (0.2C), 21.31 (0.8C); 19F 

NMR (376 MHz, CDCl3): -112.73 (0.8F), -112.86 (0.2F); HRMS (ESI-TOF): m/z calcd for 
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C28H24FKNO2S+: 496.1143, found: 496.1199; FT-IR (cm-1): 1697 (s, C=O), 1025 (s, S=O); Rf 

(CyHex/EtOAc, 7/3): 0.45. 

3-(3-trifluorophenyl)-3-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2kM 

Reaction was carried out using 3-iodobenzotrifluoride (50 µL) as coupling partner. Column 

chromatography on silica gel with CyHex/EtOAc (9:1 to 7:3) afforded the title compound (97 mg, 

87%) as a yellow oil as a 4:1 mixture of diastereomers. 

1H NMR (400 MHz, CDCl3): 10.39 (1H, br s, NH), 8.27 (1H, d, 

J=8.4 Hz), 7.48 (1H, s), 7.35-7.45 (4H, m), 7.29-7.34 (3H, m), 

7.27 (2H, d, J=8.2 Hz), 7.16-7.23 (5H, m), 7.10 (1H, td, J=7.5, 

1.3 Hz), 4.69 (1H, t, J=7.7 Hz), 3.02-3.12 (1H, m), 2.91-3.00 

(1H, m), 2.35 (0.6H, s, PhCH3), 2.34 (2.4H, s, PhCH3); 13C 

NMR (100 MHz, CDCl3): 168.76, 144.84 (0.8C), 144.57 

(0.2C), 142.76 (0.2C), 142.49 (0.8C), 141.57 (0.8C), 141.53 (0.2C), 140.11, 139.76 (0.2C), 139.71 

(0.8C), 132.87, 131.07, 130.12 (0.2C), 130.07 (0.8C), 129.06 (0.2C), 129.00 (0.8C), 128.83 (0.8C), 

128.79 (0.2C), 127.73 (0.8C), 127.69 (0.2C), 127.57 (0.8C), 127.46 (0.2C), 126.92 (0.8C), 126.79 

(0.2C), 124.58 (q, J=3.8 Hz), 124.42, 124.10 (q, J=271.7 Hz), 123.39 (q, J=3.0 Hz), 122.82, 46.51, 

43.69, 26.94, 21.29; 19F NMR (376 MHz, CDCl3): -62.44 (0.8F), -62.46 (0.2F); HRMS (ESI-TOF): m/z 

calcd for C29H25F3NO2S+: 508.1553, found: 508.1599; FT-IR (cm-1): 1693 (s, C=O), 1327 (s, C-F), 

1022 (m, S=O); Rf (CyHex/EtOAc, 7/3): 0.32. 

3-(4-bromophenyl)-3-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2kN 

Reaction was carried out using 4-iodobromobenzene (120 mg) as coupling partner. Column 

chromatography on silica gel with CyHex/EtOAc (95:5) afforded the title compound (92 mg, 92%) 

as a brown oil as a 9:1 mixture of diastereomers. 

1H NMR (400 MHz, CDCl3): 10.46 (0.9H, br s, NH), 10.40 

(0.1H, br s, NH), 8.26-8.37 (1H, m), 7.36-7.44 (2H, m), 7.24-

7.33 (6H, m), 7.15-7.23 (5H, m), 7.08-7.12 (1H, m), 7.06 (2H, 

d, J=8.4 Hz), 4.53-4.63 (1H, m), 2.99-3.08 (1H, m), 2.92 (1H, 

dd, J=15.3, 8.7 Hz), 2.38 (2.6H, s, PhCH3), 2.35 (0.4H, s, 

PhCH3); 13C NMR (100 MHz, CDCl3): 168.97, 143.03, 142.73, 

141.65, 140.21, 139.75, 132.87, 131.67 (0.1C), 131.63 

(0.9C), 130.15 (0.9C), 130.11 (0.1C), 129.53, 128.73 (0.9C), 128.70 (0.1C), 127.65 (0.9C), 127.62 
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(0.1C), 127.54 (0.1C), 127.51 (0.9C), 127.20, 126.74, 124.44, 123.25, 122.67, 120.27, 46.00, 

43.78, 21.40; HRMS (ESI-TOF): m/z calcd for C28H25BrNO2S+: 518.0784, found: 518.0753; FT-IR 

(cm-1): 1694 (s, C=O), 1021 (m, S=O), 757 (s, C-Br); Rf (CyHex/EtOAc, 8/2): 0.47. 

3-(4-methoxyphenyl)-3-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2kO 

Reaction was carried out using 4-iodoanisole (65 mg) as coupling partner. Column 

chromatography on silica gel with CyHex/EtOAc (9:1 to 8:2) afforded the title compound (61 mg, 

94%) as a yellow oil as a 9:1 mixture of diastereomers. Suitable single crystals for X-Ray analysis 

were grown by slow evaporation method in a mixture of DCM and chloroform. 

1H NMR (400 MHz, CDCl3): 10.35 (1H, br s, NH), 8.28 (1h, d, 

J=8.3 Hz), 7.34-7.43 (2H, m), 7.32 (2H, d, J=8.4 Hz), 7.13-7.27 

(8H, m), 7.11 (2H, d, J=8.4 Hz), 7.06 (1H, td, J=7.5, 1.1 Hz), 

6.75 (2H, d, J=8.7 Hz), 4.57 (1H, t, J=7.8 Hz), 3.72 (2.7H, s, 

OCH3), 3.71 (0.3H, s, OCH3) 3.03 (1H, dd, J=15.2, 7.7 Hz), 2.93 

(1H, dd, J=15.2, 8.1 Hz), 2.33 (3H, s, PhCH3); 13C NMR (100 

MHz, CDCl3): 169.53, 158.19, 144.03, 141.60, 140.29, 139.91, 136.01, 132.97, 130.22, 128.82, 

128.71, 127.79, 127.58, 126.56, 124.56, 123.32, 122.88, 114.09, 55.29, 46.06, 44.38, 21.45; 

HRMS (ESI-TOF): m/z calcd for C29H27KNO3S+: 508.1343, found: 508.1370; FT-IR (cm-1): 1694 (m, 

C=O), 1265 (s, C-O ether), 1022 (m, S=O); Rf (CyHex/EtOAc, 7/3): 0.42. 

3-(4-chlorophenyl)-3-(3-methoxyphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)propanamide III-2lC 

Reaction was carried out using III-1l (84 mg) as substrate and 3-iodoanisole (50 µL, 2 equiv.) as 

coupling partner. Purification with CyHex/EtOAc (9:1) afforded the title compound (98 mg, 92%) 

as a yellow oil as a 85:15 mixture of diastereomers. 

1H NMR (400 MHz, CDCl3): 10.45 (0.2H, br s, NH), 10.39 (0.8H, br 

s, NH), 8.24-8.35 (1H, m), 7.37-7.44 (2H, m), 7.28-7.34 (2H, m), 

7.08-7.23 (8H, m), 8.75-6.81 (1H, m), 6.69-6.73 (2H, m), 4.52-

4.61 (1H, m), 3.72-3.76 (3H, m, COCH3), 2.86-3.07 (2H, m), 2.37 

(0.5H, s, PhCH3), 2.34 (2.5H, s, PhCH3); 13C NMR (100 MHz, 

CDCl3): 168.96, 159.76, 144.96, 144.74, 142.06 (0.2C), 141.75 

(0.8C), 141.64 (0.2C), 141.55 (0.8C), 140.13, 139.71, 132.85, 132.33, 130.12 (0.2C), 130.10 (0.8C), 

129.71 (0.2C), 129.66 (0.8C), 129.11, 128.73 (0.8C), 128.69 (0.2C), 127.50 (0.8C), 127.42 (0.2C), 

124.43, 123.29 (0.8C), 123.25 (0.2C), 122.77, 119.82, 113.78, 111.83 (0.2C), 111.78 (0.8C), 55.16, 
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46.13 (0.8C), 45.93 (0.2C), 43.80 (0.2C), 43.75 (0.8C), 21.34; HRMS (ESI-TOF): m/z calcd for 

C29H27ClNO3S+: 504.1395, found: 504.1382; FT-IR (cm-1): 1694 (m, C-O amide), 1585 (s, C-O 

ether), 1022 (s, S-O); Rf (CyHex/EtOAc, 7/3): 0.45. 

3-(3-nitrophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)-3-(3-(trifluoromethyl)phenyl)propanamide 

III-2mI 

Reaction was carried out using III-1m (50 mg) as substrate and 1-iodo-3-nitrobenzene (60 mg, 2 

equiv.) as coupling partner. Purification with CyHex/EtOAc (4:1) afforded the title compound (56 

mg, 88%) as a thick clear oil as a 90:10 mixture of diastereomers. 

1H NMR (400 MHz, CDCl3): 10.45-10.56 (1H, m, NH), 8.25 (1H, d, 

J=8.4 Hz), 8.02-8.10 (2H, m), 7.35-7.53 (8H, m), 7.32 (2H, d, J=8.5 

Hz), 7.20 (2H, d, J=8.4 Hz), 7.12 (1H, td, J=7.6, 1.1 Hz), 4.73-4.82 (1H, 

m), 3.06-3.14 (1H, m), 2.94-3.04 (1H, m), 2.35 (0.6H, s, PhCH3), 2.34 

(2.4H, s, PhCH3); 13C NMR (100 MHz, CDCl3): 167.97, 148.49, 144.92 

(0.8C), 144.65 (0.2C), 143.07 (0.8C), 142.56 (0.2C), 134.00 (0.8C), 

133.92 (0.2C), 132.95 (0.8C), 132.73 (0.2C), 130.12, 124.48, 122.13 (0.2C), 121.99 (0.8C),14 46.17 

(0.2C), 46.12 (0.8C), 43.14, 12.31 (0.2C), 21.26 (0.8C); 19F NMR (377 MHz, CDCl3): -62.54 (0.2F), -

62.55 (0.8F); HRMS (ESI-TOF): m/z calcd for C29H24F3N2O4S+: 553.1403, found: 553.1386; FT-IR 

(cm-1): 1697 (m, C-O), 1529 (s, N-O), 1328 (s, C-F), 1123 (s, C-F), 1022 (m, S-O); Rf (CyHex/EtOAc, 

7/3): 0.29. 

 

 

 

 

 

 

 

                                                        
14 Due to the complexity of the spectrum with the diastereomeric mixture and the presence of C-F couplings, 
some carbons were omitted between 122.00 and 144.93 ppm. 
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3-(naphthalen-2-yl)-N-(2-((S)-p-tolylsulfinyl)phenyl)-3-(3-(trifluoromethyl)phenyl)propanamide 

III-2mE 

Reaction was carried out using 1n (50 mg) as substrate and 2-iodonaphthalene (60 mg, 2 equiv.) 

as coupling partner. Purification with CyHex/EtOAc (95:5) afforded the title compound (46 mg, 

72%) as a thick clear oil as a 90:10 mixture of diastereomers. 

1H NMR (400 MHz, CDCl3): 10.52 (0.9H, br s, NH), 10.48 (0.1H, br s, 

NH), 8.28 (1H, d, J=8.3 Hz), 7.67-7.80 (4H, m), 7.35-7.55 (8H, m), 

7.25-7.32 (3H, m), 7.09 (1H, td, J=7.5, 0.9 Hz), 6.99 (2H, d, J=8.2 Hz), 

4.82-4.90 (1H, m), 2.99-3.25 (2H, m), 2.33 (0.3H, s, PhCH3), 2.23 

(2.7H, s, PhCH3); 13C NMR (100 MHz, CDCl3): 168.76, 144.47, 141.56, 

140.27, 140.11, 139.64, 133.49, 132.79, 132.39, 131.20, 130.88 (q, 

J=31.3 Hz), 130.02, 129.10, 128.59, 127.97, 127.62, 127.38, 126.28, 126.23, 126.08, 126.87, 

124.73 (q, J=4.4 Hz), 124.44, 124.34, 124.12 (q, J=272 Hz), 123.56 (q, J=3.6 Hz), 123.34, 122.75, 

46.57, 43.73, 21.22;15 19F NMR (377 MHz, CDCl3): -62.44 (0.1F), -62.47 (0.9F); HRMS (ESI-TOF): 

m/z calcd for C33H27F3NO2S+: 558.1709, found: 558.1683; FT-IR (cm-1): 1691 (m, C-O), 1328 (s, C-

F), 1124 (s, C-F), 1021 (m, S-O); Rf (CyHex/EtOAc, 7/3): 0.55. 

 

 

 

 

                                                        
15 For greater clarity, only the shifts corresponding to the major diastereomer are reported.  
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III.7.vi. One-pot double functionalization of aliphatic chains 

dimethyl 4,4'-(3-oxo-3-((2-((S)-p-tolylsulfinyl)phenyl)amino)propane-1,1-diyl)-dibenzoate III-

2oBB 

III-1o (35 mg, 0.12 mmol, 1 equiv.), methyl 4-iodobenzoate (80 mg, 0.30 mmol, 2.5 equiv.), silver 

acetate (85 mg, 0.51 mmol, 4 equiv.) and palladium(II) acetate (1.5 mg, 0.006 mmol, 5 mol%) 

were dissolved in 1 mL of a 4:1 mixture of toluene and 1,1,3,3-hexafluoroisopropanol. The 

resulting mixture was stirred 10 min at room temperature, then at 110 °C during 24h. After 

cooling to room temperature, the mixture was filtered through PTFE 45 µm filter with a syringe 

and evaporated under reduced pressure. The crude was purified by a short column 

chromatography on silica gel with CyHex/EtOAc (3:2) to afford the title compound (42 mg, 62%) 

as a yellow oil. 

1H NMR (400 MHz, CDCl3): 10.50 (1H, br s, NH), 8.26 

(1H, d, J=8.4 Hz), 7.93 (2H, d, J=8.2 Hz), 7.88 (2H, d, 

J=8.3 Hz), 7.37-7.44 (2H, m), 7.31 (2H, d, J=8.2 Hz), 

7.27 (2H, d, J=8.2 Hz), 7.17-7.23 (4H, m), 7.08-7.13 

(1H, m), 4.74 (1H, t, J=7.6 Hz), 3.84-3.88 (6H, m, 

C(O)OCH3), 3.08 (1H, dd, J=15.6, 7.3 Hz), 2.97 (1H, 

dd, J=15.4, 8.3 Hz), 2.36 (3H, s, PhCH3); 13C NMR (100 MHz, CDCl3): 168.41, 166.78, 166.75, 

148.04, 147.93, 141.67, 140.11, 139.70, 132.92, 130.15, 130.10, 130.07, 128.78, 128.64, 127.84, 

127.78, 127.59, 127.16, 124.42, 123.35, 122.69, 52.08, 52.07, 46.48, 43.21, 43.21, 21.28; HRMS 

(ESI-TOF): m/z calcd for C32H29NNaO6S+: 578.1608, found: 578.1607; FT-IR (cm-1) : 1721 (s, C=O), 

1023 (m, S=O); [𝛼]𝐷
20= -11.40° (c=0.25, CHCl3); Rf (CyHex/EtOAc, 7/3): 0.25. 

(S)-3,3-bis(3-acetylphenyl)-N-(2-(p-tolylsulfinyl)phenyl)propenamide III-2oDD 

III-1o (20 mg, 0.07 mmol, 1 equiv.), 3’-iodoacetophenone (30 µL, 0.22 mmol, 3 equiv.), silver 

acetate (50 mg, 0.30 mmol, 4 equiv.) and palladium(II) acetate (0.6 mg, 0.003 mmol, 4 mol%) 

were dissolved in 600 µL of a 4:1 mixture of toluene and 1,1,3,3-hexafluoroisopropanol. The 

resulting mixture was stirred 10 min at room temperature, then at 110 °C during 24h. After 

cooling to room temperature, the mixture was filtered through PTFE 45 µm filter with a syringe 

and evaporated under reduced pressure. The crude was purified by a short column 

chromatography on silica gel with CyHex/EtOAc (3:2) to afford the title compound (32 mg, 88%) 

as a yellow oil. 
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1H NMR (400 MHz, CDCl3): 10.38 (1H, br s, NH), 8.20 (1H, 

d, J=8.3 Hz), 7.78 (1H, s), 7.67-7.74 (2H, m), 7.29-7.40 

(6H, m), 7.26 (2H, d, J=8.4 Hz), 7.13 (2H, d, J=8.2 Hz), 7.05 

(1H, t, J=7.5 Hz), 4.69 (1H, t, J=7.7 Hz), 3.04 (1H, dd, 

J=15.1, 8.1 Hz), 2.94 (1H, dd, J=15.1, 7.3 Hz), 2.46-2.52 

(6H, m), 2.29 (3H, s, PhCH3); 13C NMR (100 MHz, CDCl3): 

197.95, 197.91, 168.66, 143.79, 143.48, 140.00, 139.66, 137.56, 137.54, 132.84, 132.41, 132.30, 

130.13, 130.05, 129.08, 129.01, 127.61, 127.58, 127.55, 127.49, 127.00, 126.88, 124.47, 123.45, 

122.78, 46.56, 43.56, 26.72, 26.71, 21.33; HRMS (ESI-TOF): m/z calcd for C32H30NO4S+: 524.1890, 

found: 524.1879; FT-IR (cm-1): 1698 (s, C=O), 1022 (s, S=O); [𝛼]𝐷
20= -87.2° (c=0.20, CHCl3); Rf 

(CyHex/EtOAc, 7/3): 0.22. 

3-(2-acetylphenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2oE 

General arylation procedure was carried out using III-1o (70 mg) as substrate and 2’-

iodoacetophenone (50 µL, 1.5 equiv.) as coupling partner. Purification with CyHex/EtOAc (7:3) 

afforded the title compound (89 mg, 90%) as an orange oil. 

1H NMR (400 MHz, CDCl3): 10.10 (1H, br s, NH), 8.32 (1H, d, 

J=8.1 Hz), 7.71 (1H, dd, J=7.7, 1.5 Hz), 7.50 (1H, dd, J=7.8, 1.5 

Hz), 7.40-7.45 (1H, m), 7.35-7.39 (3H, m), 7.25-7.30 (2H, m), 

7.20 (2H, d, J=8.4 Hz), 7.12 (1H, td, J=7.6, 1.1 Hz), 3.09-3.22 

(2H, m), 2.55-2.66 (5H, m), 2.33 (3H, s, PhCH3); 13C NMR (100 

MHz, CDCl3): 201.58, 170.95, 141.43, 141.19, 140.13, 139.74, 137.63, 132.98, 131.99, 131.71, 

130.16, 129.87, 127.69, 126.57, 124.51, 123.40, 123.15, 119.95, 39.54, 30.06, 29.79, 21.49; 

HRMS (ESI-TOF): m/z calcd for C24H23NNaO3S+: 428.1291, found: 428.1291; FT-IR (cm-1): 1683 (s, 

C=O), 1022 (m, S=O); [𝛼]𝐷
20= +34.9° (c=0.10, CHCl3); Rf (CyHex/EtOAc, 7/3): 0.20. 
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3-(2-bromophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)propionamide III-2oG 

General arylation procedure was carried out using III-1o (70 mg) as substrate and 1-iodo-2-

bromobenzene (50 µL, 1.5 equiv.) as coupling partner. Purification with CyHex/EtOAc (9:1) 

afforded the title compound (98 mg, 91%) as a yellow solid.  

1H NMR (400 MHz, CDCl3): 10.19 (1H, br s, NH), 8.36 (1H, d, 

J=8.4 Hz), 7.49-7.55 (2H, m), 7.44-7.49 (1H, m), 7.35 (2H, d, 

J=8.4 Hz), 7.18-7.22 (4H, m), 7.12-7.17 (1H, m), 7.03-7.08 (1H, 

m), 3.03 (2H, t, J=7.8 Hz), 2.49-2.70 (2H, m), 2.33 (3H, s, 

PhCH3) ; 13C NMR (100 MHz, CDCl3): 170.19, 141.34, 140.09, 

139.84, 139.49, 133.00, 132.89, 130.55, 130.02, 128.07, 127.79, 127.65, 124.66, 124.36, 124.28, 

123.26, 123.00, 37.47, 31.63, 21.32; HRMS (ESI-TOF): m/z calcd for C22H20BrNNaO2S+: 464.0290, 

found: 464.0275; FT-IR (cm-1): 1694 (s, C=O), 1034 (s, S=O); mp (°C): 157; [𝛼]𝐷
20= -57.0° (c=0.2, 

CHCl3); Rf (CyHex/EtOAc, 8/2): 0.45. 

3-(2-nitrophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2oP 

General arylation procedure was carried out using III-1o (20 mg) as substrate and 2-

iodonitrobenzene (25 mg, 1.5 equiv.) as coupling partner. Purification with CyHex/EtOAc (4:1) by 

preparative TLC afforded the title compound (25 mg, 89%) as an orange oil. 

1H NMR (400 MHz, CDCl3): 10.20 (1H, br s, NH), 8.33 (1H, d, 

J=8.3 Hz), 7.93 (1H, d, J=8.0 Hz), 7.40-7.55 (3H, m), 7.28-7.39 

(4H, m), 7.21 (2H, d, J=8.2 Hz), 7.14 (1H, t, J=7.7 Hz), 3.17 (2H, 

d, J=7.7 Hz), 2.58-2.76 (2H, m), 2.33 (3H, s, PhCH3); 13C NMR 

(100 MHz, CDCl3): 169.93, 143.44, 141.55, 140.17, 139.64, 135.95, 133.39, 133.12, 132.43, 

130.21, 128.35, 127.92, 127.70, 125.06, 124.40, 123.49, 123.10, 38.27, 28.61, 21.48; HRMS (ESI-

TOF): m/z calcd for C22H20KN2O4S+: 447.0775, found: 447.0772; FT-IR (cm-1): 1698 (w, C=O), 1524 

(s, N-O), 1022 (w, S=O); [𝛼]𝐷
20= +78.1° (c=0.15, CHCl3); Rf (CyHex/EtOAc): 0.22. 

3-(3-methoxyphenyl)-3-(2-nitrophenyl)-N-(2-((S)-p-tolylsulfinyl)phenyl)propenamide III-2oPC 

III-1o (30 mg, 0.10 mmol, 1 equiv.), 2-nitroiodobenzene (26 mg, 0.10 mmol, 1 equiv.), silver 

acetate (40 mg, 0.23 mmol, 2.2 equiv.) and palladium(II) acetate (1 mg, 0.005 mmol, 5 mol%) 

were dissolved in 1 mL of a 4:1 mixture of toluene and 1,1,3,3-hexafluoroisopropanol. The 

resulting mixture was stirred 10 min at room temperature, then at 110 °C during 24h. The 
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mixture was cooled to room temperature and the conversion was checked by 1H NMR. 3-

iodoanisole (40 µL, 0.36 mmol, 3.5 equiv.) and more silver acetate (40 mg, 0.23 mmol, 2.2 equiv.) 

were added to the brown mixture, which was further stirred 24h at 130 °C. After cooling to room 

temperature, the mixture was filtered through PTFE 45 µm filter with a syringe and evaporated 

under reduced pressure. The crude was purified by a short column chromatography on silica gel 

with CyHex/EtOAc (5:2) to afford the title compound (42 mg, 78%) as an orange oil as a mixture 

of diastereomers. 1H NMR of the crude showed a 7:3 diastereomeric ratio. 

1H NMR (400 MHz, CDCl3): 10.37 (0.3H, br s, NH), 10.33 (0.7H, 

br s, NH), 8.23-8.28 (1H, m), 7.73-7.77 (1H, m), 7.26-7.53 (7H, 

m), 7.13-7.23 (3H, m), 7.10 (1H, t, J=7.5 Hz), 6.72-6.85 (3H, m), 

5.28 (1H, t, J=7.7 Hz), 3.73 (3H, s, COCH3), 3.03-3.13 (1H, m), 

2.91-3.00 (1H, m), 2.36 (3H, s, PhCH3); 13C NMR (100 MHz, 

CDCl3): 168.23 (0.7C), 168.19 (0.3C), 159.76, 149.89, 143.38 

(0.7C), 143.11 (0.3C), 141.53 (0.7C), 141.49 (0.3C), 140.13 (0.3C), 140.11 (0.3C), 140.05 (0.7C), 

139.77 (0.7C), 139.60, 137.74 (0.3C), 137.58 (0.7C), 132.92 (0.7C), 132.72 (0.3C), 132.51, 130.16 

(0.7C), 130.12 (0.3C), 129.69 (0.3C), 129.61 (0.7C), 129.35, 127.49, 127.41 (0.7C), 127.27 (0.3C), 

124.62, 124.49 (0.3C), 124.45 (0.7C), 124.39 (0.3C), 124.35 (0.7C), 123.26, 122.90, 120.09 (0.3C), 

119.95 (0.7C), 114.10 (0.7C), 114.06 (0.3C), 112.20 (0.3C), 112.12 (0.7C), 55.18, 43.32 (0.7C), 

43.18 (0.3C), 40.59 (0.3C), 40.49 (0.7C), 21.35; HRMS (ESI-TOF): m/z calcd for C29H27N2O5S+: 

515.1635, found: 515.1614; FT-IR (cm-1): 1694 (m, C=O), 1525 (s, N-O), 1022 (m, S=O); Rf 

(CyHex/EtOAc, 7/3): 0.38.  
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III.7.vii. Deprotection experiments 

ethyl (R)-3-(4-acetylphenyl)-4-methylpentanoate  

To a stirred solution of III-2nH (50 mg, 0.12 mmol, 1 equiv.) in 0.5 mL of ethanol was added 1 mL 

5M KOH solution in water. The resulting mixture was stirred at reflux during 18h. After cooling to 

room temperature, ethanol was evaporated under reduced pressure. Diethylether (20 mL) and 

more water (15 mL) were added. The aqueous layer was acidified with conc. HCl (few drops) to 

ca. pH 1. Diethylether (20 mL) was added and the organic layer was extracted, washed with 

water (10 mL), brine (10 mL), dried (Na2SO4), filtered off and evaporated under reduced 

pressure. The crude was dissolved in 5 mL of ethanol and concentrated sulfuric acid (20 µL, 0.38 

mmol, 2.5 equiv.) was added dropwise. The resulting mixture was stirred at reflux overnight. 

After cooling to room temperature, ethanol was evaporated under reduced pressure. 

Diethylether (20 mL) and water (10 mL) were added. The organic layer was extracted, washed 

with brine (20 mL), dried (Na2SO4), filtered off and evaporated under reduced pressure. The 

crude was purified by column chromatography on silica gel with CyHex/EtOAc (95:5) to afford 

the title compound (24 mg, 82%) as a clear oil. 

