M. Acosta, J. Zang, W. Jo, and J. Rödel, High-temperature dielectrics in CaZrO, vol.3, 2012.

, Bi 1/2 Na 1/2 TiO 3 -based lead-free ceramics, Journal of the European Ceramic Society, vol.32, issue.16, pp.4327-4334

K. Albertsen, D. Hennings, and O. Steigelmann, Donor-acceptor charge complex formation in barium titanate ceramics: Role of firing atmosphere, Journal of electroceramics, vol.2, issue.3, pp.193-198, 1998.

T. Ashburn and D. Skamser, Highly accelerated testing of capacitors for medical applications, Proceedings of the 5 th SMTA Medical Electronics Symposium, 2008.

T. R. Armstrong and R. C. Buchanan, Influence of Core-Shell Grains on the Internal Stress State and Permittivity Response of Zirconia-Modified Barium Titanate, Journal of the American Ceramic Society, vol.73, issue.5, pp.1268-1273, 1990.

M. Barsoum and M. W. Barsoum, Fundamentals of ceramics, 2002.

A. Belous, O. V'yunov, L. Kovalenko, and D. Makovec, Redox processes in highly yttrium-doped barium titanate, Journal of Solid State Chemistry, vol.178, issue.5, pp.1367-1375, 2005.

A. Belous, O. V'yunov, M. Glinchuk, V. Laguta, and D. Makovez, Redox processes at grain boundaries in barium titanate-based polycrystalline ferroelectrics semiconductors, Journal of materials science, vol.43, issue.9, pp.3320-3326, 2008.

M. T. Buscaglia, M. Viviani, V. Buscaglia, C. Bottino, and P. Nanni, Incorporation of Er 3+ into BaTiO 3, Journal of the American Ceramic Society, vol.85, issue.6, pp.1569-1575, 2002.

H. F. Cheng, Effect of sintering aids on the electrical properties of positive temperature coefficient of resistivity BaTiO3 ceramics, Journal of Applied Physics, vol.66, issue.3, pp.1382-1387, 1989.

T. T. Fang and J. T. Shuei, Experimental assessment of the inhibition of reduction of Ca 2+ -doped barium titanate in a reducing atmosphere, Journal of materials research, vol.14, issue.5, pp.1910-1915, 1999.

G. Fantozzi, J. C. Niepce, and G. Bonnefont, Les céramiques industrielles: Propriétés, mise en forme et applications. Dunod, 2013.

K. H. Felgner, T. Müller, H. T. Langhammer, and H. P. Abicht, Investigations on the liquid phase in barium titanate ceramics with silica additives, Journal of the European Ceramic Society, vol.21, issue.10, pp.1657-1660, 2001.

Q. X. Fu, S. B. Mi, E. Wessel, and F. Tietz, Influence of sintering conditions on microstructure and electrical conductivity of yttrium-substituted SrTiO 3, Journal of the European Ceramic Society, vol.28, issue.4, pp.811-820, 2008.

W. Grogger, F. Hofer, P. Warbichler, A. Feltz, and M. Ottlinger, Imaging of the core-shell structure of doped BaTiO 3 ceramics by energy filtering TEM, Physica status solidi, vol.166, issue.1, pp.315-325, 1998.

H. Gong, X. Wang, S. Zhang, and L. Li, Synergistic effect of rare-earth elements on the dielectric properties and reliability of BaTiO 3 -based ceramics for multilayer ceramic capacitors, Materials Research Bulletin, vol.73, pp.233-239, 2016.

J. P. Guha and D. Kolar, Phase equilibria, sintering characteristics and dielectric properties in the BaTiO3-rich portion of the system BaO-TiO 2 -SiO 2, 5th Conference on Ceramics for Electronics, pp.1-9, 1974.

R. Hagenbeck and R. Waser, Influence of temperature and interface charge on the grainboundary conductivity in acceptor-doped SrTiO 3 ceramics, Journal of applied physics, vol.83, issue.4, pp.2083-2092, 1998.

Y. H. Han, J. B. Appleby, and D. M. Smyth, Calcium as an acceptor impurity in BaTiO 3, Journal of the American Ceramic Society, vol.70, issue.2, pp.96-100, 1987.

