A. Geiger, G. Bossard, D. Sereno, J. Pissarra, J. Lemesre et al., Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids, Front Immunol, vol.7, pp.1-21, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01512013

P. Holzmuller, A. Geiger, R. Nzoumbou-boko, J. Pissarra, S. Hamrouni et al.,

, Trypanosomatid Infections: How Do Parasites and Their Excreted-Secreted Factors Modulate the Inducible Metabolism of l-Arginine in Macrophages? Front Immunol. Frontiers, vol.9, p.778, 2018.

, Oral Presentation Sessions, Trop Med Int Heal, vol.22, pp.2-114, 2017.

T. Hailu, Challenges in visceral leishmaniasis control and elimination in the developing countries: A review, 2016.

I. Okwor and J. Uzonna, Social and Economic Burden of Human Leishmaniasis, Am J Trop Med Hyg

, The American Society of Tropical Medicine and Hygiene, vol.94, issue.3, pp.489-93, 2016.

D. Savoia, Recent updates and perspectives on leishmaniasis, J Infect Dev Ctries, vol.9, issue.06, pp.588-96, 2015.

A. Pigott, D. M. Subramaniam, K. Haines, L. R. Kelly-hope, L. Molyneux et al., Cutaneous leishmaniasis and conflict in Syria, Emerg Infect Dis, vol.22, 2016.

R. Du, P. J. Hotez, A. Ws, and A. Acosta-serrano, Old World cutaneous leishmaniasis and refugee crisis in the Middle East and North Africa, PLoS Negl Trop Dis, vol.10, 2016.

A. Herricks, J. R. Hotez, and P. J. , A review of visceral leishmaniasis during the conflict in South Sudan and the consequences for East African countries. Parasites and Vectors, vol.9, 2016.

K. Hayani, A. Dandashli, and E. Weisshaar, Cutaneous Leishmaniasis in Syria: Clinical Features, Current Status and the Effects of War, Acta Derm Venereol, vol.95, issue.1, pp.62-68, 2015.

. Who and . Who, Weekly epidemiological record: Global leishmaniasis update, World Heal Organ, vol.92, issue.38, pp.557-72, 2006.

S. Burza, S. L. Croft, M. Boelaert, and . Leishmaniasis, The Lancet, vol.392, pp.951-70, 2018.

L. Savioli, D. Daumerie, and D. W. Crompton, Accelerating Work to Overcome the Global Impact of Neglected Tropical Diseases: A Roadmap for Implementation. World Health Organization, 2012.

, The Sixtieth World Health Assembly. Resolution WHA60.13 Control of leishmaniasis. 2007. 15. Lacerda MM. The Brazilian Leishmaniasis Control Program, Mem Inst Oswaldo Cruz, 1994.

S. Burza, S. L. Croft, M. Boelaert, and . Leishmaniasis, The Lancet, vol.392, pp.951-70, 2018.

A. J. Magill, Leishmania Species: Visceral (Kala-Azar)

M. Leishmaniasis,

, Bennett's Principles and Practice of Infectious Diseases, pp.3493-525, 2015.

E. E. Zijlstra, The immunology of post-kala-azar dermal leishmaniasis (PKDL). Parasit Vectors, BioMed Central, vol.9, issue.1, p.464, 2016.

M. Akhoundi, K. Kuhls, A. Cannet, J. Votýpka, P. Marty et al., A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies, PLoS Negl Trop Dis. Public Library of Science, vol.10, issue.3, p.4349, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01947736

R. Killick-kendrick, Some epidemiological consequences of the evolutionary fit between Leishmaniae and their phlebotomine vectors, Bull Soc Pathol Exot Filiales, vol.78, issue.5, pp.747-55, 1985.

J. J. Batista-de, C. Mesquita-rodrigues, and P. Cuervo, Chapter 14 -Proteomics Advances in the Study of Leishmania Parasites and Leishmaniasis, Proteins and Proteomics of Leishmania and Trypanosoma, pp.323-372, 2014.

S. Besteiro, R. Williams, G. H. Coombs, and J. C. Mottram, Protein turnover and differentiation in Leishmania, Int J Parasitol, vol.37, issue.10, pp.1063-75, 2007.

A. C. Ivens, C. S. Peacock, L. Murphy, G. Aggarwal, and M. Berriman, The genome of the kinetoplastid parasite, Leishmania major, Science, vol.309, issue.5733, pp.436-478, 2005.

K. Leifso, G. Cohen-freue, N. Dogra, A. Murray, and W. R. Mcmaster, Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: The Leishmania genome is constitutively expressed, Mol Biochem Parasitol, vol.152, issue.1, pp.35-46, 2007.