1H NMR (400 MHz, CDCl3): 7.86 (2H, d, J=8.2 Hz), 7.16-7.26 (2H, m), 3.85-

3.99 (2H, m), 2.94 (1H, ddd, J=10.2, 7.7, 5.3 Hz), 2.78 (1H, dd, J=15.2, 5.3 

Hz), 2.49-2.66 (4H, m), 1.75-1.93 (1H, m), 1.05 (3H, t, J=7.0 Hz), 0.94 (3H, d, 

J=6.8 Hz), 0.78 (3H, d, J=6.7 Hz); 13C NMR (100 MHz, CDCl3): 197.89, 172.41, 

148.88, 135.50, 128.49, 128.26, 60.31, 48.97, 38.24, 33.13, 26.57, 20.53, 

20.38, 14.06 ; HRMS (ESI-TOF): m/z calcd for C16H23O3
+: 263.1642, found: 263.1638; FT-IR (cm-1): 

1733 (C=O ester), 1683 (C=O ketone); [𝛼]𝐷
20= +6.75° (c=0.24, CHCl3);16 Rf (CyHex/EtOAc, 4/1): 0.5.  

ethyl 3-(3-nitrophenyl)-3-phenylpropanoate  

To a stirred solution of III-2kI (773 mg, 1.59 mmol, 1 equiv.) in 2 mL of ethanol was added 2 mL 

5M KOH solution in water. The resulting mixture was stirred at reflux during 18h. After cooling to 

room temperature, ethanol was evaporated under reduced pressure. Diethylether (20 mL) and 

more water (15 mL) were added. The organic layer was extracted, washed with brine (20 mL), 

dried (Na2SO4), filtered off and evaporated under reduced pressure to yield APS as a yellow oil 

(345 mg, 93%) with no loss of enantiomeric purity (checked by chiral HPLC). The aqueous layer 

was acidified with conc. HCl (few drops) to ca. pH 1. Diethylether (20 mL) was added and the 

                                                        
16 The same procedure was applied for the minor diastereomer to yield the other enantiomer, which [𝛼]𝐷

20= -
6.68° (c=0.25, CHCl3). Assumed ee>95% with no loss of enantiomeric purity. 
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organic layer was extracted, washed with water (10 mL), brine (10 mL), dried (Na2SO4), filtered 

off and evaporated under reduced pressure. The crude was dissolved in 10 mL of ethanol and 

concentrated sulfuric acid (200 µL, 3.75 mmol, 2.5 equiv.) was added dropwise. The resulting 

mixture was stirred at reflux overnight. After cooling to room temperature, ethanol was 

evaporated under reduced pressure. Diethylether (20 mL) and water (10 mL) were added. The 

organic layer was extracted, washed with brine (20 mL), dried (Na2SO4), filtered off and 

evaporated under reduced pressure. The crude was purified by column chromatography on silica 

gel with CyHex/EtOAc (9:1) to afford the title compound (457 mg, 96%) as a clear oil.17 

1H NMR (400 MHz, CDCl3): 8.11 (1H, s), 8.05 (1H, ddd, J=8.2, 2.0, 0.8 Hz), 

7.54-7.58 (2H, m), 7.43 (1H, t, J=7.9 Hz), 7.26-7.33 (2H, m), 7.18-7.24 (3H, 

m), 4.64 (1H, t, J=7.9 Hz), 4.03 (2H, q, J=7.2 Hz, C(O)OCH2CH3), 3.08 (2H, 

d, J=8.0 Hz), 1.11 (3H, t, J=7.1 Hz, C(O)OCH2CH3); 13C NMR (100 MHz, 

CDCl3): 171.16, 145.67, 142.03, 134.15, 129.51, 128.94, 127.60, 127.19, 

122.51, 121.78, 60.77, 46.71, 40.42, 14.08; HRMS (ESI-TOF): m/z calcd for C17H17NNaO4
+: 

322.1050, found: 322.1083; FT-IR (cm-1): 1733 (s, C=O ester), 1530 (s, N-O), 1348 (s, N-O); Rt 

(min, ODH, Hex/iPrOH, 80/20, 0.5 mL/min): 12.90 (75%), 15.31 (25%); Rf (CyHex/EtOAc, 8/2): 

0.74. 

(R)-2,3,5,6-tetrafluoro-4-methylbenzyl 4-methyl-3-phenylpentanoate III-3 

To a stirred solution of III-2nK (70 mg, 0.17 mmol, 1 equiv.) in 1.4 mL of ethanol was added a 

solution of KOH (70 mg, 1.25 mmol, 7.2 equiv.) in 0.6 mL of water. The resulting mixture was 

stirred at reflux during 18h. After cooling to room temperature, diethyl ether (10 mL) and more 

water (10 mL) were added. The organic layer was extracted, washed with water (3x 10 mL), brine 

(10 mL), dried (Na2SO4), filtered off and evaporated under reduced pressure to get back the 

chiral auxiliary APS (35 mg, 87%). 

The combined aqueous layers were carefully acidified with conc. HCl (few drops) to reach ca. pH 

1. Diethyl ether (10 mL) was added. The organic layer was washed with water (3x 10 mL) to 

reach ca. pH 7, brine (10 mL), dried (Na2SO4), filtered off and evaporated under reduced 

pressure to yield the crude acid as a yellow solid. To the crude was added 2,3,5,6-tetrafluoro-4-

methylbenzyl alcohol (30 mg, 0.15 mmol, 1 equiv.) and 2 mL of acetonitrile. After complete 

                                                        
17 When deprotection was performed in a solution of HCl in EtOH at 100°C, APS auxiliary could not be 
recovered, but decomposed to ethyl 4-methylbenzenesulfinate. HRMS (ESI-TOF): m/z calcd for C9H12NaO2S: 
207.0450, found: 207.0490.  
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dissolution of the solids, dicyclohexylcarbodiimide (40 mg, 0.19 mmol, 1.3 equiv.) and 4-

(dimethylamino)-pyridine (2 mg, 0.016 mmol, 10 mol%) were added and the resulting mixture 

was stirred 10h at room temperature. 

The precipitate of DCU was removed by filtration. Diethyl ether (10 mL) was added to the 

filtrate, which was washed with sat. NaHCO3 sol. (2 x 10 mL), brine (3x 10 mL), dried (Na2SO4), 

filtered off and evaporated under reduced pressure. The crude was purified with CyHex/EtOAc 

(95:5) to afford the title compound (52mg, 91%) as a white solid.18  

1H NMR (400 MHz, CDCl3): 7.16-7.22 (2H, m), 7.09-7.14 (1H, m), 

7.04-7.08 (2H, m), 4.95-5.04 (2H, m), 2.74-2.88 (2H, m), 2.59 (1H, 

dd, J=14.4, 9.7 Hz), 2.25 (3H, t, J=2.2 Hz), 1.81 (1H, dq, J=13.7, 7.0 

Hz), 0.91 (3H, d, J=6.8 Hz), 0.71 (3H, d, J=6.8 Hz); [𝛼]𝐷
25= -2.1° 

(c=1.05, CH2Cl2);19 other data match the reported ones. 

  

                                                        
18 Procedure adapted from Bioorg. Med. Chem. Lett., 2014, 24, pp. 2734-2736. 
19 In the litterature, [𝛼]𝐷

25 (R) = -2.3° (c=1, CH2Cl2) and [𝛼]𝐷
25 (S) = +1.9° (c=1, CH2Cl2). 
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III.7.viii. Acetoxylation 

3-oxo-1-phenyl-3-((2-((S)-p-tolylsulfinyl)phenyl)amino)propyl acetate III-4 

III-1k (70 mg, 0.19 mmol, 1 equiv.), (diacetoxyiodo)benzene (124 mg, 0.39 mmol, 2 equiv.) and 

palladium(II) acetate (2.8 mg, 0.01247 mmol, 5 mol%) were weighted in a pressure tube. Then, 

1.5 mL of a 12:2:1 mixture of toluene, 1,1,3,3-hexafluoroisopropanol and acetic anhydride were 

added. The resulting mixture was stirred 10 min at room temperature, then 24h at 110 °C. After 

cooling to room temperature, the mixture was filtered through PTFE 45 µm filter with a syringe 

and evaporated under reduced pressure. The crude was purified by a short column 

chromatography on silica gel with CyHex/EtOAc (3:7) to afford the title compound (74 mg, 91%) 

as a yellow oil. 

1H NMR (400 MHz, CDCl3): 10.19-10.32 (1H, br s, NH), 8.31 

(0.7H, d, J=8.4 Hz), 8.24 (0.3H, d, J=8.4 Hz), 7.20-7.45 (10H, m), 

7.05-7.14 (2H, m), 6.09-6.18 (1H, m, CHOC(O)CH3), 2.76-2.91 

(1H, m), 2.71 (0.3H, dd, J=15.0, 5.4 Hz), 2.56 (0.7H, dd, J=15.2, 

4.4 Hz), 2.30 (1H, s, PhCH3), 2.27 (2H, s, PhCH3), 1.98 (2H, s, 

CHOC(O)CH3), 1.91 (1H, s, CHC(O)CH3); 13C NMR (100 MHz, CDCl3): 169.81 (0.7C), 169.68 (0.3C), 

167.36 (0.7C), 167.19 (0.3C), 141.45 (0.7C), 141.43 (0.3C), 139.97 (0.3C), 139.71 (0.7C), 139.51 

(0.7C), 139.34 (0.3C), 132.98 (0.7C), 132.95 (0.3C), 130.08 (0.3C), 130.04 (0.7C), 128.64, 128.33 

(0.3C), 128.24 (0.7C), 127.90, 127.65 (0.3C), 127.63 (0.7C), 126.46 (0.3C), 126.42 (0.7C), 124.45 

(0.3C), 124.26 (0.7C), 123.44, 122.99, 72.35 (0.7C), 72.21 (0.3C), 44.74 (0.7C), 44.52 (0.3C), 21.33 

(0.3C), 21.30 (0.7C), 21.14 (0.7C), 21.08 (0.3C); HRMS (ESI-TOF): m/z calcd for C24H23NNaO4S+: 

444.1240, found: 444.1223; FT-IR (cm-1): 1743 (C=O ester), 1694 (C=O amide), 1022 (S=O); Rf 

(CyHex/EtOAc, 7/3): 0.21. 
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1-(2-methoxyphenyl)-3-oxo-3-((2-((S)-p-tolylsulfinyl)phenyl)amino)propyl acetate III-6 

III-1o (100 mg, 0.35 mmol, 1 equiv.), 3-iodoanisole (45 µL, 0.35 mmol, 1 equiv.), silver acetate 

(120 mg, 0.75 mmol, 2.2 equiv.) and palladium(II) acetate (4 mg, 0.02 mmol, 5 mol%) were 

dissolved in 1 mL of a 4:1 mixture of toluene and 1,1,3,3-hexafluoroisopropanol. The resulting 

mixture was stirred 10 min at room temperature, then at 110 °C during 24 h. The mixture was 

cooled to room temperature and the conversion was checked by 1H NMR. 

(Diacetoxyiodo)benzene (224 mg, 0.70 mmol, 2 equiv.) and more silver acetate (116 mg, 0.69 

mmol, 2 equiv.) were added to the brown mixture, which was further stirred 24 h at 130 °C. 

After cooling to room temperature, the mixture was filtered through PTFE 45 µm filter with a 

syringe and evaporated under reduced pressure. The crude was purified by a short column 

chromatography on silica gel with CyHex/EtOAc (1:1) to afford the title compound (142 mg, 91%) 

as an orange oil as a mixture of diastereomers. 1H NMR of the crude showed a 1.1:1 

diastereomeric ratio. 

1H NMR (500 MHz, CDCl3): 10.13-10.34 (1H, m, NH), 8.39 

(0.5H, d, J=8.2 Hz), 8.30 (0.5H, d, J=8.3 Hz), 7.35-7.50 (3H, m), 

7.22-7.32 (2H, m), 6.88 (1H, tdd, J=7.6, 2.6, 1.1 Hz), 6.82 (1H, 

dd, J=8.1, 4.3 Hz), 6.42-6.47 (1H, m), 3.77-3.83 (3H, m, 

COCH3), 2.61-2.82 (2H, m), 2.24-2.31 (3H, m, PhCH3), 2.02 (1.4H, s, C(O)OCH3), 1.97 (1.6H, s, 

C(O)OCH3); 13C NMR (125 MHz, CDCl3): 168.70, 166.94, 154.95 (0.5C), 154.91 (0.5C), 140.39 

(0.5C), 140.25 (0.5C), 139.07, 138.65 (0.5C), 138.52 (0.5C), 131.90, 129.12 (0.5C), 128.98 (0.5C), 

128.02 (0.5C), 127.99 (0.5C), 127.16 (0.5C), 126.98 (0.5C), 126.83 (0.5C), 126.62 (0.5C), 126.51 

(0.5C), 124.99 (0.5C), 124.94 (0.5C), 123.37 (0.5C), 123.31 (0.5C), 122.27, 122.05 (0.5C), 121.91 

(0.5C), 109.66 (0.5C), 109.63 (0.5C), 66.89 (0.5C), 66.75 (0.5C), 54.46, 42.49 (0.5C), 42.24 (0.5C), 

20.29, 20.11 (0.5C), 20.07 (0.5C); HRMS (ESI-TOF): m/z calcd for C25H25NNaO5S+: 474.1346, 

found: 474.1339; FT-IR (cm-1) : 1737 (C-O ester), 1695 (C-O amide), 1037 (S-O); Rf (CyHex/EtOAc, 

6/4): 0.25.  
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III.7.ix. X-Ray Data 

3-(4-methoxyphenyl)-3-phenyl-N-(2-((S)-p-tolylsulfinyl)phenyl)propanamide 

 

General data 

Compound III-2kO 

Structure identifier fcsj170511 

CCDC identifier 1550280 

Formula C29H27NO3S, CH2Cl2 

Space group P 21/C 

Cell lengths a 12.0253(3) b 8.4824(2) c 29.2991(7) 

Cell angles α 90 β 113.2630(10) γ 90 

Cell volume 2745.64 

Z, Z’ Z: 4 Z’:0 

Symmetry cell setting Monoclinic 

R1 7.82% 
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IV.1. Introduction 

IV.1.i. Summary of this work 

In the continuity of our work on diastereoselective C(sp3)-H bond functionalization using a chiral 

bidentate directing group, we subsequently explored enantioselective functionalization of 

aliphatic chain by means of a chiral ligand. 

IV.1.ii. Background on enantioselective C-H bond functionalisation 

The remarkable progresses in diastereoselective and achiral ligand-promoted C-H bond 

activation has led to the development of new classes of chiral ligands, used in catalytic amount, 

for enantioselective C(sp3)-H bond functionalisation.  

Asymmetric intramolecular C(sp3)-H bond functionalisation has already been described 

previously (I.3) and will not be further detailed; consequently, we will focus this introduction on 

the intermolecular functionalisation, by means of desymmetrisation or selective 

functionalisation of a diastereotopic methylene unit (Figure 4.44). 

 

Figure 4.44 Subdivision of stereoselective functionalisations 
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IV.1.iii. Metal-catalysed desymmetrisation of C-H bonds 

IV.1.iii.1. In prochiral substrates 

Back in 1983, Sokolov and co-workers synthesized a chiral ferrocene complex by reaction of 

palladium salt and a protected amino acid with a ferrocene derivative. Interestingly, while the 

authors assumed that the dimethylamino group directs the cyclopalladation, we can hypothesize 

the major role of the chiral N-protected amino acid to orient and favour the C-H bond activation 

(Scheme 4.112).[263] 

 

Scheme 4.112 Sokolov's synthesis of chiral ferrocenes 

Yu and co-workers continued this work by screening amino acid derivatives for the 

enantioselective coupling of prochiral 2-benzhydrylpyridine with boronic acids.[264] Good to 

excellent enantiomeric excesses were obtained (Scheme 4.113), however when using 2-

isopropylpyridine as prochiral substrate, C(sp3)-H bond functionalisation with n-butylboronic acid 

gave only 38 % yield and 37 % enantiomeric excess. 

 

Scheme 4.113 Yu's desymmetrisation of 2-benzhydrylpyridine 
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They proposed a stereochemical model in which the isobutyl side chain of the ligand pushes 

backwards the large menthyl carbamate group. In consequence, steric repulsion between the 

carbamate and the ortho-anisole disfavours one enantiomer from the other.  

 

Figure 4.45 Proposed model for the desymmetrisation of 2-benzhydrylpyridines 

Following this pioneering work, many catalytic systems have been designed to allow 

enantioselective desymmetrisation, allowing synthesis of a variety of C-stereogenic molecules 

such as in Scheme 4.114, reporting an elegant methodology for the meta-functionalisation of 

phenyl rings using a chiral transient mediator.[265] 

 

Scheme 4.114 Yu's desymmetrisation of homobenzylamines 

IV.1.iii.2. By kinetic resolution of racemic substrates 

Various strong diastereoselective methodologies implying DKR were developed in our group the 

past few years (I.5.iv.4). Since then, You and co-workers designed a C2-symmetric chiral Cp ligand 

for the enantioselective rhodium(III)-catalysed olefination by dynamic resolution and further 

improved the stereocontrol by the design of a novel chiral spiro Cp ligand (Chart 4.20).[266,267] 

 

Chart 4.20 You's rhodium complexes for biaryl DKR 
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This seminal work was recently followed by the development of a new methodology based on 

the formation of a transient imine for the DKR of biaryl moieties by Shi and co-workers.[268] DKR 

allowed highly enantioselective olefination of racemic substrates (Scheme 4.115). 

 

Scheme 4.115 You's desymmetrisation of biaryl using a transient directing group 

IV.1.iv. Enantioselective C-C bond formation in methylene units 

IV.1.iv.1. In cycloalkane rings 

Encouraged by the precedents in using amino acids as chiral inductors, Yu and co-workers 

developed a new methodology for the asymmetric β-C(sp3)-H activation of N-perfluoroaryl 

cyclopropanecarboxamide. Amino acid derivatives proved once more to be excellent chiral 

inductors and arylation of the cyclopropane ring could be performed with 80 % yield and 93 % 

enantiomeric excess. Nevertheless, no example with α-hydrogen bearing substrate was 

described (Scheme 4.116).[23] 

 

Scheme 4.116 Yu's arylation of α-substituted cyclopropanes 

In 2015, after showing that mono protected amino acids (MPAA) ligands enabled the γ-C(sp3)-H 

bond functionalisation of triflate-protected amines, Yu and co-workers reported a highly 

enantioselective method for the arylation of triflyl-protected cyclopropylamines.[22,269] Boc-

protected-L-Valine was used as ligand and the reaction was compatible with various aryl iodides, 

including sterically hindered ortho-substituted coupling partners (Scheme 4.117). 
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Scheme 4.117 Yu's enantioselective arylation of cyclopropylamines 

In the middle of 2018, Yu and co-workers overrode the necessity of using a perfluoroamide 

protecting group for the enantioselective β-C(sp3)-H functionalisation of cyclic acids. It was 

commonly recognised that β-C(sp3)-H bond activation of free acids suffers from low reactivity 

due to the weak directing ability of the carboxyl groups but also the conformation of the acid is 

more flexible than the amide, making enantiocontrol more difficult. This great challenge was 

overcome by designing a new chiral diamine ligand, obtained in four steps from natural L-

phenylalanine, they were able to perform the β-arylation of various cyclopropane carboxylic 

acids with excellent enantiomeric excesses and overall good yields (Scheme 4.118). 

Nevertheless, the arylation of acyclic compounds gave lower enantiomeric excesses.[270] 

 

Scheme 4.118 Yu's arylation of free carboxylic acids 

IV.1.iv.2. In aliphatic chains 

After optimization of both protecting group for the carboxylic acid and nitrogen of the chiral 

mono-N-protected amino acid ligand (MPAA), Yu and co-workers reported an elegant method 

for the enantioselective synthesis of cyclobutane rings using N-protected α-amino-O-

methylhydroxamic acid (PAHA). They also conducted a preliminary study on acyclic C(sp3)-H 

activation on geminal dimethyl substrates to get moderate to good desymmetrisation (Scheme 

4.119). In both examples, the weakly coordinating perfluorinated N-arylamide auxiliary was 

crucial to perform the C(sp3)-H bond activation.[271]  
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Scheme 4.119 Yu's arylation of geminal dimethyl substrates 

In 2015, Duan and co-workers used a chiral phosphoramide ligand to introduce 

enantioselectively aryl moieties in the benzylic β-position of aminoquinoline-protected 

carboxylic acids, with good enantiomeric excesses and lower stereoinduction for aliphatic chains 

(Scheme 4.120).[272]  

 

Scheme 4.120 Duan's enantioselective arylation of hydrocinnamic acid derivatives 

This seminal report was followed in 2017 by the development by Gaunt and co-workers of chiral 

phosphoric acids for the enantioselective activation of aliphatic amines to form fused aziridines 

with high enantiomeric excess.[273] In 2018, Shi and co-workers disclosed a new ligand for 

arylation of aliphatic chains. Interestingly, this methodology uses cheaper aryl bromide as 

coupling partners and moderate to very good enantiomeric induction was observed (Scheme 

4.121).[274] 

 

Scheme 4.121 Phosphoric acid ligands for C(sp3)-H arylation 
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All the previous methodologies reported ligand-promoted arylation, and there are only few 

reported examples of other challenging asymmetric intermolecular C-C bond diversification of 

aliphatic chains. In early 2017, Yu and co-workers reported arylation, alkenylation and 

alkynylation of protected isobutyric acid using a chiral modified amino acid (APAO) ligand 

(Scheme 4.122).[275] 

 

Scheme 4.122 Yu's desymmetrisation of isobutyric acid derivatives 

Beside β-functionalisation of carboxylic acid derivatives, Yu and co-workers, following their work 

on Ir(I)-catalysed alkylation of azacycles (I.4.i), disclosed a few reports dealing with 

enantioselective γ-desymmetrisation of protected-amines.[276,277] Sulfonamides were found to be 

the best protecting groups and alkylation, vinylation and arylation were permitted by acetyl-

protected amino oxazoline (APAO) ligands (Scheme 4.123). 
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Scheme 4.123 Yu's enantioselective γ-functionalisation of amines 

 

Nowadays, other methodologies have been developed, for example an enantioselective copper-

catalysed alkynylation of prochiral C(sp3)-H bonds adjacent to the nitrogen in 

tetrahydroisoquinoline ring as disclosed by Li and co-workers. Nevertheless, only moderate 

chiral induction was observed (Scheme 4.124).[278] This work follows the respective arylation 

which gave similar enantioselectivity using the same PhPyBox chiral ligand.[279] 

 

Scheme 4.124 Enantioselective α-alkynylation to amines 

IV.1.v. Ligand-enabled enantioselective C-heteroatom bond formation 

Due to the modification of the reaction mechanism when comparing direct C-C and C-X bond 

formation, and related to a more difficult reductive elimination, C-heteroatom bond formating 

reactions are clearly less explored. 

For example, the enantioselective borylation on cyclobutane ring was first performed by Yu and 

co-workers in 2017 using APAO ligand. Excellent enantiomeric ratios were obtained (usually > 

98:2 er) and the methodology could even be extended to other moieties such as cyclopropane 

(95% ee) or isopropyl (66% ee) with slight decrease in stereoinduction (Scheme 4.125).[280] 

 

Scheme 4.125 Yu's enantioselective borylation using APAO ligand 
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Another important example is the enantioselective fluorination and acetoxylation occuring at 

benzylic position of ortho-alkyl substituted benzaldehydes. Interestingy, in this case a transient 

DG is generated in situ via imine formation between the aldehyde and the aminoacid-derived 

ligand (Scheme 4.126).[281] 

 

Scheme 4.126 Yu's asymmetric fluorination of benzylic positions 

A recent example by Bach and co-workers disclosed the site and enantio-selective oxygenation 

of 3,4-dihydroquinolinones using a chiral manganese catalyst and iodosobenzene as oxidant 

(Scheme 4.127).[282] They proposed a stereochemical model with hydrogen bonds between the 

two lactames of the substrate and the catalyst which would eventually direct the oxygenation in 

one side of the quinolinone and result in high enantiomeric excesses. 

 

Scheme 4.127 Bach's enantioselective oxidation of dihydroquinolinones 

IV.1.vi. Towards a new methodology for unactivated C-H bond 

functionalisation 

Although these extraordinary advances achieved, the field of enantioselective C(sp3)-H bond 

activation is still rather limited, and the development of new methodologies is highly appealing. 

For this purpose, we endeavoured on designing enantioselective protocols for the direct 

functionalisation of cyclopropane in presence of sulfoxide as source of chirality. Two approaches 

have been envisioned:  

- Enantioselective C-H activation directed by transient imine formation; 

- Enantioselective C-H activation promoted by an external ligand. 
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IV.2. Enantioselective transformations promoted by in situ sulfinylimine formation 

As previously mentioned (I.4.i), imines early showed the ability to coordinate palladium species 

and to promote the C-H bond cleavage.[46] By using a chiral auxiliary, the induction of chirality 

should occur in a diastereoselective manner, however leading to an enantioenriched product 

after in situ hydrolysis. The key difficulty in such a transformation consists in developing reaction 

conditions allowing 1) imine formation between a carbonyl substrate and an imine auxiliary, 2) 

stereoselective C-H functionalisation and 3) in situ hydrolysis of the imine TDG to liberate and 

recycle the auxiliary (Figure 4.46). 

 

Figure 4.46 General catalytic cycle for imine-promoted C-H bond activation 

Before any optimisation of the structure of the transient directing group, we wanted to check 

wheter our sulfinylaniline APS auxiliary would be able to form an imine with ketylcyclopropanes 

(Table 4.18). 1-cyclopropylethan-1-one was used as substrate, and replaced by 1-(1-

methylcyclopropyl)ethan-1-one to favour Thorpe-Ingold effect on the system (Entries 2, and 5 to 

11). Screening of various sources of palladium and base showed that only trifluoroacetate 

sources were effective, however with low conversion. Acetic acid was suspected to promote the 

turnover of the imine formation (Entries 7 to 9). Deceivingly, we were not able to improve the 

conversion of the cyclopropane ring into the corresponding functionalised product. 
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Table 4.18 Preliminary tests on sulfinylimine-promoted C-H activation 

 

Entry R cat. Pd base additive (x) Solvent Conversion 

1 H Pd(OAc)2 Ag2CO3 NaTFA (2) Toluene 0 

2 Me Pd(OAc)2 Ag2CO3 NaTFA (2) Toluene 0 

3 H Pd(OAc)2 AgOAc NaTFA (2) Toluene 0 

4 H Pd(OAc)2 Ag2CO3 NaTFA (2) HFIP:AcOH (2:1) 0 

5 Me Pd(OAc)2 Ag2CO3 NaTFA (2) HFIP 0 

6 Me Pd(OAc)2 Ag2CO3 NaTFA (2) HFIP:AcOH (4:1) 0 

7 Me Pd(TFA)2 AgTFA - Toluene:HFIP (4:1) <5 

8 Me Pd(TFA)2 AgTFA - HFIP:AcOH (4:1) <5 

9 Me Pd(TFA)2 AgTFA NaTFA (0.5) HFIP:AcOH (4:1) <5 

10 Me Pd(TFA)2 AgTFA NaTFA (0.5) HFIP:AcOH (2:1) 0 

11 Me Pd(TFA)2 AgTFA - Toluene 0 

 

As our first tests were not conclusive and as at the same moment we had a promising result in 

the ligand-promoted C-H activation, this project was discontinued. However, Chen and co-

workers disclosed in 2018 that ortho-arylation of benzaldehydes was possible using 2-

methylsulfinylaniline with good yields (Scheme 4.128). It was hypothesized that the acid helped 

hydrolysing the imine. Moreover, the silver salt type was crucial for the reactivity as almost no 

conversion was observed using other silver sources.[283] With these reaction conditions in hand, 

we could hereafter explore the use of the chiral transient DG APS on aldehydes to promote 

C(sp3)-H bond activation. 

 

Scheme 4.128 Chen's sulfinylaniline promoted arylation of benzaldehyde derivatives 
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IV.3. Development of a new class of ligands for enantioselective transformations 

IV.3.i. Towards new ligands for the asymmetric C(sp3)-H bond 

functionalisation 

As described previously, ligand-enabled C-H bond functionalization is highly appealing compared 

to the diastereoselective way, as it obviates the need of a stoichiometric amount of a chiral 

auxiliary. From the bibliographic analysis (IV.1.ii), it undoubtedly appears that very few families 

of chiral ligands have been used for intermolecular C(sp3)-H bond functionalisation. The clear 

majority of examples implies the use of monoprotected amino acids and more recently chiral 

phosphoramides have shown up as appealing alternatives. However, the limited number of 

efficient catalytic systems for the palladium-catalysed C(sp3)-H bond activation is very surprising. 

Accordingly, in order to expand this underdeveloped field, we have endeavoured on designing 

new ligands with original and unexplored N,S architecture for a direct metal-catalysed 

functionalisation of aliphatic prochiral substrates. (Figure 4.47). Notably, this coordinating 

moiety offers a unique possibility to install a chiral element near the metal catalyst. In addition, 

the inherent structure of the sulfoxide with the presence of two distinct chelating atoms, ie. 

oxygen and sulphur, gives a unique opportunity to adjust its coordination mode to the electronic 

and steric requirements of a metal during the overall catalytic process. 

