E. Juaristi and V. A. Soloshonok, Enantioselective synhtesis of beta-amino acids, 2005.

M. Windholz, S. Budavari, L. Y. Stroumtsos, and M. N. Fertig, The Merck Index: An Encyclopedia of Chemicals and Drugs, 1976.

T. Hintermann, D. Seebach, D. Synlett-;-b)-seebach, K. Gademann, J. V. Schreiber et al., Helv. Chim. Acta, vol.80, p.2033, 1997.

T. Hansen, D. Ausbacher, G. E. Flaten, M. Havelkova, M. B. Strom et al., Biochim. Biophys. Acta, vol.53, p.170, 1818.

T. Y. Liu, J. Long, B. J. Li, L. Jiang, R. Li et al., Org. Biomol. Chem, 2006.

, 2-Dimethyl-5-phenyl-1,3-dioxane-4,6-dione (II.4a) 124a, vol.2

, 1 (s, 4 JC-F = 3.4 Hz, C7), vol.129

, HRMS (ESI) m/z: calcd for C14H16FNO4Na

, II.1e was synthesized according to the method aforementioned from tert-butyl ((phenylsulfonyl)methyl)-N-hydroxycarbamate II.5a (287 mg, 0.552 mmol, 1.00 equiv) and 2,2-dimethyl-5-(4-(trifluoromethyl)phenyl)-1,3-dioxane-4,6-dione II, p.607

, The titled compound was obtained after flash column chromatography on silica gel (PE/Et2O = 9:1) as a colorless oil (141 mg, vol.75

. Ir-(atr, , vol.694, pp.607-608, 1019.

H. Nmr, 400 MHz, CDCl3): ? 7.67 (dapp, J = 8.1 Hz, 2H, H9), vol.7

1. Hz,

C. Nmr, CDCl3): ? 172.6 (s, C6), MHz, vol.155, issue.100

, Hz, C10), 128.6 (d, 2C, C8), 126.4 (d, 3 JC-F = 3.7 Hz, 2C, C9), 123.9 (s, 1 JC-F = 273 Hz, C11), vol.84

, HRMS (ESI) m/z: calcd for C15H16F3NO4Na, p.120

, )methyl)-N-hydroxycarbamate II.5a (703 mg, 2.45 mmol, 1.00 equiv) and 2,2-dimethyl-5-benzyl-1,3-dioxane-4,6-dione II.4k (630 mg, 2.69 mmol, 1.10 equiv). The titled compound was obtained after flash column chromatography on silica gel

. Ir-(atr, , vol.846, pp.705-706, 0994.

H. Nmr, 400 MHz, CDCl3): ? 7.38-7.15 (m, 5H, HAr)

C. Nmr, 9 (s, C3), 136.8 (s, C8), MHz, CDCl3): ? 174.1 (s, C6), vol.155

, )methyl)-N-hydroxycarbamate II.5a (251 mg, 0.87 mmol, 1.00 equiv) and 2,2-dimethyl-5-cinnamyl-1,3-dioxane-4,6-dione II.4l (230 mg, 0.96 mmol, 1.10 equiv), The H13)

C. Nmr, 1 (s, C3), 136.5 (s, C7), 131.5, (d, C12), MHz, CDCl3): ? 175.7 (s, C6), vol.156

, HRMS (ESI) m/z: calcd for C17H21NO4Na

, method aforementioned from tert-butyl 5-oxo-4-(p-tolyl)isoxazolidine-2-carboxylate II.1b (50 mg, 0.18 mmol, 1.0 equiv) and allyl acetate (20 µL, 0.19 mmol, 1.0 equiv). The titled compound was obtained after flash column chromatography on silica gel

. D-=-+65, , vol.2

C. Nmr, 1 (s, C3), 138.2 (s, C7), MHz, CDCl3): ? 175.5 (s, C6), vol.156

, HRMS (ESI) m/z: calcd for C18H23NO4Na

, methoxyphenyl)-5-oxoisoxazolidine-2-carboxylate II.1c (50 mg, 0.17 mmol, 1.0 equiv) and allyl acetate (18 µL, 0.17 mmol, 1.0 equiv). The titled compound was obtained after flash column chromatography on silica gel, II.18c was synthesized according to the method aforementioned from tert-butyl 4

C. Nmr, MHz, CDCl3): ? 174.9 (s, C6), 156.0 (s, C3), 135.5 (s, C7), vol.132

, HRMS (ESI) m/z: calcd for C17H20BrNO4Na

, chlorophenyl)-5-oxoisoxazolidine-2-carboxylate II.1h (50 mg, 0.15 mmol, 1.0 equiv) and allyl acetate (16 µL, 0.15 mmol, 1.0 equiv). The titled compound was obtained after flash column chromatography on silica gel, II.18h was synthesized according to the method aforementioned from tert-butyl 4

, Mp = 114-115 °C tert-Butyl (S)

, II.18j was synthesized according to the method aforementioned with minor modifications, from tert-butyl 5-oxo-4-phenylisoxazolidine-2-carboxylate II.1j (50 mg, 0.18 mmol, vol.1

, The titled compound was obtained after flash column chromatography on silica gel

, SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 95:5, Flow rate = 5

, mL/min, detection wavelength = 220 nm. tR = 1.77 min (major) and tR = 3.63 min (minor)

. Ir-(atr, , vol.845, pp.744-745, 0967.

