M. Varjosalo and J. Taipale, Hedgehog: functions and mechanisms, Genes & development, vol.22, pp.2454-72, 2008.

R. Petrova and A. L. Joyner, Roles for Hedgehog signaling in adult organ homeostasis and repair, Development, vol.141, pp.3445-57, 2014.

J. A. Porter, S. C. Ekker, W. J. Park, V. Kessler, D. P. Young et al.,

R. J. Cotter and E. V. Koonin, Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain, Cell, vol.86, pp.21-34, 1996.

R. B. Pepinsky, C. Zeng, D. Wen, P. Rayhorn, D. P. Baker et al., Identification of a palmitic acid-modified form of human Sonic hedgehog, The Journal of biological chemistry, vol.273, pp.14037-14082, 1998.

A. Gallet, Hedgehog morphogen: from secretion to reception, Trends in cell biology, vol.21, pp.238-284, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02108171

B. L. Allen, J. Y. Song, L. Izzi, I. W. Althaus, J. S. Kang et al., Overlapping roles and collective requirement for the coreceptors GAS1, CDO, and BOC in SHH pathway function, Developmental cell, vol.20, pp.775-87, 2011.

M. Ruat, L. Hoch, H. Faure, and D. Rognan, Targeting of Smoothened for therapeutic gain, Trends in pharmacological sciences, vol.35, pp.237-283, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01055292

R. Rohatgi, L. Milenkovic, and M. P. Scott, Patched1 regulates hedgehog signaling at the primary cilium, Science, vol.317, pp.372-378, 2007.

Y. H. Belgacem and L. N. Borodinsky, Sonic hedgehog signaling is decoded by calcium spike activity in the developing spinal cord, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.4482-4489, 2011.

N. A. Riobo, P. Chinchilla, X. L. Kazanietz, M. G. Riobo, and N. A. , Hedgehog proteins activate proangiogenic responses in endothelial cells through non-canonical signaling pathways, Cell Cycle, vol.11, pp.570-79, 2010.

A. H. Polizio, P. Chinchilla, X. Chen, S. Kim, D. R. Manning et al., Heterotrimeric Gi proteins link Hedgehog signaling to activation of Rho small GTPases to promote fibroblast migration, The Journal of biological chemistry, vol.286, pp.19589-96, 2011.

P. T. Yam, S. D. Langlois, S. Morin, and F. Charron, Sonic hedgehog guides axons through a noncanonical, Src-family-kinase-dependent signaling pathway, Neuron, vol.62, pp.349-62, 2009.

R. Teperino, S. Amann, M. Bayer, S. L. Mcgee, A. Loipetzberger et al., Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat, Cell, vol.151, pp.414-440, 2012.

T. Gorojankina, L. Hoch, H. Faure, H. Roudaut, E. Traiffort et al., Discovery, molecular and pharmacological characterization of GSA-10, a novel small-molecule positive modulator of Smoothened, Molecular pharmacology, vol.83, pp.1020-1029, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00851060

J. Feng, B. White, O. V. Tyurina, B. Guner, T. Larson et al., , 2004.

, Synergistic and antagonistic roles of the Sonic hedgehog N-and C-terminal lipids, Development, vol.131, pp.4357-70

T. Matusek, F. Wendler, S. Poles, S. Pizette, D. Angelo et al., The ESCRT machinery regulates the secretion and long-range activity of Hedgehog, Nature, vol.516, pp.99-103, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01117493

X. Zeng, J. A. Goetz, L. M. Suber, W. J. Scott, J. Schreiner et al., A freely diffusible form of Sonic hedgehog mediates long-range signalling, Nature, vol.411, pp.716-736, 2001.

D. Panakova, H. Sprong, E. Marois, C. Thiele, and S. Eaton, Lipoprotein particles are required for Hedgehog and Wingless signalling, Nature, vol.435, pp.58-65, 2005.

W. Palm, M. M. Swierczynska, V. Kumari, M. Ehrhart-bornstein, S. R. Bornstein et al., Secretion and signaling activities of lipoprotein-associated hedgehog and non-sterol-modified hedgehog in flies and mammals, PLoS biology, vol.11, p.1001505, 2013.

Y. Tanaka, Y. Okada, and N. Hirokawa, FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination, Nature, vol.435, pp.172-179, 2005.

, Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles, Blood, vol.111, pp.5028-5036

A. Stepanian, L. Bourguignat, S. Hennou, M. Coupaye, D. Hajage et al., Microparticle increase in severe obesity: Not related to metabolic syndrome and unchanged after massive weight loss, Obesity, vol.21, pp.2236-2243, 2013.

H. Strutt, C. Thomas, Y. Nakano, D. Stark, B. Neave et al., Mutations in the sterol-sensing domain of Patched suggest a role for vesicular trafficking in Smoothened regulation, Curr. Biol, vol.11, pp.608-613, 2001.

S. Stuffers, C. Sem-wegner, H. Stenmark, and A. Brech, Multivesicular Endosome Biogenesis in the Absence of ESCRTs, Traffic, vol.10, pp.925-937, 2009.

C. Subra, K. Laulagnier, B. Perret, and M. Record, Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies, Biochimie, vol.89, pp.205-212, 2007.

J. M. Suh, X. Gao, J. Mckay, R. Mckay, Z. Salo et al., Hedgehog signaling plays a conserved role in inhibiting fat formation, Cell Metab, vol.3, pp.25-34, 2006.

H. S. Sul, Minireview: Pref-1: Role in Adipogenesis and Mesenchymal Cell Fate, Mol. Endocrinol, vol.23, pp.1717-1725, 2009.

H. S. Sul, C. Smas, B. Mei, and L. Zhou, Function of pref-1 as an inhibitor of adipocyte differentiation, Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes, vol.24, pp.15-19, 2000.

J. Suzuki, M. Umeda, P. J. Sims, and S. Nagata, Calcium-dependent phospholipid scrambling by TMEM16F, Nature, vol.468, pp.834-838, 2010.

K. J. Svensson, H. C. Christianson, A. Wittrup, E. Bourseau-guilmain, E. Lindqvist et al., Exosome Uptake Depends on ERK1/2-Heat Shock Protein 27 Signaling and Lipid Raft-mediated Endocytosis Negatively Regulated by Caveolin-1, J. Biol. Chem, vol.288, pp.17713-17724, 2013.

N. Vyas, A. Walvekar, D. Tate, V. Lakshmanan, D. Bansal et al., Vertebrate Hedgehog is secreted on two types of extracellular vesicles with different signaling properties, 2014.

M. Wältermann and A. Steinbüchel, Neutral Lipid Bodies in Prokaryotes: Recent Insights into Structure, Formation, and Relationship to Eukaryotic Lipid Depots, J. Bacteriol, vol.187, pp.3607-3619, 2005.

C. Wang, H. Wu, T. Evron, E. Vardy, G. W. Han et al., Structural basis for Smoothened receptor modulation and chemoresistance to anti-cancer drugs, Nat. Commun, vol.5, p.4355, 2014.

J. Wang, J. C. Williams, B. K. Davis, K. Jacobson, C. M. Doerschuk et al., Monocytic microparticles activate endothelial cells in an IL-1?-dependent manner, Blood, vol.118, pp.2366-2374, 2011.

Y. Wang, Z. Zhou, C. T. Walsh, and A. P. Mcmahon, Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.2623-2628, 2009.

Y. Wang, A. C. Arvanites, L. Davidow, J. Blanchard, K. Lam et al., Selective identification of hedgehog pathway antagonists by direct analysis of smoothened ciliary translocation, ACS Chem. Biol, vol.7, pp.1040-1048, 2012.

Y. Wang, L. Davidow, A. C. Arvanites, J. Blanchard, K. Lam et al., Glucocorticoid Compounds Modify Smoothened Localization and Hedgehog Pathway Activity, Chem. Biol, vol.19, pp.972-982, 2012.

Z. V. Wang, T. D. Schraw, J. Kim, T. Khan, M. W. Rajala et al., Secretion of the Adipocyte-Specific Secretory Protein Adiponectin Critically Depends on Thiol-Mediated Protein Retention, Mol. Cell. Biol, vol.27, pp.3716-3731, 2007.

S. P. Weisberg, D. Mccann, M. Desai, M. Rosenbaum, R. L. Leibel et al., Obesity is associated with macrophage accumulation in adipose tissue, J. Clin. Invest, vol.112, pp.1796-1808, 2003.