 

Figure 4.47 Aminosulfoxide ligand for enantioselective C(sp3)-H functionalisation 
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The design of a new family of ligands presents two mains challenges, firstly to be able to find a 

suitable ligand, secondly a compatible DG on the substrate must be determined:  

- They both need to be poorly to moderately coordinating to avoid the formation of 

unreactive species such as dimers but coordinating enough to bind both to the metal 

centre. From our previous experience with sulfinylaniline directing groups for the 

diastereoselective functionalisation of aliphatic chains and drawing inspiration from the 

work of Yu and co-workers, it seems that bicoordinating N,S ligand could be an 

interesting choice to chelate the palladium centre (Figure 4.48); 

 

Figure 4.48 Palladium, ligand and substrate species 

- When the active species is formed, as the metal centre has no vacant orbitals for an 

external base, the CMD must occur in an intramolecular way (IV.6). Using a ligand 

bearing a coordinating nitrogen moiety, installation of a carbonyl group through an 

amide or carbamate seems attractive to promote electrophilic assistance for the C-H 

bond cleavage (Figure 4.49); 

 

Figure 4.49 Ligand-promoted C-H activation via CMD mechanism 

- Chirality must be transferred from the ligand to the newly formed stereogenic carbon. 

Consequently, in order to facilitate the chirality induction, stereocentre(s) must be in 

spatial proximity to the metal with configurations such as both bulky substituents are on 

the same side of the metallacycle. For example, for an aminosulfoxide ligand bearing the 

two bulky substituents below, we could expect repulsive interactions with the side chain 

R1 of the substrate which will disfavour one isomer compared to the other (Figure 4.50). 
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Figure 4.50 Expected transition-states and repulsive interactions 

IV.3.ii. Preliminary investigations 

IV.3.ii.1. Test of different families of ligands 

Aminosulfoxides seem to be highly appealing to promote enantioselective C-H bond activation. 

Therefore, a large panel of families were tested in order to select the best class for a simple 

transformation, the β-arylation of cyclopropane carboxylic acid derivatives. Yu-Wasa auxiliary, ie. 

2,3,5,6-tetrafluoro-4-(trifluoromethyl)aniline, was initially chosen as protecting group for the 

acid for the first tests. The ligand L1 corresponding to the N-acetyl APS deceivingly exhibited no 

activity. Besides ligands L5 and L6 bearing both sulfinyl group and chiral oxazoline displayed also 

no reactivity at all; notably, ligand L5 was used by White and co-workers for oxidative 

allylation.[13] L8, a sulfinyl quinolone as well as L9 with a triaryl backbone bearing two axial 

chirality axes developed in our group in 2018,[11] gave likewise no result. Regarding the studies of 

Yu and co-workers and in particular the flexibility of two different ligands giving either five or six 

membered chelates,[284] we investigated more flexible chains such as L2 which rewardingly 

displayed 15% conversion. Restriction of the degrees of freedom in L3 was beneficial for both 

stereoinduction and reactivity.  Interestingly, L4 with both carbon and sulphur stereogenic 

centers showed excellent 90 % conversion to the expected mono-arylated product and a 

promising enantiomeric ratio of 85:15 (Figure 4.51). No diarylation product was detected 

suggesting that the steric hindrance of the ligands is high enough to prevent another C-H 

functionalisation.  
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Figure 4.51 Screening of different families for enantioselective functionalisation of cyclopropanes 
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IV.3.ii.2. Test of different substrate protecting groups 

Once the promising ligand architecture determined, the directing group installed on the 

substrate was optimised to substitute the expensive 2,3,5,6-tetrafluoro-4-

(trifluoromethyl)aniline. Remarkably, use of a simple phenylamide instead of electron-deficient 

amide drastically changed the outcome of the reaction as the desired product was generated 

only in trace amount. Consequently, as described by Yu in 2012, the use of electron-deficient 

amide, ie. weakly coordinating substrates, proved to be the best option to get both 

stereoinduction and high yield.[285] Thus, conserving good yield and enantiomeric induction, our 

choice went to the cheapest 2,3,4,5,6-pentafluorophenylamide (noted ArF in the rest of the 

chapter) protecting group (Figure 4.52). 

 

Figure 4.52 Screening of the carboxylic acid protecting group 
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IV.3.iii. Synthesis of various 2-sulfinylethanamine moieties 

IV.3.iii.1. Obtention of the two diastereomers of L4 

The promising arylation test carried out with L4 conducted us to finely tune the architecture of 

this family of 2-sulfinylethanamine moieties in order to increase the enantioselectivity. 

Enantioenriched 2-sulfinylethanamine moieties were firstly described in 1997 by Bravo and co-

workers by addition of p-tolylsulfinylmethyllithium on α-(fluoroalkyl)aldimines.[286,287] Induction 

of chirality on the diastereotopic C=N double bond was possible thanks to the stereogenic 

character of the sulfoxide and good diastereomeric excesses were obtained (Scheme 4.129).  

 

Scheme 4.129 Bravo's synthesis of fluoroaminosulfoxides 

Regarding the imine protecting group, multiple transition states were described, explaining the 

diastereoselectivity of the reaction.[24,26] More precisely, using p-methoxyphenyl-protected 

imines, the six-membered transition state, with a possible steric clash between the aryl moiety 

and the oxygen of the sulfoxide, may explain the predominance of the expected (S, RS) 

diastereomer (Figure 4.53). 
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Figure 4.53 Origin of the diastereoselectivity in the reaction with PMP-imines 

In contrast with the use of PMP-protecting group which afforded in majority (S, RS) or (R, SS) 

compounds, García Ruano and co-workers used sulfinylimines originally developed by Ellman to 

obtain (S, SS) or (R, RS) with good to excellent diastereomeric excess (Scheme 4.130).[24,288] In this 

case, the observed diasteroselectivity is mainly due to the chiral auxiliary on the imine group. 

 

Scheme 4.130 García Ruano’s synthesis of chiral 2-sulfinylethanamines 
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IV.3.iii.2. Novel access to (S, RS)-aminosulfoxides ligands 

The enantiopure methyl (R)-p-tolylsulfoxide was obtained by addition of methylmagnesium 

bromide on (1R,2S,5R)-menthyl (S)-p-toluenesulfinate. The reaction proceeded with full 

conversion at room temperature and the product crystallized in petroleum ether at – 18 °C 

(Scheme 4.131). The optical purity of the compound was determined by chiral HPLC. 

 

Scheme 4.131 Synthesis of enantiopure methyl (R)-p-tolylsulfoxide 

Concerning the other part of the ligand skeleton, we decided to synthesize the PMP-imines as 

they would lead to the desired (S, RS) diastereomer. Starting from benzaldehyde derivatives, 

reaction with p-anisidine in presence of an excess magnesium sulphate drove the reaction to 

completion and the desired products were obtained with excellent yield (Scheme 4.132). 

Notably, no purification was needed. Obtention of α-hydrogen bearing aldimines was tedious 

and often resulted in an imine/enamine mixture. Concerning ketimines, they could not be 

obtained due to the poor reactivity of both aniline and ketone derivatives. 

 

Scheme 4.132 Synthesis of PMP-imines 

After accessing enantiopure methyl p-tolylsulfoxide and various PMP-imines, we embarked first 

to the Bravo’s condensation of the lithiated anion of methyl p-tolylsulfoxide to the 4-tert-

butylphenyl-PMP-imine and we noticed that the isolation of the major diastereomer could be 

performed by column chromatography on silica gel but, more interestingly, it precipitates in 

ethyl acetate/cyclohexane mixture, affording the pure ligand PMP-L12 with good yield and 

excellent diastereomeric ratio. Rewardingly, the absolute configuration of this major 

diastereomer was confirmed by X-Ray diffraction analysis after obtention of single crystals by 

slow evaporation of hexane and chloroform (Figure 4.54).[24] This structure shows clearly the 

pincer ability of this type of ligand and the steric hindrance provided by both the p-tolyl and the 

4-tert-butyl phenyl moieties on one side of a plane bearing both sulphur and nitrogen atoms. 
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Figure 4.54 ORTEP views of one addition product, key intermediate for PMP-L12 

Then, deprotection of the PMP using cerium ammonium nitrate (CAN) afforded the free amine. 

Two equivalents of CAN are required for each equivalent of PMP. The amine and p-

methoxybenzaldehyde are released. Even if oxidative-deprotection resulted in a difficult 

extraction of the product due to the cerium salts, other pathways were either not efficient or 

caused degradation of the product: especially, racemisation of the sulphur atom was observed 

under strongly acidic conditions. Then, amidation of the nitrogen atom using T3P-mediated 

coupling afforded N-protected aminosulfoxides in good to excellent yields (Scheme 4.133). Other 

protection such in carbamate for example were performed by standard procedures (IV.8.ii).  

 

Scheme 4.133 Synthesis of the ligands from the PMP-protected amines 
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Notably, the nitrogen protection with acyl chlorides or anhydrides and triethylamine often 

resulted in undesired Pummerer rearrangement (Scheme 4.134).[151–153] 

 

Scheme 4.134 Pummerer rearrangement of a free aminosulfoxide 

Other imine protecting groups were tested, such as chiral sulfinamides, and the addition of the 

lithiated anion of the (R)-methyl p-tolylsulfoxide gave almost exclusively access to the (R,RS) 

diastereomer.  

Finally, the synthetic sequence involving consecutive addition of methyl p-tolylsulfinyllithium on 

PMP-imines followed by crystallisation, deprotection and protection of the nitrogen was used 

successfully to prepare numerous ligands derived from L4 and offers high modularity on the aryl 

moiety R1 as well as the protecting group of the amide or the substituent on the sulfoxide. The 

sequence was also generally high yielding (71% yield from the starting benzaldehyde for L12) 

and enantiopure products were isolated with only one column chromatography after final 

nitrogen protection (Scheme 4.135). 

 

Scheme 4.135 (S, RS)-aminosulfoxide ligand synthesis from PMP-imines and chiral HPLC chart of L12 
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IV.3.iv. Ligand optimization 

With the encouraging results obtained using L4 in the enantioselective C-H bond 

functionalization of unsubstituted cyclopropane, we focused our studies on the fine tuning of 

each part of the ligand, ie the protecting group PG on the nitrogen, the substituent of the carbon 

stereocentre R1, on the methylene R2 and the substituent on the sulfoxide R3. Obviously, N-

acetyl protected ligands were crucial to get both good stereoinduction and yield while flexibility 

between the two coordinating sites was also important for the reactivity of the whole system 

(Entries 1, 2 and 6, Table 4.19). The role of the acetamide is indeed decisive for the CMD and 

further insights will be detailed in the mechanistic studies (IV.6). Besides increasing the 

hindrance of the substituent on the sulphur atom did not allow any improvement. 

Table 4.19 Screening of the different parts of the ligand 

 

Entry PG R1 R2 R3 Conversion (%) er 

1 Ac Ph H pTol 80 15:85 

2 Ac Ph H tBu 15 nd 

3 Boc Ph H pTol 25 40:60 

4 CH3CH2CO2 Ph H pTol 10 nd 

5 TFA Ph H pTol 60 15:85 

6 Ac Ph CH3 pTol 25 30:70 

7 Ts Ph H pTol 10 nd 

8 PMP Ph H pTol 10 nd 
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Then, we studied the importance of the presence of two chiral centres on our ligand as well as 

the relative configuration (Chart 4.21). Benzylic amide was crucial to achieve good conversion; 

this could be explained by the lower pkA of the nitrogen in L4 compared to prim-L4, which 

facilitates the deprotonation and thus the formation of the chelate with palladium. Surprisingly, 

when we reduced the sulfoxide into a p-tolyl thioether thio-L4, we noticed a similar conversion 

and a slight decrease of the enantiomeric ratio suggesting that the enantioselectivity is mainly 

controlled by the stereogenic carbon centre. Indeed, dia-L4 with inversion of the chirality of the 

stereogenic carbon atom gave lower conversion and expected inversion of the enantiomeric 

ratio. 

 

Chart 4.21 Screening of the different parts of the ligand 

With the variation of all distinct parts of L4, we came up with an optimised ligand structure as 

drawn in Chart 4.22. 

 

Chart 4.22 Optimal ligand structure for enantioselective functionalisation of cyclopropanes 

Thanks to the large variety of aldehyde available, we had access to a vast number of ligands 

bearing different R substituents. However, when trying the addition of the p-tolylsulfinyl 

methyllithium on alkylimines, such as tert-butyl or isopropyl derivatives, no addition occurred, 

restricting the R group to aryl moieties. Moreover, ortho substituents on the aromatic ring were 

not tolerated, forcing us to focus our study on meta and para substituents on the aryl moieties 

(Chart 4.23). Synthesis of various ligands occurred smoothly and efficiently, as in each case the 

major diastereomer precipitated after addition of the methyl p-tolylsulfoxide. Only one column 

chromatography was performed after acetamide protection to yield pure compounds which 

were tested for the arylation of cyclopropane. 
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Chart 4.23 Unreactive imines 

Interestingly, enhancement of the steric hindrance in meta or para position such as in Entry 2 or 

3 resulted in a better enantiomeric ratio, further improved by the decrease of the reaction 

mixture temperature to 80 °C (Table 4.20, Entry 4). A sterically hindered substituent such as t-

butyl in para position (Ligand L12, Entry 5) allowed a slight increase of the stereoselectivity up to 

88% ee. Besides a para methoxy group caused a large decrease in yield (Entry 6) while a para-

methyl or para-trifluoromethyl gave the coupling product in similar conversion and 80% ee 

suggesting no influence of the electronic richness of the ring (Entries 7 and 8). L16 with two tert-

butyl in meta position, could not be obtained, maybe because of high steric hindrance which did 

not allow attack of the p-tolylsulfinyl methyllithium on the corresponding imine. 

Table 4.20 Screening of the different parts of the ligand 

 

Entry L Ar T (°C) Conversion (%) er 

1 L4 phenyl 110 90 15:85 

2 L10 3,5-dimethylphenyl 110 30 13:87 

3 L11 2-naphthyl 110 85 12:88 

4 L11 2-naphthyl 80 80 10:90 

5 L12 4-tert-butylphenyl 80 75 6:94 

6 L13 4-methoxyphenyl 110 15 nd 

7 L14 4-methylphenyl 110 70 10:90 

8 L15 4-trifluoromethylphenyl 110 60 10:90 

9 L16 3,5-di-tert-butylphenyl nd nd nd 
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Using L12, we started the optimisation of the reaction conditions by lowering the amount of 

ligand from 20 to 15 mol%, which did not impact the enantiomeric ratio of the reaction, even if 

the overall conversion had sensitively dropped. But a decrease up to 10 mol% lowered the 

enantiomeric ratio to 14:86. Remarkably, as our previous studies suggested the importance of 

the solvent for this type of transformation, we noticed that a 2:1 mixture of hexane and 

chloroform was optimal for both reactivity and enantioselectivity as shown in Entry 5. The 

modification of the base from silver carbonate to other sources of silver (Ag2CO3 in Entry 8, 

AgTFA in Entry 9) or other sources of carbonate (K2CO3 in Entry 10) was detrimental to reactivity. 

As in few cases double arylation was observed, the excess of iodoarene coupling partner was 

lowered from 3 to 2, affording the expected product with 60% yield, comparable enantiomeric 

excess and no observed di-arylation (Table 4.21). 

Table 4.21 Optimisation of the arylation of cycloalkanes I 

 

Entry x y base solvent (M) Conversion (%) er 

1 3 20 Ag2CO3 Hex (0.2) 75 6:94 

2 3 15 Ag2CO3 Hex (0.1) 45 6:94 

3 3 10 Ag2CO3 Hex (0.1) 45 14:86 

4 3 15 Ag2CO3 Hex/CHCl3 (3:1) (0.1) 60 5:95 

5 3 15 Ag2CO3 Hex/CHCl3 (2:1) (0.1) 70 4:96 

6 3 15 Ag2CO3 Hex/CHCl3 (1:2) (0.1) 70 11:89 

7 3 15 Ag2CO3 CHCl3 (0.1) 50 13:87 

8 3 15 AgTFA Hex/CHCl3 (2:1) (0.1) <5 nd 

9 3 15 AgOAc Hex/CHCl3 (2:1) (0.1) 20 20:80 

10 3 15 K2CO3 Hex/CHCl3 (2:1) (0.1) <10 nd 

1120 2 15 Ag2CO3 Hex/CHCl3 (2:1) (0.1) 50 5:95 

 

 

                                                        
20 The reaction mixture was stirred 24 h at 80 °C. 
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Finally, we considered the possible influence of additives on our reaction (Table 4.22). 

Interestingly, besides improving the global conversion in general, sodium trifluoroacetate helped 

avoiding homocoupling of the iodoarene, thus allowing to decrease the amount of coupling 

partner to 2 equivalents as shown in Entry 7. This study shows the crucial role of trifluoroacetate 

anions in the reaction mixture (Entries 2, 5, 6 and 7). One possible role of this additive, beside 

balancing the overall pH of the reaction mixture, would be promoting the formation of the 

bidentate chelate. 

Table 4.22 Optimisation of the arylation of cycloalkanes II 

 

Entry x Additive (y equiv.) Conversion (%) er 

1 3 - 70 4:96 

2 3 NaTFA (1) 75 4:96 

3 3 Cs2CO3 (1) <10 nd 

4 3 Na2CO3 (1) <20 nd 

5 3 NaTFA (0.5) 80 4:96 

6 3 NaTFA (0.2) 70 4:96 

7 2 NaTFA (0.5) 80 4:96 
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Encouraged by these results, we investigated two last ligands derived from L12, L17 and L18. For 

these molecules, both key intermediates, respectively 4-(adamantan-1-yl)-benzaldehyde and (-)-

menthyl (S)-(4-(tert-butyl-phenyl))sulfinate were synthesized according to reported procedures. 

Unfortunately, the PMP-amine derivative of L17 did not crystallized selectively and column 

chromatography afforded an unseparable mixture of diastereomer while, for L18, addition of 

methyl p-tert-butylphenylsulfinyl lithium on the imine did not proceed. Other structures such as 

L19 or L20 can be imagined but have not been tested yet (Chart 4.24). Benzylamides could 

indeed promote one precise geometry by π-stacking with the tert-butylphenyl moiety; 

moreover, ortho-protection of the benzylamide is required to avoid any intramolecular β- or γ-C-

H bond activation. 

 

Chart 4.24 Possible amelioration of L12 
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IV.4. Application to the C(sp3)-H bond functionalization of cycloalkanes 

IV.4.i. Enantioselective arylation 

Our detailed optimization allowed us to select L12 as the optimal accelerator and chiral inductor, 

and we showed that good to excellent enantiomeric induction was possible using a large variety 

of iodoarene coupling partners.  

Electron-rich iodoarenes such as anisoles gave excellent excesses, such as in IV-2Ac and electron-

poor ones also gave excellent results, such as in the sterically hindered IV-2aG, isolated with 87% 

yield and 94:6 enantiomeric ratio. Sensitive aldehyde was even tolerated, affording the coupling 

product IV-2aM in 88% yield and 93:7 enantiomeric ratio. Meta-substituted iodoarenes also 

performed remarkably well, as compound IV-2aD was isolated in 58% yield and 90% 

enantiomeric excess. Biologically relevant fluorinated motifs such as CF3 and OCF3 were also well 

tolerated. The lowest enantiomeric excesses (60%) were mainly observed with poorly reactive 2-

iodoanisole and 2,4-difluoroiodobenzene (Figure 4.55).  

Compatibility with heterocycles is rather moderate, as thiophene or indole were not well 

tolerated and gave either low conversion or total absence of reactivity.  

Notably, our methodology even worked on gram scale using 3-iodoanisole as coupling partner 

and 70 % conversion to the desired mono-arylated compound was observed with 97:3 

enantiomeric ratio on the crude mixture. 
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Figure 4.55 Scope of enantioselective arylation on cyclopropane 
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The absolute configuration of the compounds was attributed by analogy with IV-2aR, which 

afforded single crystals suitable for X-Ray diffraction analysis by slow evaporation of hexane and 

chloroform (Figure 4.56). Preliminary DFT studies stand in agreement with the absolute 

configuration observed (IV.6). 

 

Figure 4.56 ORTEP view of IV-2aR 

Arylation was extended to larger cycles such as cyclobutane. Deceivingly, the enantiomeric 

excess was lower (around 60 %) and no additional tests were performed on this substrate (Figure 

4.57). This transformation clearly shows the potential of N-protected aminosulfoxide ligands for 

asymmetric induction, although further optimisation of the ligand is needed to higher the 

stereoinduction on larger cycloalkanes.  

 

Figure 4.57 Scope of enantioselective arylation on cyclobutane 
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Perfluorophenylamide is a suitable auxiliary for the C-H functionalisation of aliphatic chains and 

can be removed under mild conditions: either Yu’s conditions mediated by glycidyl methyl ether 

in presence of potassium acetate in ethanol (Figure 4.58.a), or our conditions developed for the 

mild deprotection of arylamide (Figure 4.58.b and c) proved to be efficient. Recrystallization of 

IV-4 afforded mono-crystals suitable for X-Ray diffraction analysis, showing the conservation of 

the two stereocentres and no epimerisation; noteworthy this purification technique allowed 

further enrichment of the compound, which was finally obtained with excellent 82% yield and 

almost perfect enantiomeric excess. Finally, deprotection of the compound IV-2aN without 

subsequent esterification afforded the know compound IV-5. The absolute configuration was 

unambiguously assigned for all our C-H functionalised cyclopropanes according to the X-Ray 

structure of IV-4 and the optical rotation of IV-5. 

 

Figure 4.58 Deprotection of the perfluoroamide moeity and chiral HPLC chart for IV-4 
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IV.4.ii. Enantioselective alkylation 

Ligand-promoted alkylation remains a significant challenge. The major issue is the high 

probability of N-alkylation over actual C-H bond functionalisation, therefore poisoning the 

catalytic by avoiding coordination with the palladium (Scheme 4.136). Moreover, the similar 

polarity of IV-1a, IV-6 and IV-N-6 results in a tedious separation of the crude material. 

 

Scheme 4.136 Regioselectivity of Pd-catalysed C(sp3)-H alkylation 

Preliminary tests were carried out with the ligand L2 and showed a crucial role of additive on the 

obtention of IV-6 or IV-N-6, obviously helping the deprotonation of the amide moiety and 

resulting in higher N-alkylated product (Entries 1 and 3). In contrast, removing the additive 

resulted in a lower conversion in all tested solvents (Table 4.23). Further tests, especially done 

with the optimized ligand L12 and other coupling partners such as iodomethane or isopropyl 

iodide, were not conclusive, hence the asymmetric enantioselective alkylation was not explored 

in more details.  

Table 4.23 Optimisation of the alkylation of cycloalkanes 

 

Entry Base Additive Solvent Conversion Ratio IV-6a/IV-N-6a 

1 Ag2CO3 - Hexane 50 30/70 

2 Ag2CO3 - t-amylOH 30 10/90 

3 Ag2CO3 Cs2CO3 Hexane 100 >5/95 

4 Ag2CO3 - DCE <10 nd 

5 AgOAc Cs2CO3 Hexane 100 >5/95 

6 Ag2CO3 NaOAc Hexane 95 10/90 

7 Ag2CO3 CsF Hexane 40 >5/95 

8 AgOPiv - Hexane 95 >5/95 

9 AgOPiv NaOPiv Hexane 50 >5/95 
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IV.4.iii. Enantioselective alkynylation 

To this day, there is only one reported example of enantioselective alkynylation on C(sp3)-H 

bonds reported by Yu and co-workers in 2017 (Scheme 4.137).[275]  

 

Scheme 4.137 Yu's enantioselective alkynylation of isobutyric acid derivative 

Thus, we investigated this challenging transformation using 1-halo-2-triisopropylsilyl acetylene 

as coupling partner. On the preliminary tests, in our previously optimised reaction conditions, 

using the bromo-derivative as coupling partner, encouraging 50% conversion and 75:25 

enantiomeric ratio have been observed. However, the main isolated product IV-7aA-cy resulted 

from intramolecular cyclization through addition of the nitrogen on the triple bond (Scheme 

4.138). 

 

Scheme 4.138 Preliminary alkynylation test on IV-1a 

We hypothesized that the mechanism involves carbopalladation followed by an in situ promoted 

cyclisation to get IV-7aA-cy. This mechanistic pathway was supported by the stereochemistry of 

the resulting double bond. In contrast, if iodo derivative is used, the oxidative addition should be 

facilitated, thus allowing a switch of mechanism and resulting in the exclusive formation of IV-

7aA (Figure 4.59). 
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Figure 4.59 Different alkynylation pathways with respect to the haloalkyne 

Iodoalkynes were synthesized using N-iodosuccinimide as electrophile in presence of silver 

nitrate in acetone and under dark. Full conversion of the starting material was usually observed 

after 10 to 30 min and simple filtration over silica using pentane as eluent afforded the desired 

compounds in high yields (Scheme 4.139).[289] 

 

Scheme 4.139 Synthesis of iodoalkyne derivatives 
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Indeed, switching the bromo-alkyne by iodo-alkyne improved both conversion and selectivity 

between opened and cyclized products (Entry 2) while enantiomeric ratio remained similar. 

Interestingly, silver and palladium acetates revealed to be the best oxidant and catalyst for this 

type of transformation, allowing the high conversion of IV-7Aa with 85:15 enantiomeric ratio 

(Entry 3). Further optimization of the additive lead to almost full conversion to the desired 

opened product and good enantiomeric excess of 84% (Entry 5). The chloroalkyne derivative was 

ineffective coupling partner, as well as the free alkyne, and other aromatic solvents drastically 

lowered the conversion (Table 4.24). 

Table 4.24 Optimisation of the alkynylation of cycloalkanes 

 

Entry X base 
Additive 

(equiv.) 
catalyst Solvent 

Conv. 

(%) 

Ratio 

opened-

cyclized 

er 

1 Br Ag2CO3 NaTFA (0.5) Pd(TFA)2 Hex:CHCl3 (2:1) 50 1:8 75:25 

2 I Ag2CO3 NaTFA (0.5) Pd(TFA)2 Hex:CHCl3 (2:1) 80 >10:1 80:20 

3 I AgOAc NaTFA (0.5) Pd(OAc)2 Hex:CHCl3 (2:1) 90 >10:1 85:15 

4 I AgOAc none Pd(OAc)2 Toluene 50 >10:1 90:10 

5 I AgOAc KHCO3 (1) Pd(OAc)2 Toluene 95 >10:1 92:8 

6 I AgOAc KHCO3 (5) Pd(OAc)2 Toluene 95 >10:1 92:8 

7 Cl AgOAc KHCO3 (1) Pd(OAc)2 Toluene 0 nd nd 

8 H AgOAc KHCO3 (1) Pd(OAc)2 Toluene 0 nd nd 

9 I AgOAc KHCO3 (1) Pd(OAc)2 PhCF3 40 1:1 nd 

10 I AgOAc KHCO3 (1) Pd(OAc)2 PhCl <10 nd nd 
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With our optimised conditions in hand, we performed the alkynylation on the cyclopropane 

substrate with various silyl-protected iodoalkynes, giving the desired product with good yield 

and unchanged enantiomeric ratio of 92:8. Alkynylation of cyclobutane IV-1b was less selective 

as we observed for the arylation. Finally, mono-alkynylation of racemic substrate IV-1c gave the 

desired non-cyclized product in good 71% yield and moderate enantiomeric excess, with partial 

resolution of the remaining starting material (measured 60:40 enantiomeric ratio). 

Disappointingly, alkynylation with iodo-ethynyl arene or t-butyl-iodoacetylene gave in both cases 

low conversion. 

 

Figure 4.60 Scope of enantioselective alkynylation on cycloalkanes 
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IV.5. Extension to linear chains 

Regarding the high activity of our ligand L12, as both excellent promotor and stereoinductor, we 

envisaged to use it for the functionalisation of linear aliphatic substrates, and in particular for 

the desymmetrisation of isobutyric acid derivate, as described by Yu and co-workers in 2017.[275] 

Deceivingly, arylation of IV-1d gave no enantiomeric induction and both mono- and di-arylated 

products were isolated in good 81% total yield (Scheme 4.140). 

