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Titre: Espaces réflexifs de fonctions lisses: un compte rendu logique des équations aux dérivées partielles
linéaires.

Résumé

La théorie de la preuve se développe depuis la correspondance de Curry-Howard suivant deux sources d’inspirations:
les langages de programmation, pour lesquels elle agit comme une théorie des types de données, et I’étude séman-
tique des preuves. Cette derniere consiste a donner des modeles mathématiques pour les comportements des
preuves/programmes. En particulier, la sémantique dénotationnelle s’attache a interpréter ceux-ci comme des
fonctions entre les types, et permet en retour d’affiner notre compréhension des preuves/programmes. La logique
linéaire (LL) donne une interprétation logique des notions d’algebre linéaire, quand la logique linéaire différentielle
(DiLL) permet une compréhension logique de la notion de différentielle.

Cette these s’attache a renforcer la correspondance sémantique entre théorie de la preuve et analyse fonction-
nelle, en insistant sur le caractere involutif de la négation dans DiLL. La premiere partie consiste en un rappel des
notions de linéarité, polarisation et différentiation en théorie de la preuve, ainsi qu’'un exposé rapide de théorie
des espaces vectoriels topologiques. La deuxieme partie donne deux modeles duaux de la logique linéaire dif-
férentielle, interprétant la négation d’une formule respectivement par le dual faible et le dual de Mackey. Quand
la topologie faible ne permet qu’une interprétation discréte des preuves sous forme de série formelle, la topologie
de Mackey nous permet de donner un modele polarisé et lisse de DiLL. Enfin, la troisieéme partie de cette these
s’attache a interpréter les preuves de DiLL par des distribuitons a support compact. Nous donnons un modele
polarisé de DiLL ou les types négatifs sont interprétés par des espaces Fréchet Nucléaires. Nous montrons que
enfin la résolution des équations aux dérivées partielles linéaires a coefficients constants obéit & une syntaxe qui
généralise celle de DiLL, que nous détaillons.

Mots-clefs : théorie de la preuve, logique linéaire, sémantique dénotationnelle, espaces vectoriels topologies,
théorie des distributions.

Title: Reflexive spaces of smooth functions: a logical account of linear partial differential equations.
Abstract

Around the Curry-Howard correspondence, proof-theory has grown along two distinct fields: the theory of
programming languages, for which formulas acts as data types, and the semantic study of proofs. The latter consists
in giving mathematical models of proofs and programs. In particular, denotational semantics distinguishes data
types which serves as input or output of programs, and allows in return for a finer understanding of proofs and
programs. Linear Logic (LL) gives a logical interpretation of the basic notions of linear algebra, while Differential
Linear Logic allows for a logical understanding of differentiation.

This manuscript strengthens the link between proof-theory and functional analysis, and highlights the role of
linear involutive negation in DiLL. The first part of this thesis consists in a quick overview of prerequisites on
the notions of linearity, polarisation and differentiation in proof-theory, and gives the necessary background in the
theory of locally convex topological vector spaces. The second part uses two classic topologies on the dual of a
topological vector space and gives two models of DiLL: the weak topology allows only for a discrete interpretation
of proofs through formal power series, while the Mackey topology on the dual allows for a smooth and polarised
model of DiLL. Finally, the third part interprets proofs of DiLL by distributions. We detail a polarized model of
DiLL in which negatives are Fréchet Nuclear spaces, and proofs are distributions with compact support. We also
show that solving linear partial differential equations with constant coefficients can be typed by a syntax similar to
the one of DiLLL, which we detail.
key-words : proof-theory, linear logic, denotational semantics, locally convex topological vector spaces, distribu-
tion theory.
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Chapter 1

Introduction

Differentiation in mathematics historically deals with functions defined on continuous sets, in which infinitesimal
variations of variables can be defined. Even though computation historically deals with discrete structures, the
concept of differentiation has recently made its way into several applied domains of computer science, e.g. in
numerical analysis [39], in incremental computing [65], or in machine learning [3].

Semantics of programs have however essentially focussed on programs operating on discrete classes of re-
sources, relying on the guiding principle that programs compute using only a finite amount of resources. This
concept has been prominent in the development of denotational semantics, even essential to obtain the first models
of A-calculus in domain theory [70].

The rise of probabilistic languages, infinite data structures and machine learning has more recently promoted
a movement towards continuous semantics: theoretical computer science, which has traditionally been associated
with discrete mathematics and algebra, is now steadily moving towards analysis.

Independently, differentiation also appeared in proof theory through Differential Linear Logic [23]. Linear
Logic and its differential refinement are formal proof systems allowing for the characterization of the concept
of linearity of proofs. Linear Logic [29] is a resource-aware refinement of intuitionnistic and classical logic,
introduced after a study of denotational models of A-calculus. Differential Linear Logic spawned from the careful
study of models of Linear Logic based on vector spaces [18, 19] [74]. While the former enriches Logic with
tools from Algebra, the latter transports those of Differential Calculus. When Linear Logic had applications in
developments in Type systems [12, 80], Differential Linear Logic may now lead to developments in differential
and probabilistic programming through differential A-calculus [22].

This work draws formal links between Logic and the theory of topological vector spaces and distributions. It
develops several classical and smooth models of Differential Linear Logic using the theory of topological vec-
tor spaces, and with these models embeds the theory of linear partial differential operators into a refinement of
Differential Linear Logic.

The cornerstone of our approach is the intuition that semantics should carry over an essential aspect of the
syntax of Differential Linear Logic, namely the involutive negation, and operate on continuous spaces. We will
explain how this leads to the understanding of | E as a space of solutions to a Differential Equation.

Models of Differential Linear Logic

Linear Types and Differentiation. Through the Curry-Howard correspondence (detailed in section 2.1) formu-
las A of a logical system can be understood as types of programs p : A. In particular, the logical implication
A = B is the type of programs p : A = B producing data of type B from data of type A. Linear Logic is a
logical system which distinguishes a linear implication A — B, and a specific unary constructor ! A, read as “of
course A", or the exponential of A . The usual implication is then defined using this two connectives:

IA—oB=A= B (1.1

where = stands for logical equivalence. Through the dereliction rule, Linear Logic expresses that a linear impli-
cation is in particular a non-linear one. That is, we have a proof d 4 of the formula:

ds:(A— B)— (A= B).



Differential Linear Logic contains a dual rule named codereliction, which expresses the fact that a linear proof can
be extracted from a non-linear one. It is thought of as the best linear approximation of this proof at 0'. That is, we
have a proof d 4 of the formula:

JA:(A:>B)—O(A—OB).

As a linear map is its own differentiation, a cut-rule - semantically a composition between d and d - must result in
the identity:
daody =1Idy

In the last chapter (Chapter 8), we generalize this to interpret the theory of Linear Partial Differential Operators
(LPDO) acting on distributions. We provide a dereliction rule dp 4 which applies an operator D to a proof
q : A = B. The dereliction dp_ 4 is then the rule which computes the solution p : A = B such that

Dp = q.

This is justified as a model of Differential Linear Logic in which distributions with vectorial values [67] interpret
proofs.

Differential Linear Logic is a Type System for several Differential Operators, and in particular for
Linear Partial Differential Operators with Constant Coefficients.

Semantics of Linear Logic The field of Denotational semantics studies programs by interpreting them by func-
tions. In particular, a program p : A = B is interpreted by a function f : [A]—[B]. Thus types A are interpreted
by some spaces [A]. These spaces must be stable under some operations. Typically, one must be able to curry and
uncurry:

[A] < [B] —[C] ~ [A] — ([B] —[C]) (1.2)

To interpret higher-order functional programming, one must consider the type of programs A = B as a space
itself, i.e we must have a category with internal hom-set. If p : A = B, then p is interpreted by a function
f : [A] —[B]. which is itself an element of a space:

fec(A], [BI)

Through the Curry-Howard isomorphism, matching in particular types of programs to formulas, denotational se-
mantics also applies to logical systems: we consider logical systems as type systems for certain programs. Models
of classical logics must in particular interpret the logical equivalence between a formula A and its double negation
——A.

[A] = [-—A].

Models of Linear Logic [59] distinguish between linear functions ¢ € L([A], [B])and non-linear functions
f € C([A], [B]). Moreover, Linear Logic is a classical logic with a linear negation. If (_)J‘ interprets this linear
negation, then a model of Linear Logic should satisfy:

[A] = [A]*.
Equation 1.2 in the linear context translates into the usual monoidal closedness:

L([AT @ [A], [AD) ~ £([A], £([A] [A]))-

Smooth semantics of Differential Linear Logic In denotational models of Differential Linear Logic, codere-
liction d is interpreted by the operator mapping a function f € C([A],[B]) to its differential at 0: Dy(f) €
L([A], [B])- Thus functions must be smooth: everywhere infinitely differentiable. Differential Linear Logic also
features sums of proofs, and thus one must interpret proofs in an additive category, where each hom-set C* (A, B)
is endowed with a commutative monoidal law + 4 g. This justifies searching for models of Differential Linear
Logic within Algebra. In fact, Differential Linear Logic stemed from a study of vectorial models of Lineac Logic
[18, 19] inspired from domain theory and coherent spaces. In these models, formulas were interpreted as vector

land is interpreted in topological vector spaces with the differential at O of a function.



spaces of sequences, and proofs as power series between this spaces. The differentiation of a power series can then
be computed immediately:

da:w— (f =) fneC(A B)— fi(z)),

where z € A, and f,, is a n-monomial resulting from a n-linear map f € L(A®" | B). In this thesis, we emphasize
the fact that formulas of Differential Linear Logic should be be interpreted by continuous objects , so as to
rejoin the mathematical intuitions about differentiation. A natural question to ask is then: is there of a model of
Differential Linear Logic in which formulas and proofs are interpreted by continuous objects and differentiation
on smooth functions between, let’s say, Banach spaces ?

Trying to interpret Linear Logic with traditional objects of analysis was tackled by Girard by constructing
Coherent Banach spaces [32]. This attempt fails, as imposing a norm on spaces of smooth functions? is too strong
a requirement. Thus one must relax the condition on normed spaces and consider more generally topological
vector spaces. Ehrhard [18] considers specific spaces of sequences, called Kothe spaces, which are in particular
complete, and thus construct a model of DiLL with an involutive linear negation. This models however relies on
a discrete setting, as operations are defined on bases of the considered vector spaces. Blute, Ehrhard, and Tasson
used the convenient analysis setting introduced by Frolicher, Kriegl and Michor [26, 53]. They construct a model
of Intuitionistic Differential Linear Logic interpreting formulas by bornological Mackey-complete locally convex
and Hausdorff topological vector spaces. Linear proofs are modeled by linear bounded maps and general proofs
by a certain class of smooth functions which verifies equation 1.2.

Classical and smooth semantics of Differential Linear Logic Differential Linear Logic is also (linear) classi-
cal. In the setting of vector spaces, the linear negation of a formula is interpreted by the space of linear forms on
the interpretation of a formula:

At ~ £([A],K) := A

In the setting of topological vector spaces, a model of classical Linear Logic must interpret formulas by reflexive
spaces, which by definition are a the topological vector spaces such that:

EZE”

However, the only smooth model of Differential Linear Logic [6] did not interpret classicality. In fact, reflexivity
and smoothness work as opposite forces in the theory of topological vectors spaces. While interpreting smoothness
requires some notion of completeness® — that is spaces with a topology fine enough to make Cauchy filters con-
verge — reflexivity requires a topology coarse enough so as to keep the dual E’ small enough. At the beginning of
this thesis was thus the question of finding a smooth model for DiLLL which would also feature a linear involutive
negation.

Reflexivity and (co-)dereliction We argue moreovoer that computations in Differential Linear Logic strongly
call for reflexivity. In that perspective, works by Mellies [62], inspired by semantics and which focuses on the
geometric nature of linear negation in logic, is clarifying. On one hand, smoothness and a linear involutive negation
gives us an exponential interpreted as a space of distributions with compact support. Consider indeed reflexive
spaces E’ and F'. Then the interpretation of equation 1.1 gives us:

|E ~ C*(E,R)

and this interpretation of the exponential as a central space of functional analysis leads the way to an exciting
transfer of techniques between Proof Theory and Analysis. One the other hand, in a smooth model of DiLL,
reflexivity leads to an elegant and general interpretation of dereliction and co-dereliction:

i - C*(E,R) - E (1.3)
v ¢ drpr € ~F '
_ E ~E" - C*(E,R)
dp - , . (1.4)

2In fact Girard uses analytical functions.
3see section 3.1.5



The equation on dg is made possible by the fact that £(E,R) < C*(E,R), and the second by the fact
that Do(f) is by definition a linear function for every f € C*(E,R). This understanding of dereliction and co-
dereliction as operators on spaces of functions allows a generalization from Dy to Differential Operators in Chapter
8.

Functional analysis and distribution theory This thesis heavily uses tools from the theory of topological vector
spaces [60] [44] [51] and distribution theory [69] to construct denotational models of (classical) Differential Linear
Logic. The algebraic constructions interpreting the linear implication, the multiplicative conjunction @ and the
duality are straightforward: they consist respectively in taking spaces of linear continuous maps £(FE, F'), tensor
product £ ® F, and the spaces of scalar linear continuous maps E’. The difficulty lies in choosing the good
topology to put on these spaces. We interpret the exponential ! by spaces of distributions with compact support
C*(E,R)’. On these spaces one can use the theory of Linear Partial Differential Operators [43].

While functional analysis was developed with an emphasis on cartesian structures and smooth functions, the
search for models of Linear Logic stresses the role of tensor products and reflexivity. Under this light, several
results of the theory of locally convex vector spaces find a nice interpretation: Schwartz’s Kernel theorem 7.3.5 in-
terprets Seely’s isomorphism, and the Mackey-Arens theorem 3.5.3 gives an adjunction with CHU which generates
classical models of DiLL (see Part II). Likewise, distribution theory gives an interpretation for the deduction rules
of Differential Linear Logic, and in particular those which are added to Linear Logic: the contraction rule ¢ (see
figure 2.6) is interpreted by the convolution 7.3.17, and co-weakening w in the case of Linear Partial Differential
Equations (see figure 2.6) corresponds to input of a fundamental solution (see definition 8.1.11).

Differential Linear Logic provides a polarized syntax for the theories of Topological vector spaces,
Distributions, and Linear Partial Differential Equations.



Content of the thesis

The first part consists in extensive preliminaries:

e Chapter 2 details the syntax and categorical semantics of LL, Di¢LL and their polarized versions, thus
revisiting works and surveys by Girard [30], Mellies [59, 60], Ehrhard [20, 24], Laurent [54, 55]. We
detail a denotational model for LI ( Kothe spaces [18]) and a intuitionistic denotational model for DiL.LL
(Convenient spaces [6]).

e Chapter 3 exposes the results from the theory of vector spaces used in this thesis. We mainly borrow material
from the textbook by Jarchow [44].

The second part develops two classical models of DiLLL through polar topologies on the dual:

e Chapter 4 is a quick perspective on quantitative semantics and duality in vector space. In particular, we detail
work by Barr [2] in which he understands the Weak and Mackey topologies as right and left adjoint to the
embedding of vector spaces in dual pairs.

e Chapter 5 is adapted from the published article [48]. It provides a classical and quantitative model for DiL.LL
using weak topologies on the topological vector spaces interpreting formulas of DiL.L.

e Chapter 6 refines the model of convenient vector spaces [0] into a polarized, classical ans smooth model
of DILL. This work is inspired by, but distinct from, a submitted work in collaboration with Y. Dabrowski
(appendix B) focusing on unpolarized model of DiLLL where the dual of ® is interpreted by Schwartz’ ¢
product.

The third part applies the theory of distributions and Linear Partial Differential Equations to Differential Linear
Logic.

e Chapter 7 exposes a model of DiLL where formulas are interpreted as nuclear spaces and exponentials as
spaces of distributions with compact support. The chapter begins with an exposition of the theory of nuclear
spaces and the theory of distributions. Then it develops a model without higher-order for DiLLy*. This is
an adaptation of work recently published [47]. We then expose the work of a recent collaboration with J.-S.
Lemay, generalizing this model to Higher-order.

e Chapter 8 builds two sequent calculi for Linear Partial Differential Equations, a non-deterministic and a
deterministic one. The two are based on the same principle: the introduction of a new exponential ! p, which
corresponds to the distributions ¢ solutions to the equation:

D¢ =9y

where ¢ a distribution with compact support. The symbol D denotes either a Linear Partial Differential
Operator with constant coefficients, or the differentiation at 0°. When D = Dy, we have |pE ~ E” ~ Ein
a classical model, and the introduced calculi specialises to the standard syntax of DiLL.

4Which is DiLL without promotion, the first historical version of DiLL [24].
Swhich is denoted Dy throughout this thesis.



Models of DiLLL.: a panorama

This thesis brings a contribution to the semantic study of DiL.L, by constructing several models of it. The main
body of the manuscripts focuses on polarized models of DiLLy. Polarization in Linear Logic distinguishes two
classes of formulas: the positive ones, preserved by the positive connectives, and the negatives ones, accordingly
preserved by the negative connectives. Thus polarized models of DiLL distinguish two kind of spaces, and relaxes
topological conditions as not all spaces are required to bear all stability properties.

We give a survey of the characteristics of the existing models and of the ones constructed in this thesis in the
following figures:

Models of DiLLLL

Polarized | Continuous spaces | Quantitative semantics

E ¢ K" =t
KOTHE [18], v

recalled in Section 2.2.3

Finiteness spaces [19] v
Weak spaces [48] v v
Convenient spaces [6], v
recalled in Section 2.4.3

Mackey-complete spaces v v
and Power series [49],
k-reflexive spaces [17], v
recalled in section 6.1

Mackey-complete Schwartz spaces [17], v
recalled in section 6.1

Polarized convenient model, v v
Chapter 6

Nuclear Fréchet spaces, v v
Chapter 7

Models of DiLL
Smooth Functions Involutive Linear Negation | Higher-order
|E = C*(E,R) E~E" nE
KOTHE [18], v v
recalled in Section 2.2.3

Finiteness spaces [19]
Wear spaces [48]
Convenient spaces [6], v

v
v

Mackey-complete spaces [49]

k-reflexive spaces [17],

Mackey-complete Schwartz spaces [17],
Polarized convenient model,
Nuclear Fréchet spaces,

SN ENENENENENENEN
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Logic and Functional Analysis

The author believes that this semantic study allows one to draw solid ties between polarized Differential Linear
Logic and the theory of topological vector spaces. We sum up these correspondences, while referring to a concrete
model in which they are verified.

Operations of DiLL
Logical operation Interpretation Example
A Ealcs That’s the case for every model considered above
Linear negation A+ Linear topological dual E’ In all models except convenient spaces [6],
where A is interpreted by the bounded dual £ .
7 € In [17] and its summary in section 6.1,
and also chapter 6
7A C*(E',R") In [6], [17],
Chapters 6 and 7
1A &'(E) :=C*(E,R) When E = R", this is the case in models of [6],
[17] and Chapter 7
TA Ey The lcs E endowed with its weak topology
in Chapter 5
TA Eor EM a completion of E Any model with smooth functions
1A E®°™ the bornologification of £ In Chapter 6

Exponentials for Differentials Equations

The last chapter details how exponentials should be understood as spaces of solutions for Differential Equations.
We sum up the different interpretation of the rules of DiLL in the following table, indexing the different interpre-
tations of the rules of DiLL or D — DiLL according to the differential operator considered:

Rules for Differentials Equations

Differential Operator Do D aLPDOcc Id
Spaces of functions Linear functions functions f = Dg all smooth functions
E D(C*(4) c?(A)
Exponential !pE = D™ (!E) 'poE:=E'~F IpA = D(C*(A)) l1dA =1A=C*(A)
Interpretation of dp : |E—>pF ¢ — qﬁ‘(A)/ ¢ — ¢\D(C°C(A))
Interpretation of d : |p —> !z x> (f = d(f)(0)(z)) | ¢ — (f — &(D(f)))
Interpretation of w : |E —1 p— (o
Interpretation of w : 1 —>!g 1+ g
Interpretation of wp : |pE —1 ¢— (D¢
Interpretation of wp : 1 —1pF 1— Ep
Interpretation of ¢ : 7EQ?E —7E f®g—f-g
Interpretation of ¢ : | EQ!E —|F YR P 1)
Interpretation of ¢p : 7p EQ?E —=?7E f®g—f-g
Interpretation of ¢p : !p EQ\E —F VRPr—> o




Part 1

Preliminaries



Chapter 2

Linear Logic, Differential Linear
Logic and their models

Tout ce qui est vrai dans le livre est vrai, dans le livre. Tout ce qui n’est pas dans le livre n’est
pas dans le livre. Bien siir tout ce qui est faux dans le livre est faux dans le livre. Tout ce qui
n’est pas dans le livre, n’est pas dans le livre, vrai ou faux.

Claude Ponti, La course en livre, 2017.

Linear Logic and its differential extension come from a rich entanglement of syntax and semantics. In partic-
ular, Linear Logic comes from the understanding and decomposition of a model of propositional logic. We give
in Section 2.2 give an overview of the syntax of Linear Logic, its cut-elimination procedure, and its categorical
semantics. We will detail a model of LL constructed by Ehrhard, based on spaces of sequences. Section 2.3.1
details polarized linear logics as introduced by Laurent [54]. We give a categorical semantics following definitions
by Mellies [61]. We introduce Differential Linear Logic in Section 2.4 as a sequent calculus, define its categorical
semantics following definitions by Fiore [25] and give an example of a smooth Intuitionistic model [6]. In the last
Section 2.5, we detail a polarized version of Differential Linear Logic, and detail a categorical semantics for it. It
is an adaptation in a sequent calculus of the polarized differential nets by Vaux [79]. The categorical semantics
extends the definitions of Mellies [61].

As preliminaries, we want to introduce the Curry-Howard-Lambek correspondence. This correspondence be-
tween theoretical programming languages, logic and categories justifies all the research conducted in this thesis:
we look in semantics for intuitions about programming theory. Linear Logic and its Differential extension are
typical examples of this movement.

Notation 2.0.1. In this Chapter, we use a few times the basic vocabulary of Chapter 3, in order to give intuitions
on the syntax. Section 3.1 covers these definitions. In a first approach, the reader can skip the few reference to
the theory of topological vector spaces. Let us just say that the term lcs denotes a locally convex and Hausdorff
topological vector space.

10



Contents

2.1

2.2

2.3

24

2.5

The Curry-Howard correspondence . . . . . .. ..ot v i v i i ittt i neeeeeen 12
2.1.1 Minimal logic and the lambda-calculus . . . . . . .. ... ... ... ... .. ..... 12
2.1.2 LKandclassical Logic . . . . . . . . . .. e 14
Linear Logic . . . . . . o o i i it i i e i e e e e e e e e e e e e e 16
2.2.1 Syntax and cut -elimination . . . . . . .. ... Lo 16
2.2.2  Categorical SEmMantiCs . . . . . . . . . i e e e e 16
2.2.3 Anexample: Kothe spaces . . . . . . . . ... 22
Polarized Linear Logic . . . . . . .« ¢ o v i i i i i it i e e i et et e e e e 23
231 LLpaand LLP. . . . . 00000 o 24
2.3.2  Categorical SEmMantics . . . . . . . . . oo e e e e e 26
2.3.2.1 Mixedchiralities . . . . . .. .. L 27
2.3.2.2 Negative chiralities. . . . . . . . . . ... L 28
23.23 Imterpreting MALLpor « « « . o o o o oo 29
2324 Interpreting LLpor . . . . . . o oL 31
Differential Linear Logic . . . . . . . . ¢ i i i i i i i it i it et e e e 34
24.1 Syntax and cut-elimination . . . . . . . ... Lo 34
24.1.1 ThesyntaX . . . . . . .. .o i e 34
2.4.1.2  Typing: intuitions behind the exponential rules. . . . . . . ... ... ... .. 36
24.1.3 Cut-eliminationand sums . . . . . . . . .. ... o 37
242 Categorical Semantics . . . . . . . . . oL e e e 40
2.4.2.1 s-autonomous Seely categories with biproduct and co-dereliction . . . . . . . . 40
2.4.2.2 Invariance of the semantics over cut-elimination . . . . . . .. ... ... ... 43
2.4.23 Exponential structures . . . . . . . .. ... 45
2.4.3 A Smooth intuitionistic model: Convenient spaces . . . . . . . . . . . .. ... ... .. 45
Polarized Differential Linear Logic . . . . . . . . . . it v ittt i ittt et v e 49
25.1 Asequentcalculus . . ... 49
2.5.2 Categorical Semantics . . . . . . . . . oL L e 50
2.5.2.1 Dereliction and co-dereliction as functors . . . . . ... ... ... .. .... 50
2522 Apolarized biproduct . . . . ... 51
2523 Categorical models of DiLLpor . . . . o o o oo oo oo oo oo 52

11



2.1 The Curry-Howard correspondence

In this section, we will give two examples of the Curry-Howard correspondence: first we show the correspondence
between minimal logic, the simply-typed A-calculus and cartesian closed categories. Then we detail the sequent
calculus LK, thus omiting the Curry-Howard correspondance with the Aufi-calculus [16] and control categories
[72].

2.1.1 Minimal logic and the lambda-calculus

This section consists in a very basic introduction to the Curry-Howard-Lambek correspondence. Programs are
understood as terms of the A-calculus. They are typed by formulas of minimal logic, and these types are interpreted
in a cartesian closed category.

Definition 2.1.1. Consider 2l a set of atoms. Formulas of minimal implicative logic are terms constructed via the
following syntax: A, B:=a€ i | A—B

Definition 2.1.2. Consider X a set of variables. Terms of the A-calculus are constructed via the following syntax:
tu:=x| (t)u| .t

Typing judgements are denoted by I' — ¢ : A, where ¢ is a term and A a formula, and IT" a list of typing
assignments ¢’ : A’. Then the A-calculus is typed according to the following rules: to each variable z is assigned a
type A, and then:

—xeX,ae '-t:A—DB,u:A
Iz:abkz:a T (u:B
I'z:A+t: B
I'Met:A—B

app

The S-reduction rule of A- calculus is the following:
(Az.t)u —t[u/x].

It preserves typing according to the cut rule above.

Categories The categorical semantics of a proof system interprets formulas by objects of a given category
C, and sequents A — B as morphisms from an object A to an object B. We will see that the morphisms of a
cartesian closed category interpret the typing judgements of the simply typed A-calculus.

Definition 2.1.3. [56] A category C consists in:
e A collection O(C) of objects,

e A collection A(C) of arrows such that each arrow f has a domain A € O(C) and B € O(C): we write
f : A— B and the collection of all arrows with domain A and codomain B is denoted by C(A, B).

e For each objects A, B and C a binary associative law: o : C(4, B) x C(B,C)—C(A,C).

e For each object A an arrow 14 € C(A, A) such that for any object B, any arrows f : A—=Bandg: B—A
we have:

folA = fandleg = g.

A category is said to be small if the collection of its objects is a set. A category is said to be locally small if
every hom-set C(A, B) is a set. If C is a category, one construct its opposite category C°? with the same objects
but with reverse arrows C°?(B, A) = C(A, B).

Definition 2.1.4. A (covariant) functor F from categories C to D is a map between the collections of objects and the
collection of arrows fo C and D respectively such that:

F(f:A—B): F(A)—F(B)and F(fog) = F(f)oF(g).

12



A contravariant functor F from a category C to a category D is a covariant functor from C to D°P. Without
any further specifications, a functor is always supposed to be covariant.

Example 2.1.5. Consider C a locally small category. Then for every object C' € C we have a covariant functor
CC,_):C—=Set,B—C(C,B),feC(A,B)— f*:9geC(C,A)— foge(C(C,B)

and a contravariant functor
C(,,C):C—=Set,A—C(A,C),feC(A,B)—*f:9eC(A,C)— go feC(B,C).

Definition 2.1.6. We write F : C — D. A natural transformation 7 between two functors 7 : C—=D and G :
C —D is a collection of morphisms indexed by objects of C such that:

na: F(A)—G(A4) e D(F(A),6(4))

and such that for every object A, B € C, arrows f : A—= B we have ng o F(f) = G(f) o na. This diagram
more precisely states the naturality in A of the collection of morphisms 7.

F(f) F(B)

lns

g(B)

F(A4)

lm

g(a) 20

Definition 2.1.7. Two functors F : C— D and G : D — C are respectively left adjoint and right adjoint if for
each object C € C and D € D we have a bijection:

C(C,G(D)) ~ D(F(C), D)

which is natural in C' and D. We write 7 - G and we denote this as:

Through this adjunction, there is a natural transformation d : F o G — Idp which is called the co-unit, such
that for any D € D dp : F(G(D))—= D is the morphism of D corresponding to 1g(p) € C(G(D), G (D)) through
the adjunction. Similarly, there is a natural transformation d : Id¢ —=G o F — I d¢ which is called the unit, such
that for any C' € C d¢ : C—=G(F(C')) is the morphism of C corresponding to 1 7y € D(F(C), F(C)) through
the adjunction.

Definition 2.1.8. The categories C and D are said to be equivalent through an adjunction if the unit and the co-unit
are isomorphisms.

The definition of product categories and bifunctors is straightforward [56]. A terminal object in a category C is
an object | of C such that for every object A of C, there is a unique arrow ¢4 : A — 1.

Definition 2.1.9. A cartesian category is a category C endowed with a terminal object L and binary law x :
C' x C — C such that for every objects A, B € C, there are arrows (projections)

7TA:A><B—>A,

mg:Ax B—=DB

such that for every object C' of C, for every arrows f € C(C, A), g € C(C, B), there is a unique arrow {(f, g) €
C(C, A x B) satisfying f = mqao{f,gyandg = 7po{f, g).

Then one can show that this binary rule x is commutative and associative. The definition of a n-ary product is
thus immediate. This category is carfesian closed if for every object B € C we have a functor [B, _] : C—C and an
adjunction:

C(Ax B,C)~C(A,[B,C])
Thus to the morphism id[ 4, 5] € C([A, B],[A, B]) corresponds a unique morphism:

evap: A, Bl x A—B.
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Interpretation of the simply typed \-calculus in categories Consider C a cartesian closed category. With every
typing judgement one assigns an object in C:

e If x is a variable, x : A is matched to an arbitrary object A € C,
e t: A— Bismatched to [A, B].

To a typing context x1 : Ay, ...,z, : A, one assigns the product of the interpretation of the types. To every
typing derivation I' |- ¢ : B one assigns a morphism in C(I", B) according to the following rules:

e To the axiom z1 : Ay, ...,x, : A, - x; : A; corresponds the i-th projection 7; : Ay x ... x A,, — A; on
the last item of a product.

e From an arrow f € C(A; X ... x A, x A, B) corresponding to 21 : Ay, ....,xp : Ap,t: A+ u: B, one
constructs via the closedness property an arrow in C(A; x ... x 4,,[A4, B]).

e From an arrow f € C(A; x ... x A, [A, B]) corresponding to 1 : Ay, ...,xp : Ap - u: A— Band an
arrow g € C(By X ... X By, A) corresponding to 4 : By, ...,Yn : Bp = t : A, one constructs via evs p an
arrow in C(A; X ... x A, x By x ... X B,,, B).

2.1.2 LK and classical Logic

Classical logic is the logic satisfying the excluded middle: the formula A v —A is provable, even if one cannot
construct a proof of A or a proof of —A. This is equivalent as being allowed to eliminate the double-negation: if
we can prove the negation of the negation of A, then one can prove A. In other words, if we have a proof that
the negation of A implies the absurd, then this is a proof for A. Classical logic have been criticized for being
to non-constructive: a witness for the fact that the negation of A is impossible is not really an inhabitant of A.
However, it was highlighted by Griffin [35] that classical logics has a computational content, as it allows to type
exceptions handlers.

This will be illustrated here by detailing the propositional classical sequent calculus LK introduced by Gentzen [28].
A sequent calculus consists in formulas, sequents, and rules allowing to deduce sequents from axioms. A formula
is a tree constructed from atoms, logical connectives and constants. Let 2{ be a set of atoms a € 2.

A sequent is an expression I' — A, where I" and A are both finite sequences of formulas. The (non-linear,
usual) intuition is that writing I' - A means that from the conjunction of the formulas of I" (i.e. from all the
formulas of I"), one can deduce the disjunction of the formulas of A.

Definition 2.1.10. The formulas of LK are defined according to the following grammar:
AB:=T|Ll|a|AvB|AAB.

In the above definition, v denotes the disjunction (A or B) while A denotes the conjunction (A and B). One
also defines an involutive negation —(-) on formulas:

-T =1 -1 =T ~(Av B) = ~AA—B ~(AAB) = =Av —B.

As we are in a classical logic, A should be provable under the hypotheses of A if and only if no contradiction
arise from the set of hypotheses A, AL, or likewhise if one can prove A+, A. This justifies a monolateral presen-
tation - I' of sequents, were |- Fl, A stands for I' - A. The deduction rules for LK are detailed in figure 2.1.2.
What happens between a bilateral and a monolateral presentation is the following: while in a bilateral presentation,
one would need to introduce a rule (for example a logical rule introducing a connective) to the left and to the right,
it is now enough to introduce it to the right. For example, a bilateral version of LK features the rules:

I'-A4A  TrBA LA-A ILB-A
TEAABA A"add T A B A /A odd T.ABrA / odd
and
IA-A T.B-A T AA I, BA
I Rl 2= R2
TLAvBLA v¥add T AvBA vV odd T AvBA vV odd

Notice the symmetry between the introduction of a connective to the left and the introduction of its dual on the
right. In the monolateral presentation of LK in figure 2.1.2, rules on the left are replaced by their dual rules on the
right. What makes this logic classical is precisely the fact that — A is involutive: a formula is logically isomorphic
to its double negation.
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The identity group

- ax HAA F—AT
A —-A AT cut

The logical group
T Tmull |_7F mul ﬂ mull = F7 A E A’ B mull

-1 FT.1 L “T.AvB V —T.AA~B )
——— Tadd FT,A HI,B i FT,A wdd —I,B wdd

I, T "~ T VL VR

’ FT,AAB FT,Av B FT,Av B

The structural group

FI44 i k. weakening il commutation
T, A conracton —T,A o) foroe (| T ).

Figure 2.1: The inference rules for LK.

Structural rules Structural rules of LK are the ones describing the operations on I" and A that do not change
the logical content of the sequent I' — A. Namely, contraction allows the duplication of a formula on the left (an
hypothesis can be used twice), or on the right (if one can prove a formula once, then one can do it twice).

Additive and multiplicative rules When such structural rules are allowed, then each rule has two versions, an
additive one and a multiplicative one. Additive ones are the one that do not make a distinction between the context
of two given sequents of a rule, while multiplicative ones are those which concatenate the context of the premisses.
These additive and multiplicative presentations are equivalent because of the structural rules. We will see later in
Section 2.2 how linear logic, which restrains the use of structural rules on specific formulas, imposes a distinction
between an additive and a multiplicative disjunction or conjunction.

Reversible rules Another distinction is to be made between reversible and irreversible rules. Reversible rules
are the one such that if the provability of the conclusion is equivalent to provability of the premisses. Irreversible
rules are those for which this is not true. In LK, the additive rule for A and the multiplicative rule for v are re-
versible, while the other logical rules are irreversible. Again, polarized linear logic will refine this by distinguishing
negatives and positives formulas.

Proofs A proof consists in a proof tree, with axioms as leaves, inference rules at each branching and a sequent
at the root. Let us introduce a few more definitions. An inference rule between two sequents is derivable if the
conclusion sequent can be derived from the premisse. A sequent is provable in a proof system if it can be derived
from axioms using the inference rules of the proof system.

Example 2.1.11. Here are a few examples of proof-trees for derivable sequents in LK.

ar FAA =AB
FACA FAAANB M)
HAv—-A A A~B contraction

+—-B,B FAA
A B,AA—B

(Amul)

I, -Av B

- F’ B cut

A fundamental result of Gentzen is the cut-elimination theorem. It states that any sequent which is provable in
LK,4q is provable without the cut rule, and most importantly gives an deterministic algorithm to eliminate the
cut-rules from a proof. That is, any provable sequent can be proved using only rules which will introduce its
connectives. This theorem also implies that LK is coherent, meaning that - L is not provable. Indeed, a cut-free
proof of 1 would imply an introduction rule for L.
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2.2 Linear Logic

In this thesis LL (resp. ILL) always refers to classical (resp. Intuitionistic) Linear Logic. Likewise, DiLL (resp.
IDiLL) always refers to classical (resp. Intuitionistic) Differential Linear Logic. We refer to a written course by
O. Laurent [55] (in french) for a rigourous and detailed exposition of the notions which will be introduced in this
first section.

2.2.1 Syntax and cut -elimination

Linear Logic [29] implements the above remarks about the different computational behaviour of the rule by re-
stricting the structural rules on formulas marked by a unary operator 7. Then additive rules and multiplicative
rules are no longer equivalent, since formulas in a sequent cannot be duplicated or inserted at will. Linear Logic
introduces two structural rules allowing for the special role of the connective 7 and its dual !. The dereliction d
says that A imply 7A: a linear proof is in particular a non-linear one. Dually, it means that as an object of the
context, the hypothesis ! A is stronger A. The promotion rule says that if the hypothesis are all reusable, then the
conclusion can be made reusable.

Definition 2.2.1. The formulas of Linear Logic are
AB:=a|la"|0|1|T|L|AQB|A®B|A®B|AxB|!A|?A

where ® (resp &) denotes the multiplicative (resp. additive) conjunction and %% (resp @) denotes the multiplicative
(resp. additive) disjunction.

The linear negation of a formula A is denoted A+ and defined inductively as follows:

(A& B)" = At®B" (A@B)* = A & B*
(AR B)Y = At@Bt (4®B)* = Atx Bt
1A+ = 2441 24t = 14+
1t =1 1t=10t=7T Tt=0

We extend the unary connective of LL to list of formulas: if I' denotes the list Ay, ...A,, then !T"is 144, ..., !A4,.
We give in figure 2.2 the inference rules for the sequents of Linear Logic. Linear Logic enjoys a terminating cut-
elimination procedure [29]: we detail in figure 2.3 the cut-elimination rules for the exponential rules. The logical
cut-elimination rules for the other rules follow the pattern of the duality defined above.

2.2.2 Categorical semantics

We refer to a survey by Mellies [59] for an exhaustive study of the categorical semantics of Linear Logic. We
choose here to detail the axiomatization by Seely, known as Seely categories, as it will fit well our study of
Differential Linear Logic.

Monoidal and +-autonomous categories We first describe the structure of monoidal closed categories, which
are the good axiomatization for models of MLL. Although this is one the simplest categorical structures, find-
ing examples of those in functional analysis is not at all straightforward, as it requires to solve "Grothendieck’s
probléme des topologies” (see Section 3.6).

Definition 2.2.2. A symmetric monoidal category (C,®, 1) is a category C endowed with a bifunctor ® and a unit
1 with the following isomorphisms:

aapc:(A®B)®C ~A®(B®(C)
PAART ANy TRA~ A
symap: AQB~B®A
with the following triangle and pentagon commutative diagrams assuring the coherence of the associativity and the

symmetry.
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The Identity rule

m axiom FT,A = AL, A cut
) FT,A
The multiplicative rules
— _=r
=1 Tt
FT,A B 3 FT,A HA,B
FT,A® B FI,AJA®B
The additive rules
EE— FT,A —I,B
=TT FT.A&B Y
FT,A - T,B
FT,A®B ®r —T,A®B Or
The Exponential Rules
=T w FT,74,7A
S | HT,74
FT,A FIA
FI,7A 1A
Figure 2.2: The inferences rules for Linear Logic
- T, A A At 1
A Fazal f mmhA P AAT
: AT : cut AT
FA
24L 9L 0
%. %CW — 0,04 D74t 740 - A
LTS LA — AT, 2A4L — T4
AT cut
Ve AT
A FA
CA L P AAL W”:A:Avr“’
cut 7
AT ’
T A
? 70, 7AL _—
%511:764 ’ F???jﬁig SN E A - 7A,74%, B cut
mELYL ?A:F'"' 2 cut — ?A, 7T, B
Fta, e —?A, 7T, 1B

Figure 2.3: The logical cut-elimination rules for the exponential rules of LL
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A®B

pPaA®lp 1a®AB
(A®1)® B aans A®(1®B)
(A® B)® (C ® D)
(A®B)®C)® D (A®(B®(C®D)))
J/(XA,B,C®D T
XA, BRC,D

(A (B®0)®D A®(B®C)®D)

Definition 2.2.3. A monoidal closed category is a symmetric monoidal category (C,®, 1) such that for each object
A we have a adjunction

_®AHI[A,_]

which is natural in A. The object [A, B] is called an internal-hom in C.

Definition 2.2.4. A x-autonomous category [1] is a symmetric monoidal closed category

(C7C7 1C7 ( - )C)

with an object L such that the transpose A — (A — 1) —o L to the natural transformation ev | : A® (A —o
1) — 1 is an isomorphism for every A.

Notation 2.2.5. We write §4 = evg .

Example 2.2.6. The category of finite-dimensional real vector spaces and linear functions between them, endowed
with the algebraic tensor product is *-autonomous.

The previous example allows us to introduce informally notations which will be recalled and formally defined
in Chapter 3 and widely used throughout this thesis: when F is a real locally convex and Haussdorf topological
vector space (for example, any finite-dimensional or any normed space will do), then we denote by E’ the vector
space consisting of all the linear continuous scalar maps £ : £ —s R. Several topologies can be put on this vector
space, although one has a canonical one which corresponds to the topology of uniform convergence on bounded
subsets of E. This topology is called the strong topology. When FE' is normed, this corresponds to endowing E’
with the following norm :

[y = f = supjz<a| f(2)]
Thus a space is said to be reflexive when it is linearly homeomorphic to its double dual.

Example 2.2.77. The category of Hilbert spaces is not *-autonomous: if indeed any Hilbert space is reflexive, that
is ismorphic to its double dual, Hilbert spaces and linear continuous functions between them is not a monoidal
closed category. Indeed, the space of linear continuous functions from a Hilbert space to itself is not a Hilbert, nor
it is reflexive in general. More generaly, the category of reflexive spaces and linear continuous maps between them
is not *-autonomous, as reflexive spaces are not stable by topological tensor products nor by linear hom-sets.

Remark 2.2.8. We have (L — 1) ~ 1¢.

A particular degenerate example of *-autonomous categories are those where the duality is a strong monoidal
endofunctor (see Definition 2.2.11) on (C, ¢, 1¢):

Definition 2.2.9. A compact-closed category is a =-autonomous category where for each objects A and B there is
an isomorphism natural in A and B:

A* ®c B* >~ (A ®C B)*

Example 2.2.10. The category of finite-dimensional real vector spaces is compact closed, as any finite dimensional
vector space is linearly isomorphic to its dual.
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Interpreting MLL Consider A4, ..., A,, formulas of LL and — A, ..., A,, a sequent of formulas of LL. In a
monoidal closed category C, we interpret A; as an object [A4;]:

e We interpret a formula A ® B by [A]¢[B] ans thus the formula 1 by 1c.
e We interpret | by 1*.
e We interpret [A X B]- as [A1] — [B].

Thus, in a *-autonomous category we have ([A1] ® [B]*)* = [A] — [B], and [A1] = [A]*.
Therefore, there is a natural isomorphism between the set of morphisms

f: lc—>[[A1]]* —0 (coe. = [Ar])e

of C interpreting — A1, ..., A, and the set of morphisms f : A1 ® ...A,,_1 —> A,,. This being said, one constructs
by induction on their proof tree the interpretation [7]] of a proof m of MLL. We interpret the sequent - A4, ..., A,
as amorphism 1 —[A; ¥ --- B A,].

e The interpretation of the axiom rule is - A+, A is the morphism 1 — (14] €] A[—o [A].

e If f : [T+] —[A] interprets proof 7 of - ', A and g : [A] —=[A] interprets a proof 7’ of - A+, A, then
the proof of the sequent I', A resulting from the cut between the 7 and 7’ is g o f : [T+] —=[A].

o The interpretation of the introductions of 1 and L correspond respectively to the identity map 1, : 1c—1¢
an to the post-composition by the isomorphism [I'] ~ [T']* — L.

e The interpretation of - I') A, B and of - I'; A % B are the same.

e From maps f : [[*] —[A] and g : [A+] — [B], one constructs the image of f and g by the bifunctor
®: f®g: [MM]@[A]—[A]®[B].

Interpreting MALL The interpretation of the additive connectives and rules are done via a cartesian structure
(x,T,t) onC, as detailed in Section 2.1.1. Recall that t 4 : A— 1 describe the fact that | is a terminal object.

In a *-autonomous category with a cartesian product, the dual (A* x B*)* of a product is a co-product,
interpreting the connective @®.

o If f : [I*] —= [A] interprets a proof of — I', A then if we denote by ¢; : A—= A ® B the canonical
injection of Ain A ® B, the maps ¢ o f : [I'*] — [A ® B] interprets the proof of - I'; A @ B. The rule
@k, is treated likewise.

e If f : [I+] — [A] interprets a proof of - I', A and g : [['*] — [B] interprets a proof of - T, B], the
product {f, g : [T*+] —[A] x [B] interprets the proof of - I', A & B.

Strong monoidal co-monads Once the linear part of LL is interpreted, one needs to interpret non-linear proofs.
This is done through linear/non-linear adjunctions [4], or equivalently through strong-monoidal co-monads [71].
The second point of view is the one developed here.

Definition 2.2.11. A strong monoidal functor between two monoidal categories (C, ¢, 1¢) and (D, p,1p) is a
functor equipped with natural isomorphisms:

ma,p: F(AQc B) ~ F(A) ®p F(B).andmg : F(l¢) ~ 1p

such that the following diagrams commute:

"‘f(m F(y),F(2)

F(z) ®p F(y)) ® F(z2) ———= F(x) ®p (F(y) @p F(2))

(

i F@$,..) l
F(xQcy) @p F(2) F(z) ®p F(y Qc 2)
i F@$,..) l
F((x ®c y) Qc 2) F(z®c (yQc 2))
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ID @D f(:l?) md]:(lc) ®D }"(x)
J’ F(A) J’
Zd®m0

f((E) ®D ]-D —_— ]‘—(i) ®D f(].c)

l l

]‘—(ZC) f(x ®c 1)

F(oS)

Definition 2.2.12. A comonad on a category C is an endofunctor 7" : C — C with natural transformations x :
T—ToT and d : T — Id satisfying the following commutative diagrams for each object A of C.