N. Fasel, N. Acestor, E. Fadili-kundig, A. Gonzalez, I. Masina et al., The Leishmania proteome, Leishmania, 2008.

C. S. Peacock, K. Seeger, D. Harris, L. Murphy, J. C. Ruiz et al., Comparative genomic analysis of three Leishmania species that cause diverse human disease, Nat Genet, vol.39, issue.7, pp.839-886, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169316

M. B. Rogers, J. D. Hilley, N. J. Dickens, J. Wilkes, P. A. Bates et al., Chromosome and multitasking, Biochim Biophys Acta -Mol Cell Res, vol.1803, issue.4, pp.520-525, 2010.

C. Chen, S. Zabad, H. Liu, W. Wang, and C. Jeffery, MoonProt 2.0: an expansion and update of the moonlighting proteins database, Nucleic Acids Res. Narnia, vol.46, issue.D1, pp.640-644, 2018.

S. Da-fonseca-pires, L. C. Fialho, S. O. Silva, M. N. Melo, D. Souza et al., Identification of virulence factors in leishmania infantum strains by a proteomic approach, J Proteome Res, vol.13, issue.4, pp.1860-72, 2014.

L. M. Lincoln, M. Ozaki, J. E. Donelson, and J. K. Beetham, Genetic complementation of Leishmania deficient in PSA (GP46) restores their resistance to lysis by complement, Mol Biochem Parasitol, vol.137, issue.1, pp.185-194, 2004.

P. Salotra, R. C. Duncan, R. Singh, S. Raju, B. V. Sreenivas et al., Upregulation of surface proteins in Leishmania donovani isolated from patients of post kala-azar dermal leishmaniasis, Microbes Infect, vol.8, issue.3, pp.637-681, 2006.

D. Nandan and N. E. Reiner, Attenuation of gamma interferon-induced tyrosine phosphorylation in mononuclear phagocytes infected with Leishmania donovani: selective inhibition of signaling through Janus kinases and Stat1, Infect Immun. American Society for Microbiology Journals, vol.63, issue.11, pp.4495-500, 1995.

F. Nourbakhsh, S. Uliana, and D. F. Smith, Characterisation and expression of a stage-regulated gene of Leishmania major, Mol Biochem Parasitol, vol.76, issue.1-2, pp.201-214, 1996.

I. Naouar, T. Boussoffara, M. Chenik, S. Gritli, B. Ahmed et al., Prediction of T Cell Epitopes from Leishmania major Potentially Excreted/Secreted Proteins Inducing Granzyme B Production
URL : https://hal.archives-ouvertes.fr/hal-01356501

P. Khare, A. K. Jaiswal, C. Tripathi, S. Sundar, and A. Dube, Immunoprotective responses of T helper type 1 stimulatory protein-S-adenosyl-L-homocysteine hydrolase against experimental visceral leishmaniasis, Clin Exp Immunol. Wiley-Blackwell, vol.185, issue.2, pp.165-79, 2016.

M. Olivier, V. D. Atayde, A. Isnard, K. Hassani, and M. T. Shio, Leishmania virulence factors: Focus on the metalloprotease GP63, Microbes Infect, vol.14, issue.15, pp.1377-89, 2012.

L. Avilán, M. Gualdrón-lópez, W. Quiñones, L. González-gonzález, V. Hannaert et al., Enolase: a key player in the metabolism and a probable virulence factor of trypanosomatid parasites-perspectives for its use as a therapeutic target, Enzyme Res. Hindawi Limited, p.932549, 2011.

V. Yurchenko, Z. Xue, B. Sherry, and M. Bukrinsky, Functional analysis of Leishmania major cyclophilin, Int J Parasitol. NIH Public Access, vol.38, issue.6, pp.633-642, 2008.

D. Nandan, T. Tran, E. Trinh, J. M. Silverman, and M. Lopez, Identification of leishmania fructosedomain containing protein tyrosine phosphatase SHP-1, Biochem Biophys Res Commun, vol.364, issue.3, pp.601-608, 2007.

A. Lonsdale, M. J. Davis, M. S. Doblin, and A. Bacic, Better Than Nothing? Limitations of the Prediction Tool SecretomeP in the Search for Leaderless Secretory Proteins (LSPs) in Plants, Front Plant Sci. Frontiers, vol.7, p.1451, 2016.

H. Nielsen, E. I. Petsalaki, L. Zhao, and K. Stühler, Predicting eukaryotic protein secretion without signals, Biochim Biophys Acta -Proteins Proteomics, 2018.

G. Van-niel, D. Angelo, G. Raposo, and G. , Shedding light on the cell biology of extracellular vesicles, Nat Rev Mol Cell Biol. Nature Publishing Group, vol.19, issue.4, pp.213-241, 2018.

K. Jain and N. K. Jain, Vaccines for visceral leishmaniasis: A review, J Immunol Methods, vol.422, pp.1-12, 2015.

B. Singh and S. Sundar, Leishmaniasis: Vaccine candidates and perspectives, Vaccine. Elsevier Ltd, vol.30, issue.26, pp.3834-3876, 2012.