 

Scheme 4.140 Enantioselective arylation of isobutyric acid derivative 

Concerning the enantioselective alkynylation of IV-1d, the mono-alkynylated product IV-7dA was 

isolated with excellent 73% yield, but again low enantiomeric induction (Scheme 4.141).  

 

Scheme 4.141 Enantioselective alkynylation of isobutyric acid derivative 

These two examples highlight the potential of our ligand system, as both reactions are 

ineffective in absence of an external auxiliary.  However, the low enantiomeric induction 

suggests that further improvement of L12 is needed to efficiently transfer the chiral information 

in case of acyclic substrates. 
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IV.6. Mechanistic insights 

Considering the unprecedented architecture of the ligand, we undertook mechanistic studies to 

elucidate the mechanism of this coupling considering the system consisting of IV-1a, L12 and 

Pd(TFA)2 and assuming that the key step in enantioselectivity is the formation of the heteroleptic 

bischelated palladacyclic intermediates by C(sp3)-H bond activation at the cyclopropyl residue. 

As good to excellent enantiomeric excesses were observed, we suspected the formation of an 

active catalyst from palladium(II) trifluoroacetate and L12. The resulting chelate synthesis has 

been endeavoured. Mixing the palladium source and the ligand resulted in the partial formation 

of a suspected protonated chelate and addition of one equivalent of silver carbonate to the 

reaction mixture afforded quantitatively Pd-L12 (Figure 4.61). Besides strong shifts in both 1H 

and 13C NMRs, infrared spectra of the chelate showed clearly the involvement of the amide (IR 

stretch of the C-O bond displaced from 1656 to 1716 cm-1) and of the sulfoxide (IR stretch of the 

S-O bond displaced from 1037 to 1076 cm-1) into the palladium coordination sphere.  

 

Figure 4.61 Formation of Pd-L12 chelate 
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Many attempts to crystallize IV-Pd-L12 have been undertaken but decomposition was mainly 

observed. By slow evaporation of dichloromethane, the compound started decomposing but the 

resulting complex furnished mono-crystals suitable for X-Ray diffraction analysis (Figure 4.62.a). 

This complex clearly shows coordination of both sulphur and nitrogen to the palladium centre 

(Figure 4.62.b). It is important to notice that this resulting solid coordination polymer may not 

represent the reality observed in solution during the catalysis. 

 

Figure 4.62 ORTEP-views of the a) IV-Pd-L12 chelate polymer and b) monomer 
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Formation of the IV-Pd-L12 complex is certainly followed by chelation of the substrate IV-1a. DFT 

calculations demonstrated that the formation of IV-pre-dia1 and IV-pre-dia2 is favourable with 

an overall Gibbs enthalpy around – 100 kcal/mol (Figure 4.63).  

 

 

Figure 4.63 ETS-NOCV analysis of the bischelate formation 

The exergonic conversion of IV-pre-dia1 and IV-pre-dia2 into IV-Pd-dia1 and IV-Pd-dia2 

respectively involves transition states IV-TS-dia1 (TS= 403 icm-1) and IV-TS-dia2 (TS= 415 icm-1), 

but in a formal barrier-less fashion for IV-pre-dia2 and with a low Gibbs activation energy around 

1 kcal/mol for IV-pre-dia1.  Noncovalent interactions (NCI) analysis coupled to extended 

transition state-natural orbital for chemical valence decomposition suggest that in IV-pre-dia2 

the more extended contribution of attractive noncovalent interactions is responsible for the 

easiest C-H bond activation. Note that in all models optimal − stacking of the C6F5 and p-tolyl 

group contributes in stabilizing the trans N-Pd-N stereochemistry.  In IV-pre-dia2, NCI support 

the weakly covalent “agostic” Pd-to-Hcy-Ccy interaction (Pd-Hcy= 2.038 Å, Pd-Ccy= 2.394 Å, Hcy-O= 

1.926 Å), embodied by the “covalent hole” within the NCI attractive isosurface, in two ways: by 

spreading out attractive Pd-to-Hcy-Ccy NCI and by Hcy-O NCI (Figure 1b) that are absent in IV-pre-

dia1.  Interestingly, the Hcy-Ccy bond in IV-pre-dia2 is slightly more elongated (1.133 Å) than that 
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in IV-pre-dia1 (1.119 Å).  In stark contrast with the accepted base-assisted Pd(II) C-H bond 

activation mechanism but in rather good accord with the mechanism proposed by Yu and co-

workers for a different Pd(II) initiated alkyl C-H bond activation displaying a higher activation 

barrier of ca. 10 kcal/mol,[284] the hydrogen atom of the cyclopropyl migrates to the vicinal 

acetamide oxygen atom with the assistance of an attractive noncovalent HCy-Pd interaction in 

both IV-TS-dia1 and IV-TS-dia2  according to NCI isosurface plots.  In view of these results and 

due to the thin difference in energies in the reaction energy profile that warrants caution, it can 

only be speculated that the preference given to IV-Pd-dia2 in the catalysis results from its higher 

kinetic reactivity in the subsequent arylation step entailing the iodoarene oxidative addition to 

the Pd(II) centre. IV-Pd-dia1 and IV-Pd-dia2 display indeed different topologies, with a marked 

helical distortion of the latter that tilts the 4-tert-butylphenyl group about 40-45° out of the 

mean coordination plane of the Pd centre, whereas in IV-Pd-dia1, the same aryl group remains 

roughly in the mean coordination plane. It is speculated that this marked distortion of the 

amidosulfoxide ligand might be detrimental to the subsequent oxidative-addition of halogeno-

arenes due to enhanced steric strains, thus creating a sufficient discrimination between these 

two palladacycles to induce enantio-differenciation (Figure 4.64).  

 

Figure 4.64 Gibbs-energy profile (in kcal/mol) of the formation of the two palladacycles IV-Pd-dia1 and IV-Pd-dia2 

The role of the C6F5 moiety in IV-1b was investigated by replacing all fluorine atoms by H in IV-

pre-dia1 and IV-pre-dia2.  According to energy decomposition analysis (EDA) the resulting IV-

pre-dia1H displays a coordinative cohesion stronger by ca. 10 kcal/mol compensated by a less 

tight phenyl-tolyl − stacking, the Cipso-Cipso interannular distance amounting ca 3.9 Å in IV-pre-
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dia1H vs. 3.7 Å in IV-pre-dia1.  Moreover, the activation energy for the IV-pre-dia2H to IV-TS-

dia2H transit is about twice that of IV-pre-dia2 to IV-TS-dia2 (Figure 4.65). 

 

Figure 4.65 NCI isosurfaces for IV-TS-dia1 and IV-TS-dia2 

These preliminary mechanistic studies cannot settle about one pathway or the other, because of 

the similar energies of IV-Pd-dia1 and IV-Pd-dia2 (about 3 kcal/mol difference). However, the 

observed significant impact of both chiral centres on the enantioselectivity (IV.3.iv) could be 

explained by the potential repulsive interactions in IV-Pd-dia1 as shown in Figure 4.66. 

 

Figure 4.66 Proposed asymmetric induction model in enantioselective C(sp3)-H activation of cyclopropanes 
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According to the studies conducted by Yu and co-workers for ligand-enabled C-H activation and 

to our preliminary DFT calculations, we can propose a first catalytic cycle. Palladium(II) 

trifluoroacetate will undergo ligand exchange with L12 to obtain in situ the active catalyst IV-Pd-

L12. Coordination of the substrate and further C-H bond activation would lead to the two 

diastereomers IV-Pd-dia1 and IV-Pd-dia2. Then, oxidative addition with the iodoarene coupling 

partner would lead to the Pd(IV) species IV-Pd-ar. Reductive elimination followed by ligand 

exchange would regenerate the active palladium species IV-Pd-L12 (Figure 4.67). 

 

Figure 4.67 Preliminary catalytic cycle for the enantioselective arylation of cycloalkanes using L12 
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IV.7. Conclusion 

With this last challenging project, we conducted enantioselective arylation and alkynylation of 

cycloalkanes with our optimized ligand L12, an N-protected aminosulfoxide. High yields and 

enantiomeric excesses were obtained. All these encouraging preliminary results were submitted 

for publication in a scientific journal in 2018. 

The main challenge remains to improve the structure of L12 to facilitate highly asymmetric 

transformations on various types of C(sp3)-H bonds, and many perspectives, such as 

enantiodifferenciation of phosphinamides, could be imagined. 
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IV.8. Experimental section 

IV.8.i. Substrate synthesis 

N-(2,3,4,5,6-pentafluorophenyl)-cyclopropanecarboxamide IV-1a 

To a stirred solution of 2,3,4,5,6-pentafluoroaniline (1.6 g, 8.8 mmol, 1 equiv.) in 20 mL of 

anhydrous toluene was added dropwise an acyl chloride (800 µL, 8.8 mmol, 1 equiv.) under 

vigorous stirring. The resulting mixture was stirred 24 h at reflux. Upon cooling, the mixture was 

evaporated under reduced pressure. Crystallization with EtOAc/CyHex afforded the title 

compound. 

1H NMR (400 MHz, CDCl3): 6.98 (1H, br s, NH), 1.57-1.68 (1H, m), 1.09-1.17 (2H, 

m), 0.95 (2H, dt, J=8.0, 3.5 Hz); other data match the reported ones.  

 

N-(2,3,4,5,6-pentafluorophenyl)-cyclobutanecarboxamide IV-1b 

The general procedure was performed using 800 µL of cyclopropanecarbonyl chloride. 

Crystallization afforded the title compound (1.87 g, 87 %) as white needles. 

1H NMR (400 MHz, CDCl3): 6.78 (1H, br s, NH), 3.17-3.35 (1H, m), 2.33-2.46 (2H, 

m), 2.17-2.33 (2H, m), 1.88-2.14 (2H, m); 13C NMR (100 MHz, CDCl3): 39.7, 25.5, 

18.3; 19F NMR (376 MHz, CDCl3): -145.15, -156.79, -162.52; FT-IR (cm-1): 3256 (m, 

N-H), 1683 (s, C-O); HRMS (ESI-TOF): m/z calcd for C11H9F5NO+ [M+H]+: 266.0599, 

found: 266.0605. 

2,2-dimethyl-N-(2,3,4,5,6-pentafluorophenyl)-cyclopropanecarboxamide IV-1c 

The general procedure was performed using 1 mL of 2,2-dimethylcyclopropane-1-carbonyl 

chloride. Crystallization afforded the title compound (1.32 g, 49 %) as an off-white solid. 

1H NMR (400 MHz, CDCl3): 6.87 (1H, br s, NH), 1.44-1.55 (1H, m), 1.15-1.34 

(7H, m), 0.92 (1H, dd, J=7.9, 4.5 Hz); 13C NMR (100 MHz, CDCl3): 27.1, 23.9, 

21.7, 18.6; 19F NMR (377 MHz, CDCl3): -145.01, -157.14, -162.60; FT-IR (cm-1): 

3244 (w, N-H), 1671 (m, C-O); HRMS (ESI-TOF): m/z calcd for C12H11F5NO+ [M+H]+: 280.0755, 

found: 280.0769; Rt (min, CHIRALPAK ® ADH, Hex/iPrOH 99/1, 0.5 mL/min): 50.11 (50 %), 55.43 

(50 %). 
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N-(2,3,4,5,6-pentafluorophenyl)-isobutyramide IV-1d 

The general procedure was performed using 0.9 mL of isobutyryl chloride. Crystallization 

afforded the title compound (2.1 g, 97 %) an off-white solid. 

1H NMR (400 MHz, CDCl3): 6.98 (1H, br, NH), 2.64 (1H, hept, J=6.8 Hz), 1.27 (6H, d, 

J=6.9 Hz); 13C NMR (100 MHz, CDCl3): 175.8, 35.7, 19.6; 19F NMR (376 MHz, CDCl3): 

-145.24, -156.69, -162.58; FT-IR (cm-1): 3251 (m, N-H), 1681 (s, C-O); HRMS (ESI-

TOF): m/z calcd for C10H9F5NO+ [M+H]+: 254.0599, found: 254.0612. 

IV.8.ii. Ligand synthesis 

IV.8.ii.1. Synthesis of (S, RS)-aminosulfoxide type ligands 

General procedure for the synthesis of PMP-imines 

 

Aldehyde (1 equiv.) and p-anisidine (1 equiv.) were dissolved in 50 mL of dichloromethane, 

followed by addition of MgSO4 (5 equiv.). The resulting mixture was stirred 24 to 48 h at room 

temperature. Then, it was filtered and evaporated under reduced pressure to yield pure PMP-

imines as solids. 

General procedure for the asymmetric addition of (RS)-methyl p-tolylsulfinyllithium on PMP-

imines 

 

To a stirred solution of (RS)-methyl p-tolylsulfoxide (200 mg, 1.3 mmol, 1.3 equiv.) in anhydrous 

THF was added dropwise and at – 78 °C LDA (560 µL, 2 M in THF/heptane/ethylbenzene, 1.13 

mmol, 1.1 equiv.). The resulting yellowish mixture was stirred 30 min at – 78 °C before slow 
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addition of a solution of PMP-imine (1.2 equiv.) in anhydrous THF. After 2 h at – 78 to – 60 °C, 

the solution was quenched with MeOH (few drops). Solvent were evaporated under reduced 

pressure. The major diastereomer was directly precipitated from the crude mixture with 

addition of CyHex/EtOAc and the absolute stereochemistry was proven by X-Ray diffraction 

analysis of N-((S)-1-(4-(tert-butyl)phenyl)-2-((RS)-p-tolylsulfinyl)ethyl)-4-methoxyaniline.[26] The 

(S, RS) diastereomer was dissolved in acetonitrile and added slowly to a solution of CAN (2.5 

equiv.) in water at 0 °C. The resulting brownish mixture was stirred 1 h at room temperature 

before addition of 1 M HCl sol. and diethyl ether. The aqueous layer was extracted and the 

organic layer back-extracted with 1 M HCl sol. (3x). The combined aqueous layers were carefully 

basified with solid Na2CO3 until pH ca 10. CH2Cl2 was added. The organic layer was extracted, 

washed with brine, dried (Na2SO4), filtered off and evaporated under reduced pressure to yield 

almost pure aminosulfoxide. The crude was taken up in DMF before addition of acetic acid (1 

equiv.), triethylamine (3.5 equiv.) and propylphosphonic anhydride (1.2 equiv.). The resulting 

mixture was stirred 3 h at room temperature. Brine and ethyl acetate were added. The organic 

layer was washed with brine, sat. NaHCO3 sol. and brine, dried (Na2SO4), filtered off and 

evaporated under reduced pressure. The crude was purified by column chromatography on silica 

gel with cyclohexane/ethyl acetate (typically 2:3 or 1:4) to afford the pure ligand. 

N-((S)-1-(4-(tert-butyl)phenyl)-2-((RS)-p-tolylsulfinyl)ethyl)-4-methoxyaniline PMP-L12 

The title compound was obtained as a white solid. Slow evaporation in Hex/CHCl3 at room 

temperature afforded mono crystals suitable for X-Ray diffraction analysis which were analysed 

on the Nonius Kappa-CCD diffractometer. The methyls of the tert-butyl group are disordered 

over two positions with an occupancy ratio of 0.55/0.45. 

1H NMR (400 MHz, 

CDCl3): 7.50 (2H, d, J=8.2 

Hz), 7.21-7.35 (6H, m), 

6.69 (2H, d, J=9.0 Hz), 

6.53 (2H, d, J=8.9 Hz), 

4.81 (1H, br s, NH), 4.77 

(1H, dd, J=8.6, 4.3 Hz), 3.70 (3H, s, PhOCH3); 3.00-3.17 (2H, m), 2.40 (3H, s, PhCH3), 1.28 (9H, s, 

PhC(CH3)3); 13C NMR (100 MHz, CDCl3): 152.5, 150.7, 141.7, 141.0, 140.3, 138.5, 130.2, 126.1, 

126.0, 124.2, 115.5, 114.8, 64.6, 55.8, 54.9, 34.6, 31.5, 21.5; FT-IR (cm-1): 3322 (m, N-H), 2831 (w, 
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C-O ether), 1012 (s, S-O); HRMS (ESI-TOF): m/z calcd for C26H32NO2S+ [M+H]+: 422.2148, found: 

422.2146. 

N-((S)-1-phenyl-2-((RS)-p-tolylsulfinyl)ethyl)acetamide L4  

The title compound was obtained as a white solid. The absolute stereochemistry was assigned 

according to PMP-L12. 

1H NMR (400 MHz, CDCl3): 7.66 (1H, br d, J=7.5 Hz, NH), 7.47 (2H, d, 

J=8.2 Hz), 4.40 (4H, app d, J=4.4 Hz), 7.29-7.35 (3H, m), 5.50 1(H, ddd, 

J=7.5, 6.4, 3.7 Hz), 3.21 (1H, dd, J=13.5, 3.6 Hz), 3.12 (1H, dd, J=13.5, 

6.3 Hz), 2.41 (3H, s, PhCH3), 2.07 (3H, s, C(O)CH3); 13C NMR (100 MHz, 

CDCl3): 169.7, 142.3, 139.9, 139.6, 130.3, 129.1, 128.1, 126.6, 124.1, 62.3, 51.6, 23.6, 21.6; FT-IR 

(cm-1): 3271 (w, N-H), 1652 (s, C-O), 1026 (m, S-O); HRMS (ESI-TOF): m/z calcd for C17H20NO2S+ 

[M+H]+: 302.1209, found: 302.1198. 

N-((S)-2-methyl-1-phenyl-2-((SS)-p-tolylsulfinyl)propyl)acetamide Me-L4 

The title compound was obtained as a brownish solid. The absolute stereochemistry was 

assigned according to PMP-L12. 

1H NMR (400 MHz, CDCl3): 8.20 (1H, d, J=8.7 Hz, NH), 7.52 (2H, d, J=7.1 

Hz), 7.20-7.44 (7H, m), 5.17 (1H, d, J=8.8 Hz), 2.39 (3H, s, PhCH3), 2.03 

(3H, s, C(O)CH3), 1.17 (3H, s), 0.96 (3H, s); 13C NMR (100 MHz, CDCl3): 

169.4, 142.4, 137.8, 134.8, 129.5, 129.0, 128.3, 128.1, 126.7, 62.9, 

59.5, 23.6, 21.4, 17.6; FT-IR (cm-1): 3270 (w, N-H), 1662 (s, C-O), 1035 (m, S-O); HRMS (ESI-TOF): 

m/z calcd for C19H23NNaO2S+ [M+Na]+: 352.1342, found: 352.1348. 

N-((S)-1-(3,5-dimethylphenyl)-2-((RS)-p-tolylsulfinyl)ethyl)acetamide L10 

The title compound was obtained as a white solid. The absolute stereochemistry was assigned 

according to PMP-L12. 

1H NMR (400 MHz, CDCl3): 7.61 (1H, d, J=7.5 Hz, NH), 7.47 (2H, d, J=8.2 

Hz), 7.32 (2H, d, J=8.0 Hz), 6.98 (2H, s), 6.93 (1H, s), 5.41 (1H, td, 

J=6.8., 3.8 Hz), 3.18 (1H, dd, J=13.5, 3.8 Hz), 3.09 (1H, dd, J=13.4, 6.3 

Hz), 2.41 (3H, s, S(O)PhCH3), 2.32 (6H, s, Ph(CH3)2), 2.06 (3H, s, 

C(O)CH3); 13C NMR (100 MHz, CDCl3): 169.6, 142.1, 140.0, 139.5, 138.6, 130.3, 129.8, 124.3, 
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124.1, 62.4, 51.5, 23.6, 21.6; FT-IR (cm-1): 3269 (w, N-H), 1654 (s, C-O), 1027 (m, S-O); HRMS (ESI-

TOF): m/z calcd for C19H23NNaO2S+ [M+Na]+: 352.1342, found: 352.1363. 

N-((S)-1-(naphthalen-2-yl)-2-((RS)-p-tolylsulfinyl)ethyl)acetamide L11 

The title compound was obtained as a white solid. The absolute stereochemistry was assigned 

according to PMP-L12. 

1H NMR (400 MHz, CDCl3): 7.77-7.90 (5H, m), 7.42-7.53 (5H, m), 7.31 

(2H, d, J=8.2 Hz), 5.67 (1H, ddd, J=8.1, 6.6, 3.7 Hz), 3.28 (1H, dd, 

J=13.5, 3.7 Hz), 3.20 (1H, dd, J=13.5, 6.1 Hz), 2.41 (3H, s), 2.11 (3H, s); 

13C NMR (100 MHz, CDCl3): 169.7, 142.3, 139.9, 137.0, 133.5, 133.1, 

130.3, 129.0, 128.2, 127.8, 126.6, 126.3, 125.4, 124.5, 124.1, 62.2, 

51.8, 23.7, 21.6; FT-IR (cm-1): 3262 (m, N-H), 1663 (s, C-O), 1045 (s, S-

O); HRMS (ESI-TOF): m/z calcd for C21H21NNaO2S+ [M+Na]+: 374.1185, found: 374.1204. 

N-((S)-1-(4-(tert-butyl)phenyl)-2-((RS)-p-tolylsulfinyl)ethyl)acetamide L12 

The title compound was obtained as an orange solid. The absolute stereochemistry was assigned 

according to PMP-L15. 

1H NMR (400 MHz, CDCl3): 7.62 (1H, d, J=7.6 Hz, NH), 7.47 (2H, d, 

J=8.2 Hz), 7.38 (2H, d, J=8.5 Hz), 7.27-7.35 (4H, m), 5.37-5.53 (1H, m), 

3.09-3.30 (2H, m), 2.40 (3H, s, PhCH3), 2.04 (3H, s, C(O)CH3), 1.30 (9H, 

s, PhC(CH3)3); 13C NMR (100 MHz, CDCl3): 169.6, 150.9, 142.1, 140.1, 

136.5, 130.2, 126.2, 125.9, 124.1, 62.4, 51.0, 34.6, 31.4, 23.6, 21.5; 

FT-IR (cm-1): 3274 (m, N-H), 1656 (s, C-O), 1037 (s, S-O); HRMS (ESI-

TOF): m/z calcd for C21H27NNaO2S+ [M+Na]+: 380.1655, found: 380.1674; Rt (min, CHIRALPAK ® IA, 

Hex/iPrOH 90/10, 0.5 mL/min): 33.23 (> 99.5 %). 

N-((S)-1-(p-tolyl)-2-((RS)-p-tolylsulfinyl)ethyl)acetamide L14 

The title compound was obtained as a brownish solid. The absolute stereochemistry was 

assigned according to PMP-L12. 
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1H NMR (400 MHz, CDCl3): 7.65 (1H, d, J=7.6 Hz, NH), 7.46 (2H, d, 

J=8.2 Hz), 7.24-7.35 (4H, m), 7.18 (2H, d, J=7.9 Hz), 5.44 (1H, td, J=6.9, 

3.9 Hz), 3.18 (1H, dd, J=13.4, 3.8 Hz), 3.11 (1H, dd, J=13.4, 6.4 Hz), 

2.40 (3H, s), 2.34 (3H, s), 2.04 (3H, s, C(O)CH3); 13C NMR (100 MHz, 

CDCl3): 169.6, 142.1, 140.0, 137.8, 136.6, 130.3, 129.7, 126.4, 124.1, 

62.5, 51.2, 23.6, 21.5, 21.2; FT-IR (cm-1): 3304 (w, N-H), 1658 (s, C-O), 1032 (s, S-O); HRMS (ESI-

TOF): m/z calcd for C18H21NNaO2S+ [M+Na]+: 338.1185, found: 338.1186. 

N-((S)-1-(4-(trifluoromethyl)phenyl)-2-((RS)-p-tolylsulfinyl)ethyl)acetamide L15 

The title compound was obtained as a white solid. The absolute stereochemistry was assigned 

according to PMP-L12. 

1H NMR (400 MHz, CDCl3): 7.89 (1H, d, J=7.2 Hz, NH), 7.62 (2H, d, J=8.2 

Hz), 7.50 (2H, d, J=8.4 Hz), 7.46 (2H, d, J=8.2 Hz), 7.32 (2H, d, J=7.9 Hz), 

5.50 (1H, td, J=6.7, 3.9 Hz), 3.18 (1H, dd, J=13.6, 3.8 Hz), 3.13 (1H, dd, 

J=13.6, 6.4 Hz), 2.41 (3H, s, PhCH3), 2.07 (3H, s, C(O)CH3); 13C NMR 

(100 MHz, CDCl3): 169.9, 143.8, 142.5, 141.8, 139.4, 130.4, 127.0, 

126.0 (q, J=4 Hz), 125.9 (q, J=272 Hz), 124.0, 61.5, 51.4, 23.5, 21.6; 19F NMR (377 MHz, CDCl3): -

62.56; FT-IR (cm-1): 3271 (w, N-H), 1681 (s, C-O), 1014 (s, S-O); HRMS (ESI-TOF): m/z calcd for 

C18H19F3NO2S+ [M+H]+: 370.1083, found: 370.1104. 

IV.8.ii.2. Other new ligands 

(RS)-N-(3-(p-tolylsulfinyl)propyl)acetamide L2   

The title compound was obtained as a yellow solid. 

1H NMR (400 MHz, CDCl3): 7.46 (2H, d, J=8.2 Hz); 7.31 (2H, d, J=7.9 

Hz), 6.56 (1H, br s, NH), 3.32 (2H, q, J=6.4 Hz), 2.82-2.93 (1H, m), 

2.73-2.81 (1H, m), 2.39 (3H, s, PhCH3), 1.87-2.02 (4H, m), 1.75-1.86 

(1H, m); 13C NMR (100 MHz, CDCl3): 170.6, 141.8, 139.9, 130.1, 124.1, 54.7, 38.3, 23.3, 22.8, 21.5; 

FT-IR (cm-1): 3286 (br m, N-H), 1651 (s, C-O), 1027 (s, S-O); HRMS (ESI-TOF): m/z calcd for 

C12H18NO2S+ [M+H]+: 240.1053, found: 240.1063. 
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 (R)-4-phenyl-2-(2-((SS)-p-tolylsulfinyl)ferrocenyl)-4,5-dihydrooxazole L6 

The title compound was obtained as a greenish solid. 

1H NMR (400 MHz, CDCl3): 7.68 (1H, d, J=8.2 Hz), 7.27-7.41 (5H, m), 7.17 

(2H, d, J=8.0 Hz), 5.30 (1H, dd, J=9.9, 7.4 Hz), 5.05 (1H, dd, J=2.6, 1.6 Hz), 

4.88 (1H, dd, J=2.5, 1.6 Hz), 4.72 (1H, dd, J=9.9, 8.2 Hz), 4.53 (1H, t, J=2.6 

Hz), 4.47 (4H, s), 4.14-4.21 (1H, m), 2.33 (3H, s, PhCH3); 13C NMR (100 

MHz, CDCl3): 165.5, 156.4, 144.8, 129.6, 128.9, 127.7, 126.5, 125.2, 74.9, 72.2, 71.9, 70.6, 69.9, 

66.8, 21.5; FT-IR (cm-1): 1648 (s, C-O), 1042 (s, S-O); HRMS (ESI-TOF): m/z calcd for C26H24FeNO2S+ 

[M+H]+: 470.0872, found: 470.0875. 

(S)-2-methyl-2-(p-tolylsulfinyl)propanoic acid L7 

The title compound was obtained as a white solid. 

1H NMR (400 MHz, DMSO-d6): 13.13 (1H, s, COOH), 7.41-7.48 (2H, m), 7.38 (2H, d, 

J=8.0 Hz), 2.38 (3H, s, PhCH3), 1.38 (3H, s), 1.08 (3H, s); 13C NMR (100 MHz, DMSO-

d6): 177.3, 146.9, 142.1, 134.5, 130.8, 70.7, 26.2, 24.6, 21.1; FT-IR (cm-1): 3250 (m, 

C-O), 1054 (s, S-O). 

(SS)-8-(tert-butylsulfinyl)quinoline L8 

The title compound was obtained as a clear oil. 

