, En conclusion, un feuillet bidimensionnel pseudo-hexagonal ou

L. Bocquet and E. Charlaix, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev, vol.39, pp.1073-1095, 2010.

K. J. Mackenzie, Structure and Thermal Transformations of Imogolite Studied by 29Si and 27Al High-Resolution Solid-State Nuclear Magnetic Resonance, Clays and Clay Minerals, vol.37, p.119, 1989.

C. Zanzottera, Thermal Collapse of Single-Walled Alumino-Silicate Nanotubes : Transformation Mechanisms and Morphology of the Resulting Lamellar Phases, J. Phys. Chem. C, vol.116, p.123, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01840361

M. F. Chaplin, Structuring and Behaviour of Water in Nanochannels and Confined Spaces, Adsorption and Phase Behaviour in Nanochannels and Nanotubes, pp.241-255, 2010.

W. H. Thompson, Perspective : Dynamics of confined liquids, The Journal of Chemical Physics, vol.149, issue.2, 2018.

H. Zhu, Structure and Transport Properties of Water and Hydrated Ions in Nano-Confined Channels, Advanced Theory and Simulations, 2019.

A. Sayari and M. Jaroniec, Nanoporous Materials : Proceedings of the 5th International Symposium, Vancouver, vol.OCLC, p.2, 2008.

L. Radushkevich and V. Lukyanovich, O Strukture Ugleroda, Obrazujucegosja Pri Termiceskom Razlozenii Okisi Ugleroda Na Zeleznom Kontakte, Zurn Fisic Chim, vol.26, issue.2, pp.88-95, 1952.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, pp.56-58, 1991.

M. S. Dresselhaus, Carbon Nanotubes, t. 80, Topics in Applied Physics, 2001.

S. Reich, Carbon Nanotubes : Basic Concepts and Physical Properties, vol.50434660, p.30, 0193.

J. Mintmire and C. White, Electronic and structural properties of carbon nanotubes, Carbon, vol.33, pp.893-902, 1995.

P. G. Collins, Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science, vol.292, issue.2, pp.706-709, 2001.

G. Hills, Modern microprocessor built from complementary carbon nanotube transistors, Nature, vol.572, issue.2, pp.595-602, 2019.

J. W. Park, Electrical transport through crossed carbon nanotube junctions, Journal of Applied Physics, vol.93, issue.2, pp.4191-4193, 2003.

, On the Tube, The Economist, issue.2, 2003.

M. Yu, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, vol.287, issue.2, pp.637-640, 2000.

E. J. Siochi, Melt processing of SWCNT-polyimide nanocomposite fibers, Composites Part B: Engineering, vol.35, pp.439-446, 2004.

H. Kyakuno, Confined water inside single-walled carbon nanotubes : Global phase diagram and effect of finite length, The Journal of Chemical Physics, vol.134, p.3, 2011.

E. Paineau, X-ray Scattering Determination of the Structure of Water during Carbon Nanotube Filling, Nano Letters, vol.13, p.3, 2013.

G. Hummer, Water Conduction through the Hydrophobic Channel of a Carbon Nanotube, Nature, vol.414, p.3, 2001.

M. Monthioux, Filling Single-Wall Carbon Nanotubes, Carbon Nanotubes:The Present State, vol.40, p.3, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02106121

H. G. Park and Y. Jung, Carbon nanofluidics of rapid water transport for energy applications, Chemical Society Reviews, vol.43, p.3, 2014.

B. J. Hinds, Aligned Multiwalled Carbon Nanotube Membranes, Science, vol.303, p.3, 2004.

S. Kar, Carbon Nanotube Membranes for Desalination and Water Purification : Challenges and Opportunities, Nano Today, vol.7, p.3, 2012.

A. Siria, New avenues for the large-scale harvesting of blue energy, Nature Reviews Chemistry, vol.1, p.3, 2017.

A. Thess, Crystalline Ropes of Metallic Carbon Nanotubes, Science, vol.273, p.3, 1996.

. Li, Large-Scale Synthesis of Aligned Carbon Nanotubes, Science, vol.274, p.3, 1996.

P. Singh, Organic Functionalisation and Characterisation of Single-Walled Carbon Nanotubes, Chem. Soc. Rev, vol.38, p.3, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00431810

D. Janas, Towards monochiral carbon nanotubes : a review of progress in the sorting of single-walled carbon nanotubes, Materials Chemistry Frontiers, vol.2, p.3, 2018.

M. Serra, An overview of the recent advances in inorganic nanotubes, Nanoscale, vol.11, p.3, 2019.

R. Tenne, Polyhedral and cylindrical structures of tungsten disulphide, Nature, vol.360, pp.444-446, 1992.

M. Nath, Simple Synthesis of MoS2 and WS2 Nanotubes, Advanced Materials, vol.13, pp.283-286, 2001.

J. Goldberger, Single-crystal gallium nitride nanotubes, Nature, vol.422, pp.599-602, 2003.

H. Shin, Formation of TiO2 and ZrO2 Nanotubes Using Atomic Layer Deposition with Ultraprecise Control of the Wall Thickness, Advanced Materials, vol.16, pp.1197-1200, 2004.

X. Shen, Fabrication, Characterization and Field Emission Properties of Large-Scale Uniform ZnO Nanotube Arrays, Nanotechnology, vol.16, p.3, 2005.

Y. Wang, Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application, Chemistry of Materials, vol.17, pp.3899-3903, 2005.

G. Radovsky, Synthesis of Copious Amounts of SnS2 and SnS2/SnS Nanotubes with Ordered Superstructures, Angewandte Chemie International Edition, vol.50, pp.12316-12320, 2011.

N. Yoshinaga and S. Aomine, Imogolite in some ando soils, Soil Science and Plant Nutrition, vol.8, pp.22-29, 1962.

M. Fleischer, New Mineral Names, The American Mineralogist, vol.48, p.4, 1963.

S. W. Bailey, Summary of National and International Recommendations on Clay Mineral Nomenclature, Clays and Clay Minerals, vol.19, p.4, 1971.

N. Yoshinaga, Identification of imogolite in the filmy gel materials in the imaichi and shichihonzakura purlice beds, Soil Science and Plant Nutrition, vol.14, p.4, 1968.

G. Jaritz, Ein Vorkommen von Imogolit in Bimsböden Westdeutschlands, Zeitschrift für Pflanzenernährung und Bodenkunde, vol.117, p.4, 1967.

