M. M. Arimi, J. Knodel, A. Kiprop, S. S. Namango, Y. Zhang et al., Strategies for improvement of biohydrogen production from organic-rich wastewater: A review, Biomass and Bioenergy, vol.75, 2015.

P. Bakonyi, G. Buitrón, I. Valdez-vazquez, N. Nemestóthy, and K. Bélafi-bakó, A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation, Applied Energy, vol.190, 2017.

G. Balachandar, N. Khanna, and D. Das, Biohydrogen production from organic wastes by dark fermentation, pp.103-144, 2013.

S. Z. Baykara, Hydrogen: A brief overview on its sources, production and environmental impact, International Journal of Hydrogen Energy, vol.43, 2018.

L. Beckers, J. Masset, C. Hamilton, F. Delvigne, D. Toye et al., Investigation of the links between mass transfer conditions, dissolved hydrogen concentration and biohydrogen production by the pure strain Clostridium butyricum CWBI1009, Biochemical Engineering Journal, vol.98, 2015.

S. Belkin, C. O. Wirsen, and H. W. Jannasch, A new sulfur-reducing, extremely thermophilic eubacterium from a submarine thermal vent, Applied and environmental microbiology, pp.1180-1185, 1986.

B. S. Boodhun, A. Mudhoo, G. Kumar, S. Kim, and C. Lin, Research perspectives on constraints, prospects and opportunities in biohydrogen production, International Journal of Hydrogen Energy, vol.42, 2017.

M. Z. Bundhoo and R. Mohee, Inhibition of dark fermentative bio-hydrogen production: A review, International Journal of Hydrogen Energy, vol.41, 2016.

M. Cappelletti, G. Bucchi, J. Sousa-mendes, A. De, A. Fedi et al., Biohydrogen production from glucose, molasses and cheese whey by suspended and attached cells of four hyperthermophilic Thermotoga strains, Journal of Chemical Technology & Biotechnology, vol.87, 2012.

C. Chou, F. E. Jenney, A. Jr, M. W. Kelly, and R. M. , Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels, Metabolic engineering, vol.10, 2008.

A. Ciranna, R. Ferrari, V. Santala, and M. Karp, Inhibitory effects of substrate and soluble end products on biohydrogen production of the alkalithermophile Caloramator celer: Kinetic, metabolic and transcription analyses, International Journal of Hydrogen Energy, vol.39, 2014.

T. De-vrije, A. E. Mars, M. A. Budde, M. H. Lai, C. Dijkema et al., Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus, Applied microbiology and biotechnology, vol.74, 2007.

T. De-vrije, R. R. Bakker, M. A. Budde, M. H. Lai, A. E. Mars et al., Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana, Biotechnol Biofuels, vol.2, 2009.

T. De-vrije, M. A. Budde, S. J. Lips, R. R. Bakker, A. E. Mars et al., Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana, International Journal of Hydrogen Energy, vol.35, 2010.

P. Dessì, A. Lakaniemi, and P. N. Lens, Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 °C, Water research, vol.115, 2017.

L. Dipasquale, G. Ippolito, C. Gallo, F. M. Vella, A. Gambacorta et al., Hydrogen production by the thermophilic eubacterium Thermotoga neapolitana from storage polysaccharides of the CO2-fixing diatom Thalassiosira weissflogii, International Journal of Hydrogen Energy, vol.37, 2012.

G. Ippolito, L. Dipasquale, F. M. Vella, I. Romano, A. Gambacorta et al., Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana, International Journal of Hydrogen Energy, vol.35, 2010.

E. Elbeshbishy, B. R. Dhar, G. Nakhla, and H. Lee, A critical review on inhibition of dark biohydrogen fermentation, Renewable and Sustainable Energy Reviews, vol.79, 2017.

O. Elsharnouby, H. Hafez, G. Nakhla, and M. H. El-naggar, A critical literature review on biohydrogen production by pure cultures, International Journal of Hydrogen Energy, vol.38, pp.4945-4966, 2013.

N. T. Eriksen, T. M. Nielsen, and N. Iversen, Hydrogen production in anaerobic and microaerobic Thermotoga neapolitana, Biotechnology letters, vol.30, pp.103-109, 2008.

N. T. Eriksen, M. L. Riis, N. K. Holm, and N. Iversen, H(2) synthesis from pentoses and biomass in Thermotoga spp, Biotechnology letters, vol.33, 2011.

D. Frascari, M. Cappelletti, J. D. Mendes, A. Alberini, F. Scimonelli et al., A kinetic study of biohydrogen production from glucose, molasses and cheese whey by suspended and attached cells of Thermotoga neapolitana, Bioresource technology, vol.147, 2013.

M. Fritsch, W. Hartmeier, and J. Chang, Enhancing hydrogen production of Clostridium butyricum using a column reactor with square-structured ceramic fittings, International Journal of Hydrogen Energy, vol.33, pp.6549-6557, 2008.

A. Ghimire, L. Frunzo, F. Pirozzi, E. Trably, R. Escudie et al., A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products, Applied Energy, vol.144, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01164829

N. Gupta, M. Pal, M. Sachdeva, M. Yadav, and A. Tiwari, Thermophilic biohydrogen production for commercial application: The whole picture, Int. J. Energy Res, vol.40, 2016.

S. K. Gupta, S. Kumari, K. Reddy, and F. Bux, Trends in biohydrogen production: major challenges and stateof-the-art developments, Environmental technology, vol.34, 2013.

F. Hawkes, I. Hussy, G. Kyazze, R. Dinsdale, and D. Hawkes, Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress, International Journal of Hydrogen Energy, vol.32, 2007.

R. Huber, M. Hannig, M. Dworkin, S. Falkow, E. Rosenberg et al., Thermotogales, The Prokaryotes, pp.899-922, 2006.

R. J. Jones, J. Massanet-nicolau, M. J. Mulder, G. Premier, R. Dinsdale et al., Increased biohydrogen yields, volatile fatty acid production and substrate utilisation rates via the electrodialysis of a continually fed sucrose fermenter, Bioresource technology, vol.229, 2017.

K. Jung, D. Kim, S. Kim, and H. Shin, Bioreactor design for continuous dark fermentative hydrogen production, Bioresource technology, vol.102, 2011.

D. Karakashev, I. Angelidaki, A. Pandey, C. Larroche, E. Gnansounou et al., Thermophilic Biohydrogen Production, Biofuels, pp.525-536, 2011.

D. Kim, H. Shin, and S. Kim, Enhanced H2 fermentation of organic waste by CO2 sparging, International Journal of Hydrogen Energy, vol.37, 2012.

J. T. Kraemer and D. M. Bagley, Supersaturation of dissolved H2 and CO2 during fermentative hydrogen production with N2 sparging, Biotechnology letters, vol.28, 2006.

G. Kumar, J. Park, M. Kim, D. Kim, and S. Kim, Hydrogen fermentation of different galactoseglucose compositions during various hydraulic retention times (HRTs), International Journal of Hydrogen Energy, vol.39, 2014.

D. Lee, K. Show, and A. Su, Dark fermentation on biohydrogen production: Pure culture, Bioresource technology, vol.102, 2011.

C. Lin, C. Lay, B. Sen, C. Chu, G. Kumar et al., Fermentative hydrogen production from wastewaters: A review and prognosis, International Journal of Hydrogen Energy, vol.37, 2012.

M. Ljunggren, K. Willquist, G. Zacchi, and E. W. Van-niel, A kinetic model for quantitative evaluation of the effect of hydrogen and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus, Biotechnology for biofuels, vol.4, 2011.

M. T. Madigan, J. M. Martinko, K. S. Bender, D. H. Buckley, and D. A. Stahl, Brock biology of microorganisms, 2015.

B. Mandal, K. Nath, and D. Das, Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae, Biotechnology letters, vol.28, 2006.