H. Nmr, 400 MHz, CDCl3): ? 7.35-7.06 (m, 5H, HAr), 5.68 (m, 1H, H13)

1. Hz, , vol.1

C. Nmr, 3 (d, 2C, C9 or C10), MHz, CDCl3): ? 176.0 (s, C6), 155.7 (s, C3), 135.0 (s, C8), 131.5, (d, C13), vol.130

. Ir-(atr, , vol.907, pp.843-844, 0979.

H. Nmr, 400 MHz, CDCl3): ? 7.47-7.28 (m, 5H, HAr), 5.56 (m, 1H, H1), 5.37 (m, 1H, H1')

C. Nmr, 6 (s, C2), 138.1 (s, C4), MHz, CDCl3): ? 170.9 (s, C8), vol.142

, HRMS (ESI) m/z: calcd for C11H12O2Na

. Naome, 3 g, 268 mmol, 3.0 equiv) was dissolved in MeOH (120 mL) at 0 ?C. Then, methyl 2,3-dibromopropanoate II.25 (11.7 mL, 89.5 mmol, vol.15, p.0

, The methyl 2-methoxy acrylate II.26 (1.00 g, 8.61 mmol, 1.00 equiv) was added dropwise to a solution of LiAIH4 (785 mg, 20.7 mmol, 2.4 equiv) in Et2O (18 mL) at 0 ?C over 10 min. The reaction was quenched carefully by dropwise addition of H2O (0.35 mL), an aqueous solution of NaOH (15%, 0.35 mL), and H2O (1.0 mL)

J. Ruan, X. Li, O. Saidi, and J. Xiao, J. Am. Chem. Soc, vol.130, p.2424, 2008.

C. Marti and E. M. Carreira, J. Am. Chem. Soc, vol.127, 2005.

. Ir-(atr, , vol.825, pp.605-606, 0916.

H. Nmr,

1. Hz,

C. Nmr, MHz, CDCl3): ? 170.7 (s, C5), vol.158

, HRMS (ESI) m/z: calcd for C3H10O3Na

R. M. Coates, B. D. Rogers, S. J. Hobbs, D. R. Peck, and D. P. Curran, 109, 1160. II.18l was synthesized according to the method aforementioned from tert-butyl 5-oxo-4-phenylisoxazolidine-2-carboxylate II.1a (50 mg, 0.19 mmol, 1.0 equiv) and 2-methylallyl acetate II, The titled compound was obtained after flash column chromatography on silica gel, 1987.

, Mp = 91-92 °C Rf: 0.24 (PE/Et2O =, vol.9

. D-=-+110,

. Sfc:-od-h-column, Pressure = 100 bar, eluent = sc CO2/MeOH = 98:2, Flow rate = 3

, mL/min, detection wavelength = 220 nm. tR = 5.04 min (major) and tR = 5.46 min (minor)

. Ir-(atr, , vol.904, pp.848-849, 0967.

H. Nmr, 400 MHz, CDCl3): ? 7.50-7.44 (m, 2H, H8), 7.40-7.28 (m, 3H, H9 and H10)

C. Nmr, 1 (s, C3), 140.1 (s, C12), MHz, CDCl3): ? 175.7 (s, C6), vol.156

, HRMS (ESI) m/z: calcd for C18H23NO4Na

C. Nmr, 1 (s, C3), 146.4 (s, C12), 136.6 (s, C7), MHz, CDCl3): ? 175.8 (s, C6), vol.156

, HRMS (ESI) m/z: calcd for C20H29NO4SiNa

, II.18n was synthesized according to the method aforementioned from tert-butyl 5-oxo-4-phenylisoxazolidine-2-carboxylate 1a (70 mg, 0.27 mmol, 1.0 equiv) and the commercially available 2-((trimethylsilyl)methyl)allyl acetate, p.1

, Mp = 91-92 °C Rf: 0.24 (PE/Et2O =, vol.9

. D-=-+109,

. Sfc:-od-h-column, Pressure = 100 bar, eluent = sc CO2/MeOH = 98:2, Flow rate = 3

, mL/min, detection wavelength = 220 nm. tR = 5.28 min (major) and tR = 5.80 min (minor)

, Note: for full characterization of II.18n check II.18l. tert-Butyl (S)-5-oxo-4-phenyl-4-(2-phenylallyl)isoxazolidine-2-carboxylate

, II.18o was synthesized according to the method aforementioned from tert-butyl 5-oxo-4-phenylisoxazolidine-2-carboxylate 1a (50 mg, 0.19 mmol, 1.0 equiv) and 2-phenylallyl acetate II, p.1

. D-=-+81, , vol.17

C. Nmr, 0 (s, C12), 141.0 (s, C14), 135.4 (s, C7), 128.8 (d, 2C, C9 or C16), 2C, C9 or C16), 128.4 (d, C10 or C17), 128.0 (d, C10 or C17), vol.143