E. Besoain, Imogolite in volcanic soils of Chile, Geoderma, vol.2, p.4, 1969.

R. L. Parfitt, Imogolite from New Guinea, Clays and Clay Minerals, vol.22, pp.369-371, 1974.

N. Yoshinaga, Occurrence of Imogolite in Some Volcanic Ash Soils of New Zealand, Clay Minerals, vol.10, p.4, 1973.

K. Wada and N. Yoshinaga, The Structure of "Imogolite, American Mineralogist, vol.54, issue.5, 1969.

F. Ohashi, Characterization of synthetic imogolite nanotubes as gas storage, Journal of Materials Science, vol.39, p.5, 2004.

N. Donkai, Preparation of Transparent Mullite-Silica Film by Heat-Treatment of Imogolite, J. Mater. Sci, vol.27, issue.5, p.98, 1992.

G. J. Ross and H. Kodama, Evidence for Imogolite in Canadian Soils, Clays and Clay Minerals, vol.27, issue.5, pp.297-300, 1979.

J. P. Gustafsson, Mineralogy of poorly crystalline aluminium phases in the B horizon of Podzols in southern Sweden, Applied Geochemistry, vol.14, issue.5, pp.707-718, 1999.

J. L. Bishop and E. B. Rampe, Evidence for a changing Martian climate from the mineralogy at Mawrth Vallis, Earth and Planetary Science Letters, vol.448, issue.5, pp.42-48, 2016.

J. L. Bishop, Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars, Nature Astronomy, vol.2, issue.5, pp.206-213, 2018.

H. Kawasaki and S. Aomine, So-called 14 Å clay minerals in some Ando soils, Soil Science and Plant Nutrition, vol.12, p.5, 1966.

K. Wada, High Resolution Electron Micrographs of Imogolite, Clay Minerals, vol.8, pp.487-489, 1970.

J. Tait, The occurrence of imogolite in some scottish soils, Soil Science and Plant Nutrition, vol.24, issue.5, pp.145-151, 1978.

C. Levard, Role of natural nanoparticles on the speciation of Ni in andosols of la Reunion, Geochimica et Cosmochimica Acta, vol.73, p.5, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00741166

G. Torrent, Presence d'imogolite dans la composition mineralogique des fractions fines extraites des croutes d'alteration observees sur le basalte de roudadou, pres d'Aurillac, Cantal, Clay Minerals, vol.17, issue.5, pp.185-194, 1982.

P. Violante and J. M. Tait, Identification of Imogolite in Some Volcanic Soils from Italy, Clay Minerals, vol.14, p.5, 1979.

P. D. Cradwick, Imogolite, a Hydrated Aluminium Silicate of Tubular Structure, Nature Physical Science, vol.240, issue.6, p.63, 1972.

V. C. Farmer, Synthesis of imogolite : a tubular aluminium silicate polymer, Journal of the Chemical Society, Chemical Communications, vol.13, pp.462-463, 1977.

C. Levard, Nanoparticules Naturelles : Imogolites et Allophanes. Structure, Mécanismes de Croissance et Capacité de Rétention Des Éléments Traces Métalliques, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00368753

S. Wada, Synthetic Allophane and Imogolite, Journal of Soil Science, vol.30, p.8, 1979.

M. S. Amara, Nanotubes d'imogolite et Propriétés de l'eau Confinée : Organisation, Structure et Dynamique, vol.43, issue.11, p.92, 2014.

C. Levard, Synthesis of Imogolite Fibers from Decimolar Concentration at Low Temperature and Ambient Pressure : A Promising Route for Inexpensive Nanotubes, Journal of the American Chemical Society, vol.131, issue.8, pp.17080-17081, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01519370

S. Wada and K. Wada, Effects of Substitution of Germanium for Silicon in Imogolite, Clays and Clay Minerals, vol.30, issue.8, pp.123-128, 1982.

F. Alvarez-ramírez, ;. Moh, M. Si, . Ge, N. Sn et al., Theoretical Study of (OH) 3 N 2 O 3, vol.6, pp.1120-1124, 2009.

M. Ookawa, Synthesis and Characterization of Fe Containing Imogolite, Clay Science, vol.12, issue.8, pp.280-284, 2006.

A. Avellan, Structural incorporation of iron into Ge-imogolite nanotubes : a promising step for innovative nanomaterials, pp.49827-49830, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01157201

E. Shafia, Reactivity of bare and Fe-doped alumino-silicate nanotubes (imogolite) with H 2 O 2 and the azo-dye Acid Orange 7, Catalysis Today, vol.277, pp.89-96, 2016.

E. Rojas-mancilla, Imogolite Synthetized in Presence of As(III) Induces Low Cell Toxicity and Hemolysis, in Vitro, Potential Stabilization of Arsenite Present in Aqueous Systems, ACS Omega, vol.4, issue.8, pp.10510-10515, 2019.

P. Maillet, Evidence of Double-Walled Al-Ge Imogolite-Like Nanotubes. A Cryo-TEM and SAXS Investigation, Journal of the American Chemical Society, vol.132, pp.1208-1209, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00646091

A. Thill, Physico-chemical Control over the Single-or Double-Wall Structure of Aluminogermanate Imogolite-like Nanotubes, Journal of the American Chemical Society, vol.134, pp.3780-3786, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00766556

M. Amara, Single-step formation of micron long (OH) 3 Al 2 O 3 Ge(OH) imogolite-like nanotubes, Chemical Communications, vol.49, pp.11284-11286, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01426270

O. Poncelet and J. Skrzypski, Industrial Implications in the Uses of Tubular Clay Minerals, pp.726-734, 2016.

W. Ma, Poly(methyl methacrylate) grafted imogolite nanotubes prepared through surface-initiated ARGET ATRP, Chemical Communications, vol.47, issue.8, 2011.

K. Yamamoto, Surface Modification of Aluminosilicate Nanofiber "Imogolite, Chemistry Letters, vol.30, p.13, 2001.

W. Ma, Surface Functionalization of Aluminosilicate Nanotubes with Organic Molecules, Beilstein J. Nanotechnol, vol.3, p.8, 2012.

D. Kang, Single-Walled Aluminosilicate Nanotubes with Organic-Modified Interiors, The Journal of Physical Chemistry C, vol.115, p.9, 2011.

I. Bottero, Synthesis and characterization of hybrid organic/inorganic nanotubes of the imogolite type and their behaviour towards methane adsorption, Physical Chemistry Chemical Physics, vol.13, p.83, 2011.

M. S. Amara, Hybrid, Tunable-Diameter, Metal Oxide Nanotubes for Trapping of Organic Molecules, Chemistry of Materials, vol.27, p.165, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01187786

D. Kang, Direct Synthesis of Single-Walled Aminoaluminosilicate Nanotubes with Enhanced Molecular Adsorption Selectivity, Nature Communications, vol.5, p.9, 2014.

C. Zanzottera, Co2 Adsorption on Aluminosilicate Single-Walled Nanotubes of Imogolite Type, J. Phys. Chem. C, vol.116, p.9, 2012.