1H NMR (400 MHz, CDCl3): 8.94 (1H, dd, J=4.2, 1.8 Hz), 8.28 (1H, dd, J=7.3, 1.4 Hz), 

8.22 (1H, dd, J=8.4, 1.8 Hz), 7.95 (1H, dd, J=8.1, 1.4 Hz), 7.75 (1H, dd, J=8.0, 7.4 

Hz), 7.47 (1H, dd, J=8.3, 4.2 Hz), 1.24 (9H, s); 13C NMR (100 MHz, CDCl3): 150.4, 

146.1, 140.0, 136.4, 130.8, 129.0, 128.2, 126.4, 121.9, 58.7, 23.7; FT-IR (cm-1): 

1045 (s, S-O); HRMS (ESI-TOF): m/z calcd for C13H16NOS+ [M+H]+: 234.0953, found: 234.0967. 

 (RS)-N-(2-(p-tolylsulfinyl)ethyl)acetamide prim-L4 

The title compound was obtained as a white solid. 

1H NMR (400 MHz, CDCl3): 7.48 (2H, d, J=8.2 Hz), 7.32 (2H, d, J=7.9 Hz), 

6.84 (1H, br s, NH), 3.75 (1H, dtd, J=14.6, 6.2, 4.4 Hz), 3.55 (1H, dddd, 

J=14.4, 9.3, 5.4, 4.0 Hz), 3.14 (1H, ddd, J=13.0, 8.5, 4.4 Hz), 2.81 (1H, 

ddd, J=13.6, 6.4, 4.0 Hz), 2.40 (3H, s, PhCH3), 1.93 (3H, s, C(O)CH3); 13C NMR (100 MHz, 

CDCl3): 170.7, 141.9, 139.6, 130.3, 124.0, 55.5, 34.2, 23.2, 21.5; FT-IR (cm-1): 3280 (br w, N-H), 
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1652 (s, C-O), 1038 (s, S-O); HRMS (ESI-TOF) : m/z calcd for C11H15NNaO2S+ [M+Na]+: 248.0716, 

found: 248.0705. 

 (S)-N-(1-phenyl-2-(p-tolylthio)ethyl)acetamide thio-L4  

The title compound was obtained as a clear oil. 

1H NMR (400 MHz, CDCl3): 7.23-7.36 (7H, m), 7.10 (2H, d, J=7.9 Hz), 

6.01 (1H, d, J=7.0 Hz, NH), 5.15 (1H, app q, J=7.0 Hz), 3.33 (1H, dd, 

J=13.6, 7.1 Hz), 3.27 (1H, dd, J=13.6, 6.2 Hz), 2.32 (3H, s, PhCH3), 1.95 

(3H, s, C(O)CH3); 13C NMR (100 MHz, CDCl3): 169.6, 140.6, 137.0, 

131.8, 130.8, 130.0, 128.9, 127.9, 126.7, 53.0, 40.7, 23.4, 21.2; FT-IR (cm-1): 3250 (br m, N-H), 

1647 (s, C-O); HRMS (ESI-TOF): m/z calcd for C17H20NOS+ [M+H]+: 286.1311, found: 286.1321. 

N-((S)-2-((RS)-tert-butylsulfinyl)-1-phenylethyl)acetamide tBu-L4 

The title compound was obtained as a white solid. 

1H NMR (400 MHz, CDCl3): 7.28-7.41 (5H, m), 6.97 (1H, br s, NH), 5.39 (1H, 

br s), 3.02 (1H, br s), 2.76 (1H, br s), 2.03 (3H, s, C(O)CH3), 1.27 (9H, s, 

C(CH3)3); 13C NMR (100 MHz, CDCl3): 170.3, 141.4, 129.1, 128.1, 126.4, 52.3, 

29.8, 23.6, 22.9, 14.3; FT-IR (cm-1): 3230 (br w, N-H), 1654 (s, C-O), 1012 (s, 

S-O). 
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IV.8.iii. Enantioselective arylation of cycloalkanes 

IV.8.iii.1. Optimization of the reaction conditions 

Screening of different families of ligands and carboxylic acid protecting group 

This section is already described in the manuscript. 

Screening of base, additive and solvent using L4 

N-(2,3,4,5,6-pentafluorophenyl)-cyclopropanecarboxamide IV-1a (18 mg, 0.06 mmol, 1 equiv.), 

4-iodotoluene (40 mg, 0.18 mmol, 3 equiv.), appropriate base (2 equiv.), appropriate additive (1 

equiv.), palladium(II) trifluoroacetate (2 mg, 0.006 mmol, 10 mol%) and L4 (4 mg, 0.012 mmol, 

20 mol%) were weighted in a pressure tube. Solvent (600 µL) was added and the reaction 

mixture was stirred 30 min at room temperature, followed by heating at 110 °C during 18 h. 

After cooling to room temperature, the mixture was filtered with 0.2 µm PTFE membrane, 

washed with chloroform and evaporated under reduced pressure. The crude was analysed by 1H 

NMR and chiral HPLC using CHIRALPAK ® ADH column.  

 

Entry Base additive Solvent Conversion (%) er 

1 Ag2CO3 K2HPO4 Hexane 80 85:15 

2 Ag2CO3 - Hexane 85 85:15 

3 Ag2CO3 - Heptane 60 85:15 

4 Ag2CO3 Li2CO3 Hexane <10 nd 

5 Ag2CO3 Cs2CO3 Hexane 40 nd 

6 AgTFA K2HPO4 HFIP 0 nd 

7 AgOAc K2HPO4 Hexane <20 nd 
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Screening of ligands derived from L4 

N-(2,3,4,5,6-pentafluorophenyl)-cyclopropanecarboxamide (18 mg, 0.06 mmol, 1 equiv.), 4-

iodotoluene (40 mg, 0.18 mmol, 3 equiv.), silver carbonate (42 mg, 0.15 mmol, 2.5 equiv.), 

potassium phosphate dibasic (10 mg, 0.06 mmol, 1 equiv.), palladium(II) trifluoroacetate (2.1 

mg, 0.006 mmol, 10 mol%) and appropriate ligand (20 mol%) were weighted in a pressure tube. 

Hexane (600 µL) was added and the reaction mixture was stirred 30 min at room temperature, 

followed by heating at 110 °C during 18 h. After cooling to room temperature, the mixture was 

filtered with 0.2 µm PTFE membrane, washed with chloroform and evaporated under reduced 

pressure. The crude was analyzed by 1H NMR and chiral HPLC using CHIRALPAK ® ADH column.  



Chapter 4: Experimental section 

321 
 

  2122 

 

 

 

 

 

 

                                                        
21 Between brackets, conversion and er when running the reaction at 80 °C 
22 Reaction was carried out at 80 °C 
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Final optimization of the reaction conditions using L12 

N-(2,3,4,5,6-pentafluorophenyl)-cyclopropanecarboxamide IV-1a (1 equiv.), 4-iodotoluene, 

appropriate base, appropriate additive, appropriate catalyst and L12 were weighted in a 

pressure tube. Solvent were added, and the reaction mixture was stirred 30 min at room 

temperature, followed by heating at 80 °C during 18 h. After cooling to room temperature, the 

mixture was filtered with 0.2 µm PTFE membrane, washed with chloroform and evaporated 

under reduced pressure. The crude was analyzed by 1H NMR and chiral HPLC using CHIRALPAK ® 

ADH column.  

 

Entry x y base Additive (z) solvent (M) Conversion 

(%) 

er 

1 3 20 Ag2CO3 None Hex (0.2) 75 94:6 

2 3 15 Ag2CO3 None Hex (0.1) 45 94:6 

3 3 15 Ag2CO3 None Hex/CHCl3 (3:1) (0.1) 60 95:5 

4 3 15 Ag2CO3 None Hex/CHCl3 (2:1) (0.1) 70 96:4 

5 3 15 Ag2CO3 None Hex/CHCl3 (1:2) (0.1) 70 89:11 

6 3 15 Ag2CO3 None CHCl3 (0.1) 50 87:13 

7 3 15 AgTFA None Hex/CHCl3 (2:1) (0.1) <5 nd 

8 3 15 AgOAc None Hex/CHCl3 (2:1) (0.1) 20 80:20 

9 3 15 K2CO3 None Hex/CHCl3 (2:1) (0.1) <10 nd 

1023 2 15 Ag2CO3 none Hex/CHCl3 (2:1) (0.1) 70 95:5 

113 3 15 Ag2CO3 NaTFA (1) Hex/CHCl3 (2:1) (0.1) 75 96:4 

123 3 15 Ag2CO3 Cs2CO3 (1) Hex/CHCl3 (2:1) (0.1) <10 nd 

133 3 15 Ag2CO3 Na2CO3 (1) Hex/CHCl3 (2:1) (0.1) <20 nd 

143 3 15 Ag2CO3 NaTFA (0.5) Hex/CHCl3 (2:1) (0.1) 80 96:4 

153 3 15 Ag2CO3 NaTFA (0.2) Hex/CHCl3 (2:1) (0.1) 70 96:4 

163 2 15 Ag2CO3 NaTFA (0.5) Hex/CHCl3 (2:1) (0.1) 80 96:4 

                                                        
23 The reaction mixture was stirred 24 h at 80 °C. 
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Variations from standard conditions 

 

No Pd(TFA)2 0% conversion 

No ligand ca 5% conversion 

No Ag2CO3 0% conversion 

No NaTFA 70% conversion 
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IV.8.iii.2. Scope of the reaction 

General procedure for the enantioselective mono-arylation of cycloalkanes 

 

N-(2,3,4,5,6-pentafluorophenyl)-cycloalkanecarboxamide IV-1a (50 mg, 0.2 mmol, 1 equiv.), 

iodoarene (2 equiv.), silver carbonate (110 mg, 0.40 mmol, 2 equiv.), sodium trifluoroacetate (14 

mg, 0.10 mmol, 50 mol%), palladium(II) trifluoroacetate (7 mg, 0.02 mmol, 10 mol%) and L12 (11 

mg, 0.03 mmol, 15 mol%) were weighted in a pressure tube. Hexane (1.3 mL) and chloroform 

(0.7 mL) were added and the reaction mixture was stirred 30 min at room temperature, followed 

by heating at 80 °C during 24 h. After cooling to room temperature, the mixture was filtered with 

0.2 µm PTFE membrane, washed with chloroform and evaporated under reduced pressure. The 

crude was purified by column chromatography or preparative thin layer chromatography, 

typically with pentane/ethyl acetate or toluene/ethyl acetate eluent, to afford the title 

compound. 

(1R,2S)-N-(pentafluorophenyl)-2-(p-tolyl)cyclopropane-1-carboxamide IV-2aA 

The general procedure was performed using 4-iodotoluene (90 mg) as coupling partner. 

Preparative thin layer chromatography using toluene/ethyl acetate (95:5) as eluent afforded the 

title compound (53 mg, 78 %, 92 % ee) as a white solid. The absolute stereochemistry was 

assigned according to IV-2aR. 

1H NMR (400 MHz, CDCl3): 7.17 (2H, d, J=8.0 Hz), 7.08 (2H, d, J=7.9 

Hz), 6.66 (1H, br s, NH), 2.64 (1H, app q, J=8.5 Hz), 2.29 (3H, s, PhCH3), 

2.05-2.20 (1H, m), 1.67-1.87 (1H, m), 1.39-1.46 (1H, m); 13C NMR (100 

MHz, CDCl3): 168.5, 136.8, 132.6, 129.1, 129.0, 25.9, 23.4, 21.2, 11.5, 

carbons corresponding to the pentafluoroamide moiety are not reported; 19F NMR (376 MHz, 

CDCl3): -144.95, -157.39, -162.72; FT-IR (cm-1): 3270 (m, N-H), 1678 (s, C-O); HRMS (ESI-TOF): m/z 

calcd for C17H13F5NO+ [M+H]+: 342.0912, found: 342.0934; Rt (min, CHIRALPAK® ADH, Hex/iPrOH 

95/5, 0.5 mL/min): 18.84 (4 %), 33.98 (96 %). 
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(1R,2S)-2-phenyl-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aN  

The general procedure was performed using iodobenzene (50 µL) as coupling partner. 

Preparative thin layer chromatography using toluene/ethyl acetate (95:5) as eluent afforded the 

title compound (53 mg, 81 %, 92 % ee) as a yellow solid. The absolute stereochemistry was 

assigned according to IV-2aR. 

1H NMR (400 MHz, CDCl3): 7.28 (4H, d, J=4.4 Hz), 7.21 (1H, dq, J=8.7, 4.1 

Hz), 6.71 (1H, br s, NH), 2.67 (1H, app q, J=8.7 Hz), 2.15 (1H, app q, J=8.3 

Hz), 1.78-1.95 (1H, m), 1.40-1.53 (1H, m); 13C NMR (100 MHz, CDCl3): 

168.2, 135.7, 129.1, 128.4, 127.2, 26.2, 23.6, 11.3, carbons corresponding 

to the pentafluoroamide moiety are not reported; 19F NMR (376 MHz, CDCl3): -144.92, -157.27, -

162.69; FT-IR (cm-1): 3250 (br w, N-H), 1678 (m, C-O); HRMS (ESI-TOF): m/z calcd for 

C16H10F5NNaO+ [M+Na]+: 350.0575, found: 350.0562; Rt (min, CHIRALPAK ® ADH, Hex/iPrOH 95/5, 

0.5 mL/min): 21.06 (4 %), 29.32 (96 %). 

(1R,2S)-2-(4-(trifluoromethyl)phenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-

2aE  

The general procedure was performed using 4-iodobenzotrifluoride (60 µL) as coupling partner. 

Column chromatography on silica gel using pentane/ethyl acetate (4:1) as eluent afforded the 

title compound (74 mg, 94 %, 95 % ee) as an orange oil. The absolute stereochemistry was 

assigned according to IV-2aR. 

1H NMR (400 MHz, CDCl3): 7.52 (2H, d, J=8.1 Hz), 7.38 (2H, d, J=8.1 

Hz), 6.82 (1H, br s, NH), 2.68 (1H, app q, J=8.4 Hz), 2.20 (1H, app q, 

J=8.0 Hz), 1.86-1.95 (1H, m), 1.46-1.56 (1H, m); 13C NMR (100 MHz, 

CDCl3): 167.6, 140.0, 129.5, 129.1, 125.7 (q, J=271 Hz), 125.2 (q, J=4 

Hz), 26.0, 23.7, 11.6, carbons corresponding to the pentafluoroamide moiety are not reported; 

19F NMR (376 MHz, CDCl3): -62.49, -145.07, -156.62, -162.32; FT-IR (cm-1): 1677 (m, C-O); HRMS 

(ESI-TOF): m/z calcd for C17H10F8NO+ [M+H]+: 396.0629, found: 396.0630; Rt (min, CHIRALPAK ® 

ADH, Hex/iPrOH 95/5, 0.5 mL/min): 18.86 (2.5 %), 36.08 (97.5 %). 
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methyl (1R,2S)-4-(2-((pentafluorophenyl)carbamoyl)cyclopropyl)benzoate IV-2aO 

The general procedure was performed using methyl 4-iodobenzoate (105 mg) as coupling 

partner. Column chromatography on silica gel using pentane/ethyl acetate (7:3) as eluent 

afforded the title compound (51 mg, 66 %, 89 % ee) as a yellow solid. The absolute 

stereochemistry was assigned according to IV-2aR. 

1H NMR (400 MHz, CDCl3): 7.93 (2H, d, J=8.3 Hz), 7.33 (2H, d, 

J=8.2 Hz), 6.96 (1H, br s, NH), 3.88 (3H, s, CO2CH3), 2.67 (1H, 

app q, J=8.4 Hz), 2.20 (1H, app q, J=7.5 Hz), 1.86-1.96 (1H, m), 

1.45-1.55 (1H, m); 13C NMR (100 MHz, CDCl3): 167.8, 167.2, 

141.4, 129.6, 129.2, 128.9, 52.2, 26.2, 23.8, 11.6, carbons corresponding to the 

pentafluoroamide moiety are not reported; 19F NMR (376 MHz, CDCl3): -144.93, -156.83, -

162.43; FT-IR (cm-1): 3263 (br w, N-H), 1722 (m, C-O ester), 1679 (m, C-O amide); HRMS (ESI-

TOF): m/z calcd for C18H12F5NNaO3
+ [M+Na]+: 408.0630, found: 408.0622; Rt (min, CHIRALPAK ® 

ADH, Hex/iPrOH 90/10, 0.5 mL/min): 16.48 (5.5 %), 28.65 (94.5 %). 

(1R,2S)-2-(4-acetylphenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aI 

The general procedure was performed using 4’-iodoacetophenone (100 mg) as coupling partner. 

Column chromatography on silica gel using pentane/ethyl acetate (7:3) as eluent afforded the 

title compound (64 mg, 87 %, 86 % ee) as a clear oil. The absolute stereochemistry was assigned 

according to IV-2aR. 

1H NMR (400 MHz, CDCl3): 7.86 (2H, d, J=8.4 Hz), 7.36 (2H, d, J=8.1 

Hz), 7.10 (1H, br s, NH), 2.68 (1H, app q, J=8.5 Hz), 2.56 (3H, s, 

PhC(O)CH3), 2.17-2.28 (1H, m), 1.86-1.95 (1H, m), 1.45-1.55 (1H, m); 

13C NMR (100 MHz, CDCl3): 198.1, 163.6, 141.7, 135.9, 129.4, 128.3, 

26.7, 26.1, 11.6, carbons corresponding to the pentafluoroamide moiety are not reported; 19F 

NMR (376 MHz, CDCl3): -144.95, -156.77, -162.43; FT-IR (cm-1): 3261 (w, N-H), 1678 (s, C-O ester), 

1607 (s, C-O ketone); HRMS (ESI-TOF): m/z calcd for C18H12F5NNaO2
+ [M+Na]+: 392.0680, found: 

392.0696; Rt (min, CHIRALPAK® ADH, Hex/iPrOH 90/10, 0.5 mL/min): 18.78 (7 %), 50.26 (93 %). 

(1R,2S)-2-(4-cyanophenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aR 

The general procedure was performed using 4-iodobenzonitrile (100 mg) as coupling partner. 

Column chromatography on silica gel using pentane/ethyl acetate (7:3) as eluent afforded the 
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title compound (41 mg, 58 %, 70 % ee) as a clear oil. Slow evaporation in Hex/CH2Cl2 at 3 – 5 °C 

afforded mono crystals suitable for X-Ray diffraction analysis which were analysed on the Bruker 

APEX II DUO Kappa-CCD diffractometer.  

1H NMR (400 MHz, CDCl3): 7.56 (2H, 

d, J=8.4 Hz), 7.38 (2H, d, J=8.1 Hz), 

6.91 (1H, br s, NH), 2.68 (1H, app q, 

J=8.5 Hz), 2.23 (1H, app q, J=7.9 Hz), 

1.91 (1H, ddd, J=9.1, 7.6, 5.5 Hz), 1.53 

(1H, ddd, J=11.3, 8.1, 5.4 Hz); 13C NMR (100 MHz, CDCl3): 141.6, 132.0, 130.0, 119.0, 110.8, 26.2, 

24.0, 11.7, carbons corresponding to the pentafluoroamide moiety are not reported and the 

carbon of the amide was nearly invisible; 19F NMR (376 MHz, CDCl3): -145.04, -156.28, -162.13; 

FT-IR (cm-1): 3266 (w, N-H), 2229 (m, C-N nitrile), 1679 (m, C-O); HRMS (ESI-TOF): m/z calcd for 

C17H10F5N2O+ [M+H]+: 353.0708, found: 353.0704; Rt (min, CHIRALPAK® ADH, Hex/iPrOH 90/10, 

0.5 mL/min): 17.68 (15 %), 46.65 (85 %). 

(1R,2S)-2-(3-bromophenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aD 

The general procedure was performed using 3-iodobromobenzene (50 µL) as coupling partner. 

Preparative thin layer chromatography using toluene/ethyl acetate (95:5) as eluent afforded the 

title compound (47 mg, 58 %, 90 % ee) as a clear oil. The absolute stereochemistry was assigned 

according to IV-2aR. 

1H NMR (400 MHz, CDCl3): 7.44 (1H, s), 7.33 (1H, dt, J=7.7, 1.4 Hz), 7.11-

7.22 (2H, m), 6.80 (1H, br s, NH), 2.62 (1H, app q, J=8.6 Hz), 2.15 (1H, 

app q, J=8.2 Hz), 1.80-1.86 (1H, m), 1.41-1.49 (1H, m); 13C NMR (100 

MHz, CDCl3): 138.3, 132.5, 130.3, 129.8, 127.7, 122.3, 25.7, 23.5, 11.4, 

carbons corresponding to the pentafluoroamide moiety are not reported and the carbon of the 

amide was nearly invisible; 19F NMR (376 MHz, CDCl3): -144.87, -156.79, -162.42; FT-IR (cm-1): 

3249 (br w, N-H), 1677 (m, C-O); HRMS (ESI-TOF): m/z calcd for C16H9BrF5NNaO+ [M+Na]+: 

427.9680, found: 427.9659; Rt (min, CHIRALPAK® ADH, Hex/iPrOH 95/5, 0.5 mL/min): 22.02 (5 

%), 32.74 (95%). 

(1R,2S)-2-(3-nitrophenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aB 

The general procedure was performed using 3-iodonitrobenzene (100 mg) as coupling partner. 

Column chromatography on silica gel using pentane/ethyl acetate (6:4) as eluent afforded the 
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title compound (62 mg, 84 %, 89 % ee) as a clear oil. The absolute stereochemistry was assigned 

according to IV-2aR. 

1H NMR (400 MHz, CDCl3): 8.17 (1H, s), 8.02-8.12 (1H, m), 7.60 (1H, 

d, J=7.7 Hz), 7.44 (1H, t, J=7.9 Hz), 7.11 (1H, br s, NH), 2.73 (1H, app 

q, J=8.4 Hz), 2.24 (1H, app q, J=7.7 Hz), 1.93 (1H, ddd, J=8.9, 7.3, 5.4 

Hz), 1.55 (1H, ddd, J=11.1, 8.2, 5.4 Hz); 13C NMR (100 MHz, CDCl3): 

148.1, 138.2, 135.4, 129.1, 124.5, 122.2, 25.7, 23.5, 11.6, carbons corresponding to the 

pentafluoroamide moiety are not reported and the carbon of the amide was nearly invisible; 19F 

NMR (376 MHz, CDCl3): -145.07, -156.35, -162.25; FT-IR (cm-1): 3255 (w, N-H), 1678 (m, C-O), 

1522 (s, N-O), 1350 (s, N-O); HRMS (ESI-TOF): m/z calcd for C16H9F5N2NaO3
+ [M+Na]+: 395.0426, 

found: 395.0448; Rt (min, CHIRALPAK® ADH, Hex/iPrOH 90/10, 0.5 mL/min): 15.32 (5.5 %), 22.75 

(94.5 %). 

(1R,2S)-2-(3,5-dinitrophenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aK 

The general procedure was performed using 3,5-dinitroiodobenzene (120 mg) as coupling 

partner. Column chromatography on silica gel using pentane/ethyl acetate (4:1) as eluent 

afforded the title compound (42 mg, 51 %, 87 % ee) as a yellow solid. The absolute 

stereochemistry was assigned according to IV-2aR. 

1H NMR (400 MHz, CDCl3): 8.90 (1H, t, J=2.0 Hz), 8.49 (1H, dd, J=2.2, 

0.8 Hz), 7.08 (1H, br s, NH), 2.83 (1H, app q, J=8.4 Hz), 2.34 (1H, app q, 

J=8.3 Hz), 2.00-2.13 (1H, m), 1.66-1.77 (1H, m); 13C NMR (100 MHz, 

CDCl3): 167.3, 148.3, 140.9, 12s9.8, 117.6, 25.5, 12.4, 9.0, carbons 

corresponding to the pentafluoroamide moiety are not reported; 19F NMR (376 MHz, CDCl3): -

144.94, -157.27, -162.69; FT-IR (cm-1): 1679 (m, C-O), 1542 (s, N-O), 1346 (s, N-O); HRMS (ESI-

TOF): m/z calcd for C16H9F5N3O5
+ [M+H]+: 418.0457, found: 418.0467; Rt (min, CHIRALPAK ® ADH, 

Hex/iPrOH 90/10, 0.5 mL/min): 21.39 (6.5 %), 29.49 (93.5 %). 

(1R,2S)-2-(3-acetylphenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aH 

The general procedure was performed using methyl 3’-iodoacetophenone (100 mg) as coupling 

partner. Column chromatography on silica gel using pentane/ethyl acetate (3:2) as eluent 

afforded the title compound (68 mg, 92 %, 84 % ee) as an orange oil. The absolute 

stereochemistry was assigned according to IV-2aR. 
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1H NMR (400 MHz, CDCl3): 7.90 (1H, s), 7.79 (1H, d, J=7.7 Hz), 7.47 

(1H, d, J=7.6 Hz), 7.37 (1H, t, J=7.7 Hz), 7.23 (1H, br s, NH), 2.69 (1H, 

app q, J=10.8 Hz), 2.58 (3H, s, PhC(O)CH3), 2.11-2.26 (1H, m), 1.90 

(1H, app q, J=5.4 Hz), 1.48 (1H, app q, J=8.1 Hz); 13C NMR (100 MHz, 

CDCl3): 198.6, 168.0, 137.0, 136.7, 133.8, 129.2, 128.5, 127.3, 26.8, 26.0, 23.4, 11.4, carbons 

corresponding to the pentafluoroamide moiety are not reported; 19F NMR (376 MHz, CDCl3): -

145.00, -156.94, -162.57; FT-IR (cm-1): 3261 (br w, N-H), 1683 (s, C-O amide and ketone); HRMS 

(ESI-TOF): m/z calcd for C18H12F5NNaO2
+ [M+Na]+: 392.0680, found: 392.0671; Rt (min, 

CHIRALPAK ® ADH, Hex/iPrOH 95/5, 0.5 mL/min): 31.30 (8 %), 48.50 (92 %). 

(1R,2S)-2-(3-trifluoromethylphenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aF 

The general procedure was performed using 3-iodobenzotrifluoride (60 µL) as coupling partner. 

Column chromatography on silica gel using pentane/ethyl acetate (85:15) as eluent afforded the 

title compound (59 mg, 75 %, 82 % ee) as a yellow solid. The absolute stereochemistry was 

assigned according to IV-2aR. 

1H NMR (500 MHz, Acetone-d6): 9.34 (1H, br s, NH), 7.62 (1H, s), 7.57 

(1H, d, J=7.5 Hz), 7.42-7.54 (2H, m), 2.77 (1H, app q, J=8.5 Hz), 2.51 

(1H, app q, J=8.1 Hz), 1.80 (1H, ddd, J=7.4, 5.5, 5.0 Hz), 1.47 (1H, ddd, 

J=8.5, 7.8, 4.8 Hz); 13C NMR (120 MHz, Acetone-d6): 168.6, 139.4, 

134.0, 130.5 (q, J=32 Hz), 129.5, 126.9 (q, J=4 Hz), 125.5 (q, J=272 Hz), 124.0 (q, J=4 Hz), 25.9, 

23.9, 11.1, carbons corresponding to the pentafluoroamide moiety are not reported; 19F NMR 

(470 MHz, Acetone-d6): -63.09, -146.84, -160.67, -166.00; FT-IR (cm-1): 1677 (s, C-O); HRMS (ESI-

TOF): m/z calcd for C17H10F8NO+ [M+H]+: 396.0629, found: 396.0610; Rt (min, CHIRALPAK ® ADH, 

Hex/iPrOH 95/5, 0.5 mL/min): 15.67 (9 %), 22.34 (91 %). 
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(1R,2S)-2-(3-(trifluoromethoxy)phenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-

2aS 

The general procedure was performed using 3-(trifluoromethoxy)iodobenzene (115 mg) as 

coupling partner. Column chromatography on silica gel using pentane/ethyl acetate (9:1) as 

eluent afforded the title compound (55 mg, 67 %, 84 % ee) as a brown oil. The absolute 

stereochemistry was assigned according to IV-2aR. 