G. Marbán and T. Valdés-solís, Towards the hydrogen economy?, International Journal of Hydrogen Energy, vol.32, 2007.

S. H. Mohr, J. Wang, G. Ellem, J. Ward, and D. Giurco, Projection of world fossil fuels by country, Fuel, vol.141, pp.120-135, 2015.

S. A. Munro, S. H. Zinder, and L. P. Walker, The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production, Biotechnology progress, vol.25, 2009.

P. A. Narbel and J. P. Hansen, Estimating the cost of future global energy supply, Renewable and Sustainable Energy Reviews, vol.34, 2014.

T. A. Ngo and H. T. Bui, Biohydrogen production using immobilized cells of hyperthermophilic eubacterium Thermotoga neapolitana on porous glass beads, Journal of Technology Innovations in Renewable Energy, pp.231-238, 2013.

T. A. Ngo, M. Kim, and S. J. Sim, High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana, International Journal of Hydrogen Energy, vol.36, 2011.

T. A. Ngo, M. Kim, and S. J. Sim, Thermophilic hydrogen fermentation using Thermotoga neapolitana DSM 4359 by fed-batch culture, International Journal of Hydrogen Energy, vol.36, 2011.

T. A. Ngo, T. H. Nguyen, and H. T. Bui, Thermophilic fermentative hydrogen production from xylose by Thermotoga neapolitana DSM 4359, Renewable Energy, vol.37, pp.174-179, 2012.

T. A. Ngo and S. J. Sim, Dark fermentation of hydrogen from waste glycerol using hyperthermophilic eubacterium Thermotoga neapolitana, Environ. Prog. Sustainable Energy, vol.31, 2012.

T. D. Nguyen, S. J. Han, J. P. Kim, M. S. Kim, and S. J. Sim, Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition, Bioresource technology, vol.101, issue.1, 2010.

T. D. Nguyen, J. P. Kim, M. S. Kim, Y. K. Oh, and S. J. Sim, Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation, International Journal of Hydrogen Energy, vol.33, 2008.

I. Ntaikou, G. Antonopoulou, and G. Lyberatos, Biohydrogen Production from Biomass and Wastes via Dark Fermentation: A Review, Waste Biomass Valor, vol.1, 2010.

C. Nualsri, P. Kongjan, A. Reungsang, and T. Imai, Effect of biogas sparging on the performance of biohydrogen reactor over a long-term operation, PloS one, vol.12, 2017.

F. O. Obazu, L. Ngoma, and V. M. Gray, Interrelationships between bioreactor volume, effluent recycle rate, temperature, pH, %H2, hydrogen productivity and hydrogen yield with undefined bacterial cultures, International Journal of Hydrogen Energy, vol.37, 2012.

S. O-thong, P. Prasertsan, D. Karakashev, and I. Angelidaki, High-rate continuous hydrogen production by Thermoanaerobacterium thermosaccharolyticum PSU-2 immobilized on heat-pretreated methanogenic granules, International Journal of Hydrogen Energy, vol.33, 2008.

R. Palomo-briones, E. Razo-flores, N. Bernet, and E. Trably, Dark-fermentative biohydrogen pathways and microbial networks in continuous stirred tank reactors: Novel insights on their control, Applied Energy, vol.198, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608465

A. Pauss, G. Andre, M. Perrier, and S. R. Guiot, Liquid-to-Gas Mass Transfer in Anaerobic Processes: Inevitable Transfer Limitations of Methane and Hydrogen in the Biomethanation Process, Applied and environmental microbiology, vol.56, pp.1636-1644, 1990.

S. S. Pawar and E. W. Van-niel, Thermophilic biohydrogen production: how far are we?, Applied microbiology and biotechnology, vol.97, pp.7999-8009, 2013.

S. Pfenninger and J. Keirstead, Renewables, nuclear, or fossil fuels?: Scenarios for Great Britain's power system considering costs, emissions and energy security, Applied Energy, vol.152, 2015.

N. Pradhan, L. Dipasquale, G. Ippolito, A. Panico, P. N. Lens et al., Hydrogen production by the thermophilic bacterium Thermotoga neapolitana, International journal of molecular sciences, vol.16, 2015.

C. Schröder, M. Selig, and P. Schönheit, Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: Involvement of the Embden-Meyerhof pathway, Arch. Microbiol, vol.161, 1994.

S. Shafiee and E. Topal, When will fossil fuel reserves be diminished?, Energy Policy, vol.37, 2009.

K. Y. Show, D. J. Lee, J. H. Tay, C. Y. Lin, and J. S. Chang, Biohydrogen production: Current perspectives and the way forward, International Journal of Hydrogen Energy, vol.37, 2012.

K. Show and D. Lee, Bioreactor and Bioprocess Design for Biohydrogen Production, pp.317-337, 2013.

K. Show, D. Lee, and J. Chang, Bioreactor and process design for biohydrogen production, Bioresource technology, vol.102, 2011.

F. Silva-illanes, E. Tapia-venegas, M. C. Schiappacasse, E. Trably, and G. Ruiz-filippi, Impact of hydraulic retention time (HRT) and pH on dark fermentative hydrogen production from glycerol, Energy, vol.141, pp.358-367, 2017.

P. Sivagurunathan, G. Kumar, P. Bakonyi, S. Kim, T. Kobayashi et al., A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems, International Journal of Hydrogen Energy, vol.41, 2016.

A. Sonnleitner, C. Peintner, W. Wukovits, A. Friedl, and W. Schnitzhofer, Process investigations of extreme thermophilic fermentations for hydrogen production: effect of bubble induction and reduced pressure, Bioresource technology, vol.118, pp.170-176, 2012.

S. Sorrell, Reducing energy demand: A review of issues, challenges and approaches, Renewable and Sustainable Energy Reviews, vol.47, 2015.

S. A. Van-ooteghem, S. K. Beer, and P. C. Yue, Hydrogen Production by the Thermophilic Bacterium, Thermotoga neapolitana, Biotechnology for Fuels and Chemicals, pp.177-189, 2002.

J. Tang, Y. Yuan, W. Guo, and N. Ren, Inhibitory effects of acetate and ethanol on biohydrogen production of Ethanoligenens harbinese B49, International Journal of Hydrogen Energy, vol.37, 2012.

E. Tapia-venegas, J. E. Ramirez-morales, F. Silva-illanes, J. Toledo-alarcón, F. Paillet et al., Biohydrogen production by dark fermentation: Scaling-up and technologies integration for a sustainable system, Rev Environ Sci Biotechnol, vol.14, 2015.

R. K. Thauer, K. Jungermann, and K. Decker, Energy conservation in chemotrophic anaerobic bacteria, Bacteriological Reviews, vol.41, pp.100-180, 1977.

S. A. Van-ooteghem, A. Jones, D. Van-der-lelie, B. Dong, and D. Mahajan, H2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions, 2004.

M. R. Verhaart, A. A. Bielen, J. Van-der-oost, A. J. Stams, and S. W. Kengen, Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: Mechanisms for reductant disposal, Environmental technology, vol.31, 2010.

L. Whang, C. Lin, I. Liu, C. Wu, and H. Cheng, Metabolic and energetic aspects of biohydrogen production of Clostridium tyrobutyricum: The effects of hydraulic retention time and peptone addition, Bioresource technology, vol.102, 2011.

N. H. Yasin, T. Mumtaz, M. A. Hassan, and N. Abd-rahman, Food waste and food processing waste for biohydrogen production: a review, Journal of environmental management, vol.130, 2013.

J. Yun and K. Cho, Effects of organic loading rate on hydrogen and volatile fatty acid production and microbial community during acidogenic hydrogenesis in a continuous stirred tank reactor using molasses wastewater, Journal of applied microbiology, vol.121, 2016.

F. Zhang, Y. Zhang, M. Chen, and R. J. Zeng, Hydrogen supersaturation in thermophilic mixed culture fermentation, International Journal of Hydrogen Energy, vol.37, 2012.