D. Paape and T. Aebischer, Contribution of proteomics of Leishmania spp. to the understanding of differentiation, drug resistance mechanisms, vaccine and drug development, J Proteomics, vol.74, issue.9, pp.1614-1638, 2011.

K. Murphy, C. Weaver, and . Glossary, Janeway's Immunobiology

B. Singh and S. Sundar, Leishmaniasis: Vaccine candidates and perspectives, Vaccine. Elsevier Ltd, vol.30, issue.26, pp.3834-3876, 2012.

R. Kumar and C. Engwerda, Vaccines to prevent leishmaniasis, Clin Transl Immunol. Nature Publishing Group, vol.3, issue.3, p.13, 2014.

B. S. Lakshmi, R. Wang, and R. Madhubala, Leishmania genome analysis and high-throughput immunological screening identifies tuzin as a novel vaccine candidate against visceral leishmaniasis, Vaccine. Elsevier Ltd, vol.32, issue.30, pp.3816-3838, 2014.

S. Sundar and B. Singh, Identifying vaccine targets for anti-leishmanial vaccine development, Expert Rev Vaccines, vol.13, issue.4, pp.489-505, 2014.

J. Alvar, S. L. Croft, P. Kaye, A. Khamesipour, S. Sundar et al., Case study for a vaccine against leishmaniasis. Vaccine, vol.31, pp.244-253, 2013.

Z. Mou, J. Li, T. Boussoffara, H. Kishi, H. Hamana et al., Identification of broadly conserved cross-species protective Leishmania antigen and its responding CD4 + T cells, Sci Transl Med, vol.7, issue.310, pp.1-13, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01375023

P. J. Alcolea, A. Alonso, M. J. Gómez, I. Moreno, M. Domínguez et al., Transcriptomics throughout the life cycle of Leishmania infantum: High down-regulation rate in the amastigote stage, Int J Parasitol, vol.40, issue.13, pp.1497-516, 2010.

R. Rosa, C. Marques, O. R. Rodrigues, and G. M. Santos-gomes, Leishmania infantum released proteins specifically regulate cytokine expression and production patterns by CD4+ and CD8+ T cells, Acta Trop, vol.97, issue.3, pp.309-326, 2006.

U. Lambertz, J. M. Silverman, D. Nandan, W. R. Mcmaster, J. Clos et al., Secreted virulence factors and immune evasion in visceral leishmaniasis, J Leukoc Biol, vol.91, issue.6, pp.887-99, 2012.

R. Rosa, R. Rodrigues, O. Marques, C. Santos-gomes, and G. M. , Leishmania infantum: Soluble proteins released by the parasite exert differential effects on host immune response, Exp Parasitol, vol.109, issue.2, pp.106-120, 2005.

J. K. Gour, V. Kumar, N. Singh, S. Bajpai, H. P. Pandey et al., Identification of Th1-responsive leishmanial excretory-secretory antigens (LESAs), Exp Parasitol. Elsevier Inc, vol.132, issue.3, pp.355-61, 2012.

S. Hosein, D. P. Blake, and L. Solano-gallego, Insights on adaptive and innate immunity in canine leishmaniosis, 2019.

P. J. Alcolea, A. Alonso, M. J. Gómez, M. Postigo, R. Molina et al., Stage-specific CHAPTER

, differential gene expression in Leishmania infantum: from the foregut of Phlebotomus perniciosus to the human phagocyte, BMC Genomics. BioMed Central

W. R. Pearson, An Introduction to Sequence Similarity, Homology ") Searching. Curr Protoc Bioinforma, pp.1-9, 2013.

S. J. Carmona, P. A. Sartor, M. S. Leguizamón, O. E. Campetella, and F. Agüero, Diagnostic Peptide Discovery: Prioritization of Pathogen Diagnostic Markers Using Multiple Features, PLoS One, vol.7, issue.12, p.50748, 2012.

P. Ribeiro, D. S. Dias, D. P. Lage, L. E. Costa, V. T. Martins et al., Evaluation of a Leishmania hypothetical protein administered as DNA vaccine or recombinant protein against Leishmania infantum infection and its immunogenicity in humans, Cell Immunol, vol.331, pp.67-77, 2018.

K. Murphy, C. Weaver, and . Glossary, Janeway's Immunobiology, pp.818-54, 2017.

J. Calis, M. Maybeno, J. A. Greenbaum, D. Weiskopf, D. Silva et al., Properties of MHC Class I Presented Peptides That Enhance Immunogenicity, PLoS Comput Biol. Public Library of Science, vol.9, issue.10, p.1003266, 2013.

D. E. Gaddis, M. J. Fuller, and A. J. Zajac, 6 CD8 T-cell Immunodominance, Repertoire, and Memory, pp.109-144, 2006.

S. P. Singh and B. N. Mishra, Major histocompatibility complex linked databases and prediction tools for designing vaccines, Hum Immunol, vol.77, issue.3, pp.295-306, 2016.