E. Belorizky, Almost Ideal 1D Water Diffusion in Imogolite Nanotubes Evidenced by NMR Relaxometry, ChemPhysChem, vol.11, p.129, 2010.

M. S. Amara, Hexagonalization of Aluminogermanate Imogolite Nanotubes Organized into Closed-Packed Bundles, The Journal of Physical Chemistry C, vol.118, p.93, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01157204

L. Denaix, Structure and Affinity towards Cd2+, Cu2+, Pb2+ of Synthetic Colloidal Amorphous Aluminosilicates and Their Precursors, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.158, p.9, 1999.

S. M. Barrett, The synthesis and characterization of imogolite, European Polymer Journal, vol.27, p.11, 1991.

K. Wada and T. Henmi, Characterization of Micropores of Imogolite by Measuring Retention of Quaternary Ammonium Chlorides and Water, The Clay Science Society of Japan, vol.4, p.11, 1972.

W. C. Ackerman, Gas Vapor Adsorption in Imogolite -a Microporous Tubular Aluminosilicate, Langmuir, vol.9, p.11, 1993.

P. I. Pohl, Pore Structure of Imogolite Computer Models, Langmuir, vol.12, p.11, 1996.

B. Creton, Molecular Dynamics Study of Hydrated Imogolite. 1. Vibrational Dynamics of the Nanotube, J. Phys. Chem. C, vol.112, p.11, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00316024

J. Zang, Osmotic Ensemble Methods for Predicting Adsorption-Induced Structural Transitions in Nanoporous Materials Using Molecular Simulations, J. Chem. Phys, vol.134, p.11, 2011.

S. Mukherjee, Phenomenology of the Growth of Single-Walled Aluminosilicate and Aluminogermanate Nanotubes of Precise Dimensions, Chem. Mater, vol.17, p.11, 2005.

H. Lee, Thermodynamic Control of Diameter-Modulated Aluminosilicate Nanotubes, The Journal of Physical Chemistry C, vol.118, p.11, 2014.

K. Tamura and K. Kawamura, Molecular Dynamics Modeling of Tubular Aluminum Silicate : Imogolite, The Journal of Physical Chemistry B, vol.106, p.11, 2002.

B. Ni, General Synthesis of Inorganic Single-Walled Nanotubes, vol.6, p.11, 2015.

E. Paineau, Effect of Ionic Strength on the Bundling of Metal Oxide Imogolite Nanotubes, Physical Chemistry C, vol.121, p.93, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01589860

Y. Liao, Self-supporting thin films of imogolite and imogolite-like nanotubes for infrared spectroscopy, Applied Clay Science, vol.45, p.11, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01543018

D. C. Bain and B. F. Smith, Chemical analysis, Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, sous la dir, p.12, 1994.

J. D. Russell, Imogolite : A Unique Aluminosilicate, Clay Minerals, vol.8, pp.15-17, 1969.

C. Levard, Formation and Growth Mechanisms of Imogolite-like Aluminogermanate Nanotubes, Chem. Mater, vol.22, p.12, 2010.

C. Levard, Synthesis of Ge-Imogolite : Influence of the Hydrolysis Ratio on the Structure of the Nanotubes, Physical chemistry chemical physics : PCCP, vol.13, p.12, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01426202

G. I. Yucelen, Formation of Single-Walled Aluminosilicate Nanotubes from Molecular Precursors and Curved Nanoscale Intermediates, Journal of the American Chemical Society, vol.133, p.12, 2011.

Y. Liao, Water Adsorption in Single-and Double-Walled Inorganic Nanotubes, The Journal of Physical Chemistry C, vol.123, p.165, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02267378

H. Yang and Z. Su, Individual dispersion of synthetic imogolite nanotubes via droplet evaporation, Chinese Science Bulletin, vol.52, p.14, 2007.

K. Shikinaka, Mechanical/optical behaviors of imogolite hydrogels depending on their compositions and oriented structures, Journal of Applied Polymer Science, p.14, 2014.

L. A. Bursill, Imogolite : An aluminosilicate nanotube material, Philosophical Magazine A, vol.80, p.14, 2000.

V. Farmer and A. Fraser, Synthetic Imogolite, A Tubular Hydroxyaluminium Silicate, p.15, 1979.

N. Yoshinaga, An Electron Microscopic Study of Soil Allophane with an Ordered Structure, The American Mineralogist, vol.53, p.16, 1968.

V. C. Farmer, Recognition of Imogolite Structures in Allophanic Clays by Infrared Spectroscopy, Clay Minerals, vol.12, p.18, 1977.

V. C. Farmer, Characterization of the chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectroscopy, Geochimica et Cosmochimica Acta, vol.43, p.18, 1979.

M. A. Wilson, Tetrahedral Rehydration during Imogolite Formation, J. Non-Cryst. Solids, vol.296, p.18, 2001.

N. Arancibia-miranda, Use of Isoelectric Point and Ph to Evaluate the Synthesis of a Nanotubular Aluminosilicate, J. Non-Cryst. Solids, vol.357, p.18, 2011.

B. Creton, Molecular Dynamics Study of Hydrated Imogolite. 2. Structure and Dynamics of Confined Water, Phys. Chem. Chem. Phys, vol.10, p.166, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00316024

P. F. Barron, Detection of Imogolite in Soils Using Solid-State Si-29 NMR, Nature, vol.299, p.19, 1982.

B. A. Goodman, Structural Studies of Imogolite and Allophanes by Aluminum-27 and Silicon-29 Nuclear Magnetic Resonance Spectroscopy, Phys. Chem. Miner, vol.12, p.19, 1985.

S. Park, Two-Dimensional Alignment of Imogolite on a Solid Surface, Chem. Commun, vol.2917, p.19, 2007.

K. Kajiwara, Lyotropic Mesophase Formation of Imogolite, Bull. Inst. Chem. Res, vol.66, p.20, 1988.

P. Ildefonse, 27Al MAS NMR and Aluminum X-Ray Absorption Near Edge Structure Study of Imogolite and Allophanes, Clays and Clay Minerals, vol.42, p.20, 1994.

L. Guimarães, Imogolite Nanotubes : Stability, Electronic, and Mechanical Properties, ACS Nano, vol.1, p.20, 2007.

Z. Xin, Strain energy and Young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory, Physical Review B, vol.62, p.20, 2000.

E. Paineau and P. Launois, Nanomaterials From Imogolite : Structure, Properties and Applications, p.20, 2019.

K. Yamamoto, Transparent Polymer Nanohybrid Prepared by in Situ Synthesis of Aluminosilicate Nanofibers in Poly(Vinyl Alcohol) Solution, Soft Matter, vol.1, p.20, 2005.