From every adjunction / — §, one gets a comonad on D by composing F and G: F oG : D — D.
With the above notations, the co-unit is dp : F o G(D) — D is the image of 1g(p) via the isomorphism
D(FoG(D),D) ~C(G(D),G(D)), and the comultiplication is s : F 0 G — (F 0 G)%.

Definition 2.2.13. The coKleisli category of a co-monad T is the category Cr whose objects are objects of
C, and such that Cr(A4, B) = C(T'A, B).

Then the identity in Cr of an object A corresponds in C to d4 : TA — A, and the composition of two arrows
f:TA— Band g : TB— C corresponds in Cp to the arrow:

gol f = goTfopua.

Then from every co-monad one constructs an adjunction between a category and its co-Kleisli:

T
—
Cr 1 Cr
< —
U

in which the functors T and U are deduced from 1"

CT —C
T: A—T(A)
FeCr(A,B) — TfopuaeC(T(A),T(B))
C—Cr

U: A A
f:A—Bw fody:T(A)—B

Interpreting the structural rules of LL.  Consider (C,®, 1, (.)*) a Seely Category, that is a x-autonomous cat-
egory with a cartesian product (x, T) and endowed with a strong monoidal comonad ! : (C, x, T) — (C,®, 1).
Then we interpret the formulas of LL as previously and [!A] = ![A] and [7A] = (/([A]*))*.
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Remark 2.2.14. This strong monoidal functor is said to satisfy Seely’s isomorphism:
(Ax B)~!A®!B 2.1
The strong monoidal functor ! provides natural isomorphisms:

map:(AxB)~IA®!B, 2.2)
mo : !T ~ 1. 2.3)

Then one defines the natural transformations:

! A ma, A

ea TAYE 1A x A) A 1414 2.4)
In mo

wa JA—=IT 'R (2.5)

The natural transformation ¢ models the contraction rule by pre-composition. Likewise, w gives us the interpreta-
tion for the weakening rule. The co-unit d gives us the interpretation of the dereliction rule by pre-composition.

Proposition 2.2.15. [59] The morphisms w4 and d 4 define natural transformations w and d.

If moreover ! is a co-monad, then one gets the interpretation of the promotion rule: from the interpretation
f :![T+] — A of a sequent I ?T', A, one constructs:

prom(f) : (] = u[r+] > 14.

Remark 2.2.16. Notice that the categorical interpretation of the promotion rule is the only one using the co-
multiplication .

Remark 2.2.17. [59, 5.17.14] A co-monad which is a strong monoidal endofunctor on a category L leads to a
monoidal adjunction between £ and its co-Kleisli category L:

!

T
L s L
\_/

U

A smooth classical semantics, exponentials as distributions. In this paragraph we introduce informally the
intuition which will guide our understanding of Differential Linear Logic. Indeed, the interpretation of a differen-
tiation operator imposes a smoothness condition of the maps of the co-Kleisli category of the exponential.

Let us observe from a functional analysis point of view what has been defined previously. We interpret formulas
A, B by R-vector space E and F’ with some topology allowing us to speak about limits, continuity and differen-
tiability. The category L is then the category of these vector spaces and linear continuous maps between them.

Let us denote by C the co-Kleisli category £y. The maps f : E — F of this category are linear maps
f :1E —o F, and can be described as power series between E and F in classic vectorial models of LL [18, 19].
The multiplicative conjunction A ® _ is then interpreted by a (topological) tensor product, whose right adjoint is
the hom-set L(A,_).

The interpretation for 1, neutral for ®, is thus the field R. Following remark 2.2.8, the interpretation for L is
such that £(L, 1) = R, thus L is one-dimensional and:

1 ~1~R (2.6)

The duality (_)’ corresponds to some topological dual E* = L(E,R), and thus via the definition of C and the
properties of a x-autonomous category we get:

'E~ (IE)" ~ L('E,R) ~ C(E,R) 2.7

Thus the exponential ! E must be understood as the dual of the space of non-linear scalar functions defined on
E, as a topological vector space of linear continuous scalar functions (also called /inear forms) acting on non-linear
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continuous scalar functions. Likewise, we get an intuition of the dual of the exponential as a space of non-linear
functions.

?(E*) ~ C(E,R) (2.8)

If C is the category of vector spaces and smooth functions, then the exponential is interpreted as a space of distri-
butions [67], see Section 7.3.2 and Chapter 7.

2.2.3 An example: Kothe spaces

In this section we give an overview of the structure of KOTHE spaces [18] which were used to construct the first
vector-space model of linear logic and from which differential linear logic is inspired. We will make use in this
section of some basic notions from the theory of topological vector space. These are vector spaces endowed with
a locally convex and Hausdorff topology making addition and scalar multiplication continuous. The first two
sections of Chapter 3 cover all the notions used here.

IfK = RorK = C, K" denotes the vector space of all sequences on K. Following Ehrhard, we write for
EcKN:

Et:={(an)n e KN |VX€ E, (M | an |)n € 41}

Let us remark that this space is always a vector space. It is endowed with the initial topology induced' by the
semi-norm ¢ for \ € E:

g :a€Et— Z|)\nan|.
n

Proposition 2.2.18. [44, 1.7.E] A space of positive sequence P is said to be a Kothe set® if it satisfies the following
conditions:
Vae P,Ane N: a, > 0andVa,p € P,3y € P,VYn : max ay,, B, < Vn.

If P is a Kéthe set then P is a lcs (that is, a locally convex and Hausdorff topological vector space, see Section
3.1).

This duality operation satisfies the classical axioms for an orthogonality, as detailed at the beginning of Chapter
3:

Ec EH
EL:ELLL
EcF=FtcFEt

We now give the definition of Kothe spaces as used by Ehrhard, which coincide with the definition of perfect
sequence space by Schaefer and Kothe [51, 66]. We therefore call them perfect sequences spaces, as Kothe spaces
will be studied more generally in Chapter 3, Section 3.2.

Definition 2.2.19. A perfect sequence space is the data (X, Ex) of a subset X = N and Ex < K¥ such that
E}L(L = Fx. Itis endowed with its normal topology, that is with the projective topology induced by the semi-
norms:

do : (An)n = [[(Anan)nll; = Z | Anain |

forall & € Ex ™. As the index will be clear form the context, we abusively note E'x to denote the perfect sequence
space (X, Ex).

We recall now the setting that makes the category of a model of DiLL.

Ithat is, the coarsest topology such that the gy are continuous
2this notion is introduced independently in Section 3.2.3
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Monoidal and cartesian structure. Let us denote by KOTHE the category of perfect sequence spaces and linear
continuous function between them. We consider E'x and Fy two perfect sequence space, and denote by «; the
sequence null at every index but ¢ and equals 1 at i.

Linear maps ¢ between Ex and Fy can be seen as some matrix M € K*X*Y where M, ; = I(e;);.

Proposition 2.2.20. [/8, 2.10,2.11] The space E —o F of linear continuous maps from Ex to Fy correspond to
the subset KX*Y of all M such that the sum:

Z M; jxiy;

0,J
is absolutely converging for all x € E and y' € F*.

In particular we have E+ = L(FE,K). The tensor product of two pfs Ex and Fy is the pfs (E — F*)*. In
particular, if for z € E and y € F we denote by © ® y the sequence (z4¥p)a,p € KX*Y we have:

EQF = {z®y|ze E,ye F}*.

This makes KOTHE a monoidal closed category.

The product and co-product constructions are defined as the product and co-product of topological vector
spaces and preserve perfect sequence spaces. In particular, the normal topology of the product of two perfect
sequence space corresponds to the product of the two normal topologies. However, as it is usual in locally convex
spaces, the product and co-product constructions differ only on infinite sets.

Exponentials. The interpretation of exponentials formulas in Kothe spaces embodies with the intuition that non-
linear proofs should be represented as analytic functions, and thus Kothe spaces are quantitative models. Consider
a set X and M(X) the set of all finite multi-sets of X. If y is a finite multiset of X and x € F, we write:

zt = Hmﬁ(").

We define the set of scalar entire maps £ = K as the vector space of matrices M e KM X) such that for all
z € E, the following sum converges absolutely:

f(z) = Z M,z*.

HEM(X)
Then we define | E as the perfect sequence space
IE = (E = K)*.

The fact that ! defines a strong monoidal functor follows from combinatorial considerations, which are at stake in
every quantitative model of LL ([19], [49], [32]). Let us remark that when X is a singleton, then this definition for
entire maps between KX = K and K is the usual definition for absolutely converging power series with infinite
radius of convergence.

Kothe spaces are in fact also a model of Differential Linear Logic (see Section 2.4). The mapping interpreting
differentiations on maps of the co-Kleisli category, namely the codereliction, is then interpreted by the linear
continuous morphism dg : E — ! E such that

CZE(.’L) MeFE=Kw— 2 M{a}xa.
aeX

L : lul
Let us note that from a more analytic point of view, M, corresponds to (foa(O) and M, to W(O)

2.3 Polarized Linear Logic

In this thesis we will consider denotational models of LL in which formulas and their dual cannot be interpreted
by the same type of spaces (e.g. Fréchet and DF spaces in Chapter 7), or where two different linear negations
coexist, the composition of which being the identity (as in chapter 6). This difference witnesses for polarities
in the syntax. We recall the definition of polarized Linear Logic in Section 2.3.1. The semantic of polarized
Linear Logic is intricate: because of the difference of polarities one must decompose the notions of *-autonomous
categories and monoidal closedness along adjunctions. This is done in terms of chiralities in Section 2.5.2.
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The Identity rule

— (axiom) N, A ~ AJ‘7 M (cut)

-4,4 - N, M
The multiplicative rules
— BN _ENNM NP EMQ
-1 I N NI D FNMPoQ @
The additive rules
7 —N,N N, M N, P N, Q
=N T N N&M © FN. PO F N PaQ R
The Exponential Rules
_EN L, ENIPIP NP NN
N,?P AN,?P ~N,?P ININ

Figure 2.4: The inferences rules for LLq;

Remark 2.3.1. As a disclaimer, let us point out that the smooth polarized model we develop in Chapter 6 (ad-
junction between CONV and MACKEYCOMPL) and Chapter 7 (adjunction between NF and NDF) are not chiral-
ities, as we have no good interpretation for the shifts. This is not an issue as all categories considered embed
in TOPVEC and proofs are interpreted as arrows in TOPVEC (that is, as plain linear continuous maps). Thus a
proof of — N is interpreted as a function f € L(K, [N]) (and not f € L([T1], [N]) as axiomatized in section
2.2.2) and a proof of - P, N as an arrow f € L(([P]},, [N]) as usually.

2.3.1 LL,, and LLP.

In this section we introduce the polarized syntax for LL. Linear Logic, as we have seen, distinguishes an addi-
tive and a multiplicative version of conjunction and disjunction. The polarized fragment of Linear Logic LL 1 [54]
refines Linear Logic by distinguishing formulas whose introduction rule is reversible and those whose introduction
rule is not. The first are called negative formulas, and the second are called positive formulas.

Definition 2.3.2. Formulas of LL are constructed according to the following grammar, with a set of negative
atoms 1 denoted by a or b.

Negative Formulas: N, M :=a |[?P|NBM | L| N&M|T|
Positive Formulas: P,Q :=a* |IN|PRQ|0| P®Q |1

Negation is defined as before on formulas. However, so as to agree with semantical consideration to come, we
will denote ( )* the negation operating on the positives, and ()% the negation operating on the negatives.
Remark then that negation transforms a negative formula into a positive formula, and conversely.

Sequents of LL,, are traditionally presented as focused sequents - N7, ..., N,, | P, where a positive formula
is isolated. This correspond to a proof-search presentation, where one tries to mechanically construct the proof-tree
of a sequent. We will not emphasize this important aspect of proof-theory here, therefore we will use the same
sequents as for LL. Note however that by construction, proofs contains at most one positive formula.

Definition 2.3.3. [55, 10.1] We say that a formula A is ?-fix if 7A A is derivable in LLy. Then for any A,
?A, T, 1 are 7-fix, and ?-fixeness is preserved by %% and &.

Observe now that, when all atoms in 91 are negative, for all negative formulas N the sequent 7A — A is
prouvable.

Proposition 2.3.4. If A is a formula which is ?-fixe, and if N consists only in negative formulas, then the following
rules are admissible:

N HN,A A HN,B -

P — P P
FANLA Y N AN ~N,!B dpol
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The Identity rule

ﬁ(axiom) N, A }—AJ‘7M (cut)

-4,4 - N, M
The multiplicative rules
— _EN ENNM mNLP EMQ
=1 BV N NI D FNMPoQ @
The additive rules
- T HN,N N, M =N, P FN,Q
=N T N N&M © FN. PO F N PaQ R
The Exponential Rules

EN O, FN,N,N . N, P J HN,N

-N,N -N,N - N,?P FAN,IN T

Figure 2.5: The inferences rules for LL P

Proof. The admissibility is proved using cut-elimination between the structural rules of LL — pol and the proof of
7AL - AL O

Thus, one can consistently add to LL. the previous rules, which consists respectively in weakening for all
the negative, contraction for all the negative, and a general promotion. This leads to the syntax of Polarized Linear
Logic LLP detailed in figure 2.5.

Remark 2.3.5. Comparing generalized promotion anc co-dereliction For the readers already familiar with Dif-
ferential Linear Logic (see Section 2.4), let us notice that the generalized promotion figuring in LLP constructs
the same proof trees than a polarized co-dereliction d, although the two behaves differently under cut-elimination:

e A cut between a generalized promotion and dereliction results in the same sequent than the cut-elimination
between a co-dereliction rule and a dereliction rule (semantically, the composition between the two is the
identity). This basically says that generalized promotion could act as a differentiation operator, as it is an
operation on smooth maps which is the identity on linear maps:

- M,Nt
AN M NN e
N, IN - M,?N . > TN cut
- M,N cu ’

Chapter 8 brings more intuitions on the interpretation of this cut-elimination.

e Cut-climination between a generalized promotion rule and a weakening rule results in several weakening
rules followed by a cut with the admissible sequent ?N + N. On the contrary, cut-elimination between
d and a weakening results in the null proof tree o.

e The difference between generalized promotion and codereliction rules is better understood when looking
at the cut-elimination between one of them and the contraction rule. Consider the cut-elimination between
generalized promotion and contraction:

FN,N | - M,?N+L 7N+
FNIN T - M, 7N+
=N, M

cut

After cut-elimination, it results in a proof-tree where promotion is applied twice to N, and cut-elimination
applied successively to every copy of N*. On the contrary, cut-elimination between a co-dereliction rule and a
contraction will applied twice the co-dereliction rule, but it will sum the possibilities for cut-elimination be-
tween N and N+, and then apply weakening:
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FN,f:A=R,g: A=R FMv: A _
T.K;, AR ° M, Do()w):14 @ L 2.9)
u
=T, M, Do(Ky,g)(v) = Do(f)(v).g(0) + f(0).Do(g)(v) : R

FM,v: A _
FO,f:A=>Rg: A=R I—M,Do(_)(v):!Adt - ~
FT,M,Do(f)(v) :R,g: A=1R ot Fdp:!A wt
cu

= M,T,Do(f)(v) : R, g(0): R

FMv: A _
FILf:A=Rg: A=R l—./\/l,Do(_)(v):!Adt - ~
FT, M,g: A= R, Dy(g9)(v): R . Fédo: 1A wt
cu

M, T, f(0) : R, Do(g)(v) : R

This invites to consider co-dereliction as a different way to deal with promotion and resources, and may legit-
imize DiLL without promotion.

Shifts. Negation changes the polarity of a formula but also its role: from hypothesis to conclusion and vice-versa
in logic, or from context to term and vice-versa in the calculus. It appears in game semantics [54] that one can
add a shift operation T, which does change the polarity but not the role of the formula. It corresponds to adding a
dummy move at the beginning of the play. In our topological model, it will correspond adding points to our space,
in order to make it complete (that is, in order to make any Cauchy sequence converge). Thus T is interpreted by
completion functor (see Proposition 3.1.24) from positive to negative, and the forgetful functor from negative to
positive. We detail below the syntax of LLy; 1,, corresponding to LL .1 with shifts.

Definition 2.3.6. The formulas of LL,,; 1, are defined from a set 2( of negative atoms, and the following grammar:
Negative Formulas N, M :=ae€ A | TP |?P||NB M| L|NxM|T|
Positive Formulas: P,Q :=a* [N |IN | PRQ|0|P® Q|1

Definition 2.3.7. The inference rules for LL,,; ;; are the ones of LLy, to which is added the following. N is a
list of negative formulas.

=N,N =N, P

SN N Y NP

Then one defines:
TPTE = f(PLr) INTR = f(Nir)

Cut-elimination then represents the fact that TL NV is equivalent to N:

N, N E N N
’ N /NLR
=N, IN - N7, TNLR ﬁt reduces to atif |—/\/';\/J’V7 cut
cu
= NN ’

2.3.2 Categorical semantics

In this section we give a definition for categorical models of LLj,. Several categorical axiomatizations of LL
exist. Let us mention the one using control or co-control categories [72] by Laurent [54], and the semantic study
of polarized languages with effect by Curien, Fiore and Munch [15], which extends to effects.

Traditionally, the importance of Intuitionistic Linear Logic is justified semantically: the categorical definition
of ILL is first done for Intuitionist Logic via a Seely Category, and the dualizing object requirement is added as
a topcoat. The same phenomena appears for the different axiomatizations of models of DiLL, see Section 2.4.
However, the new results of this thesis all stem from the tentative to place involutive linear negation at the center
of the syntax and the semantics of DiLL. As polarization appears naturally while looking for classical models od
DiLL in functional analysis (see Chapters 6 and 7), we want to focus here on giving categorical models of LLj,;
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which emphasizes on this involutive negation. Chiralites, develloped by Mellies [60], are the good answer to this
point of view.

We will show in Chapter 7 how the % can be seen as a specific topological tensor product. Therefore, the
following axiomatization treats ® and % symmetrically, instead of defining % from the internal hom —o as it was
done in Section 2.2. This has been done by Mellies when he introduced the notion of chiralities. They interpret
in particular the polarized version of the multiplicative connectives of Intuitionistic Linear Logic. This will help
us distinguish between a negative interpretation of LL, as in Chapter 5, and a polarized symmetrical one as in
Chapter 7.

All the definitions given in this section follow closely the ones of Curien, Fiore and Munch [15], but differ as
we interpret classical LLj,.1, and thus requires the interpretations of the negation to be involutive on the category
interpreting the negatives.

Remark 2.3.8. In Chapters 6 and 7 we give polarized models of Differential Linear Logic. As these models are
in particular full subcategories of the category of topological vector spaces and linear continuous function, the
definition below is not strictly necessary to describe them. However, it clarifies the role played by the different
negations (interpreted as topological duals, which may or may not be completed), and the open the way to a
possible categorical axiomatization of D — DiLL (see Chapter 8).

2.3.2.1 Mixed chiralities

Definition 2.3.9. A linear distributive category [14] is a category C with two monoidal structures (C,®, 1) and
(C, %, 1) such that for every object A, B and C' we have a map, natural in A, B, and C"

AQ(BBC)—(A®B)X C.

In particular, if (C, , 1, —o, 1) is a x-autonomous category, and the bifunctor % is defined on objects as A% B :=
(A — 1) —o B, then the category C is linearly distributive. The previous definition can then be seen as a
generalization of a x-autonomous category.

Definition 2.3.10. A (right) duality on a linear distributive category is a functor (—)* : C — C°P such that we
have adjunctions A® — 4 A* % —and — % B 4 — ® B*.

Proposition 2.3.11. [/4] A symmetric linear distributive category with a duality is a *-autonomous category.

Mellies [61] extends the definition of linear distributive categories to the one of dialogue chirality, which defines
a polarized version of linear distributive categories. Beware that the definition used in [61] is more restrictive than
the following. Indeed, Mellies uses a definition where the interpretation for the negation (—)* and *(—) form a
monoidal equivalence. We only ask for a monoidal adjunction, as we will study models of LL in which objects are
not necessarily self-dual, or in which only the interpretation of the negative connectives are self-dual. This would
correspond to a particular case of the mixed chirality introduced by Mellies [60]. We recall that a strong monoidal
adjunction corresponds to an adjunction between two strong monoidal functors?.

Definition 2.3.12. A mixed chirality consists in a pair of monoidal categories (<7, ®, true) and (%, @, false)
equipped with:

e a strong monoidal adjunction (—)* : & —= BP - *(—) : BP — A,

31t is in fact enough to suppose the strong monoidality of one functor. This is also equivalent to the strong monoidality of the unit and co-unit
transformations derived from the adjunction [59, 5.17.14]
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e a family of bijections:
X: B(La,b@ ')~ B(L(a®*(b)),b)

natural in m, a, b such that y respects the various associativity morphisms by making the following diagrams

commute:
B(L((m®n) © a),b) - B(La, (m ©m)* @ b)
ass‘oc assoc., monoidality of negation (2 10)

l |

BLM O (n®a)),b) —— B(L(noa),m* @b) —— B(L(a),n* @ (m* @ b))

A dialogue chirality is a mixed chirality where the monoidal adjunction leads to an equivalence of categories.
However this is too strong a requirement for us, and in the forthcoming definitions we will ask for the
composition of functors to be the identity only on % (negative interpretation) or .7 (positive interpretation).

In the development of this thesis, mixed chiralities will interpret polarized MALL with categories (£, ®, 1) and (A4, %, 1)
for positive and negative connectives respectively. The functors L and R are then shifts T and {.
Remark 2.3.13. We will show below that polarized MALL is indeed interpreted by a negative chirality (with some
coherence diagrams), consisting in two adjunctions, one of them being monoidal. When interpreting Differential
Linear Logic, we get a strong monoidal adjunction between (£,®, 1) and (C, x, T) by ! and a forgetful functor.
Dereliction and co-dereliction can then be interpreted an adjunction between (£, ®, 1) and (C, x, T), which is the
identity on L (see Section 2.5.2.3).

2.3.2.2 Negative chiralities.

We are in a case where, whether it is between shifts or (co)-derelictions, the adjunction between L and R always
result in a reflection on %, thatis L o R = Idg. This corresponds to a (left) polarized version of (left) closure
adjunction as detailed in Definition 3.0.2:

The typical topological example for this is the Cauchy completion in the category TOPVEC of locally convex
separated vector spaces and continuous linear maps: if F' is complete, to any linear map f : £ — F' extends
uniquely to a continuous linear map F': £ — F.

Notation 2.3.14. We now use A to denote the category on the right-hand side of the adjunctions in a chiral-
ity (previously denoted 2, and & to denote the category on the left-hand side of the adjunctions in a chirality
(previously denoted o7 ).

Definition 2.3.15. A left polarized closure is an adjunction L : #—A4" 4 R : /' —= suchthat LoR = Id_4.
The use of left here emphasizes the fact that the left adjoint is the one performing the closure, while the right one
is thought of as a forgetful functor.

We thus modify the definition by Melliés of dialogue chiralitiesby breaking the symmetry between .4 and B.

Definition 2.3.16. A negative chirality consists in a pair of monoidal categories (2, @, true) and (N, @, false)
equipped with:

e a strong monoidal left polarized closure, (—)* : & — AP  *(—=) : NP — P,
e a left polarized closure, L : & — A4 4 R: N — P,

e a family of bijections
X: A (Lp,n@m') ~ A (L(p®*n),m') 2.11)

natural in p,n, m such that y respects the various associativity morphisms by making the diagram 2.10
commutes.
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Remark 2.3.17. We leave to the reader a definition for positive chiralities, where the composition of adjoint func-
tors are the identity on &2, and where equation 2.11 takes place in & with | and p*.

2.3.2.3 Interpreting MALL

A negative chirality is the basic structure to interpret MLLy,1. We need an additional component to interpret
formulas of LL,.1, which basically says that there is only one closure operation between the interpretation of
negative and positive formulas in our models of LL,. What is done here corresponds to a version with closures
(for the classical interpretation), and without effects of [15]. Thus here we interpret proofs as maps in the category
of negatives connectives: through covariant adjunctions between .4 and &2 we could also have interpreted them
as maps in the category of positive connectives.

Definition 2.3.18. A classical negative model of MLL,.; consists in

e A negative chirality (#?,®, 1) and (.4, %, 1) with a strong monoidal closure

(=) P WP (=) P P,

()
7
(Z,®) L (A°P7)
~_

(-)*r

and a polarized closure
TP N H NP

with a family of bijections:
X : A (Lp,n®m) =~ A (L(p®*n),m).

e A family of isomorphisms in &7:
closp : LPE ~ (’TP)lR

natural in P.
Thenas T ~ Id 4y ~ (fLL)lR one has the isomorphisms TP ~ PLtrtr,

Remark 2.3.19. From the rest of the section it follows that a negative chirality is in particular a negative interpre-
tation [54] of LL,0;.

Remark 2.3.20. The shifts L and R are used here to handle morphisms between object .4~ and objects of Z7:
applying a shift to P € &2 allows to consider f € 4 (TP, N) for N € .4#". A much simpler situation is the one
where .4 and & are both sub-monoidal categories of a larger linear distributive category (Definition 2.3.9). This
will be the case latter in Chapter 7, where we will interpret positives and negatives in subcategories of the category
of complete Ics and linear continuous maps.

The first difficulty in the theory of topological vector spaces will be to find chiralities for which the ® and %
are associative. The semantics will rely on the fact negatives are those for which the parr is associative, positive are
those for which the tensor product is associative. Once this difficulty is overcome, we work towards an equivalence
of categories between the chiralities.

Definition 2.3.21. Consider M = M, ..., M,, a list of negative formulas and P a positive formula. Then one
interprets a proof

[]
= M,P
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of LLp1 as a morphism in .4
[7] € N(PY2, My % ... % M,,).
Through the strong monoidal closure between the negations, this is equivalent to interpreting the proof of the

sequent in @(MHR ®..® MNLR, P).
The proof 7’ of the sequent - M is interpreted as:

[ 7] e/ (11, M 3 ... % M,)

Remark 2.3.22. Here we make use in our categorical interpretation and in our interpretation of sequents of a shift
T. As we required that VTP ~ P1t1r we could have replaced the use of T by the functor (.)*¢+r1+2. We keep
shifts for conciseness in the formulas, but keep in mind that this is not necessary when the composition of the
negation is the identity on the negatives.

The interpretation of the formulas follows immediately from the notation we used. The interpretation of deriv-
able sequent is defined by induction on the last derivation rule used exactly as for LL.. We detail now the interpre-
tation of the proofs:

Axioms, shifts and cuts

e The interpretation of an axiom - N, N*# corresponds to the identity morphism in .4/, as (N+#)"" ~ N,

o If f e JV(PLL , My B ... M,) interprets - M, ..., M,,, P, let us construct the interpretation of the proof
mof - My, ... My, TP in A (T1,M; % ... ® My % TP). As in .4/, we have via closp the isomorphisms

Prr ~ tLPLE 2 t((1P)ET) 2 N(PP) TR @ 1),

and in to f corresponds a morphism f € A (T((1P)"* @ 1), M; 2 ... %8 M,,), and thus via associativity of
N and x11p a3, 30, P A (LLTP M B .8 M,) ~ A (L(1Q*TP), M, % ... % M,) we construct
a morphism:

[7l € &/ (T1,M1 % ... 8 My B 1P).

o If fe A/ (T, M7 ...% M,) interprets a proof = of — M, ..., M, let us construct the interpretation of the
proof ' of = M7, ...,+M,, in f/V(\LMnLL , M1 %.. % M, ). Viathe associativity of %% and x1 a1, a1, %3 M,, 4
we construct a morphism f eN(T1® MNLR)7 Mi%® .8 M) As1® MyTR ~ MyTR, via closyny,
we construct a morphism:

[*'] e N (M 5 My B .. B M,,).

e As detailed before, the cut-rule corresponds to the composition in .4". Consider f € 4 ([N], [M]) in-
terpreting a proof of - M, N17 as (NJ-R)lL ~ N,and g € A4 (11, [M’] ¥ N) interpreting a proof of
M, N. Then the proof 7 of the sequent resulting from the cut of the two previous ones is interpreted by
functoriality of 7:

[] 1% (M]3 [N] 220 (] 23 ],

Multiplicatives.

o If f e N (T1, M1%...8M,,) interprets — Mj, ..., M, then the interpretation of the proof of - My, ..., M,,_1%
M, is still f.

o If f € A (P12 [.#]) interprets a proof of - N, P and g € .4 (Q**, [M]) interprets a proofs of - N, Q,
then f®g € A (PLoQLr, [ 4] % [M]) interprets (up to the isomorphism (> PQL%) ~ (¥ PQQ)on
the domain) the proof of - N, M, P ® Q.
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Additives. In order to deal with additives, one needs the distributivity of the multiplicative connectives over the
additive connectives:

N® (M &..&M,) ~(NBM)&...& (N % M,).
Definition 2.3.23. A classical model of MALL,, consists in

e A negative chirality (#,®, 1) and (.4, %, L) with a strong monoidal left closure (—)*% : & — 4P
(—)*8 . AP —= P with apolarized closure 4 : A —=P 4T : P —=_4 suchTol = Id_,and with
a family of bijections:

XN (Lpn B ) ~ N (Lp® *n),m').

e A cartesian product (x, T) on A (A, x, T) such that % is distributive over x, through a family of natural
bijections:
distry g NB (My & ... & M) ~ (N B My) & ... & (N 3 M,,).

e A family of isomorphisms in &7:
closp : 1Pt ~ (1P)17

natural in P.

Thenas T ~ Id 4y ~ (—LL)lR one has the isomorphisms TP ~ Ptcrir,

L

Then we interpret @ as the dual of x: [P® Q] := ([P]** x [G]**)"". Because of the monoidal adjunction
between 1~ and 7, it is a co-product such that ® distributes over it.

Let us detail how the additives rules are interpreted in this context, following the pattern detailed in Definition

2.3.21.

e Consider f € A (T1,[T'] & [N]) interpreting the proof of - I', N and g € A (11, [I'] ® [M]) inter-
preting the proof of — I', M. By composition of f with x1 r x we get a morphism f' = fo xirn €
A (T[T, [N]) and likewise we get a morphism ¢’ = g o x1.r,m € A4 (T[], [M]). By definition of a
product we have {f’, ¢g"y € A (T[], ([M] x [N])), which composed by Xl_,%‘,NxJV[ results in the desired
morphism.

e Iffe NV ([[lL P, [I']) interprets a proof of - I", P, then we interpret a proof of - I', P @ @ by precompos-

1
ing with the map 7 : [P]“* x[Q]“*—[P]**. As[P]** x[Q]*" ~ (IP]** x [@]*)™) = [Pl@[q]**
by definition, we have indeed that f o 7y interprets — I', P ® Q.

e The case for the right rule of the introduction of @ is treated likewise.

2.3.2.4 Interpreting LL,,

In Section 2.2.2 we interpreted ! as a co-monad on £. Here, we take the point of view of a strong monoidal
adjunction between ! and the forgetful functor U.
Usually one requires Seely’s isomorphism :

(N x M) ~IN®!M. 2.12)

We are going to require the strong monoidality of 7 instead of !: this is justified in a polarized setting by the
fact that the above isomorphisms take place in the category interpreting the negative formulas, while the strong
monoidiality of ! would be interpreted in the category interpreting the positives formulas. Indeed, as it will ap-
pear in Chapters 6 and 7, the negatives formulas are the one interpreted by some complete spaces (completeness
in understood in this particular exeample in a wide sense: spaces may be Mackey-complete, or quasi-complete).
Complete spaces play the role of co-domains F' of smooth function f € C*(E, F'). Positive one the contrary may
not be complete, but may verify other properties preserved by inductive limits : in particular, they may be inter-
preted by barreled spaces 3.4.22 or bornological spaces 6.2.13. Thus in a setting rich enough to interpret differenti-
ation, and thus with some notion of completeness, negative formulas are interpret as complete spaces, and positive
ones as the formulas which need not be complete.
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However, in the theory of topological vector spaces, the Seely isomorphism is not true with a non-completed
tensor product ®. More specifically, when interpreting !E as a space of distribution, the Kernel theorem 7.3.5
states this isomorphism for a completed tensor product. It does state the density of* C*(E,R) ® C*(F,R) in
C*®(F x F,R) and the fact that the topology induced by C*(E x F,R) on C*(E,R) ® C*(F,R) is the injective
topology. It is by completing the tensor product that we obtain thus an isomorphism, which is dualized to be stated
in the above form 2.12.

With these arguments in mind, we want to have an interpretation for ! and ? such that IN = 2+ (N+r),
satisfying:

(PRQ)~y 7P 2Q (2.13)

When the composition of the negations is not the identity on the positive (as it is the case in our negative
chiralities), we have thus:
)

((N x M))*rtr ~ 5 (IN*E @ IMER (2.14)

Thus, while Seely’s isomorphism 2.12 is most of the time described as a linear/non-linear monoidal adjunc-
tion [59, Def. 21]:

/!_\
(AP, x) L (2,Q)

~_
U

we ask here for a strong monoidal adjunction:

?

/\
(z@r.@) L (AN77)
~_

U

Remark 2.3.24. In an unpolarized setting, ! is a co-monad: £ — L, and .4 ® is the co-Kleisli category L. For
any object N € A4 we have an isomorphism between N and U(!N) = !N in A"®: the morphism N — N
corresponds to f = 1,y in £, while the morphism !N — N corresponds to g : !!N LN LN\ They are
indeed inverse from one another in .4 *:

forg = folgoupnby definition of o, (2.15)
= 'dN o !d[N O N (216)
= ldyby the second commutative diagram for comonads, see 2.2.12 (2.17)

However, in N'®° the second commutative diagram for comonads say that !d and d, are the same arrow: they
both act as a unit for the composition oy, and thus are equal by the unicity of units. Moreover, we have:

gof = dvodingopuny = dn.

Thus ¢ and f are inverse one another, and N ~ 4« U(IN) the adjunction between ! and U results in fact in a
closure on 4. Likewise, the adjunction between ? and U (another functor denoted by U, as it is thought as a
forgetful functor) is a closure on %,

Definition 2.3.25. A classical model of LL; consists in

e A negative chirality (#,®,1) and (.4, %, L) with a strong monoidal left closure (—)*% : & — 4P
(=)te 4P —= P with apolarized closure 4 : A —= P 4 1: P —> N suchTol = Idy,

e A cartesian structure on .4 (4", x, T) such that x is distributive over %%

e A co-cartesian category (%, @y, 04 ) and a co-cartesian category (A ®, X, T ) with a strong monoidal
left closure

(_)lL.oo . f@d&%f/‘/oo,op 4 (_)LR,x ZL/VOO’Op%f@OO.

“In the context of topological vector spaces we have a biproduct and in particular E x F ~ E® F
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e A strong monoidal right closure adjunction
T (PP D,0)— (NP RL) AU (NP, B 1) — (PP @, T).
e A family of isomorphisms in &:
closp : LPr ~ (TP)J‘R
natural in P.

Thenas ™ ~ Id 4y ~ (—LL)J'R one has the isomorphisms TP ~ Ptrtr,

Interpreting the exponential connectives

Proposition 2.3.26. We define a strong monoidal functor from (N, x) to (2, ®) by
IN = 20U(N+r)™"
10 = 70UtR)",
We interpret the formula 7P for P € & as® TUTP.

Proof. Ttfollows from the fact that,we have a closure between .4 ® and 2% that is (—) 2.2 o(—)1r> = [d 4.
O

Remark 2.3.27. The previously defined model is called classical as the double-negation is asked to be the identity
on negatives. However, this definition would also suits an intuitionist setting by not asking the negation to define a
closure. Then ! as defined above would not necessarily be a strong monoidal functor between (.4"*, x) and (2, ®).

The algebra structure of 7 Let us detail how the exponential rules are interpreted in this context, following the
pattern detailed in Definition 2.3.21. From the strong monoidality of !, one has natural isomorphisms in ./

mpo: PRQ~(PDQ)

mo: 70 ~ L

If we denote by Vp : P @ P — P the co-diagonal, then we obtain as previously, see 2.4:

cp:TP®?7P—"7P

wp:l—=7P

These define natural transformations which interprets respectively the contraction and weakening rules, by
precomposition.

Interpreting the dereliction rule By definition, the co-unit of the adjunction
T (PP D,0)—= (NP, R1L) AU (NPT 1) — (PP D, T)
is a natural transformation dy, € .#°P(?U(N), N) which interprets the dereliction. We denote by
dy: N—?U(N)

the morphism corresponding to d3; in .4 via the isomorphism .4 °P(?U(N), N) ~ A (N, ?U(N)).
Thus consider a morphism f € .4 (P+7, M) interpreting the proof of - M, P. One constructs the interpreta-
tion of the proof of - M, ? P as the morphism f € .4 (11, M % 2U (1P)) ~ A (1(1® (2U(TP))**:

)L

1@ @QUtp))tr et

Promotion is interpreted as before by functoriality of ! and U.

H((tP)H) ~ Pt ~ ple Loy

5We need to apply a shift to P before constructing ! P because of our categorical definitions. In a interpretation where ? N1 represents the
space of smooth scalar functions C* (N, R), it amounts of saying that one needs a complete domain to define smoothness.
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2.4 Differential Linear Logic

Differential Linear Logic® was introduced by Ehrhard and Regnier [23], based on the remark that, in K&the spaces,
the maps in the co-Kleisli category KOTHE(! X, V) identify to power series:

f:an

n=0

where f,, is a n-monomial’. This intuition applies to any guantitative model of LL, and in particular to the histoic
study by Girard of normal functors [30], which leads to Linear Logic. From a power series one can extract a
linear-map f1, which corresponds intuitively to its best linear approximation at 0. Indeed, if one considers the toy
example of real power series converging absolutely:

. n
. n
fx»—»éaa:

neN

the linear map « — ayx is exactly Do(f) :  — f/(0)x, the differential at O of f.

We saw that the dereliction rule d of LL in interpreted as a natural transformation d 4 : A—!A, implying that
a linear map A —o B can be seen as a non-linear one !A — B. In Kothe spaces and other quantitative models,
we have a natural transformation d allowing to extract a linear map from a non-linear one, which corresponds
intuitively to the differentiation at 0. This natural transformation is implemented syntactically and added to LL
under the form:

T, A
—T,14 ¢

Ehrhard and Regnier introduce two additional rules: the co-contraction ¢ allowing to sum in the domain of
non-linear maps (and thus to differentiate at other points than 0), and the co-weakening w, representing the unit
for the cocontraction, that is the Dirac distributions at 0 dq.

The first version of DiLL, introduced in [23] does not include the promotion rule, for the sake of a perfectly
symmetrical calculus. The promotion rule is however essential to type the A-calculus and its differential ver-
sion [22], and was studied particularly by Michele Pagani [64]. In the survery by Ehrhard [20], the version of
DiLL without promotion is called finitary DiLL. As usual in the literature, we will refer to DiLL without promo-
tion as DiLLLy. Moreover, DiLLg will always denote the monolateral, thus linear classical, sequent calculus.

At the end of this section, we will get back to the denotational intuitions attached to DiLLL (see Section 2.4.2):
as explained above, the co-structural rules imply operations on function f € C*(E, F'), and functions must be
smooth (see Definition 3.2.4). This is the definition of distributions: linear continuous functions acting on smooth
functions. In a model of DiLL where non linear proofs are interpreted by smooth functions f € C*(F, F') this
will appear under a smooth version of equation 2.7:

\E = C*(E,R).

Concerning the categorical semantics, we refer mainly to the monograph by Ehrhard [20] and the abstract
by Fiore [25]. The following papers are also fundamental: [7, 24]. Blute, Cockett, and Seely investigated the
categorical axiomatization of differential calculus, thus generalizing models of DiLL, in a series of papers [8, 9].

2.4.1 Syntax and cut-elimination
2.4.1.1 The syntax
Definition 2.4.1. Formulas of DiLLL are the same as for LL, and negation is defined likewise.

As detailed in the introduction of this section, DiLLLy does not feature a promotion rule but includes three new
exponential rules, symmetrical to the ones of LL. While the weakening w, the contraction ¢ and the dereliction
d are called structural rules, accordingly to the intuitions described in Section 2.1.1, the newly introduced co-
weakening w, co-contraction ¢ and co-dereliction d are called the co-structural rules.

6Beware that DiLL is introduced there under the form of interaction nets, while we discuss here a formulation with sequents.
See [20] and Zimmerman’s thesis [81] for a presentation of DiLL with sequents

"n-monomials from R to R are the functions = — ax™ for a € R. In general, they are defined as « — f(z, ..., z) where f is a continuous
or bounded n-linear map
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The Identity rule

————— (axiom) FIA AL A cut
A B FT.A
The multiplicative rules
— i S
1 CT. L (€D)
-T,A,B FT,A +—A,B
T AxB FT.AAeB @
The additive rules
T -T,4 +T,B
=TT FT.ALB &
-T,A ~T,B
“T.A0B “T.A0B "
The Exponential Rules
i A FIT,?E,7E FILE p
HT,7E —1,7E -T,7E
— @ T, 1E -AE -T,E
-E —T.AE ¢ —T1E ¢

Figure 2.6: The deriving rules for sequents of DiLLLL
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Some version of DiLL features a Mix rule which concatenates the contents of sequents. It is quite natural from
a denotational point of view as it corresponds to a structure of commutative ®-monoid on L, e.g. in our models
of vector space to the fact that we have a multiplication law on scalars [20, 2.3.1]. The version of DiLL used here
does not feature the Mix rule.

Proofs of DiLL are then constructed from the rules in figure 2.6.

2.4.1.2 Typing: intuitions behind the exponential rules.

In this section, we give the intuitions from denotational semantics behind the rules of DiLLy. The models figuring
in sections 2.4.3 and sections 7.4.3 implement them concretely in terms of distributions. Following the intuitions
on denotational models of LL, a proof of - ?A*, B is denoted by a smooth function f : A—= B. In particular,
elements of ? A~ are scalar smooth functions f : A—>R as the interpretation for | is R (equation 2.6). Therefore,
the denotational meaning of the dereliction rule d is that a linear map should in particular be a smooth map®:

Hf:A—oB
Hf:!1A—-B~A=1HB

d

Weakening on a distribution ¢ € ! A consists in taking the value of ¢ at the function which is constant and equal
to 1. Dually, the interpretation of a proof of - I', 7A, where 7 A was introduced through weakening, consists in the
tensor product of the interpretation of the proof of I' and of the smooth function constant at 1

T
I, const; : A= L

The contraction rules means that given two smooth scalar functions on the same domain f : A— 1 and g :
A — 1 one can compute a unique smooth function on A: the function f - g : * — f(x)g(x). Remember from
Section 2.2.2 that the interpretation of the contraction is a natural transformation c4 : !A—=!A®!A which results
from the diagonal A—A x A and Seely’s isomorphism. It means that from the interpretation f € L(!A®!A, B) of
a proof of - I A, A, B one gets the interpretation of the proof of - ! A, B by computing foc:xz €A — f(z,z).
We have thus a good interpretation of the contraction in terms of smooth functions and distributions theory. When
!A is a space of distributions on A (see Chapter 7) Seely’s isomorphism is exactly Schwartz’ Kernel theorem [67]
(see 7.3.5), which says to any smooth function h : A x B = R, one can map an element of the completed tensor
product lim,, f, ® g, € (A = R)®(B = R).

FIL,f: A= 1,g: A= 1
FI,f-g: A= 1

Let us now describe the denotational intuitions behind the new co-structural rules of DiLLLy. The most intuitive
one is the co-dereliction: if f € £(!A, B) interprets a non-linear proof of - ?A~+, B, then the precomposition by
the interpretation d 4 : A —!A represents the best linear approximation of f.

AL A p
AL 1A - f:?2A+ B ¢
cu
= D()f : AL,B

Following the intuitions of equation 2.7, we understand elements of ! A as distributions ¢, that is linear contin-
uous forms, acting on smooth scalar functions in C* (A, R). Co-contraction says that given two such distributions,
one can combine their action on the domain of a function they apply to,. It corresponds to the convolution product
* between distributions’:

FLo: A FAY:IA

FD,A, 1 1A ¢ LfiA=R

DA (f) = ¢z A=Yy A fz+ay))): R

8In fact it means more: we should have an inclusion of the hom-sets, meaning that if these are topological vector spaces the topologies
should agree

9we prove in Chapter 7, Proposition 7.4.12, that the concontraction is a model of DiLLL with smooth functions interpreting non-linear proofs
is indeed the convolution product

cut
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Lastly coweakening is the neutral for the co-contraction. It is interpreted denotationally by to applying a
smooth function f : A = B atapoint 04 : A in its domain, with 0 4 being the neutral for the addition + 4 in A. It
corresponds to the introduction of the Dirac distributions dy as an element of ! A.

=T &
I, :!A Hf:A=R
=TI, f(0): R

cut

Remark 2.4.2. Through this cut-elimination rule, we can observe a fundamental feature of Differential Linear
Logic. As L, the neutral for % is interpreted by a vector space, and as [%]" = [|1|] = R (the only possible
neutral for ®), we have necessarily [%] = [%]” = R. Thus in the a sequent, one has ‘invisible computations"
in R happening, and which account for cut-elimination.

2.4.1.3 Cut-elimination and sums

A particular property of DiLLL is that its cut-elimination is non-deterministic: this non-determinism is dealt with
by considering sums of proofs. We will call simple proofs proofs of DiLLL that are not a sum. Sums are generated
by the cut-elimination procedure on simple proofs. We suppose that this sum is associative, commutative, and we
suppose the existence of a neutral proof.

Definition 2.4.3. Simple proofs 7 of DiLL are proof-trees constructed from the proofs in figure 2.6. Proofs of
DiLL are (associative and commutative) finite sums of simple proofs, with neutral o.

The fact that we have a zero proof o is very particular: o is in fact a proof for any sequent — I'. Thus, in this
non-deterministic point of view, every sequent is derivable in DiLL. We will give in Chapter 8 a deterministic
variant of DiLL.