1H NMR (400 MHz, Acetone-d6): 9.31 (1H, br s, NH), 7.28-7.40 (2H, 

m), 7.22 (1H, s), 7.12 (1H, dd, J=8.4, 1.7 Hz), 2.72 (1H, app q, J=8.6 

Hz), 2.44-2.54 (1H, m), 1.76 (1H, ddd, J=7.4, 5.6, 4.9 Hz), 1.44 (1H, 

ddd, J=8.6, 7.8, 4.8 Hz); 13C NMR (100 MHz, Acetone-d6): 168.4, 

149.6 (q, J=3 Hz), 140.8, 130.2, 129.1, 122.6, 121.9 (q, J=254 Hz), 119.7, 25.8, 24.1, 11.2, carbons 

corresponding to the pentafluoroamide moiety are not reported; 19F NMR (377 MHz, Acetone-

d6): -58.44, -146.76, -160.76, -166.04; FT-IR (cm-1): 3254 (br m, N-H), 1678 (m, C-O); HRMS (ESI-

TOF): m/z calcd for C17H9F8NNaO2
+ [M+Na]+: 434.0398, found: 434.0420; Rt (min, CHIRALPAK ® 

ADH, Hex/iPrOH 98/2, 0.5 mL/min): 39.64 (8 %), 56.98 (92 %). 

(1R,2S)-2-(3,5-dichlorophenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aL 

The general procedure was performed using 3,5-dichloroiodobenzene (110 mg) as coupling 

partner. Preparative thin layer chromatography using toluene/ethyl acetate (95:5) as eluent 

afforded the title compound (56 mg, 71 %, 84 % ee) as a yellow solid. The absolute 

stereochemistry was assigned according to IV-2aR. 

1H NMR (400 MHz, CDCl3): 7.20 (1H, t, J=1.8 Hz), 7.14-7.16 (2H, m), 6.94 

(1H, br s, NH), 2.58 (1H, app q, J=8.5 Hz), 2.15 (1H, app q, J=8.2 Hz), 

1.67-1.89 (1H, m), 1.41-1.52 (1H, m); 13C NMR (100 MHz, CDCl3): 167.6, 

139.5, 134.7, 127.9, 127.4, 25.4, 23.3, 11.5, carbons corresponding to 

the pentafluoroamide moiety are not reported; 19F NMR (376 MHz, 

CDCl3): -144.95, -156.40, -162.24; FT-IR (cm-1): 1677 (m, C-O); HRMS (ESI-TOF): m/z calcd for 

C16H9Cl2F5NO+ [M+H]+: 395.9976, found: 395.9973; Rt (min, CHIRALPAK ® ADH, Hex/iPrOH 95/5, 

0.5 mL/min): 19.82 (8 %), 23.95 (92 %). 
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(1R,2S)-2-(3-methoxyphenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aC 

The general procedure was performed using 3-iodoanisole (50 µL) as coupling partner. Column 

chromatography on silica gel using pentane/ethyl acetate (9:1) as eluent afforded the title 

compound (44 mg, 62 %, 93 % ee) as a yellow oil. The absolute stereochemistry was assigned 

according to IV-2aR. 

1H NMR (400 MHz, CDCl3): 7.19 (1H, t, J=7.9 Hz), 6.87 (1H, d, J=8.3 Hz), 

6.81-6.85 (1H, m), 6.71-6.80 (2H, m), 3.77 (3H, s, PhOCH3), 2.64 (1H, 

app q, J=8.6 Hz), 2.09-2.20 (1H, m), 1.81 (1H, ddd, J=8.5, 7.5, 5.4 Hz), 

1.44 (1H, ddd, J=11.0, 8.1, 5.3 Hz) ; 13C NMR (100 MHz, CDCl3): 159.6, 

137.5, 129.4, 121.4, 114.9, 112.7, 55.3, 26.1, 26.1, 11.5, carbons corresponding to the 

pentafluoroamide moiety are not reported; 19F NMR (376 MHz, CDCl3): -144.96, -157.30, -

162.70; FT-IR (cm-1): 3250 (m, N-H), 1678 (m, C-O amide), 1005 (s, C-O ether); HRMS (ESI-TOF): 

m/z calcd for C17H13F5NO2
+ [M+H]+: 358.0861, found: 358.1777; Rt (min, CHIRALPAK® ADH, 

Hex/iPrOH 95/5, 0.5 mL/min): 26.91 (3.5 %), 36.28 (96.5 %). 

(1R,2S)-2-(naphthalen-2-yl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aJ 

The general procedure was performed using 2-iodonaphthalene (110 mg) as coupling partner. 

Preparative thin layer chromatography using toluene/ethyl acetate (97:3) as eluent afforded the 

title compound (47 mg, 63 %, 91 % ee) as a clear oil. The absolute stereochemistry was assigned 

according to IV-2aR. 

1H NMR (400 MHz, Acetone-d6): 9.33 (1H, br s, NH), 7.72-7.86 (4H, 

m), 7.34-7.52 (3H, m), 2.75-2.84 (1H, m), 2.42-2.61 (1H, m), 1.82-

1.93 (1H, m), 1.47 (1H, ddd, J=8.2, 5.4, 4.6 Hz); 13C NMR (100 MHz, 

Acetone-d6): 168.7, 135.5, 134.2, 133.4, 128.7, 128.6, 128.4, 128.3, 

128.0, 126.6, 126.2, 26.5, 23.8, 11.2, carbons corresponding to the pentafluoroamide moiety are 

not reported; 19F NMR (376 MHz, Acetone-d6): -146.65, -160.97, -166.02; FT-IR (cm-1): 3250 (br 

w, N-H), 1680 (m, C-O amide); HRMS (ESI-TOF): m/z calcd for C20H13F5NO+ [M+H]+: 378.0912, 

found: 378.0910; Rt (min, CHIRALPAK® ADH, Hex/iPrOH 95/5, 0.5 mL/min): 26.39 (4.5 %), 40.02 

(95.5 %). 
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methyl (1R,2S)-2-(2-((pentafluorophenyl)carbamoyl)cyclopropyl)benzoate IV-2aG 

The general procedure was performed using methyl 2-iodobenzoate (60 µL) as coupling partner. 

Column chromatography on silica gel using pentane/ethyl acetate (3:2) as eluent afforded the 

title compound (67 mg, 87 %, 87 % ee) as an orange oil. The absolute stereochemistry was 

assigned according to IV-2aR. 

1H NMR (500 MHz, CDCl3): 7.92 (1H, dd, J=7.8, 1.3 Hz), 7.62 (1H, br s, 

NH), 7.41-7.47 (1H, m), 7.32 (1H, d, J=7.7 Hz), 7.29 (1H, d, J=7.6 Hz), 3.93 

(3H, s, CO2CH3), 2.86 (1H, app q, J=8.2 Hz), 2.37-2.52 (1H, m), 1.93-2.02 

(1H, m), 1.39-1.48 (1H, m); 13C NMR (125 MHz, CDCl3): 168.9, 138.1, 

132.9, 131.1, 130.5, 130.4, 127.5, 52.5, 25.8, 25.6, 10.7, carbons corresponding to the 

pentafluoroamide moiety are not reported and the carbon of the amide was nearly invisible; 19F 

NMR (470 MHz, CDCl3): -145.8, -158.4, -163.1; FT-IR (cm-1): 1722 (s, C-O ester), 1679 (m, C-O 

amide); HRMS (ESI-TOF): m/z calcd for C18H12F5NNaO3
+

 [M+Na]+: 408.0630, found: 408.0624; Rt 

(min, CHIRALPAK ® ADH, Hex/iPrOH 95/5, 0.5 mL/min): 13.42 (6.5 %), 19.34 (93.5 %). 

(1R,2S)-2-(2-formylphenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aM 

The general procedure was performed using 2-iodobenzaldehyde (95 mg) as coupling partner. 

Column chromatography on silica gel using pentane/ethyl acetate (4:1) as eluent afforded the 

title compound (62 mg, 88 %, 86 % ee) as a yellow solid. The absolute stereochemistry was 

assigned according to IV-2aR. 

1H NMR (400 MHz, CDCl3): 10.21 (1H, s, CHO), 7.77 (1H, dd, J=7.3, 1.8 

Hz), 7.54 (1H, td, J=7.6, 1.4 Hz), 7.40-7.49 (2H, m), 7.21 (1H, s, NH), 3.02 

(1H, app q, J=8.4 Hz), 2.41-2.50 (1H, m), 1.95-2.02 (1H, m), 1.51 (1H, ddd, 

J=8.0, 7.7, 5.3 Hz); 13C NMR (100 MHz, CDCl3): 194.4, 168.4, 137.9, 135.2, 

135.1, 134.1, 130.9, 127.8, 25.3, 24.3, 11.3, carbons corresponding to the pentafluoroamide 

moiety are not reported; 19F NMR (377 MHz, CDCl3): -145.29, -157.41, -162.78; FT-IR (cm-1): 1691 

(s, C-O aldehyde), 1653 (m, C-O amide); HRMS (ESI-TOF): m/z calcd for C17H11F5NO2
+ [M+H]+: 

356.0704, found: 356.0701; Rt (min, CHIRALPAK ® ADH, Hex/iPrOH 90/10, 0.5 mL/min): 10.82 (7 

%), 18.46 (93 %). 
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(1R,2S)-2-(2,4-difluorophenyl)-N-(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aP 

The general procedure was performed using 2,4-difluoroiodobenzene (50 µL) as coupling 

partner. Preparative thin layer chromatography using toluene/ethyl acetate (95:5) as eluent 

afforded the title compound (20 mg, 28 %, 72 % ee) as a yellow solid. The absolute 

stereochemistry was assigned according to IV-2aR. 

1H NMR (400 MHz, CDCl3): 7.20 (1H, td, J=8.6, 6.7 Hz), 6.91 (1H, br s, 

NH), 6.70-6.85 (2H, m), 2.57 (1H, app q, J=8.2 Hz), 2.15-2.27 (1H, m), 

1.77-1.86 (1H, m), 1.41-1.52 (1H, m); 13C NMR (100 MHz, CDCl3): 

168.0, 163.6 (dd, J=30, 12 Hz), 161.0 (d, J=30 Hz), 131.6 (dd, J=10, 5 

Hz), 119.2 (dd, J=15, 4 Hz), 111.0 (dd, J=21, 4 Hz), 103.5 (t, J=26 Hz), 22.5, 19.9, 10.5, carbons 

corresponding to the pentafluoroamide moiety are not reported; 19F NMR (376 MHz, CDCl3): -

111.54, -113.15, -145.21, -156.94, -162.51; FT-IR (cm-1): 3254 (br w, N-H), 1676 (m, C-O), 1139 (s, 

C-F); HRMS (ESI-TOF): m/z calcd for C16H9F7NO+ [M+H]+: 364.0567, found: 364.0553; Rt (min, 

CHIRALPAK ® ADH, Hex/iPrOH 95/5, 0.5 mL/min): 17.47 (14 %), 38.48 (86 %). 

(1R,2S)-2-(2-methoxyphenyl)-N-(perfluorophenyl)cyclopropane-1-carboxamide IV-2aQ 

The general procedure was performed using 2-iodoanisole (55 µL) as coupling partner. 

Preparative thin layer chromatography using toluene/ethyl acetate (9:1) as eluent afforded the 

title compound (17 mg, 24 %, 74 % ee) as a yellow solid. The absolute stereochemistry was 

assigned according to IV-2aR. 

1H NMR (500 MHz, CDCl3): 7.15-7.22 (2H, m), 6.89 (1H, td, J=7.5, 0.9 Hz), 

6.84 (1H, d, J=8.2 Hz), 6.81 (1H, br s, NH), 2.58 (1H, app q, J=8.4 Hz), 2.22 

(1H, ddd, J= 8.4, 6.7, 5.5 Hz), 1.71-1.94 (1H, m), 1.36-1.46 (1H, m); 13C 

NMR (125 MHz, CDCl3): 168.7, 158.8, 130.0, 128.6, 124.3, 120.5, 109.9, 55.4, 22.9, 21.8, 10.4; 19F 

NMR (470 MHz, CDCl3): -145.64, -158.11, -162.92; FT-IR (cm-1): 3251 (br w, N-H), 1679 (m, C-O 

amide), 1251 (s, C-O ether), 1005 (m, C-O ether); HRMS (ESI-TOF): m/z calcd for C17H12F5NNaO2
+ 

[M+Na]+: 380.0680, found: 380.0668; Rt (min, CHIRALPAK ® ADH, Hex/iPrOH 95/5, 0.5 mL/min): 

17.69 (13 %), 23.92 (87 %). 
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(1R,2S)-2-(4-methylphenyl)-N-(perfluorophenyl)cyclobutane-1-carboxamide IV-2bA 

The general procedure was performed using 4-iodotoluene (55 µL) as coupling partner. 

Preparative thin layer chromatography using toluene/ethyl acetate (95:5) as eluent afforded the 

title compound (57 mg, 77 %, 62 % ee) as a white solid. The absolute stereochemistry was 

assigned according to IV-2aR. 

1H NMR (400 MHz, CDCl3): 7.14 (4H, app q, J=8.1 Hz), 6.19 (1H, br s, NH), 

4.00 (1H, app q, J=8.7 Hz), 3.53-3.67 (1H, m), 2.54-2.67 (1H, m), 2.45-2.54 

(1H, m), 2.22-2.40 (5H, m); 13C NMR (100 MHz, CDCl3): 171.2, 137.1, 136.9, 

129.5, 127.3, 46.4, 42.9, 25.4, 21.2, 20.9; 19F NMR (376 MHz, CDCl3): -

144.53, -157.68, -162.95; FT-IR (cm-1): 3252 (br w, N-H), 1674 (m, C-O); HRMS (ESI-TOF): m/z 

calcd for C18H15F5NO+ [M+H]+: 356.1068, found: 356.1096; Rt (min, CHIRALPAK ® ADH, Hex/iPrOH 

98/2, 0.5 mL/min): 34.74 (19 %), 49.95 (81 %). 

methyl (1R,2S)-4-(2-((perfluorophenyl)carbamoyl)cyclobutyl)benzoate IV-2bO 

The general procedure was performed using methyl 4-iodobenzoate (100 mg) as coupling 

partner. Column chromatography on silica gel using pentane/ethyl acetate (4:1) as eluent 

afforded the title compound (57 mg, 76 %, 66 % ee) as a clear oil. The absolute stereochemistry 

was assigned according to IV-2aR. 

1H NMR (400 MHz, CDCl3): 7.96 (2H, d, J=8.3 Hz), 7.32 (2H, d, J=8.2 

Hz), 6.46 (1H, br s, NH), 4.08 (1H, app q, J=8.6 Hz), 3.90 (3H, s, 

CO2CH3), 3.59-3.72 (1H, m), 2.60-2.76 (1H, m), 2.45-2.58 (1H, m), 

2.25-2.42 (2H, m); 13C NMR (100 MHz, CDCl3): 170.8, 167.2, 145.6, 

130.0, 128.9, 127.4, 52.2, 46.3, 43.0, 25.1, 21.0; 19F NMR (376 MHz, CDCl3): -144.51, -157.00, -

162.51; FT-IR (cm-1): 3272 (br w, N-H), 1723 (s, C-O ester), 1683 (m, C-O amide), 1281 (s, C-O 

ester); HRMS (ESI-TOF): m/z calcd for C19H14F5NNaO3
+ [M+Na]+: 422.0786, found: 422.0817; Rt 

(min, CHIRALPAK ® ADH, Hex/iPrOH 90/10, 0.5 mL/min): 14.19 (17 %), 24.56 (83 %). 
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(S)-N-pentafluorophenyl-2-methyl-3-(3-(trifluoromethyl)phenyl)propanamide IV-2dF 

The general procedure was performed using methyl 3-(trifluoromethyl)iodobenzene (100 mg) as 

coupling partner. Column chromatography on silica gel using pentane/ethyl acetate (6:1) as 

eluent afforded the title compound (49 mg, 42 %, <5 % ee) as a clear oil. The absolute 

stereochemistry was assigned according to IV-2aR. 

1H NMR (400 MHz, CDCl3): 7.35-7.56 (4H, m), 6.62 (1H, br s, NH), 3.13 

(1H, dd, J=13.5, 8.7 Hz), 2.82-2.89 (1H, m), 2.69-2.80 (1H, m), 1.34 (3H, d, 

J=6.8 Hz); 13C NMR (100 MHz, CDCl3): 173.7, 139.9, 132.5, 131.0 (q, J=32 

Hz), 129.1, 125.5 (q, J=4 Hz), 124.1 (q, J=272 Hz), 123.6 (q, J=4 Hz), 43.7, 

39.9, 18.0; 19F NMR (376 MHz, CDCl3): -62.69, -144.85, -156.18, -162.30; FT-IR (cm-1): 3299 (br w, 

N-H), 1677 (s, C-O amide); HRMS (ESI-TOF): m/z calcd for C17H12F8NO+ [M+H]+: 398.0786, found: 

398.0776; Rt (min, CHIRALPAK ® ODH, Hex/iPrOH 98/2, 0.5 mL/min): 42.52 (50 %), 49.66 (50 %). 
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IV.8.iv. Enantioselective alkynylation of cycloalkanes 

IV.8.iv.1. Optimization of the reaction conditions 

N-(2,3,4,5,6-pentafluorophenyl)-cyclopropanecarboxamide (15 mg, 0.06 mmol, 1 equiv.), 

(halogenoethynyl)triisopropylsilane (1.5 equiv.), base (1 equiv.), additive, catalyst (10 mol%) and 

L12 (20 mol%) were weighted in a pressure tube. Solvent was added, and the reaction mixture 

was stirred 30 min at room temperature, followed by heating at 100 °C during 24 h. After cooling 

to room temperature, the mixture was filtered with 0.2 µm PTFE membrane, washed with 

dichloromethane and evaporated under reduced pressure. The crude was analyzed by 1H NMR 

and chiral HPLC using CHIRALPAK ® ODH column. 

 

Entry X base 
Additive 

(equiv.) 
catalyst Solvent Conversion Ratio  er 

1 Br Ag2CO3 NaTFA (0.5) Pd(TFA)2 
Hex:CHCl3 

(2:1) 
50 1:8 75:25 

2 I Ag2CO3 NaTFA (0.5) Pd(TFA)2 
Hex:CHCl3 

(2:1) 
80 >10:1 80:20 

3 I AgOAc none Pd(OAc)2 Toluene 50 >10:1 90:10 

4 I AgOAc KHCO3 (1) Pd(OAc)2 Toluene 95 >10:1 92:8 

5 I AgOAc KHCO3 (5) Pd(OAc)2 Toluene 95 >10:1 92:8 

6 Cl AgOAc KHCO3 (1) Pd(OAc)2 Toluene 0 nd nd 

7 H AgOAc KHCO3 (1) Pd(OAc)2 Toluene 0 nd nd 

8 I AgOAc KHCO3 (1) Pd(OAc)2 PhCF3 40 1:1 nd 

9 I AgOAc KHCO3 (1) Pd(OAc)2 PhCl <10 nd nd 
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IV.8.iv.2. Scope of the reaction 

General procedure for the enantioselective mono-alkynylation of cycloalkanes

 

N-(2,3,4,5,6-pentafluorophenyl)-cycloalcanecarboxamide 1b (0.18 mmol, 1 equiv.), 1-iodo-2-

triisopropylsilyl acetylene (70 mg, 0.23 mmol, 1.2 equiv.), silver acetate (31 mg, 0.18 mmol, 1 

equiv.), potassium bicarbonate (19 mg, 0.18 mmol, 1 equiv.), palladium(II) acetate (4.3 mg, 0.018 

mmol, 10 mol%) and L15 (13.5 mg, 0.038 mmol, 20 mol%) were weighted in a pressure tube. 2 

mL of toluene were added, and the reaction mixture was stirred 30 min at room temperature, 

followed by heating at 100 °C during 24 h. After cooling to room temperature, the mixture was 

filtered with 0.2 µm PTFE membrane, washed with dichloromethane and evaporated under 

reduced pressure. The crude was purified by preparative thin layer chromatography with 

toluene/ethyl acetate to afford the title compound. 

(1R,2S)-N-(pentafluorophenyl)-2-((triisopropylsilyl)ethynyl)cyclopropane-1-carboxamide IV-

7aA 

The title compound (57 mg, 74 %, 85 % ee) was obtained as a white solid. The absolute 

stereochemistry was assigned according to 8. 

1H NMR (500 MHz, CDCl3): 7.37 (1H, br s, NH), 1.96-2.04 (2H, m), 1.46-

1.50 (1H, m), 1.40-1.45 (1H, m), 0.87-1.09 (21H, m, [(CH3)2CH]3Si); 13C 

NMR (125 MHz, CDCl3): 168.1, 104.8, 83.2, 23.4, 18.6, 15.6, 11.3, 10.2, 

carbons corresponding to the pentafluoroamide moiety are not 

reported; 19F NMR (470 MHz, CDCl3): -144.34, -156.58, -162.57; FT-IR (cm-1): 3244 (m, N-H), 2163 

(w, C-C alkyne), 1676 (m, C-O); HRMS (ESI-TOF): m/z calcd for C21H27F5NOSi+ [M+H]+: 432.1777, 

found: 432.1762; Rt (min, CHIRALPAK ® ADH, Hex/iPrOH 99.5/0.5, 0.5 mL/min): 60.48 (92.5 %), 

88.70 (7.5 %). 
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(1R,5S,E)-3-(pentafluorophenyl)-4-((triisopropylsilyl)methylene)-3-azabicyclo[3.1.0]hexan-2-

one IV-7aA-cy 

The title compound (6 mg, 5 %) was obtained as a yellow solid. The absolute stereochemistry 

was assigned according to IV-2aR. 

1H NMR (500 MHz, CDCl3): 4.08 (1H, s), 2.68 (1H, dd, J=11.7, 6.4 Hz), 2.33-2.45 

(1H, m), 1.43-1.50 (1H, m), 1.13-1.22 (4H, m), 1.02-1.09 (18H, m, [(CH3)2CH]3Si); 

13C NMR (125 MHz, CDCl3): 173.1, 150.0, 93.2, 21.3, 20.2, 18.8, 17.5, 12.1, 

carbons corresponding to the pentafluoroamide moiety are not reported; 19F 

NMR (377 MHz, CDCl3): -142.91, -144.93, -152.02, -160.81, -161.22; FT-IR (cm-1): 1745 (s, C-O), 

1634 (s, C-C alkene); HRMS (ESI-TOF): m/z calcd for C21H27F5NOSi+ [M+H]+: 432.1777, found: 

432.1774. 

 (1R,2S)-2-((tert-butyldimethylsilyl)ethynyl)-N-(pentafluorophenyl)cyclopropane-1-

carboxamide IV-7aB 

The title compound (67 mg, 86 %, 84 % ee) was obtained as a brownish solid. The absolute 

stereochemistry was assigned according to IV-2aR. 

1H NMR (400 MHz, CDCl3): 7.41 (1H, br s, NH), 2.00-2.09 (1H, m), 1.91-

2.00 (1H, m), 1.44-1.50 (1H, m), 1.37-1.44 (1H, m), 0.87 (9H, s, 

[(CH3)3Si(CH3)2]), 0.05 (6H, d, J=2.0 Hz, [(CH3)3Si(CH3)2]); 13C NMR (100 

MHz, CDCl3): 168.1, 103.8, 85.4, 26.0, 23.5, 16.5, 15.4, 10.0, -4.6, carbons 

corresponding to the pentafluoroamide moiety are not reported; 19F NMR (377 MHz, CDCl3): -

144.37, -156.70, -162.53; FT-IR (cm-1): 3249 (m, N-H), 2169 (m, C-C alkyne), 1682 (s, C-O); HRMS 

(ESI-TOF): m/z calcd for C18H21F5NOSi+ [M+H]+: 390.1307, found: 390.1285; Rt (min, CHIRALPAK ® 

ODH, Hex/iPrOH 99/1, 0.5 mL/min): 78.05 (8 %), 86.72 (92 %). 
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(1R,2S)-N-(perfluorophenyl)-2-((triisopropylsilyl)ethynyl)cyclobutane-1-carboxamide IV-7bA 

The title compound (67 mg, 80 %, 66 % ee) was obtained as an off-white solid. The absolute 

stereochemistry was assigned according to IV-2aR. 

1H NMR (500 MHz, CDCl3): 7.68 (1H, br s, NH), 3.53 (1H, app q, J=7.8 Hz), 

3.41 (1H, app q, J=8.3 Hz), 2.50-2.65 (1H, m), 2.36-2.46 (1H, m), 2.25-2.35 

(1H, m), 2.13-2.23 (1H, m), 1.00 (21H, s, [(CH3)2CH]3Si); 13C NMR (125 

MHz, CDCl3): 170.5, 108.0, 87.1, 43.5, 29.3, 27.9, 23.8, 18.6, 11.2; 19F 

NMR (470 MHz, CDCl3): -143.69, -156.84, -162.64; FT-IR (cm-1): 3248 (m, N-H), 2161 (w, C-C 

alkyne), 1678 (s, C-O); HRMS (ESI-TOF): m/z calcd for C22H29F5NOSi+ [M+H]+: 446.1933, found: 

446.1914; Rt (min, CHIRALPAK ® ODH, Hex/iPrOH 99/1, 0.5 mL/min): 28.01 (17 %), 32.09 (83 %). 

(1R,2S,E)-3-(perfluorophenyl)-4-((triisopropylsilyl)methylene)-3-azabicyclo[3.2.0]heptan-2-one 

IV-7bA-cy 

The title compound (3 mg, 4 %) was obtained as a yellow oil. The absolute stereochemistry was 

assigned according to IV-2aR. 

1H NMR (500 MHz, CDCl3): 4.02 (1H, s), 3.67 (1H, app q, J=7.6 Hz), 3.32 (1H, app 

q, J=7.0 Hz), 2.55-2.67 (2H, m), 2.29-2.39 (1H, m), 2.19-2.29 (1H, m), 0.94-1.13 

(21H, m, [(CH3)2CH]3Si); 13C NMR (125 MHz, CDCl3): 177.4, 154.6, 91.9, 40.3, 37.9, 

28.7, 23.5, 18.8, 12.0; 19F NMR (470 MHz, CDCl3): -143.16, -144.07, -152.09, -

160.78, -161.13; FT-IR (cm-1): 1751 (s, C-O), 1632 (s, C-C alkene); HRMS (ESI-TOF): m/z calcd 

C22H29F5NOSi+ [M+H]+: 446.1933, found: 446.1947.  

(1S,3R)-2,2-dimethyl-N-perfluorophenyl-3-((triisopropylsilyl)ethynyl)cyclopropane-1-

carboxamide IV-7cA 

The title compound (58 mg, 70 %, 20 % ee) was obtained as a pale yellow solid. The absolute 

stereochemistry was assigned according to IV-2aR. 

1H NMR (500 MHz, CDCl3): 8.19 (1H, br s, NH), 1.81-1.89 (2H, m), 1.37 

(3H, s, CH3), 1.31 (3H, s, CH3), 1.01 (21H, s, [(CH3)2CH]3Si); 13C NMR (125 

MHz, CDCl3): 168.1, 104.7, 87.6, 34.6, 27.5, 26.3, 20.9, 18.6, 16.8, 11.3; 

19F NMR (470 MHz, CDCl3): -143.96, -155.98, -162.44; FT-IR (cm-1): 3294 
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(m, N-H), 2159 (m, C-C alkyne), 1684 (m, C-O); HRMS (ESI-TOF): m/z calcd for C23H31F5NOSi+ 

[M+H]+: 460.2090, found: 460.2072; Rt (min, CHIRALPAK ® ADH, Hex/iPrOH 99/1, 0.5 mL/min): 

10.69 (40 %), 15.72 (60 %). 

(S)-2-methyl-N-(perfluorophenyl)-5-(triisopropylsilyl)pent-4-ynamide IV-7dA 

The title compound (62 mg, 72 %, 12 % ee) was obtained as a white solid.  The absolute 

stereochemistry was assigned according to IV-2aR. 