K. Yamamoto, Preparation and properties of [poly(methyl methacrylate)/imogolite] hybrid via surface modification using phosphoric acid ester, Polymer, vol.46, p.20, 2005.

H. Lee, Preparation of an imogolite/poly(acrylic acid) hybrid gel, Journal of Colloid and Interface Science, vol.406, p.20, 2013.

J. Ryu, Dynamic behavior of hybrid poly(acrylic acid) gel prepared by ?-ray irradiated imogolite, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.535, p.20, 2017.

K. Shikinaka, Design of Stimuli-Responsive Materials Consisting of the Rigid Cylindrical Inorganic Polymer 'Imogolite, Polymer Journal, vol.48, p.20, 2016.

J. Karube and Y. Abe, Water Retention by Colloidal Allophane and Imogolite with Different Charges, Clays Clay Miner, vol.46, p.20, 1998.

M. A. Wilson, Benzene Displacement on Imogolite, Clays and Clay Minerals, vol.50, p.20, 2002.

B. Bonelli, IR Spectroscopic and Catalytic Characterization of the Acidity of Imogolite-Based Systems, J. Catal, vol.264, p.20, 2009.

B. Bonelli, IR Spectroscopic Study of the Acidic Properties of Alumino-Silicate Single-Walled Nanotubes of the Imogolite Type, Catal. Today, vol.218, p.20, 2013.

P. Picot, Behaviour of hybrid inside/out Janus nanotubes at an oil/water interface. A route to self-assembled nanofluidics ?, Faraday Discuss, vol.191, p.21, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01378819

K. Liou, Investigating the Potential of Single-Walled Aluminosilicate Nanotubes in Water Desalination, ChemPhysChem, vol.18, p.21, 2017.

D. Kang, Single-Walled Aluminosilicate Nanotube/Poly(Vinyl Alcohol) Nanocomposite Membranes, ACS Applied Materials and Interfaces, vol.4, p.21, 2012.

G. N. Baroña, High Permeate Flux of Pva/Psf Thin Film Composite Nanofiltration Membrane with Aluminosilicate Single-Walled Nanotubes, J. Colloid Interface Sci, vol.386, p.21, 2012.

G. N. Baroña, Interfacial Polymerization of Polyamide-Aluminosilicate SWNT Nanocomposite Membranes for Reverse Osmosis, Desalination, vol.325, p.21, 2013.

Y. Pan, Thin Film Nanocomposite Membranes Based on Imologite Nanotubes Blended Substrates for Forward Osmosis Desalination, Desalination, The Latest Advances and Opportunities in Forward Osmosis, vol.421, p.21, 2017.

F. Li, A Raman spectroscopy study on the effects of intermolecular hydrogen bonding on water molecules absorbed by borosilicate glass surface, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.196, p.21, 2018.

Y. Arai, Uranyl Adsorption and Surface Speciation at the Imogolite-Water Interface : Self-Consistent Spectroscopic and Surface Complexation Models, Geochimica et Cosmochimica Acta, vol.70, p.21, 2006.

L. L. Liz-marzan and A. P. Philipse, Synthesis of Platinum Nanoparticles in Aqueous Host Dispersions of Inorganic (Imogolite) Rods, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.90, p.21, 1994.

L. M. Liz-marzan and A. P. Philipse, Stable Hydrosols of Metallic and Bimetallic Nanoparticles Immobilized on Imogolite Fibers, J. Phys. Chem, vol.99, pp.15120-15128, 1995.

Y. Kuroda, Uniform and High Dispersion of Gold Nanoparticles on Imogolite Nanotubes and Assembly into Morphologically Controlled Materials, Appl. Clay Sci, vol.55, p.21, 2012.

J. Guilment, Hybrid organicinorganic materials designed to clean wash water in photographic processing : Genesis of a sol-gel industrial product : the Kodak Water Saving Treatment System, MRS Online Proceedings Library Archive 726, p.21, 2002.

D. L. Guerra, Adsorption of Rubidium on Raw and Mtz-and Mbi-Imogolite Hybrid Surfaces : An Evidence of the Chelate Effect, Desalination, vol.275, p.21, 2011.

N. Arancibia-miranda, Preparation and Characterization of a Single-Walled Aluminosilicate Nanotube-Iron Oxide Composite : Its Applications to Removal of Aqueous Arsenate, Mater. Res. Bull, vol.51, p.21, 2014.

D. A. Geraldo, Synthesis of Cdte Qds/Single-Walled Aluminosilicate Nanotubes Hybrid Compound and Their Antimicrobial Activity on Bacteria, J. Nanopart. Res, vol.14, p.21, 2012.

G. I. Yucelen, Synthesis and immobilization of silver nanoparticles on aluminosilicate nanotubes and their antibacterial properties, Applied Nanoscience, vol.6, p.21, 2016.

Y. J. Lerat and O. J. Poncelet, Dressing and antiseptic agent containing silver, p.21, 2008.

S. Imamura, Shape-Selective Copper-Loaded Imogolite Catalyst, J. Catal, vol.160, p.21, 1996.

V. C. Farmer, Synthetic Imogolite : Properties, Synthesis, and Possible Applications, Clay Miner, vol.18, p.22, 1983.

K. Katsumata, Visible-Light-Driven Photodegradation of Acetaldehyde Gas Catalyzed by Aluminosilicate Nanotubes and Cu(Ii)-Grafted Tio2 Composites, Appl. Catal., B, vol.138, issue.139, p.22, 2013.

X. Qi, Surface-modified imogolite by 3-APS-OsO4 complex : Synthesis, characterization and its application in the dihydroxylation of olefins, Journal of Industrial and Engineering Chemistry, vol.14, p.22, 2008.

M. Ookawa, Oxidation of aromatic hydrocarbons with H2O2 catalyzed by a nano-scale tubular aluminosilicate, Fe-containing imogolite, Research on Chemical Intermediates, vol.34, p.22, 2008.

N. Olson, Utilizing Imogolite Nanotubes as a Tunable Catalytic Material for the Selective Isomerization of Glucose to Fructose, Catalysis Today, Special Issue Honoring Umit S, vol.323, p.22, 2017.

E. Bahadori, Photo-Activated Degradation of Tartrazine by H2O2 as Catalyzed by Both Bare and Fe-Doped Methyl-Imogolite Nanotubes, Catalysis Today, 7th Czech-Italian-Spanish Symposium on Zeolites and Catalysis, vol.304, p.22, 2018.

G. Teobaldi, Hydroxyl Vacancies in Single-Walled Aluminosilicate and Aluminogermanate Nanotubes, Journal of Physics: Condensed Matter, vol.21, p.22, 2009.