The cut-elimination procedure between exponential rules is detailed below, with formulas typing functions and dis-
tributions in order to make intuitions clear. We detail only the principal cut-elimination rules between the expo-
nential rules: that is, we detail the elimination of a cut rule happing over two formulas whose main connective was
just introduced in the proof via a rule of DiLLgy. The cut-elimination between other logical rules follow the one
of Linear Logic, see for example [59]. We refer to the thesis by Zimmerman [81] for a detailed exposition of the
commutation rules at stakes for the cut-elimination procedure in DiLLLj. As we use mainly DiLLLy and not DiLL
we do not detail cut-elimination rules involving the promotion. The cut-elimination between the promotion and the
co-structural rule w, d, ¢ are quite intricate, and were studied in detail by Pagani [64].

Typing: the intuitions behind cut-elimination. Again, the cut-elimination rules need to be understood from a
semantic perspective. As detailed in the previous paragraph, we see ?A~ as the type of smooth scalar functions
f € C*(A,R), which we write f : A = R. A formula ?A" appearing in a sequent indicates that the proofs
depends non linearly of a parameter A. We see !A as an indication that the proofs outputs distributions ¢ in
C*(E,R).

Cut-elimination between w and w take the value at O of the function constant at 1:

I w — -
T const; : A= R dg: A wo T (2.18)
—T.1:R=T cut

Cut-elimination between a contraction and a co-weakening consists in taking the value at 0 of the kernel of two
functions: this is the tensor product of the values at 0 of each function. Equivalently, it consists in taking the value
at 0 of a function z — f(z,z), with f € C*(A x A). This is the same as computing f at (0,0).

I—F,f:A:>R,g:A:>Rc — _
—0,f-g:A=R 0o : 1A “’t (2.19)
cu
FIT=T,f(0)g(0):R
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_ k5
FI,f:A=R,g: A=1R F(SO:!Aw =

t
FT,f0):R,g: A= R s v

—T,f(0) R, g(0) :R=—T, f(0)g(0) :R=T "

Surprisingly, the cut-elimination between the co-contraction and the weakening obeys to the same pattern'’.
Indeed, the cut-rule consists in applying two distributions on the domain of a constant function by summing points
in the domain. For a constant function, these points do not matter, and it is the same as applying one distribution
after the other.

FT,¢:14 T lA A
FO,T, ¢ : 1A ¢ F A const; : A =R v (2.20)
cut
CAB
A

FL,p: 1A — A,const; : A= R iut
FT,A, ¢(consty) : R 4
w
T, A, constg(constycp) © A = R FIV, A
= A, F, Flv w(con5t¢(constlem)7§?b) 'R

cut

The cut-elimination between a dereliction and a co-dereliction consist in taking the differential at O of a linear
function: one gets back the linear function. This case is of fundamental importance for the development of a logic
for differential equations.

FAf:A—B FLv:A _ ) '
FA T ASB ¢ T DO A b e mA A B FLuid o g

—T,A,Do(f)(v) = f(v): B cut HILA, f(v): B

We now tackle the rules which make sums appear. Cut-elimination between w and d differentiates at 0 the
function constant at 1, thus computing 0 € R: the proof tree 0 needs to be thought as an empty proof of R.

T FAwv:A _
w
- T, const; : A= R — A, Do()(v) - 14 ° [0 (2.22)
FT,A,0 = Dg(consty)(v) : R v

Likewise, a cut-rule between a w and d consists in taking the value at 0 of a map whose linearity we forgot: we
are suppressing the input of a data of type A*.

— _ FI,f:A—-R
w

— 5y 1A FT.fA=R dtwo (2.23)
cu
FT,f(0)=0:R

The cut-elimination between a contraction and a co-dereliction consists in differentiating at O the kernel of
two functions. As in the usual differential calculus, the derivative of a function of two variable is the sum of the
derivative on each variable.

FF,f:AzR,g:AzRC FAv: A i

cut
ET A, Do(f - 9)(v) = Do(f)(v).9(0) + £(0)-Do(g)(v) : R
10This is not a surprise from a categorical point of view, as the pair of rules ¢, w and ¢, @ all comes from a biproduct structure x =~
@ and from the strong monoidality of !, see Section 2.4.2
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FAwv:A i
—ADOWA
oy 14

FI,f:A=R,g: A=1R
FT,A Do(f)(v) :Rg: A=1R

AT, Do(f)(v) : R,g(0) : R

HAv:A _

— A, Do()(v) : 1A fut -

Hdo:!A

cut

cut

}_FafA:R“gA:R
FI,A,9: A= R, Do(g)(v) : R
= AT, f(0) : R, Do(g)(v) : R

The opposite case goes likewise: the cut-elimination between a co-contraction and a dereliction applies the
convolution of two distributions on a linear function. As it is linear, this is exactly the sum of the values of each

distribution applied to the linear function.

T, 614 .14 FAf:A—oR
FT.T . g lA FAf AR @ L @29)
= ¢z —>YPy— flz+y)) = ¢z — f(2) + Yy — fly) R

}—F,F/,A,d)*w(f) -
FAf:A—B p

FA,f:A=B
cut

T, 6: 1A
FT,AO(f) : R®B=+¢(f):R®B,1:R w
FT,A¢(f) : R% B,const; : A =R FI, 1A
—T/.T, A, 6(f) : R B, (consty) : R cut
FAf:A—B
LT 0:lA A f A B
cut

+ FIAY(f):REB=F¢(f) : R®B,1:R w
FT,p: 1A

T A () : R% B,const; : A= R
FO,TY,A(f) : R® B, ¢(consty) : R

cut

Finally, the cut-elimination between a contraction and a co-contraction results in applying a convolution on a
kernel: by definition, each distribution applies to each sides of a kernel. We expose first an untyped version of the

cut-elimination.

- A ?AL 7AL . Fl¢:lA FT 1A
- 7AL T I 1A € (2.26)
T ' A cut
F7A 14 74t 14
7241 24514 - A ?AL 241 F 24414 2414
= AL 7AL 745 74T cut — 24l 24514
= AL 7AL 7AL 74L 74T out
T
where 7 stands for:
= A, 7AL 241 241 2414
EA7AL 24L 241 STA
- AT 7L 7AT Cu
AT, 241 —T71A
= A iR F/ cut
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The typed cut-elimination rule between the contraction and the co-contraction is :

FAf:A=Rg: A=1R FT,¢: 1A Ty 1A
—f g:A=R ¢ FT, T, gwd:lA Ccutw» 2.27)
FTIL A ¢=(fg) = ¢l@—> Yy — fle—y)glz—y)): R

F1d:1A 1A —1d:1A 1A _
FC: @Yo drPEIARIA —<lA © LA f:A=Rg:A=R . FId:A—1A T I1d A oA

N CU C

FAg:A=sRE = ¢ @y — (¢ x¢/)(f) 1ARQIA - R Fz:1A®IA — 1A ¢

cut
FAE IARIA —oR,&9:1ARQ!A —oR

i
where 7 stands for:

F A IA®IA R, IA®IA — R
A o, AQIA®IA R | FT,6:lA
AL E 09 c4(0), ) 0@V = (hxdxd)/(f-g) 1A QA3 o R
AT, e -9, cou(d), )ociz:!A—oR ¢ IV, ¢: 1A
AT e e9(e3(¥)eaa(@) = o=¢(f-g): R

Remark 2.4.4. This cut rule corresponds to the Hopf rule in Hopf algebras [5].

cut

cut

Remark 2.4.5. Typing monolateral axioms, that is saying that [dg € L(F, E) where E is a Ics (see 3) corresponds
to an element of £’ % E ~ &'®F is by definition possible if and only if E has the approximation property (see
[44, chapter 18]). When E —o F'is reflexive, this follows from the closed monoidal structure.

2.4.2 Categorical semantics

We describe in the first section a global method for constructing a model of DiLL (with promotion) from a Seely
category. We describe in the second section a categorical axiomatization by Ehrhard of models of DiLL, making
use of exponential structure and making a distinction between models of DiLLLy and those also interpreting the
promotion rule.

24.2.1 =-autonomous Seely categories with biproduct and co-dereliction

Following work by Fiore [25] we will describe how in a Seely category endowed with a biproduct, the interpretation
for the co-contraction and the coweakening follow immediately. A model of DiLL will therefore be a model of
LL where the cartesian product is a biproduct, provided with a natural transformation d : Id — ! interpreting the
codereliction rule. Remember from Section 2.2.2, that the interpretation for the weakening and the contraction are
deduced from the strong monoidality of ! and the presence of a diagonal operator A : A— A x A.

Definition 2.4.6. A biproduct on a category £ is a monoidal structure (¢, I') together with natural transformations:

N
"N

Ao A Ao A

such that (A4, u, V) is a commutative monoid and (A, n, A) is a commutative comonoid.
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Example 2.4.7. In the category of real vector spaces and linear maps, ¢ is the binary product, which corresponds
indeed the the binary co-product, and the unit is the null vector space : I = {0}.

Proposition 2.4.8. [25, prop 2.1] If C is endowed with a biproduct, then the diagram: A ~ Ao 1 Lacus,
AoB &5 1oB ~ Bisa co-product with (I,u,) as initial object, while the diagram A ~ A ¢ 1 Jacns

Ao B 248, 1 6 B ~ Bisa product with (I,n4) as terminal object.
The following diagrams interpret in particular the cut-elimination rules 2.18 and 2.27:

Proposition 2.4.9. [25, prop 2.2] In a category with biproduct, the following diagrams are commutative.

AcA — YA L4 24 L 404
lAAOAA VAOVAT
AocAcAc A lova,a0l AcAcAc A

where y4. g : Ao B ~ B o A denotes the commutativity of o.

Definition 2.4.10. [25, 2.3] A biproduct structure (o, I) on a symmetric monoidal category (C,®, 1) is said to be
compatible with the monoidal structure if the following diagrams commute:

AQC 2" AgT

T

I1“ s aAgC

AQlc

A®C (Ao A)®C

lA |erc

(ARC)o (AQC) Y A®C

The previous definition interprets in particular the cut-elimination rules of co-contraction and dereliction, and con-
traction and co-dereliction (see Section 2.4.2.2).

A category C is enriched over commutative monoids if every hom-set C(a, b) is endowed with a structure of
commutative monoid (C(a, b), +¢(a,b); Oc(a,5) compatible with composition. In the context of DiLL, this enrich-
ment allows to interpret the sums of proofs. In fact, the enrichment over (commutative) monoids is equivalent to
the presence on C of a biproduct:

Proposition 2.4.11. [25, prop 2.3] A category C with finite product is enriched over commutative monoids if and only
if it is endowed with a biproduct structure.

Proof. Consider C a category endowed with a biproduct (¢, I'). One defines a monoid on C(A, B) by:

frg: A A0aT% BB Y B,

The neutral O¢( 4, p) corresponds to up ony : A—=1—=B.
Conversely, consider C a category such that for every objects A, B, we have a commutative monoids (C(A, B), +¢(a,5), 0c(a,5)), an
nite products A x B. We show that this product is a biproduct. The map n4 = O¢(a,7) makes I a terminal object.

1 1

Then one constructs A 4 as A x A ~AXMATAXT 4 o 1~ A, O
The previous proposition has an important consequence for DiLL. In a monoidal closed and vectorial setting

where hom-sets are in particular vector spaces, one cannot hope to distinguish the interpretation of the additive

connective on finite indexes. This argues for a polarized semantics where, if we can’t distinguish between the
interpretation of the connective we can distinguish the interpretation of formulas they apply to.
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Interpreting the (co-)contraction and the (co-)weakening Consider (C,®, 1, (.)*) a *-autonomous category

with a biproduct (o, I, u, A, n, V) (following the notation of Definition 2.4.6) and endowed with a strong monoidal

functor! : (C, o, T)—=(C,®, 1). Then we interprets the formulas of LL as in Section 2.2.2 and [!A] = ![A] and [?A] = (1([A]*))*.
As in Section 2.2.2, we also write % the interpretation in C of the multiplicative disjunction as the dual of ®.

Proposition 2.4.12. In a *-autonomous category, the biproduct is self-dual: we have a family of isomorphisms
natural in A and B such that:
A* o B* ~ (Ao B)*.

Let us recall the interpretation of the structural rules ¢ and w. The strong monoidal functor ! provides natural
isomorphisms:

map:(Ax B)~1AQ!B, (2.28)
mo 1T ~ 1. (2.29)

Then one defines the natural transformations, interpreting the structural morphisms:

IAA ma A

calA—S1(Ax A) 2N 14A®1A (2.30)
In mo

wa JA 1T 'R 2.31)

Thanks to the biproduct structure, the co-structural rules are interpreted by similar morphisms. Indeed, one defines
the natural transformations:

m;! Av4
tatA®IA 2T 1(Ax A)—214 (2.32)
m! lu
a1l 2T 204 (2.33)

Proposition 2.4.13. [25, 3.2] For every object A, we have a commutative bialgebra (\A,wa,ca,Wa,c4): (1A, wa,ca)
is a commutative comonoid, and (\A,®,C4) is a commutative monoid.

Let us detail specifically the interpretation of proofs whose last derivable rule is amongst ¢, w, ¢, w:

e Consider a function f : ![A]* ® ![A]* — [I'] interpreting the proof of - TI',?A,7A equivalent to
I',7A%?A. Then the proof of - I',7A, and deduced by the contraction rule, is interpreted by f o cq) :
NAJ* —[T].

e Consider a function f : 1 — [I'] interpreting the proof of the sequent — I'. Then the sequent — I',7A
deduced by the weakening rule is interpreted by f o wpay# :!I[A]* —[I'|.

e Consider functions f : 1 —![A] #¥ [I'] and g : 1 —1[A] % [A] interpreteting respectively the proofs of
the sequents — I',!A and - A, !A. Then the proof of the sequent - I', A, ! A deduced by the co-contraction
rule, is interpreted by c4(f ¥ g) : 1 ~ 1% 1—I[A] ¥ [I'] @ [A], where we omitted to name explicitly
the associativity morphism for 7.

e The interpretation of the co-weakening rule ! A is simply w4y : 1 —[!A].
Interpreting dereliction and codereliction In a model of LL, the dereliction rule is interpreted by the co-unit

dy :!A— A of the monad !, see Section 2.2.2. For a model of DiLL one needs however to add an interpretation
for the codereliction. This is done by introducing a natural transformation

d:Id—s

satisfying the following coherence diagrams [25, 4.3].

E_ . (2.34)



dp®F

ERQUF —————= |EQIF (2.35)
1E®dF\L ¢/¢E,F
FRF — !(E ® F)
EQF
JE rE
E \E g (2.36)
dEi/ B _ - 7\5!15
1@ E "% \pgi1g "2 \pouE

Diagram 2.35 features a natural lax monoidal morphism:
¢pr: | EQIF—I(EQ®F)

which is deduced from the strong monoidal structure as follows:

—1
¢ I EQIF —25 (Eo F) LEE, W(E o F) X225, ((E o F) @ I(E o F)) (2.37)
'('(1E®nF))®'(nE®1F)) '('E@'F)) !(dE®dF) |(

EQ®F) (2.38)

Definition 2.4.14. An intuitionist model of DiLL is a Seely category equipped with a biproduct compatible with
the monoidal structure and a co-dereliction satisfying the previous axioms.

From the previous definition follows a definition for a model of DiLL.

Definition 2.4.15. We define a Seely model of DILL to be a x-autonomous category (C,®, 1) which is a Seely
model of LL, equipped with a biproduct compatible with the monoidal structure and a co-dereliction satisfying
equations 2.35 2.36 2.34.

2.4.2.2 Invariance of the semantics over cut-elimination

Saying that the definition above is a model for DiLL means that we have an interpretation for the proofs of
DiLL, and that these interpretations are coherent with cut-elimination, meaning that the denotational interpretation
is invariant under the cut-elimination procedure. We detail the isomorphisms below. Again, we restrict our
attention to the rules of DiLLy. Remember first that the monoid structure on hom-sets is defined from the biproduct
structure:

f+91A£>A<>Aﬂ>B<>BlB
Oc(a,p) = upona: A—=I1—B
e To the cut-rule 2.18 between w and w corresponds the morphisms

1 ! 1
_ m, lua 'ma _m
waowy:1l 2 NT—=14—>1T 21,

and wg owy = lyaslngolugs = l(ngowus) = !14 by functoriality of ! and by definition of a
biproduct.

e To the cut-rule 2.22 between w and d corresponds the morphism

_ d !
waods: A4 200" 1,

As d is a natural transformation the following diagram is commutative, where [/ is neutral for ¢:
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na
A———

oo |

A" T

As [ is initial [25, 2.1], d; : [ —=!I ~ 1 is the only morphism from I to 1, thus d; = w;. Thus, through
the previous commutative diagram we have w4 o da = urong = Oc( AT by definition of the additive
structure on hom-sets. This justifies the reduction to a cut between a weakening and a codereliction to a zero
proof o, the logical interpretation of the O morphisms in an category enriched over commutative monoids.

The same approach shows that the cut-rule 2.23 between w and d corresponds the morphism wo0da = ua0
n1 = Oc, ,,interpreting the zero proof o, proving A from no hypothesis.

The cut-rule 2.21 between d and d corresponds to the morphism d 4 od 4, which is the identity by hypothesis,
see diagram 2.34.

The cut-rule 2.19 between the contraction ¢ and the co-weakening w in interpreted by the morphism:

m,

! ly 1A m
caowail L INT—S1AS1Ax A) 2" 1A®A.

As the product x comes from the biproduct ¢, the terminal object T ~ 0 (which is the by definition the unit
for the product) is the unit for I, the unit of the biproduct. Thus we have by [25, prop 2.2]

IAolu = (Aowu) = uou,

where we omit the explicit description of the isomorphism between [ and I ¢ I. Thus:

m,

1 H(uaouq
caoima 1" I~ 1(ToD) LX)

-1
'"LA,A
jad

(Ao A) IA®IA.

Through the strong monoidality of ! one can describe !(uy ¢ u4) as !lug ® luy, and the above morphisms
correspond to the interpretation of the successive cut-rule between a co-weakening rule and one of the
instances of 7A in the sequent — I", 7A, 7 A. This is exactly the interpretation of the cut-eliminated proof-
tree in 2.19.

The case concerning the cut-rule 2.20 between the co-contraction ¢ and the weakening w behave exactly
likewise, by symmetry of the definition of weakening (resp. contraction) with the one of the co-weakening
(resp. co-contraction).

The cut-rule 2.24 between the contraction and the co-dereliction is interpreted by:

caoda: AS1A22 14 % 4) "M 1A 1A,

By naturality of d we have that !A4 oda = daoa oAy, thuscypody = ma aodaspAa.

Moreover, the sum of proof trees resulting from the cut-rule is:

dA@Ba+0A®da: ADT~1@A~ A-> Ao A BEOD (1 461 4) 6 (1AR1A) —> 14 A,

To show equality between c4 o dgand dg ® wa + wa @ da we must then prove:
dacaoman = Viagia o (d®w) o (0 ® d)
which follows from the compatibility of the biproduct with & (Definition 2.4.10).

The cut-rule 2.25 between the co-contraction and the dereliction is interpreted by:

—1
YALA

m AV da
daoia 1A®IA 2" (A0 A) VE14%4 4.
By naturality of d we have that dy 0 !V 4 = Vao0daoa, thusdy oGy = Vaodaoaomyly.
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Moreover, the sum of proof trees resulting from the cut-rule is:

da@wa+wa®da: ARIA-> (AR IA) o (1A®A)

(1B (4 1) o (1@A) ~ (A®1) o (AD1) ~ Ao A2 A.

To show the equality between c4 o daand ds ® wa + wa ® da we must then prove:
daca omZ}A =([dRw)o(w®d)o.
which follows from the compatibility of the biproduct with & (Definition 2.4.10).

e The cut-rule 2.27 between the contraction and the co-contraction is interpreted by:

caoen TAIA™EM 14 % 4) VA1) 2204 % 4) " Ag AL
However by properties of the biproduct (see [25, 2.2], recalled in Proposition 2.4.9)
IVWaolAy = (Ag0AA)o(lgova,a0a)0(VaoVy),
where v4 g : Ao B ~ B o Ais the commutation for o. As I[(Ag 0 AA)o (1aoya,a0oa)o(VaoVa)lis
exactly the interpretation of the reduced cut-rule 2.27, we have our result.

2.4.2.3 Exponential structures

Ehrhard defines [20] the notion of exponential structures on a (pre)-additive x-autonomous category a as tu-
ple (!, w,c,w,c) such that ! is an endofunctor on Ci, (the subcategory of C with only isomorphisms as ar-
rows), and such that for every object A, (1A, w4, ca,Wa,C4) is a commutative bialgebra. The isomorphisms are
required to interpret the coherence rules. These morphisms moreover satisfy the following invariance diagrams,
which axiomatize what has been proved before in Seely categories.

E B E F
Id 'E 0 'E dRw+w®d 'E
E 1 \EQIE
'E \EQ'E
N X‘
0 E dXuw+w®d \E
5 d
1 FE

Figure 2.7: Commutative diagrams in Exponential structures

Remark 2.4.16. In Chapter 7 and 8 we develop concrete models of DilLLg, where ! is a functor but not an endo-
functor. A proper categorical semantics for these models, intermediate between Seely categoriess and exponential
structures, should be developed.

2.4.3 A Smooth intuitionistic model: Convenient spaces

We recall in this section how Mackey-complete Ics, linear bounded functions and conveniently smooth functions
define a model of Intuitionistic DiLLL.. This is a simplification of the article of Blute, Ehrhard and Tasson [7], as it
does not require spaces to be bornological.

The first models of DiLLL were constructed by Ehrhard as a vectorial generalisation of coherent spaces in Kothe
spaces [18] (see Section 2.2.3) and Finiteness spaces [19]. They are constructed from spaces of sequences. Once
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DiLL was formalized a calculus of interaction nets [23] and its computational content axiomatized in the differ-
ential A-calculus [22], a natural question was the geometric nature of the differential used. Indeed, differentiation
in the models was done over power series: but there is more to the theory of differentiation than extracting the
linear part of a power series. How far can the sequent calculus DILL model the general behaviour of differential
geometry? This led Blute, Ehrhard and Tasson [7] to define a model of Intuitionistic DiLLL,, where functions are
general smooth, i.e everywhere and iteratively differentiable, functions, with no further restriction. The model
relies on the work of Frolicher, Kriegl and Michor [26, 53] who define completeness conditions and good notions
of smoothness allowing for a cartesian closed category of smooth functions.

One of the specificites of this model is that linear maps are interpreted by linear bounded functions, which are
not continuous in general. The necessity to relax continuity of functions into their boundedness comes from the
specific definition of smoothness by Frolicher, Kriegl and Michor. The spaces satisfy a completeness condition
known as Mackey-completeness, and are sometines asked to be moreover bornological ([7, 26]). The bornological
conditions modifies the topology of spaces in order to ensure that every bounded linear map is still continuous. It
is in fact unnecessary to the intuitionistic constructions of DiLL, as we showed with Tasson [49]. We explain in
Section 6, Chapter 6 how the bornological condition ensures a classical interpretation of DiLL.

We will sketch here the model of DiLL as detailed in [7], without the bornological condition. It corresponds
thus to the summary made in sections 2, 3 and 4 of [49]. We will give more detail on the bornological condition
later in section 6. We recall a few notion of Chapter 3. Contents of sections 3.4, 3.4.3 and 3.1 are enough to
understand convenient vector spaces. We recall that an absolutely convex subset B of a vector space E is a subset
such that: Va,y € B,YAe R, u e R, |A| + |p] <1: Az + py € B.

Definition 2.4.17. A locally convex and separated topological vector space (denoted as Ics) is a R-vector space
E, R being R or C endowed with a topology, admitting a pre-basis of absolutely convex neighbourhoods, making
addition and scalar multiplication continuous.

Let E and F' denote Ics from now on. A bounded set in a Ics E is a subset B — E which is absorbed by any
0-neighbourhood. That is, for any open set U containing 0, there exists A € R such that B < AU. A bounded
function f : E— F is then a function such that the image by f of any bounded set in F is bounded in F'.

Definition 2.4.18. We denote by L(E, F') the space of all bounded linear functions. We endow it with the topology
of uniform convergence on bounded subsets of E. This topology is generated by the open sets

Wpu =1{{|{(B)c U}

where B is a bounded set in E¥ and U an absolutely convex open set in F'. In particular, a sequence of linear
functions (¢,,), € L(E, F') converges towards ¢ € L(FE, F') if and only if for every bounded set B c E, every
0-neighbourhood U < F, there is N € N such that for n > N, we have (¢,, — {)(B) < U.

The product and direct sum of two Ics are endowed with the usual product and co-product topologies (see
Section 3.1.4). In particular, a bounded set in £/ x F'is a product of bounded sets. Remember also that on finite
indexes, products and direct sums coincide.

The use of bounded subsets simplifies the theory of topological vector spaces. If several notions of continuity
can be defined on bilinear functions (for example continuity is not equivalent to separate continuity) there is only
one notion of bounded bilinear function and thus of tensor product for them.

Definition 2.4.19. We endow the tensor product £ ® F' of two Ics with the finest topology making the canonical
bilinear map h : £ x F'— E ® F bounded. This makes ¥ ® F' a Ics which is denoted £ ®p F'.

Then one shows easily the following:

Proposition 2.4.20. [49, 3.4] The category of lcs endowed with @ g is a monoidal closed category with internal
homE — F = L(E,F).

We write E* := L(E, R) the bornological dual of a lcs E. In general, it differs from the topological dual E’. Tt
is the denotational interpretation of negation. Note that we won’t have in this model ' ~ F** in general, and thus
we will not have a denotational model for classical DiLL.L.

In order to accommodate smooth functions, one needs a certain completeness condition on the Ics. Differentia-
tion, and thus smoothness, is defined in term of limits of sequences in a given Ics F'. If we want to compose smooth
functions, or to prove cartesian closedness, most of the time we will be able to prove that the difference quotient is
Cauchy, i.e. that the quotients are getting closer and closer, but we won’t be able to prove directly that it converges.
Knowing that Cauchy sequences converges is the definition of completeness. In their work Kriegl and Michor
require a very weak completeness condition, which works well within the bounded setting.
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Definition 2.4.21. A net ((«.)r) is a family of elements of E indexed by a directed set I'.

Definition 2.4.22. A Mackey-Cauchy net in E is a net (x)~er such that there is a net of scalars A\, / decreasing
towards 0 and a bounded set B of E such that:

Vy,y €,y — .y € Ay 4 B.
A space where every Mackey-Cauchy net converges is called Mackey-complete.

There exists a procedure of Mackey-completion, that can be thought of as a the interpretation of a shift T (see
Section 2.3.1), and which allows to make a space Mackey-complete.

Proposition 2.4.23. [53, 1.4.29] For every lcs E there is a Mackey-complete lcs F and a bounded embedding
t: B — E, unique up to bounded isomorphism, such that for every Mackey-complete lcs F', for every bounded
linear map f : E — F there is a unique bounded linear map f : E — F extending f such that f = fo.

We denote by Mco the category of Mackey-complete spaces and bounded linear maps.

Proposition 2.4.24. [49, 3.5] The category MO endowed with the Mackey-completed tensor product ® is a
monoidal closed category with internal hom E — F = L(E, F).

Products and co-products preserve Mackey-completeness, and thus (MCO, ®, R, x, {0}) is a model of MALL.
We detail now the interpretation of the exponential ! as the dual of a space of smooth function. From now on we
work with R-vector spaces.

Definition 2.4.25. Let £ be a Mackey-complete Ics. Consider a curve ¢ : R — E, then c is said to be derivable if
the following limit exist for every t € R:

et s) — c(t)
¢(t) = g ———

The definition of smoothness is co-inductive: the curve c is smooth if it is derivable and its derivative in every point
is smooth. We denote by Cg the set of smooth curves in E.

The space Cg is a Mackey-complete Ics when it is endowed with the topology of uniform convergence on
bounded sets of each derivative separately [53, 1.3.7]. A basis of 0-neighbourhoods for this topology is made of
Wh,i.u, where B is a bounded setin R, ¢ € N, U is a 0-neighbourhood in E, and

Waiu = {C | Vteb, e (t) € U}.

Definition 2.4.26. A function f : ' — F'is smooth if it preserves smooth curves: V¢ € Cg, foc e Cp. We
denote by C*(E, F) the space of smooth maps from E to F. This definition of smoothness is a generalization of
the usual one for finite dimension topological vector spaces (see Boman’s theorem [10]).

This definition of smoothness does not imply continuity. In particular, the linear smooth maps are exactly the
smooth bounded ones.

The space C*(E, I) is endowed with the projective topology induced by the product [ [ ... Cr. In fact,
the space C*(E, F') is the closed subspace of [ .., Cr whose elements (f.). are those such that for every
g€ CP([R,R), feog = feog. It is Mackey-complete when F' is Mackey-complete [53, 1.3.11]. Let us denote by
Smooth the category of Mackey-complete Ics and smooth maps between them.

Theorem 2.4.27. [53] The category Smooth is cartesian closed, meaning that for E, F, and G Mackey-complete
lcs we have natural isomorphisms:

C*(E x F,G) ~ C*(E,C*(F,G)).

As explained in remark 2.7, in a *-autonomous category modelizing classical LL, one would want to interpret
IE as C*(E,R)’. It is not the case here, but it is close : the exponential is defined as the completion of the linear
span of all Dirac distributions J,, in C*(E,R)*.

E - C*®(E,C)~
d:
{dex:fo(x)
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Definition 2.4.28. We define the Mackey-complete Ics | E' as the Mackey-completion (& (~E)> of the linear span of
0(E) = {6, | x € E}. If f € Lin(E, F) is a smooth linear map, its exponential ! f € Lin(!E,!F') is defined
on the set §(E) by !f(d,) = (). It is then extended to the linear span of §(£) by linearity and to ! E by the
universal property of the Mackey-completion.

Thus ! defines an endofunctor on MCoO. It is moreover a co-monad, with co-unit and co-multiplication:
dg 0, €'E—x€e F
pg 0z € B 05, € NE

This interpretation for the exponential gives an interpretation of non-linear proofs of LL as smooth maps.

Theorem 2.4.29. [7] The cokleisli category of the comonad | over MCO is the category Smooth. In particular,
for any Mackey-complete spaces E and F,

L(\E,F) ~ C*(E, F).

As Smooth is cartesian closed and McO is monoidal closed, the previous theorem leads to the strong
monoidality of the functor !, defined from (Mco, x,{0}) to (Smooth, ®, R). If | E were defined as C*(F,R)*
as in equation 2.7, and spaces were equal to their double bornological dual £ ~ E** this would follow from the
following computation:

C*(E x F,R)* ~C®(E,C*(F,R))* (2.39)
~ L(\E, (IF)*)* (2.40)
~ L(IE®!F,R)* (2.41)
~IEQ®IF (2.42)

In the intuitionistic setting of convenient vector spaces, the computations are slightly more subtle.

Theorem 2.4.30. [7, 5.6] For any E, and F' Mackey-complete spaces we have a natural isomorphism:
mpp: |EQF ~ |(E x F).

Proof. We sketch the proof detailed byBlute, Ehrhard and Tasson in [6]. The goal is to construct a bilinear bounded
map h : |E x |F—!(E x F), and to show that it is universal over bilinear maps on Mackey-complete spaces.
The Mackey-completed tensor product & enjoys indeed a universal property in MCO [6, 3.1] and is thus unique.
The bilinear map h is defined as h(d.,d0y) = (. If f 1 B x |F'— G is another bilinear bounded
map between Mackey-complete Ics, one first shows that f is smooth, and thus f o (4,0) : E x FF— G is
smooth and factors as a linear bounded map: f : I(E x F) — G. One then easily shows that f = f o h. Thus
I(E x F) with h is universal, and we have thus an isomorphism between !(E x F) and | EQ!F. O

From the biproduct structure on MCO and the strong monoidality of !, we deduce as before a bialgebra structure
on every object ! E. The natural transformations making this bialgebraic structure are nicely defined on the Dirac
distributions d,.

c:0,€F— 6, R0, € EQE (2.43)
w:,€E—>xzekl (2.44)

¢:0, @0y € EQIE — 6,4y €E (2.45)
w:1leR—dye!F (2.46)

The co-dereliction is then the operator which extracts from a scalar map f € C*(E, R) its differential at 0:

elF

d:ve E (fECOO(E,R)'—)}iI%M> = thr%@
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The Identity rule

ﬁ(axiom) N, A }—AJ}M (cut)
-4,4 - N, M
The additive rules
) _EN N NM FN, P EMQ
-1 EYA N NI D N MPoQ @
The multiplicative rules
- T FN,N  FNM N, P FN,Q
FNT N N&M & FN. PoQ O N PeQ OF
The Exponential Rules
EN F N PP -N,P p
WN,?P NP WN,?P
R - N, IN - MIN - N,N p
HIN = N, M, IN - N, IN

Figure 2.8: The deduction rules for sequents of DiLLg ;0

2.5 Polarized Differential Linear Logic

2.5.1 A sequent calculus

We believe that the classical nature of DiLL is better understood in a polarized setting: we will support this claim
in Chapter 7 by giving a polarized denotational model of DiLL, and in 8 by giving a computational interpretation
in terms of differential equations. We describe here in terms of sequent calculus a polarized Differential Linear
Logic, without promotion. This has been done in terms of interaction nets by Vaux [79].

Definition 2.5.1. The formulas of DiLLg ,, are constructed over a set 1 of negative atoms n, and makes a
distinction between positive formulas P, () and negative formulas N, M. They are constructed from the following
grammar:

Negative Formulas: N, M :=n |[?P|N®M | L|NxM|T|
Positive Formulas: P,Q :=nt |IN|PRQ|0| P®Q |1

Its inference rules are describes in figure 2.8 and restricts the rules of DiLLLy. The cut-elimination procedure for
DiLLyg, e is directly deduced from the one of DiLL and LL.
DiLLyo1 with shift  As LL.1, DiLLye can be enhanced with shift, changing the polarity of a formula.

Definition 2.5.2. The formulas of DiLL,. 1, are defined from a set N of negative atoms, and the following
grammar:

Negative Formulas N, M :=neN |TP|?P| NBM | L|NxM|T|
Positive Formulas: P,Q :=nt [ IN |IN | PRQ|0|P® Q|1

Definition 2.5.3. The inference rules for DiLLg po,1; are the ones of LL.; extended by the following rules. .4
is a list of negative formulas.

NN - N, P
- N, IN — N, TP

Then one defines:

TPTE = Y(PLr)INTR = t(NLr)
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2.5.2 Categorical semantics

In the categorical semantics of DiLL, co-dereliction is interpreted by a natural transformation d which is right
inverse to the interpretation d of the dereliction on every object:

daody = ida.

Dereliction is the rule which allows to see a linear map as a smooth one: it corresponds to the co-unit of the
co-monad, or in a presentation using an adjunction:

!
T
(£7,x) L (£,Q®)
N~
u
the dereliction of a linear map f € £(A, B) is the smooth map U(f) € L(!A, B). Conversely, the co-dereliction
should correspond to a forgetful functor I/ mapping a smooth function f € £(!A, B) to its differentiation at 0:
Do(f) € L(A; B). However Dy is notably not compositional, and thus it does not define a functor from £ to L.
In Section 2.5.2.1 we detail the categories in which the equation

dod = Id

can be interpreted as a closure operation between functors. Then in Section 2.5.2.3 we give a categorical axioma-
tization for models of DiLLg ;.

Outlook 1. This section on the categorical semantics of DiLL is a first step towards a more unified framework.
Indeed, while MLL,,, is interpreted categorically in chiralities, we would like to interpreted the exponential rules
of DiLL,, in a chirality between the category of linear maps and the one of smooth maps, where the role of shifts
are played by the dereliction and the co-dereliction.

2.5.2.1 Dereliction and co-dereliction as functors

In this section we explore to which extent the dereliction and co-dereliction could be seen as functors, acting as
shifts in a chirality. To see Differentiation as a functor, we detail here the ideas of synthetic differential geometry
[50]. We denote by o the composition in £ and by o, the composition in £;. We will first recall the properties of
the forgetful functor which was defined after Definition 2.2.13.

Proposition 2.5.4. Consider L a category and (!, d, 11) a co-monad on a small category L. Then one defines the
Sorgetful functor Uy : L— Ly such that Uy(A) = AandUy(f : A—=B) = foda.

Proof. Let us define U;(A) = A onobjects of £, andif f € L(A,B),U; = fodase LA, B) ~ Li(A,B).
Then F4(14) = da which correspond by definition to the unit in the co-kleisli category. Likewise, we have for
g:B—C":

Ug(go f) = go fodae Li(ACLC).

However, in the co-Kleisli category L, Uy(g) o1 Fa(f) = godpol(foda)opua = godgolfoldso
na = godpolfol s by the second law of co-monads. From the last equality, and by naturality of d, we deduce
Uq(g) orUg(f) = go foda. ThusU, is a functor.

O

While the previous proposition recalls that we can consider the dereliction as the forgetful functor between our
category with linear maps and its co-Kleisli category of (thought-as) smooth maps, the converse for dereliction is
more intricate. Indeed, consider the application Dy which maps f € £i(A, B)) to Dof € L(A, B). Thus Dy is
not a functor as it not compositional:

Do(fog) = x— Dy)(9)(D(f)(0) ().

Thus to account for the arbitrary choice of 0, and view the codereliction as a functor, we introduce a new
category:
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Definition 2.5.5. Consider ! a co-monad on L.
We denote L} the category whose object are those of £, and whose morphisms are morphisms of £, coupled
with points of the domain:
L7(A,B) = L(1A,B) x 1A.

Composition is defined as follows: if (f, ¢) € L} (A, B) and (g,v¢) € L}(B, C), then:
(g:9)or. (f,0) = 0if ¢ # !fep.
(9, (1)) o (f,0) = (gor f,9)

This composition is associative by associativity of o;. The unitis (d 4, dp).

Proposition 2.5.6. Consider a model of DiLL as described by Fiore ([25], Section 2.4.2). As usual, we denote by
d : Id— the creation operator interpreting the codereliction rule, that is the natural transformation such that

dod = Id. We denote by  : | x | —s the binatural transformation interpreting the cocontraction. Then let us
define:
Ly — L
Uu: A A (2.47)

(f1A—=B,¢elA) o [ve A fo(dxdav))]
Then U is a functor.

Example 2.5.7. One must think of ¢/ as the functor mapping f € C*(A, B) and a (non-linear) point x € A to the
linear map v — D, f(v). Then we have indeed:

Dy (fog)(v) = Dyey(g) © Daf(v).
Proof. We have U(da,8y) = [z € A~ dao (dg*da(v)], thus as &g is the neutral for * we have:
U(da,60)(x) = daoda(v) = .

This shows that I/ preserves the neutrals. Consider now g € L(!B,C), f € L(!A, B) and ¢ € !A. Then forv e A
we have by the chain rule:

U(gor f,9))(v)
U(g,\fo) o U(f, ) (v)

golfopao(((1f)9)da(v)
go (1f)d) = dp(fo (¢

*
I
b
—~
<
=
=
=
=

O

Outlook 2. Notice that syntactically Differential Linear Logic manages to avoid seing Differentiation as a functor,
by using the co-contraction, which allows to sum in the domain of a function.

2.5.2.2 A polarized biproduct

In models of Differential Linear Logic, the addition which is necessary on hom-sets can be defined through a
biproduct structure 2.4.6. In a polarized setting, this biproduct is defined through a cartesian equivalence of cate-
gories.

Definition 2.5.8. Consider a negative chirality (£, ®, 1) and (.4, %, 1) with a strong monoidal closure (—)1* :
PN (=) R N —= P withapolarized closure | : A —= P 4 1T: P —= A suchTol = Idy. A
biproduct structure consists in two monoidal structures (o, I) on .4 and (e, J) on & such that we have the strong
monoidal equivalences:

(-)*
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(A0) L (P9
Y

with natural transformations I “Y> N, N Y%, No N, P "> Jand P« P 27> P such that N, x, V) isa
commutative monoid and (P, n, A) is a commutative comonoid.

Then the additive structures on the sets .4 (TP, N) interpreting proofs of - N, P is defined as:

f+g:TP—=1(PeP)~ (1P)o(tP) L% No N—=N.

2.5.2.3 Categorical models of DiLL,,
Proposition 2.5.9. Consider a model of LL1 with a polarized biproduct:

e A negative chirality (2,®,1) and (A, %, 1) with a strong monoidal left closure (—)** : P —= NP
(=)Lr . NP —= P with a polarized closure L : N —>= P 41 : P —= N suchT ol = Idy,

A polarized biproduct (o, I) on A and (e, J) on 2,

A co-cartesian category (P*,®qy,0) and a cartesian category (N P X, T) with a strong monoidal
left closure

(_)lL.oo . t@d&%t/‘/w,op 4 (_)LRQC ZL/VOO’Op%gZOO.
e A strong monoidal right closure

7 (‘@wﬁp’@? 0)%('/‘/0:07782 1) —HU: (JVOP,QS)’ 1) %(‘@OOJU@aT)'

A natural transformation:
d:?U—1d y

which is thus defined between endofunctors of N .

Then these four adjunctions, together with the monoidal and biproduct structures, define a denotational model of
DiLLpo1.

Outlook 3. We would like to interpret dereliction and co-dereliction as shifts between the categories P* and AV, and thus
axiomatizing a categorical model of DiLL the data of two chiralities: one between positives in P and negatives

in AV, and the other between P® and N. However, as the codereliction does not lead to a functor from P*® to

N because of non-compositionality (see Section 2.5.2.1), this is still work in progress. It should incorporate the
biproduct presentation, from which the interpretation of sums in hom-sets follows.
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Chapter 3

Topological vector spaces

"Nej, jeg lever maske tusinder af dine dage, og min dag er hele arstider! Det er noget
sa langt, du slet ikke kan udregne det!"

"Nej, for jeg forstar dig ikke! Du har tusinder af mine dage, men jeg har tusinder af
gjeblikke til at veere glad og lykkelig i! Holder al denne verdens dejlighed op, nar du
dgr?"

"Nej," sagde traet, "den bliver vist ved l&ngere, uendeligt lengere, end jeg kan tenke
det!"

"Men sa har vi jo lige meget, kun at vi regner forskelligt!"

Andersen, Det gamle egetras sidste drgm, 1858.

Traditionally, one constructs a model of Linear Logic by defining the interpretation of formulas, then
the one of linear proofs, and last one studies the possible interpretation for the exponential and non-
linear proofs. We will inverse this order here: as we are looking for a nice and smooth interpretation
of non-linear proofs, the necessary interpretation of the exponential connective will give us constraints
on the topologies on our spaces.

This chapter tackles in its first section the basic definitions of the theory of topological vector spaces.
In Section 3.2 we give examples of topological vector spaces made of functions (whether they are
sequences or continuous measurable or smooth, functions). In Section 3.3 we introduce linear maps
and the notions of dual pairs and weak topologies. Section 3.4.3 exposes notion of bounded subset,
of bornologies, and explains how these bornologies characterize the different topologies on spaces of
linear functions. Once that spaces of linear functions are well-understood, one can look for spaces on
which the linear negation is involutive: the different possibilities for reflexivity are detailed in Section
3.5. At last, Section 3.6 explains the theory of topological tensor products. Nothing exposed in this
chapter is new and every result is referred to the literature. The book by Jarchow [44] is the major
reference.

As a foretaste for this chapter, we review the notion of orthogonalities and closures which are used
throughout chapters 5, chapter 6 and 2.
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Closure and orthogonalities

Let us describe a the notions of orthogonality and closure operators [74]: they generalize for example the operations
of completion, bornologification, of taking the Mackey or the Weak topology on a space.

Definition 3.0.1. Consider a set X. An orthogonality relation 1 < X x X is a symmetric relation. We define the
dual of X: X+ := {y € X | Vo € X, (z,y) € L}. Then one has always X < X+, and X+ = X4 Asetis
said to be L-reflexive when X = X1+,

Examples of orthogonality relations include polars of subsets (Section 3.4.1) and duality in sequence spaces (Sec-
tion 3.2). Orthogonalities are defined in general in the context of posets, but we give here a definition in the context
of a category. A relevant example is the category of Ics and continuous linear injective maps between them.

Definition 3.0.2. Consider C a category. A closure operator - is an idempotent endofunctor on C, with a natural
transformation w : Id —"~such that wy = id; = wj.

Note that according to this definition a closure operator is in particular an idempotent monad, where the multipli-
cation is the identity.
Another way of looking to closure operators are thus adjunction between a forgetful functor and a completion:

such that~o U = Idg.

Definition 3.0.3. A full subcategory C of a category L is said to be reflective when the inclusion functor U : C—=L
has a left adjoint -. Then U o~ is a closure operator.

Closure operators and reflective subcategories are associated with many topological constructions: the topological
closure -(making a subset closed), the absolutely convex closed closure -***, the completion ~ consists of particular
of closure operators. In Chapter 2 we will in particular define a polarized version of this notion of closure.

Filters and topologies

The reader can be used to speak about topologies in terms of convergence of sequences: the set of open sets on
a metric space F' is entirely determined by the convergence of sequences (z,,),, in this space. Otherwise said, if
for two norms on a vector space the convergent sequences are exactly the same, and have the same limits, then the
norms are equivalent. This is true only when the topology is determined by a metric (Definition 3.1.2): then there
exists a countable basis of open sets.

In general, one cannot describe a topology only by its convergent sequences. A more general, non-countable,
notion is needed:

Definition 3.0.4. Consider E a set. Then a filter 7 on F is a family of subsets of F, such that:
« B¢ T,
e forall A, Be F,An Be F,
e If Ae Fand B — Eissuchthat A c B, then B € F.

If (v,), € EY, then the family {S,, = {zx|k > N}} is a filter on (x,,),. A basis of a filter F is a family
F' < F such that every element of F contains an element of F’: a basis describes the behaviour of F in terms of
convergence. The convergence is itself described in terms of filters.

Definition 3.0.5. A topological space is a set E, such that for every 2 we have a filter F(x) such that:
e cvery element of () contains z,

e forevery U € F(z) there exists V € F(x) such that forally € V, U € F(y).
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Then F(x) is called the filter of neighborhoods of x.