S. Zhang, Y. Lee, T. Kim, and S. Hwang, Effects of OLRs and HRTs on hydrogen production from high salinity substrate by halophilic hydrogen producing bacterium (HHPB), Bioresource technology, vol.141, 2013.

Y. Zhang, F. Zhang, M. Chen, P. Chu, J. Ding et al., Hydrogen supersaturation in extremethermophilic (70°C) mixed culture fermentation, Applied Energy, vol.109, pp.213-219, 2013.

Z. Zhang, K. Show, J. Tay, D. T. Liang, D. Lee et al., Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community, Process Biochemistry, vol.41, 2006.

S. K. Gupta, S. Kumari, K. Reddy, and F. Bux, Trends in biohydrogen production: major challenges and state-of-theart developments, Environ Technol, vol.34, pp.1653-70, 2013.

O. Elsharnouby, H. Hafez, G. Nakhla, E. Naggar, and M. H. , A critical literature review on biohydrogen production by pure cultures, Int J Hydrogen Energ, vol.38, issue.12, pp.4945-66, 2013.

N. Yasin, T. Mumtaz, and M. A. Hassan, Abd Rahman N. Food waste and food processing waste for biohydrogen production: a review, J Environ Manage, vol.130, pp.375-85, 2013.

G. Balachandar, N. Khanna, and D. Das, Biohydrogen production from organic wastes by dark fermentation, In: Biohydrogen, pp.103-144, 2013.

D. Lee, K. Show, and A. Su, Dark fermentation on biohydrogen production: Pure culture, Bioresour Technol, vol.102, issue.18, pp.8393-402, 2011.

K. Y. Show, D. J. Lee, J. H. Tay, C. Y. Lin, and J. S. Chang, Biohydrogen production: Current perspectives and the way forward, Int J Hydrogen Energ, vol.37, issue.20, pp.15616-15647, 2012.

S. O-thong, P. Prasertsan, D. Karakashev, and I. Angelidaki, High-rate continuous hydrogen production by Thermoanaerobacterium thermosaccharolyticum PSU-2 immobilized on heat-pretreated methanogenic granules, Int J Hydrogen Energ, vol.33, issue.22, pp.6498-508, 2008.

H. Argun, F. Kargi, and I. K. Kapdan, Effects of the substrate and cell concentration on bio-hydrogen production from ground wheat by combined dark and photo-fermentation, Int J Hydrogen Energ, vol.34, issue.15, pp.6181-6189, 2009.

G. Davila-vazquez, C. B. Cota-navarro, L. M. Rosales-colunga, L. De, and E. Razo-flores, Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate, Int J Hydrogen Energ, vol.34, issue.10, pp.4296-304, 2009.

S. S. Pawar and E. Van-niel, Thermophilic biohydrogen production: how far are we?, Appl Microbiol Biotechnol, vol.97, issue.18, pp.7999-8009, 2013.

T. De-vrije, M. A. Budde, S. J. Lips, R. R. Bakker, A. E. Mars et al., Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana, Int J Hydrogen Energ, vol.35, issue.24, pp.13206-13219, 2010.

M. Cappelletti, G. Bucchi, S. Mendes, J. De, A. Alberini et al., Biohydrogen production from glucose, molasses and cheese whey by suspended and attached cells of four hyperthermophilic Thermotoga strains, J Chem Technol Biotechnol, vol.87, issue.9, pp.1291-301, 2012.

L. Dipasquale, G. Ippolito, C. Gallo, F. M. Vella, A. Gambacorta et al., Hydrogen production by the thermophilic eubacterium Thermotoga neapolitana from storage polysaccharides of the CO2-fixing diatom Thalassiosira weissflogii, Int J Hydrogen Energ, vol.37, issue.17, pp.12250-12257, 2012.

N. Pradhan, L. Dipasquale, G. Ippolito, A. Panico, P. Lens et al., Hydrogen production by the thermophilic bacterium Thermotoga neapolitana, Int J Mol Sci, vol.16, issue.6, pp.12578-600, 2015.

R. Huber, M. Hannig, M. Thermotogales-;-dworkin, S. Falkow, E. Rosenberg et al., The Prokaryotes, pp.899-922, 2006.

N. Pradhan, L. Dipasquale, G. Ippolito, A. Fontana, A. Panico et al., Kinetic modeling of fermentative hydrogen production by Thermotoga neapolitana, Int J Hydrogen Energ, vol.41, issue.9, pp.4931-4971, 2016.

T. Nguyen, S. J. Han, J. P. Kim, M. S. Kim, and S. J. Sim, Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition, Bioresour Technol, vol.101, issue.1, p.41, 2010.

S. A. Munro, S. H. Zinder, and L. P. Walker, The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production, Biotechnol Prog, vol.25, issue.4, pp.1035-1077, 2009.

G. Ippolito, L. Dipasquale, F. M. Vella, I. Romano, A. Gambacorta et al., Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana, Int J Hydrogen Energ, vol.35, issue.6, pp.2290-2295, 2010.

T. Nguyen, J. P. Kim, M. S. Kim, Y. K. Oh, and S. J. Sim, Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation, Int J Hydrogen Energ, vol.33, issue.5, pp.1483-1491, 2008.

R. K. Thauer, K. Jungermann, and K. Decker, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol Rev, vol.41, issue.1, pp.100-80, 1977.

M. A. Basile, C. Carfagna, P. Cerruti, G. Gomez-d'ayala, A. Fontana et al., Continuous hydrogen production by immobilized cultures of Thermotoga neapolitana on an acrylic hydrogel with pH-buffering properties, RSC Adv, vol.2, issue.9, p.3611, 2012.

T. A. Ngo and H. Bui, Biohydrogen production using immobilized cells of hyperthermophilic eubacterium Thermotoga neapolitana on porous glass beads, J Technol Innov Renew Energy, vol.2013, pp.231-239

D. Frascari, M. Cappelletti, J. Mendes, A. Alberini, F. Scimonelli et al., A kinetic study of biohydrogen production from glucose, molasses and cheese whey by suspended and attached cells of Thermotoga neapolitana, Bioresour Technol, vol.147, pp.553-61, 2013.

N. Gupta, M. Pal, M. Sachdeva, M. Yadav, and A. Tiwari, Thermophilic biohydrogen production for commercial application: The whole picture, Int. J. Energy Res, vol.40, issue.2, pp.127-172, 2016.

C. Chou, F. E. Jenney, . Jr, M. Adams, and R. M. Kelly, Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels, Metab Eng, vol.10, issue.6, pp.394-404, 2008.

J. O. Westman and C. J. Franzen, Current progress in high cell density yeast bioprocesses for bioethanol production, Biotechnol J, vol.10, issue.8, pp.1185-95, 2015.

C. L. Basso, O. T. Basso, and N. S. Rocha, Ethanol production in brazil: The industrial process and its impact on yeast fermentation, pp.85-100, 2011.

N. Pradhan, L. Dipasquale, G. Ippolito, A. Panico, P. N. Lens et al., Hydrogen and lactic acid synthesis by the wild-type and a laboratory strain of the hyperthermophilic bacterium Thermotoga neapolitana DSMZ 4359 T under capnophilic lactic fermentation conditions, Int J Hydrogen Energ, vol.42, issue.25, pp.16023-16053, 2017.

L. Dipasquale, G. Ippolito, and A. Fontana, Capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana: An unexpected deviation from the dark fermentation model, Int J Hydrogen Energ, vol.39, issue.10, pp.4857-62, 2014.

A. E. Mars, T. Veuskens, M. A. Budde, P. F. Van-doeveren, S. J. Lips et al., Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana, Int J Hydrogen Energ, vol.35, issue.15, pp.7730-7737, 2010.

T. A. Ngo, M. Kim, and S. J. Sim, Thermophilic hydrogen fermentation using Thermotoga neapolitana DSM 4359 by fed-batch culture, Int J Hydrogen Energ, vol.36, issue.21, pp.14014-14037, 2011.