R. Vita, J. A. Overton, J. A. Greenbaum, J. Ponomarenko, J. D. Clark et al., The immune epitope database (IEDB) 3.0. Nucleic Acids Res, vol.43, pp.405-417, 2015.

O. Lund, M. Nielsen, C. Lundegaard, C. Kesmir, and S. Brunak, Immunological Bioinformatics. Methods. Cambridge, 2005.

N. Tomar and R. K. De, Immuno-informatics: A Brief Review, Immunoinformatics. Methods in Molecular Biology (Methods and Protocols), vol.1184, 2014.

L. Liljeroos, E. Malito, I. Ferlenghi, and M. J. Bottomley, Structural and Computational Biology in the Design of Immunogenic Vaccine Antigens, J Immunol Res, p.156241, 2015.

C. Tung, Chapter 6 -Databases for T-Cell Epitopes, Immunoinformatics, pp.123-157, 2014.

N. Salimi, W. Fleri, B. Peters, and A. Sette, Design and utilization of epitope-based databases and predictive tools

W. Fleri, K. Vaughan, N. Salimi, R. Vita, B. Peters et al., The Immune Epitope Database: How Data Are Entered and Retrieved, J Immunol Res, 2017.

R. Vita, S. Mahajan, J. A. Overton, S. K. Dhanda, S. Martini et al., The Immune Epitope Database (IEDB): 2018 update, Nucleic Acids Res, vol.47, issue.D1, pp.339-382, 2019.

J. Robinson, J. A. Halliwell, H. Mcwilliam, R. Lopez, and S. Marsh, IPD-the Immuno Polymorphism Database, Nucleic Acids Res. Narnia, vol.41, issue.D1, pp.1234-1274, 2012.

J. Robinson, J. A. Halliwell, H. Mcwilliam, R. Lopez, P. Parham et al., The IMGT/HLA database, Nucleic Acids Res, vol.41, issue.D1, pp.1222-1229, 2012.

V. Brusic, G. Rudy, and L. C. Harrison, MHCPEP: a database of MHC-binding peptides, Nucleic Acids Res, vol.22, issue.17, pp.3663-3668, 1994.

H. Rammensee, J. Bachmann, N. N. Emmerich, O. A. Bachor, and S. Stevanovic, SYFPEITHI: database for MHC ligands and peptide motifs, Immunogenetics, vol.50, pp.213-222, 1999.

S. Lata, M. Bhasin, and G. Raghava, MHCBN 4.0: A database of MHC/TAP binding peptides and Tcell epitopes, BMC Res Notes, vol.2, p.61, 2009.

L. Backert, Immunoinformatics and epitope prediction in the age of next-generation sequencing and personalized medicine, Genome Med. Genome Medicine, pp.1-12, 2015.

C. Lundegaard, I. Hoof, O. Lund, and M. Nielsen, State of the art and challenges in sequence based Tcell epitope prediction, Immunome Res, vol.6, issue.2, p.3, 2010.

V. Desai, D. Kulkarni-kale, and U. , Chapter 19 -T-Cell Epitope Prediction Methods: An Overview, Immunoinformatics Methods in Molecular Biology (Methods and Protocols), 2014.

W. Morrow, N. A. Sheikh, C. S. Schmidt, D. H. Davies, and . Vaccinology, Principles and Practice. Vaccinology: Principles and Practice, 2012.

P. Wang, J. Sidney, Y. Kim, A. Sette, O. Lund et al., Peptide binding predictions for HLA DR, DP and DQ molecules, BMC Bioinformatics, vol.11, issue.1, p.568, 2010.

L. Zhang, K. Udaka, H. Mamitsuka, and S. Zhu, Toward more accurate pan-specific MHC-peptide binding prediction: A review of current methods and tools. Brief Bioinform, vol.13, pp.350-64, 2012.

H. H. Lin, G. L. Zhang, S. Tongchusak, E. L. Reinherz, and V. Brusic, Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research, BMC Bioinformatics, vol.9, p.22, 2008.

P. Wang, J. Sidney, C. Dow, B. Mothé, A. Sette et al., A Systematic Assessment of MHC Class II Peptide Binding Predictions and Evaluation of a Consensus Approach, PLoS Comput Biol, vol.4, issue.4, p.1000048, 2008.

B. Peters, H. Bui, S. Frankild, M. Nielsen, C. Lundegaard et al., A Community Resource Benchmarking Predictions of Peptide Binding to MHC-I Molecules, PLoS Comput Biol. Public Library of Science, vol.2, issue.6, p.65, 2006.

T. Trolle, I. G. Metushi, J. A. Greenbaum, Y. Kim, J. Sidney et al., Automated benchmarking of peptide-MHC class I binding predictions, Bioinformatics, vol.31, issue.13, pp.2174-2181, 2015.