F. He, W. Ren, G. Liang, P. Shi, X. Wu et al., Structure and dielectric properties of barium titanate thin films for capacitor applications, Ceramics International, vol.39, pp.481-485, 2013.

D. Hennings and G. Rosenstein, Temperature-Stable Dielectrics Based on Chemically Inhomogeneous BaTiO 3, Journal of the American Ceramic Society, vol.67, issue.4, pp.249-254, 1984.

H. Lara, J. P. Pérez-labra, M. Barrientos-hernández, F. R. Romero-serrano, J. A. Ávila-dávila et al., Structural Evolution and Electrical Properties of BaTiO 3 Doped with Gd 3+, Materials Research, vol.20, issue.2, pp.538-542, 2017.

X. Huang, H. Liu, H. Hao, S. Zhang, Y. Sun et al., Microstructure effect on dielectric properties of MgO-doped BaTiO 3 -BiYO 3 ceramics, Ceramics International, issue.6, pp.7489-7495, 2015.

T. A. Jain, K. Z. Fung, S. Hsiao, and J. Chan, Effects of BaO-SiO 2 glass particle size on the microstructures and dielectric properties of Mn-doped Ba(Ti, Zr)O 3 ceramics, Journal of the European Ceramic Society, vol.30, issue.6, pp.1469-1476, 2010.

J. Jeong, E. J. Lee, and Y. H. Han, Electrical properties of holmium-doped BaTiO 3, 2005.

, Japanese journal of applied physics, vol.44, issue.6R, p.4047

M. Kahn, Multilayer Ceramic Capacitors-Materials and Manufacture. AVX Technical Information Series, 1981.

C. H. Kim, K. J. Park, Y. J. Yoon, M. H. Hong, J. O. Hong et al., Role of yttrium and magnesium in the formation of core-shell structure of BaTiO 3 grains in MLCC, Journal of the European Ceramic Society, vol.28, issue.6, pp.1213-1219, 2008.

S. H. Yoon, Y. S. Park, J. O. Hong, and D. S. Sinn, Effect of the pyrochlore (Y 2 Ti 2 O 7 ) phase on the resistance degradation in yttrium-doped BaTiO 3 ceramic capacitors, Journal of Materials Research, vol.22, issue.9, pp.2539-2543, 2007.

S. H. Yoon, S. H. Kang, S. H. Kwon, and K. H. Hur, Resistance degradation behavior of Ca-doped BaTiO 3, Journal of Materials Research, vol.25, issue.11, pp.2135-2142, 2010.

J. Zhang, Y. Hou, M. Zheng, W. Jia, M. Zhu et al., The occupation behavior of Y 2 O 3 and its effect on the microstructure and electric properties in X7R dielectrics, Journal of the American Ceramic Society, vol.99, issue.4, pp.1375-1382, 2016.

J. Zhi, A. Chen, Y. Zhi, P. M. Vilarinho, and J. L. Baptista, Incorporation of yttrium in barium titanate ceramics, Journal of the American Ceramic Society, vol.82, issue.5, pp.1345-1348, 1999.

X. N. Zhu, W. Zhang, and X. M. Chen, Enhanced dielectric and ferroelectric characteristics in Ca-modified BaTiO 3 ceramics, vol.3, p.82125, 2013.

G. Hartler, Parameter estimation for the Arrhenius model, IEEE transactions on reliability, vol.35, issue.4, pp.414-418, 1986.

. Iec/ieee, Guide for the Statistical Analysis of Electrical Insulation Breakdown Data (Adoption of IEEE Std 930-2004), IEC 62539 First Edition, pp.1-53, 2007.

D. Liu and M. Sampson, Reliability evaluation of base-metal-electrode multilayer ceramic capacitors for potential space applications, CARTS proceed, pp.45-63, 2011.

D. D. Liu and M. J. Sampson, Some aspects of the failure mechanisms in BaTiO 3 -Based multilayer ceramic capacitors, 2012.

D. Liu, Highly accelerated life stress testing (HALST) of base-metal electrode multilayer ceramic capacitors, Proc. CARTS, pp.235-248, 2013.

D. D. Liu, Insulation resistance degradation in Ni-BaTiO 3 multilayer ceramic capacitors, IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.5, issue.1, pp.40-48, 2015.