P. Bernfeld and . Amylases, Preparation and assay of enzymes, pp.149-158, 1955.

G. Ippolito, L. Dipasquale, and A. Fontana, Recycling of carbon dioxide and acetate as lactic acid by the hydrogen-producing bacterium Thermotoga neapolitana, ChemSusChem, vol.7, issue.9, pp.2678-83, 2014.

J. Lay, Y. Li, and T. Noike, Influences of pH and moisture content on the methane production in high-solids sludge digestion, Water Res, vol.31, issue.6, pp.1518-1542, 1997.

H. Argun, F. Kargi, I. Kapdan, and R. Oztekin, Batch dark fermentation of powdered wheat starch to hydrogen gas: Effects of the initial substrate and biomass concentrations, Int J Hydrogen Energ, vol.33, issue.21, pp.6109-6124, 2008.

F. Kargi, N. S. Eren, and S. Ozmihci, Effect of initial bacteria concentration on hydrogen gas production from cheese whey powder solution by thermophilic dark fermentation, Biotechnol Prog, vol.28, issue.4, pp.931-937, 2012.

Z. Kádár, T. De-vrije, G. E. Van-noorden, M. Budde, Z. Szengyel et al., Yields from Glucose, Xylose, and Paper Sludge Hydrolysate During Hydrogen Production by the Extreme Thermophile Caldicellulosiruptor saccharolyticus, ABAB, vol.114, issue.1-3, pp.497-508, 2004.

E. Van-niel, M. Budde, G. G. Haas, . De, F. J. Van-der-wal et al., Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii, Int J Hydrogen Energ, issue.27, pp.1391-1399, 2002.

C. Schröder, M. Selig, and P. Schönheit, Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: Involvement of the Embden-Meyerhof pathway, Arch. Microbiol, vol.161, issue.6, pp.460-70, 1994.

H. S. Jayasinghearachchi, P. M. Sarma, and B. Lal, Biological hydrogen production by extremely thermophilic novel bacterium Thermoanaerobacter mathranii A3N isolated from oil producing well, Int J Hydrogen Energ, vol.37, issue.7, pp.5569-78, 2012.

S. O-thong, P. Prasertsan, D. Karakashev, and I. Angelidaki, Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2, Int J Hydrogen Energ, vol.33, issue.4, pp.1204-1218, 2008.

N. Ren, G. Cao, A. Wang, D. Lee, W. Guo et al., Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16, Int J Hydrogen Energ, vol.33, issue.21, pp.6124-6156, 2008.

L. Beckers, J. Masset, C. Hamilton, F. Delvigne, D. Toye et al., Investigation of the links between mass transfer conditions, dissolved hydrogen concentration and biohydrogen production by the pure strain Clostridium butyricum CWBI1009, Biochem Eng J, vol.98, pp.18-28, 2015.

A. Sonnleitner, C. Peintner, W. Wukovits, A. Friedl, and W. Schnitzhofer, Process investigations of extreme thermophilic fermentations for hydrogen production: effect of bubble induction and reduced pressure, Bioresour Technol, vol.118, pp.170-176, 2012.

M. Ljunggren, K. Willquist, G. Zacchi, V. Niel, and E. , A kinetic model for quantitative evaluation of the effect of hydrogen and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus, Biotechnol Biofuels, vol.4, issue.1, p.31, 2011.

Y. Zhang, F. Zhang, M. Chen, P. Chu, J. Ding et al., Hydrogen supersaturation in extreme-thermophilic (70°C) mixed culture fermentation, Appl Energ, vol.109, pp.213-222, 2013.

M. Verhaart, A. Bielen, J. Van-der-oost, A. Stams, and S. Kengen, Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: Mechanisms for reductant disposal, Environ Technol, vol.31, issue.8-9, pp.993-1003, 2010.

S. Belkin, C. O. Wirsen, and H. W. Jannasch, A new sulfur-reducing, extremely thermophilic eubacterium from a submarine thermal vent, Appl Environ Microbiol, pp.1180-1185, 1986.

N. Gupta, M. Pal, M. Sachdeva, M. Yadav, and A. Tiwari, Thermophilic biohydrogen production for commercial application: The whole picture, Int. J. Energy Res, vol.40, pp.127-145, 2016.

G. Balachandar, N. Khanna, and D. Das, Biohydrogen production from organic wastes by dark fermentation, pp.103-144, 2013.

S. S. Pawar and E. W. Van-niel, Thermophilic biohydrogen production: how far are we?, Appl. Microbiol. Biot, vol.97, pp.7999-8009, 2013.

N. Pradhan, L. Dipasquale, G. Ippolito, A. Panico, P. N. Lens et al., Hydrogen production by the thermophilic bacterium Thermotoga neapolitana, Int. J. Mol. Sci, vol.16, pp.12578-12600, 2015.

T. D. Nguyen, S. J. Han, J. P. Kim, M. S. Kim, and S. J. Sim, Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition, Bioresource Technol, vol.101, issue.1, p.41, 2010.

R. Huber, M. Hannig, and T. , The Prokaryotes, pp.899-922, 2006.

M. Cappelletti, G. Bucchi, J. De-sousa-mendes, A. Alberini, S. Fedi et al., Biohydrogen production from glucose, molasses and cheese whey by suspended and attached cells of four hyperthermophilic Thermotoga strains, J. Chem. Technol. Biot, vol.87, pp.1291-1301, 2012.

L. Dipasquale, G. Ippolito, C. Gallo, F. M. Vella, A. Gambacorta et al., Hydrogen production by the thermophilic eubacterium Thermotoga neapolitana from storage polysaccharides of the CO2-fixing diatom Thalassiosira weissflogii, Int. J. Hydrogen Energ, vol.37, pp.12250-12257, 2012.

T. De-vrije, M. A. Budde, S. J. Lips, R. R. Bakker, A. E. Mars et al., Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana, Int. J. Hydrogen Energ, vol.35, pp.13206-13213, 2010.

G. Ippolito, L. Dipasquale, F. M. Vella, I. Romano, A. Gambacorta et al., Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana, Int. J. Hydrogen Energ, vol.35, pp.2290-2295, 2010.

M. Ljunggren, K. Willquist, G. Zacchi, and E. W. Van-niel, A kinetic model for quantitative evaluation of the effect of hydrogen and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus, Biotechnol. Biofuels, vol.4, p.31, 2011.

J. T. Kraemer and D. M. Bagley, Supersaturation of dissolved H2 and CO2 during fermentative hydrogen production with N2 sparging, Biotechnol. Lett, vol.28, pp.1485-1491, 2006.

Y. Zhang, F. Zhang, M. Chen, P. Chu, J. Ding et al., Hydrogen supersaturation in extremethermophilic (70°C) mixed culture fermentation, Applied Energy, vol.109, pp.213-219, 2013.

D. Kim, H. Shin, and S. Kim, Enhanced H2 fermentation of organic waste by CO2 sparging, Int. J. Hydrogen Energ, vol.37, pp.15563-15568, 2012.

R. J. Lamed, J. H. Lobos, and T. M. Su, Effects of Stirring and Hydrogen on Fermentation Products of Clostridium thermocellum, Appl. Environ. Microb, pp.1216-1221, 1988.

C. Nualsri, P. Kongjan, A. Reungsang, and T. Imai, Effect of biogas sparging on the performance of bio-hydrogen reactor over a long-term operation, PloS ONE, vol.12, p.171248, 2017.

D. Kim, S. Han, S. Kim, and H. Shin, Effect of gas sparging on continuous fermentative hydrogen production, Int. J. Hydrogen Energ, vol.31, pp.2158-2169, 2006.

P. Bakonyi, G. Buitrón, I. Valdez-vazquez, N. Nemestóthy, and K. Bélafi-bakó, A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation, Appl. Energ, vol.190, pp.813-823, 2017.