R. R. Mallios, A consensus strategy for combining HLA-DR binding algorithms, Hum Immunol, vol.64, issue.9, pp.852-858, 2003.

M. Castelli, F. Cappelletti, R. A. Diotti, G. Sautto, E. Criscuolo et al., Peptide-based vaccinology: experimental and computational approaches to target hypervariable viruses through the fine characterization of protective epitopes recognized by monoclonal antibodies and the identification of T-cell-activating peptides, Clin Dev Immunol, 2013.

A. Ferrante and J. Gorski, Cooperativity of hydrophobic anchor interactions: evidence for epitope selection by MHC class II as a folding process, J Immunol, vol.178, issue.11, pp.7181-7190, 2007.

A. Sette and R. Rappuoli, Reverse Vaccinology: Developing Vaccines in the Era of, Genomics. Immunity, vol.33, issue.4, pp.530-571, 2010.

T. Aebischer and . Leishmania, Proteome Data Sets: A Comprehensive Resource for Vaccine Development to, Target Visceral Leishmaniasis. Front Immunol. Frontiers, vol.5, p.260, 2014.

K. L. Rock and L. Shen, Cross-presentation: underlying mechanisms and role in immune surveillance, Immunol Rev, vol.207, issue.1, pp.166-83, 2005.

S. Vivona, J. L. Gardy, S. Ramachandran, F. Brinkman, G. Raghava et al.,

, Computer-aided biotechnology: from immuno-informatics to reverse vaccinology, Trends Biotechnol, vol.26, issue.4, pp.190-200, 2008.

D. M. Resende, A. M. Rezende, N. J. Oliveira, I. Batista, R. Corrêa-oliveira et al., An assessment on epitope prediction methods for protozoa genomes, BMC Bioinformatics, vol.13, issue.1, p.309, 2012.

A. S. De-groot, M. L. Liu, R. Gutierrez, A. H. Tassone, R. Bailey-kellogg et al., Immune camouflage: Relevance to vaccines and human immunology, Hum Vaccin Immunother, vol.10, issue.12, pp.3570-3575, 2015.

S. Noazin, F. Modabber, A. Khamesipour, P. G. Smith, L. H. Moulton et al., First generation leishmaniasis vaccines: A review of field efficacy trials, Vaccine, vol.26, issue.52, pp.6759-67, 2008.

C. A. Weber, P. J. Mehta, M. Ardito, M. L. Martin, B. et al., T cell epitope: Friend or Foe? Immunogenicity of biologics in context, Adv Drug Deliv Rev, vol.61, issue.11, pp.965-76, 2009.

J. Settleman, C. L. Sawyers, and T. Hunter, Challenges in validating candidate therapeutic targets in cancer, Elife. eLife Sciences Publications Limited, vol.7, p.32402, 2018.

S. H. Kaufmann, J. Mcelrath, M. Lewis, D. J. , D. Giudice et al., Challenges and responses in human vaccine development, Curr Opin Immunol, vol.28, pp.18-26, 2014.

T. Hagan, H. I. Nakaya, S. Subramaniam, and B. Pulendran, Systems vaccinology: Enabling rational vaccine design with systems biological approaches, Vaccine, vol.33, issue.40, pp.5294-301, 2015.

J. W. Yewdell and J. R. Bennink, Immunodominance in major histocompatibility complex class Irestricted T lymphocyte responses, Annu Rev Immunol, vol.17, pp.51-88, 1999.

C. A. Lazarski, F. A. Chaves, S. A. Jenks, S. Wu, K. A. Richards et al., The kinetic stability of MHC class II:peptide complexes is a key parameter that dictates immunodominance, Immunity, vol.23, issue.1, pp.29-40, 2005.

A. J. Sant, F. A. Chaves, S. A. Jenks, K. A. Richards, P. Menges et al., The relationship between immunodominance, DM editing, and the kinetic stability of MHC class II:peptide complexes, Immunol Rev, vol.207, issue.1, pp.261-78, 2005.

D. Weiskopf, M. A. Angelo, E. L. De-azeredo, S. J. Greenbaum, J. A. Fernando et al., Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8 + T cells, 2013.

J. Greenbaum, J. Sidney, J. Chung, C. Brander, B. Peters et al., Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes, Immunogenetics, 2011.

M. Manczinger and L. Kemény, Peptide presentation by HLA-DQ molecules is associated with the development of immune tolerance, PeerJ. PeerJ, Inc, vol.6, p.5118, 2018.

E. Koren, D. Groot, A. S. Jawa, V. Beck, K. D. Boone et al., Clinical validation of the "in silico" prediction of immunogenicity of a human recombinant therapeutic protein, Clin Immunol, vol.124, issue.1, pp.26-32, 2007.