S. P. Weisberg, D. Hunter, R. Huber, J. Lemieux, S. Slaymaker et al., CCR2 modulates inflammatory and metabolic effects of high-fat feeding, J. Clin. Invest, vol.116, pp.115-124, 2006.

C. W. Wilson, M. Chen, P. Chuang, N. Bergeron, H. A. Salem et al., Smoothened Adopts Multiple Active and Inactive Conformations Capable of Trafficking to the Primary Cilium, PLoS ONE, vol.4, 2007.

, Glucocorticoid-stimulated preadipocyte differentiation is mediated through acetylation of C/EBP? by GCN5, Proc. Natl. Acad. Sci, vol.104, pp.2703-2708

R. P. Witek, L. Yang, R. Liu, Y. Jung, A. Omenetti et al., Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells, Gastroenterology, vol.136, pp.320-330, 2009.

P. Wolf, The Nature and Significance of Platelet Products in Human Plasma, Br. J. Haematol, vol.13, pp.269-288, 1967.

J. Wolfers, A. Lozier, G. Raposo, A. Regnault, C. Théry et al., Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming, Nat. Med, vol.7, pp.297-303, 2001.

J. Wu, P. Cohen, and B. M. Spiegelman, Adaptive thermogenesis in adipocytes: Is beige the new brown?, Genes Dev, vol.27, pp.234-250, 2013.

X. Wu, S. Ding, Q. Ding, N. S. Gray, and P. G. Schultz, A small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells, J. Am. Chem. Soc, vol.124, pp.14520-14521, 2002.

R. Wubbolts, R. S. Leckie, P. T. Veenhuizen, G. Schwarzmann, W. Möbius et al., Proteomic and Biochemical Analyses of Human B Cell-derived Exosomes POTENTIAL IMPLICATIONS FOR THEIR FUNCTION AND MULTIVESICULAR BODY FORMATION, J. Biol. Chem, vol.278, pp.10963-10972, 2003.

H. Xu, G. T. Barnes, Q. Yang, G. Tan, D. Yang et al., Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance, J. Clin. Invest, vol.112, pp.1821-1830, 2003.

C. Yang, B. R. Mwaikambo, T. Zhu, C. Gagnon, J. Lafleur et al., Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways, Am. J. Physiol. -Regul. Integr. Comp. Physiol, vol.294, pp.467-476, 2008.

C. Yang, C. Gagnon, X. Hou, and P. Hardy, Low density lipoprotein receptor mediates anti-VEGF effect of lymphocyte T-derived microparticles in Lewis lung carcinoma cells, Cancer Biol. Ther, vol.10, pp.448-456, 2010.

W. Yang, S. Thein, X. Wang, X. Bi, R. E. Ericksen et al., , 2014.

, BSCL2/seipin regulates adipogenesis through actin cytoskeleton remodelling, Hum. Mol. Genet, vol.23, pp.502-513

Q. Yao, M. Renault, C. Chapouly, S. Vandierdonck, I. Belloc et al., Sonic hedgehog mediates a novel pathway of PDGF-BB-dependent vessel maturation, Blood, vol.123, pp.2429-2437, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01159066

A. Yavari, R. Nagaraj, E. Owusu-ansah, A. Folick, K. Ngo et al., Role of Lipid Metabolism in Smoothened Derepression in Hedgehog Signaling, Dev. Cell, vol.19, pp.54-65, 2010.

J. Ye, Z. Gao, J. Yin, and Q. He, Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice, Am. J. Physiol. -Endocrinol. Metab, vol.293, pp.1118-1128, 2007.

J. Yin, Z. Gao, Q. He, D. Zhou, Z. Guo et al., Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue, Am. J. Physiol. -Endocrinol. Metab, vol.296, pp.333-342, 2009.

S. G. Young, B. S. Davies, C. V. Voss, P. Gin, M. M. Weinstein et al., GPIHBP1, an endothelial cell transporter for lipoprotein lipase, J. Lipid Res, vol.52, pp.1869-1884, 2011.

X. Yu, S. L. Harris, and A. J. Levine, The Regulation of Exosome Secretion: a Novel Function of the p53 Protein, Cancer Res, vol.66, pp.4795-4801, 2006.