G. H. Maher, J. M. Wilson, and S. G. Maher, Electric Field Effects on the Insulation Resistance and Reliability of Various Types of BaTiO3 based X7R MLCC's at Elevated Temperatures, Group, vol.1, issue.10, p.3, 2003.

T. Nomura, J. Miura, T. Arashi, Y. Nakano, and A. Sato, Multilayer ceramic capacitors-recent trends, Proceedings of the Tenth IEEE International Symposium on, vol.1, pp.135-141, 1996.

F. N. Nwobi and C. A. Ugomma, A comparison of methods for the estimation of Weibull distribution parameters, Metodoloski zvezki, vol.11, p.65, 2014.

J. Paulsen and E. Reed, Highly accelerated lifetesting (HALT) of kemet Base-Metal-Electrode (BME) ceramic chip capacitors, CARTS-CONFERENCE, pp.265-270, 2001.

V. V. Paunovi?, L. M. ?ivkovi?, L. Vra?ar, V. Miti?, and M. M. Miljkovi?, The effects of additive on microstructure and electrical properties of BaTiO 3 ceramics, Serbian Journal of Electrical Engineering, vol.1, issue.3, pp.89-98, 2004.

M. Randall, A. Gurav, D. Skamser, and J. Beeson, Lifetime modeling of sub 2 micron dielectric thickness BME MLCC, CARTS-CONFERENCE, pp.134-140, 2003.

, COMPONENTS TECHNOLOGY INSTITUTE INC

B. S. Rawal and N. H. Chan, Conduction and failure mechanisms in barium titanate based ceramics under highly accelerated conditions, Proceedings of the 34th Electronic Components Conference, pp.184-188, 1984.

R. Ross, Comparing linear regression and maximum likelihood methods to estimate Weibull distributions on limited data sets: systematic and random errors, Electrical Insulation and Dielectric Phenomena, pp.170-173, 1999.

J. Scarpulla, T. Ayvazian, W. Buell, M. Campbell, A. Dubitsky et al., Thin MLCC (multi-layer ceramic capacitor) reliability evaluation using an accelerated ramp voltage test, Accelerated Stress Testing & Reliability Conference, p.2016, 2016.

Y. Tsur, T. D. Dunbar, and C. A. Randall, Crystal and defect chemistry of rare earth cations in BaTiO 3, Journal of electroceramics, vol.7, issue.1, pp.25-34, 2001.

A. Teverovsky, Breakdown voltages in ceramic capacitors with cracks, IEEE Transactions on Dielectrics and Electrical Insulation, vol.19, issue.4, 2012.

A. Vassilious and A. Mettas, Understanding accelerated life-testing analysis, Annual Reliability and Maintainability symposium, Tutorial Notes, pp.1-21, 2001.

J. Wang, S. Jiang, D. Jiang, J. Tian, Y. Li et al., Microstructural design of BaTiO 3 -based ceramics for temperature-stable multilayer ceramic capacitors, Ceramics International, vol.38, issue.7, pp.5853-5857, 2012.

M. J. Wang, H. Yang, Q. L. Zhang, Z. S. Lin, Z. S. Zhang et al., , 2014.

, Microstructure and dielectric properties of BaTiO 3 ceramic doped with yttrium, magnesium, gallium and silicon for AC capacitor application, Materials Research Bulletin, vol.60, pp.485-491

Y. Wang, S. Gong, and S. Grzybowski, Reliability evaluation method for oil-paper insulation in power transformers, Energies, vol.4, issue.9, pp.1362-1375, 2011.

J. R. Yoon, K. M. Lee, and S. W. Lee, Analysis the reliability of multilayer ceramic capacitor with inner Ni electrode under highly accelerated life test conditions, Transactions on electrical and electronic materials, vol.10, issue.1, pp.5-8, 2009.

D. H. Yoon and B. I. Lee, Processing of barium titanate tapes with different binders for MLCC applications-Part I: Optimization using design of experiments, Journal of the European ceramic society, vol.24, issue.5, pp.739-752, 2004.