, HRMS (ESI) m/z: calcd for C23H25NO4Na, pp.402-1676

, method aforementioned from tert-butyl 5-oxo-4-phenylisoxazolidine-2-carboxylate 1a (50 mg, 0.19 mmol, 1.0 equiv) and 2-chloroallyl acetate II.20b (18 µL, 0.19 mmol, 1.0 equiv). The titled compound was obtained after flash column chromatography on silica gel

D. , , vol.15

, SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 98:2, Flow rate = 3

, mL/min, detection wavelength = 220 nm. tR = 5.39 min (minor) and tR = 8.41 min (major)

. Ir-(atr, , vol.848, pp.698-699, 0900.

H. Nmr, 400 MHz, CDCl3): ? 7.48-7.29 (m, 5H, HAr), 5.19 (d, J = 1.6 Hz, 1H, H13), 5.05 (d, J = 12.4 Hz, 1H, H4)

1. Hz, , vol.2

C. Nmr, MHz, CDCl3): ? 175.2 (s, C6), 155.9 (s, C3), 135.7 (s, C12), vol.134

, HRMS (ESI) m/z: calcd for C17H20ClNO4Na

, -2-carboxylate 1a (50 mg, 0.19 mmol, 1.0 equiv) and methyl 2-(acetoxymethyl)acrylate II.20c (190 µL, 1.0 M in THF, 0.19 mmol, 1.0 equiv). The titled compound was obtained after flash column chromatography on silica gel (PE/Et2O = 9:1) in an inseparable mixture of II, II.18q was synthesized according to the method aforementioned from tert-butyl 5-oxo-4-phenylisoxazolidine

, SFC: AD-H column, Pressure = 100 bar, eluent = sc CO2/MeOH = 95:5, Flow rate = 5

, mL/min, detection wavelength = 220 nm. tR = 1.65 min (minor) and tR = 1.85 min (major)

. Ir-(atr, Note: the mixture of II, vol.732, pp.700-701, 1144.

H. Nmr, 400 MHz, CDCl3) mixture of II.1a/II.18q = 65, p.35

, Compound II.1a: ? 7.44-7.27 (m, 5H, HAr)

, Compound II.18q: ? 7.44-7.27 (m, 5H, HAr), vol.6

1. Hz,

C. Nmr, MHz, CDCl3) mixture of 1a/3f, vol.65, p.35

, 4 (s, C7), 129.4 (d, 2C, C8 or C9), Compound II.1a: ? 173.5 (s, C6), 156.1 (s, C3), vol.133

, Note: the quaternary carbon corresponding to C3 was not observed

, HRMS (ESI) m/z: calcd for C19H23NO6Na, pp.384-1417

, Product derivatizations 8.1. Synthesis of ? 2,2 -amino acid (S)-2-(((tert-Butoxycarbonyl)amino)methyl)-2-phenylpent-4-enoic acid

, To a solution of recrystallized naphthalene (960 mg, 7.50 mmol, 1.00 equiv) in THF

, mL) at rt was added finely chopped Na (190 mg, 8.25 mmol, 1.10 equiv) and the mixture was stirred for 2 h, to provide the dark green solution of sodium naphthalenide solution

, mg, 0.33 mmol, 1.0 equiv) in THF (11.0 mL) at ?78 ?C was added dropwise, via syringe, the freshly prepared the sodium naphthalenide solution until the dark green color remained. The reaction was quenched, at ?78 ?C, by the addition of H2O (10 mL) and the reaction mixture was warmed to rt. The pH was adjusted to 2 with an aqueous solution of HCl (1 M). The layers were separated and the aqueous layer was

. Mgso4, The crude residue was purified by flash column chromatography on silica gel (CH2Cl2/MeOH = from 95:5 to 90:10) to afford the the amino acid II, p.136

. D-=-?2, , p.65

, 3H, HAr), 6.32 (t, J = 6.1 Hz, 1H, NH), 5.66 (ddt, J = 17.3, 10.1, 7.2 Hz, 1H, H12), 5.12 (dapp, J = 17.2 Hz, 1H, H13), 5.01 (dapp, J = 10.2 Hz, 1H, H13')

1. Hz, , vol.1

C. Nmr,

, Synthesis of ?-lactam tert-Butyl (S)-3-allyl-2-oxo-3-phenylazetidine-1-carboxylate, HRMS (ESI) m/z: calcd for C17H23NO4Na

, To a solution of (S)-2-(((tert-butoxycarbonyl)amino)methyl)-2-phenylpent-4-enoic acid II, vol.27

, The abovementioned methyl ester (180 mg, 0.56 mmol, 1.0 equiv) was dissolved in CH2Cl2 (5.6 mL). The resulting solution was cooled to 0 ?C and TFA (840 ?L

, The reaction mixture was stirred at rt for 2 h. Then, the mixture was cooled to 0 ?C and a saturated aqueous solution of NaHCO3 (20 mL) was added. The layers were separated and the aqueous layer was extracted CH2Cl2 (2 x 10 mL)

, Palladium-catalyzed asymmetric allylic alkylation

B. M. Trost, M. L. Crawley, B. M. Trost, P. E. Strege, T. Graening et al., Angew. Chem. Int. Ed, vol.103, p.2580, 1649.

Z. Lu, S. Ma, . Angew, . Chem, N. A. Int-;-b)-butt et al., Synthetic Scope of the Tsuji-Trost Reaction with Allylic Halides, Carboxylates, Ethers, and Related Oxygen Nucleophiles as Starting Compounds in Handbook of Organopalladium Chemistry for Organic Synthesis, J. Pure Appl. Chem, vol.44, issue.1, p.1539, 1477.