For example, a sub basis for the filter of neighborhood of a point x € F' in a metric space F' is the family of all
open balls of center x and of radius %, for all n € N*

Definition 3.0.6. Consider J a filter on a topological vector space E. F is said to be convergent towards x € E if
F(z) < F.

In the example of a filter corresponding to a sequence (zy )y in F', it means exactly that for every n > 1, there
exists k;, such that for every k > k,,, ||zx — || < %
We have an equivalent definition of topological space, via a topology:

Definition 3.0.7. A topological space is a set E endowed with a collection T of subsets of F, called its fopology,
such that:

e J¢Tand E€T,
e T is stable by arbitrary union,
e 7 is stable by finite intersection.

When comparing different topologies on a same vector space F, we will say that the topology 7 is coarser than
the topology 7, and that 7" is finer than 7T, if any open set of T is in particular an open set of 7. We will denote
this preorder on the topologies of E by <:

Definition 3.0.8. If 7 and 7" are two topologies on a space E, we say that 7 < 7’ if and only if T < 7.
Convergence in topological vector spaces can also be characterized in terms of convergence of nets:

Definition 3.0.9. A net in a topological space F is a family (2,)qec4 of elements of E indexed by an ordered set
A. A net s said to be converging towards x € F is for every neighborhood U of x, there exists b € A, such that for
alla = b, x, € U. A sub-net of (x4)aca is a family (zp)pep With B  A.

3.1 First definitions

3.1.1 Topologies on vector spaces
Linear topologies

Definition 3.1.1. [44, 6.7] A topological vector space is a K-vector space F over K = R or K = C, which is also
a topological space, making addition and scalar multiplication continuous.

The topology of a Ics E, that is the collection of all its open sets, is denoted 7. A subset U — E is a neighborhood
of z € U if it contains an open set containing U.

Definition 3.1.2. A topological vector space is Hausdorff if its topology separates points: for any =,y € F such
that x # y there exists two open sets U,V of E'suchthat U nV =, xeUandyec V.

Definition 3.1.3. A subset U € E is absolutely convex if for all x,y € Y, all A, 1 € K such that || + |p| < 1 we
have Ax + pv € Y. It is absorbent if for any € F there exists A € K such that x € AV. A topological vector
space is said to be locally convex if it admits a sub-basis of absolutely convex absorbent open sets.

Closed and absolutely convex subsets of a topological vector space E are also called disks in E. The role of
absolutely convex neighborhoods is to allow for linear combinations: if Y is absolutely convex, then for any
A, v € K we have the following equality between sets: AU + pU = (A + p)Y.

Notation 3.1.4. If E is a locally convex topological vector space, we write Vg (x) the set of neighborhoods of x
in E. If B is a subset of E, we write ac:i(B) the absolutely convex hull of B in E, that is the smallest absolutely
convex set containing B. We will write B for the closure of B is F, that is the smallest closed set containing B.

When the topology on E is ambiguous, we will write ETE for the closure of B in E endowed with Tg.

As Tg is stable under translations (addition is continuous), it is enough to specify a basis of 0-neighborhoods
to understand the topology of E. It will be called a 0-basis for E.
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Proposition 3.1.5. If E admits a 0-basis of absorbing convex open sets, then the absolutely convex closures of
these sets is also a 0-basis for E [44, 2.2.2]. Their closure also forms a 0-basis. As any 0-neighborhood is
absorbent [44, 2.2.3], we will sometimes consider without any loss of a generality 0-basis consisting of closed
convex sets.

We sum up all the preceding definitions in the one of Ics, which will be our central object of study:

Terminology 3.1.6. We will denote by Ics a topological vector space which is locally convex and Hausdorff.
Proposition 3.1.7. Any lcs is also a uniform space, whose entourage are the sets {x —y | x,y e U} v {y — = |
y,x € U} for every 0-neighborhood U.

Isomorphisms

Notation 3.1.8. We shall write E ~ F to denote an algebraic isomorphism between the vector spaces E and F,
and E ~ I to denote a bicontinuous isomorphism between the lcs I and F. We will sometimes refer to the first
as linear isomorphism and to the second as linear homeomorphism.

The following proposition is deduced from the stability of the topology under sums and scalar multiplication and
captures the intuitions of Ics:

Proposition 3.1.9. A linear function between two Ics is continuous if and only if it continuous at 0.

3.1.2 Metrics and semi-norms

From now on and for the rest of the thesis, F/, F' and GG will denote Hausdorff and locally convex topological vector
spaces. Let us describe some specific classes of Ics that the reader may be more familiar with:

e Metrizable spaces are the Ics such that the topology is generated by a metric, that is a positive symmetric
subadditive application dist : ' x EE— R, which separates points. Open sets are then generated by the
0O-neighborhoods U,, = {z € E | dist(0,z) < n}.

e Normed spaces are the Ics such that the topology is generated by a norm, that is a positive homogeneous'
subadditive application ||-|| £ — R such that ||z|| = 0 if and only if x = 0. Open sets are then generated
by the 0-neighborhoods U,, = {z € E | ||z|| < n}. Normed spaces are in particular metrizable spaces.

e Euclidean spaces are finite-dimensional R-vector spaces. They are normed vector spaces, with all norms
equivalent to ||-||, : € R™ — 4/, 7.

Metrizable spaces are also the Ics which admit a countable basis, and that’s what makes them useful:
Proposition 3.1.10. [44, 2.8.1] A lcs is metrizable if and only if it admits a countable basis of 0-neighborhoods.
Proposition 3.1.11. [44, 2.9.2] Any lcs is linearly homeomorphic to a dense subset of a product of metrizable Ics.

The notion of continuity on a Ics can be equivalently described in terms of topology or in terms of semi-norm. A
semi-norm on a vector space is a subadditive homogeneous positive application p : £ —R_. It is notably not
required that p(z) = 0 implies that x = 0.

Local convergence. The following definition will be used to define precise notions of convergence and com-
pleteness. It allows to consider convergence locally, within normed spaces generated by some subsets of E. A
typical example of a semi-norm is the Minkowski gauge, defined on a vector space E for an absorbing convex
subset A < E:

qa :x — inf {|A| [N e RY,z e AA}.

The gauge is not a norm as g4 (x) may be null for z # 0. For z in the linear span of A we have however that ¢4
separates the points.

Definition 3.1.12. Consider U an absolutely convex subset of E. Then one defines the normed space Ey; as the
linear span of U, endowed with the norm q;.

Ithat is, the norm must verify: YA > 0, || Az|| = \||z]|

57



Let us explain the equivalence of the description of 7 in terms of topology or in terms of semi-norms (see for
example the introduction of Chapter I1.4 in [66] for a more detailed presentation). Consider a family Q of semi-
norms on E. Then the topology induced by the semi-norms ¢ € Q is the projective topology generated by this
family, that is the smallest topology containing the reverse image of any open set of R¥ by ¢ € Q. A 0-basis for
this topology is the collection of all

Ba,,..a,={reFE|Viga,(z) <e}

Consider conversely E a lcs and U a 0-basis consisting of absolutely convex subsets. Then the topology 7x of E
coincides with the one generated by the family of semi-norms (gy)yeys-
3.1.3 Compact and precompact sets
Definition 3.1.13. A subset K — F is:

1. compact if any net in K has a sub-net which converges in K.

2. precompact if for any 0-neighborhood U there exists a finite set M € F suchthat K < U + M.

3. relatively compact if its closure is compact in F.
Since a continuous function preserves open sets by inverse image, it follows that:

Proposition 3.1.14. If f : E— F is a continuous function, and if K is a compact in E, then f(K) is a compact
in F.

The preceding proposition applies in particular to Id : E,» — E., when 7’ is finer than 7:

Corollary 3.1.15. Consider E a lcs endowed with a topology 7/, and 7 another topology on E which is coarser
than 7/2. Then if K is compact in E,,, 7 and 7’ coincide on K.

Because compact sets are preserved by direct images of continuous function, they are used to construct topologies
on spaces of continuous function. This is one of the essential bricks of this chapter. In euclidean spaces, that is R
and its finite products, compact sets are exactly the bounded and closed sets, but this is not the case in general.
3.1.4 Projective and inductive topolgies

We describe first products and coproducts of Ics.

Definition 3.1.16. Consider a /-indexed family of Ics (E;);e;. We define [ [,_; E; as the vector space product
over I of the F;, endowed with the coarsest topology on E making all p; continuous.

If U; is a basis of 0-neighborhoods in E;, then the follwoing is a subbasis for the topology on [ [, E;:
U= {UZO x Hie[,i;ﬁig EZ} with Uio € uio'

Definition 3.1.17. We define E := @, _; E; as the algebraic direct sum of the vector spaces F;, endowed with the
finest locally convex topology making every injection I; : E; — E is continuous. Remember that the algebraic
direct sum F is the subspace of [ [, E; consisting of elements (z;) having finitely many non-zero ;.

If U; is a O-basis in E;, then a 0-basis for (—BZ E; [44, 4.3] is described by all the sets:
U=Ujot @rey U; Uje with U €Uy, j € J, ke N
Note that this topology is finer than the topology induced by [ [ E; on @ E;.

Proposition 3.1.18 ([44, 4.3.2]). I is finite if and only if the canonical injection from @, ; E; to [,.; E; is
surjective.

2That is we have an inclusion between the sets of open-sets: T C 7/
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Proof. By the definition of the algebraic co-product, as the sets of elements of the product with finitely many non-
zero composites, we have (—DZE 1 Ei = [,y Ei when I is finite. The description of the sub-basis of the inductive
and projective topologies gives us the result. The converse proposition follows from the definition of the co-product
as the set of finite tuples of the product: if product and co-product coincide, then the index [ is finite. O

The previous constructions are in fact particular casse of projective and inductive topologies, defined on pro-
jective and inductive limits of topological vector spaces. On these notions, we refer respectively to [44, 2.6] and
[44, 4.5, 4.6] and just recall the main definitions and results below.

Definition 3.1.19. Consider (E;) jes a family of Ics indexed by an ordered set .JJ and a system (T , : Exy—=FE;) <k
such that T} ; = Id E; and and for i < j < k we have T; ,, = T; j o T 1, . Then the projective limit lim lim | E is the

sub-Ics of H E; such that T} p(x) = «; forall j < k. It is endowed with the topology induced by ]_[ jes B

Definition 3.1.20. Consider (E;);e;s a family of lcs indexed by a pre-ordered set J and a system of continuous
linear maps (Sy ; : E; —>Ek)Jsk such that S; ; = Idg,; and such that fori < j < k we have S; , = S; j 0 S .

e The inductive limit li_r)nj E; is defined as the quotient of < s E; by the relations Idg, — Idg, o S, for
alli < g

e It is endowed with the finest locally convex vector topology making all Q o S; : E; — @; E; — lim.
continuous, where ) denotes the linear continuous projection ®; F; — h_H)ll FE;. This topology is not
necessarily Hausdorff even when all the E; are.

e The limit is said to be reduced when the maps S; are injective, and regular when any bounded? set in h_H)ll E;
is bounded in one of the F;.

e A reduced and regular inductive limit h_r)nj E; is hausdorff if and only if all the F; are.

e The limit is called strict when J = N and the maps S; ; are Ics inclusions E; < Ej;. If E; is closed in F;
when ¢ < j, then the limit is regular.

Remark 3.1.21. The fact that a condition on the bounded sets is necessary to guarantee a Hausdorff inductive limit
is important. Bounded sets, and inductive limits, are well-behaving with positive connectives.

3.1.5 Completeness

The mere data of a topology is in general not enough to have a rich analytic theory. One needs another tool to
deduce convergence of limits and then continuity of functions: we require some notion of completeness on spaces.

Definition 3.1.22. A net (z4)aea C FE is said to be a Cauchy-net if, for any 0-neighborhood U, there exists o € A
such that for all 5 > « we have: zg — z, € U. A lcs E is said to be complete if every Cauchy-net in E converges.

A normed space which is complete is called a Banach space. A metrizable space wich is complete is called
a Fréchet space or (F)-space. A closed subset of a complete space is complete. Products and co-products of
complete spaces are complete.

Theorem 3.1.23. If E is any lcs, then there exists a complete lcs E with a linear homeomorphism I : E — E
such that I(E) is dense in E. Then E is unique up to linear homeomorphism.

Proof. We sketch the construction of [44, 3.3.3]. If F is metrizable, there exists an isometric embedding of F
in £, (E), the Banach space of bounded sequences in E (see Section 3.2.3 ). We write E the closure of I(E)
in {(E). If E is not metrizable, we embed FE in the product of the metrizable space generated by each 0-
neighborhood of a 0-basis (by Proposition 3.1.11), and take the closure of E in product of the completions of these
metrizable space. O

We recall the following classical result, which is proved in particular in [44, 3.9.1].

Proposition 3.1.24. Consider f : E — F a uniformly continuous map. Then there exists a unique uniformly
continuous map f : E— F which extends f. In particular, any continuous linear map in E — F where F is
complete admits a unique continuous linear extension in E — F..

3That is, any set which is absorbed by every O-neighborhood, see Section 3.4
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The notion of completeness defined above is the most famous one and when it is necessary it will be specified as
Cauchy-completeness. However, other notions of completeness can be defined. One can endow a Ics with other
topologies inferred from its dual, such as the weak or the Mackey-topology, and from that define an alternative
of completeness (see Definition 3.4.16). Other notions of completeness can also be defined as convergence of
Cauchy-nets in some specific subsets of F/: quasi-completeness is the convergence of Cauchy-nets in bounded sets
(see Section 3.4).

Let us recall a fundamental properties relating completeness and compactness:

Proposition 3.1.25. [44, 3.5.1] Consider E any lcs. A subset K < E is precompact if and only if it is relatively
compact in F, that is if and only if K is compact in F.

Remark 3.1.26. We will later state Grothendieck® theorem 2?2, which allows to see E as a certain topology on
a bidual of E. This is fundamental in our approach, and allows a model of a linear involutive negation, as it
corresponds to the isomorphism:

PP~ (Pryt

of a polarized linear logic allowing to interpret the involutive negation.

3.2 Examples: sequences and measures

We will detail here some other fundamental examples of Ics, which will serve as running examples in the rest of
the Chapter.

3.2.1 Spaces of continuous functions

We denote by C(E, F') the vector space of all continuous functions from E to F'. We now define two standard
topologies on this space.

Definition 3.2.1. We denote by C.(F, F') the vector space C(E, F') endowed with the topology of uniform con-
vergence on compact subsets of F. It is also known as the compact-open topology, and a sub-basis for it is

Wguo={f:E—F|f(K)cU}

where K is any compact set in £ and U ranges over a basis U of Tp. If a net (f,)aea converges to f in C.(F, F)
we say it converges towards f uniformly on compact subsets of E. It is the case if and only if for every compact
subset K of E, for every U € U, there exists « € A such that for every § > a we have: fg(B) € U.

The neighborhoods Wi 7 clearly are absolutely convex.

Proposition 3.2.2. The vector space C.(E, F)endowed with the compact-open topology is a lcs. It is metrizable
when E admits a countable basis of compact subsets: this is the case for example when F is a euclidean space.

Definition 3.2.3. We denote by C;(F, F') the vector space C(F, F') endowed with the topology of simple con-
vergence F. This can be described as the topology induced by the basis consisting of the following collection of
subsets.

le,...zn,,U = {f : E%FW/?& f(ll) € U}

where U ranges over a basis U of Tp. In terms of nets, a net (f,)o converges to f in Cs(E, F) if and only if for
every x € F, the net (f(2)) converges to f(x) in F.

These are particular cases of convergences on bornologies: see Section 3.4.3 for more details.

3.2.2 Spaces of smooth functions
Consider n € N. We consider now the vector space C*(R™, R) of smooth functions from R" to F'.

Definition 3.2.4. A function f : R"—F is smooth if it is differentiable, and if its differential D f : R"—L(R" R)
is smooth.
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In the previous definition, the vector space L(R™, R) is endowed with the compact-open topology, as a subspace
of C.(R™, R). It is in this case equivalent to the bounded-open topology which will be considered in Section 3.4.
We consider also the vector space of all smooth functions with compact support: C5(R™ R). A function f :
E — I has compact support if and only if there exists KX < E compact such that f is null outside K.

Notation 3.2.5. Consider f € C*(R"™,R) and o € N™. We denote by |«| the quantity oy + ... + a, . We write 0%
the following linear operator from C*(R™,R) to C*(R™,R)

plol f
0

0%: f— —_— .
! (m ox{t...0xT! (m)>
By definition of smoothness, 0° f is again a smooth function.

By default, and if nothing else is mentioned, these spaces of smooth functions will be considered as a Ics endowed
with the topology of uniform convergence of all derivatives on all compact subsets of R™:

Definition 3.2.6. Consider U a 0-basis of F' consisting of absolutely convex subsets. The space C*(R™,R) and
its subspace CZ(R™, R) are endowed with the initial topology generated by the semi-norms*.

qrm [ sup {[0%f(2)l}

zeK,|a|<m
where K ranges over all compact subsets of R™ and m € N.

Notation 3.2.7. The lcs C2(R™,R) is also called the space of test functions and denoted D(R™). The lcs
C*®(R™ R) is denoted E(R™). They are both the central objects of the theory of distributions (see Section 7.3.2)
[69].

3.2.3 Sequence spaces

Example 3.2.8. Let p € N and ¢, the vector space of sequences (x,),, € RY such that
O ail?)r < co.
ieN
Then £, is a normed vector space when endowed with the norm ||-|, defined as the finite-valued sum above. The

vector space /o, is the space of all bounded real sequences, endowed with the supremum norm ||-|| .. They all are
Banach spaces.

The following definition will be fundamental for the theory of nuclear spaces described later in Section7.2.2.
Example 3.2.9. [44, 1.7.E] Consider the space of scalar rapidly decreasing sequences:
s ={(\)n e KNVE €N, (A\,n¥), € 01}

It is a Ics when endowed with the projective topology induced by the seminorms:

It is metrizable as its topology is generated from a countable family of seminorms, and its completeness follows
from the one of ¢;.

The preceding construction can be generalized to Kothe spaces, as defined in [44, 1.7.E].

Example 3.2.10. Consider P Rﬁi a set of positive sequences. It is a poset when endowed with the pointwise
ordering: « < (3 if and only if for all n, o,, < B,,. Suppose that no sequence in P is null, and that P is directed:

Vae PAne N:q, > 0and Va,8 € P,y e P,Vn : a,, Br < Yn. (3.1
Then one defines the Kéthe sequence space A(P) as:
A(P) == {(An)n € KN|Var € P, (Anain)y € £1}.

It is endowed with the projective topology induced by the seminorms:

o : (/\n)n = ||(/\n04n)nH1 = Z |/\n|an-

n

for all @ € P. Thus if P is countable, A(P) is metrizable. The space A(P) is complete.

“That is, the coarsest topology on C*° (R™, R) making all the gk, continuous
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This definition is the basis for a first vectorial model of Linear Logic. In [18], Ehrhard interprets the formulas of
Linear Logic as special Kothe spaces, with a more restrictive definition which is detailed in Section 2.2.3. The
connectives of Linear Logic are then interpreted as constructions on the sequence set P underlying the K&the
space, and proofs as linear continuous maps. Ehrhard’s Kothe spaces are in particular Kothe sets:

Remark 3.2.11. For all E, the space |[E*| = {(|an|)n | (an)n € E*} satisfies the condition 3.1. It is indeed
directed: if o, 3 € |E*|, define the sequence v as 7y, = max ||, |3,|. Then, for all (\,), € E, as the series
>on [ An]an and Y |\, |G, are absolutely converging, one has:

< lan|An + 25, 1Bnl A (3.3)

thus v € B+ and as it is positive we have v € | E*|. The space | E*| also satisfies the first requirement: for n € N,
the sequence ™ which is null at indexes k # n and equals 1 at index n is of course in E. In particular, all finite
sequences are in F.

Definition 3.2.12. A perfect sequence space is a pair (X, Fx ), where X is a countable set, and E'x is a subset of
KX such that
E+t = Ex.

It is endowed with its normal topology, that is with the projective topology induced by the semi-norms:
da * (An)n = [[(Anan)nlly

for all o € Ex . Without loss of generality, we usually note F'x to denote the perfect sequence space (X, Ex).

Thus a perfect sequence space Ex is exactly the Kéthe space Ext = A(E XJ‘) as defined previously in example
3.2.10. Itis a lcs as Ex fulfils the requirements for a Kothe set (Remark 3.2.11). Conversely, a Kothe space
A(P) = P* is not necessarily a perfect sequence space, as the topology of A(P) is induced by P, which in
general differs from P+,

A Kothe spaces of periodical functions. We expose here a remark by Schwartz [66], detailed by Jarchow [44,
2.10.H].

Proposition 3.2.13. There exists a linear homeomorphism s ~ C;gr(]K) between the perfect sequence space of
rapidly decreasing sequences and scalar smooth periodic functions.

The homeomorphism is constructed by using the Fourier transform, which is recalled in Section 7.3.4.

3.3 Linear functions and their topologies

3.3.1 Linear continuous maps

Consider E and F' two Ics. We write E* the set of all linear forms E—sK. We denote E’ the dual of E, that is the
space of all continuous linear mappings from E to K. We write L(E, F') the vector space of all continuous linear
functions from F to F'. We will see that several topologies make these vector spaces topological vector spaces.
Let us describe a few well-known examples:

Example 3.3.1. Consider p € R* and let us write p* = ﬁ. Then for the spaces of sequences of measurable maps
described in Section 3.2, one has (£, (1)) = Ly« (1), and in particular (£,)" = £px.

Example 3.3.2. The dual of ¢, the space of sequences converging to 0 endowed with |||, is £;. Note that by the
preceding proposition the dual of ¢; is £y;.

Proof. For x € {1, then ev, : y € cog — D, Tpyy is well defined by boundedness of x, and thus continuous for
the norm ||-||; on ¢o. Conversely, consider ¢ € ¢{. As ¢ is linear continuous on co, there is M > 0 such that for
every = € co |¢p(x)| < M ||z||,. Let us define ¢,, = ¢(e™), €™ being the sequence such that e} = 0 if n # k and

e = 1. Define x,, = @% when ¢,, is non-null, and z,, = 0 if ¢,, is null. Let us denote ¥ = (z1,...,xx,0,...)
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the finite sequence whose N first terms are the ,,. As the sequence ¢ is converging towards 0, then ¢(z?) is well
defined for every N, and |¢(2™)| < 1. We just proved that for all N € N*:

N
D ol < M.
n=1

We deduce that (Zgil |¢n|) v is a monotonous bounded sequence, and it is then converging. Thus ¢ € ¢;, and as
(¢n)r, = ¢ we have the linear homeomorphism between c{, and ;. O

Example 3.3.3. Consider F a perfect sequence space as described in example 2.2.3. Then one has a linear isomor-
phism from E* to E’, which maps a sequence (), ), to the linear continuous form:

a:(xp)p € E Zanxn.

In particular, one has ﬁpl = {py and 0Lt =1,

The central theorem of locally convex vector spaces is the Hahn-Banach theorem. We recall here two formulations
of this theorem, the analytic one and the geometric one. We omit here some more general formulations that won’t
be needed in this thesis.

Theorem 3.3.4. [44, 7.2.1] Consider E a locally convex topological R-vector space (not necessarily Hausdorff),
and F' a subspace of E. Then every continuous linear form on F extends to a continuous linear form on E.

Corollary 3.3.5. A locally convex topological vector space is Hausdorff iff for every x € E — {0} there exists
u € E' such that u(x) # 0.

Theorem 3.3.6. [44, 7.3.4] Consider E a (non necessarily Hausdorff) locally convex topological R-vector space
E, A a closed absolutely convex subset of E, and K a compact subset of E such that A n K = (J. Then there
exists uw € B’ such that forallx € A, y € K:

u(z) < a < u(y).

Corollary 3.3.7. Consider A a non-empty closed and absolutely convex subset of E. Then if z # A, there exists
u € F’ such that for every y € A, |u(y)| < 1 and such that |u(x)| > 1.

In particular, if 2 € F is such that for every £ € E’, £(z) = 0, then = = 0.

3.3.2 Weak properties and dual pairs

Topological properties on E are usually considered with respect to the topology 7z of E, but they can also be
defined weakly.

The weak topology

Definition 3.3.8. The weak topology o(E, E’) on E is the topology of uniform convergence on finite subsets of
E’. That is, a basis of 0-neighborhoods of o (E, E’) is:

Weyoane={zeE||L(z)] <€, ..., |lu(x)] <¢€}

s

for {1, .....,¢, € E" and € > 0. We denote by E,, or E, the Ics F endowed with its weak topology. We will show
later that this change of topology on E does not change the dual of E (proposition 3.3.13).

The weak topology on F is the inductive topology generated by all the [ € E’. This definition means that one can
see the specifications of F,, as properties which are verified when elements are precomposed by every [ € E’:

Proposition 3.3.9. A sequence (z,,), € EY is weakly convergent towards x € E, that is o(E, E')-convergent
towards x, if and only if for every | € E' the sequence l((xy,)),, converges towards l(x) in R.

One checks easily that this topology makes addition and scalar multiplication continuous, and that the basis of
0-neighborhoods described above consists of convex sets. From the Hahn-Banach theorem 3.3.5, it follows that F
is separated:
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Proposition 3.3.10. E endowed with o(E,E") is a lcs.

Proof. As a consequence of Hahn-Banach separation theorem [44, 7.2.2.a], we have that E’ separates the points
of E: if z,y € E are distinct, then there exists [ € E’ such that [(x) # [(y). This makes E endowed with its
weak topology a Hausdorff topological vector space. It is locally convex as Wy, ... ¢, . is convex as soon as U is
convex. O

The weak* topology. We will heavily make use of another kind of weak topology. The weak* topology on E’
is the weak topology generated on E’ by E when the later is viewed as a dual of E’.

Definition 3.3.11. The weak* topology on E’ is the topology o (E’, E) of uniform convergence on finite subsets
of E. A basis of 0-neighborhoods of o(E) is:

Waroane = {0 E' | [0(z1)] < € oos, |(zn)] < €}

for x1,....,2, € E and € > 0. Once E’ is given or computed from a first topology on E, we construct Ics E
endowed with its weak* topology and denote it E/, , or E’ .

As for the weak topology, we have the following:
Proposition 3.3.12. E’ endowed with o(E’, E) is a lcs.

When it can be deduced from the context without any ambiguity, we will denote E, as E endowed with its weak
topology and E’ (B 88 E’ endowed with its weak* topology. The weak topology induced by E’ on E is the

coarsest topology 7 on E such that (E,)" = E:
Proposition 3.3.13. We have the linear isomorphisms (E,)" ~ E" and (E,(g)) ~ E.
The well-known demonstration of this proposition uses the following lemma:

Lemma 3.3.14. Consider E a vector space and [, [y, ..., linear forms on E. Then [ lies in the vector space
generated by the family [y, ..., 1, (denoted Vect(ly, ...1,,)) if and only if ()} _, Ker(I;) < Ker(l). O

Proof. 1f | € Vect(ly, ...l,) then clearly ();'_, Ker(lx) < Ker(l). Conversely, suppose (,_; Ker(l),) < Ker(l).
Without loss of generality, we can suppose the family {l} free. Let us show the result by induction on n. If n = 1,

then Ker(l) = Ker(l1) as they have the same codimension, and one has [ = lll((a; 00)) l; for any fixed x¢ ¢ Ker(l).

Consider now 1, 14, ...I,, linear forms on E such that (;_, Ker(l;) < Ker(l). Then by restricting [ to Ker(l,,) we
obtain scalars A1, ..., \,,_1 such that

n—1

lker(tn) = 2 Aklk|Ker(D)-
k=1
Then Ker(l,,) < Ker(l — ZZ;% Akli), and we have our result by the case n = 1. O

Proof of Proposition 3.3.13. Let us show first that (E,,)’ ~ E’. As the weak topology on F is coarser than the
initial topology on F, we have E' c (E,,)’. Consider now a continuous linear form [ on E,,. Then by continuity
of [, and with the description of the weak topology given in Section 3.3.3, there exists Iy, ...,l,, € E’ and € > 0
such that

Z(th,,l

. ’!L’e

Jo{AeK ||\ <1}

By homogeneity, we have [, _, Ker(lx) < Ker(l) and the preceding lemma implies that [ € E’. Thus
(Ey) ~ E'. Both their topology being the weak* topology induced by points of E, we have (E,,)" ~ E'. O

We can continue to write E’ for the dual of a space F, regardless whether it may be endowed with its weak
topology: (Ey,)" ~ E'. Moreover we will write E., for (E’),,. The linear isomorphism E ~ (E! )’ can be lifted
to a linear homeomorphism when F is endowed with the weak topology o(E’) and E” is endowed with the weak*
topology o (E").

Proposition 3.3.15. For any lcs E one has E, ~ (E..). ..

From Proposition 3.3.13, one deduces the following criterion for continuity between weak spaces.
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Proposition 3.3.16. Consider E and F two open sets. A linear function f : E — F,, is continuous if and only if
forall ¢ € F', we have Lo f € E'.

Proof. If f : E,, — F,, is continuous then for ¢ € F’ we have £ o f € (E,) = E’. Conversely, suppose that
forall £ € F’, we have £ o f € E’. Then the reverse image of an open set W, ;. . by f contains Wi, o¢. 1,01,
which is always an open set in F as the [; o f are continuous, thus f is continuous. O

Example 3.3.17. Beware that a perfect sequence space E as described in Section 2.2.3 is not endowed with its
weak topology: the normal and the weak topologies induced by E+ = E’ (example 3.3.1) differ. Indeed, the first
one is induced by all the semi-norms:

o + T > Z |an$n|
for all « € & while the weak topology is induced by all the semi norms:

ok LT supZa;xn
¢ n

ot

geeey

3.3.3 Dual pairs

Concerning topologies, a lot of notions do not depend strictly on the topology of a lcs E, but rather on its dual: the
first example is the one of bounded sets (Proposition 3.4.10). Thus one can vary the topology of E, as long as it
does not change the dual, the bounded sets stay the same. We have a precise knowledge of the topologies which
do not change the dual (see Theorem 3.5.3). This is why the concept of dual pair is fundamental. Some notions
however depends on the topology: this is the case of completeness, or of compactness.

The process described earlier between E and E’ can be generalized to any pair of vector spaces forming a dual
pair.

Definition 3.3.18. A dual pair consists of a pair of vector spaces E and F, and of a bilinear form (-, -) : Ex F—K
which is not degenerate.

In particular, if E is a Ics, then (E’, E') endowed with the application (¢, z) = ¢(x) is a dual pair. That this
linear form is non-degenerate on the left follows by definition, and that it is non degenerate on the right follows
from theorem 3.3.7: if z is such that for every ¢ we have £(x) = 0, then z = 0.

Then the previous definition for the weak* topology on E’ can be generalized to any dual pair (E, F'), and
leads to a weak topology o(F, E) on F'. This is done in chapter 8.1 of Jarchow’s textbook [44]. Note that the role
of the vector spaces in a dual pair are symmetric, and thus a dual pair also defines a weak topology o (F, F') on E.

In fact, from any separating sub-vector space F' of E* or even K¥, one can define a dual pair (E, F): the
application (z € E, ¢ € F) — {(x,{) = l(x) is then bilinear and non-degenerate.

Proposition 3.3.19. The following function is a linear continuous injection of E into E”:

g {E —E (3.4)
x> evg : (L L(x))

This injection and the idea that E (or E) can be considered as a subspace of E” is fundamental in this thesis.
In particular, note that (E, E’) form a dual pair through this injection, with {ev,, £) = ev,(¢) = ¢(x). Then the
weak topology on E’, inherited from the dual pair (E, E’), is exactly the same topology as the weak* topology,
inherited from the dual pair (F’, E).

More generally, for any dual pair (F, E'), the non degenerate bilinear application allows for the consideration
of F' as a subspace of E*.

Proposition 3.3.20. [44, 8.1.4] Consider E a vector space and F' a subspace of E*. Then the bilinear form
(-, F x E—=Kis non-degenerate if and only if F' is dense in E* endowed with its weak* topology.

Proof. Suppose that F is dense in E*, and consider x € F such that for every £ € F, {(z) = 0. F being dense in
E* equipped with its weak topology we have in particular that for every £ € E* , £(z) = 0. As E* separates the
points of &£ we have z = 0.

Conversely, if F is not dense in E*, then by corollary 3.3.7 for £ € E*\ F there exists x € F such that £(z) # 0
but '(x) = 0 for all ' € F. Since z # 0, it makes the application F' x F — K degenerate. O
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Then we have:

Proposition 3.3.21. [44, 8.1.5] Consider (E, F) a dual pair. F endowed with its weak* topology o(F, E) is
complete if and only if F = E*.

Proof. F = E* is complete as E* ~ K, which is complete as a product of complete spaces. Conversely, if F is
complete it is in particular closed, and thus F' ~ E* by the previous proposition. O

This results means in particular that E/ ., is complete if and only if every linear scalar map ¢ € E* is continuous.
This almost never happen: then when looking for reflexive space (interpreting classical Linear Logic) which are
also complete (interpreting smoothness), we need therefore to look for other topologies on the dual.

3.4 Bornologies and uniform convergence

3.4.1 Polars and equicontinuous sets
Polars. Consider A c E. Its polar is defined as the set of all functions in £’ which have values bounded by 1 on
A:

A° ={le E'Nz e A,|l(z)| < 1}.

Notice that A° is absolutely convex and o(F)-closed in E’. Symmetrically one can define the polar B° ¢ F
of asubset B ¢ E':

B° = {ze E|Vie B,|i(x)] <1}.

Thus B° is absolutely convex and o (E’)-closed in E. The following theorem is known as the bipolar theorem
and makes the polarization a orthogonality relation:

Theorem 3.4.1. Consider A — E. Then A°° is the o(E") closure of the absolutely convex hull of A:

—(E’
A°° = acx(A) =,
— 0 (E’
Proof. As a polar is absolutely convex and weakly closed, one has acx(A) ) < A°°. The converse inclusion is
shown by making use of corollary 3.3.7. O
Equicontinuity.

Notation 3.4.2. Let T be any set of functions f : E —= F. Then for A ¢ E we denote by T(A) the set
{f(z) | feT,x e A}. For B F we denote by T~ (B) the set {r € E |3f € T, f(x) € B}.

Definition 3.4.3. A set of functions K < L(F, F) is equicontinuous if for all 0-neighborhood W < F, there
exists a O-neighborhood V' < E such that foralll € K, (V) ¢ W.

Note that equicontinuity does not depend on the topology which may be defined on E’, but only on the one of
E.

Example 3.4.4. Consider U a 0-neighborhood in E. Then U® is equicontinuous in E’.

We recall below the fundamental properties of equicontinuous subsets:
Proposition 3.4.5. [44, 8.5.1 and 8.5.2]

1. An equicontinuous subset H — L(E, F) is uniformly bounded, that is it sends a bounded set of E on a
bounded set of F (this amounts to be bounded in the topology Ls(E, F') defined in Section 3.4.3).

2. The closure H of an equicontinuous subset H < L(E,F) in F¥ is still contained in L(E, F) and is
equicontinuous.

3. The Alaoglu-Bourbaki Theorem: the closure H of an equicontinuous subset H — E' is weakly* compact.
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Proof. Consider B abounded setin E and V' a 0-neighborhood in . Then H ~!(V) is a 0-neighborhood in E, thus
there exists A such that B < AH~1(V), and by linearity of functions of H we get H(B) c AH(H~1(V)) < AV.

The second point follows immediately from the equicontinuity of H: one shows the equicontinuity of H by
showing that the reverse image of any closed 0-neighborhood V' in F' is in the O-neighborhood U in E such that
HU)cV.

The Alaoglu-Bourbaki theorem follows from the first two points. From 2 we have that it is enough to show
that the closure of H in K¥ is compact. But for that it is enough to show that it is a product of compact sets in K,
and since compact sets in K are closed bounded subsets the result follows from 1. O

3.4.2 Boundedness for sets and functions

Working with lcs which may not have a metric, there exists no possibility to define bounded sets as a collection of
points which are uniformly at a finite distance from the origin. Instead, one defines a bornology, that is a collection
of sets which behaves as a family of bounded sets.

Definition 3.4.6. Consider £ a vector space. A bornology on a vector space E is a collection B of sets B called
bounded, such that 13 is closed by downward inclusion, finite union and covers F.

Unlike continuity, boundedness works with direct images: a function is bounded if the direct image of a
bounded set in its domain is bounded in its codomain.

Several bornologies can be defined from the topology 7 of a lcs. The most used one is the so-called Von-
Neumann bornology:

Definition 3.4.7. A subset B — F is said to be Tg-bounded if for every 0-neighborhood U < F there exists a
scalar A\ € K such that
B c \U.

This notion of boundedness is compatible with, but not equivalent to, continuity:
Proposition 3.4.8. A linear continuous function | : E — F is Tg-bounded.

Proof. Consider B = E bounded, and U a 0-neighborhood in F'. Then there exists A € K such that B = A\I=(U).
Thus I(B) < I[(N1(U)) < \U. O

Beware that the converse proposition is false. In a non-normed Ics, bounded linear functions may not be
continuous.

Example 3.4.9. This example is given by Ehrhard in [18]. Consider the vector space ¢;. It is a sequence space and
thus one can define the pfs ¢ = Following example 3.3.1, there exists a linear isomorphism between 01 and £,
However as Ics, £17 is not endowed with the norm oo but with the normal topology induced by /1 + = Oyt

A reasoning similar to the one used in example 3.3.1 shows that (™ = co, thus the dual of the pfs £y is the
same as the one of £, normed by ||-||,.

Through the Hahn-Banach theorem, one constructs a non-null linear function f : ¢,, —= K mapping every
sequence in ¢g to 0, which is continuous for |-|| . It is thus bounded for the Von-Neumann bornology induced
by |||lo,- As £y as a normed space and £ as the pfs 1 have the same dual, they have the same bounded sets
(see Proposition 3.4.10). Thus f is also a bounded linear form on 1%, Tt is however not continuous for the normal
topology induced by ¢y on 1%+ if it were continuous it would be null.

A fundamental property of 7g-bounded sets is that one can test their boundedness scalarly:

Proposition 3.4.10. [44, 8.3.4] A set B is Tg-bounded if and only if it is weakly bounded, that is if and only if for
everyl € E', [(B) is bounded in K.

Proof. One implication follows directly from Proposition 3.4.8. For the converse implication, we will only sketch
here the proof of Jarchow done in his chapter 8.3 [44]. It relies on the fact that it is exactly the same property for
B to be weakly bounded and for B° to be absorbent: it means exactly that for every [ € F’, there exists p > 0
such that for every x € B, |l(z)| < p. But B° is also absolutely convex and weakly closed: when B is weakly
bounded, it is thus a barrel (see definition 3.4.22). Then the Banach-Mackey theorem [44, 8.3.3] tells us that not
only B° absorbs every point of E’, but it also absorbs globally every Banach disk A of E. This is enough to be
able to prove then that B will be absorbed by any closed absolutely convex neighborhood U = U*°°, as B° will
absorb the Banach disk U°. O
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This eases a lot the work on bounded sets of a Ics F as it allows, most of the times, to test a property in K and
to infer it in E. For example, a function f : E — F is bounded is and only if for every [ € F”, [ o f is bounded.
Other bornologies can be defined, and each one will be used to define a new topology on spaces of linear functions
in Section 3.4.3.

Definition 3.4.11. On any Ics E one defines the following bornologies:

e o(E), the bornology of all finite subsets of E.

B(E), the bornology of all T bounded sets of E, also called the Von-Neumann bornology of E. This is
also the bornology of all weakly bounded sets of E/ (Proposition 3.4.10).

1(E) is the bornology of all absolutely convex compact sets in F,, that is of all the weakly compact abso-
lutely convex sets. It is called the Mackey bornology, and plays an important role in Chapter 6.

~(E) is the set of all absolutely convex compact subsets of E.
e pc(F) is the set of all absolutely convex precompact subsets of F.

All these bornologies relates to different notions of duality (Definition 3.4.16).

3.4.3 Topologies on spaces of linear functions

Let B a bornology on E. One defines on the space L(E, F') the topology of uniform convergence on sets of B,
whose basis of 0-neighborhood is:

WB,U = {f € E(E,F) | Z(B) C U}

for B € B and U a 0-neighborhood of F.

All the bornologies considered in section 3.4.2 are saturated, meaning they are stable by bipolar (and thus by
absolutely convex closed hull by Theorem 3.4.1). If B is a bornology, then the topologies generated by B or by the
set B4 = {B°°|B € B} are the same (see [44, 8.4.1]). Thus one can restrict one’s attention to neighborhoods of
the type Wpgeo 1.

We denote by Lg(FE, F) the vector space L(E, F') endowed with the topology T described above. It is a
locally convex topological vector space when I’ is. The fact that it is Hausdorff follows from the fact that we asked
bornologies to cover E.

Proposition 3.4.12. Let E and F be two Ics, and BB a bornology on E. Then the space Lz(E, F) is a lcs.

Thus from a bornology on E one can define a topology on L£(E, F'), and in particular on £’ = L(E,K).
Symmetrically, from any bornology on E’, one defines a topology on E:

Example 3.4.13. The weak* topology on E’ is the topology of uniform convergence on finite subsets of E. The
weak topology E,, on E is the topology of uniform convergence of £/ = L(E! .., K) on finite subsets of £’.

Note in particular that as E' = E', (see 3.1.24) any bornology on F also defines a topology on E’.

The strong, simple, compact-open, and Mackey topologies.

Definition 3.4.14. From the bornologies previously constructed in Section 3.4 one define the following locally
convex and hausdorff vector topologies on the vector space L(E, F'):

e the finite bornology on E defines the topology L, (FE, F') of simple (sometimes called pointwise) conver-
gence. A filter F < L, (E, F) converges towards [ if and only if, for every « € E, F(x) converges towards
f(z)in F,

e the Von-Neumann bornology on E defines the strong topology Lz(E, F'), also called the topology of uniform
convergence on bounded subsets of I or the bounded-open topology,

e Likewise, one defines the Ics £ (E, F), L,.(E, F) and L, (E, F).
Proposition 3.4.15. On the space L(E, F), Ty < Tpe < T, < Tp.

68



Definition 3.4.16. Each one of these topologies leads in particular to a topology on the dual of E:

e the topology Ej; = L5(E,K) is called the strong topology on E, is the most commonly used, and will be
studied in section 3.5.2,

e the weak topology E’, () Was studied in Section 3.3.2,

o the Mackey-topology E;L will be studied in Section 3.5,

e the Arens-dual is Ei/, and will be studied in Section 3.5.
Definition 3.4.17. Symmetrically:

e the Mackey topology F,, (g on E: it is the topology on E of uniform convergence on weakly* compact
subsets of E'.

o the already known weak* topology E, gy on E,
e the strong topology E (g of uniform convergence on weakly* bounded subsets of £'.

While a space endowed with its weak topology is called a weak space, a space which is endowed with its
Mackey topology is sometime called a Mackey space in the literature.
The equicontinuous bornology on E’ defines also a topology on E, but it is exactly the original topology Tz:

Proposition 3.4.18. Consider E a lcs. Then T (E) corresponds to the topology of uniform convergence on
equicontinuous subsets of E'.

Proof. We write T (E¢) the topology on E of equicontinuous convergence on equicontinuous subsets of F. Then
if U is a 0-basis in F, the sets U°° form a 0-basis of 7 (E¢) as polars are equicontinuous (example 3.4.4). Choosing
a 0-basis of closed disks one has U = U°° by the bipolar theorem 3.4.1 and thus 7 (E) = T (Eg). O

Note that finite subsets of E are in particular weakly-compact, which are in particular weakly bounded, thus
bounded (Proposition 3.4.10). This leads to the following:

Proposition 3.4.19. For E and F Ics, we have that the simple topology T on L(E, F) is coarser than the Mackey-
topology T,,, which is coarser than the strong topology Tg.

The preceding constructions for topologies differ in general, but some coincide on specific subsets of E:

Proposition 3.4.20. [44, 8.5.1] On every equicontinuous subsets H of L(E, F), the topology Ts of simple con-
vergence coincide with the topology Tp. of uniform convergence on precompact subsets .

Proof. Any finite subset is precompact, therefore the topology of simple convergence is coarser than the precompact-
open one 7; < Tp.. Let us prove that the converse is true. Consider /o € H and let us show that neighborhood
of [y for the precompact-open topology are in particular neighborhoods for the simple topology. Consider thus
a precompact set S — FE and a closed disk V in Ur(0) (thus V' = V*°° by the bipolar theorem 3.4.1). As
H is equicontinuous, there exists U € Ug(0) such that for all [ € H, I(U) < V. Since S is precompact,
there exists a finite subset A of H such that S < A + %U . Then if we set M = 2A, we can compute that
(lo + WM,V) NnHc (lo + WS,V) N H. O

All these different dual topologies characterize completeness according to a theorem proved by Grothendieck:

Theorem 3.4.21. [51, 21,9.(2)] Consider {Es, E1) a dual pair, and B a bornology on Es. Then the completion
of Ey endowed with the topology of uniform convergence on BB consists of all the linear functionals on Es whose
restriction to sets B € B are weakly continuous.

This theorem relates completion (and thus the possiblity to work with smooth functions), with topologies on
dual pairs. It will be used in particular to define chiralities of complete p-reflexive spaces in Chapter 6, section 6.4.
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3.4.4 Barrels

Barrels are yet another class of subsets of a Ics. The reader which is used to Banach spaces may have never heard
of them: they coincide with the balls centred at O sets in normed Ics. They are important in this thesis as they
characterize the topology of the double strong dual (£ )}, and thus the reflexivity of a Ics £ (see Section 3.5.2).

Definition 3.4.22. A subset U — F is a barrel if it is weakly closed, absorbent and absolutely convex. An Ics is
said to be barreled if any barrel of E is a 0-neighborhood.

The following fact was already used in the proof of Proposition 3.4.10:
Proposition 3.4.23. A subset B of E’ is weakly* bounded if and only if B° is a barrel in E.