J. Zhang, Y. Hou, M. Zheng, W. Jia, M. Zhu et al., The occupation behavior of Y 2 O 3 and its effect on the microstructure and electric properties in X7R dielectrics, Journal of the American Ceramic Society, vol.99, issue.4, pp.1375-1382, 2016.

T. Ashburn and D. Skamser, Highly accelerated testing of capacitors for medical applications, Proceedings of the 5th SMTA Medical Electronics Symposium, 2008.

A. Belous, O. V'yunov, L. Kovalenko, and D. Makovec, Redox processes in highly yttrium-doped barium titanate, Journal of Solid State Chemistry, vol.178, issue.5, pp.1367-1375, 2005.

A. Belous, O. V'yunov, M. Glinchuk, V. Laguta, and D. Makovez, Redox processes at grain boundaries in barium titanate-based polycrystalline ferroelectrics semiconductors, Journal of materials science, vol.43, issue.9, pp.3320-3326, 2008.

X. Huang, H. Liu, H. Hao, S. Zhang, Y. Sun et al., Microstructure effect on dielectric Properties of MgO-doped BaTiO 3 -BiYO 3 ceramics, Ceramics International, issue.6, pp.7489-7495, 2015.

C. H. Kim, K. J. Park, Y. J. Yoon, M. H. Hong, J. O. Hong et al., Role of yttrium and magnesium in the formation of core-shell structure of BaTiO 3 grains in MLCC, Journal of the European Ceramic Society, vol.28, issue.6, pp.1213-1219, 2008.

H. Kishi, Y. Mizuno, and H. Chazono, Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives, Japanese Journal of Applied Physics, vol.42, issue.1R, p.1, 2003.

G. Koschek and E. Kubalek, On the Electronic Structure and the Local Distribution of the Second Phase Ba 6 Ti 17 O 40 in BaTiO 3 Ceramics, Physica status solidi, vol.102, issue.1, pp.417-424, 1987.

G. Liu and R. D. Roseman, Effect of BaO and SiO 2 addition on PTCR BaTiO 3 ceramics, Journal of Materials science, vol.34, issue.18, pp.4439-4445, 1999.

H. Y. Lu, J. S. Bow, and W. H. Deng, Core-Shell Structures in ZrO 2 -Modified BaTiO 3, 1990.

. Ceramic, Journal of the American Ceramic Society, vol.73, issue.12, pp.3562-3568

D. Makovec, Z. Samard?ija, and M. Drofenik, Solid solubility of holmium, yttrium, and dysprosium in BaTiO 3, Journal of the American Ceramic Society, vol.87, issue.7, pp.1324-1329, 2004.

K. M. Öksüz, M. Torman, S. ?en, and U. ?en, Effect of sintering temperature on dielectric properties of SiO 2 doped BaTiO 3 ceramics, Materials, Methods & Technologies, vol.10, pp.361-366, 2016.

M. Paredes-olguín, I. A. Lira-hernández, C. Gomez-yañez, and F. P. Espino-cortes, , 2013.

, Compensation mechanisms at high temperature in Y-doped BaTiO 3, Physica B: Condensed Matter, vol.410, pp.157-161

Y. Tsur, T. D. Dunbar, and C. A. Randall, Crystal and defect chemistry of rare earth cations in BaTiO 3, Journal of electroceramics, vol.7, issue.1, pp.25-34, 2001.

O. I. V'yunov, L. L. Kovalenko, A. G. Belous, and V. N. Belyakov, Oxidation of reduced Y-doped semiconducting barium titanate ceramics, Translated from Neorganicheskie Materialy, vol.41, issue.1, pp.93-100, 2005.

M. J. Wang, H. Yang, Q. L. Zhang, L. Hu, D. Yu et al., Doping behaviors of yttrium, zinc and gallium in BaTiO 3 ceramics for AC capacitor application, Journal of Materials Science: Materials in Electronics, vol.25, issue.7, pp.2905-2912, 2014.

M. J. Wang, H. Yang, Q. L. Zhang, Z. S. Lin, Z. S. Zhang et al., , 2014.

, Microstructure and dielectric properties of BaTiO 3 ceramic doped with yttrium, magnesium, gallium and silicon for AC capacitor application, Materials Research Bulletin, vol.60, pp.485-491

Y. C. Wu, S. F. Wang, D. E. Mccauley, M. S. Chu, and H. Y. Lu, Dielectric Behavior and Second Phases in X7R-Formulated BaTiO 3 Sintered in Low-Oxygen Partial Pressures, Journal of the American Ceramic Society, vol.90, issue.9, pp.2926-2934, 2007.