L. Zaragosi, G. Ailhaud, D. , and C. , Autocrine Fibroblast Growth Factor 2 Signaling Is Critical for Self-Renewal of Human Multipotent Adipose-Derived Stem Cells, STEM CELLS, vol.24, pp.2412-2419, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00304289

L. Zaragosi, B. Wdziekonski, P. Villageois, M. Keophiphath, M. Maumus et al., Activin a plays a critical role in proliferation and differentiation of human adipose progenitors, Diabetes, vol.59, pp.2513-2521, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00492248

R. Zechner, R. Zimmermann, T. O. Eichmann, S. D. Kohlwein, G. Haemmerle et al., FAT SIGNALS -Lipases and Lipolysis in Lipid Metabolism and Signaling, Cell Metab, vol.15, pp.279-291, 2012.

X. Zeng, J. A. Goetz, L. M. Suber, W. J. Scott, C. M. Schreiner et al., A freely diffusible form of Sonic hedgehog mediates long-range signalling, Nature, vol.411, pp.716-720, 2001.

H. Zhang and W. E. Grizzle, Exosomes and cancer: a newly described pathway of immune suppression, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.17, pp.959-964, 2011.

L. Zhang, X. Chen, Z. Sun, Z. Bian, M. Fan et al., Epithelial expression of SHH signaling pathway in odontogenic tumors, Oral Oncol, vol.42, pp.398-408, 2006.

Q. Zhang, S. Seo, K. Bugge, E. M. Stone, and V. C. Sheffield, BBS proteins interact genetically with the IFT pathway to influence SHH-related phenotypes, Hum. Mol. Genet, vol.21, pp.1945-1953, 2012.

X. Zhang, S. C. Mcgeoch, A. M. Johnstone, G. Holtrop, A. A. Sneddon et al., Platelet-derived microparticle count and surface molecule expression differ between subjects with and without type 2 diabetes, independently of obesity status, J. Thromb. Thrombolysis, vol.37, pp.455-463, 2014.

Q. Zhou, J. Zhao, J. G. Stout, R. A. Luhm, T. Wiedmer et al., Molecular Cloning of Human Plasma Membrane Phospholipid Scramblase A PROTEIN MEDIATING TRANSBILAYER MOVEMENT OF PLASMA MEMBRANE PHOSPHOLIPIDS, J. Biol. Chem, vol.272, pp.18240-18244, 1997.

D. Zhu, S. Shi, H. Wang, and K. Liao, Growth arrest induces primary-cilium formation and sensitizes IGF-1-receptor signaling during differentiation induction of 3T3-L1 preadipocytes, J. Cell Sci, vol.122, pp.2760-2768, 2009.

L. Zitvogel, A. Regnault, A. Lozier, J. Wolfers, C. Flament et al., Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes, Nat. Med, vol.4, pp.594-600, 1998.

P. A. Zuk, M. Zhu, H. Mizuno, J. Huang, J. W. Futrell et al., Multilineage cells from human adipose tissue: implications for cell-based therapies, Tissue Eng, vol.7, pp.211-228, 2001.

P. A. Zuk, M. Zhu, P. Ashjian, D. A. De-ugarte, J. I. Huang et al., Human Adipose Tissue Is a Source of Multipotent Stem Cells, Mol. Biol. Cell, vol.13, pp.4279-4295, 2002.

R. F. Zwaal and A. J. Schroit, Pathophysiologic Implications of Membrane Phospholipid Asymmetry in Blood Cells, Blood, vol.89, pp.1121-1132, 1997.

, Annexe 2 « Extracellular vesicles as therapeutic tools in cardiovascular diseases » Audrey Fleury, Maria Carmen Martinez * and Soazig Le Lay * Front Immunol, vol.5, 2014.

E. References-1.-van-der-pol, A. N. Boing, P. Harrison, A. Sturk, and R. Nieuwland, Classification, functions, and clinical relevance of extracellular vesicles, Pharmacol Rev, vol.64, pp.676-705, 2012.

K. W. Witwer, E. I. Buzas, L. T. Bemis, A. Bora, C. Lasser et al., Standardization of sample collection, isolation and analysis methods in extracellular vesicle research, J Extracell Vesicles, vol.2, p.20360, 2013.

A. Gaceb, M. C. Martinez, and R. Andriantsitohaina, Extracellular vesicles: new players in cardiovascular diseases, Int J Biochem Cell Biol, vol.50, pp.24-32, 2014.