Proof. Observe that by definition of boundedness, the polar B° of a weakly bounded subset B is absorbent: for
all z € E, there exists p > 0 such that for all [ € B, |I(z)| < p. Thus x € pB°. It is absolutely convex and weakly
closed because it is a polar, and thus it is a barrel. Conversely if B° is a barrel, it absorbs any point of E, and thus
B is weakly-bounded. O

Thus a Ics is barreled if and only if it is endowed with the topology S(E, E'), that is the topology of uniform
convergence on weakly-bounded sets of E’.

Proposition 3.4.24. [44, 8.5.6] A metrisable complete Ics (that is, a Fréchet Ics) E is always barreled.

In terms of models of polarized linear logic, barreledness is a positive property. It is preserved in general by
inductive limits, and in specific cases by projective limits.

Proposition 3.4.25. [44, 11.3] Barreledness of Ics is preserved by quotient, inductive limits, and cartesian prod-
ucts.

3.5 Reflexivity

In this section, we will relate the theory of Ics with the fundamental equation of classical Linear Logic, that is the
fact that a formula is equivalent to its double linear negation:

A~ ALL
This corresponds to reflexivity in denotational semantics based on Ics.:
E ~ EI/

Note that the above linear homeomorphisms depends on the topology of E (which determines E’), and on the
topology of E’ (which determines E”).

Definition 3.5.1. Consider B a bornology on E (see Definition 3.4.6). A Ics is said to be semi-B-reflexive if

\g {E - b 3.5)
x> evy : (L l(x))

defines a linear isomorphisms E ~ (Ep)". It is said to be B-reflexive if moreover the topologies of E and E”
corresponds, that is if £ ~ (Ej)%.

The restriction linear morphism ¢ is well defined: ev, is continuous on Eg.

As the strong topology is the most common topology on the dual, we will by default call semi-reflexivity and
reflexivity what is defined above as semi-3-reflexivity and S-reflexivity. In particular Chapter 7 deals with strong
reflexivity.
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3.5.1 Weak, Mackey and Arens reflexivities

In this section we expose some classes of topology on the dual for which semi-reflexivity always holds. We already
showed that every Ics is semi-o-reflexive (Proposition 3.3.13): E ~ (E/,.)’, and that any space endowed with its
weak topology is o-reflexive: E,, ~ (E!, )\ «-

This is also true for the Mackey-topology, whose role is symmetric to that of the weak topology (see the funda-
mental Mackey-Arens Theorem 3.5.3).

Proposition 3.5.2. Every lcs is semi-p-reflexive:
E~ (E,),
and any space endowed with its Mackey topology is p-reflexive:
By ~ (EL)L

Proof. Let us remark that the second linear homeomorphism follows directly form the first one: the Mackey
topology on E is the topology of uniform convergence on absolutely convex compact sets in £/, (E) If E is semi-
p-reflexive, the o(E’, E) and o (E', (E,)") compact sets coincide, and thus the Mackey topology induced by £’
on E coincides with Mackey topology induced by £’ on E ~ (E/,)".

Let us prove the first equality. It follows from the fact that (E’) ~ E and from the fact that the Mackey
topology is finer than the weak one (every finite subset is indeed weakly compact) that we have a continuous
injection: £}, — E,. Its transpose results in a linear inclusion:

E~ (B, < (E,). (3.6)

Let us prove that it is surjective. Consider ¢ € (EJ,)". As ¢ is continuous, there exists a 0-neighborhood V" in
B, such that for every £ € V, |¢(£)| < 1. By definition of the Mackey topology, this means we have an absolutely
weakly* compact subset K of E such that we can take V' = K°. This means that if we denote by (---)* the
polar in the dual pair ((£},)’, E’,) we have ¢ € K**. K can indeed be considered as a subset of (E},)" through
the linear injection. However, thanks to the bipolar theorem 3.4.1, we have that K*° is the absolutely convex
o((E},)', E")-closed closure of K in (£},)'. As K is o(E, E')-compact it is in particular o ((£},)", E')-compact
and thus o((E},)’, E")-closed. As is it moreover absolutely convex, we have K = K**. As K is a subset of E, we
obtain ¢ € E. O]

This proposition implies in particular that for any topology 7 on E’ which is finer than the weak topology
and coarser than the Mackey-topology, we have (E%-)" ~ E. This is proved by taking the double duals of the
continuous injections: Ej — E7- — E . But we have more:

Theorem 3.5.3. The weak topology on E' is the coarsest locally convex Hausdorff vector topology T such that
(E%) = E, and the Mackey-topology is the finest.

Proof. Let T be a locally convex Hausdorff vector topology on E’ such that (E%-)" = E. Then in particular
any evalutation function ev, : E’ — K is continuous on E’T, thus 7 contains all the polars of the finite sets,
and is finer than the weak topology. Moreover, we know that the topology 7 is also the topology of uniform
convergence on equicontinuous sets of (E£/-)" = E (Proposition 3.4.18). Thus any polar V'° of a 0-neighborhood
V in T is an equicontinuous set of F, thus is absolutely convex and weakly*-closed by the Alaoglu-Bourbaki
theorem 3.4.5 . Therefore any closed absolutely convex 0-neighborhood V' = V°° of T is a 0-neighborhood for
the Mackey-topology. As 7 is also generated by its closed 0-neighborhood 3.1.5, we have that 7 is coarser than
the Mackey-topology on E’. O

Remark 3.5.4. In particular, any Mackey-dual is endowed with its Mackey-topology. Indeed, as (E;L ( E))’ ~ FE
by proposition 3.5.2, we have that E;/L (B> Which is endowed by w(E', E) by definition, is also endowed with its

Mackey-topology u(E’, E”). With respect to what is done in the case of weak topologies, the topology u(E’, E)
on E’ should be called the Mackey* topology.

We now detail the stability properties of the weak and Mackey topologies:
Proposition 3.5.5. [44, 8.8]

e The weak topology on a projective limit of lcs is the projective limit of the weak topologies.
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e The Mackey topology of an inductive limit of lcs is the inductive limit of the Mackey topologies.
o The dual of an injective limit of lcs is linearly isomorphic fo the dual of the projective limit.

o [44, 8.8.11] The Mackey dual of a Haussdorf injective limit of lcs linearly homeomorphic fo the projective
limite of the duals endowed with their respective Mackey topologies.

Theorem 3.5.3 has an important corollary:

Corollary 3.5.6. If £’ is endowed with any topology comprised between the weak topology o(E’, F) and the
Mackey-topology u(E’, E), then the dual of E’ is E.

Proof. Tt follows from the hypothesis on F that we have continuous linear injections F;, < E < . Taking
the dual of these injections gives linear maps E — (E’ )’ — E. These maps are surjective by the Hahn Banach
theorem, and thus leads to a linear isomorphism (E.)' ~ E. O

In particular, as the Arens topology (see Definition 3.4.16) satisfies this hypothesis:
Corollary 3.5.7. Any Ics E is semi-y-reflexive, that is we have the linear isomorphism: (E)" = E.

Thus the Arens dual acts as the Mackey dual or the weak dual in terms of semi-reflexivity. We also have that an
Arens dual is always ~y-reflexive, meaning that we have a closure operator:

Proposition 3.5.8. For any lcs E, we have
! I\ \/
B~ ((E),)5-

Proof. This proof is done for example by Schwartz at the beginning of [67]. We already have the linear isomor-
phism by the previous corollary. Let us show that the two spaces in the isomorphism have the same topology.
Consider any Ics F'. Then the topology of (FA'/)’W = F induces on F' the topology of uniform convergence on
absolutely convex and compact subsets of F, while F is originally endowed with the topology of uniform conver-
gence on equicontinuous subsets of F’. Without loss of generality, F is also endowed with the topology of uniform
convergence on weakly closed equicontinuous subsets of F . But by the Alaoglu-Bourbaki theorem 3.4.5, weakly
closed equicontinuous sets are in particular weakly compact. As compact sets are weakly-compact, the topology
of (F7)’, is always finer than the one of F.

However, when F' = I, then equicontinuous subsets of I’ are by definition generated by the bornology (£, £),
and therefore £ ~ ((E7).)",. O

3.5.2 Strong reflexivity

In the literature, reflexivity is usually defined with respect to the strong dual: the terms reflexive and semi-reflexive
are used for S-reflexive and semi-S-reflexive. Let us describe how S-reflexivity can be understood through a
description of the topology of E. The proof makes use of all the notion introduced above, relying on a fine
understanding of the role played by the weak and Mackey-topology, and of when a space is endowed with these
topologies.

Proposition 3.5.9. [44, 11.4.1] The following propositions are equivalent:
1. E is semi-(-reflexive,
2. The strong topology and the Mackey topology on E' coincide: Ejy ~ E,,
3. E,, is quasi-complete, that is every bounded Cauchy-filter converges weakly.

Proof. (1) < (2): As the strong topology is finer than the Mackey topology 3.4.15, and by the Mackey-Arens
theorem 3.5.3, as soon as a space E is semi-/3-reflexive its dual E’ is endowed with its Mackey-topology. The
converse follows immediately from the preceding Section 3.5.1.

(2) = (3): If £} is endowed with its Mackey topology, it means that every bounded sets in E' is weakly-
compact, and in particular weakly complete. Conversely, if every bounded set B is weakly complete, from Propo-
sition 3.1.25 it follows that its weak-closure is weakly-compact, and thus that the strong topology is coarser than
the Mackey topology. As a weakly-compact set is always weakly-bounded, thus bounded by Proposition 3.4.10,
the Mackey topology is always coarser than the strong topology and we have (2) < (3). O
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In terms of polarized linear logic, semi-reflexivity is a negative characterization: it is preserved by projective limits,
and particular cases by inductive limits:

Proposition 3.5.10. [44, 11.4.5] Semi-reflexivity of lcs is preserved by closed subspaces, projective limits and
direct sums.

As semi-S-reflexivity can be modelled through a completeness condition, there exists a closure operator which
makes any F-semi-reflexive: the quasi-completion of F is semi-3-reflexive and enjoys a functorial property as
described in Proposition 3.1.24. Obtaining reflexivity requires much more, and there exists no general closure
operator for reflexivity in the context of Ics.

A semi-reflexive Ics F is reflexive if and only if E carries the same topology as (E'ﬂ)/’g that is the topology of
uniform convergence on bounded subsets of E;; Those are exactly the uniformly bounded subsets of E’, that is
the sets of functions sending uniformly a bounded set on a bounded set. As E carries the topology of uniform
convergence on equicontinuous subsets of E’ (Proposition 3.4.18), we have:

Proposition 3.5.11. A semi-reflexive space is reflexive if and only if the equicontinuous subsets of E' and the
uniformly bounded ones coincide.

In particular, let us recall from Section 3.4.4 that a Ics is barreled if and only if it is endowed with the topology
B(E, E'), that is the topology of uniform convergence on weakly-bounded sets of E’. This topology is exactly the
one induced by the strong bidual (E})} on E. Thus:

Proposition 3.5.12. A semi-reflexive Ics E is reflexive if and only if it is barreled.

Thus reflexivity combines a positive requirement (barreledness, stable by inductive limits) and a negative require-
ment (semi-reflexivity, stable by projective limits). This gives some intuition about where the difficulty lies for
finding good models of LL made of reflexive spaces.

Proposition 3.5.13. [44, 11.4.5] Reflexivity is preserved by cartesian products, direct sums, and strong duality.
Consider (E;); an inductive system which is reduced (i.e. such that the maps Sy ; are injective) and such that the
E; are all reflexive. Let £ = h_r)nj E; be the inductive limit of the (E;). Then if for every bounded subset B C E ,

there exists j such that B is a bounded subset of F;, then E is reflexive.

The following characterization is at the heart of Section 7.2.2. From the fact that a metrisable Ics is barreled 3.4.24,
it follows that:

Proposition 3.5.14. [44, 11.34.3] Consider E a metrisable Ics. Then if E is semi-(3-reflexive, it is B-reflexive and
complete.

Outlook 4. In a model of MLL, we will be looking for conditions allowing for reflexivity which are preserved by
tensor product. This requires finding a closure operator which makes a space reflexive (to use the Weak, Mackey
or Arens dual), or to use a characterization restrictive enough so that it is preserved by some tensor product (as
nuclearity, see Chapter 7). But even before that, one must choose the topology on the tensor product, and see under
which condition this tensor product is associative. This is the content of the next Section 3.6 .

3.5.3 The duality of linear continuous functions

This short subsection is essential. It provides tools for proving adjunctions of the type L(E’, F') ~ L(F’, E) when
E is reflexive for some notion of reflexivity, thus constructing chiralities and models of MLL. Consider a linear
continuous function f : E— F. Then by precomposition we obtain a linear function f’ : F/ — E’. For which
topologies is f’ continuous ? The next proposition sums up results which are easy consequences of Section 3.5.1.

Proposition 3.5.15. [44, 8.6.5]

Consider f : E — F linear. Then [* : F* — E* induces a linear map f' : F' — E' if and only if f is
weakly continuous (i.e continuous with respect to the weak topology on E and F, i.e. continuous with respect to
weak* topology on F and any topology on E compatible with the dual E’). In that case f' is weakly* continuous.

Proof. The function f is weakly continuous if and only if f the reverse image of the polar of a finite subset of F”
contains the polar of a finite subset of E’, if and only if f/ maps finite subsets of F” to finite subsets of E’. As f

maps (E,,)" to (F,,)’ we have then by the same reasoning that f’ is weakly* continuous. O
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In particular, any continuous linear map f is weakly continuous, and thus has a transpose f’ : F' —= E’. The
converse however is not always true: a function can be weakly continuous but not continuous, as F' might contains
0-neighborhoods which are not polars of finite subsets of F”. The previous proposition generalizes to:

Proposition 3.5.16. Consider a linear map [ : E— F and B and C bornologies on E and F respectively. Then
f'+ Fy — Ey is continuous if and only if for any B € B f(B)°° € C.

Let us state very clearly the following easy proposition, which is fundamental throughout this thesis. It could also
be deduced from Proposition 4.0.10, as reflexive spaces are barreled and thus endowed with their Mackey topology.

Proposition 3.5.17. Consider I and F strongly reflexive spaces. Then we have a linear homeomorphism Lg (E;,, F)~
Ls(Fg, E).

Proof. Consider f € L(E};, F'). As f is continuous, it is weakly continuous, thus f’ : F;—(E})} is continuous.
As f is continuous and therefore bounded, it sends bounded sets to bounded sets, and thus f’ is continuous. As E'is
reflexive, f is continuous from F5 — E. The mapping f +— f’ is continuous: indeed, consider B an absolutely
convex and weakly closed bounded set in F' and By a bounded set in E. If f/(Br°) € By, then f(Bg°) € BY
. The situation being completely symmetrical, we have that for g € L(Fj, E), we have g’ € L(E}, F), and g — ¢’
is continuous. O

3.6 Topological tensor products and bilinear maps

This section is fundamental for this thesis, as it explores the different topologies which allow to interpret the
connectives ® and % of linear logic. It also gives the bases for Schwartz’ Kernel Theorem 7.3.9, which allows to
see spaces of distributions as a strong monoidal functor interpreting the exponential.

In algebra, the tensor product is defined through its universal property:

Definition 3.6.1. Consider F’ and F' two vector spaces. Then there exists a unique pair ( £ ® F, h) where £ ® F
is a vector space and h a bilinear function from E x F'to E® F’ such that, for any vector space G and any bilinear
function f : E x F'— @G, there exists a unique linear map f : £ ® F'— G such that:

f="Fog

This changes as soon as spaces are endowed with a topology: the notions of continuity exist for bilinear functions,
and through them different topologies on a tensor product. We detail some important topological tensor products.
Most of them (®, ®;, ®,) are directly linked with a notion of bilinearity, and will interpret the multiplicative
conjunction ® of DiLL in the next sections. The injective tensor product ®. has the good behaviour of the dual
29 of the multiplicative disjunction 2% of DiLL.

In a classical setting, where Rt =2 L= ®, it makes then sense to require to have the interpretation of & equal
®e. This is at the heart of Chapter 7. We refer to the second book by Scwhartz on vectorial distributions for more
details on various topological products and their associativity [68, II.1].

Notation 3.6.2. In this section ® denotes the algebraic tensor product between two vector spaces. It also denotes
sometimes the multiplicative conjunction of LL. To design a lcs structure on the algebraic tensor product, we will
use indices @, Qj, Re.

3.6.1 The projective, inductive and 5 tensor products

Definition 3.6.3. Let us denote B(E x F, Q) the space of all continuous, and not only separately continuous,
bilinear functions from £ x F' (endowed with the product topology) to G. We denote by Z(E, F') the space of all
separately continuous bilinear functions from F x F' (endowed with the product topology) to G.

Definition 3.6.4. Consider B(FE) (resp. B(F')) a bornology on E (resp. F). A bilinear function v : F x F—G is
B-hypocontinuous if for every bounded sets By € B(FE) (resp. Br € B(F)), and for every open set V in G, there
exists an open set Wg in F' (resp. Wg open in E) such that u(Bg x Wg) < V (resp. u(Wg x Bp) < V). This
means that the linear functions u(Bg, _) and u(_, Br) are continuous. We denote by Zz(E x F, ) the space of
all B-hypocontinuous functions from £ x F'to G.
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Definition 3.6.5. Consider £ and F' two lcs. The projective tensor product E &, F' is the algebraic tensor product,
endowed with the finest topology making the canonical bilinear map E' x ' — F & F continuous. The inductive
tensor product £ ®; F' is the algebraic tensor product, endowed with the finest topology making the canonical
bilinear map F x F — E ® F separately continuous.

Definition 3.6.6. Consider B(FE) (resp. B(F')) abornology on E (resp. F). Then the B-tensor product is defined as
the algebraic tensor product, endowed with the finest topology making the canonical bilinear map £ x F' - EQF
a B-hypocontinuous map. Remark that £ ®, F ~ E®; F.

Proposition 3.6.7. ([44, 15.1,16.1] and [68, 1I.1]) Consider E and F two Ilcs. The projective, injective , B-
topology and inductive topology make E ® F' a locally convex topological vector space. F Q, F and E ®. F' are
always Hausdorff (when E and F are). The space E®g F' is Hausdorff as B(E) and B(F) are total by hypothesis.

Remark 3.6.8. A sub-basis of 0-neighborhoods on £ ®p F' is given by a family of By x Vr U Vg x Br where
Bg, B are in Bg and B respectively, and Vg and Vp are absolutely convex and weakly closed 0-neighborhoods
in E an F respectively.

The projective topological tensor product can simply be characterized in terms of semi-norms:

Proposition 3.6.9. A family of semi-norms for £ ®, F is:

TU,V = Gacz(URV)
whenU e U and V € V.
Then for each topological tensor product, we have a corresponding universal property:

Proposition 3.6.10. Consider E and F two lcs. Then if we write h € Bg(Ex F, EQF) (resp. B(EXF, EQ, F)
the canonical bilinear function from E x F to E ®g F (resp. E ®, F') we have that for any vector space G and
any bilinear function f € Br(E x F,G) (resp.f € B(E x F,Q)), there exists a unique continuous linear map
f : E®p F — G such that: ~
f="Ffoh.

Proof. The existence of f as a linear function follows from the universal property of the algebraic tensor product.
It is defined on basic elements as f (x ®y) = f(z,y). Its continuity is immediate, and it is unique as otherwise
one would be able to define on £ ® F a finer topology with a canonical bilinear function into B-hypocontinuous
(resp. continuous). O]

Then the computation of the dual follows easily.
Proposition 3.6.11. e (E®g F) is linearly isomorphic to B(E x F,K).
o (E®p F)' is linearly isomorphic to Bi(E x F,K).

Proposition 3.6.12. [44, 16.2.8] The tensor products ®, ®. and Q; are commutative and associative.

Grothendieck’s “probleme des topologies'. Having a bornology on spaces of linear functions such that £L(EQgF, G) ~
L(E, Lp(F,Q)) is not at all immediate: even if the tensor product is associative, its dual may not be, or equiva-
lently a bounded set in EQpF may not be a tensor product of bounded sets. Let’s take the example of the 3-tensor
product: a S-hypocontinuous bilinear map f defined on E x (F®gG) is continuous on E x B and By X (F®pG),
where B; and B, are bounded sets of F'®3 G and E respectively. Thus f is 8-hypocontinuous on (E ®g F) x G
if and only if the bounded sets of the 3-tensor product are exactly the finite sums of tensor products of bounded
subsets. Indeed Bg ® BF is bounded in I ®g I (as it is absorbed by 0-neighborhoods U @ Br n B ® V'), and
thus so are finite sums of tensor products of bounded subsets. The question of whether the converse was true in
general corresponds to the generalisation of a question for bounded sets of the projective tensor product asked by
Grothendieck [36], which was answered negatively [73].

In his second book about distributions with vectorial values [68, page 16], Schwartz describes the Ics for which
this “problemes des topologies" is answered positively, for different tensor products. We recall some particular
cases of them below:

e The compact subsets of the completed ~-tensor E®7F product of Fréchet Ics E and F’ (that is, metrisable
complete Ics, see 7, Section 7.1.1) are tensor product of compact subsets of £ and F'.

e The completed [3-tensor product is associative on duals of Fréchet spaces, and bounded subsets of it are
tensor products of bounded subsets.
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Comparing tensor products As explained before, in order to be able to work with smooth functions, some
completeness notion will be needed in 6 and 7. However the tensor product of two complete space is not complete
in general, it needs to be completed:

Definition 3.6.13. Consider 6 € {B, 7, e}. We denote by E®QyF the completion of the Ics E ®q F.

Proposition 3.6.14. On E ® F, the inductive topology T; is finer than the projective topology T, which is finer
than the injective one 7.

Example 3.6.15. We will show in Chapter 6 that the completion ®.> provides a satisfactory interpretation of the 23
for complete topological vector spaces. The projective tensor product, one the other hand, is the interpretation for
the multiplicative conjunction ® as by definition it satisfies a universal property with respect to continuous bilinear
functions.

Example 3.6.16. The difference between projective and injective tensor product is illustrated by the following
classical example. Consider ¢; the set of scalar sequences whose sum is absolutely bounded, E a Ics and Uf a basis
of absolutely convex neighborhoods of 0 in F.

On the one hand, we define an absolutely Cauchy sequence in F as a sequence whose sum is absolutely
bounded in each normed space Ey; for all U € U. We write I {F} the space of all such sequences. Then [y ®, E
is a dense subspace of 1 {E'} [44, 15.7]. This is proved by describing {; ®, E as the vector space of all functions
N — F, endowed with the topology generated by the gauge functionals q;;. These functions which are described
as finite sums are then dense in the functions f : N— E described as uniformly converging sums.

On the other hand, one defines unconditional Cauchy sequences in F as the sequences (x,,) such that for any
permutation o € X(N), the sequence (Zp <n xa(p)) converges in the completion £ of E. We write £1(E) the

space of all such sequences, endowed with the topology generated by the semi-norms:

ev ((Tn)n) := sup Z| <a,rp, > |

o
aeU° "

Notice that it is only by the hypothesis of absolute convergence on the sums of the (x,,) that we can define such
semi-norms. Then it is easy to see that the linear injective embedding:

z= Z(A'f})neN ®x; € ll RF — (Z Afngjt>

i=1 =1

is continuous from ¢; ®. E to ¢1{E). As previously, we can identity as vector spaces EWM and I, ® E, and we
obtain the desired result. Thus /1 ®. E identifies with a dense subspace of ¢1{E) [44, 16.5].

3.6.2 The injective tensor product

There exists a canonical injection of the algebraic tensor product £ ® F’ into the space of continuous bilinear maps
from E' x F' to K:

.{E®F9B(E{UXF{U,K) 37)

z@y = ((6) = U(z)l'(y))

This definition makes sense: ¢(z ® y) is indeed bilinear, but is also weakly continuous in ¢ and ¢'. It is injective
as E’ (resp. F") separates the points of E (resp. F).

Lemma 3.6.17. If F and F are finite dimensional vector spaces, then B(E!, x F!)=EQ® F.

Proof. If x € E and y € F', one maps the element x ® y € ' ® F' to the bilinear form:

0z ®@vy) : (I1,12) € B x F' v Iy (x)l2(y).

The linear function § : E® F — B(E’ x F') thus defined is injective. Indeed, consider z € F and y € F
such that x ® y € Ker(6). Then either x = 0 or y = 0, thus © ® y = 0: otherwise one can find [; € E’ and I € F”
such that /1 (z) # 0 and lo(y) # 0. As the dimension of E ® F' equals the dimension of B(E’ x F”), 6 defines an
isomorphism between the two. O

5 which identifies to the & product of section 3.6.3 when spaces have the approximation property [44, Ch.18]
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Proposition 3.6.18. [76, 42.4] ¢ induces a linear isomorphism: E® F = B(E!, x F! K).
Proof. Remember that E’ and F” are endowed with the weak* topology. Consider again the linear mapping
. {E@F — B(E' x F',K)
| 2@y evagy (I, l2) € B x F' 11 (2)la(y).
It is injective, as F' (resp. F”') separates F (resp. F). Let us show it is surjective. Consider ¢ € B(E’, F’). As ¢ is
continuous, there exist x1, ..., x, € E and y1, ..., Y, € F such that

for all i,j, \ll(a:,)| < 1and |l2(y])| <l= |¢(l1,l2)| < 1.

Consider A the sub-vector space of E generated by the x;, and B the sub-vector space of F' generated by the u;.

Both A and B are finite dimensional. Thus, if A° (resp. B°) denotes the polar of A (resp. B), we have:
E'=A®A°and F' = B' ® B°.

One sees by homogeneity that ¢ vanishes on (E’ x B°) and (A° x F’). Thus ¢ is uniquely determined by its

restriction to A’ x B’. As A and B are finite dimensional, we have our result thanks to Lemma 3.6.17. O

From Proposition 3.6.18 it makes sense to define a topology on F ® F from a topology on B(E!, x F! K), or

even on the space of separately continuous bilinear maps Z(FE., x F. ,K) which contains the previous one.

Definition 3.6.19. The injective tensor product £ ®. F' is defined as the algebraic tensor product, endowed with
the topology induced by %.(E., x F. ,K), where Z.(F., x F.,,K) is the space B(E!, x F!  K) of separately
continuous bilinear functions endowed with the topology of uniform convergence on the product of equicontinuous
subsets of £/ and F . We write EQ. F the completion of E ®. F.

If U (resp. V) is a basis of absolutely convex 0-neighborhoods in E (resp. F'), then a family of semi-norms for
E®. Fis:

e (Q e ®ys) = sup{| Y 2 (z:) -y (yi)] | 2’ € U°,y € V°)

where U e Y and V € V.

Proposition 3.6.20. [44, 16.1] The injective tensor product of two Ics is a lcs, and preserves completeness, metriz-
ability and normablity. The completed injective tensor product commutes with projective limits.

Proposition 3.6.21. [44, 16.2.1,16.2.7] The injective tensor product is functorial, commutative and associative in
the category of lcs and continuous linear maps.

While the projective and inductive tensor products make good interpretations for the multiplicative conjunction of
Linear Logic, via their universal property 3.6.10, the injective tensor product provides a satisfactory interpretation
of the 7. The first clue is that it is well behaved with projective limits, see the above proposition. The second is
that it is exactly the operator which glues well spaces of smooth functions: the following example can be found
in [76, 44.1].
Example 3.6.22. For the topology described in Section 3.2 , we have a linear homeomorphism:

C*(R", E) ~ C*(R",R)R.E.
This corresponds to the logical equivalence:

A= B=(7AY) 3 E+.

The injective tensor product does not characterize some continuity on bilinear forms, but a subclass of the contin-

uous bilinear forms known as the integral ones.

Definition 3.6.23. Consider B € B(E x F,G). Itis an integral form if there exists U a 0-neighborhood in E and
V' a 0-neighborhood in F, 4 a positive Radon measure on U° and V'° such that for all x,y € £ x F'

By = |yl ).
UexVe

We denote by Z(E x F, G) the vector space of all integral forms in B(E x F, Q).

Proposition 3.6.24. [76, 49.1] The dual of the injective tensor product is the space of scalar integral forms:

(E®. F) = I(E x F,K).
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3.6.3 The ¢ tensor product

With the injective tensor product comes another operator, which correspond to the completed injective tensor
product (Definition 3.6.19) for a large class of Ics who have the approximation property (see [44, chapter 18]).
Called the e-tensor product, it gives a concrete representation of the elements of the completed injective tensor
product whenever EeF ~ EQ.F.

Definition 3.6.25. For FE and F two Ics, we define EeF' = (E! ®¢ E.))" as vector of &-hypocontinuous bilinear
forms on the duals E,’Y and F’ fy (the definition of hypocontinuity is done in 3.6.4, the one of the Arens dual E(/ in
3.4.16). It is endowed with the topology of uniform convergence on products of equicontinuous sets in £’, F”.

As on equicontinuous subsets of E’ (resp. F”), the weak topology and the compact-open topology coincide (see
Proposition 3.4.20). The vector space (E! ®¢ F)’ coincides also to the &-hypocontinuous functions on Ey, x Fy,
which contains in particular the space of all continuous bilinear maps on E!, x F .

Proposition 3.6.26. The Ics EcF induces on the tensor product E ® F' the injective tensor product topology.

The following proposition is proved by Jarchow in his textbook. It is interesting to notice that it is proved by using
the semi-y-reflexivity of any lcs:

= (=),
and the fact that we have here a closure operator in the category of les: E! ~ ((£))).. This is concretely
what is done every day in denotational models of LL, the equation £ ~ E* is used to show that L(E+, F) is
commutative and associative.

Proposition 3.6.27. [44, 16.2.6,16.1.3] The ¢ product is commutative and associative on complete Ics, and EcF
is complete if and only if E or F' is complete.

Beware that Jarchow in his proof describes the & product by using on the dual E’ the topology of uniform con-
vergence on compact subsets of £. As we are dealing here with complete subsets our notations are coherent.
Remember also that Jarchow uses the notation E; to denote the topology of uniform convergence on absolutely

convex compact subsets of E, which is coherent with our definition for E; 3.4.16 only when spaces are complete.
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Part 11

Classical models of DiLLLL
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Chapter 4

Mackey and Weak topologies as left and
right adjoint to pairing

In this part, we describe two models of DiLL, each one using a specific topology on the dual allowing for an
involutive linear negation. The first Chapter introduces the notion of quantitative versus smooth interpretation of
proofs, and the Weak spaces and Mackey spaces through an adjunction with the category of Chu spaces. The second
Chapter 5 is adapted from a published article by the author and details a quantitative model of DiLL with weak
spaces [48]. We highlight the fact that this gives a polarized model of DiLL with a linear negation involutive on the
negatives formulas. The third Chapter 6 takes inspiration from [17], so as to adapt the work of convenient space
into a polarized model of DiLL with Mackey spaces, with a linear negation involutive on the positive formulas.

Quantitative semantics and Cartesian closed categories

Introduced by Girard [30], quantitative semantics refines the analogy between linear functions and linear programs
(consuming exactly once their input). Indeed, programs consuming exactly n-times their resources are seen as
monomials of degree n. General programs are seen as the disjunction of their executions consuming n-times their
resources. Mathematically, one can apply this idea by interpreting non-linear proofs as sums of n-monomials.
These sums may be converging [18, 32, 49], finite [19], or formal [48].

Power series are an efficient answer to the issue of finding cartesian closed categories of non-linear functions
in a vectorial setting. The isomorphism between C*(E x F,G) and C*(E,C*(F,G)) consists of combinatorial
manipulations on the monomials (see in particular Section 5.2). The convergence of the power series obtained as
a result of these manipulations is proved in a second time, and uses the completeness of the spaces E, F' and G.

However, one of the two guidelines for this thesis is the search for models of DiLL in which smooth functions
are not necessarily power series, and most importantly spaces are general topological vector spaces. The motivation
comes from the need to relate DiLL with functional analysis or differential geometry. One of the best settings for a
cartesian closed category of smooth functions was developed by Frolicher, Kriegl and Michor [26, 53], by defining
smoothness as the preservation of smooth curves ¢ : R—F (see Section 2.4.3). In Chapter 6, we adapt the results
of [6] to a classical setting.

The Category of Chu spaces and its adjunctions to TOPVEC.

The category CHU of duals Pairs.

We describe the category CHU as described by Barr [2]. Chu spaces makes use of the monoidal closed structure of
the category VEC of all vector space with linear maps between them, endowed with the usual tensor product, and
transform it into a *-autonomous category. We recall first the notion of dual pairs as described previously 3.3.18.

Definition 4.0.1. A dual pair is a couple (E, F') of two R-vector space together with a symetric bilinear and non

degenerate form:
ExF—R
(yye 4.1

(z,y) = {(z,y)
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As in the litterature [44], when F is a vector space, so in particular when F is a Ics, we denote by E* the
set of (not necessarily continuous) linear forms ¢ : F — K. Then for any dual pair (E, F, (-, -)) we have linear
injections:

E —F*
x> (2* y = (x,y))

F —*F
Y ="y x> {z,y)).

The fact that these are injections comes from the non-degeneracy of the pairing. These definitions extend to
functions, defining two endofunctors (-)* and *(-) on the category VEC of vector spaces and linear functions.

Definition 4.0.2. The category CHU has as objects dual pairs of vector spaces and as arrows pairs of linear maps:
(f . E1 %EQ, f/ : F2 4>F1) . (El, Fl) — (EQ, FQ)

such that the following diagram commute:
B —1 B
l(-)* l(-)*
Jo iy o

We denote by CHU((E1, E2), (F1, F2)) the vector space of such pairs of linear functions. Thanks to the symmetry
of {.,.), the commutation of this this diagram is equivalent to the one of the following:

-1 PR

J*C) . i*(-)

*p, — 1, *p,

Then one defines on CHU a tensor product and internal hom-set which makes it a duality which makes it a
*-autonomous category.

Definition 4.0.3. Consider (F1, F}) and (E9, F3) two dual pairs with pairings denoted respectively by (-, -»; and
{+,-¥2. As in Chapter 3 we write L(E, F') for the vector space of all linear functions between two vector spaces.

e (Ey, F1)* = (Fy, Ey) and the pairing of (E1, F;)* is the symmetric to the pairing of (Ey, F}).

o (E1,F1)®(FEs, Fy) = (E1®E,, CHU((E1, Fa), (F1, E2))) with a pairing defined by: (1 ®x2, ({1, l2)) =
{l1(x1), x2)2 and then extended linearly on Fy ® F5. This definition is symmetric in (E4, ) and (Fs, Fs)
by the requirements on dual pairings.

o (E1,F\) — (Ey, Fy) = (CHU((E1, Es), (F1, F»)), 1 ® Fy) with a pairing defined as {(¢1, {2), 21 ®y2) =
<€1($1)3y2>2~

Proposition 4.0.4. The category CHU is monoidal closed with tensor product ® and neutral (K, K).

Proof. The monoidality of ® in CHU follows from the one of the algebraic tensor product in the category of

vector spaces and linear maps. By definition, maps in CHU((E1, F1) ® (Es, F3), (Es, F3)) are pairs (f : E1 ®
Es—=FEs, f' : F3—L(F1, Fy)) verifying the naturality condition in definition 4.0.2. By the universal property of

the algebraic tensor product on VEC, we have thus natural isomorphisms between CHU((E1, F1)®(Es, F3), (Es, F3))

and pairs (f : E1—=L(Es, E3), [’ : F3®FE,—=F3), which is exactly the definition of CHU((E1, Fy), L(Es, Fy), (E3, F3))).
The commutative diagrams required for monoidality follow from the one of VEC. O

Proposition 4.0.5. The category CHU is cartesian with product (E1, Fy) x (Eq, Fy) = (Ey x E9, F1 ® F»). The
neutral for the cartesian product is then ({0}, {0}).
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Proof. The projections and factorisation of maps is straightforward from the algebraic product and co-product of
vector spaces. O

Proposition 4.0.6. The category CHU is =-autonomous with duality the functor
() (B, F)—=(F.E),(f, ') —=(f', ])-
We have then (E, F)* = L((E, F), (R,R)).

Proof. The functor (-)* defines indeed an equivalence of categories between CHU and CHU®”. As we have
(E,F)* = L((E, F), (R,R)), this isomorphism is precisely induced by the transpose of the evaluation ((E, F) x

A topological adjunction

Barr in [2] states a categorical interpretation for the Mackey-Arens theorem 3.5.3. Recall that this theorem says
that amongst all topologies on a certain lcs F preserving the dual E’, the weak topology (Section 3.3.2) is the
coarsest one and the Mackey*-topology is the finest one (the Mackey topology on FE is the topology of uniform
convergence on weak*-compact and absolutely convex subsets of E’, see Section 3.4.3).

Definition 4.0.7. We denote by P the functor from TOPVEC to CHU sending a Ics F on the pair (E, E’), and a
linear continuous function f : E— F on the pair (f, ') :, where [ : £ € F' — (Lo f) e E').

Recall that, as all polar topologies, the weak and the Mackey topologies are functorial: they define an endo-
functor on the category TOPVEC which is the identity on linear continuous maps. Indeed, if f € L(E, F') then f
is continuous from F,,— F, as for £ € F’ we have £ o f € E’ (see Proposition 3.3.16). Likewise f is continuous
from E,, to F), as the image by F" of a weak* compact in F” is weak* compact in E’. We thus define two functors
from CHU to TOPVEC. When F'is alcs, E, (g, r) and E (g, r) are indeed locally convex and separated topological
vector spaces [44, 8.4].

Definition 4.0.8. The functor YW maps a dual pair (E, F) to the Ics E;(E,r) and acts as the identity on morphisms.
The functor M maps a dual pair (E, F) to the Ics E,,(g, p).

Theorem 4.0.9. The weak functor W is right adjoint to ‘P while the Mackey functor M is left adjoint to P.

P w
/N T

MACKEY L  CHU 1 WEAK
~_ ~_
M P
Proof. Consider E and F' two Ics. By Proposition 3.3.16, the linear continuous functions from FE,, to F, are
exactly the linear functions such that, in CHU (f, f') : (E, E’) — (F, F’). Thus if E is a space already en-
dowed with its weak topology and (E>, F>) a dual pair, one has the linear isomorphisms L(E, F 5(r, 5,)) =
L((E’ E/)’ (E27 F2))

Let us show that M is left adjoint to P by using directly the Mackey-Arens Theorem 3.5.3. We know that the
Mackey-topology on a Ics E is the finest one preserving the dual E’. As it preserves the dual, we have that from any
function f in £(E,,, F') one deduces a linear function f’ : F — (E,,)’. Thus for any dual pair (Ey, F) and Ics
F one has an injection L(E (g, r,), F) © L((E1, F1), (F, F')), by mapping f to the pair (f,{ € F' — (o f).
Let us reason by contradiction and consider some arrow (f, f’) between the dual pairs (E, Fy) and (F, F’) which
does not correspond to a linear continuous function Ey (g, r) —>= F. Then consider on E; the topology T
consisting of the open sets of p(E1, F) and those generated by the reverse image by f of the open sets of F'. Then
by definition we have f’ : F/ — E’, thus E! — F). But as the topology 7 is by definition finer than u(E;, F})
we have F| = (Ey (g, ,r,)) < E.. Thus 7 is a topology finer than the Mackey topology with dual F; which is
absurd. O

Following this adjunction, we could have described two models of MALL. Each one would consist of Ics with
the weak (resp. Mackey) topology inherited from their dual. The dual of a construction of LL would be defined
alongside this construction. For example, if A and B are two formulas of LL, we would define in WEAK:
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[A® B] = ([A] ® [BD)s(1a101B1,(141.1B1%,)
[A % B] = (L([A]G, [BD)o(c(ar, 181, 141015))

and likewise in the category MACKEY using the Mackey topology:

[A® B] = ([A] ® [B]) u(ra1@l81,£(141.151,)
[A® B] = (L([A], [B]) uce(ar, 151, [are1B1)

As this is easily extended to the additive, we would construct this way two models of MALL. However, what
we do in Chapters 5 and 6 adds more features and refines the semantics.

The adjunction between weak spaces and Mackey spaces allows to give an equivalent of Proposition 3.5.17 for
Mackey spaces:

Proposition 4.0.10. Consider E and F' two lcs endowed with their Mackey-topology. Then we have a linear
homeomorphism L, (E), F) ~ L, (F}, E).

Proof. A linear function f : EL(E) — F'is continuous, if and only if f : E' — F,, is continuous, if and only if
[+ F' — Ej, is continuous, if and only if f : F}, — E is continuous by Section 3.5.3. Thus we have a linear
isomorphism f — f’ between L(E],, F') ~ L(F},, E). This isomorphism is continuous: let V' be an absolutely
convex 0-neighbourhood in E, and W an absolutely convex weakly compact set in F,i As F'is Mackey W° is
a 0-neighborhood on F'. Likewise, as F is Mackey we can take V' = K°, where K is absolutely convex and
weakly compact in E,. Then if /(W) < V we have f(V°) < W¢, and thus f(K) < W* and conversely. Thus
Wk, ve) © W,y and f — [’ is continuous.

O

Remark 4.0.11. In particular, any Mackey-dual is endowed with its Mackey-topology. Indeed, as
( L(E))/ ~E

by proposition 3.5.2, we have that E; (;)» Which is endowed by w(E', E) by definition, is also endowed with its

Mackey-topology p(E’, E”). With respect to what it done for weak topologies, the topology u(E’, E) on E’
should be called the Mackey* topology.
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Chapter 5

Weak topologies and formal power series

We consider the category WEAK of lcs endowed with their weak* topology o*(F, E’) and linear continuous
functions between them. We show in the two first sections that WEAK is a model of MALL, and in the third
Section we construct a co-monad generating formal power series on it, interpreting DiLL. In the last Section we
state the fact that we have here a negative model of DiLLg ,.;, according to the categorical definitions in Chapter
2. This chapter is mainly built from the contents and the form of [48]. It is thus more detailed than most of the

thesis, and may provide a nice introduction to the interpretation of DiLL in topological vector spaces.

Notation 5.0.1. We use the notations introduced in Chapter 3, that is E ~ F denotes a linear isomorphisms
between the vector spaces E and F, while E2 ~ F denotes a linear homeomorphism between the Ics E and F' (that

is, they have the same vectorial and topological structure).
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5.1 Multiplicative and additives connectives

Consider F(E, C) some vector space of functions from E to C and ev : E — F(E,K)’. When F(E, K) contains
only linear functions, ev is linear. When E' ¢ F(E,K), ev is injective, as E’ separates the points of F.

Notation 5.1.1. We write the following function as ev” (F¥) :

[E— F(E.KY
U 2o (evn  f o f(2))

If there is no ambiguity in the context, we will write ev for ev? . E— E".

5.1.1 Spaces of linear maps

Among the topologies one can define on a space of linear maps (see Section 3.4.14), there is a very coarse one
which leads to the weak topology on the dual.

Definition 5.1.2. Let us denote L, (E, F') the space of all continuous linear maps between E and F', endowed
with the topology of simple convergence on points of E.

A basis for the topology of simple convergence on L, (E, F) is the collection of all
Weranv =l € Lo(E,F)|i(x1) €V, ..., 1[(z,) € V}

where n € N, z; € E and V is a neighbourhood of 0 in F'.

Remark 5.1.3. For all Ics E, the weak* topology on E’ is exactly the topology of simple convergence on points of
E, thus, E., , ~ L,(E,K).

We denote by E® F' the algebraic tensor product between two Ics E and F'. Later on, we will endow the tensor
product with a suitable topology.

The next Proposition is fundamental and will allow us to show that the space of linear maps, endowed with the
topology of simple convergence, is already endowed with its weak topology. This is the main fact that will allow
to see in WEAK a negative interpretation of DiLL,,;.

Proposition 5.1.4 ([44, 15.3.5],[52, 39.7]). L, (FE., Fy)" is algebraically isomorphic to E ®; F'.

Proof. We will sketch here the proof of Kothe [52], as the proof by Jarchow uses the projective tensor product.
Consider first the space L(F, F) of all linear and not necessarily continuous maps between E and F', endowed
with the topology of simple convergence on points of E. If we choose an algebraic basis X of E, we have
L(E,F) ~ [],cx F» where F, is a copy of F, and where the product [ [,_ F, is endowed with the product
topology. Thus L(E,F)" ~ ([ [.ex Fz) ~ @y F. (the dual of a cartesian product is the direct sum of the
duals, see Proposition 5.1.19). Linear forms on @ y F, are exactly finite sums of linear forms in F, each one
with a different domain F, = {f(z) | f € L(E,F)}. When we consider linear forms on @ F), as elements
of L(E, F)’, we write them as finite sums >}, _; . l; o ev,, with x; € X and [; € F'. Thus the following linear
application is well-defined and surjective:

E®; F' — L(E,F)

Z (x; @i ;) — Z li o evy,
1<isn 1<isn

Kothe shows in detail in his proof why this morphism is injective, proving that L(E, F')’ is algebraically
isomorphic to £ ®; F’.

Now let us get back to L, (FE, F'). This space is dense in L(E, F') when it is endowed with the topology of
simple convergence on E, as for every pairwise distinct 1, ...z, € E and for every open set V' in F' we can find
a continuous linear map f such that f(z;) € V. Indeed, without loss of generality, we suppose the family {x;}
free. Selecty # 0 € V, and for every ¢ < n l; € E’ such that for every j < n l;(x;) = p; ;. The function
f @ — >, li(x)y is linear continuous, and sends x; on y. Thus for any neighbourhood W, . .. v in L(E, F'),
we have a function f € Lin(E, F') n V, and thus we proced the desired density.

Thus the dual of £, (E, F) is algebraically isomorphic to the dual of L(E, F'), thatis to F ®; F”.

O
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This Proposition allows us to write every linear function f € £, (E, F')’ as a unique finite sum

n
f= Z l; o evy,
i=1

where [; € F/ and x; € E. Let us now recall how linear functions behave with respect to weak topologies.

Lemma 5.1.5. Functions in £, (E, F,,) are exactly the linear maps from F to F which, when postcomposed with
any map from F’, results in a map into F’.