V. Jurtz, S. Paul, M. Andreatta, P. Marcatili, B. Peters et al., NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data, J Immunol, vol.199, issue.9, pp.3360-3368, 2017.

M. Moutaftsi, B. Peters, V. Pasquetto, D. C. Tscharke, J. Sidney et al., A consensus epitope prediction approach identifies the breadth of murine TCD8+-cell responses to vaccinia virus, Nat Biotechnol, vol.24, issue.7, pp.817-826, 2006.

M. Andreatta, E. Karosiene, M. Rasmussen, A. Stryhn, S. Buus et al., Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification, Immunogenetics. NIH Public Access, vol.67, pp.641-50, 2015.

S. Wu and Y. Zhu, ProPAS: standalone software to analyze protein properties, Bioinformation

, Biomedical Informatics Publishing Group, vol.8, issue.3, pp.167-176, 2012.

S. Mcginnis and T. L. Madden, BLAST: At the core of a powerful and diverse set of sequence analysis tools, Nucleic Acids Res, vol.32, pp.20-25, 2004.

L. John, G. J. John, and T. Kholia, A Reverse Vaccinology Approach for the Identification of Potential Vaccine Candidates from Leishmania spp, Appl Biochem Biotechnol, vol.167, issue.5, pp.1340-50, 2012.

C. Herrera-najera, R. Piña-aguilar, F. Xacur-garcia, M. J. Ramirez-sierra, and E. Dumonteil, Mining the Leishmania genome for novel antigens and vaccine candidates, Proteomics, vol.9, issue.5, pp.1293-301, 2009.

L. He and J. Zhu, Computational tools for epitope vaccine design and evaluation, Curr Opin Virol, vol.11, pp.103-115, 2015.

M. Agallou, E. Athanasiou, O. Koutsoni, E. Dotsika, and E. Karagouni, Experimental validation of multi-epitope peptides including promising MHC class I-and II-restricted epitopes of four known Leishmania infantum proteins, Front Immunol, vol.5, pp.1-16, 2014.

R. Chamakh-ayari, R. Bras-gonçalves, N. Bahi-jaber, E. Petitdidier, W. Markikou-ouni et al., In vitro evaluation of a soluble Leishmania promastigote surface antigen as a potential vaccine candidate against human leishmaniasis, PLoS One, vol.9, issue.5, pp.1-12, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01098532

E. Petitdidier, J. Pagniez, G. Papierok, P. Vincendeau, J. Lemesre et al.,

R. Bras-gonçalves, E. Petitdidier, J. Pagniez, R. Veyrier, P. Cibrelus et al., Identification and characterization of new Leishmania promastigote surface antigens, LaPSA-38S and LiPSA-50S, as major immunodominant excreted/secreted components of L. amazonensis and L. infantum, Recombinant Forms of Leishmania amazonensis Excreted/Secreted Promastigote Surface Antigen (PSA) Induce Protective Immune Responses in Dogs, vol.10, pp.1-14, 2014.

S. Paul, D. Weiskopf, M. A. Angelo, J. Sidney, B. Peters et al., HLA class I alleles are associated with peptide binding repertoires of different size, affinity and immunogenicity, vol.191, pp.6-10, 2014.

C. A. Weber, P. J. Mehta, M. Ardito, M. L. Martin, B. et al., T cell epitope: Friend or Foe? Immunogenicity of biologics in context, Adv Drug Deliv Rev, vol.61, issue.11, pp.965-76, 2009.

V. Jawa, L. P. Cousens, M. Awwad, E. Wakshull, H. Kropshofer et al., T-cell dependent immunogenicity of protein therapeutics: Preclinical assessment and mitigation, Clin Immunol, vol.149, issue.3, pp.534-55, 2013.

J. R. Currier, E. G. Kuta, E. Turk, L. B. Earhart, L. Loomis-price et al., A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays, J Immunol Methods, vol.260, issue.1-2, pp.157-72, 2002.

G. Finak, M. Langweiler, M. Jaimes, M. Malek, J. Taghiyar et al., Standardizing Flow Cytometry Immunophenotyping Analysis from the Human ImmunoPhenotyping Consortium

, Nat Publ Gr, 2016.

L. Pira, G. Ivaldi, F. Moretti, P. Manca, and F. , High Throughput T Epitope Mapping and Vaccine Development, J Biomed Biotechnol, vol.2010, pp.1-12, 2010.

L. Pira, G. Ivaldi, F. Starc, N. Landi, F. Locatelli et al., Miniaturized and highthroughput assays for analysis of T-cell immunity specific for opportunistic pathogens and HIV. Clin Vaccine Immunol, vol.21, pp.488-95, 2014.

M. Wolfl, J. Kuball, W. Y. Ho, H. Nguyen, T. J. Manley et al., Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities, Blood, vol.110, issue.1, pp.201-211, 2007.