B. Al, . Mg, and S. Si, Zn and Zr ? similarly to the mechanism presented in Chapter 1 ? Section 4 for the palladium-catalyzed decarboxylative allylic alkylation reaction, an inner-sphere pathway may be envisaged allowing the ?-allyl complex to be trapped by the hard nucleophiles as outlined in Scheme 2, left. 147 In this pathway, the attack occurs directly on the electrophilic palladium center, generating an allyl(organyl)palladium complex intermediate by trans-metalation. The latter subsequently evolves via reductive elimination to a Pd(0)-olefin complex, which eventually releases the allylated product along with an activate Pd(0) species. On the other hand, the reaction with soft nucleophiles ? defined as those whose conjugated acids have pKa < 25, such as stabilized carbanions of diesters, -amides, -nitriles, -aldehydes, -ketones, nitrones, sulfones, sulfoxides and phosphonates ? normally follows a, For hard nucleophiles ? defined as those whose conjugated acids have pKa > 25, such as "nonstabilized" carbanions: aryl and alkenylmetal reagents involving

H. Matsushita, E. Negishi, N. -i.-;-b)-miyaura, T. Yano, A. Suzuki et al., J. Chem. Soc., Chem. Commun, p.2629, 1978.

B. M. Trost and T. R. Verhoeven, Pd-catalyzed allylation pathways involving hard and soft nucleophiles, J. Am. Chem. Soc, vol.98, p.630, 1976.

, Mechanistic features of ? 3 -allyl palladium complex 1.2.1. Generation of ? 3 -allyl palladium complex The oxidative addition of the allyl acetate to Pd(0) complex has been demonstrated by

. Yamamoto, who isolated and characterized the corresponding ? 3 -allyl(acetato) palladium intermediate. 151 Ultimately, 1981.

T. Yamamoto, O. Saito, and A. Yamamoto, J. Am. Chem. Soc, p.5600, 1981.

C. Amatore, S. Gamez, A. Jutand, G. Meyer, M. Moreno-mañas et al., Chem. Eur. J, vol.6, p.3372, 2000.

, Scheme 6. AAR of ? 3 allyl palladium complex

, Importantly, an ? 3 -allyl palladium complex can show the presence of slowly interconverting rotamers once coordinated by P,P ligands. Thus, for example, the 13-membered ? 3 -allyl palladium complex ligated to Trost 'Standard Ligand' A2.10, admits two possible diastereoisomeric forms A2

C. P. Butts, E. Filali, G. C. Lloyd-jones, P. Norrby, D. A. Sale et al., References 1. (a) Janecki, T., Natural Lactones and Lactams, vol.131, p.9945, 2009.

. Co, M. Kgaa-;-b)-ogliaruso, J. Wolfe, D. Dong, R. Zhang et al., Synthesis of lactone and lactamas, Synthesis, vol.2012, issue.2, p.1679, 2013.

M. Seitz and O. Reiser, Curr. Opin. Chem. Biol, vol.9, issue.3, p.285, 2005.

H. M. Hoffmann and J. Rabe, Angew. Chem. Int. Ed, p.94, 1985.

R. R. Kitson, A. Millemaggi, R. J. Taylor, R. Bandichhor, B. Nosse et al., Angew. Chem. Int. Ed, vol.48, issue.50, p.43, 2005.

D. Madec, J. Popowyck, F. Ayad, T. Phansavath, P. Ratovelomanana-vidal et al., Adv. Synth. Catal, vol.349, issue.6, p.943, 2007.

M. M. Murta, M. B. Azevedo, and A. E. Greene, J. Org. Chem, p.7537, 1993.

R. S. Ward, Chem. Soc. Rev, vol.11, p.75, 1982.

P. K. Amancha, H. Liu, T. W. Ly, and K. Shia, Eur. J. Org. Chem, p.3473, 2010.

J. D. Sellars, P. G. Steel, S. A. Snyder, S. B. Thomas, A. C. Mayer et al., Eur. J. Org. Chem, vol.23, issue.10, 2007.

K. C. Ed-;-nicolaou, T. R. Wu, Q. Kang, D. Y. Chen, A. C. Cheng et al., Angew. Chem. Int. Ed, vol.51, issue.17, p.4080, 2009.