J. T. Kraemer and D. M. Bagley, Optimisation and design of nitrogen-sparged fermentative hydrogen production bioreactors, Int. J. Hydrogen Energ, vol.33, pp.6558-6565, 2008.

A. Sonnleitner, C. Peintner, W. Wukovits, A. Friedl, and W. Schnitzhofer, Process investigations of extreme thermophilic fermentations for hydrogen production: effect of bubble induction and reduced pressure, Bioresource Technol, vol.118, pp.170-176, 2012.

B. Mandal, K. Nath, and D. Das, Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae, Biotechnol. Lett, vol.28, pp.831-835, 2006.

F. Zhang, Y. Zhang, M. Chen, and R. J. Zeng, Hydrogen supersaturation in thermophilic mixed culture fermentation, Int. J. Hydrogen Energ, vol.37, pp.17809-17816, 2012.

M. Fritsch, W. Hartmeier, and J. Chang, Enhancing hydrogen production of Clostridium butyricum using a column reactor with square-structured ceramic fittings, Int. J. Hydrogen Energ, vol.33, pp.6549-6557, 2008.

L. Beckers, J. Masset, C. Hamilton, F. Delvigne, D. Toye et al., Investigation of the links between mass transfer conditions, dissolved hydrogen concentration and biohydrogen production by the pure strain Clostridium butyricum CWBI1009, Biochem. Eng. J, vol.98, pp.18-28, 2015.

F. O. Obazu, L. Ngoma, and V. M. Gray, Interrelationships between bioreactor volume, effluent recycle rate, temperature, pH, %H2, hydrogen productivity and hydrogen yield with undefined bacterial cultures, Int. J. Hydrogen Energ, vol.37, pp.5579-5590, 2012.

A. Pauss, G. Andre, M. Perrier, and S. R. Guiot, Liquid-to-Gas Mass Transfer in Anaerobic Processes: Inevitable Transfer Limitations of Methane and Hydrogen in the Biomethanation Process, vol.56, pp.1636-1644, 1990.

N. Pradhan, L. Dipasquale, G. Ippolito, A. Panico, P. N. Lens et al., Hydrogen and lactic acid synthesis by the wild-type and a laboratory strain of the hyperthermophilic bacterium Thermotoga neapolitana DSMZ 4359 T under capnophilic lactic fermentation conditions, Int. J. Hydrogen Energ, vol.42, pp.16023-16030, 2017.

G. Dreschke, G. Ippolito, A. Panico, P. N. Lens, G. Esposito et al., Enhancement of hydrogen production rate by high biomass concentrations of Thermotoga neapolitana, Int. J. Hydrogen Energ, 2018.

P. Bernfeld and . Amylases, Preparation and assay of enzymes, pp.149-158, 1955.

G. Mancini, S. Papirio, P. N. Lens, and G. Esposito, Increased biogas production from wheat straw by chemical pretreatments, Renew. Energ, vol.119, pp.608-614, 2018.

J. Bastidas-oyanedel, Z. Mohd-zaki, R. J. Zeng, N. Bernet, S. Pratt et al., Gas controlled hydrogen fermentation, Bioresource Technol, vol.110, pp.503-509, 2012.

R. Sander, Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys, vol.15, pp.4399-4981, 2015.

M. R. Verhaart, A. A. Bielen, J. Van-der-oost, A. J. Stams, and S. W. Kengen, Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: Mechanisms for reductant disposal, Environ. Technol, vol.31, pp.993-1003, 2010.

G. Marbán and T. , Valdés-Solís, Towards the hydrogen economy?, Int J Hydrogen Energy, vol.32, issue.12, pp.1625-1637, 2007.

G. Balachandar, N. Khanna, and D. Das, Biohydrogen production from organic wastes by dark fermentation, pp.103-144, 2013.

N. Gupta, M. Pal, M. Sachdeva, M. Yadav, and A. Tiwari, Thermophilic biohydrogen production for commercial application: The whole picture, Int J Energy Res, vol.40, issue.2, pp.127-145, 2016.

B. S. Boodhun, A. Mudhoo, G. Kumar, S. Kim, and C. Lin, Research perspectives on constraints, prospects and opportunities in biohydrogen production, Int J Hydrogen Energy, vol.42, issue.45, pp.27471-27481, 2017.

S. O-thong, P. Prasertsan, D. Karakashev, and I. Angelidaki, High-rate continuous hydrogen production by Thermoanaerobacterium thermosaccharolyticum PSU-2 immobilized on heat-pretreated methanogenic granules, Int J Hydrogen Energy, vol.33, issue.22, pp.6498-6508, 2008.

C. Chou, F. E. Jenney, J. R. , M. W. Adams, and R. M. Kelly, Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels, vol.10, pp.394-404, 2008.

G. Ippolito, L. Dipasquale, F. M. Vella, I. Romano, A. Gambacorta et al., Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana, Int J Hydrogen Energy, vol.35, issue.6, pp.2290-2295, 2010.

N. Pradhan, L. Dipasquale, G. Ippolito, A. Panico, P. N. Lens et al., Hydrogen production by the thermophilic bacterium Thermotoga neapolitana, Int J Mol Sci, vol.16, issue.6, pp.12578-12600, 2015.

C. Schröder, M. Selig, and P. Schönheit, Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: Involvement of the Embden-Meyerhof pathway, Arch Microbiol, vol.161, issue.6, pp.460-470, 1994.

G. Dreschke, G. Ippolito, A. Panico, P. N. Lens, G. Esposito et al., Enhancement of hydrogen production rate by high biomass concentrations of Thermotoga neapolitana, Int J Hydrogen Energy, 2018.

K. Y. Show, D. J. Lee, J. H. Tay, C. Y. Lin, and J. S. Chang, Biohydrogen production: Current perspectives and the way forward, Int J Hydrogen Energy, vol.37, issue.20, pp.15616-15631, 2012.

A. Pauss, G. Andre, M. Perrier, S. R. Guiot, P. André et al., Liquid-to-Gas Mass Transfer in Anaerobic Processes: Inevitable Transfer Limitations of Methane and Hydrogen in the Biomethanation Process, vol.56, pp.1636-1644, 1990.

P. Sivagurunathan, G. Kumar, P. Bakonyi, S. Kim, T. Kobayashi et al., A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems, Int J Hydrogen Energy, vol.41, issue.6, pp.3820-3836, 2016.

L. Beckers, J. Masset, C. Hamilton, F. Delvigne, D. Toye et al., Investigation of the links between mass transfer conditions, dissolved hydrogen concentration and biohydrogen production by the pure strain Clostridium butyricum CWBI1009, Biochem Eng J, vol.98, pp.18-28, 2015.

J. T. Kraemer and D. M. Bagley, Supersaturation of dissolved H2 and CO2 during fermentative hydrogen production with N2 sparging, Biotechnol Lett, vol.28, issue.18, pp.1485-1491, 2006.

M. Z. Bundhoo and R. Mohee, Inhibition of dark fermentative bio-hydrogen production: A review, Int J Hydrogen Energy, vol.41, issue.16, pp.6713-6733, 2016.

M. R. Verhaart, A. A. Bielen, J. Van-der-oost, A. J. Stams, and S. W. Kengen, Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: Mechanisms for reductant disposal, Environ Technol, vol.31, issue.8-9, pp.993-1003, 2010.

D. Kim, H. Shin, and S. Kim, Enhanced H2 fermentation of organic waste by CO2 sparging, Int J Hydrogen Energy, vol.37, issue.20, pp.15563-15568, 2012.

B. Mandal, K. Nath, and D. Das, Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae, Biotechnology letters, vol.28, issue.11, pp.831-835, 2006.

F. Zhang, Y. Zhang, M. Chen, and R. J. Zeng, Hydrogen supersaturation in thermophilic mixed culture fermentation, Int J Hydrogen Energy, vol.37, issue.23, pp.17809-17816, 2012.