A. Schiro, F. L. Wilkinson, R. Weston, J. V. Smyth, F. Serracino-inglott et al., Endothelial microparticles as conveyors of information in atherosclerotic disease, Atherosclerosis, vol.234, pp.295-302, 2014.

N. Amabile, S. Cheng, J. M. Renard, M. G. Larson, A. Ghorbani et al., Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study, Eur Heart J, 2014.

M. C. Martinez, S. Tual-chalot, D. Leonetti, and R. Andriantsitohaina, Microparticles: targets and tools in cardiovascular disease, Trends Pharmacol Sci, vol.32, pp.659-65, 2011.

S. El-andaloussi, I. Mager, X. O. Breakefield, and M. J. Wood, Extracellular vesicles: biology and emerging therapeutic opportunities, Nat Rev Drug Discov, vol.12, pp.347-57, 2013.

F. Chalmin, S. Ladoire, G. Mignot, J. Vincent, M. Bruchard et al., Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells, J Clin Invest, vol.120, pp.457-71, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00451697

X. Loyer, A. C. Vion, A. Tedgui, and C. M. Boulanger, Microvesicles as cell-cell messengers in cardiovascular diseases, Circ Res, vol.114, pp.345-53, 2014.

N. R. Smalheiser, Do neural cells communicate with endothelial cells via secretory exosomes and microvesicles? Cardiovasc Psychiatry Neurol, p.383086, 2009.

H. A. Mostefai, A. Agouni, N. Carusio, M. L. Mastronardi, C. Heymes et al., Phosphatidylinositol 3-kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells, J Immunol, vol.180, pp.5028-5063, 2008.

A. O. Soriano, W. Jy, J. A. Chirinos, M. A. Valdivia, H. S. Velasquez et al., Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis, Crit Care Med, vol.33, pp.2540-2546, 2005.

A. A. Mangi, N. Noiseux, D. Kong, H. He, M. Rezvani et al., Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts, Nat Med, vol.9, pp.1195-201, 2003.

M. Gnecchi, P. Danieli, and E. Cervio, Mesenchymal stem cell therapy for heart disease, Vascul Pharmacol, vol.57, pp.48-55, 2012.

M. Z. Ratajczak, M. Kucia, T. Jadczyk, N. J. Greco, W. Wojakowski et al., Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies?, Leukemia, vol.26, pp.1166-73, 2012.

M. Gnecchi, H. He, O. D. Liang, L. G. Melo, F. Morello et al., Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells, Nat Med, vol.11, pp.367-375, 2005.

M. Gnecchi, H. He, N. Noiseux, O. D. Liang, L. Zhang et al., Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement, FASEB J, vol.20, pp.661-670, 2006.

, Frontiers in Immunology | Immunotherapies and Vaccines

L. Timmers, S. K. Lim, F. Arslan, J. S. Armstrong, I. E. Hoefer et al., Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium, Stem Cell Res, vol.1, pp.129-166, 2007.

R. C. Lai, F. Arslan, M. M. Lee, N. S. Sze, A. Choo et al., Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury, Stem Cell Res, vol.4, pp.214-236, 2010.

F. Arslan, R. C. Lai, M. B. Smeets, L. Akeroyd, A. Choo et al., Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury, Stem Cell Res, vol.10, pp.301-313, 2013.

S. Sahoo, E. Klychko, T. Thorne, S. Misener, K. M. Schultz et al., Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity, Circ Res, vol.109, pp.724-732, 2011.

V. Cantaluppi, L. Biancone, F. Figliolini, S. Beltramo, D. Medica et al., Microvesicles derived from endothelial progenitor cells enhance neoangiogenesis of human pancreatic islets, Cell Transplant, vol.21, pp.1305-1325, 2012.

K. R. Vrijsen, J. P. Sluijter, M. W. Schuchardt, B. W. Van-balkom, W. A. Noort et al., Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells, JCellMolMed, vol.14, pp.1064-70, 2010.

L. Chen, Y. Wang, Y. Pan, L. Zhang, C. Shen et al., Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury, Biochem Biophys Res Commun, vol.431, pp.566-71, 2013.