S. H. Yoon, Y. S. Park, J. O. Hong, and D. S. Sinn, Effect of the pyrochlore (Y 2 Ti 2 O 7 ) phase on the resistance degradation in yttrium-doped BaTiO 3 ceramic capacitors, Journal of Materials Research, vol.22, issue.9, pp.2539-2543, 2007.

S. H. Yoon, S. H. Kang, S. H. Kwon, and K. H. Hur, Resistance degradation behavior of Ca-doped BaTiO 3, Journal of Materials Research, vol.25, issue.11, pp.2135-2142, 2010.

Y. Yuan, S. Zhang, and C. Li, The effect of doping process on microstructure and dielectric properties of BaTiO 3 -based X7R materials, Journal of Materials Science: Materials in Electronics, vol.15, issue.9, pp.601-606, 2004.

J. Zhang, Y. Hou, M. Zheng, W. Jia, M. Zhu et al., The occupation behavior of Y 2 O 3 and its effect on the microstructure and electric properties in X7R dielectrics, Journal of the American Ceramic Society, vol.99, issue.4, pp.1375-1382, 2016.

J. Zhi, A. Chen, Y. Zhi, P. M. Vilarinho, and J. L. Baptista, les poudres ou les céramiques, étant plus visible lorsque le niveau de dopage Y 3 + augmente. En outre, dans certaines conditions, la formation de phases secondaires a été favorisée : Ba 6 Ti 17 O 40 , Y 2 TiO 5 et Y 2 Ti 2 O 7 . Ces résultats illustrent l'influence de Y 3 + en tant que dopant dans BaTiO 3 . De plus, les résultats montrent clairement que les interactions entre les additifs utilisés dans une formulation commerciale sont très importantes et jouent également un rôle dans les propriétés finales et la formation des phases secondaires. Ce travail démontre que les formulations à base de BT pour les applications diélectriques sont très sensibles à des modifications, même infimes, Journal of the American Ceramic Society, vol.82, issue.5, pp.1345-1348, 1999.

, D'autres perspectives peuvent être envisagées pour étudier plus précisément le rôle réel des autres additifs et dopants et, en particulier, les interactions qu'ils peuvent avoir dans des systèmes réels dans les conditions de leurs différentes applications

M. Acosta, J. Zang, W. Jo, and J. Rödel, Journal of the European Ceramic Society, vol.32, issue.16, pp.4327-4334, 2012.

K. Albertsen, D. Hennings, and O. Steigelmann, Journal of electroceramics, vol.2, issue.3, pp.193-198, 1998.

T. Ashburn and D. Skamser, Proceedings of the 5 th SMTA Medical Electronics Symposium, 2008.

U. California,

T. R. Armstrong and R. C. Buchanan, Journal of the American Ceramic Society, vol.73, issue.5, pp.1268-1273, 1990.

M. Barsoum and M. W. Barsoum, Fundamentals of ceramics, 2002.

A. Belous, O. V'yunov, L. Kovalenko, and D. Makovec, Journal of Solid State Chemistry, vol.178, issue.5, pp.1367-1375, 2005.

A. Belous, O. V'yunov, M. Glinchuk, V. Laguta, and D. Makovez, Journal of materials science, vol.43, issue.9, pp.3320-3326, 2008.

M. T. Buscaglia, M. Viviani, V. Buscaglia, C. Bottino, and P. Nanni, Journal of the American Ceramic Society, vol.85, issue.6, pp.1569-1575, 2002.

N. H. Chan, R. K. Sharma, D. M. Smyth, and ;. Kishi, Journal of Applied Physics, vol.64, issue.9, pp.1382-1387, 1981.

T. T. Fang and J. T. Shuei, Journal of materials research, vol.14, issue.5, pp.1910-1915, 1999.

G. Fantozzi, J. C. Niepce, and G. Bonnefont, Les céramiques industrielles: Propriétés, mise en forme et applications. Dunod, 2013.