P. Bakonyi, G. Buitrón, I. Valdez-vazquez, N. Nemestóthy, and K. Bélafi-bakó, A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation, Appl Energ, vol.190, pp.813-823, 2017.

M. Ljunggren, K. Willquist, G. Zacchi, and E. W. Van-niel, A kinetic model for quantitative evaluation of the effect of hydrogen and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus, Biotechnol Biofuels, vol.4, issue.1, p.31, 2011.

Y. Zhang, F. Zhang, M. Chen, P. Chu, J. Ding et al., Hydrogen supersaturation in extremethermophilic (70°C) mixed culture fermentation, Appl Energ, vol.109, pp.213-219, 2013.

G. Mancini, S. Papirio, P. N. Lens, and G. Esposito, Effect of N -methylmorpholine-N -oxide Pretreatment on Biogas Production from Rice Straw, Cocoa Shell, and Hazelnut Skin, Environ Eng Sci, vol.33, issue.11, pp.843-850, 2016.

A. Sonnleitner, C. Peintner, W. Wukovits, A. Friedl, and W. Schnitzhofer, Process investigations of extreme thermophilic fermentations for hydrogen production: effect of bubble induction and reduced pressure, Bioresour Technol, vol.118, pp.170-176, 2012.

J. Frigon and S. R. Guiot, Impact of liquid-to-gas hydrogen mass transfer on substrate conversion efficiency of an upflow anaerobic sludge bed and filter reactor, Enzyme Microb Tech, vol.17, issue.12, pp.1080-1086, 1995.

R. P. Sear, Nucleation: Theory and applications to protein solutions and colloidal suspensions, J. Phys.: Condens. Matter, vol.19, issue.3, p.33101, 2007.

M. Fritsch, W. Hartmeier, and J. Chang, Enhancing hydrogen production of Clostridium butyricum using a column reactor with square-structured ceramic fittings, Int J Hydrogen Energy, vol.33, issue.22, pp.6549-6557, 2008.

R. Sander, Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos Chem Phys, vol.15, issue.8, pp.4399-4981, 2015.

D. Kim, S. Han, S. Kim, and H. Shin, Effect of gas sparging on continuous fermentative hydrogen production, Int J Hydrogen Energy, vol.31, issue.15, pp.2158-2169, 2006.

P. Gokfiliz and I. Karapinar, The effect of support particle type on thermophilic hydrogen production by immobilized batch dark fermentation, Int J Hydrogen Energy, vol.42, issue.4, pp.2553-2561, 2017.

T. A. Ngo and H. T. Bui, Biohydrogen production using immobilized cells of hyperthermophilic eubacterium Thermotoga neapolitana on porous glass beads, J Technol Innov Renew Energy, pp.231-238, 2013.

S. Wu, C. Hung, C. Lin, H. Chen, A. S. Lee et al., Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge, Biotechnol Bioeng, vol.93, issue.5, pp.934-946, 2006.

Y. Akutsu, Y. Li, H. Harada, and H. Yu, Effects of temperature and substrate concentration on biological hydrogen production from starch, International Journal of Hydrogen Energy, vol.34, issue.6, pp.2558-2566, 2009.

M. M. Arimi, J. Knodel, A. Kiprop, S. S. Namango, Y. Zhang et al., Strategies for improvement of biohydrogen production from organic-rich wastewater: A review, Biomass and Bioenergy, vol.75, pp.101-118, 2015.

G. Balachandar, N. Khanna, and D. Das, Biohydrogen production from organic wastes by dark fermentation, pp.103-144, 2013.

S. Z. Baykara, Hydrogen: A brief overview on its sources, production and environmental impact, International Journal of Hydrogen Energy, vol.43, issue.23, pp.10605-10614, 2018.

B. S. Boodhun, A. Mudhoo, G. Kumar, S. Kim, and C. Lin, Research perspectives on constraints, prospects and opportunities in biohydrogen production, International Journal of Hydrogen Energy, vol.42, issue.45, pp.27471-27481, 2017.

H. Brynjarsdottir, S. M. Scully, and J. Orlygsson, Production of biohydrogen from sugars and lignocellulosic biomass using Thermoanaerobacter GHL15, International Journal of Hydrogen Energy, vol.38, issue.34, pp.14467-14475, 2013.

J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman et al., QIIME allows analysis of high-throughput community sequencing data, Nature methods, vol.7, issue.5, pp.335-336, 2010.

C. Chou, F. E. Jenney, A. Jr, M. W. Kelly, and R. M. , Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels, Metabolic engineering, vol.10, issue.6, pp.394-404, 2008.

A. Ciranna, R. Ferrari, V. Santala, and M. Karp, Inhibitory effects of substrate and soluble end products on biohydrogen production of the alkalithermophile Caloramator celer: Kinetic, metabolic and transcription analyses, International Journal of Hydrogen Energy, vol.39, issue.12, pp.6391-6401, 2014.

C. Cisneros-pérez, C. Etchebehere, L. B. Celis, J. Carrillo-reyes, F. Alatriste-mondragón et al., Effect of inoculum pretreatment on the microbial community structure and its performance during dark fermentation using anaerobic fluidized-bed reactors, International Journal of Hydrogen Energy, vol.42, issue.15, pp.9589-9599, 2017.

P. Dessì, A. Lakaniemi, and P. N. Lens, Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 °C, Water research, vol.115, pp.120-129, 2017.

G. Dreschke, G. Ippolito, A. Panico, P. N. Lens, G. Esposito et al., Enhancement of hydrogen production rate by high biomass concentrations of Thermotoga neapolitana, International Journal of Hydrogen Energy, 2018.

E. Elbeshbishy, B. R. Dhar, G. Nakhla, and H. Lee, A critical review on inhibition of dark biohydrogen fermentation, Renewable and Sustainable Energy Reviews, vol.79, pp.656-668, 2017.

F. O. Glöckner, P. Yilmaz, C. Quast, J. Gerken, A. Beccati et al., 25 years of serving the community with ribosomal RNA gene reference databases and tools, Journal of Biotechnology, vol.261, pp.169-176, 2017.

H. Hafez, G. Nakhla, . El, M. H. Naggar, E. Elbeshbishy et al., Effect of organic loading on a novel hydrogen bioreactor, International Journal of Hydrogen Energy, vol.35, issue.1, pp.81-92, 2010.

B. M. Haroun, G. Nakhla, H. Hafez, P. Velayutham, D. B. Levin et al., Significance of acclimatization for biohydrogen production from synthetic lignocellulose hydrolysate in continuous-flow systems, International Journal of Hydrogen Energy, vol.41, issue.32, pp.14003-14014, 2016.

F. Hawkes, I. Hussy, G. Kyazze, R. Dinsdale, and D. Hawkes, Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress, International Journal of Hydrogen Energy, vol.32, issue.2, pp.172-184, 2007.

R. J. Jones, J. Massanet-nicolau, M. J. Mulder, G. Premier, R. Dinsdale et al., Increased biohydrogen yields, volatile fatty acid production and substrate utilisation rates via the electrodialysis of a continually fed sucrose fermenter, Bioresource technology, vol.229, pp.46-52, 2017.

K. Jung, D. Kim, S. Kim, and H. Shin, Bioreactor design for continuous dark fermentative hydrogen production, Bioresource technology, vol.102, issue.18, pp.8612-8620, 2011.

A. Kostrytsia, S. Papirio, L. Frunzo, M. R. Mattei, E. Porca et al., Elemental sulfur-based autotrophic denitrification and denitritation: Microbially catalyzed sulfur hydrolysis and nitrogen conversions, Journal of environmental management, vol.211, pp.313-322, 2018.

G. Kumar, J. Park, M. Kim, D. Kim, and S. Kim, Hydrogen fermentation of different galactoseglucose compositions during various hydraulic retention times (HRTs), International Journal of Hydrogen Energy, vol.39, issue.35, pp.20625-20631, 2014.