L. Barile, M. Gherghiceanu, L. M. Popescu, T. Moccetti, and G. Vassalli, Ultrastructural evidence of exosome secretion by progenitor cells in adult mouse myocardium and adult human cardiospheres, J Biomed Biotechnol, p.354605, 2012.

N. Chaput and C. Thery, Exosomes: immune properties and potential clinical implementations, Semin Immunopathol, vol.33, pp.419-459, 2011.

T. S. Chen, F. Arslan, Y. Yin, S. S. Tan, R. C. Lai et al., Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs, J Transl Med, vol.9, p.47, 2011.

V. Fonsato, F. Collino, M. B. Herrera, C. Cavallari, M. C. Deregibus et al., Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs, Stem Cells, vol.30, pp.1985-98, 2012.

W. Zhu, L. Huang, Y. Li, X. Zhang, J. Gu et al., Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo, Cancer Lett, vol.315, pp.28-37, 2012.

J. Ratajczak, K. Miekus, M. Kucia, J. Zhang, R. Reca et al., Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery, Leukemia, vol.20, pp.847-56, 2006.

M. C. Deregibus, V. Cantaluppi, R. Calogero, L. Iacono, M. Tetta et al., Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA, Blood, vol.110, pp.2440-2448, 2007.

H. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J. J. Lee et al., Exosomemediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat Cell Biol, vol.9, pp.654-663, 2007.

J. Skog, T. Wurdinger, S. Van-rijn, D. H. Meijer, L. Gainche et al., Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers, Nat Cell Biol, vol.10, pp.1470-1476, 2008.

J. M. Aliotta, M. Pereira, K. W. Johnson, D. Paz, N. Dooner et al., Microvesicle entry into marrow cells mediates tissue-specific changes in mRNA by direct delivery of mRNA and induction of transcription, Exp Hematol, vol.38, pp.233-278, 2010.

F. Collino, M. C. Deregibus, S. Bruno, L. Sterpone, G. Aghemo et al., Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs, PLoS One, vol.5, p.11803, 2010.

M. Mittelbrunn, C. Gutierrez-vazquez, C. Villarroya-beltri, S. Gonzalez, F. Sanchez-cabo et al., Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells, Nat Commun, vol.2, p.282, 2011.

A. Montecalvo, A. T. Larregina, W. J. Shufesky, D. B. Stolz, M. L. Sullivan et al., Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes, Blood, vol.119, pp.756-66, 2012.

S. Ikeda, S. W. Kong, J. Lu, E. Bisping, H. Zhang et al., Altered microRNA expression in human heart disease, Physiol Genomics, vol.31, pp.367-73, 2007.

A. Zampetaki and M. Mayr, MicroRNAs in vascular and metabolic disease, Circ Res, vol.110, pp.508-530, 2012.

P. Diehl, A. Fricke, L. Sander, J. Stamm, N. Bassler et al., Microparticles: major transport vehicles for distinct microRNAs in circulation, Cardiovasc Res, vol.93, pp.633-677, 2012.

Y. Zhang, D. Liu, X. Chen, J. Li, L. Li et al., Secreted monocytic miR-150 enhances targeted endothelial cell migration, Mol Cell, vol.39, pp.133-177, 2010.

C. Villarroya-beltri, C. Gutierrez-vazquez, F. Sanchez-cabo, D. Perez-hernandez, J. Vazquez et al., Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs, Nat Commun, vol.4, p.2980, 2013.

V. Cantaluppi, S. Gatti, D. Medica, F. Figliolini, S. Bruno et al., Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells, Kidney Int, vol.82, pp.412-439, 2012.

Y. Akao, A. Iio, T. Itoh, S. Noguchi, Y. Itoh et al., Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages, Mol Ther, vol.19, pp.395-404, 2011.

J. E. Fish, M. M. Santoro, S. U. Morton, S. Yu, R. F. Yeh et al., miR-126 regulates angiogenic signaling and vascular integrity, Dev Cell, vol.15, pp.272-84, 2008.

S. Wang, A. B. Aurora, B. A. Johnson, X. Qi, J. Mcanally et al., The endothelialspecific microRNA miR-126 governs vascular integrity and angiogenesis, Dev Cell, vol.15, pp.261-71, 2008.

A. Zernecke, K. Bidzhekov, H. Noels, E. Shagdarsuren, L. Gan et al., Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection, Sci Signal, vol.2, p.81, 2009.