Proof. By definition of the weak topology on F, a function f : E,, — F,, is continuous if and only if for every
le F' fol: E — Kis continuous. If f is linear, this means that f ol € F’. O

The following proposition follows from Proposition 3.3.16:
Proposition 5.1.6. For all E, F Ics, we have L(E, F,,)) ~ L(Ey, Fy), and thus L,(E, Fy) ~ L;(Ey, Fy)

Proof. A continuous linear map from E, to F, is continuous from F to F),, as the weak topology is coarser than
the initial topology on E. Consider now f € L,(F, F,,). Foreveryl € F' we have fol e F’, thus fol e (E,)’.
By the preceding lemma, we have f € L, (FEy, Fyy). O

5.1.2 Tensor and cotensor

Various ways exist to create a Ics from the tensor product of two Ics EZ and F'. That is, several topologies exist
on the vector space E' ®; F’, the most prominent in the literature being the projective topology &, [44, III.15]
and the injective topology ®. [44, II1.16] which are recalled in Section 3.6 in Chapter 3. These topologies behave
particularly well with respect to the completion of the tensor product, and were originally studied in Grothendieck’s
thesis [36].

However, we would like a topology on E®); F' that would endow WEAK with a structure of symmetric monoidal
closed category. This is mainly why we use the inductive tensor product [36, I.3.1]. So as to define this topology,
we need to mention the topological product of two Ics.

The tensor product

Definition 5.1.7. Consider F and F two Ics. E x F is the algebraic cartesian product of the two vector spaces,
endowed with the product topology, that is the coarsest topology such that the projections pg : £ x F' — E and
pr : F x F — F are continuous.

Neighbourhoods of 0 in E x F' are generated by the sets U x V, where U is a 0-neighbourhood in E and V is
a 0-neighbourhood in F'.

Definition 5.1.8. Let us recall that we denote by B(E x F,G) the space of all bilinear and separately continuous
functions from E x F' to G. We endow it with the topology of simple convergence on E x F'. The vector space
PB(E x F,G) is then a Ics.

Proposition 5.1.9. Consider E, F and G three Ics, and f a bilinear map from Ex F'to G. Then f € B(Ex F,G,,)
if and only if for everyl € G', lo f € B(E x F).

Definition 5.1.10. Consider F and F' two Ics. We endow E ® F' with the inductive topology , which is the finest
topology making the canonical bilinear map £ x F' — E ®; F' separately continuous. We denote this topological
vector space £ ®; F.

Proposition 5.1.11. [36, 1.3.1.13] For every lcs G, we have L(E®,; F, G) ~ ZB(E x F,G). Especially, ( EQ; F) ~
B(E x F).

Proof. Letus write B(E x F, G) for the vector space of all bilinear maps from E x F'to G. AsEx F - E®,; F
is separately continuous, the canonical isomorphism L(F ®; F,G) = B(E x F,G) induces an injection from
L, (E®; F,G)to B(E x F,G). Let us show by contradiction that this injection is onto. Consider f € Z(E x
F, Q) such that its linearisation f € L(F ®; F,G) is not continuous. Let us denote E ®, F the vector space
E ®; I endowed with the coarsest topology 7 making f continuous. Then, because f is separately continuous,
E x F — E®:; F is separately continuous. Thus 7 is coarser than the inductive topology. This would implies that

f: E®; FF— G would be continuous. We have a contradiction. O
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Proposition 5.1.12 (Associativity of @ in WEAK). Consider E, F, and G three Ics. Then
(Ew ®1 (Fw ®i Gw)w)w x~ ((Ew ®i Fw)w ®1 Gw)w-

Proof. As the algebraic tensor product is associative we have (Fy, ®; (Fiy ®; Gu)w)w = (FBw ®i Fu)w ®i Gu )w-

!’

Let us show that the two spaces bear the same topology. The dual of the first space is (Fy ®; (Fyy ®; Gu)w)' =
B(E, x (Fy ®; Gy )w) according to Proposition 5.1.11. One can show as for Proposition 5.1.11 that B(E,, x
(Fw ®; G4 )w) coincides to the space of all trilinear separately continuous functions on E,, X F,, x G,,. Likewise,
the dual of the second space is ((Ey ®; Fu)w ®i Guw) = B((Fw ®i Fu)w X Gw), which coincides also to the
space of all trilinear separately continuous functions on E,, x F,, X G. Then (E, ®; (Fy ®; Gu)w)w and
((Ew ®; Fu)w ®; Gy )y are algebraically isomorphic and have the same dual, thus the same weak topology. ]

If fe L(E,F), g€ L(G, H), then one defines f®; g € L(F®; G, F®; H) on basic elements as (f ®; ) (x®;
y) = f(x) ®; g(y), and then extends it by linearity. The associativity mapping obviously satisfies the coherence
diagrams for a monoidal category [56, VIL.1].

Monoidal closedness

Proposition 5.1.13. Consider E, F' and G three Ics. Then we have
E((Ew ®; Fw)wa Gw) ~ %(Ew X va Gw)

Proof. Amap f liesin L,((Ey ®; Fy)w, Gw) if and only if forevery l € G, lo f € (E,, ®; Fy,)'. But according
to Proposition 5.1.11, we have (E,, ®; F,,) = B(E,, x Fy,). Thus f € L,((Ey ®; Fuw)w, Gw) if and only if the
bilinear map corresponding to f is in B(E,, X F,,, Gy)- O

Proposition 5.1.14. Consider F, F and G three Ics. Then we have
%(Ew X Fy, Gw) ~ L(Ewa £U(Fwa Gw)w)'

Proof. Remember from Proposition 5.1.4 that £, (F,,, G,,) = F ®; G'. Consider g a continuous linear function
from Ey, to L, (Fy, Gw)w. As the codomain of g is £, (Fy,, Gy), we have that for x € F fixed, forall [ € G,
y — 1(g(z)(y)) is continuous. To be continuous g must satisfy that for y and [ € G’ both fixed, = — I(g(z)(y)) is
continuous. Consider [ € G’ fixed. We see that [ o g corresponds to a separately continuous map in B(E,, X F,).
Thus g can be seen as a function g in #(E,, x F,,, G,,). The transformation of a map in #(E,,, F,, X G,,) into a
map of L, (Ey, Lo(Fuw, Gw)w) is done likewise. O

Thus we have an algebraic isomorphism between L, (Ey, Lo(Fuy, Guw)w) and Lo ((Eyw ®; Fuy)w, Gw). To
show that they bear the same weak topology, we just have to show that they have the same dual. But according to
Proposition 5.1.4, L, (Ey, Lo (Fuw, Guw)w) = Ew®i Lo(Fy, Gw) = Eyw®i Fuy®: Gl = Lo((Eyw®i Fy)w, Gw)'

Theorem 5.1.15. The category WEAK is symmetric monoidal closed, as we have for each lcs E,,, F,,, Gy
Ea(va ‘CU(Fw7 Gw)w) =~ EO’((EU) ®z Fw)wy Gw)w

naturally in E and G.

The parr
Definition 5.1.16. The % connective of linear logic is interpreted by the Ics E % F := L, (E', F).

Proposition 5.1.17. The % connective preserves the weak topology: indeed, for every lcs E and F, (E % F),, ~
E, B F,.

Proof. AsE® F ~ (E' ®; F')’, the result follows immediately from the fact that a dual endowed with its weak
topology is also endowed with its weak* topology. [
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5.1.3 A =-autonomous category

According to Theorem 5.1.15, WEAK is a symmetric monoidal closed category, withevg : E — E” ~ L,(E, L,(E,K))
being an isomorphism in this category for every object E by proposition 3.3.15. The use of weak topologies gives
use a model of the classical part of Linear Logic, that is a *-autonomous category [1].

Theorem 5.1.18. WEAK is a x-autonomous category, with dualizing object K.

Proof. Let us take K = | = 1 the dualizing object. Then the evaluation map

(A—-1)®A-> 1

leads by symmetry of ® and closure exactly to ev : A — ((A — 1) —o 1, thatisev : A — A”. As shown in
Proposition 3.3.15, ev : A — A” is an isomorphism in the category WEAK, and WEAK is *-autonomous. O

5.1.4 Additive connectives

The additive connectives of linear logic are of course interpreted by the binary product and co-product between
Ics. Finite product and co-product coincide (see Section 3.1.4). However, one infinite indexes, they behave differ-
ently with respect to weak topology: the product preserves the weak topology, while the direct sum doesn’t. See
Proposition 5.1.21 and Section 5.3 for an interpretation of this phenomenon in terms of polarities. This section
completes the definitions and results exposed in Chapter 3, Section 3.1.4 on product and co-product, and discusses
especially duality and weak topologies on (co)-products. Consider (F;); a family of Ics indexed by a set 1. We
denote by E/  the dual of E; endowed with its weak topology.

Recall from Proposition 3.1.18 that an index I of any family of Ics (E;)ier is finite if and only if the canonical
injection from @),_; F; to [ [,., E; is surjective.

Proposition 5.1.19. For any index I and all lcs E; (P,.; Ei)' ~ [ ;e Ei and (] [,c; Ei)' ~ @ye; Ei-

Proof. Consider ! € [[,.; E;. Then the function x € @, ; E; — >, li(x;) is well defined, linear and continuous.
Reciprocally, to any [ € (P,.; E;)’ coincides the sequence (I;) € | [,.; E; with[; = [ o I;.

Consider now I € (] [;.; £;)’. Then by definition of the product topology, [; = I|5, € E;. As [ is continuous,
there is H < [ finite, and 0-neighbourhoods U; for ¢ € H such that

WU x []E) = {(AeK A <1}

ieH i¢H
By homogeneity, I; = 0 for ¢ ¢ H, and [ coincides to an element of (P E.. Conversely, an element of @ E

acts on | [, E; as a continuous linear form. O

Proposition 5.1.20 ([44, I1.8.8 Theorem 5 and Theorem 10]). We have always ([ [,c; Ei)w = | ;c;(Ei)w, but
(@Pic; Ei)w =~ @1 (Ei)w holds only when I is finite.

We can now characterize the dual of a product and of a direct sum in the category WEAK.

Proposition 5.1.21. We have always (D;c; Ei)yy = [ lies Bl o but ([ 1ier Fi)w =~ @ies Ei o, holds only when 1
is finite.

Proof. According to Proposition 5.1.19 we have (D,_; E;)’ = [ [,c; E;. The first bears the weak topology induced
by @,c; Ei, thatis (D,.; Ei)' ~ ([1,c; E})w and the second bears the product topology induced by all the E;,
thatis [ [,.; B ~ [[,c;(£})w. The previous Proposition gives us a linear homeomorphism between the two.
Likewhise, we have (] [,c; Ei)' = @,c; Bl ([ 1ie; Ei) =~ (Biep El)w and B, ; Bl ~ @,;(E}) . Proposition
5.1.20 tells us that (] [,o; Ei), ~ @,c; i, if and only if T is finite. O

5.2 A quantitative model of Linear Logic
The structure presented here is very algebraic, Weak spaces providing us with practically no tools except the Hahn-

Banach theorem. In particular, as they satisfy no completeness condition, one cannot work easily with the notion of
converging power series. Power series are converging sums of monomials, and convergence in topological vector
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spaces is mainly possible thanks to completeness'. This is why we simply chose to represent non-linear maps as
finite sequences over N of n-monomials. We also explore another possible exponential, inspired by what happens
in the theory of formal power series, in Section 5.2.5.

Outlook 5. Can we prove that compositionality or cartesian closedness on a category of Ics as objects and power
series as arrows implies the Mackey-completeness? of the lcs?

The exponential we define here has a lot of similarities with the free symmetric algebra studied by Mellies,
Tabareau and Tasson [63]. The difference here is that we consider sequences of monomials in the co-Kleisli
category and not n-linear symmetric maps. Therefore our exponential is the direct sum over n € N of the dual
spaces of the spaces of n-monomials, and not a direct sum of symmetric n-tensor product of A.

5.2.1 The exponential
Monomials

Definition 5.2.1. £"(E, F) is the space of symmetric n-linear separately continuous functions from E™ to F', We
write L,,(E, F') for the space of all symmetric n-linear maps from E to F.

An n-monomial from E to F'is a function f : E — F' such that there is f € L™(E, F) verifying that for all
x € FE f(x) = f(x,...,x). Itis symmetric when for every permutation ¢ € S,,, for every x1,..x,, € E we have
f(xg(l), cery xo(n)) = f(xl, ceey xn).

Proposition 5.2.2 (The Polarization formula [53, 7.13]). Consider f a n-monomial from E to F. Then we have
f(z) = f(z,...,x) where f is a symmetric n-linear function from E to F defined by:

For every 1, ...xn € E, f(z1,...,2n) = L 2217...,dn=0(_1)n_2k A f (X, dxx).

Thus the sum in the polarization formula is indexed by the subsets of [1,7]. Another way to write it would be
the following:

For every z1, .7, € E, f(z1, ..., 7,) = L Z}CHL”H(_1)n—card1f(2k€1 k).

Proof. Let us write for the multinomial coefficient:

n - n! _ kq ki + ko ki+ko+- -+ kn
ki,ko,... . km/) kilko! - kn!  \ki ko K, ’

for every x1, ..., x, , we have

n
n ~
f(z z;) = Z (k L k )f(xl,...,xl,...,xn,...7xn)
=1 it tin=n 1,R2y...yRn — —
k1 times k,, times
Thus
n ~
fO dijzx;) = dkl...dk"( )f Ty eeey L1y eeey Tiyy evey T
(; J J) j1+§ . 1 n klak27--~7kn ( ) ey g eeeybmy eeey n)
endm k1 times k,, times
and

dl: n=0 J
! 1
=>.d;) gk k, 7
= E E (—1)(" 2 J)dll...dn”ﬁf(xl,...,xl,...,xm...,xn)
di,...,dpn=071+...+jn=n Jl. jn' . .
k1 times k,, times
1 ~

il gt e T Ty

k1 times k,, times

1
= ff(xlv"-7x17"'7xn7"'7xn) Z (71)("‘2& dj)dlfl"'dlfln
j dn=0

di,...,dn

U1t appears that the weakest completeness condition necessary to model quantitative linear logic should be Mackey completeness [49].
2 A very weak completeness condition, studied in sections 2.4.3 and 6, which was shown to be enough for power series in C-vector spaces
in [49].
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Let us show that Z;l dnzo(—l)"fzi 4™ . dk» is non-zero if and only if k; = --- = k, = 1. Indeed, if
there is an 4 such that k; > 1, then there is j such that k; = 0, as ky + ... + k,, = n. Let us suppose k; = 0. Then

1 1
Z (71)(n72g dj)dllﬁ.“df;n — 2 (71)(“*17d27~.-7d71.)d§2“'qu’in
dy,...,dn=0 da,...,dn=0

+ Z (—l)nfdzf”'fd"dlzw...dﬁ”
da,...,dn=0

=0

.....

Definition 5.2.3. Let us write H"(E, F') for the space of n-monomials over E' endowed with the topology of
simple convergence on points of E. For every Ics F and F', H"(E, F') is a lcs.

As a consequence of the polarization formula 5.2.2, we know that there is is a unique symmetric n-linear map
f associated to a n-monomial f.

Corollary 5.2.4. There is a bijection between H"(E, F) and L™ (E, F).

As we will endow H"(E, F') with its weak topology, we need to get a better understanding of its dual. To do
so, we retrieve information from the dual of L7 (E, F).

Proposition 5.2.5. For every lcs E and F, for every n € N, we have
HY(E,F) ~ L(E,F).

Proof. The algebraic isomorphism between the two vector spaces follows from the previous corollary, as the
function mapping a n-linear symmetric mapping to the corresponding n-monomial is clearly linear. As they
are both endowed with the topology of simple convergence of points of E (resp E x ... x E), this mapping is
bicontinuous. O

Notation 5.2.6. We write E®" for the symmetrized n"-tensor product of E with itself’. We denote by L7 (E, F)
the vector space of all n-linear symmetric functions from E to F'. Thus

LYE,F)y ~ Lo (E®" | F).

As also we have H"(E,,, F,,) ~ H"(E, F,,) ~ L*(E, F,,) by Proposition 5.2.5, the dual of H"(E, F')’ is the
dual of L, (E®", F). Proposition 5.1.4 thus gives us a way to compute it:

Proposition 5.2.7. For every lcs E and F, H"(E,K)' = E®" ®; F'. That is, every continuous linear form 6 on
H"(E, F) can be written as a finite sum of functions of the type l 0 eV, ®. . ®,z, Withl € F and 21, ...x,, € E.

From this, we deduce that H"(E,,, F,) is a weak space: it is already endowed with its weak topology.
Corollary 5.2.8. For every Ics E and F, we have that " (Ey,, Fiy)w ~ H"(E, Fy,) ~ H"(Ey, Fu).

Proof. The topology on H"(E,,, F,) is the topology of simple convergence on Egm, with weak convergence on

F. This is exactly the topology induced by its dual € ®; F'. O

sym

3That is, the vector space F®; - - - ®; E, quotiented by the equivalence relation 1 ®; ... ®; n = To(1) Qi+ Qi To(n) forallo € S,,.
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The exponential The exponential ! : WEAK — WEAK is defined as a functor on the category of linear maps.
In Equation 2.7, we detailed how the exponential in a model with smooth functions should be interpreted by a
space of distributions. The same reasonning applies here. Indeed, suppose we want non-linear proofs £ = F
to be interpreted in some space of functions F(F, F'). As the category of weak spaces and these functions is the
co-Kleisli category WEAK;, we have:

(!E)w = ((!E)w)”
~ L,(\E,K)
~ F(E,K)

As we want our non-linear proofs to be interpreted by sequences of monomials, the definition of | E is straight-
forward.

Definition 5.2.9. Let us define !F as the Ics @, . H" (E, K)'.
As usual, we need to endow ! E with its weak topology.
Proposition 5.2.10. We have (\E)" = [ [,, H"(E,K), and thus (\E),, ~ ([ [,, H"(E,K))".

Proof. According to Proposition 5.1.19, we have that

(B =[[H"(E.K) =] [H"(E.K).

n

Thus, (!E)" ~ ([], H"(E,K))w, as both spaces in this equality are endowed by the topology of simple con-
vergence on !E. Then (E) ~ [[, H"(E,K), =~ [[,H"(¥,K). Taking the dual of these spaces, we get
'E, ~ ([, H"(E,K))". O

As in spaces of linear functions, see Proposition 5.1.6, we have always that H"(E, F,) ~ H"(E,,, F\,). Thus
(Ew) =~ @,en M (Ew, K) >~ @D,y H'(E,K) ~ |E.

Notation 5.2.11. We will write without any ambiguity \E for |(E,,) and \E,, for (\E).,.
Definition 5.2.12. For f € L,(E,,, F\,) we define
'E, — F,
I b ((gn) e [THMEK) = 6((gn © £)n)

Proposition 5.2.13. This makes ! a covariant functor on WEAK.

Proof. One has immediatly that for any Ics F, !Idg = Id,.r. Now consider three Ics F, F' and G, and two linear
continuous maps f € L,(E,, F,,) and gf € L,(F,,,G,,). Then by definition, for ¢ € !F one has :

(g o £)(¢) = (hn) € [ [H"(G.K) = ¢((hn o go f)n).

On the other hand, one has immediatly:

lgo!f(¢) = (hn) € [ [H™(G,K) = (1f(6))((7tn © g)n)
(hn) = QS((hn ©go f)n
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Arithmetic of the composition o, We now would like to endow ! with its co-monadic structure whose structure
is based on a good notion of composition in the co-Kleisli category WEAK,. For f € [[, H™(E,F) and g €
[[,, H"(F,G), we would like to define f oy g € [ [, HP(E, G) as

(gorf)p =D k0 fp-
k|p

Proposition 5.2.14. The operation o, : [ [,, H™(E, F) x [ [,, H"(E,G) — [ [, HP(E, G) is indeed a commu-
tative and associative operation.

Proof. Commutativity is immediate. For formal power series f, g, and h one has :

((forg)orh)y= Z(f o1 g)kohz

klp

:Zij OQ? oh%
klp jlk

=D fo| 2 grohy
jlp Jlkklp

k
=ijo Z g;—x ©ohr | renamingi = —
J

J vy

jlp Jlk.klp
=Y fio Zgioh%

Jlp il

jlp

O

Remark 5.2.15. At this point we must pay attention to the arithmetic employed here. So as to avoid infinite sums
and a diverging term for (g o f)o*, we allow for only 0 to divide 0. Thus (g o f)o = go © fo.

Let us detail what happens when £ = F' = G = R. Then we are in presence of formal power series
f=(z— apzy)nand g = (y — byy"). Then

(g 1 f)p L2 (Zbka%)zp.
klp

Beware that even in the case of finite sums, this composition does not behave as the traditional composition between
functions from R to R. If we consider f : # +— x + z? and g : y — y2, we have g oy f : z — 2z + 2%, while as
functions of R one has g o f = 22 + 223 + z*.

Remark 5.2.16. Another composition of Formal power series, which coincide with the composition of real func-
tions for converging power series, is given by the Faa di Bruno formula and detailed in Section 5.2.5.
The co-monadic structure
Theorem 5.2.17. The functor ! : Lin — Lin is a co-monad. Its co-unit d : | — 1 is defined by
J \E,, — E,
"1 ¢ dieE" ~E

The co-unit is the operator extracting from ¢ € \E its part operating on linear maps. The co-multiplication
w: ! — is defined as:

4The problem of the possible divergence of the nonzero term can be found also in the theory of formal power series [38, IV.4], where
composition is only allowed for series with no constant component.
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1By = ([ [HP(E,K)) —> B, ~ (H H"([HHW(EK)JGK))
. P n m
pe([[HM(EK) = | (gn)n = ¢(| 2 € B Y gl (fn)m = fe(@)]] )

k
P k
[p »

We have indeed ( fim)m — fz(x) € [[ [, H™(E,K)]' for all x € E and k dividng p. As explained before, we
want to have on our co-Kleisli category a composition such that (g o f), = Zk‘p g © f%. The co-multiplication
w2 U — W can be seen as a continuation-passing style transformation of this operation. Indeed, consider ¢ € |E.
We construct p(¢) as a function in (] [,, H"('E,K))" mapping a sequence (gy,)y to ¢ applied to the sequences of
p-monomials on E defined as

re B — ng[(fm)m = f% (I)]

klp
This co-multiplication corresponds indeed to the composition o, between power series: if f € [ [, H"(E, F)
and g € [[,, H"(F,G), then:
gof=golfop (.1

So as to show that ! is in fact a co-monad, we need to understand better the elements of !E. The space |F
is defined as @, H"(E,K)’, so ¢ € |E can be described as a finite sum ¢ = 22[:1 ¢n with ¢, € H"(E,K)'.
The proofs presented below are based more on the idea of non-linear continuations than on a combinatoric point
of view. The space !E,, = (][, H?(£,K))’ can be thought of as a space of quantitative-linear continuations, K
being the space of the result of a computation.

Proof. We have to check the two equations of a co-monad, that is:
1. dgu = (!d)u = Id[
2. pp = (lp)p

e Let us detail the computations of the first equation. Remember that we write ev™" (5K for ev : F
H™(F,K)'. For every ¢ = Y, ¢, € |E, we have:

dippe(@) = die | (gn)n € HHH('EvK) =l [re B ng((fm)m €lE— f% (@)]p

k|p

=dip | (g ¢ | [re B Y guleo” (B9,
k|p

= d!E (gn)n g Z (bp(x — ng(@’l};{p/k(EJK)))
p

k|p

As dig maps a function in !E,, ~ ([ [,, H"(E,K))’ to its restriction to L, (E,K), and then to the corresponding
element in ! E/, we have without using the isomorphism !E” ~ |E:

p/k
dippe(¢) = g1 € B — Z¢p($ — ng(evf )
—_—
P KIP 0 if and only if k=1
= g elB = Y gy(x = gi(ev} P1))
P

As gy livesin !B ~ [[ H™(F,K), we can write g; as a sequence (g1, )m of m-monomials:
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dippp(p) = g1 € B — Z¢p($ = e”l'{p/k(E’K) (91,p))
p

= g1 €1E' = Y dylx = g1,p(2))

p

= g1 €E ) pg1,)
p

= g1 €E" — ¢(g1)

With the isomorphism !E” ~ | E we obtain dyu = Id).
The equation !dy = Id is proved likewise: consider ¢ = ) ¢,, € |E. Then

ju(@) = 1 | (gn)n € HHH(!E’ K) — ng)p(:v = ng(evl{p/k(E’K)))

klp

= O € [TH(BK) = Tyl = Do dlenl” )

k|p . e
#0 if an only if %:1

= (hn)m € [ [H™(B,K) = D ¢p(x = hy(2))

= (him)m = ¢((hm)m)
=¢
So ldu = Id.
e The computations of the second equations follow immediatly from the functoriality of ! (proposition 5.2.13)

and the associativity of the composition oy (proposition 5.2.14). Indeed consider F,, a weak Ics, and Idg as an
element of £(F, E), and thus as an element of [ [, H"(E, E). One has by associativity:

(Idwg o1 Idng) o1 Idig = Idwg o (Idug o Idig)
Idwgodyg o g olldgopug = Idng o !(Idig oy Idig)oug
Idyg o!ldyg o g oldig oy pug = Idng o ldygolldip o lup o g
As!Idg = Idyg we have thus g circup = lug o pug. O]
This co-monad is in fact strong monoidal by proposition 5.2.24.

Definition 5.2.18. The ? connective of linear logic is interpreted as the dual of !, that is

7B~ (IE) ~ [ [H"(E' K).

We will write WEAK, for the co-Kleisli category of WEAK with !|. We first show that morphisms of this
category are easy to understand, as they are just sequences of n-monomials.

5.2.2 The co-Kleisli category

The exponential above was chosen because of its co-Kleisli category. Indeed, we want to decompose non-linear
proofs as formal sums of n-linear proofs, and the simplest way to do that is to interpret non-linear maps from E to
F, that is linear maps from !E to F', as sequences of n-monomials from E to F'.

Theorem 5.2.19. Foralllcs E and F, L,('Ey, Fy) ~ | [,,en " (Ew, Fu).

Proof. Consider f € L£,(!E,, F,). Define, foreachn € N, f,, : v € E, — f(evi (E““K)). Then f, is
clearly the diagonalisation of an n-linear continuous function. Let us show that it is continuous from E, to F,.
Consider [ € F’. Then z +— evf (Fw.K) §s continuous from E,, to H"(E,K)’, as the latter space is endowed

with the topology of simple convergence on H"(F,,K). The injection H"(F,,K) — !E, is continuous,
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as |E, ~ (B, H*(Ew,K)"), according to Proposition 5.1.21, and as H"(E,,K) — @, H"(E,,K)" and
@, HE By, K)., — (D, H¥(E,, K)),, are continuous. The following n-monomial is continuous:

fu 't By < HY (B, K) — PHH(Eu, K) = (P H(Bw, K))w L F,
k k

Thus f, € H"(Ey, Fu). Toevery f € L,(!Ey, F\,) we associate this way (f,) € [ [, H"(Ew, Fu).

Consider now (fy,) € [ [,, H"(Ew, F\y) and define f : ¢ € |Ey, — (I € F' — ¢((l o fr)n)). The function f
is well-defined as [ o f,, € H"(E,,,K) for every n € N and every | € F’. When ¢ is fixed, let us denote ¢ the
function ! € F' — ¢((l o fn)n)). Then:

e the function | € F' — [o f, € H"(E,K) is continuous as I (resp. H"(E,K)) is endowed with the
topology of simple convergence on points of F' (resp. on points of E);

e the function ! — (I o fy), € [ [,, H"(Ew, K) is then continuous by definition of the product topology;
® ¢ is then continuous.

Thus ¢y € F” ~ F. For each ¢, there is y € F such that ¢y = ev,. We can now consider f : ¢ € |E —
y € F. fisclearly linear in ¢. It is continuous as !F,, is endowed with the topology of simple convergence on

[Ten " (Ew, K).
Finally, one can check that the mappings 6 : f € L,(\Ey, Fy) — (fy) € [ ], H"(Ew, Fy) and A 2 (f,,) €
[1, H"(Ew, Fu) — f € Ls('Ey, Fy) just described are mutually inverse. O

Let us show now that the isomorphism described above is a homeomorphism.

Theorem 5.2.20. For all ics E and F,

[/U(!Ewa F’w) = H Hn(E’U“ Fw)’

neN

and therefore

Lo(Bu, Fu)w =~ ([ [H"(Buy Fu))w = [ [ H'(Bu, Fu)w-
neN neN
Proof. Let us show first that the function 0 : f € L,(!E,, Fy) — (fn) € 1], H"(Ew, Fy) is continuous. It
is enough to show that f — f,, is continuous. Consider (f,)~er a net converging towards f in L, (!E,,, F,).
Thus for every ¢ € !E,, we have that f.(¢) converges towards f(¢) in F,,. For every « € E the net (f,(ev, €

H"(Ey,K)')), converges towards f(ev,) in F,. Thus the net (f, ) converges towards f,, and # in continuous.
The proof that A : (f,,) € [ [, H"(Ew, Fw) — f € Lo(!Ey, F,) is continuous is done likewise. O

Composition in WEAK; is thus given by the definition of a co-Kleisli category. If f € L,(!E,F) and g €
L, (1F,G) we define:

gof B np Lap 2, ¢

Notation 5.2.21. For f € L,(\E, F), we will write ( f,,)m the corresponding sequences of monomials in [L, H™(E,F).

Proposition 5.2.22. Forevery f € L,(\E,F) and g € L,('F,G), we have

(E?ﬂp =Gko fe.

klp

Proof. By definition, for ¢ € | E,

go f(¢) =

(17 (6(9))
((g0) € [ [H"(F.K) = 8(8)((gn © f)n)

n

g
g
For every p € N*, and = € E, we have:
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—_—

(9o Flp() = go flev]t"#H))
= 9((gn) € | [H"(F,K) = 6(ev}" ) ((gn © f)n)

Now 5(ev§p(E’K)) = (hj); e H(!E,K) — Dkl hk(ev;{p/k(E’K)). Thus

(90 Np(@) = 9((gn) € [ [H"(F.K) = 5(evl" ) (g © f)n)

= N gu(f(e0l""BH)

k|p

= ng o fosn

k|p

5.2.3 Cartesian closedness

Let us show that WEAK;, endowed with the cartesian product described in Section 5.1.4, is cartesian closed.

Theorem 5.2.23. For every lcs E, F and G, we have:

[[HP(Bw x Fu,Guw) = [ [H"(Bu, [ [ H™(Pu, Gu))-

peN neN meN

The equality above means also that

(HHP<Ew X Fu,Gu))w ~ [HH”(Ewa [n H™ (Fu, Guw)lw)]w,

p

as ([, H™ (Fuw,Gw))w) =~ [1,, H™(Fuw, Gw)w by Proposition 5.1.20, and since H?(E,,, F,,) is already en-
dowed with its weak topology by Proposition 5.2.8.

Proof. Forevery n € N, for every Ics E and F we have H"(E, F) ~ L7(E, F). We are therefore going to prove
that for every lcs E, F' and G:

1_[ ‘Cg(Ew X Fuy, Gw) = H‘C?(Ewa H ﬁ?(Fwa Gw)w)'
p n m
In the following, we will write & for some tuple (z1,...xz,) in E X ... x E. Letus fix E, F and G, and define:

[[£5(Ew x Fu,Guw) = [ [ £2(Euw, | [ £ (Fu, Guw)w))
o1 P n m
(fp) H[f = (Z?'—’ fn-‘rm((xlvo)’ ) (.Z‘n, O)a (Ovyl)a 3] (O7ym)))m]n
Let us show that ¢ is well-defined.

e Consider (f,), € [ [, L5(Ew x Fy, Gy),n € N,z € E, and m € N. Then
Y€ F = fuym((21,0), .., (2n,0),(0,91), -, (0, ym))
is m-linear and symmetric, and continuous from F), to G, as fr+m : Eyw X Fy — Gy, is continuous.
e Consider (f,), € [ [, L5(Ew x Fy, Gy) and n € N. Then
X1y ey T € By = (Y1, o0y Ym € F > froom((21,0), .0y (24,0),(0,91), -, (0, ym)))

is clearly n-linear and symmetric. It is continuous from E,, to L7 (F,,, G,) as the latter bears the topology
of simple convergence, and as f,,,, is continuous from E,, x f, to G,,. Since the weak topology on

LT (F,,G,y) is coarser than the strong topology, the function considered is also continuous from FE,, to
LT(Fyy G-

96



We want to define the inverse function 1 of ¢. Thus ¢ is a function from [ [, L7 (E,[],, L7 (Fu,Gw)) to
[, £2(Ew x Fy, Gy). Consider

fn € LY (B, 1_[ L (Fu, Guw))
and let us write f,, z m for (f,(Z))m € L™(Fy, Gw). If p = maxn, m, then the following function is n+m-linear:

((Ihyl)a [EES) (‘rpvyp)) = fm(wl,...,a:n),m(yla ,ym)

When p is fixed, 1 (f), collects all possible ways to produce a p-linear function as above, with p = n + m. As
all possible permutations are considered, 1(f),, is symmetric.

(T10(Ew, [ ] L7 (Fu,Guw) = [ [ £L2(Ew % Fu,Gu)
n m 2
- — 1
’(/J : [fn I (fn.,i‘,m)m]n = [(xay) = Z @f7z,{xi}iel,m({yj}jeJ)]p

I,Jc[1,p] \n

card(I)=n

card(J)=m

n+m=p

where in the index of the sum [ and J are disjoints subsets of [1, n]. Thus I and J forms a partition of [1, n].

If I ={i1,...,in} and J = {j1, ..., Jm}> fr {@s}icr,m (195} jes) is a notation for fn’(milw}zin)’m(yjl, e Y )
Let us show that v is well defined. Consider

[fn X1y T (fn,{m},m)m]n € H‘C?(Ew; nﬂgn(Fw7 Gw)w)-

The function mapping ((z1,1), -, (Tp,Yp)) € (Ew X Fu)? t0 fr (zhicr,m({Ys}jes) is n 4 m-linear and
symmetric. For example, if n = m = 1, then the possible bilinear functions are:

((z,9), (@'Y) = frz.¥)
and
(z,9), (2'Y") = fre01(y)-

Consider A € K, then applied to (A - (z1,y1), (T2,Y2), -, (Tp, Yp)) = ((Az1, A1), (2, ¥2), ..., (zp, yp)) this
function results in Af,, (5,},c;.m({¥;}je7), as I and J are disjoints.

It is continuous, as the restrictions to fixed terms in F,, or F,, are continuous. So 1) is well defined. Note
that both ¢ and v are continuous as the spaces L (F, F'),, are endowed with the topology induced by their dual
Es®ym ®; F". Finally, one checks that ¢ and 1) are each other’s inverse. Consider f € [ [, LY (Ey x Fiy, Gy). Then
Y (p(f)) coincides to the function mapping p to the function in £2(E,, x F,,, G,,) mapping ((z1,¥1), - -, (Tp; Yp))
to:

1
p) f((l'ilvo)a RN (Iina 0)7 (anjl)v ) (anjm))'
I,Jc[1,p] \n
card(I)=n
card(J)=m
n+m=p

By n-linearity of f, this sum equals

fp((xla yl)a LN} (xpayp))'
Thus ¥ o ¢ = Id. Consider now

g = [gn XLy Ty > (gn,{xl,...,zn},m)M]n € HEZ(Ewa HE.T(vaGw))-

Let us show that ¢(¢(g)) = g. The function ¢ (g) maps p, ((z1,w1),. .., (2p, wp)) to

1
> ﬁgn,{zi}iez,m({wj}jeJ)-
I,Jc[1,p] ‘e
card(I)=a
card(J)=b
a+b=p
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The function ¢(¢)(g)) mapsn € N, z1,...,z, € E, m € Nand y1, ...,y € F to this function applied to n + m
and ((z1,0), ..., (1, 0), (0,91), .-, (0, 4m)). But notice that g,, 1., .m({w;}jes) is null as soon as one of the z;
or one of the w; is null. So ¢(¢(g)) appliedton € N, 1, ...,z, € E, m € Nand yy, ..., Y € F results in

1
W Z gn,{zi}iez,m({wj }jeJ)
n I,Jc[1,n+m]
I=1,n
J={1,m}

which is exactly gn7{zh__,7mn}7m(y1, e Ym)-

The Seely isomorphism
Proposition 5.2.24. For all lcs E and F we have:
(Ey x Fy) ~E, ®;F,

Proof. This follows from the cartesian closedness of WEAK;, the monoidal closedness of WEAK, and the descrip-
tion of WEAK; obtained in Theorem 5.2.19. Indeed

By x Fy) ~ HHP(Ew x F,,K)
P

= [ [ B [ TH" (P, KDY
~ Lo (B, [ [H"(Fuy K)w))'

~ LBy, Lo(MFyp, K)yw)
~ ('Ew ®2 !Fw)”
1By ®; | Fy.

10

5.2.4 Derivation and integration

As a quantitative model of linear logic, this model interprets differential linear logic [20]. Howeyver, the interpre-
tation of derivation remains combinatorial, and not as close to the usual differentiation operation as one would
wish.

Definition 5.2.25. The co-dereliction rule of Differential linear logic is interpreted by:
E, —E,
e () e [[HEK) ~ fi(a)

n
Proposition 5.2.26. For every space E, dg, is a linear continuous function from E,, to | E,,,.

Proof. Letus fix ¢ = (¢n)n € (!Eyw) =~ [[, H"(E,K). Then ¢ o dp maps x € E to ¢1(z). As ¢1 € E', dp is
continuous from E,, to | E,,. O

For every Ics F, | E bears a structure of bialgebra. The following morphisms are derived from the biproduct
structure of WEAK:

e The A : |E — |E®; ! E interprets the contraction rules of Linear Logic. It is coincides as |E — |(E x E) ~
|E ®; | J, where the first computation is the functor ! composed with the diagonalisation morphism, and the
second coincides to the Seely isomorphism.

e c:!E > Cise(¢) = ¢(1) e S(E,C). It interprets the weakening rule of Linear Logic.
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o V:|E®;!E — |FEisdefined by \/(h — ¢(z — 1(y — h(xz + y)))). It interprets the co-contraction rule
of Differential Linear Logic.

e v:C — |Eisv(l) = evy. It interprets the co-weakening rule of Differential Linear Logic.

Recall that ! is also a symmetric lax monoidal functor, see propositions 5.2.17. All these morphisms are
necessary to build a differential structure.

Proposition 5.2.27. WEAK endowed with coder is a differential category [8].

Proof. As shown by Fiore [25], it is enough to prove that the following diagrams hold:

e Strenght:
Eour O e g MEE (E®; F)
1d®; dF
E®; F
e Comonad:
g—% g E Iz \E e g
Idh di \V/
E E®;1 IE®;|E ————— |E®, \E

dp ®; v dig ®i UE

In our category, both branches of the strength diagrams computes the following function:

(z®i @) = ((fa)n = oy = filz®iy))).

The first comonad diagram is immediate by the definition of d. The second diagram computes the function

ze B (gp)p € | [HPOEK) = g1 ((fa)n — fr()).

P
O

We do not have an interpretation of a syntactic integration in this category. Indeed, the existence of Ehrhard’s
anti-derivative operator [20, 2.3] would imply some sort of integration. We do not have a way to integrate in
our spaces, as no completeness condition is verified. It is noticeable that if our spaces were [S-reflexive, that is
isomorphic to their bidual when the dual is endowed with the topology of uniform convergence over bounded sets,
a weak integration would be available.

5.2.5 An exponential with non-unit sequences

Inspired by the substitution problem in the theory of formal power series [38, Chapter 1], we could have used
another composition between sequences of monomials. Indeed, such sequences can be considered as generalized
formal power series. That is, to a sequence ( f,, ), coincides a formal sum )} f,,, where no notion of convergence
is employed. A formal power series is a denumerable sum A(X) = >} a,, X™ where the a; are coefficients in
some commutative ring R. If B = Zp B, X7 is another formal power series, one has:

B(A(x)) = X by(A(2))
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For every n € N, A(z)? can be computed as if the sum in A were convergent. That is, B(A) = >}, ¢} X* with

&= Z Z Ak, X Agy X .o X A, X AQ-

n=0ki+...+kp=k

This sum is infinite, which causes a problem since no notion of convergence is employed here. However, if A
is non-unit, that is if ag = 0 this sum becomes finite:

= Z 2 Ak X Ay X oo X A, -

p=n>1  m>k;>1
ki+...+kn=p

With the same ideas, one can construct a comonad with a non-unit version of functor ! : WEAK — WEAK
such that, in the co-Kleisli category WEAK coincides with substitution if its morphisms are seen as formal power

series f = > 1 fn-
(gopio 20 2 gnlfi(@)ss fr (@)

p=n>1  m>k;>1
ki1+...+kn=p

Remark 5.2.28. This formula is called the Faa di Bruno fomula. A categorical account of the construction below
was given by Cockett and Seely [13].

Let us state briefly these definitions.
Definition 5.2.29. Let us define !, ¥ as the les P, H"(E, K)'.
Definition 5.2.30. For f € L,(FE,,, F\,) we define

!1Eu) - !le
Y e () e [T HNEK) = 6l(ga 0 £)u)

n=1

This makes !; a functor on WEAK. Such an exponential leads to a co-Kleisli category of non-unit sequences
of monomials.

Eo’(!le; Fw) = H Hn(Ewa Fw)w-

n=1
It is endowed with the usual co-unit, and co-multiplication allowing for a composition which coincides intu-
itively to a substitution.

Proposition 5.2.31. The functor !y : Lin — Lin is a co-monad. Its co-unit d : 1 — 1 is defined by

!1Ew — B,
dg "
b e B~ B

The co-unit is the operator extracting from ¢ € 1 E its part operating on linear maps. The co-multiplication
Wl — 111y is defined by

WEy, ~ (H/HP(E’K»/ - IWhWEy, >~ (H Hn([n Hm(EaK)]vi)>
p=1 n=1 m>=1

se ([JHYE.K) = (gn)n —
HE p

o(lacBs S Y ullfn)m = gnlfis @), i @) | )

p=n=1 m=k;>1

k1+...+kn=1
\ 1 n=p »

The co-Kleisli category remains cartesian closed, and thus we obtain likewise a Seely isomorphism
!1(Ew X Fw) ™~ !1Ew ®; !le-

As WEAK is =-autonomous, we obtain this way another model of linear logic.
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5.3 A negative interpretation of DiLL,

In this Section we revisit the previous results in terms of chiralities and negative interpretations. We show that
WEAK is a negative interpretation of L L, through its adjunction with CHU. According to Section 4, we have an
adjunction between the categories WEAK and CHU:

P

WEAK 1 CHU

~_
w

This adjunction is a positive closure: if alcs E is already endowed with its weak topology, then W(P(FE)) ~ E.
One also has a contravariant adjunction:

~
WEAK 1 CHU 5.2)
~_
(D
where, for £, € WEAK —E,, = (E', E) € CHU and for (E, F') € CHU we define (E, F);, = Fy(p,g). Then this
is indeed a contravariant adjunction which results in a negative closure (it is in fact a contravariant equivalence).

Proposition 5.3.1. Consider E and F weak spaces. By defining:
ER®F:=L,(E,,F)
we get an associative and commutative operator on WEAK

Proof. By Proposition 5.1.6, we have that for any weak space F, the Ics L, (E, F,,) is also a weak space.

The operation is commutative: by duality, for any f € L, (E.,, F') we construct a linear continuous functions
'+ F,,—(E,,),, ~ E, and this operation is involutive and preserves the topologies. Thus E % F ~ F' B E.

Let us show associativity. From commutativity we only need to show that £ %% (F' % G) is linearly homeomor-
phic to G % (E B F). Consider T' € E % (F % @) and define T : G’ — L(E',, ). We define its values in F
through their image under linear form ¢z € F’ by Hahn-Banach theorem: (5 (T' (¢, (5)) = La(T(¢g, lr). Let
us show that the linear map T takes indeed its values in L(E!,, F): as F is endowed with its weak topology, T is
continuous if and only if any {g € F', £ o T is continuous, and this is the case by hypothesis. One sees easy that
the linear isomorphism we defined is then an homeomorphism. O

Thus we want to see WEAK as the interpretation for the negatives. We consider thus the adjunctions:

Ow
/\,l
ToPVEC L  WEAK
v

U
O
/\
(TOPVEC,®;) L (WEAK? %) (5.3)

Y’\_/
O

These are indeed adjunctions: if F'is a vector space already endowed with its weak topology, then the spaces
L(E,F) and L(E,, F') are exactly the same as they only depend of the dual £’ = (E,,)’.

Proposition 5.3.2. TOPVEC and WEAK form a negative chirality, which is extended without difficulties to products
and co-products.

As it is defined, the co-monad !E is naturally endowed with its weak topology. One has thus an adjunction
between TOPVEC and WEAK',

!
/_\
WEAK' L TOPVEC

r\ﬁ/

101



were ! and U are strong monoidal functors, ! mapping spaces E to (!E, ?E") while U is the identity on objects and
maps an arrow f to f o d. It is strong monoidal by the Seely isomorphism.
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Chapter 6

Mackey topologies on convenient spaces

In this Chapter, we refine DiLL intuitionnistic model of convenient spaces [6] into a classical polarized model
of DiLLL where spaces are endowed with their Mackey topology and non-linear proofs are interpreted by smooth
functions. In further work with Tasson [49], we argued that the bornological condition on the topologies was not
necessary to the constructions of intuitionnistic DL L. However, as pointed out to the author by Dabrowski [17],
bornological spaces are in particular endowed with their Mackey topologies. We thus detail in this Chapter how
convenient spaces (that is bornological and Mackey-complete Ics) are the interpretation of positive connectives in
a polarized, smooth and classical model of DiLL.

In Section 6.1 we give an introduction to our work with Dabrowski [17] on unpolarized classical and smooth
models of DiLL where % is interpreted Schwartz ¢ product. In Section 6.2 we recall and prove some classical
results about bornologies and Mackey-complete Ics. In Section 6.3 we give a positive model of MALL with a
chirality between bornological Ics and (some specific class of) Chu pairs. Finally, in Section 6.4 where we bring
completeness in the picture, and the € product appears as the interpretation of %¥. We describe a positive model of
MALL with a chirality between convenient Ics and Complete and Mackey Ics. This model is extended to a model
of DiLL through the methods of [6] in Section 6.4.2

Notation 6.0.1. In this chapter and in the following ones, we only consider vector spaces on K = R.
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Introduction Looking at the adjunctions between CHU and TOPVEC (see Section 4),

P w
/_\,l /\,l

MACKEY L CHU 1 WEAK

r\/ ~_
M P

and the categorical models of polarized linear logic (see Section 2.3.2),

we see that while weak topologies allow for a negative interpretation of DiLL,,,;, Mackey topologies should offer
a positive interpretation of DiLL,,;.