E. Poli, Large-Scale Density Functional Theory Simulation of Inorganic Nanotubes : A Case Study on Imogolite Nanotubes, Mater. Res. Innovations, vol.19, p.22, 2015.

J. D. Elliott, Chemically Selective Alternatives to Photoferroelectrics for Polarization-Enhanced Photocatalysis : The Untapped Potential of Hybrid Inorganic Nanotubes, Advanced Science, vol.4, p.22, 2017.

E. Poli, The Potential of Imogolite Nanotubes as (Co-)Photocatalysts : A Linear-Scaling Density Functional Theory Study, Journal of Physics: Condensed Matter, vol.28, p.22, 2016.

L. J. Michot, Water organisation at the solid-aqueous solution interface, Comptes Rendus Geoscience, vol.334, p.23, 2002.

M. Jiménez-ruiz, Anisotropy on the Collective Dynamics of Water Confined in Swelling Clay Minerals, The Journal of Physical Chemistry A, vol.116, p.23, 2012.

G. Algara-siller, Square ice in graphene nanocapillaries, Nature, vol.519, p.24, 2015.

R. Mitsuyama, Chirality fingerprinting and geometrical determination of single-walled carbon nanotubes : Analysis of fine structure of X-ray diffraction pattern, Carbon, vol.75, p.26, 2014.

A. A. Lucas and P. Lambin, Diffraction by DNA, Carbon Nanotubes and Other Helical Nanostructures, Reports on Progress in Physics, vol.68, p.26, 2005.

L. Qin, Electron Diffraction from Carbon Nanotubes, Reports on Progress in Physics, vol.69, p.26, 2006.

E. Paineau, A Liquid-Crystalline Hexagonal Columnar Phase in Highly-Dilute Suspensions of Imogolite Nanotubes, Nature Communications, vol.7, p.26, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01251618

R. Demichelis, Structure and energetics of imogolite : a quantum mechanical ab initio study with B3LYP hybrid functional, Journal of Materials Chemistry, vol.20, p.26, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00687894

S. U. Lee, Origin of the Strain Energy Minimum in Imogolite Nanotubes, The Journal of Physical Chemistry C, vol.115, p.26, 2011.

A. Fernández-martínez, Physics of Natural Nanoparticles-Water Interfaces : Chemical Reactivity and Environmental Implications, p.26, 2009.

M. Damnjanovi?, Full symmetry, optical activity, and potentials of single-wall and multiwall nanotubes, Physical Review B, vol.60, p.30, 0193.

M. Damnjanovi?, Symmetry of nanotubes rolled up from arbitrary two-dimensional lattices along an arbitrary chiral vector, Physical Review B, vol.75, p.30, 0193.

T. Vukovi?, Diffraction from quasi-one-dimensional crystals, Physical Review B, vol.79, p.30, 0193.

M. Damnjanovi?, Diffraction from carbon nanotubes, Materials Science and Engineering: B, vol.176, p.30, 0193.

D. H. Robertson, Energetics of nanoscale graphitic tubules, Physical Review B, vol.45, p.30, 1992.

O. Taché, MOMAC : A SAXS/-WAXS Laboratory Instrument Dedicated to Nanomaterials, Journal of Applied Crystallography, vol.49, p.34, 2016.

E. Paineau and P. Launois, Chapter 5 : Nanomaterials From Imogolite : Structure, Properties and Functional Applications, Nanomaterials From Clay Minerals : A New Approach to Green Functional Materials, sous la dir. d'A. Tiwari, vol.78, p.44, 2019.

J. L. Won, Inorganic Nanotube Mesophases Enable Strong Self-Healing Fibers, p.44

M. Amara, De La Simple Hélice Aux Nanostructures Tubulaires : L'apport de La Diffraction Des Électrons et Des Rayons X, Reflets de la physique, p.45, 2015.

V. Neverov, XaNSoNS : GPUaccelerated simulator of diffraction patterns of nanoparticles, SoftwareX, vol.6, p.49, 2017.

C. Bousige, Progressive melting in confined one-dimensional C 60 chains, Physical Review B, vol.86, p.51, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01611946

W. D. Coolidge, Vacuum-Tube", brev. amér. 1203495A (9 mai 1913) (cf, p.52

D. R. Dance and A. A. Of, Diagnostic radiology physics : a handbook for teachers and students, STI/PUB 1564, OCLC : 935704904 (International Atomic Energy Agency, Physicists in Medicine, éd, vol.682, p.52, 2014.

S. Soleil and . En, , vol.3, p.59

M. Bessière, Introduction Au Rayonnement Synchrotron et à Ses Avantages, Le Journal de Physique IV, vol.06, p.59, 1996.

P. Fertey, CRISTAL Beamline Review, p.60, 2011.

A. Savitzky and M. J. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Analytical Chemistry, vol.36, p.63, 1964.

M. P. Lourenço, Nanotubes With Well-Defined Structure : Singleand Double-Walled Imogolites, vol.118, p.63, 2014.

R. T. Cygan, Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field, The Journal of Physical Chemistry B, vol.108, p.66, 2004.

J. L. Bishop, Spectral and Hydration Properties of Allophane and Imogolite, Clays and Clay Minerals, vol.61, p.66, 2013.

J. Hill and J. Sauer, Molecular Mechanics Potential for Silica and Zeolite Catalysts Based on Ab Initio Calculations. 2. Aluminosilicates, J. Phys. Chem, vol.99, p.67, 1995.

B. J. Teppen, Molecular Dynamics Modeling of Clay Minerals, vol.1

K. Gibbsite, P. , and B. , J. Phys. Chem. B, vol.101, p.67, 1997.

V. A. Ermoshin, Ab Initio Generalized Valence Force Field for Zeolite Modelling. 1. Siliceous Zeolites, Chem. Phys, vol.202, p.67, 1996.

B. Creton, Étude Par Dynamique Moléculaire Du Comportement d'aluminosilicates Tubulaires Hydratés : Structure et Dynamique Du Système Eau-Imogolite, p.67, 2006.

G. Sastre and A. Corma, Predicting Structural Feasibility of Silica and Germania Zeolites, J. Phys. Chem. C, vol.114, p.67, 2010.

T. L. Cottrell, The Strengths of Chemical Bonds, vol.502, p.67, 1958.

H. Saalfeld and M. Wedde, Refinement of the crystal structure of gibbsite, Al(OH), vol.3, p.67, 1974.

E. Balan, First-Principles Study of the OH-Stretching Modes of Gibbsite, Am. Mineral, vol.91, p.67, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00022563

D. Bougeard, Vibrational Spectra and Structure of Kaolinite : A Computer Simulation Study, The Journal of Physical Chemistry B, vol.104, p.67, 2000.