K. H. Felgner, T. Müller, H. T. Langhammer, and H. P. Abicht, Journal of the European Ceramic Society, vol.21, issue.10, pp.1657-1660, 2001.

Q. X. Fu, S. B. Mi, E. Wessel, and F. Tietz, Journal of the European Ceramic Society, vol.28, issue.4, pp.811-820, 2008.

W. Grogger, F. Hofer, P. Warbichler, A. Feltz, M. Ottlinger et al., Physica status solidi (a), vol.166, pp.233-239, 1998.

J. P. Guha and D. Kolar, 5th Conference on Ceramics for Electronics, pp.1-9, 1974.

R. Hagenbeck and R. Waser, Journal of applied physics, vol.83, issue.4, pp.2083-2092, 1998.

Y. H. Han, J. B. Appleby, and D. M. Smyth, Journal of the American Ceramic Society, vol.70, issue.2, pp.96-100, 1987.

F. He, W. Ren, G. Liang, P. Shi, X. Wu et al., Ceramics International, vol.39, pp.481-485, 2013.

D. Hennings and G. Rosenstein, Journal of the American Ceramic Society, vol.67, issue.4, pp.249-254, 1984.

H. Lara, J. P. Pérez-labra, M. Barrientos-hernández, F. R. Romero-serrano, J. A. Ávila-dávila et al., Materials Research, vol.20, issue.2, pp.538-542, 2017.

X. Huang, H. Liu, H. Hao, S. Zhang, Y. Sun et al., Ceramics International, vol.41, issue.6, pp.7489-7495, 2015.

T. A. Jain, K. Z. Fung, S. Hsiao, and J. Chan, Journal of the European Ceramic Society, vol.30, issue.6, pp.1469-1476, 2010.

J. Jeong, E. J. Lee, and Y. H. Han, Japanese journal of applied physics, vol.44, issue.6R, p.4047, 2005.

M. Kahn, Multilayer Ceramic Capacitors-Materials and Manufacture. AVX Technical Information Series, 1981.

C. H. Kim, K. J. Park, Y. J. Yoon, M. H. Hong, J. O. Hong et al., Journal of the European Ceramic Society, vol.28, issue.6, pp.1213-1219, 2008.

H. Kishi, Y. Mizuno, and H. Chazono, , 2003.

D. H. Kuo, C. H. Wang, and W. P. Tsai, Japanese Journal of Applied Physics, vol.42, issue.1R, pp.1-5, 2006.

W. H. Lee, T. Y. Tseng, and D. Hennings, Journal of Materials Science: Materials in Electronics, vol.12, issue.2, pp.123-130, 2001.

B. Li, S. Zhang, X. Zhou, Z. Chen, and S. Wang, Journal of materials science, vol.42, issue.13, pp.5223-5228, 2007.

W. Li, Z. Xu, R. Chu, P. Fu, and J. Hao, Journal of Alloys and Compounds, vol.482, issue.1, pp.137-140, 2009.

G. Liu and R. D. Roseman, Journal of Materials science, vol.34, issue.18, pp.4439-4445, 1999.

D. D. Liu and M. J. Sampson, IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.5, issue.1, pp.40-48, 2012.

Y. Luo, Y. Pu, P. Zhang, J. Zhao, Y. Wu et al., , 2016.

, Ferroelectrics, vol.492, issue.1, pp.10-16

D. Makovec, Z. Samard?ija, and M. Drofenik, Journal of the American Ceramic Society, vol.87, issue.7, pp.1324-1329, 2004.

. Futureelectronics, Multilayer ceramic capacitor, high voltage ceramic capacitors -Future Electronics, 2017.

N. Nikulin, Fundamentals of electrical materials, 1988.

D. A. Nicker, Active and Passive Electronic Components, vol.1, pp.113-120, 1974.

T. Nomura and N. Kawano, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol.34, pp.5389-5395, 1995.

Y. Okino, H. Shizuno, S. Kusumi, H. Kishi, K. E. Ösküz et al., Japanese journal of applied physics, IEEE electrical insulation magazine, vol.33, issue.9S, p.26, 1994.