Y. Zhang, J. P. Smuts, E. Dodbiba, R. Rangarajan, J. C. Lang et al., J. Agric. Food. Chem, vol.49, issue.2, p.485, 2011.

F. Dillon and G. H. , J. Pharmacol. Exp. Ther, vol.309, issue.2, p.677, 2004.

G. Roos, J. M. Wilson, D. J. Cram, J. M. Wilson, and D. J. Cram, Key Chiral Auxiliary Applications, J. Am. Chem. Soc, vol.104, issue.14, p.4930, 1982.

K. Fuji, M. Node, H. Nagasawa, Y. Naniwa, T. Taga et al., J. Am. Chem. Soc, vol.111, p.7921, 1989.

T. Akiyama, J. Itoh, K. Yokota, and K. Fuchibe, Angew. Chem. Int. Ed, vol.43, issue.12, 2004.

D. Uraguchi, M. Terada, M. Rueping, A. Kuenkel, and I. Atodiresei, J. Am. Chem. Soc, vol.126, issue.18, p.4539, 2004.

T. Akiyama, J. Itoh, and K. Fuchibe, Adv. Synth. Catal, vol.348, issue.9, p.999, 2006.

I. Coric, S. Muller, and B. List, J. Am. Chem. Soc, p.17370, 2010.

G. Qabaja, J. E. Wilent, A. R. Benavides, G. E. Bullard, and K. S. Petersen, Org. Lett, issue.6, p.1266, 2013.

E. L. Eliel, M. C. Willis, E. García-urdiales, I. Alfonso, and V. Gotor, Topics in Stereochemistry, J. Chem. Soc., Perkin Trans. 1, vol.18, issue.5, p.2303, 1988.

A. D. Meijere and F. Diederich, Metal-Catalyzed Cross-Coupling Reactions, 2004.

C. C. Johansson and T. J. Colacot, Angew. Chem. Int. Ed, vol.49, issue.4, p.676, 2010.

T. Satoh, J. Inoh, T. Kawamura, Y. Kawamura, M. Miura et al.,

, Chem. Soc. Jpn, p.2239, 1998.

M. Palucki and S. L. Buchwald, J. Am. Chem. Soc, vol.119, p.11108, 1997.

B. C. Hamann and J. F. Hartwig, J. Am. Chem. Soc, vol.119, p.12382, 1997.

J. M. Fox, X. Huang, A. Chieffi, and S. L. Buchwald, J. Am. Chem. Soc, vol.122, p.1360, 2000.

J. Ahman, J. P. Wolfe, M. V. Troutman, M. Palucki, S. L. Buchwald et al.,

. Soc, , vol.120, 1918.

T. Hamada, A. Chieffi, J. Ahman, S. L. Buchwald, A. De-filippis et al., J. Am. Chem. Soc, vol.124, issue.43, p.9757, 2002.

J. Cossy, A. De-filippis, and D. Gomez-pardo, Synthesis, issue.17, p.2930, 2004.

C. S. Proctor, H. Zhang, and T. Y. Zhang, Enantioselective process for preparing arylated lactones and derivatives. US World Patent WO2001072731, 2003.

D. J. Spielvogel and S. L. Buchwald, J. Am. Chem. Soc, vol.124, p.3500, 2002.

T. Hashimoto and K. Maruoka, Chem. Rev, vol.107, p.5656, 2007.

U. Dolling, P. Davis, and E. J. Grabowski, J. Am. Chem. Soc, vol.106, p.446, 1984.

T. Ooi, T. Miki, K. Fukumoto, and K. Maruoka, Adv. Synth. Catal, vol.348, pp.12-13, 2006.

T. A. Moss, B. Alonso, D. R. Fenwick, and D. J. Dixon, Angew. Chem. Int. Ed. Engl, issue.3, p.568, 2010.

M. W. Ha, H. Lee, H. Y. Yi, Y. Park, S. Kim et al., Adv. Synth. Catal, vol.355, issue.4, p.637, 2013.

T. Furuta and T. Kawabata, Science of Synthesis: Asymmetric Organocatalysis, vol.1, p.497, 2012.

R. P. Wurz, Chem. Rev, vol.107, p.5570, 2007.

J. C. Ruble and G. C. Fu, J. Am. Chem. Soc, vol.120, p.11532, 1998.

A. H. Mermerian and G. C. Fu, J. Am. Chem. Soc, vol.125, p.4050, 2003.

P. A. Woods, L. C. Morrill, R. A. Bragg, and A. D. Smith, Chemistry, vol.17, issue.39, 2011.

J. A. Birrell, J. N. Desrosiers, and E. N. Jacobsen, J. Am. Chem. Soc, issue.35, p.133, 2011.

A. Y. Hong, B. M. Stoltz, J. T. Mohr, B. M. Stoltz, J. D. Weaver et al., European J Org Chem, vol.2, issue.14, 1476.

A. J. Grenning and J. A. Tunge, Chem. Rev, vol.111, issue.3, p.1846, 2011.

J. Tsuji, H. Takahashi, and M. Morikawa, Tetrahedron Lett, p.4387, 1965.

I. Shimizu, T. Yamada, and J. Tsuji, Tetrahedron Lett, p.3199, 1980.

E. C. Burger and J. A. Tunge, Org. Lett, vol.6, p.4113, 2004.

T. Tsuda, Y. Chujo, S. Nishi, K. Tawara, and T. Saegusa, J. Am. Chem. Soc, vol.102, p.6381, 1980.

J. T. Mohr, D. C. Behenna, A. M. Harned, and B. M. Stoltz, Angew. Chem. Int. Ed

. Engl, , vol.44, p.6924, 2005.