J. Etchepare, Vibrational Normal Modes of SiO 2 . I. ? and ? Quartz, J. Chem. Phys, vol.60, p.67, 1974.

D. Kraft, A Software Package for Sequential Quadratic Programming, Forschungsbericht-Deutsche Forschungs-und Versuchsanstalt fur Luft-und Raumfahrt, p.67, 1988.

G. Monet, Structural resolution of inorganic nanotubes with complex stoichiometry, Nature Communications, vol.9, p.69, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02104153

G. I. Yucelen, Shaping Single-Walled Metal Oxide Nanotubes from Precursors of Controlled Curvature, Nano Letters, vol.12, p.69, 2012.

A. Thill, How the Diameter and Structure of, p.3
URL : https://hal.archives-ouvertes.fr/hal-01179748

, Al 2 O 3 Si x Ge 1-x OH Imogolite Nanotubes Are Controlled by an Adhesion versus Curvature Competition, The Journal of Physical Chemistry C, vol.116, p.74, 2012.

F. Bergaya, Modified Clays and Clay Minerals, Developments in Clay Science, t. 1, p.82, 2006.

L. Heller-kallai, Thermally Modified Clay Minerals, Developments in Clay Science, t. 1, vol.98, p.82, 2006.

G. W. Brindley and M. Nakahira, The KaoIinite-Mullite Reaction Series : I, A Survey of Outstanding Problems, Journal of the American Ceramic Society, vol.42, p.82, 1959.

K. J. Mackenzie, Outstanding Problems in the Kaolinite-Mullite Reaction Sequence Investigated by 29Si and 27Al Solid-state Nuclear Magnetic Resonance : I, Metakaolinite, Journal of the American Ceramic Society, vol.68, p.82, 1985.

J. Macedo and M. Duarte, Alternative Methods for Synthesis of Catalyst Matrices. 1. Silica-Alumina from Metakaolin, Quimica Nova, vol.18, p.82, 1995.

C. Breen, Preparation and Characterization of Dealuminated Metakaolin and Its Use in the Transformation of Waste Plastics to Aromatic Hydrocarbons, Journal of Colloid and Interface Science, vol.247, p.82, 2002.

B. Sabir, Metakaolin and calcined clays as pozzolans for concrete : a review, vol.23, p.82, 2001.

A. Madani, Silicon-29 and aluminum-27 NMR study of zeolite formation from alkali-leached kaolinites : influence of thermal preactivation, The Journal of Physical Chemistry, vol.94, p.82, 1990.

J. Rocha, Synthesis of zeolite Na-A from metakaolinite revisited, Journal of the Chemical Society, vol.87, p.82, 1991.

L. Andrini, Halloysite nanotube and its firing products : Structural characterization of halloysite, metahalloysite, spinel type silicoaluminate and mullite, Journal of Electron Spectroscopy and Related Phenomena, vol.234, p.98, 2019.

P. Du, Calcination-induced changes in structure, morphology, and porosity of allophane, Applied Clay Science, vol.158, p.82, 2018.

S. Rouzière, Deformations and Thermal Modifications of Imogolite, p.83, 2016.

Y. Horikawa, Electrokinetic Phenomena of Aqueous Suspensions of Allophane and Imogolite, Clay Science, vol.4, p.83, 1975.

Z. Abidin, A New Method for Nano Tube Imogolite Synthesis, Japanese Journal of Applied Physics, vol.47, p.83, 2008.

I. D. Johnson, Tubular silicate-layered silicate intercalation compounds : a new family of pillared clays, Journal of the American Chemical Society, vol.110, p.83, 1988.

D. Y. Kang, Dehydration, Dehydroxylation, and Rehydroxylation of Single-Walled Aluminosilicate Nanotubes, ACS Nano, vol.4, p.103, 2010.

M. A. Wilson, Thermal transformations of synthetic allophane and imogolite as revealed by nuclear magnetic resonance, Clay Minerals, vol.23, p.84, 1988.

J. Zapa?a-s?aweta, The effect of meta-halloysite on alkali-aggregate reaction in concrete, Materials and Structures, vol.50, p.85, 2017.

E. Paineau, Colloidal Stability of Imogolite Nanotubes Dispersions : A Phase Diagram Study, Langmuir, vol.227, p.85, 2019.

Y. Liao, Tuning the properties of confined water in standard andhybrid nanotubes : An infrared spectroscopic study, Nano Research, vol.129, p.86, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01781289

K. S. Smirnov and D. Bougeard, Water Behaviour in Nanoporous Aluminosilicates, J. Phys.: Condens. Matter, vol.22, p.90, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00506476

J. Cambedouzou, X-ray diffraction as a tool for the determination of the structure of double-walled carbon nanotube batches, Physical Review B, vol.79, p.91, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01760312

S. J. Van-der-gaast, Small-Angle X-Ray Powder Diffraction, Morphology, and Structure of Allophane and Imogolite, Clays and Clay Minerals, vol.33, p.93, 1985.

S. B. Hendricks, Hydration Mechanism of the Clay Mineral Montmorillonite Saturated with Various Cations 1, Journal of the American Chemical Society, vol.62, p.96, 1940.

R. W. Mooney, Adsorption of Water Vapor by Montmorillonite. II. Effect of Exchangeable Ions and Lattice Swelling as Measured by X-Ray Diffraction, Journal of the American Chemical Society, vol.74, p.96, 1952.

K. Norrish, The swelling of montmorillonite, Discussions of the Faraday Society, vol.18, p.96, 1954.

H. Van-olphen, Thermodynamics of interlayer adsorption of water in clays. I.-Sodium vermiculite, Journal of Colloid Science, vol.20, p.96, 1965.

D. M. Macewan, Interlayer and Intercalation Complexes of Clay Minerals, Crystal structures of clay minerals and their X-ray identification 5, p.96, 1980.

H. Suquet, Swelling and Structural Organization of Saponite, Clays and Clay Minerals, vol.23, p.96, 1975.

M. Hatakeyama, Characterization of Heat-Treated Synthetic Imogolite by 27 Al MAS and 27 Al MQMAS Solid-State NMR, Bulletin of the Chemical Society of Japan, vol.84, p.98, 2011.

C. S. Weinert, G 73 e Nuclear Magnetic Resonance Spectroscopy of Germanium Compounds, ISRN Spectroscopy, vol.2012, p.98, 2012.

G. H. Fuller, Nuclear Spins and Moments, Journal of Physical and Chemical Reference Data, vol.5, p.98, 1976.

S. Denis-quanquin, , vol.100, p.99

R. Hajjar, RMN de l'interaction Quadripolaire Au Second Ordre d'un Solide En Rotation : Théorie, Simulation et Application Du MQMAS Aux Catalyseurs Solides, vol.6, p.99, 2007.