We will introduce in this chapter the concept of spaces endowed with bornologies, which is to be put in
adjunction with the concept of topological spaces which are spaces endowed with topologies. We already explained
in Chapter 3, section 3.4 how bounded sets can be described from a given topology. The converse is also possible,
resulting in the following adjunction (Proposition 6.2.5):

Born

Top 1 BORN
~_
Top

In order to obtain a nice interpretation of the positive', one must work with spaces on which there is no hiatus
between the topology and the Von-Neumann bornology. Such spaces are called bornological.

More precisely, we revisit in this Chapter the model of Blute, Ehrhard and Tasson [6], which was exposed
under a simplified form in Section 2.4.3, into a classical positive interpretation of DiLL. We start from the fact
that every convenient space is endowed with its Mackey-topology, to construct a positive chirality were negations
are interpreted by the Mackey dual and the Mackey-completion of the dual. Let us stress that the name convenient
space denotes spaces which are not only Mackey-complete spaces as in [49] or [53], but the spaces which are
Mackey-complete and bornological as in [6] and [26]. We showed in [49] that Mackey-completion was enough
to have a smooth intuitionist model, and we show here that in fact the bornological condition allows a (polarized)
positive interpretation.

This should be put in perspective with the work of the author with Y. Dabrowski [17], where the same de-
composition could be possible for Schwartz and Mackey-complete or Nuclear and Mackey-complete spaces. Thus
the chirality between convenient spaces and complete and Mackey spaces is a classical refinement of [6] through
chiralities and Mackey-duals, and a polarized refinement of [17] which allows for smooth maps which are always
differentiable.

Notation 6.0.2. As in Chapter 3, we denote by L(E, F') the vector space of all linear continuous functions between
two les. We will also use the notation L(E, F') of Section 2.4.3 to denote the space of all linear bounded functions
between two lcs, endowed with the bornology of all equibounded sets. In particular, in E is a vector space endowed
with a bornology, we denote by E* the bounded dual L(E,K) of E, whose bounded sets are thus the polars B°
of bounded sets of E.

6.1 Models of Linear Logic Based on Schwartz’ < product

In this Section we recall the results of [17], presented in Appendix B, where the authors obtained smooth and
classical models of Differential Linear Logic.

k-reflexive spaces. This work features three models of LL with smooth maps, where smooth maps are then
restricted those with continuous differentials in order to have a good interpretation for the codereliction. The first
one, to be considered as the one with less restrictions, is obtained by requiring the spaces to be k-complete: the
absolute convex closed hull of a compact set must be compact. This is noticeably a very lax condition allowing for

! Actually at time of writing this thesis, one only has a nice interpretation of the @
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the associativity of the € product [17, section 4]. This condition is preserved by the Arens dual (that is the dual E’
equipped with the topology of uniform convergence on absolutely convex compact subsets of E):

E; =F

allowing for a duality

(BR)R)k ~ E
for any k-complete space. Spaces which are invariant under double duality are then called k-reflexive. Defining on
k-complete spaces a notion of smooth maps following Meise [58], with iterated Gateau-differentials continuous
on compacts, one obtains a cartesian closed category of smooth functions. Although this setting is not ideal
for differentiation, an important property is that by defining smoothness relatively to some subcategories of the
category of k-reflexive spaces, one defines new smooth models of LL.

Topologies induced by spaces of smooth functions [17, Section 6.1]. Based on this preceding notions of
smoothness and completeness, one defines (at least) two smooth and classical models of LL. For two Ics E and
F, we denote by CX(E, F) the space of infinitely many times Géteaux-differentiable functions with derivatives
continuous on compacts with value in the space L™} (E, F) = L.,(E, L™ (E, F')) with at each stage the topol-
ogy of uniform convergence on compact sets. We endow this space with the topology of uniform convergence on
compact sets of all derivatives in the space L7 (E, F).
Consider ¥ < k — Ref a small category, and define for E and F' Mackey-complete spaces:
CZ(E,F):={f: F—F¥VXe¥,VeceCL(X,E),foceCo(X,F)}

co

This space is endowed with the inductive topology induced by the family of CX (X, F'), for all Xe% and all
¢ € CE(X,E). We show that linear functions are in particular of that type of smooth functions, and thus the
inclusion £/ < CZ(E, %) induces a topology on E’, which we denote by EZ,. This new definition for smooth
functions defines also a new topology on E which we describe now.

We first consider 4’ < k — Ref a full Cartesian subcategory.

Let € be the smallest class of locally convex spaces containing C% (X, K) for X € ¢ (X = {0} included)
and stable by products and subspaces. Consider . the functor on LCS of associated topology in this class
described by [45, 2.6.4]. This functor maps a Ics E to the vector space 2 endowed with the finest topology coarser
than the original one on F, such that .“» (E) € €.

With these definitions, it is possible to show if £ is Mackey complete we have E!, ~ .74 (E!). In the article,
we construct moreover an inductive Mackey-completion procedure M (see proposition 6.2.22) which is functorial
with respect to continuous linear maps. This is fundamental, as it allows to work well with the Mackey-Completion
within TOPVEC. Let us point out that in [49], the authors only knew about a Mackey-completion with a universal
property with respect to bounded maps, and that this stopped the progression towards a classical bornological
model.

Then one defines on a Mackey-complete Ics E':

n — M
EYe .= S (EY)

We say that a space is € -reflexive if E-¢1¢ ~ E. In particular, E1% is always %-reflexive.

Theorem 6.1.1. Consider € a small category of Banach spaces containing finite dimensional vector spaces. The
category of €-reflexive spaces is -autonomous, with tensor product EQ4 F := (E+¢cE+<)Y<_ It is a model of
LL, with the exponential defined by:

l¢E = CE(E, #)*¢.

Two concrete examples of models smooth models of LL are generated in this way:

Example 6.1.2. If € consists of the category of all finite dimensional spaces, then C2 (%", K) ~ sV [78, (7) p
383], where s denotes the Kothe space of rapidly decreasing sequences. This space is a universal generator for
nuclear Ics, meaning that every nuclear Ics is a subset of a product of copies of 5. Thus the associated topology
functo [45] is A (E) = rin(E), and the induced model consists of Nuclear Mackey-complete spaces which
equals their double ¢’-dual.

Example 6.1.3. If € is the category of Banach spaces, then ¥® is the category of all Schwartz spaces, and the
induced model consists of all Mackey-complete Schwartz spaces which equal their double €’-dual.
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Perspective : Mackey topologies for reflexivity and completeness for the negatives We give here another
perspective of these models. A first condition allows for reflexivity: the Arens-dual is the one used in k-reflexive
spaces, which could thus for a model of Mall where the spaces are the one for which (E.). ~ E. These spaces
are the y-reflexive ones (see Section 3.5). However, associativity of ¢ or of a dual tensor product requires more,
and requires in particular a second condition which is the completeness one. By proving that (E}?)} is k-complete
when F is, we are able to define a "new" duality as the k-completion of the Arens dual, which still leads to the
property that every dual is reflexive.

Schwartz Mackey-complete spaces and Nuclear Mackey-complete spaces behave likewise. If a space E is
Schwartz, then absolutely convex weakly-compact subsets are compact [17, 3.4], and thus EL ~ FE!. Writing
E% = 7(E)), this leads to:

((E3)5)s = ES,
allowing for a reflexivity condition. Mackey-completeness is then well-behaved with respect to this duality: if we

" M
denote £ = S((E) ) where E is Schwartz Mackey-complete, we have that . ((Ey);,) is Mackey-complete
when FE is, thus allowing for:
((EZ),), = E;

and for a good definition of smooth maps.

A drawback: differentiation The smooth maps f : E—F have differentials which are continuous on compact
subsets,thus bounded but necessarily continuous. As the spaces ' on which these smooth maps are defined are not
bornological in general, the smooth maps are not continuous and no interpretation of the co-dereliction is available:
the differential at O of a conveniently smooth maps is a bounded linear map, but again in general not a continuous
one. However in the setting of DiL.LL one requires an interpretation

d: E—=C”(E,R),

i.e. the differential at one point must be a linear continuous morphism.This is solved in [17] by restricting the use
of conveniently smooth functions whose iterated differential is continuous at every point.

Replacing Schwartz and Mackey-complete by bornological and Mackey-complete What is done in the re-
maining sections of this Chapter can be understood as a way to replace the Schwartz condition by a bornological
condition, allowing for an easier definition of differentiation on the smooth maps, which are then in particular
continuous. We also consider a categorical perspective via chirality which we believe clarifies the situation.

Outlook 6. Can the bornologification of a space be understood as the embedding of a space E into a space of
smooth functions CZ°(E’,R), for C a small cartesian category of k-reflexive Ics? This would amount to find a

universal generator for bornological spaces, and characterize it as some space of smooth functions C2 (R, R).

Remark 6.1.4. We only included the work of [17] in the appendix. We made this choice with to keep the main
body of the thesis as concise as possible. We will not use the results of this paper, except for the construction of
a Mackey-completion functorial with respect with continuous linear functions, which is recalled and proved (see
Theorem 6.2.21).

Outlook 7. Let us emphasize that bornological spaces behave remarkably well with respect to Schwartzification
and Nuclearification [44, 13.2.4], and future work should try and interpret the structures of [17] in a chirality where
positive formulas are interpreted as bornological spaces.

6.2 Preliminaries: bornological notions

6.2.1 Bornological spaces

In Chapter 3, we defined bounded sets in a Ics as the sets which were absorbed by open sets (Definition 3.4.7).
They define a bornology (Definition 3.4.6), which is thus defined from the topology of E. The converse is also
possible: from a bornology one can define a topology.

Definition 6.2.1. Consider Bg a bornology on a vector space . We define the topology T (1) as the collection of
sets which absorbs all the elements of BB ( the so-called bounded sets). That is, a subset U — E is an open set of E/
if and only if for every B € Br we have a scalar A € K such that:

B c \U.
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Note that this topology on E might enrich the bornology on E. The Von-Neumann bornology for T(Bg)
includes Br but might be larger.

The theory of vector spaces endowed primarily with bounded sets (and not open sets) was intensively studied
by Hogbe-Nlend [40]. They are an analogue to the theory of topological vector spaces. The following definition
of BORN can be found in [53, 52.1] [26, 1.2] or [6].

Notation 6.2.2. We write BORN the category of vector spaces with bornologies and linear bounded maps, and
TOP the category of vector spaces with (non-necessarily separated locally convex vector) topologies and linear
continuous maps.

From an object of BORN one can construct a Ics whose open sets are exactly the one absorbing the bounded
sets. The subsets absorbing all the bounded sets are called bornivorous.

Definition 6.2.3. Consider £ € BORN with bornology Bg. Then a subset U < F is said to be bornivorous if for
every B € Bg there is a scalar A € K such that B < A\U.

We define Born as the functor from TOP to BORN matching a vector space E with a topology to he same vector
space endowed with its (Von-Neuman) bornology, and which maps a linear continuous to itself. It is well defined
as linear continuous functions are in particular bounded. Symmetrically, we consider also the functor Top from
BORN to ToP wich maps E to the Ics E with the topology of bornivorous subsets, and which is the identity on
linear bounded functions. We check that this functor is well-defined in the following Proposition.

Proposition 6.2.4. A linear bounded map between two vector spaces E and F' endowed with respective bornolo-
gies By and B defines a linear continuous maps between E endowed with T(Bg) and F endowed with T(BF).

Proof. Consider a linear bounded map from F to F and V a subset of V' wich absorbs every element of Br. Then
one sees immediately that £~ absorbs every element of B and thus that £ is continuous between E endowed with
T(Bg) and F endowed with T(Bf). O

Proposition 6.2.5. We have an adjunction:

Top
FR
BorRN L Tor
K __—

Born
Proof. Consider E € BORN and F' € TOP. Then a linear function f : E — Born(F) is bounded if and only
if it sends every bounded set of Bg in a set B’ < F which is absorbed by every open set of the topology of
F. Thus consider U’ < F an open set of F'. Then for any bounded set B of F, we have a scalar A such that

f(B) € AU, thus B = A\f~}(U), thus f is continuous from Top(E)— F'. One show likewise that to continuous
linear functions Top(FE) — F coincides bounded linear ones from F — Born(F). O

Bornological Ics  On some Ics, not-only do the open sets absorb the bounded subsets (by definition of bounded-
ness in a Ics), but all the subsets that absorb the bounded sets are open sets. This means that the Ics E is invariant
under the composition of functor Top o Born. These spaces are called bornological [44, 13.1], and they have a nice
characterization in terms of bounded linear maps.

Proposition 6.2.6. [44, 13.1.1] A lcs E is said to be bornological if one of these following equivalent propositions
is true:

1. For any other lcs F, any bounded linear map f : E — F is continuous, that is L(E,F) = L(E, F),
2. E is endowed with the topology Top o Born(E),

3. FE is the topological inductive limits of the spaces Ep (see Definition 3.1.12), for B bounded, closed and
absolutely convex.

4. E has the Mackey* topology of uniform convergence on the weak compact and absolutely convex subspaces
of E', and any bounded linear form f : E —K is continuous.

This definition coincides in fact to the one of a S-bornological, but we won’t make use of bornologicality for
other bornologies.
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Proof. The equivalence between the first two Propositions follows from the adjunction 6.2.5.

If we have (2), then we have indeed that a 0-neighbourhood in ind E'p absorbs every bounded set of F, thus is
a 0-neighbourhood in E. As a 0-neighbourhood in F is always one in the Ep, we have E = indEp.

If we have (3), then as the Mackey topology is preserved by inductive limits [44, 11.3.1] and normed spaces
are endowed with their Mackey-topology, we have that F is endowed with its Mackey-topology. Now a linear
bounded form on F is in particular linear bounded on each E'p, thus linear continuous on E'p. By definition of the
inductive topology, f is linear continuous on F.

If we have (4), consider any bounded linear function f : E— F. Then from any £;nF”, £ o f is bounded, thus
continuous. Thus f is continuous from E to F,4. Thus f is continuous from £, to I by the adjunction 4.0.9. [

Notation 6.2.7. We denote by BTOPVEC the category of bornological Ics and continuous (equivalently bounded)
linear maps between them.

Vector bornologies

Definition 6.2.8. A bornology is said to be a vector bornology if it is stable under addition and scalar multipli-
cation. It is said to be convex if it is stable under convex closure. It is said to be separated if the only bounded
sub-vector space in B is {0}.

Definition 6.2.9. We consider the category BORNVEC of vector spaces endowed with a convex separated vector
bornology, with linear bounded maps as arrows.

One of the reasons why working with bornologies instead of topologies is not that popular is because the image
by Top of E € BORNVEC may not have a separated topology. Counter examples are given in [26, 2.2], where a
separation procedure is used afterwards. However we have:

Proposition 6.2.10. If F is in BORNVEC and Top(FE) is bornological, then it is a Ics.

Proof. The fact that the topology T(Bg) is convex and makes addition and scalar multiplication continuous is
immediate. Let us show that T(Bg) is separated: consider x and y two different points in E. Suppose that all
open sets containing x contain y. Then the vector space generated by x and y is absorbed by any open set. Indeed,
consider an open set U in T(Bg). As the point {2} is bounded there is a scalar A such that z € AU. Thus, asy € U
by hypothesis, every element ux + p'y is in U for some scalar p”. Thus the vector space generated by x and y
is absorbed by every absorbing open set, it is thus bounded by Proposition 6.2.6. O

Bornologication

Proposition 6.2.11. Consider E a lcs. Then Top o Born(E) has the same bounded sets as E (meaning Born o
Top o Born(E) = Born(E) ) and is thus bornological.

What makes this Proposition work is the fact that, when the bornology is already defined as a Von-Neumann
Bornology of subsets absorbed by open sets, then considering the topology of all bornivorous subsets won’t change
the bornology.

Proof. The bounded sets of Top o Born(FE) are those which are absorbed by every bornivorous subsets of F.
Thus in particular they are absorbed by the open sets of E, and thus they are bounded in E. Now by definition
of Top o Born(E), any open set of this Ics absorbs the bounded sets of E. Thus the bounded sets of E are also
bounded in Top o Born(E).

The fact that it is bornological follows directly: we have Top o Born o Top o Born(E) = Top o Born(E), thus
Top o Born(FE) satisfies the second criterion of Proposition 6.2.6. O

Proposition 6.2.12. If E is a Ics, Top o Born(E) is the coarsest bornological lcs topology on E which preserves
the bounded sets of F.

Proof. Any bornological topology on E absorbs the bounded sets of E and thus contains the open sets of Top o
Born(E). O

Definition 6.2.13. We denote by E*"" the Ics Top o Born(E), which is called the bornologification of E.

From the previous Proposition it follows:
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Proposition 6.2.14. We have the left polarized closure:

U
/\
BToPVEC 1 BTOPVEC

\_/

TopoBorn

in which U denotes the forgetful functor, which leaves objects and maps unchanged.

One could likewise characterize the vector spaces I of BORN'VEC in which every set absorbed by the open sets
of Top(E) are exactly the bounded ones. These are the sets for which the bounded linear maps onto are exactly
those continuous onto Top(E). See [26, 2.1] or the introduction of [6] for more detail.

Proposition 6.2.15. [44, 13.5] The direct sum of any family of bornological Ics is bornological, as is the quotient
of a bornological lcs by a closed subspace, as is the finite product of bornological Ics.

Because bounded sets in a metrizable Ics are generated by closed balls, one shows easily:

Proposition 6.2.16. Metrisable Ics are in particular bornological Ics, and thus they are endowed with their
Mackey-topology.

6.2.2 Mackey-completeness

Mackey-complete spaces were defined in Section 2.4.3 as those Ics in which Mackey-Cauchy nets were convergent.
This definition is equivalent to the following one:

Definition 6.2.17. A Ics E is said to be Mackey-complete if for every bounded and absolutely convex subset B of
E, the normed space Ep is complete. Ep coincides with the linear span of B with the norm pp :  — inf{\ €
K, § € B}, see 3.1.12.

Thus we have in particular that Mackey-completeness is inherited by closed bounded inclusions, and thus by
closed continuous inclusions.

Let us note that this definition allows to use Mackey-completeness on vector spaces endowed with bornologies
and not topologies. Indeed Mackey-completeness depends only of the bounded subsets of a Ics F (and thus depends
only of its dual E’ by Proposition 3.4.10), and does not depends directly of the topology of E.

Proposition 6.2.18. [53, 1.2.15] Mackey-completeness is preserved by limits, direct sums, strict inductive limits of
sequences of closed embeddings. It is not preserved in general by quotient nor general inductive limits.

Proposition 6.2.19. [53, 1.2.15] Let E and F be lcs. If F is Mackey-complete, then so is Lg(E, F).

Proof. Consider (f,)(yer) @ Mackey-Cauchy net in B(E, F). Each one of the nets (f,(z)),er converges towards
f(x) € F due to the Mackey-completeness of F. The function f thus defined is bounded and (f, ) er) converges
towards f. Consider (f,)yer) a Mackey-Cauchy net in B(E, F): we are given a net (A, /) < R decreasing
towards 0 and an equibounded B in B(FE, F') such that

fy = fy €Ay B.

Consider also = € E. As B({z}) is bounded in F, (f,(x)) er is also a Mackey-Cauchy net. Besides, F'
is Mackey-complete, so each of these Mackey-Cauchy nets converges towards f(z) € F. Let us show that f is
bounded. Indeed, consider b a closed bounded set in E, and U a 0-neighbourhood in F'. As B is equibounded,
there is A € C such that B(b) < AU. Consider ~, € I' such that, if 7,7 > -, then |\, /| < A. Consider 4 € C
such that f.,(b) < pU. Then for all v > 7o, f(b)  pU + AU. Thus f(b) is in (A + p)U, thus in 3(A + p)U.
We proved that f(b) is a bounded set, and so f is bounded. O

Definition 6.2.20. We denote by MCO the category of Mackey-complete vector spaces with and continuous linear
functions between them.

Kriegl and Michor only make use of a Mackey-completion which is functorial on bounded linear maps. This
is very restrictive and made impossible to extend the results of [49] to modelize classical Linear Logic. The
developments in this Chapter are made possible by the following key proposition:
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Theorem 6.2.21. [17, 3.11] The full subcategory MCO < TOPVEC of Mackey-complete spaces is a reflective
subcategory with the Mackey completion Mo left adjoint to inclusion .

Lemma 6.2.22. The intersection EM of all Mackey-complete spaces containing E and contained in the completion
E of F, is Mackey-complete and called the Mackey-completion of E.
We define F/yr,0 = E, and for any ordinal A, the subspace

ErMiat1 = Yan)neoeM (Err) L ({Tn,n = 0}) € E

where the union runs over all Mackey-Cauchy sequences M (Eps.) of Ejs.», and the closure is taken in the
completion. We also let for any limit ordinal Ejs,x = U,<xEn;,. Then for any ordinal A, Ep,y © EM and
eventually for A > w; the first uncountable ordinal, we have equality.

Proof. The first statement comes from stability of Mackey-completeness by intersection. It is easy to see that
E)r;y is a subspace. At stage E)r..,, +1, by uncountable cofinality of w; any Mackey-Cauchy sequence has to be
in Eyz;» for some A < w; and thus each term of the union is in some Eys, 541, therefore Fyr., +1 = Earye, -
Moreover if at some A, Fyr.a+1 = sy, then by definition, Fj \ is Mackey-complete (since we add with
every sequence its limit that exists in the completion which is Mackey-complete) and then the ordinal sequence is
eventually constant. Then, we have s\ D EM . One shows for any A the converse by transfinite induction. For,
let (z,,)n>0 is a Mackey-Cauchy sequence in Epy.\ < F := EM _Consider A a closed bounded absolutely convex
setin F' with x,, — x in F4. Then by [44, Prop 10.2.1], F'4 is a Banach space, thus I'({z,,,n = 0}) computed in
this space is complete and thus compact (since {z} U {z,,,n = 0} is compact in the Banach space), thus its image
in E is compact and thus agrees with the closure computed there. Thus every element of I'({zn,n > 0}) is a limit
in E4 of a sequence in I'({z,,,n = 0}) < Ejy, thus by Mackey-completeness, I'({z,,,n = 0}) < F. We thus
conclude to the successor step Eps;a41 < EM , the limit step is obvious.
O

Thus we have a left polarized closure
~M
7 A
ToPVEC 1  Mco

~_
U

We will also make use of Lemma 3.7 of [17], which relates Mackey-completions and Mackey-duals.

Proposition 6.2.23. Consider E a space endowed with its Mackey-topology. Then EM s still endowed with the
Mackey-topology u(E™, E").

Proof. Remember that our Mackey-completion preserves the dual, thus ,u(EM , E') is indeed the Mackey topology
on EM. Moroever EM is constructed as the intersection £ of all Mackey-complete spaces containing & and
contained in the completion E of E . ._Therefore an absolutely convex weakly compact set in F’ coincide for the
weak topologies induced by [’ and F and therefore also FM which is in between them. Thus the continuous
inclusions ((F},)],) — (FM) 1) — ((F);,);, have always the induced topology. In the transfinite description of
the Mackey completion, the Cauchy sequences and the closures are the same in ( (ﬁ‘);); and F (since they have
same dual hence same bounded sets), therefore one finds the stated topological isomorphism. O

6.2.3 Convenient spaces

In this section, we develop the theory of convenient spaces as defined by Frolicher and Kriegl [26], and studied in

[6].
Definition 6.2.24. A Ics is said to be convenient if it is Mackey-complete and bornological.

Again, beware that the spaces called convenenient in [53] or [49] are just Mackey-complete, and not bornolog-
ical. We defined Mackey-complete spaces as those spaces for which E'p is always a Banach, when B is an
absolutely convex and closed bounded subset of F' (definition 6.2.17).

By definition 2.4.22, a Mackey-Cauchy net is exactly a net which is Cauchy for one of the norms pp. Thus by
Proposition 6.2.6 a Mackey-complete bornological space is an inductive limit of Banach spaces.
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Definition 6.2.25. A Ics F is said to be ultra-bornological if it can be represented as an inductive limit of Banach
spaces (see [44, 13.1]).

Ultrabornological are in particular barrelled (see Section 3.4.4). Barrelledness is a very strong property, which
allows for a Banach-Steinhauss theorem [44, 11.1.3] saying that simple convergence and strong convergence are
the same for linear functions.

Definition 6.2.26. A set of functions B : {f : E — F'} between two Ics is said to be simply bounded if for every
x € E, the set {f(z)|f € B} is bounded in F'. It is said to be strongly bounded, or equibounded, if for any bounded
set B c E, the set | J f(B) is bounded in F'. Simply bounded sets of linear continuous functions are exactly the
bounded subsets of L, (FE, F'), while strongly bounded sets of linear continuous functions are exactly bounded
subset of L5 (E, F).

It is clear that strongly bounded sets of functions are in particular simply bounded. We show that under an
assumption of Mackey-completeness, the converse is true for linear bounded functions

Proposition 6.2.27. Consider E a Mackey-complete space. Then a subset B < L(E, F) is simply bounded if and
only if it is strongly bounded.

Proof. Let b be a bounded set of E. Taking the absolutely convex closed closure of b, and because FE is Mackey-
complete, we can assume without loss of generality that ' is a Banach space. Since any bounded linear maps on
a Banach space is also continuous, we can apply the classical Banach Steinhaus theorem on the restriction of B to
linear bounded functions on Ez: it is equicontinuous. In particular, it sends bounded sets of E'p to bounded sets
of F' and B(b) is bounded. O

Corollary 6.2.28. If E is Mackey-complete and bornological, then a subset B — L(E, F') is simply bounded if
and only if it is strongly bounded.

A fundamental property of convenient spaces is that Mackey-completeness is preserved by bornologification:
Proposition 6.2.29. If E is a Mackey-complete Ics, then E*°™ is Mackey-complete.

Proof. By Proposition 6.2.11 the lcs E**™™ := Top o Born(E) has the same bounded sets as E. As Mackey-
completeness only depends on the bounded sets, if E is Mackey-complete so is £, O

Thus if we Mackey-complete and then bornologify a Ics £ we obtain a Mackey-complete and bornological
vector space.

Notation 6.2.30. We denote by CONV the category of bornological Mackey-complete Ics, also called convenient
spaces, and continuous linear maps between them. These are the convenient spaces in [6] and [26]. We denote by

ECm’w _ En]\/[,born
the closure operation which makes a lcs convenient, that is the bornologification of the Mackey-completion. Thanks

to Theorem 6.2.21, it enjoys a universal property with respect to linear bounded (hence continuous) maps from £
to a Mackey-complete Ilcs F.

In diagrams, this amounts to say that we have a polarised closure:

U

CoNnv T Mco
~_

—born

6.3 A positive model of MALL with bornological tensor

6.3.1 Co-products of bornological spaces

By Proposition 6.2.15, we have that Mackey tensor and the co-product of Ics preserves the bornologicality of
spaces. That is, bornological spaces are well behaved with respect to the positive connectives of Linear Logic. It
is not the case however for the negative connectives of linear logic:

111



Proposition 6.3.1. [44, 13.5.4] The product | [,.; E; of any family (E;); of bornological spaces is bornological
if and only if K is bornological, if and only if the cardinal of I does not admit a Ulam measure [77].

Remark 6.3.2. The question of whether there are sets which carry a Ulam measure is an open question. In ZFC
however, if the cardinal of a set is accessible, then it does not admits a Ulam measure. There are models of ZFC
in which every cardinal is accessible.

6.3.2 A tensor product preserving the Mackey-topology

Spaces of linear functions. The space of linear maps endowed with the topology of uniform convergence on
bounded subsets is not necessarily bornological: we need to bornologize it.

Remark 6.3.3. The topological dual does not necessarily preserve the bornological condition. As recalled by
Erhhard [18], one can construct on the vector space /., a non-null bounded linear continuous function which sends
co (i.e. all sequences converging to 0) to the scalar 0. This function cannot be continuous on ¢, = /¢ 1%, endowed
with its normal topology, as cg is dense in (1% Thus £ is not bornological.

Remember from Section 2.2.3 that the normal topology of ¢, = 01t is the topology of uniform convergence
on equicontinuous subsets of /7.

More generally, one cannot prove without further hypothesis on a Ics E that if F' is bornological, then so is
Ls(E,F).

Definition 6.3.4. We denote by Ly, (F, F') the Ics of all linear continuous functions between two lIcs F and F,
endowed with the bornologification of the topology Ls(E, F).

The bounded tensor product. Let us recall more precisely the monoidal structure of BORNVEC as explained
by Kriegl and Michor [53, 5.7].

Proposition 6.3.5. The bounded tensor product on BORNVEC is symmetric and associative, and E ®g _ is left
adjoint to the hom-set functor which maps F to L(F, _).

From this monoidal structure on BORNVEC, we deduce the monoidal structure of BTOPVEC:

Proposition 6.3.6. The [3 tensor product on BTOPVEC is symmetric ans associative, and E ®g _ is left adjoint to
the hom-set functor which maps F t0 Lyorn (F, _).

9 —

Definition 6.3.7. Consider E and F' two Ics. According to Section 3.6, the S-tensor E ®g F' is the vector space
E ® F endowed with the finest Ics topology such that the canonical bilinear map hg : £ x F—= FE ®g F'is
[-hypocontinuous.

Neighbourhoods of 0 in £ ®g I are then generated by the prebasis consisting of product of bounded sets in &/
(resp. F') and 0-Neighbourhoods in F' (resp. E). This tensor product enjoys a universal property with respect to
B-hypocontinuous functions: these are the bilinear function which, restricted to a bounded set of F (resp. F') are
continuous on F' (resp. ). Then we recall from Section 3.6:

Proposition 6.3.8. If f : E x F — G is B-hypocontinuous, then there is a unique linear continuous map
fs: E®g F—=G such that f = fgo hg.

If E and F' are bornological, then /-hypocontinuous bilinear functions f : E x F — G are exactly those
which send a product of bounded sets By x Bp € E x F to a bounded sets of G. As the bounded sets of a product
are exactly product of bounded sets (this is straightforward from the definition of the product topology, see Section
3.1.4), we have then the following fact:

Lemma 6.3.9. If ' and F are bornological, then the 5-hypocontinuous bilinear functions from E x F' to any lcs
are exactly the bilinear bounded ones.

Thus on bornological Ics the S-tensor product is the bounded tensor product described by Kriegl and Michor
[53,1.5.7]: EQgF is the algebraic tensor product with the finest locally convex topology such that Ex F' — EQF
is bounded.

Proposition 6.3.10. Consider X and F' two bornological Ics. Then E ®g F' is bornological.
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Proof. Consider G a Ics. By definition of the 3-tensor product, we have the algebraic equality:
L(E®s F,G) ~Bg(E®g F,G).

By the previous lemma, we have that By (E x F,G) ~ B(E x F,G), the space of bilinear bounded maps
between £ x F and G.

Consider now a bounded linear map f € L(E ®g F, G). This function coincide with a bounded bilinear map
fonE x F: products of bounded sets in Bg and Bp respectively are bounded in E ®g F, and thus f sends a
BEg x Br on a bounded set in GG. Thus f € Bpeto(E ®3 F, G), and thus f is continuous on E ®g F. Therefore
E ®gp F is bornological.

O

We have thus a monoidal structure on BTOPVEC, where the tensor product need not be submitted to any closure
operation.

6.3.3 A bornological % for CHU

A model in MACKEY We proved in Section 6.3.2 that BTOPVEC endowed with ®g is a symmetric monoidal

category. Following our quest for classical models of DiLL, the natural idea then would be to define an interpre-
born 7 born

tation of % as the dual of ®p in MACKEY: E Fmackey I = ((E)), ®gp (F),, ), This would result in
a model of MALL in the category MACKEY, in which positive connectives are bornological Ics. We try now to
formalize this idea that positives are interpreted by bornological Ics in a model made of Mackey Ics, through a
chirality between bornological Ics and Chu pairs. The following developments must then be read in analogy with

Section 5.3 on Weak spaces.

Preconvenient dual pairs To obtain dual pairs wich result on bornological Ics, and not just Mackey Ics, a little
more material is needed. Indeed, considering a dual pair (E7, Es), the dual of Efo;:(n& E) contains but is not
restricted to Es. To have an adjunction, one would need to consider bornological dual pairs , which are the one
called preconvenient by Frolicher and Kriegl in [26, 2.4.1].

Remember from Section 4 that we have the following right polarized closures, where P is the functor which

maps a lcs E to the pair (E, E') and M maps a pair (£, E2) to By (g, g,):

P
T

TopPVEC T CHU

~_
MQ)

pL
PR
ToPVEC T  CHU®P

(M)

Definition 6.3.11. We denote by PRECONV the category of dual pairs (E1, E5) which are invariant the compo-
sition of the functors P o Born o Top o M. That is, the dual of the bornologification of Ey (g, g, is still Ea.
According to [26, 2.4.1] these are exactly the dual pairs such that F» contains all the bounded linear forms on E;
endowed with the bornology of o(E1, E2) weakly bounded subsets. We denote by DPRECONV the category of
dual pairs (Es, E7) such that (E, E2) € PRECONV.

Remark 6.3.12. Following Frolicher and Michor, we remark that a dual pair (F1, E2) is bornological if and only
if the bornologification of the Mackey-topology on F is exactly the Mackey topology on Fj.

Proposition 6.3.13. The following diagrams define a right polarized chirality:

P
/_\
BTOPVEC 1 PRECONV

\_/

./V(( )bo'r"n.
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pL

/_\

(BTOPVEC, ®3, R) L (PRECONV?? B (R,R))

\/

(m) L born

Proof. Remember that morphisms in CHU between (E1, E») and (Fy, F») are pairs (f, f') in
(L(E, Es), L(Fy, F1)) such that such that the following diagram commute:

ElL)Eé

l(-)* ; l(-)* :

Fr L

Let us show then that we have natural isomorphisms, for F' a bornological Ics and (E7, FE) a bornological pair:
L(F, By, ) = CHU((Ey, Ey), (F, F)).
By definition, as (FE, E5) is a preconvenient dual pair, we have Ei"’:FEl By = E\ (E1,E,)> and the adjunction
follows from Section 4. The adjunction for the second diagram goes likewise, because we reversed the order of the
vector spaces in the dual pair.
The second diagrams features strong monoidal adjunctions: by the universal property of ®3 in BORNVEC and

the fact that when E is bornological we have L(E, F') = L(E, F'). Moreover, when F and F are bornological
then (E®p F) = L(E®g F,R) = L(E,F*) = L(E, F’), and thus

PYUE®s F) = (EQF,L(E,F'))" = (L(E,F),E®F) = P-(E) % P-(F).

Likewise, we have that when E and F' are bornological £ ®g I is bornological, and thus already endowed
——  born ——  born

with its Mackey-topology. Thus M (E’, E) ®g M(F',F) = M(EQF,L(E,F")) O

Notice that because the category PRECONV is not symmetric when it concerns its dual pairs, we are not here in
the setting of the negative chiralities defined in Section 2.3.2. Indeed, the second adjunction is between BTOPVEC
and DPRECONV when it should be between BTOPVEC and PRECONV®?

Theorem 6.3.14. These adjunctions between BTOPVEC and DPRECONV define a positive interpretation of
MALL.

Proof. We showed the adjunctions in Proposition 6.3.13. We need now to show that the two closures define the
same action on the negatives. With the categorical notations of Section 2.5.2.3, this would amount to:

closy : TN*7 ~ (LN)*E.

Thus we must prove that for any pair (N7, N3) € DPRECONV we have:

— born = born
PM((Pr, P2)));, " = PHM((N1, N2))
This equation is straighforward, as (M((P1, P,)));, = (P2)u(p,)> Which is by definition bornological thus P((M((Py, P2))),, born. _
(Py, Py), and likewise P (M((Ny, No))™ ™" = (Py, P1) O

Remark 6.3.15. In this proof, we showed that the closure operation is the identity even on the interpretation of the
negatives. Thus one cannot argue that any computation is done here.
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6.4 CoNVv and COMPL, a positive interpretation of DiLLL

What has been done above for bornological spaces needs to be lifted to convenient spaces, that is bornological and
Mackey-complete spaces, in order to interpret smooth functions.

As explained in Section 6.1, we conducted in [17] a study on classical smooth models of Linear Logic in which
the % is interpreted as Swchartz’ € product. What is done here is very similar, but takes the view point of chiralities
and employs bornological spaces instead of Schwartz spaces. The construction with Schwartz spaces leads to a
x-autonomous category as the Schwartzification preserves the dual. This is not possible on bornological spaces:
the bornologification does not preserve the dual. Thus we have indeed for a bornological space E:

Lol —— \born
(Bmr) = ((ELL) ~FE
but writing £+ = (EL)bom we have
EY 2 E

as (EL)bOTn may have as dual a vector space strictly included in E.
Thus we make use of a polarized setting and of a dual characterization of bornological spaces (see proposition
6.4.9): a lcs is bornological if and only it is Mackey and its strong dual is complete.

6.4.1 Multiplicative connectives
6.4.1.1 An internal hom-set on convenient sets

This Section reviews results which can be found in [44, 13.1] or [26].

Proposition 6.4.1. If E is convenient (i.e. bornological and Mackey-complete), then E is endowed with the
topology B(E, E') of uniform convergence on weakly bounded subsets of E' (i.e on subsets B such that for every
x € E B(x) is bounded in K). That is, a convenient lcs is barrelled , see Section 3.4.4.

Proof. If E is bornological it is linearly homeomorphic to the inductive limit of the E'g, where B is an absolutely
convex and weakly closed bounded subset of E (see Proposition 6.2.6). When E' is Mackey-complete these Ep
are Banach spaces by definition. However a Banach space F'p is always barrelled: it is as all Ics endowed with the
topology of uniform convergence on equicontinuous subsets of E’; and these are exactly the simply bounded sets,
due to Banach Steinhaus theorem. Moreover, Ez has its Mackey-topology, and the Mackey-topology u(E, E’)
is preserved by inductive limits [44, 8.9.11]. Thus E as a bornological space is endowed with the topology
w(E,E") = indgp(Ep, Ey) = indgB(Ep, Ey). As a weakly bounded set in E’ is in particular a product
of weakly bounded subsets of E’;, and weak topologies are preserved by projective limits [44, 8.8.6], we have our
result. O

Thus, as a bornological space is always endowed in particular with its Mackey-topology u(E, E') (see Propo-
sition 6.2.6), we have that through the bipolar theorem:

Proposition 6.4.2. When E is a convenient space, the bornology p(E') of absolutely convex and weakly compact
subsets of E' and the one of absolutely convex and weakly closed bounded sets (i.e. of the bipolars of weakly
bounded sets in E') coincide.

From the fact that the space of linear bounded maps to a Mackey-complete Ics from another Ics is Mackey-
complete 6.2.19, we have immediately:

Proposition 6.4.3. If E is bornological and F' is Mackey-complete, then Lg(E, F') is Mackey-complete for any
les E.

From Proposition 6.4.2, we have thus:

Proposition 6.4.4. If E is convenient and F is Mackey-complete, then L, (E, F) is Mackey-complete for any lcs
E.

In particular, when we bornologise the hom-set we obtain a convenient space:
Corollary 6.4.5. If E and F are convenient vector spaces, the Ics Lo (E, F') is also convenient.

This results hints for a good chirality between convenient spaces (for the positives) and Mackey-complete spaces
(for the negatives). In fact, in order to ensure a good behaviour of the Mackey duals (for the negation), we will
need to consider complete and Mackey Ics as interpretation for the negatives, see Theorem 6.4.16.
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6.4.1.2 A duality theory for convenient spaces

We showed in Proposition 6.4.4 that the space of linear maps between a convenient space and a Mackey-complete
space is Mackey-complete. When we consider linear scalar forms, we have a stronger result which appears for
example in [44, 13.2.6]:

Proposition 6.4.6. If E' is bornological, then E;a is complete. Thus if E is bornological and Mackey-complete, EIQ
is complete.

Proof. The second assertion follows from the first by using Proposition 6.4.2. The first assertion is straightforward.
Consider ¢ € E,. It is linear as the pointwise limit of linear map. It is bounded: consider B bounded in E, then
there is £, € £ such that (¢ — £,,) € B°, thus £(B) c {(B) + By 1 where By is the unit ball in R. Thus £(B) is
bounded in R for any B bounded, thus ¢ is bounded and thus continuous as F is bornological. thus E' g = Eég O

Recall that the ¢ product (see Section 3.6.3), defined as EcF" := L. (E., F') is associative and commutative on
complete spaces.

Proposition 6.4.7. When E and F are convenient spaces, then we have a linear homeomorphism (E ®g F );L o~
EcF.
=t

Proof. We have the following computations:

(E®;p F)j3 ~ B(E x F,R)as E and F are bornological
~ L(E, F¥)
~ Ls(E, Fj)as E and F are bornological

As E and F are convenient, we have Lg(E, Fj;) ~ L, (F, F},) (Proposition 6.4.2). Moroever any weakly
compact set in £}, is compact as E, is endowed with its Mackey topology (see [68]), and thus (E},)., ~ (E},)},.
Finally, the equicontinuous subset of F seen as the dual of £}, are exactly the subsets of 1(E, £'): equicontinuous
subsets of £ are polars U° of open sets in EL, and open U sets in E;L are by definition polars W° of weakly
compact and absolutely convex subsets of E. By the bipolar theorem 3.4.1, equicontinuous subset of E are exactly
the subsets of (£, E'), and thus L, (E, F}) ~ L. (E, F}) ~ (E} )e(F),, by the preceding reasoning. O

We will also make use of Lemma 3.7 of [17], which relates Mackey-completions and Mackey-duals. We recall
it below:

Proposition 6.4.8. Consider E a space endowed with its Mackey-topology. Then EM s still endowed with the
Mackey-topology u(EM, E").

Proof. Remember that our Mackey-completion preserves the dual, thus M(EM , E') is indeed the Mackey topology
on EM . Moroever £ is constructed as the intersection EM of all Mackey-complete spaces containing F and
contained in the completion Eof E ._Therefore an absolutely convex weakly compact set in F” coincide for the
weak topologies induced by F' and F' and therefore also FM which is in between them. Thus the continuous
inclusions ((F},)],) — (FM )i)y — ((F)},)}, have always the induced topology. In the transfinite description of
the Mackey completion, the Cauchy sequences and the closures are the same in ( (ﬁ)L)L and F (since they have
same dual hence same bounded sets), therefore one finds the stated topological isomorphism. O

We adapt now a proof which can be found in [51, 28.5.4] or [44, 13.2.4]. The same generalisation can be found
in the unpublished Master’s report [27] by Gach, directed by Kriegl.

Proposition 6.4.9. Let E be a Mackey Ics such that E/Z is complete. Then E is bornological.
This uses Grothendieck’ characterization of completeness (Theorem 3.4.21).

Proof. Let E be a Mackey space whose strong dual is complete. By proposition 6.2.6 we just have to show that
E' = E*, ie. that any bounded linear function on E is continuous. Consider f € E*, let us show that f is
continuous. We make use of Grothendieck’s Theorem 3.4.21, which says that E], ~ EZL ~{f: F—K|VK c
E, K abs. convex weakly compactfix : Ky gy —> K} is continuous. Thus consider K a weakly compact
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absolutely convex subset of E. We consider the normed space E'x, normed with pg (see Definition 3.1.12). As K
is in particular bounded, we have that f is bounded and thus continuous on the normed space Ex endowed with

Pk-

However on K < FE the weak topology and px coincide. Indeed the weak topology is coarser than the one
induced by px on Ex (that is the intersection between Ex and a weak-open set is an open set for pg), K is
compact in Ex endowed with pg, and thus on K < E the weak topology and px coincide [51, 28.5.2].

Thus on K pk and the weak topology o(E, E’) correspond, and a bounded linear function f is in particular
linear continuous on K, (g gry. Thus E* ~ E. O]

Corollary 6.4.10. Let F' be a Mackey Ics which is complete. Then FZL is bornological.

Proof. Let us denote E := FL the Mackey-dual of E. Then EL ~ F as F is Mackey. Moreover, E/’B is endowed
with a topology which is finer (any weakly compact absolutely convex set is in particular weakly bounded and thus
bounded by Proposition 3.4.10). Thus as EL is complete, so is Eé Thus by proposition 6.4.9, as E' is Mackey as
it is defined as a Mackey-dual, we have that E is bornological. O

/

Corollary 6.4.11. When E and F' are Mackey and complete, their respective dual £, and F}, are bornological.
Since our Mackey-completion 6.2.22 preserve the dual, we have that:

E~(EY
= p

l],7
Fa (P
= B

that is ¥ and F' are the Mackey dual of convenient Ics.

Corollary 6.4.12. In particular, if E and F' are Mackey and Complete
EeF

is Mackey, as EeF' ~ (E/Q ®ps Fl;)’

w

6.4.1.3 A chirality between convenient and Complete and Mackey spaces

In the previous section, we showed a dual characterization between bornological spaces, whose strong dual is
complete, and complete and Mackey spaces, whose Mackey dual is bornological. We know prove a few more
results in order to show that we are indeed in the context of a strong monoidal adjunction of duals.

Proposition 6.4.13. If E is a convenient space and F is complete and Mackey, then we have natural bijections:
LB, ) ~ L(E., F)
) 1z - lu” )
which thus leads to and adjunction between
(L), : CONV —= COMPLMACKEY

and

(L)} : COMPLMACKEY — CONV.

Proof. The functors are is well defined: if E is convenient the E;/L is complete by proposition 6.4.6. Conversely if

~M
F is Mackey and complete, £, is convenient by corollary 6.4.11. Then the adjunction follows from the universal
property of the Mackey-completion for continuous linear maps (see Proposition 6.2.22):

L@

Y7

E) ~ L(F,,E)
as E is Mackey-complete, and from proposition 4.0.10 as E and F"L are Mackey:

L(F,,E)=L(E,,F).
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Remark 6.4.14. Beware that the terminology is particularly uneasy to handle: positives are interpreted by conve-
nient Ics, which are the bornological and Mackey-complete ones, while negatives are interpreted by Mackey and
Complete Ics. These Mackey and Complete Ics are Mackey-complete as they are complete, but they are more than
that.