F. Jansen, X. Yang, M. Hoelscher, A. Cattelan, T. Schmitz et al., Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucosedamaged endothelial microparticles, Circulation, vol.128, pp.2026-2064, 2013.

A. Ranghino, V. Cantaluppi, C. Grange, L. Vitillo, F. Fop et al., Endothelial progenitor cell-derived microvesicles improve neovascularization in a murine model of hindlimb ischemia, Int J Immunopathol Pharmacol, vol.25, pp.75-85, 2012.

S. Fichtlscherer, D. Rosa, S. Fox, H. Schwietz, T. Fischer et al., Circulating microRNAs in patients with coronary artery disease, Circ Res, vol.107, pp.677-84, 2010.

C. Chiang, Y. Litingtung, E. Lee, K. E. Young, J. L. Corden et al., Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function, Nature, vol.383, pp.407-420, 1996.

P. W. Ingham and A. P. Mcmahon, Hedgehog signaling in animal development: paradigms and principles, Genes Dev, vol.15, pp.3059-87, 2001.

J. A. Porter, S. C. Ekker, W. J. Park, V. Kessler, D. P. Young et al., Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain, Cell, vol.86, pp.80074-80078, 1996.

X. Chen, H. Tukachinsky, C. H. Huang, C. Jao, Y. R. Chu et al., Processing and turnover of the hedgehog protein in the endoplasmic reticulum, J Cell Biol, vol.192, pp.825-863, 2011.

Z. Chamoun, R. K. Mann, D. Nellen, V. Kessler, D. P. Bellotto et al., Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal, Science, vol.293, pp.2080-2084, 2001.


M. K. Cooper, C. A. Wassif, P. A. Krakowiak, J. Taipale, R. Gong et al., A defective response to hedgehog signaling in disorders of cholesterol biosynthesis, Nat Genet, vol.33, pp.508-521, 2003.

P. M. Lewis, M. P. Dunn, J. A. Mcmahon, M. Logan, J. F. Martin et al., Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1, Cell, vol.105, pp.599-612, 2001.

M. H. Chen, Y. J. Li, T. Kawakami, S. M. Xu, and P. T. Chuang, Palmitoylation is required for the production of a soluble multimeric hedgehog protein complex and longrange signaling in vertebrates, Genes Dev, vol.18, pp.641-59, 2004.

J. Briscoe and P. P. Therond, The mechanisms of hedgehog signalling and its roles in development and disease, Nat Rev Mol Cell Biol, vol.14, pp.416-445, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00831295

Y. Tanaka, Y. Okada, and N. Hirokawa, FGF-induced vesicular release of sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination, Nature, vol.435, pp.172-179, 2005.

S. Liegeois, A. Benedetto, J. M. Garnier, Y. Schwab, and M. Labouesse, The V0-ATPase mediates apical secretion of exosomes containing hedgehog-related proteins in Caenorhabditis elegans, J Cell Biol, vol.173, pp.949-61, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188024

M. C. Martinez, F. Larbret, F. Zobairi, J. Coulombe, N. Debili et al., Transfer of differentiation signal by membrane microvesicles harboring hedgehog morphogens, Blood, vol.108, pp.3012-3032, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00105638

M. Ruat, L. Hoch, H. Faure, and D. Rognan, Targeting of smoothened for therapeutic gain, Trends Pharmacol Sci, vol.35, pp.237-283, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01055292

R. Teperino, F. Aberger, H. Esterbauer, N. Riobo, and J. A. Pospisilik, Canonical and non-canonical hedgehog signalling and the control of metabolism, Semin Cell Dev Biol, 2014.

R. Soleti and M. C. Martinez, Sonic hedgehog on microparticles and neovascularization, Vitam Horm, vol.88, pp.395-438, 2012.

R. Pola, L. E. Ling, M. Silver, M. J. Corbley, M. Kearney et al., The morphogen sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors, Nat Med, vol.7, pp.706-717, 2001.

K. F. Kusano, R. Pola, T. Murayama, C. Curry, A. Kawamoto et al., Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling, Nat Med, vol.11, pp.1197-204, 2005.

M. Palladino, I. Gatto, V. Neri, S. Straino, M. Silver et al., Pleiotropic beneficial effects of sonic hedgehog gene therapy in an experimental model of peripheral limb ischemia, Mol Ther, vol.19, pp.658-66, 2011.