E. R. Andrew, Removal of Dipolar Broadening of Nuclear Magnetic Resonance Spectra of Solids by Specimen Rotation, Nature, vol.183, p.100, 1959.

T. Polenova, Magic Angle Spinning NMR Spectroscopy : A Versatile Technique for Structural and Dynamic Analysis of Solid-Phase Systems, Analytical Chemistry, vol.87, p.100, 2015.

L. Frydman and J. S. Harwood, Isotropic Spectra of Half-Integer Quadrupolar Spins from Bidimensional Magic-Angle Spinning NMR, Journal of the American Chemical Society, vol.117, p.100, 1995.

A. Pines, Proton-enhanced NMR of dilute spins in solids, The Journal of Chemical Physics, vol.59, p.100, 1973.

J. Schaefer and E. O. Stejskal, Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle, Journal of the American Chemical Society, vol.98, p.100, 1976.

E. L. Hahn, Spin Echoes, Physical Review, vol.80, p.101, 1950.

J. Amoureux, ZFiltering in MQMAS NMR, Journal of Magnetic Resonance, Series A, vol.123, p.101, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02280473

D. Massiot, Modelling one-and two-dimensional solid-state NMR spectra : Modelling 1D and 2D solid-state NMR spectra, Magnetic Resonance in Chemistry, vol.40, p.101, 2002.

R. Pires, Stray-field imaging and multinuclear magnetic resonance spectroscopy studies on the setting of a commercial glass-ionomer cement, Journal of Materials Science: Materials in Medicine, vol.15, pp.201-208, 2004.

B. Ravel and M. Newville, ATHENA , ARTEMIS , HEPHAESTUS : Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT, Journal of Synchrotron Radiation, vol.12, p.110, 2005.

R. Sadanaga, The Structure of Mullite, 2Al 2 O 3 .SiO 2 , and Relationship with the Structures of Sillimanite and Andalusite, Acta Crystallographica, vol.15, p.112, 1962.

R. J. Angel and C. T. Prewitt, Crystal Structure of Mullite : A Re-Examination of the Average Structure, American Mineralogist, vol.71, p.112, 1986.

P. Ildefonse, Aluminium X-Ray Absorption Near Edge Structure in Model Compounds and Earth's Surface Minerals, Physics and Chemistry of Minerals, vol.25, p.113, 1998.

Y. Kato, Quantification of Aluminium Coordinations in Alumina and Silica-Alumina by Al K-Edge XANES, Physical Chemistry Chemical Physics, vol.3, p.113, 1925.

A. Bianconi, Specific intermediate-valence state of insulating 4 f compounds detected by L 3 x-ray absorption, Physical Review B, vol.35, p.114, 1987.

M. Newville, LMfit : Non-Linear Least-Square Minimization and Curve-Fitting for Python, version 0.9.13, 2 avr, p.115, 2019.

P. Colomban, EXAFS and XANES study of (Si, Ge) mullite gels and glasses prepared by slow hydrolysis of alkoxides, Journal of Non-Crystalline Solids, vol.147, p.119, 1992.

. Xafs and . Org,

M. Newville, Fundamentals of XAFS, p.119, 2004.

C. Levard, Synthesis of Large Quantities of Single-Walled Aluminogermanate Nanotube, Journal of the American Chemical Society, vol.130, p.121, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00303794

F. Bergaya, TEM study of kaolinite thermal decomposition by controlled-rate thermal analysis, Journal of Materials Science, vol.31, p.123, 1996.

H. and L. Chatelier, De l'action de la chaleur sur les argiles, Bulletin de la Société française de Minéralogie, vol.10, p.123, 1887.

M. Henry, The state of water in living systems : from the liquid to the jellyfish, Cellular and Molecular Biology, vol.51, p.128, 2005.

E. F. Van-dishoeck, Interstellar Water Chemistry : From Laboratory to Observations, Chemical Reviews, vol.113, p.128, 2013.

P. Ball, Water is an active matrix of life for cell and molecular biology, Proceedings of the National Academy of Sciences, vol.114, p.128, 2017.

M. F. Chaplin, Water Structure and Science, p.128, 2000.

P. Ball, Water -an enduring mystery, Nature, vol.452, p.128, 2008.

D. Scienceetonnante, L. Et, and . Vie, Science Étonnante, vol.30, p.128, 2016.

A. I. Fisenko and N. P. Malomuzh, The role of the H-bond network in the creation of the life-giving properties of water, Chemical Physics, vol.345, p.128, 2008.

H. Chen, Transport Diffusion of Gases Is Rapid in Flexible Carbon Nanotubes, The Journal of Physical Chemistry B, vol.110, p.128, 1971.

K. V. , Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes, Nature Nanotechnology, vol.12, p.128, 2017.

A. I. Kolesnikov, Quantum Tunneling of Water in Beryl : A New State of the Water Molecule, vol.116, p.128, 2016.

P. Agre, Aquaporin CHIP : the archetypal molecular water channel, American Journal of Physiology-Renal Physiology, vol.265, p.128, 1993.

J. K. Holt, Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes, Science, vol.312, p.128, 2006.

M. Majumder, Enhanced flow in carbon nanotubes : Nanoscale hydrodynamics, Nature, vol.438, p.128, 2005.

K. Koga, Formation of ordered ice nanotubes inside carbon nanotubes, Nature, vol.412, p.128, 2001.

K. Mochizuki and K. Koga, Solidliquid critical behavior of water in nanopores, Proceedings of the National Academy of Sciences, vol.112, p.128, 2015.

S. Lorch, Dynamic Carboxylate/Water Networks on the Surface of the PsbO Subunit of Photosystem II, The Journal of Physical Chemistry B, vol.119, p.129, 2015.

R. Wang, Operando Atomic Force Microscopy Reveals Mechanics of Structural Water Driven Battery-to-Pseudocapacitor Transition, ACS Nano, vol.12, p.129, 2018.

D. T. Mitchell, Smart Nanotubes for Bioseparations and Biocatalysis, Journal of the American Chemical Society, vol.124, p.129, 2002.

S. M. Lee and Y. H. Lee, Hydrogen storage in single-walled carbon nanotubes, Applied Physics Letters, vol.76, p.129, 2000.

P. Kohli, Nanotube Membrane Based Biosensors, Electroanalysis, vol.16, p.129, 2004.

S. Konduri, Water in Single-Walled Aluminosilicate Nanotubes : Diffusion and Adsorption Properties, The Journal of Physical Chemistry C, vol.112, p.129, 2008.

L. Scalfi, Structure and Dynamics of Water Confined in Imogolite Nanotubes, Langmuir, vol.34, p.129, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02105073

M. Bée, La Diffusion Quasiélastique Des Neutrons ; Introduction et Principes Généraux, Le Journal de Physique IV, vol.10, p.131, 2000.