1H NMR (400 MHz, CDCl3): 7.32 (1H, br s, NH), 2.71-2.81 (1H, m, 

CHCH3), 2.54-2.69 (2H, m), 1.39 (3H, d, J=6.9 Hz, CHCH3), 1.04 (21H, 

s, [(CH3)2CH]3Si); 13C NMR (100 MHz, CDCl3): 173.4, 105.5, 84.2, 40.7, 

24.4, 18.7, 17.2, 11.3; 19F NMR (377 MHz, CDCl3): -144.67, -156.37, -162.40; FT-IR (cm-1): 3255 

(m, N-H), 2177 (m, C-C alkyne), 1680 (s, C-O); HRMS (ESI-TOF): m/z calcd for C21H29F5NOSi+ 

[M+H]+: 431.1933, found: 431.1924; Rt (min, CHIRALPAK ® ODH, Hex/iPrOH 98/2, 0.5 mL/min): 

18.02 (56 %), 20.90 (44 %). 
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IV.8.v. Large scale and deprotection experiments 

Large scale synthesis of (1R,2S)-2-(3-methoxyphenyl)-N-(pentafluorophenyl)cyclopropane-1-

carboxamide 

N-(2,3,4,5,6-pentafluorophenyl)-cyclopropanecarboxamide IV-1a (1 g, 4 mmol, 1 equiv.), 3-

iodoanisole (1 mL, 8.3 mmol, 2.1 equiv.), silver carbonate (2.1 g, 8 mmol, 2 equiv.), sodium 

trifluoroacetate (280 mg, 2 mmol, 50 mol%), palladium(II) trifluoroacetate (70 mg, 0.2 mmol, 5 

mol%) and L12 (213 mg, 0.6 mmol, 15 mol%) were weighted in a pressure tube. Hexane (8 mL) 

and chloroform (4 mL) were added and the reaction mixture was stirred 30 min at room 

temperature, followed by heating at 80 °C during 24 h. After cooling to room temperature, the 

mixture was filtered through celite, washed with chloroform and evaporated under reduced 

pressure. 1H NMR showed around 70% conversion and chiral HPLC 94% ee. The crude was 

directly used for the deprotection step without further purification.  

ethyl (1R,2S)-2-(3-methoxyphenyl)cyclopropane-1-carboxylate IV-3 

To a stirred solution of the crude (1R,2S)-2-(3-methoxyphenyl)-N-

(pentafluorophenyl)cyclopropane-1-carboxamide obtained in the previous step (assumed 1 – 1.2 

g) in ethanol were added potassium acetate (290 mg, 2.95 mmol, 1 equiv.) and glycidyl methyl 

ether (800 µL, 82 mmol, 3 equiv.). After inertion (vacuum/argon), the mixture was heated at 90 

°C and stirred 24 h. After cooling to room temperature, solvents were evaporated under reduced 

pressure, and the crude was directly purified by column chromatography on silica gel using 

pentane/ethyl acetate (95:5) to afford the title compound (552 mg, 57 % over 2 steps, 93 % ee) 

as a clear oil and pentane/ethyl acetate (1:7) to recover the ligand (203 mg, 95 %, >99% ee) as an 

off-orange solid.[290] The absolute configuration of the title compound was assigned according to 

IV-5. 

1H NMR (500 MHz, CDCl3): 7.17 (1H, t, J=7.9 Hz), 6.86 (1H, dd, J=8.0, 1.1 

Hz), 6.82 (1H, t, J=1.9 Hz), 6.74 (1H, dd, J=8.2, 5.5 Hz), 3.90 (2H, q, J=7.1 

Hz, CH2CH3), 3.78 (3H, s, COCH3), 2.55 (1H, app q, J=8.7 Hz), 2.07 (1H, 

ddd, J=9.3, 7.8, 5.6 Hz), 1.69-1.73 (1H, m), 1.31 (1H, ddd, J=8.6, 7.9, 5.1 Hz), 1.00 (3H, t, J=7.1 Hz, 

CH2CH3); 13C NMR (125 MHz, CDCl3): 171.1, 159.4, 138.4, 129.0, 121.9, 115.1, 112.4, 60.4, 55.3, 

25.6, 21.9, 14.2, 11.4; FT-IR (cm-1): 1726 (s, C-O ester), 1047 (m, C-O ether); HRMS (ESI-TOF): m/z 

calcd for C13H16NaO3
+ [M+Na]+: 243.0992, found: 243.0974; Rt (min, CHIRALPAK ® ODH, 

Hex/iPrOH 99/1, 0.5 mL/min): 19.64 (96.5 %), 24.82 (3.5 %). 
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ethyl (1R,2S)-2-(3-nitrophenyl)cyclopropane-1-carboxylate IV-4 

To a stirred solution of (1R,2S)-2-(3-nitrophenyl)-N-(pentafluorophenyl)cyclopropane-1-

carboxamide IV-2aB (44 mg, 0.12 mmol, 1 equiv.) in 2 mL of anhydrous THF was added di-tert-

butyl-dicarbonate (26 mg, 0.12 mmol, 1 equiv.) and one crystal of 4-(dimethylamino)-pyridine. 

After 1 h, a solution of lithium hydroxide (8.5 mg, 0.35 mmol, 3 equiv.) in water was added to the 

mixture, which was further stirred 2 h at room temperature. The mixture was diluted with 

diethyl ether and basified using 1M NaOH sol. (10 mL). The aqueous layer was extracted, 

carefully acidified with 2M HCl and diluted with diethyl ether. The organic layer was extracted, 

washed with brine and evaporated under reduced pressure. The crude was directly dissolved in 

absolute ethanol before dropwise addition of thionyl chloride (10 µL, 0.15 mmol, 1.3 equiv.). 

After stirring for 18 h, the mixture was evaporated under reduced pressure and the crude was 

directly purified by column chromatography on silica gel using pentane/ethyl acetate (9:1) to 

afford the title compound (25 mg, 90 %, 88 % ee) as a white solid. Diffusion with Et2O/Hexane at 

3 – 5 °C afforded mono crystals (22 mg, 79 %, >99% ee) suitable for X-Ray diffraction analysis 

which were analysed on the Bruker APEX II DUO Kappa-CCD diffractometer. 

1H NMR (500 MHz, CDCl3): 8.14 (1H, t, J=1.8 

Hz), 8.07 (1H, dd, J=8.4, 2.0 Hz), 7.57-7.63 

(1H, m), 7.44 (1H, t, J=7.9 Hz), 3.91 (2H, q, 

J=7.1 Hz, CH2CH3), 2.63 (1H, app q, J=8.6 Hz), 

2.17 (1H, ddd, J=9.2, 8.0, 5.7 Hz), 1.68-1.81 (1H, m), 1.45 (1H, ddd, J=8.7, 8.0, 5.3 Hz), 1.03 (3H, t, 

J=7.1 Hz, CH2CH3); 13C NMR (125 MHz, CDCl3): 170.7, 148.1, 139.0, 135.7, 128.9, 124.6, 121.9, 

60.7, 25.0, 22.1, 14.2, 11.8; FT-IR (cm-1): 1725 (s, C-O), 1528 (s, N-O), 1349 (s, N-O), 1186 (s, C-O); 

mp (°C): 94; HRMS (ESI-TOF): m/z calcd for C12H14NO4
+ [M+H]+: 236.0917, found: 236.0934; Rt 

(min, CHIRALPAK ® ODH, Hex/iPrOH 99.8/0.2, 1 mL/min): 27.57 (6 %), 29.23 (94 %) and after 

crystallization 27.65 (0.2 %), 29.22 (99.8 %). 
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(1R,2S)-2-phenylcyclopropane-1-carboxylic acid IV-5 

To a stirred solution of (1R,2S)-2-phenyl-N-

(pentafluorophenyl)cyclopropane-1-carboxamide IV-2aN (30 mg, 0.09 

mmol, 1 equiv.) in 5 mL of ethanol was added sodium hydroxide (18 mg, 0.45 mmol, 5 equiv.). 

The resulting mixture was stirred at reflux during 18 h. Ethanol was removed under reduced 

pressure and diethyl ether (20 mL) and water (10 mL) were added. The aqueous layer was 

extracted and subsequently carefully acidified with 1M HCl sol. Dichloromethane (20 mL) was 

added. The organic layer was extracted, washed with brine (10 mL), dried (Na2SO4), filtered off 

and evaporated under reduced pressure to yield the title compound (14 mg, 94 %) as a yellow 

oil. The absolute configuration of this carboxylic acid was determined to be (1R, 2S) by optical 

rotation: [𝛼]𝐷
20 =  −24° (c=1.1, CHCl3), lit. [𝛼]𝐷

20 =  −28° (c = 1.02, CHCl3). Other data match the 

reported ones.[291] 
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IV.8.vi. Mechanistic studies 

IV.8.vi.1. Synthesis of the bis(TFA-Pd(II)-L12) chelate 

 

To a solution of N-((S)-1-(4-(tert-butyl)phenyl)-2-((R)-p-tolylsulfinyl)ethyl)acetamide L15 (10.8 

mg, 0.03 mmol, 1 equiv.) in CD2Cl2 was added palladium(II) trifluoroacetate (10.1 mg, 0.03 mmol, 

1 equiv.). After 1 h, NMR showed half conversion to the pre-chelate. Silver carbonate (8.5 mg, 

0.03 mmol, 1 equiv.) was added, and the resulting mixture was stirred 1 h at room temperature. 

The mixture was filtered, and NMR showed full conversion to the desired chelate.  

1H NMR (500 MHz, CD2Cl2): 7.62 (2H, d, J=8.5 Hz), 

7.42 (2H, d, J=8.5 Hz), 7.27 (2H, d, J=8.2 Hz), 7.17 (2H, 

d, J=8.3 Hz), 4.75 (1H, d, J=5.8 Hz), 4.41 (1H, d, J=13.1 

Hz), 4.01 (1H, dd, J=13.2, 6.0 Hz), 2.38 (3H, s, PhCH3), 

2.25 (3H, s, C(O)CH3), 1.36 (9H, s, C(CH3)3); 13C NMR 

(125 MHz, CD2Cl2): 183.4, 165.6 (q, J=42 Hz), 153.3, 

147.3, 136.5, 132.6, 131.0, 127.1, 126.5, 126.0, 115.2 

(q, J=283 Hz), 72.7, 64.0, 35.2, 31.6, 22.7, 22.0; 19F 

NMR (470 MHz, CD2Cl2): -74.20; FT-IR (cm-1): 1715 (s, C-O amide), 1666 (s, C-O 

trifluoroacetamide), 1076 (m, S-O); HRMS (ESI-TOF): m/z calcd for C46H52F6N2NaO8Pd2S2
+ 

[M+Na]+: 1175.1052, found: 1175.1066. 
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IV.8.vi.2. Preliminary DFT studies 

ETS-NOCV analysis of IV-pre-dia1 

 

Figure 1.  Plots of density deformation isosurfaces (0.005 e/bohr3) arising from the ETS-NOCV analysis of the 

interaction of the an-1b anion with the cat-Pd-L15 cation in their « prepared » geometries giving pre-dia1.  

Deformation density  2 materialises, apart from the coordinative N-Pd interaction, the weak donor-acceptor 

« agostic » interaction between the vicinal Ccy-Hcy bond and the Pd(II) centre. 2 contributes to about 14 % of the 

total interfragment orbital interaction energy. Blue and red isosurfaces are associated with density accepting and 

donating orbital contributors. The occurrence of a blue isosurface in an interatomic space is associated with the 

formation of a covalent bond.  Red isosurfaces explicit the origin of the electron density contributing to the formation 

of this bond or to the population of the blue-colored orbital components. 
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ETS-NOCV analysis of IV-pre-dia2 

 

Figure 2. Plots of density deformation isosurfaces (0.005 e/bohr3) arising from the ETS-NOCV analysis of the 

interaction of the an-1b anion with the cat-Pd-L15 cation in their « prepared » geometries giving pre-dia2.  

Deformation density  2 materialises, apart from the coordinative N-Pd interaction, the weak donor-acceptor 

« agostic » interaction (red arrow) between the vicinal Ccy-Hcy bond and the Pd(II) centre. 2 contributes to about 17 

% of the total interfragment orbital interaction energy.  Blue and red isosurfaces are associated with density 

accepting and donating orbital contributors. The occurrence of a blue isosurface in an interatomic space is associated 

with the formation of a covalent bond.  Red isosurfaces explicit the origin of the electron density contributing to the 

formation of this bond or to the population of the blue-colored orbital components. 
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NCI plot of IV-pre-dia1 

 

Figure 3.  NCI isosurface plot of intermediate pre-dia1 showing significant attractive non-covalent support (note the 

« covalent hole » in the isosurface) to the weakly covalent component (see ETS-NOCV analysis) of the « agostic » Ccy-

Hcy-Pd interaction in pre-dia1. NCI plot of attractive (red colored) and repulsive or non bonded (blue colored 

isosurfaces) noncovalent interactions are materialized by reduced density gradient isosurfaces (cut-off value s= 0.02 

a.u., = 0.05 a.u.) colored according to the sign of the signed density  . 

 

 

Figure 4.  NCI isosurface plot of the intermediate pre-dia1 showing significant attractive non-covalent support to the 

« agostic » Ccy-Hcy-Pd interaction in pre-dia1H. NCI plot of attractive (red colored) and repulsive or non bonded (blue 

colored isosurfaces) noncovalent interactions are materialized by reduced density gradient isosurfaces (cut-off value 

s= 0.02 a.u., = 0.05 a.u.) colored according to the sign of the signed density  . 
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Figure 5. DFT calculations were carried out with singlet gas phase geometries optimized at the ZORA-PBE-

D3(BJ)/all electron TZP level (see SI for details): a)  NCI plot of attractive (red colored) and repulsive or non 

bonded (blue colored isosurfaces) noncovalent interactions materialized by reduced density gradient isosurfaces 

(cut-off value s= 0.02 a.u., r= 0.05 a.u.) colored according to the sign of the signed density l2r for pre-dia2 with 

significant interatomic distances (red colored fonts, in Å); b) and c) NCI isosurfaces in TS-dia1 and TS-dia2 with 

significant interatomic distances and the imaginary frequency associated to the Ccy-Hcyactivation assisted by the 

vicinal Pd and O centres.[292,293] 

Note that in all models optimal pi-pi stacking of the C6F5 and p-tolyl group contributes in 

stabilizing the trans N-Pd-N stereochemistry.  In pre-dia2 NCI support the weakly 

covalent “agostic” Pd-to-Hcy-Ccy interaction (Pd-Hcy= 2.038 Å, Pd-Ccy= 2.394 Å, Hcy-O= 

1.926 Å), embodied by the “covalent hole” within the NCI attractive isosurface, in two 

ways: by spread out attractive Pd-to-Hcy-Ccy NCI and by Hcy-O NCI (Figure SX) that are 

absent in pre-dia1.  Interestingly, the Hcy-Ccy bond in pre-dia2 is slightly more elongated 

(1.133 Å) than that in pre-dia1 (1.119 Å).  
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Energies (please see separate SI document in the xyz format for cartesian coordinates) 

IV-cat-Pd-L12 

                                              hartree              eV         kcal/mol           kJ/mol 

                                  --------------------     -----------       ----------      ----------- 

 

Pauli Repulsion 

  Kinetic (Delta T^0):             116.528722568589288       3170.9079         73122.89        305946.12 

  Delta V^Pauli Coulomb:           -57.232195629763758      -1557.3673        -35913.75       -150263.11 

  Delta V^Pauli LDA-XC:            -15.252637425222694       -415.0454         -9571.18        -40045.79 

  Delta V^Pauli GGA-Exchange:        0.744881476714600         20.2693           467.42          1955.69 

  Delta V^Pauli GGA-Correlation:    -0.163630997867099         -4.4526          -102.68          -429.61 

                                  --------------------     -----------       ----------      ----------- 

  Total Pauli Repulsion:            44.625139992450336       1214.3118         28002.70        117163.29 

 (Total Pauli Repulsion = 

  Delta E^Pauli in BB paper) 

 

Steric Interaction 

  Pauli Repulsion (Delta E^Pauli):  44.625139992450336       1214.3118         28002.70        117163.29 

  Electrostatic Interaction:        -9.200410371868596       -250.3559         -5773.35        -24155.67 

 (Electrostatic Interaction = 

  Delta V_elstat in the BB paper) 

                                  --------------------     -----------       ----------      ----------- 

  Total Steric Interaction:         35.424729620581743        963.9559         22229.36         93007.61 

 (Total Steric Interaction = 

  Delta E^0 in the BB paper) 

 

Orbital Interactions 

  A:                               -46.594581570183891      -1267.9031        -29238.54       -122334.06 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -46.608755966837016      -1268.2888        -29247.44       -122371.27 

 

Alternative Decomposition Orb.Int. 

  Kinetic:                        -106.102263164410715      -2887.1895        -66580.18       -278571.45 

  Coulomb:                          54.926971118806797       1494.6389         34467.20        144210.74 

  XC:                                4.566536078766899        124.2618          2865.54         11989.44 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -46.608755966837016      -1268.2888        -29247.44       -122371.27 

 

  Residu (E=Steric+OrbInt+Res):      0.000021628538019          0.0006             0.01             0.06 

  Dispersion Energy:                -0.075244331952986         -2.0475           -47.22          -197.55 

 

Total Bonding Energy:              -11.259249049670240       -306.3798         -7065.29        -29561.15 

 

 

IV-an-1b 
 
                                               hartree              eV         kcal/mol           kJ/mol 

                                  --------------------     -----------       ----------      ----------- 

 

Pauli Repulsion 

  Kinetic (Delta T^0):              64.144229362057047       1745.4533         40251.12        168410.65 

  Delta V^Pauli Coulomb:           -33.792074948519243       -919.5291        -21204.85        -88721.08 

  Delta V^Pauli LDA-XC:             -8.008413412526675       -217.9200         -5025.36        -21026.09 

  Delta V^Pauli GGA-Exchange:        0.371651536232235         10.1132           233.21           975.77 

  Delta V^Pauli GGA-Correlation:    -0.075260745555775         -2.0479           -47.23          -197.60 

                                  --------------------     -----------       ----------      ----------- 

  Total Pauli Repulsion:            22.640131791687590        616.0693         14206.90         59441.66 

 (Total Pauli Repulsion = 

  Delta E^Pauli in BB paper) 

 

Steric Interaction 

  Pauli Repulsion (Delta E^Pauli):  22.640131791687590        616.0693         14206.90         59441.66 

  Electrostatic Interaction:        -4.886686177920446       -132.9735         -3066.44        -12829.99 

 (Electrostatic Interaction = 

  Delta V_elstat in the BB paper) 

                                  --------------------     -----------       ----------      ----------- 

  Total Steric Interaction:         17.753445613767145        483.0958         11140.46         46611.66 

 (Total Steric Interaction = 

  Delta E^0 in the BB paper) 

 

Orbital Interactions 

  A:                               -22.971271557009306       -625.0801        -14414.69        -60311.06 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -22.978988573931396       -625.2901        -14419.53        -60331.33 

 

Alternative Decomposition Orb.Int. 

  Kinetic:                         -59.580202523278970      -1621.2598        -37387.15       -156427.80 

  Coulomb:                          34.062042984611054        926.8753         21374.26         89429.88 

  XC:                                2.539170964736515         69.0944          1593.35          6666.59 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -22.978988573931399       -625.2901        -14419.53        -60331.33 

 

  Residu (E=Steric+OrbInt+Res):      0.000026877289204          0.0007             0.02             0.07 

  Dispersion Energy:                -0.024454105305534         -0.6654           -15.35           -64.20 

 

Total Bonding Energy:               -5.249970188180581       -142.8590         -3294.41        -13783.79 
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IV-pre-dia1 

                                               hartree              eV         kcal/mol           kJ/mol 

                                  --------------------     -----------       ----------      ----------- 

 

Pauli Repulsion 

  Kinetic (Delta T^0):             183.898098826870751       5004.1219        115397.81        482824.39 

  Delta V^Pauli Coulomb:           -93.413911761735221      -2541.9219        -58618.12       -245258.19 

  Delta V^Pauli LDA-XC:            -23.699159553781623       -644.8869        -14871.45        -62222.13 

  Delta V^Pauli GGA-Exchange:        1.163476427574039         31.6598           730.09          3054.71 

  Delta V^Pauli GGA-Correlation:    -0.258151216988630         -7.0247          -161.99          -677.78 

                                  --------------------     -----------       ----------      ----------- 

  Total Pauli Repulsion:            67.690352721939320       1841.9482         42476.34        177721.00 

 (Total Pauli Repulsion = 

  Delta E^Pauli in BB paper) 

 

Steric Interaction 

  Pauli Repulsion (Delta E^Pauli):  67.690352721939320       1841.9482         42476.34        177721.00 

  Electrostatic Interaction:       -14.262137000142767       -388.0925         -8949.63        -37445.24 

 (Electrostatic Interaction = 

  Delta V_elstat in the BB paper) 

                                  --------------------     -----------       ----------      ----------- 

  Total Steric Interaction:         53.428215721796555       1453.8557         33526.72        140275.76 

 (Total Steric Interaction = 

  Delta E^0 in the BB paper) 

 

Orbital Interactions 

  A:                               -69.984978396964223      -1904.3882        -43916.24       -183745.53 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -70.009903613327396      -1905.0664        -43931.88       -183810.98 

 

Alternative Decomposition Orb.Int. 

  Kinetic:                        -168.755464957400562      -4592.0698       -105895.66       -443067.41 

  Coulomb:                          91.276411431725776       2483.7575         57276.82        239646.18 

  XC:                                7.469149912347384        203.2459          4686.96         19610.25 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -70.009903613327396      -1905.0664        -43931.88       -183810.98 

 

  Residu (E=Steric+OrbInt+Res):     -0.000020390795223         -0.0006            -0.01            -0.05 

  Dispersion Energy:                -0.119505361873726         -3.2519           -74.99          -313.76 

 

Total Bonding Energy:              -16.701213644199790       -454.4631        -10480.17        -43849.03 

 

IV-TS-dia1 

                                               hartree              eV         kcal/mol           kJ/mol 

                                  --------------------     -----------       ----------      ----------- 

 

Pauli Repulsion 

  Kinetic (Delta T^0):             185.024827617711566       5034.7817        116104.84        485782.62 

  Delta V^Pauli Coulomb:           -94.084853224015006      -2560.1791        -59039.14       -247019.75 

  Delta V^Pauli LDA-XC:            -23.850266689881760       -648.9988        -14966.27        -62618.87 

  Delta V^Pauli GGA-Exchange:        1.174239553836827         31.9527           736.85          3082.97 

  Delta V^Pauli GGA-Correlation:    -0.260342258012473         -7.0843          -163.37          -683.53 

                                  --------------------     -----------       ----------      ----------- 

  Total Pauli Repulsion:            68.003604999639151       1850.4722         42672.91        178543.44 

 (Total Pauli Repulsion = 

  Delta E^Pauli in BB paper) 

 

Steric Interaction 

  Pauli Repulsion (Delta E^Pauli):  68.003604999639151       1850.4722         42672.91        178543.44 

  Electrostatic Interaction:       -14.370831862552707       -391.0502         -9017.83        -37730.61 

 (Electrostatic Interaction = 

  Delta V_elstat in the BB paper) 

                                  --------------------     -----------       ----------      ----------- 

  Total Steric Interaction:         53.632773137086446       1459.4220         33655.08        140812.83 

 (Total Steric Interaction = 

  Delta E^0 in the BB paper) 

 

Orbital Interactions 

  A:                               -70.207569972059588      -1910.4452        -44055.92       -184329.95 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -70.207569972059588      -1910.4452        -44055.92       -184329.95 

 

Alternative Decomposition Orb.Int. 

  Kinetic:                        -169.617189081791992      -4615.5186       -106436.40       -445329.87 

  Coulomb:                          91.846568029890108       2499.2723         57634.60        241143.13 

  XC:                                7.563051079842242        205.8011          4745.89         19856.79 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -70.207569972059645      -1910.4452        -44055.92       -184329.95 

 

  Residu (E=Steric+OrbInt+Res):      0.000002930821021          0.0001             0.00             0.01 

  Dispersion Energy:                -0.121951418095485         -3.3185           -76.53          -320.18 

 

Total Bonding Energy:              -16.696745322247605       -454.3416        -10477.37        -43837.30 
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IV-Pd-dia1 

                                               hartree              eV         kcal/mol           kJ/mol 

                                  --------------------     -----------       ----------      ----------- 

 

Pauli Repulsion 

  Kinetic (Delta T^0):             184.627203558914260       5023.9618        115855.33        484738.65 

  Delta V^Pauli Coulomb:           -93.919861731392686      -2555.6895        -58935.61       -246586.56 

  Delta V^Pauli LDA-XC:            -23.807293682113791       -647.8294        -14939.30        -62506.04 

  Delta V^Pauli GGA-Exchange:        1.173537527769312         31.9336           736.41          3081.12 

  Delta V^Pauli GGA-Correlation:    -0.261329831381756         -7.1111          -163.99          -686.12 

                                  --------------------     -----------       ----------      ----------- 

  Total Pauli Repulsion:            67.812255841795334       1845.2654         42552.84        178041.05 

 (Total Pauli Repulsion = 

  Delta E^Pauli in BB paper) 

 

Steric Interaction 

  Pauli Repulsion (Delta E^Pauli):  67.812255841795334       1845.2654         42552.84        178041.05 

  Electrostatic Interaction:       -14.304144308310562       -389.2356         -8975.99        -37555.53 

 (Electrostatic Interaction = 

  Delta V_elstat in the BB paper) 

                                  --------------------     -----------       ----------      ----------- 

  Total Steric Interaction:         53.508111533484772       1456.0298         33576.85        140485.53 

 (Total Steric Interaction = 

  Delta E^0 in the BB paper) 

 

Orbital Interactions 

  A:                               -70.101716997158718      -1907.5648        -43989.50       -184052.03 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -70.101716997158732      -1907.5648        -43989.50       -184052.03 

 

Alternative Decomposition Orb.Int. 

  Kinetic:                        -169.416630216673667      -4610.0611       -106310.55       -444803.30 

  Coulomb:                          91.752420150343539       2496.7104         57575.52        240895.95 

  XC:                                7.562493069171386        205.7859          4745.54         19855.32 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -70.101716997158746      -1907.5648        -43989.50       -184052.03 

 

  Residu (E=Steric+OrbInt+Res):     -0.000026828070429         -0.0007            -0.02            -0.07 

  Dispersion Energy:                -0.121777683455515         -3.3137           -76.42          -319.73 

 

Total Bonding Energy:              -16.715409975199904       -454.8494        -10489.08        -43886.30 

 

IV-pre-dia2 

                                               hartree              eV         kcal/mol           kJ/mol 

                                  --------------------     -----------       ----------      ----------- 

 

Pauli Repulsion 

  Kinetic (Delta T^0):             184.118776637857366       5010.1268        115536.29        483403.78 

  Delta V^Pauli Coulomb:           -93.518695799252271      -2544.7732        -58683.87       -245533.30 

  Delta V^Pauli LDA-XC:            -23.741089379181112       -646.0279        -14897.76        -62332.22 

  Delta V^Pauli GGA-Exchange:        1.167783143496074         31.7770           732.80          3066.01 

  Delta V^Pauli GGA-Correlation:    -0.259453120194953         -7.0601          -162.81          -681.19 

                                  --------------------     -----------       ----------      ----------- 

  Total Pauli Repulsion:            67.767321482725094       1844.0426         42524.64        177923.08 

 (Total Pauli Repulsion = 

  Delta E^Pauli in BB paper) 

 

Steric Interaction 

  Pauli Repulsion (Delta E^Pauli):  67.767321482725094       1844.0426         42524.64        177923.08 

  Electrostatic Interaction:       -14.291243521508585       -388.8845         -8967.89        -37521.65 

 (Electrostatic Interaction = 

  Delta V_elstat in the BB paper) 

                                  --------------------     -----------       ----------      ----------- 

  Total Steric Interaction:         53.476077961216511       1455.1581         33556.75        140401.42 

 (Total Steric Interaction = 

  Delta E^0 in the BB paper) 

 

Orbital Interactions 

  A:                               -70.036728208713328      -1905.7963        -43948.72       -183881.40 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -70.062523108895462      -1906.4983        -43964.90       -183949.13 

 

Alternative Decomposition Orb.Int. 