S. Delluc, G. Ravot, and B. Maillere, Quantitative analysis of the CD4 T-cell repertoire specific to therapeutic antibodies in healthy donors, FASEB J, vol.25, issue.6, pp.2040-2048, 2011.

F. A. Castelli, M. Leleu, S. Pouvelle-moratille, S. Farci, H. M. Zarour et al., Differential capacity of T cell priming in naive donors of promiscuous CD4+ T cell epitopes of HCV NS3 and Core proteins, Eur J Immunol, vol.37, issue.6, pp.1513-1536, 2007.

B. Maillère, A. Bats, F. A. Castelli, E. Tartour, S. Oudard et al., The Tumor Antigen Cyclin B1 Hosts Multiple CD4 T Cell Epitopes Differently Recognized by Pre-Existing Naive and Memory Cells in Both Healthy and Cancer Donors, J Immunol, issue.195, pp.1891-901, 2015.

W. Y. Ho, H. N. Nguyen, M. Wolfl, J. Kuball, and P. D. Greenberg, In vitro methods for generating CD8+ Tcell clones for immunotherapy from the naïve repertoire, J Immunol Methods, vol.310, issue.1-2, pp.40-52, 2006.

. Chapter-v--experimental, . Validation, and . Synthetic-peptides,

R. Geiger, T. Duhen, A. Lanzavecchia, and F. Sallusto, Human naive and memory CD4 + T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells, J Exp Med, vol.206, issue.7, pp.1525-1559, 2009.

K. Murphy, C. Weaver, and . Glossary, Janeway's Immunobiology, pp.818-54, 2017.

J. J. Obar, K. M. Khanna, and L. Lefrançois, Endogenous Naive CD8+ T Cell Precursor Frequency Regulates Primary and Memory Responses to Infection, Immunity. Cell Press, vol.28, issue.6, pp.859-69, 2008.

A. Fiore-gartland, B. A. Manso, D. P. Friedrich, E. E. Gabriel, G. Finak et al., Pooled-Peptide Epitope Mapping Strategies Are Efficient and Highly Sensitive: An Evaluation of Methods for Identifying Human T Cell Epitope Specificities in Large-Scale HIV Vaccine Efficacy Trials, vol.11, p.147812, 2016.

M. Wölfl and P. D. Greenberg, Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells, Nat Protoc, vol.9, issue.4, pp.950-66, 2014.

F. A. Castelli, D. Houitte, G. Munier, N. Szely, A. Lecoq et al., Immunoprevalence of the CD4+ T-cell response to HIV Tat and Vpr proteins is provided by clustered and disperse epitopes, respectively, Eur J Immunol, vol.38, issue.10, pp.2821-2852, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00334819

F. F. González-galarza, L. Takeshita, E. Santos, F. Kempson, M. Maia et al.,

, Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations, Nucleic Acids Res, vol.43, issue.D1, pp.784-792, 2015.

E. Santos, A. Mccabe, F. F. Gonzalez-galarza, A. R. Jones, and D. Middleton, Allele Frequencies Net Database: Improvements for storage of individual genotypes and analysis of existing data, Hum Immunol, vol.77, issue.3, pp.238-286, 2016.

J. Sidney, B. Peters, N. Frahm, C. Brander, and A. Sette, HLA class I supertypes: a revised and updated classification, BMC Immunol, vol.9, p.1, 2008.

S. Meunier, C. Menier, E. Marcon, S. Lacroix-desmazes, and B. Maillère, CD4 T cells specific for factor VIII are present at high frequency in healthy donors and comprise naïve and memory cells, Blood Adv, vol.1, issue.21, pp.1842-1849, 2017.

M. Hamze, S. Meunier, A. Karle, A. Gdoura, A. Goudet et al., Characterization of CD4 T Cell Epitopes of Infliximab and Rituximab Identified from Healthy Donors, Front Immunol, vol.8, p.500, 2017.

M. A. Besse, Y. Levy, O. Schwartz, B. N. Casartelli, C. Grygar et al., Hierarchy of CD4 T Cell Epitopes of the ANRS Lipo5 Synthetic Vaccine Relies on the Frequencies of Pre-Existing Peptide-Specific T Cells in Healthy Donors, J Immunol, vol.190, pp.5757-63, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01109463

B. Maillere, The Role of Naive T Cell Precursor Frequency and Recruitment in dictating Immune Response Magnitude&quot, J Immunol Ref J Immunol Clin Immunol Eur J Immunol Cancer Immunol Immunother, vol.190, issue.56, pp.2404-2415, 2013.

D. Wullner, L. Zhou, E. Bramhall, A. Kuck, T. J. Goletz et al., Considerations for optimization and validation of an in vitro PBMC derived T cell assay for immunogenicity prediction of biotherapeutics, Clin Immunol, vol.137, pp.5-14, 2010.