M. Paredes-olguín, I. A. Lira-hernández, C. Gomez-yañez, and F. P. Espino-cortes, Physica B: Condensed Matter, vol.410, pp.157-161, 2013.

K. J. Park, C. H. Kim, Y. J. Yoon, S. M. Song, Y. T. Kim et al., Journal of the European Ceramic Society, vol.29, issue.9, pp.1735-1741, 2009.

V. Paunovic, V. Mitic, M. Marjanovic, and L. Kocic, Facta Universitatis, Series: Electronics and Energetics, vol.29, pp.285-296, 2016.

M. V. Petrovi?, J. D. Bobi?, T. Ramo?ka, J. Banys, and B. D. Stojanovi?, Materials characterization, vol.62, issue.10, pp.1000-1006, 2011.

B. S. Rawal and N. H. Chan, Conduction and failure mechanisms in barium titanate based ceramics under highly accelerated conditions, pp.184-188, 1984.

D. W. Richerson, Modern ceramic engineering: properties, processing, and use in design, 2005.

Y. Shimada, K. Utsumi, M. Yonezawa, and H. Takamizawa, Ceramic dielectric capacitors classes I, II, III and IV-part I: characteristics and requirements, Journal of the American Ceramic Society, vol.20, issue.S4, pp.297-298, 1963.

Y. Tsur, A. Hitomi, I. Scrymgeour, C. A. Randall, Y. Tsur et al., Japanese Journal of Applied Physics, vol.40, issue.1R, pp.25-34, 2001.

S. Urek, M. Drofenik, and D. Makovec, Journal of materials science, vol.35, issue.4, pp.895-901, 2000.

Z. Valdez-nava, C. Tenailleau, S. Guillemet-fritsch, N. El-horr, T. Lebey et al., Journal of Physics and Chemistry of solids, vol.72, issue.1, pp.17-23, 2011.

D. Völtzke, H. P. Abicht, E. Pippel, and J. Woltersdorf, Journal of the European Ceramic Society, vol.20, issue.11, pp.1663-1669

O. I. V'yunov, L. L. Kovalenko, A. G. Belous, and V. N. Belyakov, Inorganic materials, vol.41, pp.87-93, 2005.

J. Wang, G. Rong, L. Hao, L. Gao, H. Cheng et al., Modern Physics Letters B, vol.30, issue.29, p.1650363, 2016.

M. J. Wang, H. Yang, Q. L. Zhang, L. Hu, D. Yu et al., Journal of Materials Science: Materials in Electronics, vol.25, issue.7, pp.2905-2912, 2014.

T. Wang, X. H. Wang, H. Wen, and L. T. Li, International Journal of Minerals, Metallurgy and Materials, vol.16, issue.3, pp.345-348, 2009.

X. H. Wang, R. Chen, Z. Gui, and L. Li, Ferroelectrics, vol.262, issue.1, pp.251-256, 2001.

Y. C. Wu, S. F. Wang, D. E. Mccauley, M. S. Chu, and H. Y. Lu, Journal of the American Ceramic Society, vol.90, issue.9, pp.2926-2934, 2007.

Y. Yan, L. Liu, C. Ning, Y. Yang, C. Xia et al., Materials Letters, vol.165, pp.135-138, 2016.

S. H. Yoon, Y. S. Park, J. O. Hong, and D. S. Sinn, Journal of Materials Research, vol.22, issue.9, pp.2539-2543, 2007.

S. H. Yoon, S. H. Kang, S. H. Kwon, and K. H. Hur, Journal of Materials Research, vol.25, issue.11, pp.2135-2142, 2010.

J. Yoon, K. Lee, and S. Lee, Transactions on Electrical and Electronic Materials, vol.10101, issue.5, pp.1229-7607, 2009.

J. Zhang, Y. Hou, M. Zheng, W. Jia, M. Zhu et al., Journal of the American Ceramic Society, vol.99, issue.4, pp.1375-1382, 2016.

J. Zhi, A. Chen, Y. Zhi, P. M. Vilarinho, and J. L. Baptista, Journal of the American Ceramic Society, vol.82, issue.5, pp.1345-1348, 1999.

X. N. Zhu, W. Zhang, and X. M. Chen, Aip Advances, vol.3, p.82125, 2013.