V. Bhat, E. R. Welin, X. Guo, and B. M. Stoltz, Chem. Rev, vol.2017, issue.5, p.4528

D. C. Behenna and B. M. Stoltz, J. Am. Chem. Soc, vol.126, p.15044, 2004.

B. M. Trost and J. Xu, J. Am. Chem. Soc, vol.127, p.2846, 2005.

M. Hossain, E. Alberch, C. Brook, S. Asad, M. Shevyrev et al., Synlett, vol.2015, issue.03, p.388

B. M. Trost, J. Xu, and T. Schmidt, J. Am. Chem. Soc, p.18343, 2009.

J. A. Keith, D. C. Behenna, J. T. Mohr, S. Ma, S. C. Marinescu et al., J. Am. Chem. Soc, vol.129, p.395, 1996.

D. C. Behenna, J. T. Mohr, N. H. Sherden, S. C. Marinescu, A. M. Harned et al.,

K. Seto, M. Ma, S. Novak, Z. Krout, M. R. Mcfadden et al., Chemistry, vol.17, issue.50, p.14199, 2011.

N. H. Sherden, D. C. Behenna, S. C. Virgil, and B. M. Stoltz, Angew. Chem. Int. Ed

. Engl, , vol.48, p.6840, 2009.

M. Méndez, J. M. Cuerva, E. Gómez-bengoa, D. J. Cárdenas, and A. M. Echavarren, Chem. Eur. J, vol.8, p.3620, 2002.

J. Fournier, O. Lozano, C. Menozzi, S. Arseniyadis, and J. Cossy, Angew. Chem. Int

E. , , vol.52, p.1257, 2013.

M. G. Banwell, M. T. Jones, D. T. Loong, D. W. Lupton, D. M. Pinkerton et al., Tetrahedron, vol.2010, issue.47, p.9252

C. Amatore, E. Carré, A. Jutand, and M. A. Barki, Organometallics, vol.14, p.1818, 1995.

F. Ozawa, A. Kubo, T. Hayashi, D. Petrovic, R. Bruckner et al., Chem. Lett, vol.13, issue.6524, p.10345, 1992.

X. Jiang, D. Fu, G. Zhang, Y. Cao, L. Liu et al., Chem Commun (Camb), vol.2010, issue.24

P. M. Tomlin, M. Murray, J. M. Fernandez, J. C. Jeffery, T. Riis-johannessen et al., J. Am. Chem. Soc, vol.76, issue.39, p.9907, 1992.

G. S. Desta, Z. Y. Hong, L. Wang, R. Adv, and . Synth, Chem. Rev, vol.2012, issue.11, p.6104

. Catal, , vol.355, p.1023, 2013.

K. Lafaye, L. Nicolas, A. Guerinot, S. Reymond, and J. Cossy, Org. Lett, p.16, 2014.

M. Pohmakotr, A. Pinsa, T. Mophuang, P. Tuchinda, S. Prabpai et al., J. Org. Chem, p.386, 2006.

H. Fujioka, R. Maehata, S. Wakamatsu, K. Nakahara, T. Hayashi et al.,

. Lett, , p.1054, 2012.

S. D. Rychnovsky, P. A. Bartlett, M. De-oliveira, J. Fournier, S. Arseniyadis et al., J. Am. Chem. Soc, vol.103, issue.1, p.14, 1981.

S. M. Mcelvian and P. M. Laughton, J. Am. Chem. Soc, vol.73, p.448, 1951.

J. X. Gu and H. L. Holland, Synth. Commun, vol.28, issue.18, p.3305, 1998.

Y. Yamamoto, K. Yamada, and K. Tomioka, Tetrahedron Lett, vol.45, issue.4, p.795, 2004.

G. A. Molander and C. Kenny, Tetrahedron Lett, p.4367, 1987.

E. Juaristi, V. A. Soloshonok, T. Hintermann, and D. Seebach, Enantioselective synhtesis of beta-amino acids, vol.82, p.437, 1997.

J. V. Schreiber, J. L. Matthews, T. Hintermann, B. Jaun, M. Windholz et al., The Merck Index: An Encyclopedia of Chemicals and Drugs, vol.80, 1976.

C. Schmuck, H. Wennemers, C. E. Ballard, H. Y. Wang, D. L. Steer et al., Nature in Highlights in Bioorganic Chemistry: Methods and Applications, vol.85, p.443, 2000.