A. López-albaitero, R. Mailliard, T. Hackman, A. Filho, P. A. Wang et al.,

, Maturation pathways of dendritic cells determine TAP1 and TAP2 levels and crosspresenting function, J Immunother. NIH Public Access, vol.32, issue.5, pp.465-73, 2009.

D. Dissanayake, K. Murakami, M. D. Tran, A. R. Elford, D. G. Millar et al., Peptide-Pulsed Dendritic Cells Have Superior Ability to Induce Immune-Mediated Tissue Destruction Compared to Peptide with Adjuvant

J. M. Moser, E. R. Sassano, D. C. Leistritz, J. M. Eatrides, S. Phogat et al., Optimization of a dendritic cell-based assay for the in vitro priming of naive human CD4+ T cells, J Immunol Methods. Elsevier B.V, vol.353, issue.1-2, pp.8-19, 2010.

T. Bullock, T. A. Colella, and V. H. Engelhard, The Density of Peptides Displayed by Dendritic Cells Affects Immune Responses to Human Tyrosinase and gp100 in HLA-A2 Transgenic Mice, J Immunol. American Association of Immunologists, vol.164, issue.5, pp.2354-61, 2014.

M. J. Pittet, D. Valmori, P. R. Dunbar, D. E. Speiser, D. Liénard et al., High Frequencies of Naive Melan-a/Mart-1-Specific Cd8+ T Cells in a Large Proportion of Human

. Histocompatibility-leukocyte-antigen, Hla)-A2 Individuals, J Exp Med, vol.190, issue.5, pp.705-721, 1999.

P. R. Dunbar, C. L. Smith, D. Chao, M. Salio, D. Shepherd et al., A Shift in the Phenotype of Melan-A-Specific CTL Identifies Melanoma Patients with an Active Tumor-Specific Immune Response, J Immunol, vol.165, issue.11, pp.6644-52, 2014.

K. Aoun and A. Bouratbine, Cutaneous leishmaniasis in North Africa: a review, Parasite, vol.21, p.14, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01098542

B. Chalghaf, S. Chlif, B. Mayala, W. Ghawar, J. Bettaieb et al., Ecological Niche Modeling for the Prediction of the Geographic Distribution of Cutaneous Leishmaniasis in Tunisia, Am J Trop Med Hyg, vol.94, issue.4, pp.844-51, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01356536

. Chapter-v--experimental, . Validation, and . Synthetic-peptides,

N. Frahm, K. Yusim, T. J. Suscovich, S. Adams, J. Sidney et al., Extensive HLA class I allele promiscuity among viral CTL epitopes, Eur J Immunol, vol.37, issue.9, pp.2419-2452, 2007.

R. Axelsson-robertson, F. Weichold, D. Sizemore, M. Wulf, Y. Skeiky et al., Extensive major histocompatibility complex class I binding promiscuity for Mycobacterium tuberculosis TB10.4 peptides and immune dominance of human leucocyte antigen

H. B*0702, Ltd (10.1111), 0801 alleles in TB10.4 CD8+ T-cell responses. Immunology, vol.129, pp.496-505, 2010.

D. M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy, Nat Rev Cancer, vol.12, issue.4, pp.252-64, 2012.

M. L. Murphy, S. E. Cotterell, P. M. Gorak, C. R. Engwerda, and P. M. Kaye, Blockade of CTLA-4 enhances host resistance to the intracellular pathogen, Leishmania donovani, J Immunol, vol.161, issue.8, pp.4153-60, 1998.

V. M. Chiku, K. Silva, B. De-almeida, G. L. Venturin, A. Leal et al., PD-1 function in apoptosis of T lymphocytes in canine visceral leishmaniasis, Immunobiology. Urban & Fischer, vol.221, issue.8, pp.879-88, 2016.

H. W. Murray, C. M. Lu, E. B. Brooks, R. E. Fichtl, J. L. Devecchio et al., Modulation of T-Cell Costimulation as Immunotherapy or Immunochemotherapy in Experimental Visceral Leishmaniasis, Infect Immun, vol.71, issue.11, pp.6453-62, 2003.

G. Leggatt, Peptide Dose and/or Structure in Vaccines as a Determinant of T Cell Responses. Vaccines. Multidisciplinary Digital Publishing Institute, vol.2, pp.537-585, 2014.

D. L. Farber, N. A. Yudanin, and N. P. Restifo, Human memory T cells: generation, compartmentalization and homeostasis, Nat Rev Immunol, vol.14, issue.1, pp.24-35, 2014.

E. P. Salerno, S. M. Shea, W. C. Olson, G. R. Petroni, M. E. Smolkin et al., Activation, dysfunction and retention of T cells in vaccine sites after injection of incomplete Freund's adjuvant, with or without peptide, Cancer Immunol Immunother, vol.62, issue.7, pp.1149-59, 2009.

M. , 2 scars (abdomen, foot), Age, vol.45