C. Lin, C. Lay, B. Sen, C. Chu, G. Kumar et al., Fermentative hydrogen production from wastewaters: A review and prognosis, International Journal of Hydrogen Energy, vol.37, issue.20, pp.15632-15642, 2012.

G. Mancini, S. Papirio, P. N. Lens, and G. Esposito, Increased biogas production from wheat straw by chemical pretreatments, Renewable Energy, vol.119, pp.608-614, 2018.

A. E. Mars, T. Veuskens, M. A. Budde, P. F. Van-doeveren, S. J. Lips et al., Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana, International Journal of Hydrogen Energy, vol.35, issue.15, pp.7730-7737, 2010.

S. A. Munro, S. H. Zinder, and L. P. Walker, The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production, Biotechnology progress, vol.25, issue.4, pp.1035-1042, 2009.

T. A. Ngo, T. H. Nguyen, and H. T. Bui, Thermophilic fermentative hydrogen production from xylose by Thermotoga neapolitana DSM 4359, Renewable Energy, vol.37, issue.1, pp.174-179, 2012.

T. D. Nguyen, S. J. Han, J. P. Kim, M. S. Kim, and S. J. Sim, Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition, Bioresource technology, vol.101, issue.1, p.41, 2010.

T. D. Nguyen, J. P. Kim, M. S. Kim, Y. K. Oh, and S. J. Sim, Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation, International Journal of Hydrogen Energy, vol.33, issue.5, pp.1483-1488, 2008.

S. O-thong, P. Prasertsan, D. Karakashev, and I. Angelidaki, High-rate continuous hydrogen production by Thermoanaerobacterium thermosaccharolyticum PSU-2 immobilized on heat-pretreated methanogenic granules, International Journal of Hydrogen Energy, vol.33, issue.22, pp.6498-6508, 2008.

N. Pradhan, L. Dipasquale, G. Ippolito, A. Panico, P. N. Lens et al., Hydrogen and lactic acid synthesis by the wild-type and a laboratory strain of the hyperthermophilic bacterium Thermotoga neapolitana DSMZ 4359 T under capnophilic lactic fermentation conditions, International Journal of Hydrogen Energy, vol.42, issue.25, pp.16023-16030, 2017.

N. Pradhan, L. Dipasquale, G. Ippolito, A. Panico, P. N. Lens et al., Hydrogen production by the thermophilic bacterium Thermotoga neapolitana, International journal of molecular sciences, vol.16, issue.6, pp.12578-12600, 2015.

E. Pruesse, C. Quast, K. Knittel, B. M. Fuchs, W. Ludwig et al., SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB, Nucleic acids research, vol.35, issue.21, pp.7188-7196, 2007.

J. M. Sherman, THE STREPTOCOCCI, Bacteriological Reviews, vol.1, issue.1, pp.3-97, 1937.

P. Sivagurunathan, G. Kumar, P. Bakonyi, S. Kim, T. Kobayashi et al., A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems, International Journal of Hydrogen Energy, vol.41, issue.6, pp.3820-3836, 2016.

S. Srikanth and S. Venkata-mohan, Regulating feedback inhibition caused by the accumulated acid intermediates during acidogenic hydrogen production through feed replacement, International Journal of Hydrogen Energy, vol.39, issue.19, pp.10028-10040, 2014.

J. Tang, Y. Yuan, W. Guo, and N. Ren, Inhibitory effects of acetate and ethanol on biohydrogen production of Ethanoligenens harbinese B49, International Journal of Hydrogen Energy, vol.37, issue.1, pp.741-747, 2012.

S. Van-ginkel and B. E. Logan, Inhibition of Biohydrogen Production by Undissociated Acetic and Butyric Acids, Environ. Sci. Technol, vol.39, issue.23, pp.9351-9356, 2005.

S. W. Van-ginkel and B. Logan, Increased biological hydrogen production with reduced organic loading, Water research, vol.39, issue.16, pp.3819-3826, 2005.

E. W. Van-niel, P. A. Claassen, and A. J. Stams, Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus, Biotechnology and bioengineering, vol.81, issue.3, pp.255-262, 2003.

B. Wang, W. Wan, and J. Wang, Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production, International Journal of Hydrogen Energy, vol.33, issue.23, pp.7013-7019, 2008.

S. Zhang, Y. Lee, T. Kim, S. Hwang, and . Lee, Effects of OLRs and HRTs on hydrogen production from high salinity substrate by halophilic hydrogen producing bacterium (HHPB), 2010.

. Sivagurunathan, dark fermentation still faces major limitations. For instance, low hydrogen production rates (HPR) and hydrogen yields (HY) are the main drawbacks in order to obtain an economically viable process, 2007.

. Balachandar, Thermophilic strains are advantageous over mesophilic strains providing the highest conversion efficiencies, with high yields being achieved by selecting a suitable production organism, 2008.

. Gupta, Moreover, most other non-H2 producing microorganisms competing for substrate or consuming the produced hydrogen are inhibited by elevated temperatures, 2007.

V. Pawar and . Niel-;-pradhan, Furthermore, continuous mode allows the culture to reach an acclimatized steady state which has shown to provide better process stability and higher hydrogen yields, Thermotoga neapolitana (briefly T. neapolitana) is a hyperthermophilic bacterium which has been extensively studied for the production of hydrogen, 2006.

. Arimi, In continuous operation, the hydraulic retention time (HRT) is a major factor affecting the reactor performance of dark fermentation, 2015.

. Lee, 2012) cultivation. This strongly suggests the application of T. neapolitana in an advanced bioreactor system exploiting self-aggregation or biofilm formation to counteract low biomass concentrations. Such systems not only increase the biomass concentration, but generally allow lower HRTs resulting in higher HPRs, At a constant reactor volume and substrate removal efficiency, a decrease of the HRT Such growth limitation is common for hyperthermophilic suspended cultures, 2010.

, Conclusion ? HY decreased from 3.4 (± 0.1) to 2.0 (± 0.0) mol H2/mol glucose when decreasing the HRT from 24 to 7 h, contrast, the HPR increased, p.277

, mL/L/h at an HRT of 5 h including GaR

, Each HRT reduction induced a shift from the AA to the LA pathway, a drop of the HY and an impaired glucose consumption at an HRT of 10 and 7 h. However, a prolonged cultivation at constant HRT allowed T. neapolitana to acclimatize, as indicated by an increase of HY

, ? The H2aq positively correlated with the HPR reaching, vol.15

, ? The use of GaR effectively prevented the supersaturation of H2aq, allowing a complete glucose consumption by T. neapolitana at a HRT as low as 5 h. Funding: This work was supported by the Marie Sk?odowska-Curie European Joint Doctorate (EJD) in Advanced Biological Waste-To-Energy Technologies (ABWET) funded by Horizon

M. M. Arimi, J. Knodel, A. Kiprop, S. S. Namango, Y. Zhang et al., Strategies for improvement of biohydrogen production from organic-rich wastewater: A review, Biomass and Bioenergy, vol.75, pp.101-118, 2015.

G. Balachandar, N. Khanna, and D. Das, Biohydrogen production from organic wastes by dark fermentation, pp.103-144, 2013.

C. Barca, A. Soric, D. Ranava, M. Giudici-orticoni, and J. Ferrasse, Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: A review, Bioresource technology, vol.185, pp.386-398, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01446104

M. A. Basile, C. Carfagna, P. Cerruti, G. Gomez-d'ayala, A. Fontana et al., Continuous hydrogen production by immobilized cultures of Thermotoga neapolitana on an acrylic hydrogel with pH-buffering properties, RSC Adv, vol.2, issue.9, p.3611, 2012.

L. Beckers, J. Masset, C. Hamilton, F. Delvigne, D. Toye et al., Investigation of the links between mass transfer conditions, dissolved hydrogen concentration and biohydrogen production by the pure strain Clostridium butyricum CWBI1009, Biochemical Engineering Journal, vol.98, pp.18-28, 2015.