C. A. Bewley and D. J. Faulkner, Angew. Chem. Int. Ed, vol.37, p.2162, 1998.

G. Cardillo and C. Tomasini, Chem. Soc. Rev, vol.25, p.117, 1996.

C. J. Schofield and M. W. Walter, Peptides, and Proteins Royal Society of Chemistry: Cambridge, vol.30, 1999.

W. Lee, M. A. Mcdonough, L. P. Kotra, Z. Li, N. R. Silvaggi et al.,

J. A. Kelly, S. Mobashery, A. Matagne, A. Dubus, M. Galleni et al., 1; (b) Kelly, Proc. Natl. Acad. Sci. USA, vol.98, 1427.

P. C. Moews, J. R. Knox, C. Duez, C. ;. Fraipont, and . Joris,

J. Dusart, J. M. Frère, and J. M. Ghuysen, Science, 1429.

G. S. Singh, A. Avenoza, C. Cativiela, M. París, J. M. Peregrina et al., Tetrahedron: Asymmetry, vol.59, issue.39, p.2884, 1409.

T. Chem-;-hansen, T. Alst, M. Havelkova, and M. B. Strom, J. Med, vol.54, issue.3, p.858, 2011.

. Chem, D. Ausbacher, G. Svineng, T. Hansen, M. B. Strom et al., Biochim. Biophys. Acta, vol.2012, issue.2, p.4390, 2010.

A. Jacobsen-cde, M. Havelkova, L. T. Nguyen, H. J. Vogel, M. B. Strom et al., J. Pept. Sci, vol.2012, issue.10, p.170

S. Abele and D. Seebach, Eur. J. Org. Chem, 2000.

E. Juaristi, M. Balderas, and Y. Ramírez-quirós, Tetrahedron: Asymmetry, vol.9, p.3881, 1998.

C. Cativiela, M. D. Diaz-de-villegas, J. A. Gglvez, C. Cativiela, M. D. Diaz-de-villegas et al., Tetrahedron: Asymmetry, vol.59, 1445.

Y. Lapeña, Tetrahedron: Asymmetry, vol.8, p.311, 1997.

T. Hanamoto, T. Katsuki, and M. Yamaguchi, Tetrahedron Lett, p.2463, 1986.

A. Avenoza, M. París, and J. M. Peregrina, J. Org. Chem, p.7774, 1994.

A. Avenoza, C. Cativiela, M. París, and J. M. Peregrina, Tetrahedron: Asymmetry, vol.6, p.1409, 1995.

R. Peters and S. Jautze, , p.365, 2009.

M. Sawamura, H. Hamashima, and Y. Ito, J. Am. Chem. Soc, vol.114, p.8295, 1992.

K. Inagaki, K. Nozaki, and H. Takaya, , p.119, 1997.

Y. Motoyama, Y. Koga, K. Kobayashi, K. Aoki, and H. Nishiyama, Chem. Eur. J, p.2968, 2002.

M. A. Stark, G. Jones, and C. J. Richards, Organometallics, vol.19, p.1282, 2000.

C. Mazet and L. H. Gade, Chem. Eur. J, vol.9, p.1759, 2003.

K. Takenaka, M. Minakawa, and Y. Uozumi, J. Am. Chem. Soc, vol.127, p.12273, 2005.

S. Jautze and R. Peters, Angew. Chem. Int. Ed. Engl, vol.47, issue.48, p.9284, 2008.

H. Wynberg, R. Helder, and T. Lett, , p.4057, 1975.

H. Li, J. Song, X. Liu, and L. Deng, J. Am. Chem. Soc, vol.127, p.8948, 2005.

F. Wu, R. Hong, J. Khan, X. Liu, and L. Deng, Angew. Chem. Int. Ed, p.4301, 2006.

M. Bell, K. Frisch, and K. A. Jørgensen, J. Org. Chem, p.5407, 2006.

T. Y. Liu, J. Long, B. J. Li, L. Jiang, R. Li et al., Org Biomol Chem, vol.4, issue.11, p.2097, 2006.

B. Wang, F. Wu, Y. Wang, X. Liu, and L. Deng, J. Am. Chem. Soc, p.768, 2007.

M. Bell, T. B. Poulsen, K. A. Jørgensen, T. Tite, M. Sabbah et al., Chem Commun (Camb), vol.72, p.49, 2007.

S. Postikova, T. Tite, V. Levacher, and J. Brière, Adv. Synth. Catal, vol.355, issue.98, p.2513, 2013.

N. A. Beare and J. F. Hartwig, J. Org. Chem, p.541, 2002.

X. Xie, G. Cai, and D. Ma, Org. Lett, vol.7, p.4693, 2005.

S. F. Yip, H. Y. Cheung, Z. Zhou, and F. Y. Kwong, Org. Lett, p.3469, 2007.

P. Crooy, R. D. Neys, J. Eliaers, R. Liveyns, G. Simonet et al.,

. Soc, . Chim, R. S. Belg-;-dandala, M. S. Chaudhary, and H. , Sivakumaran, M An improved process for the preparation of penicillin derivatives, vol.86, p.991, 1977.