P. Chinchilla, L. Xiao, M. G. Kazanietz, and N. A. Riobo, Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways, Cell Cycle, vol.9, pp.570-579, 2010.

C. A. Spek, M. F. Bijlsma, and K. C. Queiroz, Canonical hedgehog signaling drives proangiogenic responses in endothelial cells, Cell Cycle, vol.9, p.11653, 2010.

S. Kanda, Y. Mochizuki, T. Suematsu, Y. Miyata, K. Nomata et al., Sonic hedgehog induces capillary morphogenesis by endothelial cells through phosphoinositide 3-kinase, J Biol Chem, vol.278, pp.8244-8253, 2003.

N. A. Riobo, K. Lu, A. X. Haines, G. M. Emerson, and C. P. , Phosphoinositide 3-kinase and Akt are essential for sonic hedgehog signaling, Proc Natl Acad Sci U S A, vol.103, pp.4505-4515, 2006.

A. H. Polizio, P. Chinchilla, X. Chen, S. Kim, D. R. Manning et al., Heterotrimeric Gi proteins link hedgehog signaling to activation of Rho small GTPases to promote fibroblast migration, J Biol Chem, vol.286, pp.19589-96, 2011.

M. A. Renault, J. Roncalli, J. Tongers, T. Thorne, E. Klyachko et al., Sonic hedgehog induces angiogenesis via Rho kinase-dependent signaling in endothelial cells, J Mol Cell Cardiol, vol.49, pp.490-498, 2010.

M. A. Renault, F. Robbesyn, C. Chapouly, Q. Yao, S. Vandierdonck et al., Hedgehog-dependent regulation of angiogenesis and myogenesis is impaired in aged mice, Arterioscler Thromb Vasc Biol, vol.33, pp.2858-66, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01777723

R. Soleti, T. Benameur, C. Porro, M. A. Panaro, R. Andriantsitohaina et al., Microparticles harboring sonic hedgehog promote angiogenesis through the upregulation of adhesion proteins and proangiogenic factors, Carcinogenesis, vol.30, pp.580-588, 2009.

T. Benameur, R. Soleti, C. Porro, R. Andriantsitohaina, and M. C. Martinez, Microparticles carrying sonic hedgehog favor neovascularization through the activation of nitric oxide pathway in mice, PLoS One, vol.5, p.12688, 2010.

A. Agouni, H. A. Mostefai, C. Porro, N. Carusio, J. Favre et al., Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release, FASEB J, vol.21, pp.2735-2776, 2007.

R. Soleti, E. Lauret, R. Andriantsitohaina, C. Martinez, and M. , Internalization and induction of antioxidant messages by microvesicles contribute to the antiapoptotic effects on human endothelial cells, Free Radic Biol Med, vol.53, pp.2159-70, 2012.

A. R. Mackie, E. Klyachko, T. Thorne, K. M. Schultz, M. Millay et al., Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction, Circ Res, vol.111, pp.312-333, 2012.

C. A. Maguire, L. Balaj, S. Sivaraman, M. H. Crommentuijn, M. Ericsson et al., Microvesicle-associated AAV vector as a novel gene delivery system, Mol Ther, vol.20, pp.960-71, 2012.

K. Tang, Y. Zhang, H. Zhang, P. Xu, J. Liu et al., Delivery of chemotherapeutic drugs in tumour cell-derived microparticles, Nat Commun, vol.3, p.1282, 2012.

B. Shen, N. Wu, J. M. Yang, and S. J. Gould, Protein targeting to exosomes/microvesicles by plasma membrane anchors, J Biol Chem, vol.286, pp.14383-95, 2011.

L. Alvarez-erviti, Y. Seow, H. Yin, C. Betts, S. Lakhal et al., Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes, Nat Biotechnol, vol.29, pp.341-346, 2011.

S. Ohno, M. Takanashi, K. Sudo, S. Ueda, A. Ishikawa et al., Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells, Mol Ther, vol.21, pp.185-91, 2013.

R. W. Yeo, R. C. Lai, B. Zhang, S. S. Tan, Y. Yin et al., Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery, Adv Drug Deliv Rev, vol.65, pp.336-377, 2013.