  Kinetic:                        -168.985450784654688      -4598.3281       -106039.98       -443671.24 

  Coulomb:                          91.421206870250899       2487.6976         57367.68        240026.34 

  XC:                                7.501720805508277        204.1322          4707.40         19695.77 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -70.062523108895519      -1906.4983        -43964.90       -183949.13 

 

  Residu (E=Steric+OrbInt+Res):     -0.000004826837290         -0.0001             0.00            -0.01 

  Dispersion Energy:                -0.121218995415677         -3.2985           -76.07          -318.26 

 

Total Bonding Energy:              -16.707668969931920       -454.6388        -10484.22        -43865.98 
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IV-TS-dia2 

 

                                               hartree              eV         kcal/mol           kJ/mol 

                                  --------------------     -----------       ----------      ----------- 

 

Pauli Repulsion 

  Kinetic (Delta T^0):             185.210458524910138       5039.8330        116221.33        486269.99 

  Delta V^Pauli Coulomb:           -94.199635765293337      -2563.3025        -59111.17       -247321.11 

  Delta V^Pauli LDA-XC:            -23.872832382016419       -649.6128        -14980.43        -62678.11 

  Delta V^Pauli GGA-Exchange:        1.176001391012875         32.0006           737.95          3087.59 

  Delta V^Pauli GGA-Correlation:    -0.261143723668217         -7.1061          -163.87          -685.63 

                                  --------------------     -----------       ----------      ----------- 

  Total Pauli Repulsion:            68.052848044945037       1851.8122         42703.81        178672.73 

 (Total Pauli Repulsion = 

  Delta E^Pauli in BB paper) 

 

Steric Interaction 

  Pauli Repulsion (Delta E^Pauli):  68.052848044945037       1851.8122         42703.81        178672.73 

  Electrostatic Interaction:       -14.386843746878053       -391.4859         -9027.88        -37772.65 

 (Electrostatic Interaction = 

  Delta V_elstat in the BB paper) 

                                  --------------------     -----------       ----------      ----------- 

  Total Steric Interaction:         53.666004298066980       1460.3263         33675.93        140900.07 

 (Total Steric Interaction = 

  Delta E^0 in the BB paper) 

 

Orbital Interactions 

  A:                               -70.249854841093281      -1911.5958        -44082.45       -184440.97 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -70.249854841093281      -1911.5958        -44082.45       -184440.97 

 

Alternative Decomposition Orb.Int. 

  Kinetic:                        -169.800866126748446      -4620.5167       -106551.66       -445812.11 

  Coulomb:                          91.973434546954252       2502.7245         57714.21        241476.22 

  XC:                                7.577576738700848        206.1964          4755.00         19894.92 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -70.249854841093352      -1911.5958        -44082.45       -184440.97 

 

  Residu (E=Steric+OrbInt+Res):      0.000002366821108          0.0001             0.00             0.01 

  Dispersion Energy:                -0.121999695376577         -3.3198           -76.56          -320.31 

 

Total Bonding Energy:              -16.705847871581771       -454.5893        -10483.08        -43861.20 

 

IV-Pd-dia2 

                                               hartree              eV         kcal/mol           kJ/mol 

                                  --------------------     -----------       ----------      ----------- 

 

Pauli Repulsion 

  Kinetic (Delta T^0):             184.717635809454094       5026.4226        115912.08        484976.08 

  Delta V^Pauli Coulomb:           -93.985500942038399      -2557.4756        -58976.80       -246758.90 

  Delta V^Pauli LDA-XC:            -23.818109070279093       -648.1237        -14946.09        -62534.44 

  Delta V^Pauli GGA-Exchange:        1.174428484154348         31.9578           736.97          3083.46 

  Delta V^Pauli GGA-Correlation:    -0.261670555402469         -7.1204          -164.20          -687.02 

                                  --------------------     -----------       ----------      ----------- 

  Total Pauli Repulsion:            67.826783725888475       1845.6607         42561.95        178079.20 

 (Total Pauli Repulsion = 

  Delta E^Pauli in BB paper) 

 

Steric Interaction 

  Pauli Repulsion (Delta E^Pauli):  67.826783725888475       1845.6607         42561.95        178079.20 

  Electrostatic Interaction:       -14.315274111694475       -389.5384         -8982.97        -37584.75 

 (Electrostatic Interaction = 

  Delta V_elstat in the BB paper) 

                                  --------------------     -----------       ----------      ----------- 

  Total Steric Interaction:         53.511509614193997       1456.1223         33578.98        140494.45 

 (Total Steric Interaction = 

  Delta E^0 in the BB paper) 

 

Orbital Interactions 

  A:                               -70.114085399716245      -1907.9013        -43997.26       -184084.51 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -70.114085399716259      -1907.9013        -43997.26       -184084.51 

 

Alternative Decomposition Orb.Int. 

  Kinetic:                        -169.481664097504961      -4611.8307       -106351.36       -444974.05 

  Coulomb:                          91.801470349908527       2498.0451         57606.30        241024.73 

  XC:                                7.566108347880169        205.8843          4747.81         19864.81 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -70.114085399716259      -1907.9013        -43997.26       -184084.51 

 

  Residu (E=Steric+OrbInt+Res):      0.000007873386808          0.0002             0.00             0.02 

  Dispersion Energy:                -0.121521838230908         -3.3068           -76.26          -319.06 

 

Total Bonding Energy:              -16.724089750366364       -455.0856        -10494.53        -43909.09 
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IV-pre-dia1H 

                                               hartree              eV         kcal/mol           kJ/mol 

                                  --------------------     -----------       ----------      ----------- 

 

Pauli Repulsion 

  Kinetic (Delta T^0):             171.655057753852560       4670.9718        107715.19        450680.29 

  Delta V^Pauli Coulomb:           -84.381011793199519      -2296.1242        -52949.89       -221542.32 

  Delta V^Pauli LDA-XC:            -22.406935616855204       -609.7237        -14060.57        -58829.40 

  Delta V^Pauli GGA-Exchange:        1.083590473487849         29.4860           679.96          2844.97 

  Delta V^Pauli GGA-Correlation:    -0.234513483665914         -6.3814          -147.16          -615.72 

                                  --------------------     -----------       ----------      ----------- 

  Total Pauli Repulsion:            65.716187333619771       1788.2284         41237.53        172537.83 

 (Total Pauli Repulsion = 

  Delta E^Pauli in BB paper) 

 

Steric Interaction 

  Pauli Repulsion (Delta E^Pauli):  65.716187333619771       1788.2284         41237.53        172537.83 

  Electrostatic Interaction:       -13.489420311594126       -367.0658         -8464.74        -35416.47 

 (Electrostatic Interaction = 

  Delta V_elstat in the BB paper) 

                                  --------------------     -----------       ----------      ----------- 

  Total Steric Interaction:         52.226767022025648       1421.1626         32772.79        137121.36 

 (Total Steric Interaction = 

  Delta E^0 in the BB paper) 

 

Orbital Interactions 

  A:                               -68.778536466105393      -1871.5592        -43159.19       -180578.02 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -68.798605432838897      -1872.1053        -43171.78       -180630.71 

 

Alternative Decomposition Orb.Int. 

  Kinetic:                        -156.258508704749914      -4252.0104        -98053.70       -410256.66 

  Coulomb:                          81.026669027421548       2204.8478         50845.01        212735.49 

  XC:                                6.433234244489471        175.0572          4036.92         16890.45 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -68.798605432838897      -1872.1053        -43171.78       -180630.71 

 

  Residu (E=Steric+OrbInt+Res):      0.000024918081608          0.0007             0.02             0.07 

  Dispersion Energy:                -0.118093235530774         -3.2135           -74.10          -310.05 

 

Total Bonding Energy:              -16.689906728262418       -454.1555        -10473.08        -43819.34 

 

IV-pre-dia2H 

                                               hartree              eV         kcal/mol           kJ/mol 

                                  --------------------     -----------       ----------      ----------- 

 

Pauli Repulsion 

  Kinetic (Delta T^0):             172.191992466556513       4685.5825        108052.12        452090.01 

  Delta V^Pauli Coulomb:           -84.706311628276097      -2304.9760        -53154.02       -222396.39 

  Delta V^Pauli LDA-XC:            -22.477788705781233       -611.6518        -14105.03        -59015.43 

  Delta V^Pauli GGA-Exchange:        1.089262914607577         29.6404           683.52          2859.86 

  Delta V^Pauli GGA-Correlation:    -0.236879504161481         -6.4458          -148.64          -621.93 

                                  --------------------     -----------       ----------      ----------- 

  Total Pauli Repulsion:            65.860275542945274       1792.1493         41327.95        172916.13 

 (Total Pauli Repulsion = 

  Delta E^Pauli in BB paper) 

 

Steric Interaction 

  Pauli Repulsion (Delta E^Pauli):  65.860275542945274       1792.1493         41327.95        172916.13 

  Electrostatic Interaction:       -13.536707320146304       -368.3525         -8494.41        -35540.62 

 (Electrostatic Interaction = 

  Delta V_elstat in the BB paper) 

                                  --------------------     -----------       ----------      ----------- 

  Total Steric Interaction:         52.323568222798968       1423.7967         32833.54        137375.51 

 (Total Steric Interaction = 

  Delta E^0 in the BB paper) 

 

Orbital Interactions 

  A:                               -68.883567273742713      -1874.4172        -43225.10       -180853.78 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -68.904190502329442      -1874.9784        -43238.04       -180907.93 

 

Alternative Decomposition Orb.Int. 

  Kinetic:                        -156.771478884861409      -4265.9690        -98375.60       -411603.46 

  Coulomb:                          81.380317782105180       2214.4711         51066.93        213663.99 

  XC:                                6.486970600426828        176.5195          4070.64         17031.54 
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                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -68.904190502329399      -1874.9784        -43238.04       -180907.93 

 

  Residu (E=Steric+OrbInt+Res):     -0.000001335921227          0.0000             0.00             0.00 

  Dispersion Energy:                -0.120957190522050         -3.2914           -75.90          -317.57 

 

Total Bonding Energy:              -16.701580805973748       -454.4731        -10480.40        -43849.99 

 

IV-TS-dia2H 

                                              hartree              eV         kcal/mol           kJ/mol 

                                  --------------------     -----------       ----------      ----------- 

 

Pauli Repulsion 

  Kinetic (Delta T^0):             172.781326936069377       4701.6191        108421.93        453637.31 

  Delta V^Pauli Coulomb:           -85.159481167622289      -2317.3074        -53438.39       -223586.19 

  Delta V^Pauli LDA-XC:            -22.556075310884946       -613.7820        -14154.15        -59220.97 

  Delta V^Pauli GGA-Exchange:        1.094008015263668         29.7695           686.50          2872.32 

  Delta V^Pauli GGA-Correlation:    -0.237783254510834         -6.4704          -149.21          -624.30 

                                  --------------------     -----------       ----------      ----------- 

  Total Pauli Repulsion:            65.921995218314976       1793.8288         41366.68        173078.17 

 (Total Pauli Repulsion = 

  Delta E^Pauli in BB paper) 

 

Steric Interaction 

  Pauli Repulsion (Delta E^Pauli):  65.921995218314976       1793.8288         41366.68        173078.17 

  Electrostatic Interaction:       -13.588451656356135       -369.7606         -8526.88        -35676.47 

 (Electrostatic Interaction = 

  Delta V_elstat in the BB paper) 

                                  --------------------     -----------       ----------      ----------- 

  Total Steric Interaction:         52.333543561958841       1424.0682         32839.80        137401.70 

 (Total Steric Interaction = 

  Delta E^0 in the BB paper) 

 

Orbital Interactions 

  A:                               -68.909995898131058      -1875.1364        -43241.68       -180923.17 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -68.909995898131058      -1875.1364        -43241.68       -180923.17 

 

Alternative Decomposition Orb.Int. 

  Kinetic:                        -157.295290854168144      -4280.2226        -98704.30       -412978.73 

  Coulomb:                          81.829989215585329       2226.7073         51349.10        214844.61 

  XC:                                6.555305740451751        178.3789          4113.52         17210.95 

                                  --------------------     -----------       ----------      ----------- 

  Total Orbital Interactions:      -68.909995898131058      -1875.1364        -43241.68       -180923.17 

 

  Residu (E=Steric+OrbInt+Res):      0.000007137853071          0.0002             0.00             0.02 

  Dispersion Energy:                -0.119540745159353         -3.2529           -75.01          -313.85 

 

Total Bonding Energy:              -16.695985943478497       -454.3209        -10476.89        -43835.30  
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IV.8.vii. X-Ray data 

IV.8.vii.1. Compound PMP-L12 

 

 

CCDC Identifier XXX 

Structure Identifier fcsj180529 

Formula 2(C26H31NO2S),CHCl3 

Space Group C2 

Cell lengths a 23.8039(6) b 5.82060(10) c 18.7532(5) 

Cell angles α 90 β 101.3900(10) γ 90  

Cell volume 2547.14 

Z, Z’ Z: 2 Z’: 0 

R-Factor (%) 7.89 

Flack parameter 0.09(6) 

Recrystallisation Solvent Hexane/Dichloromethane/Chloroform 
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IV.8.vii.2. Compound IV-2aR 

 

 

CCDC Identifier 1859147 

Structure Identifier fcsj180612 

Formula C17H9F5N2O 

Space Group P 21 

Cell lengths a 4.83520(10) b 9.9490(2) c 15.4991(3) 

Cell angles α 90 β 92.1150(10) γ 90  

Cell volume 745.083 

Z, Z’ Z: 2 Z’: 0 

R-Factor (%) 2.75 

Flack parameter 0.03(3) 

Recrystallisation Solvent Hexane/Dichloromethane 
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IV.8.vii.3. Compound IV-4 

 

 

CCDC Identifier XXX 

Structure Identifier fcsj180724 

Formula C12H13NO4 

Space Group P 21 

Cell lengths a 6.13820(10) b 5.7205(2) c 16.5239(4) 

Cell angles α 90 β 96.248(2) γ 90  

Cell volume 576.767 

Z, Z’ Z: 2 Z’: 0 

R-Factor (%) 3.83 

Flack parameter 0.13(15) 

Recrystallisation Solvent Dichloromethane/Diethyl ether 
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V.1. Conclusion 

The main question addressed in this manuscript was: can the sulfoxide moiety be used to induce 

a chiral information during a C(sp3)-H activation?  

When the project Sulf-As-CH started, many examples of regioselective C(sp3)-H bond activation, 

using bidentate directing groups, have already been disclosed. However, the diastereoselective 

functionalisation of aliphatic chains was scarce and only two reports were recently published 

(Chart 5.25). 

 

Chart 5.25 Representative bidentate directing groups for the C(sp3)-H bond functionalisation 

In the meantime, sulfoxides proved to be highly efficient directing groups for asymmetric 

reactions, especially in metal-catalysed transformations and total synthesis of natural products. 

Their simple access through the diastereoselective synthesis of sulfinates (e.g. Andersen 

methodology) or enantioselective oxidation of sulphides (e.g. Ellmann methodology) brought 

them to light (Scheme 5.142). 

 

Scheme 5.142 Representative synthesis of enantiopure sulfoxides 
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Within our research group, p-tolylsulfinyl moiety showed excellent chiral induction ability. This 

group is generally obtained by attack of a nucleophile reagent on the enantiopure Andersen’s 

reagent, (-)-menthyl (S)-p-tolylsulfinate (Scheme 5.143). Its use has been recognized, for 

example in the atroposelective synthesis of multiarene scaffolds and total synthesis of natural 

compounds. Post-functionalisation of the sulfinyl moiety by means of the sulfoxide-lithium 

exchange resulted in its replacement by an array of functional groups allowing the obtention of 

ligands which demonstrated excellent enantiomeric induction ability for various reactions. 

 

Scheme 5.143 Synthesis of biarylsulfoxides 

In this context, we took inspiration from Daugulis’ and Babu’s bidentate auxiliary, ie. 2-

(methylthio)aniline, to design a new chiral directing group in order to apply it for challenging 

stereoselective transformations (Figure 5.68). 

 

Figure 5.68 Design of a new auxiliary bearing a chiral sulfoxide 

Thus, we designed (S)-2-(p-tolylsulfinyl)aniline (APS) and used this chiral auxiliary for the 

asymmetric arylation, olefination and alkylation of cycloalkanes. Although new and interesting, 

our methodology suffered from 1) no reactivity with linear aliphatic chains, 2) a lack of reactivity 

with electron-rich coupling partners and 3) a poor diastereoselectivity which were the main 

limitations of this catalytic system. However, the straightforward separation of the two 

diastereomers by simple column chromatography allowed the obtention of complex 

enantiopure compounds. The APS chiral auxiliary was also easily deprotected under basic 

conditions and recovered without loss of optical purity, making it a fully recyclable DG. With this 

new catalytic system, we developed an expedient synthesis of cyclopropane-based natural 
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products, such as hoshinolactam obtained in five steps and 30% total yield from APS (Scheme 

5.144). Our methodology is based on the interplay of peptidic couplings, challenging C-H bond 

activation and deprotection of the chiral auxiliary. Interestingly, alkylation and olefination could 

be performed and the diastereomers separated by column chromatography. Deprotection of the 

chiral auxiliary yielded a traceless carboxylic acid, removed in the Barton-Motherwell conditions 

to get an enantiopure trans-disubstituted cyclopropane intermediate. 

 

Scheme 5.144 APS-based total synthesis of hoshinolactam 

Considering the novelty of this chiral auxiliary, preliminary DFT studies have been conducted in 

collaboration with Jean-Pierre Djukic.  

This work on the C-H bond functionalisation of cycloalkanes was followed by the extension of the 

methodology to acyclic compounds. Mainly, the modification of the reaction medium from an 

HFIP/water solvent system to toluene/HFIP allowed high conversion to the desired β-

functionalised product. Consequently, we performed diastereoselective arylation and 

acetoxylation on aliphatic and benzylic substrates, with moderate to good diastereomeric 

excesses. From the ubiquitous propionic acid, protected with APS, we also achieved one-pot di-

functionalisation reactions, affording complex scaffolds (Scheme 5.145). Diastereopure 

compounds were obtained with 3:2 to 9:1 crude diastereomeric ratio and yields up to 91%. 

 

Scheme 5.145 One-pot two sequential C-H bond functionalisation 
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With our expertise in diastereoselective C(sp3)-H bond functionalisation using the APS as chiral 

directing group, we endeavoured enantioselective transformations, using an aminosulfoxide 

chiral ligand. Following this goal, we designed a new ligand for the enantioselective 

functionalisation of cyclopropane (Figure 5.69.a). N-((S)-1-(4-(tert-butyl)phenyl)-2-((R)-p-

tolylsulfinyl)ethyl)acetamide (NBSA) allowed us to reach 92% enantiomeric excess and 78% yield 

for the arylation of cyclopropane using 4-iodotoluene as coupling partner (Figure 5.69.b). 

 

Figure 5.69 Design of new aminosulfoxide ligand from APS 

Following the optimisation of the ligand, we applied it for the arylation and the challenging 

undescribed alkynylation of cycloalkanes. Good to excellent yields and enantiomeric excesses 

were obtained, showcasing the potential of this class of ligands (Chart 5.26).  

 

Chart 5.26 Representative products using NBSA ligand 
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Our NBSA ligand was also effective to enable the C-H bond cleavage in isobutyric acid 

derivatives, although with relatively poor chiral induction (Chart 5.27). 

 

Chart 5.27 Functionalisation of isobutyramides using NBSA ligand 

Considering the unprecedented architecture of this ligand, preliminary mechanistic studies have 

been undertaken to elucidate this catalytic system, in collaboration with Jean-Pierre Djukic. This 

interesting study revealed a unique mode of action of the NBSA ligand and the importance of the 

perfluoroamide moiety to stabilize the heteroleptic bischelated complex by π – π stacking 

interactions. We also proposed a model for the asymmetric induction observed in the 

functionalisation of cyclopropanes (Figure 5.70). 

 

Figure 5.70 Proposed asymmetric induction model in the enantioselective C(sp3)-H activation of cyclopropanes 
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V.2. Outlook 

The first chiral N,S auxiliary developed in our group, APS, showcased a good ability to coordinate 

palladium and thus directing the C(sp3)-H bond activation to allow various transformations such 

as arylation or olefination. 

Considering the development of the NBSA ligand, the high enantiomeric induction and yields 

observed using it in combination with substrates bearing a pentafluoroamide moiety opens new 

perspectives for the asymmetric C-H bond activation. There are undeniably many challenges to 

respond in the field of asymmetric C-H bond functionalisation. However, taking into account the 

importance of the newly accessed products, we are interested in desymmetrisation of some 

important scaffolds. 

For example the desymmetrisation of phosphinic acids remains underdeveloped and only C(sp2)-

H functionalisation has been reported.[294,295] Chiral phosphorus compounds are prevalent in a 

broad range of areas such as pharmacology and biochemistry; using dialkyl phosphinamides and 

NBSA ligand, the design of transformations allowing the C(sp3)-H bond activation followed by 

subsequent enantioselective functionalisation appears as a highly challenging project (Scheme 

5.146).  

 

Scheme 5.146 Enantioselective functionalisation of phosphinamides 
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NBSA ligand could also be used for the desymmetrisation of ferrocene carboxylic acid derivatives 

(Scheme 5.147). As chiral ferrocenes such as JOSIPHOS analogues can be used as ligands for 

asymmetric transformations,[296] efficient access to this type of structures seems highly 

appealing. 

 

Scheme 5.147 Enantioselective desymmetrisation of ferrocenes 

Considering the sulfinylaniline chiral auxiliary acting as directing group in C(sp3)-H bond 

activation, our results inspired another research group to use the inherent chirality of the 

sulfoxide to perform challenging stereoselective organic transformations giving access to 

complex structures. 

Indeed Leboeuf and Gandon endeavoured the diastereoselective aza-Piancatelli rearrangement 

involving a 4π conrotatory cyclisation,[297,298] using (S)-2-(tert-butylsulfinyl)aniline (ATS) as chiral 

directing group (Scheme 5.148). The resulting 4-aminocyclopentenones are potential 

intermediates to aminocyclopentitol scaffolds, present in various drugs and natural products 

such as peramivir[299] or trehazolin.[300] The main outlook on this project is to find a suitable 

pathway to remove traceless the chiral auxiliary. 

 

Scheme 5.148 Diastereoselective aza-Piancatelli using ATS 
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V.3. Scientific contributions 

Oral communications: 

- “C(sp3)-H functionalization of cycloalkane derivatives using a bidentate directing group 

bearing a chiral sulfoxide” at the Journées de la Chimie Organique (Palaiseau, France, 

September 2016); 

- “(S)-2-(p-tolylsulfinyl)aniline: a versatile chiral tool for the stereoselective 

C(sp3)-H bond functionalization of carboxamides” at the Chirality Day (Strasbourg, 

France, October 2017); 

- “Sulfoxides: novel strategies for the asymmetric C(sp3)-H bond functionalization” at the 

Journées Scientifiques de l'Institut de Chimie (Strasbourg, France, December 2017); 

- “Sulfoxide: novel strategy for the asymmetric C(sp3)-H bond activation” at Janssen 

Pharmaceutica (Beerse, Belgium, February 2018); 

- “A Sulfinyl Aniline as a Versatile Chiral Tool for Stereoselective C(sp3)-H Bond 

Functionalisation” at ChemCYS 2018 (Blankenberge, Belgium, February 2018, 2nd award 

of the best oral presentation in Organic and Organometallic chemistry). 

Poster sessions: 

- “Novel aminosulfoxide ligands: Towards the enantioselective C(sp3)-H bond arylation and 

alkynylation of carboxamides” at the Regio Symposium 38 (Fribourg, Germany, 

September 2018). 

Scientific publications:  

- “Enantiopure sulfinyl aniline as removable and recyclable chiral auxiliary for asymmetric 

C(sp3)-H bond activation” Jerhaoui, S., Chahdoura F., Rose, C., Djukic, J.-P., Wencel-

Delord, J., Colobert, F. Chem. Eur. J., 2016, 22, 17397; 

- “Stereoselective Sulfinyl Aniline Promoted Pd-catalyzed C-H Arylation and Acetoxylation 

Of Carboxamides” Jerhaoui, S., Djukic, J.-P., Wencel-Delord, J., Colobert, F. Chem. Eur. J., 

2017, 23, 15594; 

- “Stereospecific C-H activation as a key step for asymmetric synthesis of various 

biologically active cyclopropanes” Jerhaoui, S., Poutrel, P., Djukic, J.-P., Wencel-Delord, J., 

Colobert, F. Org. Chem. Front., 2018, 5, 409; 
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- “Synthesis of axially chiral C-N scaffolds via asymmetric coupling with enantiopure 

sulfinyl iodanes” Rae, J., Frey, J., Jerhaoui, S., Choppin, S., Wencel-Delord, J., Colobert, F. 

ACS Catal., 2018, 8, 2805; 

- “N-protected aminosulfoxides as a new family of chiral ligands for asymmetric C-H 

activation” Jerhaoui, S., Djukic, J.-P., Wencel-Delord, J., Colobert, F., Manuscript in 

preparation, 2018. 

Other contributions: 

- Project ScienceLab in Chemistry with the Jardin des Sciences (2015 – 2016); 

- Practical classes in organic chemistry (2016 – 2018); 

- Participation at “Ma thèse en 180 secondes” in 2018. 
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Résumé 

Pendant de nombreuses années, les liaisons C-H aliphatiques ont été considérées comme 
dormantes, difficilement exploitables dans le contexte de la chimie organique. Le défi le plus 
important est de sélectionner une liaison C-H parmi toutes celles que contient une molécule. 
L’approche la plus utilisée à ce jour est l’utilisation d’un groupement directeur qui permet, en se 
liant à un métal, de diriger l’activation d’une liaison C-H en particulier. Suite au développement 
des groupements bicoordinants, nous avons développé notre propre groupement bicoordinant 
chiral. Cet auxiliaire nous a permis de réaliser de nombreuses transformations diastéréosélectives 
sur des carbones aliphatiques telles que l'arylation et l'oléfination. Nous l’avons également utilisé 
pour développer une méthodologie innovante pour la synthèse de produits naturels. Suite à ces 
travaux, nous avons développé un nouveau ligand chiral qui a été utilisé dans l’arylation et 
l’alkynylation énantiosélectives de cycloalcanes. 

Mots clés : Activation C-H, sulfoxyde, catalyse homogène, synthèse totale, chiralité, palladium, 
ligands, hoshinolactame 

 

 

Abstract 

Over the decades, non-activated C-H bonds have been considered as dormant functionalities, 
hardly exploitable in the context of multistep synthesis of complex scaffolds. The main challenge 
is to select one C-H bond among all contained in one molecule. To answer to this problem 
bicoordinating directing groups allowing directed C(sp3)-H activation have been developed. 
Following the work of Daugulis and Babu, we developed our own chiral bicoordinating directing 
group, (S)-2-(p-tolylsulfinyl)aniline. This chiral auxiliary allowed us to realise various 
diastereoselective transformations on aliphatic chains such as arylation, olefination or 
acetoxylation. We also used it to develop a brand-new methodology for the total synthesis of 
cyclopropane-bearing natural products. Moreover we developed a new chiral sulfinyl ligand, N-
((S)-1-(4-(tert-butyl)phenyl)-2-((R)-p-tolylsulfinyl)ethyl)acetamide, that has been used for the 
enantioselective arylation and alkynylation of cycloalkanes. 

Keywords: C-H activation, sulfoxide, homogenous catalysis, total synthesis, chirality, palladium, 
ligands, hoshinolactam 

 