B. Ringstrand, M. Oltmanns, J. A. Batt, A. Jankowiak, R. P. Denicola et al., Beilstein J Org Chem, vol.7, p.386, 2011.

W. Zi, F. D. Toste, H. Yamanaka, S. Ohba, T. Sakamoto et al., Heterocycles 1990, 31, 1115; (b), Angew. Chem. Int. Ed. Engl, vol.54, issue.48, p.11874, 2013.

L. M. Weinstock, E. Corley, N. L. Abramson, A. O. King, S. Karady et al., Eur. J. Org. Chem, vol.27, issue.6, 1988.

D. B. Ramachary, M. Kishor, and K. Ramakumar, Tetrahedron Lett, issue.5, p.651, 2006.

X. Guinchard, Y. Vallée, and J. Denis, Org. Lett, vol.7, p.5147, 2005.

C. P. Butts, E. Filali, G. C. Lloyd-jones, P. Norrby, D. A. Sale et al., J. Am. Chem. Soc, p.9945, 2009.

T. P. Blaisdell, T. C. Caya, L. Zhang, A. Sanz-marco, and J. P. Morken, J. Am. Chem. Soc, vol.136, issue.26, p.9264, 2014.

M. Amat, F. Arioli, M. Pérez, E. Molins, and J. Bosh, Org. Lett, p.2470, 2013.

Z. C. Duan, X. P. Hu, C. Zhang, D. Y. Wang, S. B. Yu et al., J. Org. Chem, vol.74, issue.23, p.9191, 2009.

A. L. Jones and J. K. Snider, Org. Lett, vol.12, p.1592, 2010.

L. Sugano, M. Costerison, J. R. Bergmeier, S. C. Seth, P. P. Adam et al., Tetrahedron Lett, vol.40, p.12938, 1999.

C. Gianelli, L. Sambri, A. Carlone, G. Bartoli, and P. Melchiorre, Angew. Chem. Int

E. , , vol.47, p.8700, 2008.

S. Reddy-chidipudi, I. Khan, and H. W. Lam, Angew. Chem. Int. Ed. Engl, vol.2012, issue.48, p.12115

Z. Xi, W. Hao, P. Wang, and M. Cai, Molecules, vol.14, issue.9, p.3528, 2009.

J. Ruan, X. Li, O. Saidi, and J. Xiao, J. Am. Chem. Soc, vol.130, p.2424, 2008.

C. Marti and E. M. Carreira, J. Am. Chem. Soc, vol.127, p.11505, 2005.

R. M. Coates, B. D. Hobbs, S. J. Peck, D. R. Curran, and D. P. , J. Am. Chem. Soc, vol.109, p.1160, 1987.

B. M. Trost and J. Xu, J. Am. Chem. Soc, vol.127, p.17180, 2005.

B. M. Trost, B. M. Trost, M. L. Crawley, T. Graening, H. G. Schmalz et al., Angew. Chem. Int. Ed. Engl, vol.103, issue.35, p.127, 1977.

;. Chem, C. G. Frost, J. Howarth, J. M. Williams, J. Tsuji et al., Tetrahedron: Asymmetry, vol.3, p.1539, 1089.

N. H. Dierkes, P. Heumann, and A. , Palladium-catalyzed allylic substitutions, Propargylic, and Allenic Substitution with Nitrogen, Oxygen, and Other Groups, vol.100, pp.15-17, 1998.

H. Nucleophiles, ;. Williams, and L. , In Handbook of Organopalladium Chemistry for Organic Synthesis, 2002.

A. A. , Synthetic Scope of the Tsuji-Trost Reaction with Allylic Halides, Carboxylates, Ethers, and Related Oxygen Nucleophiles as Starting Compounds, Handbook of

E. Negishi and U. -i.-;-m)-kazmaier, Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis, Organopalladium Chemistry for Organic Synthesis, 2002.

J. Fiaud and J. Legros, J. Org. Chem, p.52, 1907.

H. Matsushita, E. Negishi, N. -i.-;-b)-miyaura, T. Yano, A. Suzuki et al., J. Chem. Soc., Chem. Commun, p.313, 1980.

M. Takahashi, M. Kumada, T. Lett-;-hayasi, Y. Riediker, M. Temple et al., Tetrahedron Lett, p.2629, 1978.

B. M. Trost and T. R. Verhoeven, J. Am. Chem. Soc, p.630, 1976.

H. Matsushita and E. Negishi, J. Chem. Soc., Chem. Commun, issue.3, p.160, 1982.

B. M. Trost and T. R. Verhoeven, J. Org. Chem, p.3215, 1976.

T. Yamamoto, O. Saito, A. ;. Yamamoto, S. Gamez, A. Jutand et al., J. Am. Chem. Soc, vol.103, p.3372, 1981.

A. Vitagliano, B. Akermark, and S. Hansson, Organometallics, vol.10, p.2592, 1991.

P. S. Pregosin, R. Salzmann, and . Coord, Chem. Rev, vol.155, p.35, 1996.

N. Solin and K. Szabó, Organometallics, p.5464, 1920.

C. Amatore, A. Jutand, L. Mensah, and L. Ricard, J. Organomet. Chem, issue.7, p.1457, 2007.