K. Cheng, A. Demirci, and J. M. Catchmark, Advances in biofilm reactors for production of value-added products, Applied microbiology and biotechnology, vol.87, issue.2, pp.445-456, 2010.

T. De-vrije, A. E. Mars, M. A. Budde, M. H. Lai, C. Dijkema et al., Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus, Applied microbiology and biotechnology, vol.74, issue.6, pp.1358-1367, 2007.

G. Ippolito, L. Dipasquale, F. M. Vella, I. Romano, A. Gambacorta et al., Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana, International Journal of Hydrogen Energy, vol.35, issue.6, pp.2290-2295, 2010.

G. Dreschke, G. Ippolito, A. Panico, P. N. Lens, G. Esposito et al., Enhancement of hydrogen production rate by high biomass concentrations of Thermotoga neapolitana, International Journal of Hydrogen Energy, 2018.

O. Elsharnouby, H. Hafez, G. Nakhla, and M. H. El-naggar, A critical literature review on biohydrogen production by pure cultures, International Journal of Hydrogen Energy, vol.38, issue.12, pp.4945-4966, 2013.

N. T. Eriksen, T. M. Nielsen, and N. Iversen, Hydrogen production in anaerobic and microaerobic Thermotoga neapolitana, Biotechnology letters, vol.30, issue.1, pp.103-109, 2008.

N. T. Eriksen, M. L. Riis, N. K. Holm, and N. Iversen, H(2) synthesis from pentoses and biomass in Thermotoga spp, Biotechnology letters, vol.33, issue.2, pp.293-300, 2011.

A. Ghimire, L. Frunzo, F. Pirozzi, E. Trably, R. Escudie et al., A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products, Applied Energy, vol.144, pp.73-95, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01164829

N. Gupta, M. Pal, M. Sachdeva, M. Yadav, and A. Tiwari, Thermophilic biohydrogen production for commercial application: The whole picture, Int. J. Energy Res, vol.40, issue.2, pp.127-145, 2016.

S. K. Gupta, S. Kumari, K. Reddy, and F. Bux, Trends in biohydrogen production: major challenges and stateof-the-art developments, Environmental technology, vol.34, pp.1653-1670, 2013.

F. Hawkes, I. Hussy, G. Kyazze, R. Dinsdale, and D. Hawkes, Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress, International Journal of Hydrogen Energy, vol.32, issue.2, pp.172-184, 2007.

R. Huber, M. Hannig, M. Dworkin, S. Falkow, E. Rosenberg et al., Thermotogales, The Prokaryotes, pp.899-922, 2006.

J. H. Jo, D. S. Lee, D. Park, and J. M. Park, Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process, Bioresource technology, vol.99, issue.14, pp.6666-6672, 2008.

T. Kim, Y. Lee, K. Chang, and S. Hwang, Effects of initial lactic acid concentration, HRTs, and OLRs on bio-hydrogen production from lactate-type fermentation, Bioresource technology, vol.103, issue.1, pp.136-141, 2012.

J. T. Kraemer and D. M. Bagley, Supersaturation of dissolved H2 and CO2 during fermentative hydrogen production with N2 sparging, Biotechnology letters, vol.28, issue.18, pp.1485-1491, 2006.

G. Kumar, J. Park, M. Kim, D. Kim, and S. Kim, Hydrogen fermentation of different galactoseglucose compositions during various hydraulic retention times (HRTs), International Journal of Hydrogen Energy, vol.39, issue.35, pp.20625-20631, 2014.

D. Lee, K. Show, and A. Su, Dark fermentation on biohydrogen production: Pure culture, Bioresource technology, vol.102, issue.18, pp.8393-8402, 2011.

C. Lin, C. Lay, B. Sen, C. Chu, G. Kumar et al., Fermentative hydrogen production from wastewaters: A review and prognosis, International Journal of Hydrogen Energy, vol.37, issue.20, pp.15632-15642, 2012.

M. Ljunggren, K. Willquist, G. Zacchi, and E. W. Van-niel, A kinetic model for quantitative evaluation of the effect of hydrogen and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus, Biotechnology for biofuels, vol.4, issue.1, p.31, 2011.

S. A. Munro, S. H. Zinder, and L. P. Walker, The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production, Biotechnology progress, vol.25, issue.4, pp.1035-1042, 2009.

I. Ntaikou, G. Antonopoulou, and G. Lyberatos, Biohydrogen Production from Biomass and Wastes via Dark Fermentation: A Review, Waste Biomass Valor, vol.1, issue.1, pp.21-39, 2010.

S. O-thong, P. Prasertsan, D. Karakashev, and I. Angelidaki, High-rate continuous hydrogen production by Thermoanaerobacterium thermosaccharolyticum PSU-2 immobilized on heat-pretreated methanogenic granules, International Journal of Hydrogen Energy, vol.33, issue.22, pp.6498-6508, 2008.

R. Palomo-briones, E. Razo-flores, N. Bernet, and E. Trably, Dark-fermentative biohydrogen pathways and microbial networks in continuous stirred tank reactors: Novel insights on their control, Applied Energy, vol.198, pp.77-87, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608465

A. Pauss, G. Andre, M. Perrier, and S. R. Guiot, Liquid-to-gas mass transfer in anaerobic processes: Inevitable transfer limitations of methane and hydrogen in the biomethanation process, Applied and environmental microbiology, vol.56, issue.6, pp.1636-1644, 1990.

S. S. Pawar and E. W. Van-niel, Thermophilic biohydrogen production: how far are we?, Applied microbiology and biotechnology, vol.97, issue.18, pp.7999-8009, 2013.

C. Peintner, A. A. Zeidan, and W. Schnitzhofer, Bioreactor systems for thermophilic fermentative hydrogen production: Evaluation and comparison of appropriate systems, Journal of Cleaner Production, vol.18, pp.15-22, 2010.

N. Pradhan, L. Dipasquale, G. Ippolito, A. Panico, P. N. Lens et al., Hydrogen production by the thermophilic bacterium Thermotoga neapolitana, International journal of molecular sciences, vol.16, issue.6, pp.12578-12600, 2015.

K. Show and D. Lee, Bioreactor and Bioprocess Design for Biohydrogen Production, pp.317-337, 2013.

K. Show, D. Lee, and J. Chang, Bioreactor and process design for biohydrogen production, Bioresource technology, vol.102, issue.18, pp.8524-8533, 2011.

P. Sivagurunathan, G. Kumar, P. Bakonyi, S. Kim, T. Kobayashi et al., A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems, International Journal of Hydrogen Energy, vol.41, issue.6, pp.3820-3836, 2016.

M. R. Verhaart, A. A. Bielen, J. Van-der-oost, A. J. Stams, and S. W. Kengen, Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: Mechanisms for reductant disposal, Environmental technology, vol.31, issue.8-9, pp.993-1003, 2010.

L. Whang, C. Lin, I. Liu, C. Wu, and H. Cheng, Metabolic and energetic aspects of biohydrogen production of Clostridium tyrobutyricum: The effects of hydraulic retention time and peptone addition, Bioresource technology, vol.102, issue.18, pp.8378-8383, 2011.

D. Xing, N. Ren, A. Wang, Q. Li, Y. Feng et al., Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense YUAN-3 under non-sterile condition, International Journal of Hydrogen Energy, vol.33, issue.5, pp.1489-1495, 2008.

N. H. Yasin, T. Mumtaz, M. A. Hassan, and N. Abd-rahman, Food waste and food processing waste for biohydrogen production: a review, Journal of environmental management, vol.130, pp.375-385, 2013.

S. Zhang, Y. Lee, T. Kim, and S. Hwang, Effects of OLRs and HRTs on hydrogen production from high salinity substrate by halophilic hydrogen producing bacterium (HHPB), Bioresource technology, vol.141, pp.227-232, 2013.