H. Schober, Diffusion Des Neutrons Par La Matière Cristalline Ou Amorphe Non-Magnétique, vol.136, p.132, 2010.

J. Schweizer, Diffusion de Neutrons : Introduction, Journal de Physique IV (Proceedings), vol.111, p.137, 2003.

K. Andersen and C. Carlile, A Proposal for a Next Generation European Neutron Source, Journal of Physics: Conference Series, vol.746, p.137, 2016.

O. Arnold, Mantid-Data analysis and visualization package for neutron scattering and µ SR experiments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, vol.764, p.142, 2014.

E. Pellegrini and R. Perenon, MDANSE a Versatile Application for Analysing Molecular Dynamics Data, p.142

D. Richard, Analysis and visualisation of neutron-scattering data, Journal of Neutron Research, vol.4, p.142, 1996.

J. Vandevondele, Quickstep : Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, Computer Physics Communications, vol.167, p.153, 2005.

H. J. Berendsen, Molecular Dynamics with Coupling to an External Bath, The Journal of Chemical Physics, vol.81, p.153, 1984.

W. G. Hoover, High-Strain-Rate Plastic Flow Studied via Nonequilibrium Molecular Dynamics, Physical Review Letters, vol.48, p.153, 1982.

G. Bussi, Canonical Sampling through Velocity-Rescaling, The Journal of Chemical Physics, vol.126, p.153, 2007.

H. C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, The Journal of Chemical Physics, vol.72, p.153, 1980.

M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids : Second Edition, vol.15, p.153

G. J. Martyna, Nosé-Hoover chains : The canonical ensemble via continuous dynamics, The Journal of Chemical Physics, vol.97, p.153, 1992.

J. M. Dickey and A. Paskin, Computer Simulation of the Lattice Dynamics of Solids, Physical Review, vol.188, p.157, 1969.

C. Lee, Ab Initio studies on the structural and dynamical properties of ice, Physical Review B, vol.47, p.157, 1993.

H. M. Ruiz, Modos vibracionales de baja frecuencia y su impacto en la formación de vidrios, Physics, p.157, 2012.

B. O. Community, Blender -a 3D Modelling and Rendering Package (Blender Foundation, Stichting Blender Foundation, p.161, 2018.

J. R. Durig, Low-Frequency Modes in Molecular Crystals. VI. Methyl Torsions and Barriers to Internal Rotation of C(CH 3 ) 4 , C(CD 3 ) 4 , Si(CH 3 ) 4 , Ge(CH 3 ) 4 , and Sn(CH 3 ) 4, The Journal of Chemical Physics, vol.52, p.165, 1970.

A. V. Goupil-lamy, High-Resolution Vibrational Inelastic Neutron Scattering : A New Spectroscopic Tool for Globular Proteins ?, Journal of the American Chemical Society, vol.119, p.165, 1997.

A. Pawlukoj?, The structure, methyl rotation reflected in inelastic and quasielastic neutron scattering and vibrational spectra of 1,2,3,5-tetramethoxybenzene and its 2 :1 complex with 1,2,4,5-tetracyanobenzene, The Journal of Chemical Physics, vol.129, p.165, 2008.

A. I. Kolesnikov, Anomalously Soft Dynamics of Water in a Nanotube : A Revelation of Nanoscale Confinement, Physical Review Letters, vol.93, p.185, 2004.

J. Zang, Self-Diffusion of Water and Simple Alcohols in Single-Walled Aluminosilicate Nanotubes, ACS Nano, vol.3, p.166, 2009.

A. Fernandez-martinez and L. ,

. Michot, Physicochemical Properties of Imogolite, Developments in Clay Science, t. 7, p.168, 2016.

M. Ferrario, Moleculardynamics simulation of aqueous mixtures : Methanol, acetone, and ammonia, The Journal of Chemical Physics, vol.93, p.171, 1990.

J. Zanotti, Competing coexisting phases in 2D water, Scientific Reports, vol.6, p.172, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01316511

T. R. Prisk, Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures, Physical Review Letters, vol.120, p.172, 2018.

G. Briganti, Neutron Scattering Observation of Quasi-Free Rotations of Water Confined in Carbon Nanotubes, Scientific Reports, vol.7, p.182, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01493886

J. Max and C. Chapados, Isotope effects in liquid water by infrared spectroscopy. III. H2O and D2O spectra from 6000to0cm-1, The Journal of Chemical Physics, vol.131, p.185, 2009.

K. Amann-winkel, X-ray and Neutron Scattering of Water, Chemical Reviews, vol.116, p.185, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01427325

G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering, vol.3, p.197, 2012.

M. Bée, Quasielastic Neutron Scatering, 1 re éd., International Series on Computational Intelligence, p.197, 1988.

R. Pynn, Neutron scattering : a primer, Los Alamos Science, vol.19, p.197, 1990.

S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter, The International Series of Monographs on Physics, vol.2, p.197, 1984.

E. Paineau, M. S. Amara, G. Monet, V. Peyre, S. Rouzière et al., Effect of Ionic Strength on the Bundling of Metal Oxide Imogolite Nanotubes, The Journal of Physical Chemistry C, vol.121, pp.21740-21749, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01589860

G. Monet, M. S. Amara, S. Rouzière, E. Paineau, Z. Chai et al., Structural resolution of inorganic nanotubes with complex stoichiometry, Nature Communications, vol.9, p.2033, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02104153

E. Paineau, G. Monet, V. Peyre, C. Goldmann, S. Rouzière et al., Colloidal Stability of Imogolite Nanotubes Dispersions : A Phase Diagram Study, Langmuir, 2019.

G. Monet, M. S. Amara, Z. Chai, E. Paineau, A. Orecchini et al., Control of the structure and dynamics of water by inorganic nanotubes, 2019.

G. Monet, Unraveling the thermal transformations of alumino-germanate imogolites, 2019.

. Conférences,

, « Résolution quantitative de la structure de nanotubes d'oxydes métalliques : mise en évidence d'une nouvelle chiralité, ème colloque de Rayons X et Matière (RX2017), 2017.

, Structural resolution of inorganic nanotubes with complex stoichiometry, 2018.

, ème édition des journées de la matière condensée (JMC), « Structural resolution of inorganic nanotubes with complex stoichiometry », 2018.

, Soleil Users' meeting, « Structural resolution of inorganic nanotubes with complex stoichiometry, 2019.

. Euroclay2019, Structural resolution of clay-like nanotubes

«. Euroclay2019, Unique properties of alumino-germanate imogolite nanotubes as water nanocontainers

, Journées de la Diffusion Neutronique, « Unique properties of alumino-germanate imogolite nanotubes as water nanocontainers, 2019.