Proposition 6.4.15. When E and F are complete Mackey spaces, then we have a bounded linear isomorphism
(that is an isomorphism in CONV):

A/ M //\M R M//\]W
(EgF)u = (E,u) ®[3 (F‘p,)
Proof. If E and F are complete and Mackey, we have by definition
(EeF), = L(E,, F) = £,(E,, F)

as equicontinuous in E; are the absolutely convex compact subsets of E, which are exactly the weakly compact

—M —M M,y ——M
as E is Mackey. As (Ej) and (F},) are convenient, we have on the other hand that: (E},) ®24(F/;) is
convenient, thus in particular Mackey and linearly homeomorphic to its double Mackey dual. Thus we get

//\M R M/,\]\/[ //\ , M ~ ,M
(EH) g (FM) ~ [E#(E;L’F)u] ~ (EeF) 2
via the functoriality of Mackey-Completion 6.2.22 and Lemma 6.4.8. O

Theorem 6.4.16. To sum up the two previous propositions, we have a strong monoidal adjunction:

O

/\

(CoNv, ®24) 1(COMPLMACKEY? , ¢)

(/_)\;LIVI
where the composition of the adjoint functors is the identity on CONV. They satisfy for E and F' objects of CONV
and G € COMPLMACKEY:

(E®5 F,GM)~L(E,F,®G). (6.1)

Proof. We are left with proving equation 6.1. Consider F and F' convenient spaces and GG a complete space. Then:

L((E®sF), G)

0

E®p F,G) as E ®g F is bornological (prop. 6.3.10
E,L(F,G),)) by the universal property of ®3 in BORNVEC
E Lg(F, G',)) as E and F are bornological
L,.(F,G,)) by Proposition 6.4.2
E, F % @) as F and G are endowed with their Mackey-topology

12

12

0

12

L(
L(
L(
L(E,
L(

By functoriality of the Mackey-completion, and as F' is already Mackey-complete, this is extended to an isomor-
phism
(E®B F,GM) ~ L(E, (F, 3 G)M).

Remark 6.4.17. We not are here in presence of a positive chirality, as we do not have an adjunction:

(@)
/\

CoNV 1 COMPLMACKEY

"\_/

(*) born
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The functors are well defined : the completion E of a complete space is till endowed by its Mackey-topology by
[44, 8.5.8]. The bornologification F*°™" of a complete space (thus in particular Mackey-complete) is still Mackey
complete as F°°" and F' have the same bounded subsets.

Moreover, by the universal property of the completion one has £(E, F) = L(E, F) when F is complete. As
E is bornological we have £(E, F) = L(E, F) which embeds boundedly in L(E, F**"™) as F and F*"™ have
the same bounded subsets. However this embedding is not a bijection. Thus the categorical setting developed in
Section 2.2.2 does not apply strictly speaking. It is however not an issue: both CONV and COMPLMACKEY embed
fully and faithfully in the category TOPVEC and we interpret proofs as arrows in TOPVEC (that is, as plain linear
continuous maps). Thus a proof of - N is interpreted as a function f € L(R, [N]) (and not f € L(JT1[, [N]) as
axiomatized in Section 2.2.2) and a proof of - P, N as an arrow f € L(([P]},, [N]) as usually.

Example 6.4.18. A typical complete and Mackey Ics is any Banach or Fréchet space. In particular, spaces of
smooth functions C*(R™,R) are complete and Mackey as they are metrisable and thus bornological. A typical
convenient space include any of the previous example, as well as any space of distribution which could be Mackey-
complete without being complete.

Outlook 8. It may be enough to consider ultrabornological spaces instead of convenient ones as an interpretation
for positive connectives.

6.4.2 Additive connectives and exponentials

In the previous section we constructed a polarized model of MALL. The interpretation of the additive connec-
tives is straightforward via the biproduct on vector spaces. Concerning the exponential, we choose an easy yet
disapointing solution by using the free exponential of Frolicher and Kriegl [? ].

We recall a few results from the literature:

Proposition 6.4.19. [44, 8.8] The Mackey topology is preserved via products, co-products and inductive limits.
Proposition 6.4.20. [53, 2.15] Mackey-completeness is preserved by products, co-products and projective limits.

Proposition 6.4.21. Bornological Ics are preserved by inductive limits of lcs ( [44, 13.1.5] ) and Mackey-completed
tensor product (Proposition 6.3.10)

Thus CONVMACKEY is endowed with a co-product and MACKEYMCO by product, which interprets the addi-
tive connectives of linear logic. As in all Ics, they correspond and finite indexes, and gives us a bi-product.

In this Section, we first explain how the exponential detailed in [6] would give us an ad-hoc exponential in our
model, and then develop a new one more fitting to the polarized setting.

A space of functions in COMPLMACKEY. The preceding Section gives us a positive model of MALL, which
should be extended into a model of DiLL or DiLLg. One could build a model of DiLL where positive would be
interpreted as bornological spaces, and negatives as pre-bornological Chu spaces as in Section 5.2. In this setting
without any completeness requirements on the negative, no smooth interpretation for the proofs should be possible.

Let us sketch how we could construct a good interpretation of 7 in COMPLMACKEY. One of the point of
Frolicher Kriegl and Michor is that “Smoothness of curves is a bornological concept" ( [53, 1.8]). Consider £
a Mackey-complete and bornological Ics. , thus the definition of Kriegl and Michor apply for spaces of smooth
functions applies to E:L:

Definition 6.4.22. [53, 3.11] Consider E a Mackey-complete and bornological Ics. Remember that then Eg ~ F,
is complete (see 6.4.6), and in particular Mackey-complete. The lcs C* (E;L, R) is the vector space of all smooth
functions f : E' — R such that for all smooth curve ¢ : R—=E| , f o c € C*(R,R). It is endowed with the
coarsest locally convex and separated topology making:

c*:C*(E,,R)—C*(R,R)

continuous, when C* (R, R) is endowed with its usual topology of uniform convergence of all derivatives of finite
order on every compact of R.

Thus C*(E’,R) is the projective limit of the spaces C* (R, R), indexed by curves ¢ : R — R (Lemma [53,
3.15]). This definition is to be put in relation with the higher order exponential constructed in Nuclear Spaces
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(see Section 7.5), where spaces of scalar function & (E) are also constructed as projective limits>. As a projective
limit of complete spaces, C*(E’,R) is complete, however we have no proof that it is Mackey, and thus no good
construction of the interpretation of 7 on the category COMPLMACKEY.

Outlook 9. If C*(E’,R) was to be Mackey, then its Mackey dual would be bornological (Proposition 6.4.9) and
thus we could define this way a functor ! : COMPLMACKEY — CONV, which would have to be proved strong
monoidal.

The Free exponential of Frolicher, Kriegl and Michor. The definitions of [6], recalled in Section 2.4.3 are
however adapted easily to an adjunction between CONV and COMPLMACKEY. The exponential is the bornologi-
fication of the Mackey-completion of the vector space having as basis the set of all §,, € C*(E,R)’, x € E.

E:= < 0(E) >""" < C*(E,R),,
This is a little disappointing, as the exponential is as hoc: it needs to be bornologified and completed.
IE:= < §(E) >""" c C*(E,R),,

Then we deduce from [26, 5.1.1], that we have a linear isomorphism preserving bounded subsets:

('E);L ~ ('E)/B ~ C*(E,R).
As the spaces considered are not in general bornological (they are duals of bornological spaces), this is however
not an isomorphism in TOPVEC. We need to bornologize these topologies to make this isomorphisms a topological
one.

We begin by pointing out that, in the construction of [26, 5.1.1] and [6], bornologicality is not necessary to
define | F, and that only Mackey-completeness is necessary. This was already discussed in Section 2.4.3, and the
definition on a theory of smooth functions on Mackey-complete spaces in [53]. Thus the functor ! described as an
endofunctor of CONV in [6] is well defined as a functor ! : McO — CONV.

Remark 6.4.23. The functor ! also defines a functor ! : MCO — CONV. and thus in particular an endofunctor of

Mco
Mco — CONV

Ew— <§(E)>"" (6.2)
Following [26, 5.1.1], when E, F' € MCO we have a natural bounded linear isomorphism:
C*(E,F)~Lg(lE, F)

resulting in an adjunction with bounded unit ng € C*(FE, E) and co-unit dp : |F'— F. Thus for E € Mco,
1 is a smooth, and for F' € CONV, dp is a bounded, equivalently continuous as !F" is bornological, linear map.
More specifically, as | E is bornological, we have Lg(1E, F') ~ L(!E, F). The co-multiplication of this adjunction,
which is defined as pp : |E —lE; §, — d5, is thus also continuous.

Proposition 6.4.24. For every E, F' € MCO we have a bijection natural in E and F':
Ls(!E,F) ~C*(E,F)
Definition 6.4.25. Let us denote by COMPLMACKEY® the category of Complete Mackey spaces and smooth
functions between them, as defined in Definition 6.4.22.
Definition 6.4.26. We define the following functors between COMPLMACKEY™ and CONV:

COMPLMACKEY® — CONV
I Ew— <6(E) > (6.3)
f o (f e LUE,F))o g

CONV —> COMPLMACKEY™
v FFypom (6.4)

J — [ otr ody(p) as defined in proof of prop. 6.4.24, and 1p : F' — F'

2They differs on the indexes of these projective limits
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One easily check that these functors are covariant. The lcs V(F') is well defined as the Mackey-topology on a
complete Ics is still complete [44, 8.5.8]. From Proposition 6.4.24 and the strong monoidality of ! (see Proposition
[6, 5.6] or Section 2.4.3) follows:

Proposition 6.4.27. We have a strong monoidal adjunction:

/\

(COMPLMACKEY®, x) L (CONV,®3)

\_/

s
The dual of this adjunction is:

w

TN

(COMPLMACKEY, €) L (CoNV® @)

\_/

78

with CONV™ the category of convenient spaces and smooth functions, and:

COMPLMACKEY —> CONV™

W E — Eeom (6.5)
f(dp) of
CONV® —= COMPLMACKEY
7 E — C*(E,R),,p) (6.6)

[ (pp) 0 C(f,0)

Co-dereliction is interpreted as in [6], thus resulting in a polarized and classical model of Differential Linear Logic.

Outlook: Exponentials as spaces of compact support distributions The preceding constructions are however
deceptive, as neither !F' nor 7FE are proved to be intrinsically convenient (resp. Mackey). In Section 7.5, we
construct an exponential !4; 5+ F (denote | F in that Section) as an inductive limit of spaces &”’(R"™) of distributions
with compact support.

We hint in Section 7.5.5 how this exponential could lead to a model of D:L L, agreeing with the adjunction:

ldistr

/\

(COMPLMACKEY®, x) L (CONV,®p3)

\_/
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Chapter 7

Distributions, a model of Smooth DiLL

As we pointed out in throughout this thesis, in a denotational model with reflexive spaces the exponential should
be thought of as a space of distributions with compact support, that is:

IE ~ C*(E,R).

Spaces of smooth functions are defined on euclidean spaces &£ = R", and endowed with the topology of uniform
convergence of all derivatives on every compact subset of R™ (Definition 3.2.4). Their main property is to be
Fréchet and Nuclear, and as such they are reflexive (see Proposition 7.2.25). Thus we begin this Chapter by
exposing the theory of Fréchet spaces and their dual in Section 7.1.1, then recall the definition and main properties
of Schwartz and Nuclear spaces in Section 7.2.2, thus allowing for a polarized model of MALL. To interpret the
exponentials, we detail in Section 7.3 the theory of distributions and their kernel theorems. This gives a model of
DiLL without higher-order, which is detailed in Section 7.4. We then extends this model to a model of DiL.Lj in
Section 7.5, by defining the exponential as a projective limit of spaces of distributions.

Notation 7.0.1. Unless it is mentioned otherwise, the notation E' here always refer to the strong dual E'ﬂ of the
les E. However, when E' is a reflexive space, it is Mackey and barrelled, and thus Eg ~ E[IL
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7.1 (F)-spaces and (DF)-spaces

We begin this Chapter by briefly exposing the duality theory for metrisable spaces. Indeed, the strong dual E/’@ of
a metrisable space E is not necessarily metrisable. In fact, if F and E’ are metrisable, then E is normable [44,
12.4.4]. Thus we will characterize the dual of metrisable spaces, which are necessarily complete, and built a model
of IM ALL in which % is in particular interpreted by the e-product.

7.1.1 The duality of (F)-spaces

Definition 7.1.1. Recall from Chapter 3, section 3.1, that a Ics is metrisable if and only if it admits a countable
basis of 0-neighbourhoods. A (F)-space, or Fréchet Ics, is a complete and metrisable Ics.

Proposition 7.1.2. A metrizable Ics, and in particular a (F)-space, is endowed with its Mackey topology.

Proof. A metrizable set is in particular bornological, and thus is Mackey by proposition 6.2.6. Indeed, in a Ics
metrizable with a metric d, bounded sets are generated by the closed ball B of the points at distance d(0,z) < 1
of the origin. Thus a set absorbing all bounded sets contains in particular AB for A > 0, and thus contains the open
set %B, and as such is a 0-neighbourhood. O

Definition 7.1.3. A (DF)-space (dual of Fréchet) is alcs E

e admitting a countable basis of bounded sets A = (A,,),, that is a collection of bounded set such that every
bounded set in included into an object of A,

e and such thatif (U, ),, is a sequence of closed and absolutely convex neighbourhoods of 0 whose intersection
U is bornivorous, then U is a neighbourhood of 0.

Remark 7.1.4. Tt is costless to ask that for every n, the set A,, is absolutely convex and A,, + A,, < A, 1. We
will therefore always suppose that this is the case.

Although definition 7.1.3 may seem obscure, it is the right one for interpreting the dual and pre-dual of (F)-
spaces.

Proposition 7.1.5 ([37] IV.3.1). e If F is metrisable, then its strong dual E' is a complete (DF)-space.
e IfE is a (DF)-space and F an (F)-space, then Lg(E, F) is an (F)-space. In particular, E' is an (F)-space.

Proposition 7.1.6 ([44] 12.4.2 and 15.6.2). The class of (DF)-spaces is preserved by countable inductive limits,
countable direct sums, quotient, completions and projective tensor product. The class of (F)-spaces is preserved
by products and completed projective tensor products @y.

Remark 7.1.7. A (F)-space which is also a (DF)-space is necessarily a normable Ics. Thus a nuclear (Definition
7.2.18) (F)-space and (DF)-space is a finite dimensional vector space (see proposition 7.2.21).

/_\
TopVEC T COMPL

Y

7.1.2 (F)-spaces and the < product

Remember that (F)-spaces are the complete metrisable topological vector spaces. From the literature [44, 16.1.3,
16.1.5, 16.2.6] we have:

Proposition 7.1.8. The € product of two (F)-spaces is again a (F)-space, and it is associative and symmetric on
the category FRE of (F)-spaces and linear continuous maps.

An important result is that Grothendieck’s problem (see section 3.6) is resolved for the «y-tensor product on
Fréchet spaces.

Lemma 7.1.9. When E and I are (F)-spaces, the compact subsets of E/ ®.,, F' are included in tensor products of
compact subsets of E and F' [44, 15.6.3]
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We now detail a remark appearing in the introduction of the first book of Schwartz on distributions with
vectorial values [67, Ch 1, 1.].

Proposition 7.1.10. Complete Mackey-spaces, and in particular (F)-spaces are ~y-reflexive.

Proof. Remember from section 3.5.1, corollary 3.5.7 that any Ics is semi-y-reflexive. A Ics F is y-reflexive, that is
linearly homeomorphic to (Eﬁ,)’v if and only if it is endowed by the topology of uniform convergence on absolutely
convex compact subsets of EfY

As alcs E is always endowed by the topology of uniform convergence on equicontinuous subsets of E’, and
equicontinuous sets are in particular compact in £’ (as they are weakly compact, and on equicontinuous sets the
topology of relatively compacts and the weak topology coincides, see 3.4.5 and 3.1.25), the topology induced by
(EL), ~ Eon E is finer than the topology of E.

As compact sets are in particular weakly compact, the topology induced by (E;)fy ~ F on FE is coarser than
the Mackey topology on E. Thus when E is Mackey and complete, the topology induced by (E”)’, ~ E on E is
exactly the topology of E:

!/ \/
(Ev) y = E.
O

We endow FRE with the completion ®,. of the projective tensor product, which preserves the class of (F)-spaces
[44, 15.1.1]. Then according to the generalization of a result of Buchwalter [44, 16.1.7], ¢ represents indeed the
dual of the tensor product:

Proposition 7.1.11. (Buchwalter equalities[44, 16.1.7]) When E and F are (F)-spaces, we have:
(E®,rF)£/ ~ (E;EF;)

and
! /A !
(EEF)7 ~ Ev®,rFA/.

Again, as already noticed in section 3.4.3, beware that the notation of Jarchow is not the same as ours, but
coincides on complete spaces. We don’t detail the proof of the previous proposition, which is detailed in the
litterature: what makes the Buchwalter equalities work is the fact that (F)-spaces are y-reflexive, but also that, due
to their metrisability, separately continuous and continuous bilinear maps defined on them coincide.

Proposition 7.1.12. Consider E, F (F)-spaces and G a complete space. Then we have: L,(E®.F,G) ~
L,(E,L,(F,G)).

Proof. This is due to a particular case where Grothendieck’s “probléme des topologies" is solved: any compact set
in E®, F is the convex closure of the tensor product of a compact set in E and a compact set in F' [68][Chapter
IL. 1. proposition 1]. Thus if we have the algebraic equality between L.(E®,F,G) and L.(E, L(F,G)), their
topology correspond. Now a linear continuous function between E®, F to G, coincide to a bilinear continuous
function from E x F' to G. This function is in particular «-hypocontinuous, and thus coincides to an element of
L.(E,L(F,Q)). Conversely, as E and F are (F)-spaces, a bilinear separately continuous function from F ® F' to
G in continuous, thus we have the injection L.(E, L(F,G)) — L(EQ. F, G). O

functor (_)!, : (FRE, &, R)—=(COMPL?, &, R). We would like to describe one of this functors as the left adjoint
in a strong monoidal adjunction, thus describing a polarized model of MALL. However the y-dual (i.e. the Arens
dual) of a complete space is not necessarily metrizable, but the 5-dual of a (DF)-space is. However we saw that
the class of DF subspaces preserved by &, and its completion. Thus we want to state the above monoidal functors
using the strong dual /3, for which we have a good duality theory between (F)-spaces and (DF)-spaces.

Thus we have a strong monoidal functor: (_)!, : (FRE,®,,R) — (COMPL, ¢, R) and a strong-monoidal

7.2 Nuclear and Schwartz’ spaces

7.2.1 Schwartz spaces

Other convergence can be defined on the dual of £’, and plays an important role in this thesis. For example,
Grothendieck’s theorem allows to understand the completion E of a Ics E' as some double dual of £. We begin by
defining a notion of continuity by restricting it on equicontinuous subsets of E’.
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Definition 7.2.1. A map f : E' — F is said to be y-continuous if, for every equicontinuous subset H < FE’, the
restriction of f to H is continuous for the relativised weak* topology o(E’, E') on H.

To this notion of continuity coincides a notion of convergence for filters in £’

Definition 7.2.2. A filter 7 — E’ (see Definition 3.0.4) is said to be y-convergent, or to be continuously converging
towards £, if there is an equicontinuous subset H — E’, H € F such that £ € H, and the restriction of F to H
converges weakly in .

Remark 7.2.3. [44, 9.1.3] This notion of convergence never coincides with a topology on E’ if F is infinite
dimensional.

A stronger notion of convergence can be defined, relating the convergence of a filter locally in an equicon-
tinuous subset, see definition 3.1.12. Remember that the polar of a 0-neighborhood U*° is absolutely convex and
weakly closed in E!,, and thus one can define local convergence in the normed space Ej;. (see definition 3.1.12).
In particular, as U® is weakly-complete, the normed space Ej;. is a Banach.

Definition 7.2.4. Consider a filter ¥ < E’. Then we say that F converges equicontinuously to £ if there is a
0-neighbourhood U such that F — ¢ converges to 0 in the Banach space Ef;..

Then of course equicontinuous convergence implies continuous convergence to the same limit. Schwartz spaces
characterize the Ics where the converse is true.

Definition 7.2.5. A lcs F is a Schwartz space if every continuous filter in £’ converges equicontinuously.

Equivalently, it means that for every 0-neighbourhood U there is V' < U such that U° is compact in FY,..
Indeed, the filter whose trace is weakly-convergent in U® is then going to converge in EY, ..

Example 7.2.6. Let us consider some example of Schwartz spaces:

e A space E, « endowed with its weak™ topology is always a Schwartz space: indeed, equicontinuous subsets
of (E,#) are bipolars of finite subsets of E’, thus absolutely convex weak closures of finite subsets of E’. If
a filter (£,), converges weakly in some {/1, ..., ¢, }"° it will converge for the norm on Ey, ... 0,10, which
is:
O sup{\ | Me {€y, ... 0,}°°}.

e The spaces of smooth functions C*(R™), C*(R™) and the euclidean spaces are Schwartz spaces, but no
infinite dimensional Banach space is.

Proposition 7.2.7. [44, 21.2.3] The class of Schwartz spaces is preserved by completions, cartesian products,
countable direct sums, projective tensor products, subspaces and quotients.

Proposition 7.2.8. [44, 10.4.1] A lcs E is Schwartz if and only if it is endowed with the topology of uniform
convergence on the sequences in E' which converges equicontinuously to 0.

The previous proposition, which we won’t prove, leads to a closure operation making any Ics a Schwartz space:

Definition 7.2.9. Consider F any lcs. We denote by E the vector space £ endowed with the topology 7, of
uniform convergence on the the sequences in E’ with converges equicontinuously to 0.

Then Ej is a Schwartz space. Its topology 7, is coarser than the original one T as 7 is the topology of
uniform convergence on every equicontinuous subset (proposition 3.4.18). But 7., is also finer than the weak*
topology on E, which can be seen as the topology of uniform convergence on all finite sequences of E’ (as finite
sequences can be considered in particular as equicontinuously converging to 0). Thus we have continuous linear
embeddings:

E > Ey— E,x.

Taking the dual of these embeddings leads by Hahn-Banach theorem 3.3.4 to linear continuous injections E'—(Fy)'—=F’,
thus:

Proposition 7.2.10. The dual of E is still (Ey) = E'.

Hence every weakly continuous linear map f : E — F also defines a weakly continuous linear map f :
Ey— F, and E — Ej is a closure operation (definition 3.0.2) in the category of weak spaces and continuous
linear maps.

127



Proposition 7.2.11. [44, 10.4.4] T., is the finest Schwartz topology on E which is coarser than T .
We will now recall two fundamental properties of Schwartz spaces:
Proposition 7.2.12. [44, 10.4.3] A Schwartz space is normed if and only if it is finite dimensional.

Theorem 7.2.13. [44, 10.5.1] Every Schwartz space E is linearly homeomorphic to a subspace of the cartesian
product (co)} for some set I.

Theorem 7.2.14. [44, 21.1.7] Schwartz spaces are preserved by arbritrary cartesian product, countable co-
product and arbitrary subspaces.

Proposition 7.2.15. [44, 10.4.3] Bounded subsets of a Schwartz space are precompact. Thus a complete Schwartz
space is y-reflexive, and a (F)-space which is also a Schwartz space is [3-reflexive.

Proof. When E is complete and Schwartz we have thus that the bounded sets of E are compact, and thus E’ is
endowed with the y-topology of uniform convergence on absolutely convex compact subsets of F. O

Proposition 7.2.16. [44, 12.5.8] The Arens dual E; of a metrizable complete space is a Schwartz DF space.

Consider FRESCHW (resp. DFSCHW) the subcategory of TOPVEC made of (F)-space Schwartz (resp. (DF)-
space) Ics. Because (F)-spaces are v-reflexive, as metrizable spaces are in particular Mackey (see proposition
7.1.2), we have thus a left polarized closure:

(FRESCHW,®,,R) T (DFSCHW?, ¢ R)

\/

)%

Proof. The adjunction follows from the fact that a (F)-space is endowed with its y-topology, or said otherwise that
a (F)-space is ~y-reflexive. Thus the dual f’ of a linear map f : B\ — F'is a linear map f" : F) — (E.)., as E/
is endowed with its Mackey topology (see [44, 8.6.5]). See section 3.5.3

We would like to extend this closure to a model of DiLL. This asks for a strong monoidal functor playing the
role of an exponential. However, to prove this strong monoidality the setting of nuclear spaces is better-suited.
The Kernel theorem 7.3.9, proving the strong monoidality of an exponential interpreted as a space of distributions,
is also valid in our setting as spaces of distributions are Schwartz, but it uses the nuclearity of the spaces of
distributions.

7.2.2 Nuclear spaces

The theory of nuclear spaces will allow us to interpreted the involutive negation of DiLL, and as the same time
the theory of exponentials as distributions. Nuclear Ics can be understood through two approaches: one uses the
theory of nuclear operators [44, 17.3] [76, 47] while the other uses the theory of topological vector spaces. We
refer to the book by Treves [76] for a nice introduction to these notions, although [44] contains all the necessary
material also.

Definition 7.2.17. A linear map f from a Ics E to a Banach X is said to be nuclear if there is an equicontinuous
sequence (a,,) in E’, a bounded sequence (y,,) in X, and a sequence (\,,) € I; such that forall z € E:

(@) = 3 At (@)

Definition 7.2.18. Consider E alcs. We say that E is nuclear if every continuous linear map of E into any Banach
space is nuclear.

Proposition 7.2.19. [76, Thm 50.1] The following propositions are equivalent:

o F is nuclear,
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e For every for every Hausdorff space E, there is a linear homeomorphism

E®,F~FEQ®.F,

e For every semi-norm p on E, there is a semi-norm q finer than p such that the continuous linear injection

(E,) — (E,)" is nuclear.

Remember from section 3.1.2 that E,, denotes the normed space E/Ker(p) normed by p, that Ep is thus a

Banach space, and (E,)" endowed with the dual Banach topology. (E,)’ is also the linear span in E” of the polar
U,° of the closed unit ball U), of p.
One of the interests of nuclearity lies in its remarkable stability property:

Proposition 7.2.20 ([44] 21.2.3). The class of nuclear spaces is preserves by completions, projective limits, count-
able inductive limits, projective tensor products, subspaces and quotients.

Proposition 7.2.21. The only nuclear normed spaces are the finite-dimensional ones.

Proof. This uses the fact that bounded sets of nuclear Ics are precompact [76, prop. 50.2]: nuclear maps are in
particular compact (sending bounded onto relatively compact subsets). If £ is nuclear, then for every absolutely
convex neighbourhood U of E the linear mapping E—s Ey; is compact, where Ey; denotes the normed associated
with U, that is the quotient of E by the kernel of the semi-norm associated with U. In particular, the image of a
bounded set B is compact in any of the Ey, thus precompact in E.

If moreover F is normed, then every bounded set is relatively compact, that is £ has the Heine-Borel property.
But only finite-dimensional normed space have the Heine-Borel property. O

This proposition is important for the development of Smooth DiLL in section 7.4. It means that we have a gap
between finite data (R™) and the smooth computations we make from these data C*°(R"™).

Example 7.2.22. The following Ics, introduced in 3.2, are nuclear (see [76, ch.51] for the proofs):
e Any finite dimensional vector space R"”,

e The spaces of smooth functions D(R™) = C¥(R",R), &(R™) = C*(R™,R) and their duals D’(R™) and
E'(R™) (see section 3.2).

e The Kothe space s of rapidly decreasing sequences:
s={(A)n e KN | VEe N, (\,n¥), € (1}
This definition generalizes to spaces of rapidly decreasing sequences of tuples in (R")Z.

e The space of tame functions
S(R") := {f e C*(R"),VP,Q € R[ X1, ..., X,,], sup,, |P(2)Q(0/0z) f (z)| < oo}!

and its dual S'(R™) the space of tempered distributions. These spaces will be studied in section 7.3.4.

Interestingly, the nuclearity of the considered spaces of functions relies on the nuclearity of the Kéthe space s.
Indeed, the space of tempered functions is isomorphic to a subspace of s, the space of compact supported smooth
functions is a subspace of the space of tempered functions; and the space of smooth functions is the projective
limit of the space of smooth functions with compact support.

Outlook 10. This fact hints for a general correspondence between smooth models of LL and K&the spaces, via
Fourier transform (see [76, Theorem 51.3]).

Lemma 7.2.23. [66, I11.7.2.2] Every bounded subset of a nuclear space is precompact.

IThe notation Q(9/0x) will be used in Chapter 8, and represents a linear partial differential operator with finite coefficients. If
Q(X1,..Xn) 1= Y eyn @a X7 1... X3, then Q(J/0z) represents the operator

||
feCPR") — (a: — Zaaaf(x)) .

« «
ox(t...0xy"
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Proof. Consider E a nuclear space and B bounded in E. Consider U a basis of absolutely convex closed neigh-
bourhoods of E. As a lcs, EY embeds in the product of Banach ]_[Ueu FEy, and thus B embeds into HUeu FEpyasa

product of bounded subsets via maps qi : £ — E\;] These maps are in particular nuclear. Now we use the fact
that nuclear maps are compact [76, 47.3], that is send a O-neighbourhood U (the polar of the closure of the (a,,)
in definition 7.2.17 ) into a precompact set (the closed hull of the y;,) by definition ??. Thus B, absorbed by U,
is precompact as its image is precompact, and we can recover B by reverse image by gy of open sets (thus open
sets). O

Proposition 7.2.24. A complete nuclear lcs E is semi-[(-reflexive.

Proof. By lemma 7.2.23, the bounded sets of E are compact, and thus F” is endowed with the «-topology of
uniform convergence on absolutely convex compact subsets of F'. By the corollary to the Mackey-Arens theorem
3.5.7, this makes F' semi-reflexive. O

It follows then immediately that:
Theorem 7.2.25. An (F)-space F which is also nuclear is reflexive.

Proof. A semi-(-reflexive metrisable space is [-reflexive: when F' is metrisable FE-equicontinuous sets and E-
weakly bounded sets coincides in E’ [44, 8.5.1]. O

Corollary 7.2.26. A fundamental consequence of the previous lemma is that spaces of smooth functions and spaces
distributions with compact support, respectively denoted by £(R™) and £’ (R™), defined in section are reflexive.

Another property of nuclear spaces is that they allow for a polarized model of MALL with nuclear (F)-spaces
and nuclear (DF)-spaces, as the class of nuclear (DF)-spaces is stable by fensor product.

Proposition 7.2.27. e Consider E a lcs which is either an (F)-space or a (DF)-space. Then E is nuclear if
and only if E' is nuclear [36, Chap II, 2.1, Thm 7].
e [F E is a complete (DF)-space and if F' is nuclear, then L,(E, F) is nuclear. If moreover F is an (F)-space
or a (DF)-space, then L,(E, F) is nuclear [36, Chapter II, 2.2, Thm 9, Cor. 3]. As a corollary, the dual of
a nuclear (DF)-space is a nuclear (F)-space.

Proposition 7.2.28 ([36] Chapter I, 2.2, Thm 9). If E and F' are both nuclear (DF)-spaces, then so is E @, F.

A central result of the theory of nuclear spaces is the following proposition. It is proved by applying the
hypothesis that F is reflexive and thus E’ is complete and barrelled, and thus applying the hypothesis of [76, 50.4].

Proposition 7.2.29 ([76] prop. 50.4). Consider E a nuclear (F)-space, and F a complete space. Then EQ,F ~
Ls(E', F).

Proposition 7.2.29 follows from the fact that £ ® F is dense in L.(E’, F), due to the fact that nuclear spaces
satisfy a good approximation property (see [44, Chapter 18]). Thus when F' is complete we have an isomorphism
between the completed tensor product and the space of linear functions. As E' is an (F)-space and thus barrelled,
L.(E',F)~ Lz(E', F). The following result specifies Buchwalter equalities 7.1.11:

Proposition 7.2.30. [76, 50.7] When E and F are nuclear (F)-spaces, then writing @ equivalently for the com-
pleted projective or completed injective tensor product, we have:

(EQF) ~B(E,F) ~ E'QF'.

Proof. Remember that B(E, F') represents the bilinear continuous scalar functions on E x F. As F and F are in
particular metrizable, we have that B(E, F') = Z(FE, F'), the space of separately continuous bilinear maps. Thus
B(E,F) = L(E, F'), and via Proposition 7.2.29 we have L(E, F’") ~ E'®, F’ as E is reflexive. Moreover, @
is universal for the continuous bilinear maps, and via the universal property for the completion we have moreover:
(EQF)" ~ B(E, F) when the last space is endowed with the topology of uniform convergence on bounded subsets
of EQF. Let us show that the linear isomorphism B(E, F) = L(E, F’) is also a linear homeomorphism when
B(E, F) is endowed with this topology convergence on bounded subsets of EQF. As open subsets of £(E, F")
are generated by the Wpg,, B,o where Br and B are bounded respectively in £/ and F', we must then show that:
bounded subsets of & F' are contained in the absolutely convex closure of tensor products By ® Br of bounded
subsets of E and F' respectively.
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However, we know from proposition 7.2.20 that as E and F' are nuclear, so is £ ® F'. Thus bounded subsets of
E® F, FE and F are precompact thanks to lemma 7.2.23, and thus relatively compact as these spaces are (F)-
space and in particular complete. However, (F)-spaces satisfy Grothendieck problemes des topologies for compact
subsets, as already seen in the proof of 7.1.12: a compact subset of E®, F is the convex hull of a tensor of compact
sets. This can be proved simply by considering that the elements of a projective tensor product of (F)-space are
absolutely convergent series
DAt @ yn

where Y | A, |< 1 and (z,,) and (y,,) are sequences converging to 0 in E and F respectively [76][45.1, corrolary
2]. Thus bounded subsets of E @ F' are contained in the convex balanced hull of tensor products B ® Br of
compacts, thus bounded, subsets of E and F’ respectively, and we have B(E, F) ~ L(E, F’). O

7.2.3 A polarized model of MALL

Notation 7.2.31. We write NF the category of Nuclear (F)-spaces and continuous linear maps, NDF the category of
complete Nuclear (DF)-spaces and continuous linear maps, and EUCL the subcategory of both formed of euclidean
spaces.

Let us begin with an important negative statement:

Remark 7.2.32. The categories of Nuclear (F)-spaces and the one of nuclear (DF)-spaces do not form a dialogue
chirality (definition 2.3.12). Indeed, the strong dual £ € NDF — E,g e NDF is in adjunction with £ € NDF +—
E;i € NF (see next proposition). However, there is no shift | : NF — NDF allowing to see Nuclear (F)-spaces
as a particular case of Nuclear DF spaces. In fact, a nuclear (F)-space which is also a (DF)-space is necessarily a
euclidean space.

Proof. This proof follows [44, 12.4.4]: a Ics which is an (F)-space and a (DF)-space is normable. Following [44,
9.31], if there is a linear topology on E’ such that the bilinear form (z,¢) € E x E’ +— {(z) is continuous (and
not only separately continuous), then F is normable. In our case, the strong topology makes E’ a Fréchet space,
and thus the separately continuous map on F x E’ is continuous. As normable nuclear space, F is thus finite
dimensional. O

Thus one must interpret proofs as maps in a category including NF and its duals, for example the category of
complete Ics.

Notation 7.2.33. As in Chapter 6, we denote by COMPL the category of complete spaces and continuous linear
maps between them. We denote by _ : TOPVEC — COMPL the completion functor. As we are considering nuclear
spaces, we denote by @ the completed projective or equivalently injective tensor product. Following the usual
convention in 6, NDFCOMPL denotes the category of complete and nuclear (DF)-spaces.

Proposition 7.2.34. We have a strong monoidal adjunction:

(s
T

(NDFCOMPL,®,R) T (NF?,®,R)

\/

QF
such that we have a natural isomorphism for E € NDFCOMPL, F, G € NF:
Ls(E, FRG) ~ Lz(EQF',G)

Proof. The fact that the left and right negations (—)/B send indeed an (F)-space on a (DF)-space follows from
proposition 7.1.6 and section 7.1.1. They are strong monoidal functors thanks to proposition 7.2.30. They are
adjoint as the spaces in NF and NDF are reflexive: L(E, F') ~ L(F, E') by proposition 3.5.17.
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Consider E € NDFCOMPL, and F, G € NF. The equation £L(E, F®G) ~ E(E@E'ﬁ, G) follows from propo-
sition 7.2.29 and the associativity of the projective tensor product:

Ls(E,FRG) ~ L5((FRG)', E") by 3.5.17
~ (F®G)®E' by proposition 7.2.29, as F®G is a nuclear (F)-space
~ GR(E'Q®F") by reflexivity of I and associativity of ®
~ GR®(F'®E)’ by proposition 7.2.30
~ L(EQF’,G) by proposition 7.2.29.

O

Interpreting MALL Thus we have a polarized model of MALL, where formulas are interpreted as complete
spaces. Negative formulas are interpreted by Nuclear (F)-spaces. Positive spaces are interpreted as duals of nuclear
(F)-spaces, thus complete nuclear (DF)-spaces. We interpret the formulas of MALL as in negative chiralities
(definition 2.3.21). Consider M = My, ..., M,, a list of negative formulas and P a positive formula. Then one
interprets a proof

[7]
=M,P
of LL,, as a morphism in COMPL:
[#] € L(P', Mi®...QM,,).
Through the strong monoidal closure between the negations, this is equivalent to interpreting a proof of the sequent
in COMPL(P' ® ...QM,, P). A proof of the sequent - M is interpreted as:
[7] € LR, M1 &...QM,,)

The interpretation of connectives follows the one of section 2.3.2.3. The only difference is that the cut-rule coin-
cides to the composition of linear continuous functions in COMPL. The T is interpreted as the completion making
a space in NDF complete.

7.3 Kernel theorems and Distributions

Traditionally, one tackles the search for a denotational model of LL by looking for a cartesian closed category,
which will allow for an interpretation of the Seely isomorphism. Here, we take another point of view by looking
for strong monoidal functors. Let us denote informally spaces of distributions are the duals of spaces of smooth
functions: &’ (R™) := (C*(R™,R))’. In particular, if f is a function with compact support, then for any smooth
function h the integral

J F@)h(z)dz

is well defined, and defines a distribution T : h +— { f(z)h(z)dz. Now if you consider natural numbers n and m,
then any distribution & in C* (R™*™ R)’ defines a linear operator, called Kernel, K : C*(R", R)—C*(R™,R)":

KR)(W) =k((x1, ey Ty Y1,y -0, Ym) — h(2)R ().

Schwartz’s theorem says that the converse operation always possible: from a kernel K one can constructs a distri-
bution k. In linear logic, if we denote IR™ := (C*(R™,R))’ this amounts to say that

I(R™ x R™) ~ IR™ % IR™,

In fact, because we will work with nuclear spaces, this % is a completed tensor product, which is associative and
commutative on (F)-spaces.

In this Chapter we will try to look for denotational models of LL and DiLL in which the exponential is inter-
preted by spaces of distributions. This will lead us to some intermediate syntax ( Smooth DiLL), of DiLL without
higher order, and we will then exploit a categorical extension of distributions to interpret higher order terms.
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Notation 7.3.1. If X is an open subset of R", we denote by CE (X)) the vector space of all smooth functions
I+ X —R with compact support (i.e. there is K compact in X such that if v € X\K, f(z) = 0). It is a lcs when
endowed with the topology of uniform convergence of all derivatives of finite order on every compact of X. This
topology has been described in Definition 3.2.6. This space is sometimes called the space of test functions, and
denoted by D(R™) or D(X).

Notation 7.3.2. If X is an open subset of R™, we denote by C*(X) the vector space of all smooth functions
[+ X—=R Itis alcs when endowed with the topology of uniform convergence of all derivatives of finite order on
every compact of X. This topology has been described Definition 3.2.6. Following the literature it is also denoted
by &(X) or &R"™).

7.3.1 Kernel theorems for functions

Kernel theorems come from the fact that one can approximate functions with compact support by polynomials
(their Taylor sums in fact, see Chapter 15 of [76]).

Proposition 7.3.3. [76, 39.2] Consider X (resp. Y ) an open subset of R™ (resp. R™). Then the algebraic tensor
product CP(X) ® CP(Y) is sequentially dense in CX(X x Y).

The proof of the previous theorem consists in approximating a function in C2°(X x Y') by polynomials (P ),
and then using partition of the unity g and h onthe projection on X or Y of the support of f, to define a sequence of
polynomials (g ® h) P which converge to f in C°(X x Y'). This theorem is also true under a refined statement:
CF(o0, X) ® CL(Y) is sequentially dense in CX*(X x Y)2.

From this theorem we deduce:

Proposition 7.3.4. Consider X (resp. Y') an open subset of R™ (resp. R™). Then the algebraic tensor product
C*(X)®C™®(Y) is sequentially dense in C*(X x Y).

The following kernel theorem for functions is a direct consequence of the fact that the considered spaces of
functions are nuclear.

Theorem 7.3.5. [76, Theorems 39.2 and 51.6] Consider X (resp. Y ) an open subset of R™ (resp. R™). Then we
have the linear homeomorphism:
CP(X)RCP(Y) ~CP(X xY).

Proof. In the previous theorem, the connector ® equivalently denotes the completed projective tensor product or
the completed injective tensor product, as it involves nuclear spaces. Let us show that the Ics C*(X x Y) induces
on the vector space C*(X) ® C*(Y) the topology ®, = ®.. As the second is dense in the first, and the first is
complete, the completion of the second will be linearly homeomorphic to the first.
The topology induced by C* (X x Y) is coarser than the projective topology: indeed the bilinear mapping
CP(X) xC®(Y)—=C® (X xY) is separately continuous and thus continuous as we are dealing with (F)-spaces.
The topology induced by C*(X x Y') is finer than the injective topology: tensor product A ® B of equicon-
tinuous sets in C* (X)’ and C*(Y")’ respectively are equicontinuous in C* (X x Y')'.
Thus the topology induced by C*°(X x Y") on C*(X)®C*(Y") is exactly the projective and injective topology.
O

Kernel theorems for other spaces of functions Various forms of kernel theorems exists for formal power series,
holomorphic functions (spaces of holomorphic functions are also nuclear), spaces C2°(R™) of smooth functions
with compact support, and measurable functions.

Let us emphasize what happens for measurable functions. From the same techniques one deduces that, for
1 <p < oo, LP(X)® LP(X) is dense in LP(X x Y) where X and Y are measurable spaces (showing that
measurable maps forms a good basis to model probabilistic programs). However this density result on measurable
maps could not lead to an isomorphism as introduced in the introduction of section 7.3, by detailing the particular
case of L2(X). The dual of L?(X) is also L?(X), and any linear map k € L?(X x Y induces indeed a "kernel"
K : L*(X)—= L?(Y) ~ L?(X) through the computation exposed in the introduction of the section:

K(feL*(X)):ge L*(Y) = k((z,y) = f(2)9(y))-

2that is, every point of C¥ (X x Y') is the limit of a sequence, and not only a filter, in C¥ (X ) ® CL(Y)
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This embedding of L?(X x Y) into £(L?*(X), L3(Y)’) is however not surjective. Indeed when X = Y the
identity K = Idz2(x) is an element of £(L?(X), L*(X)") = L(L*(X), L*(X)), while it would coincide to

k:heLl*(X,Y) 0,y(# 0iff z = y)

which is not a measurable function on X x Y.
This coincides to the necessity to consider spaces of distributions in generality, spaces which includes in par-
ticular Dirac maps.

7.3.2 Distributions and distributions with compact support

Interpreting the exponential by spaces of distributions with compact support is recurrent in models of Linear Logic.
Following a remark by Frolicher and Kriegl, the authors of [6] point out that their exponential coincides with the
space of distributions with compact support when the exponential is defined on a euclidean space R™ [26, 5.1.8].
In K&the spaces, Ehrhard notes that !1 contains the distributions with compact support on R.

Notation 7.3.6. The strong dual of D(X) is called the space of distributions and denoted D' (X). The strong dual
of &(X) is called the space of distributions with compact support and denoted &' (X).

The idea is that distributions are generalized smooth functions and distributions with compact support are
generalized functions with compact support.
Indeed, any smooth scalar function f defines a distribution

Tf:geD(R”)»—»Jfg

while smooth scalar function with compact support defines a distribution with compact support:

Tf:geg(R")HJfg.

The integral is well-defined as in each case, f or g has compact support.
Proposition 7.3.7. For any n € N, E(R") is an (F') — space and E'(R™) is a complete (DF') — space.

Example 7.3.8. A distribution must be considered as a generalized function, and acts as such. The key idea is that,
if f € C2(R™) then on defines a compact distribution by

g Co(®) > | f@)g(a)da.

Typical examples of distributions which do not follow this pattern are the dirac distribution or its iterated deriva-
tives: for z € R™ one defines the dirac at z as: 6, : f € E(R™) — f(z). Then 5 : f — (—=1)k f(*)(0).
Taking the strong dual of the kernel theorem for functions 7.3.5 gives:
&' R™ x R™) ~ ((£R™)QER™))'.

Let us recall that as & (R™) is a nuclear space, the operator ® equivalently denotes the projective tensor product
®, or the injective tensor product ®.. However as & (R™) is a (F)-space we have through proposition 7.2.30 that
(ERMRE(R™)) ~ &' (R™)XE'(R™) and thus:

Theorem 7.3.9 ([76] 51.6). For any n,m € N we have:
E/(R™™) = £/(RM@,E (R™) = L(E'(R™), E(R™))

Definition 7.3.10. The support of a distribution ¢ € D’(R"™) is the set of points € R™ such that there is no
neighbourhood U of x, with a non-null function f € C°(R™)whose support is included in U such that ¢(f) = 0.

Then the terminology is coherent: the distributions in D’(R™) which have compact support are exactly the
distributions which extends to & (R™). This is proved for example by Hormander in [41, 1.5.2].
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7.3.3 Distributions and convolution product

Definition 7.3.11. Consider n € N and ) an open set in R”. We consider the space of smooth functions with
compact support D(Q) := CL (2, R) endowed with the topology described in 3.2.2, and its strong dual D’'(2) :=
CE(Q,R)%.

Then we have in particular D(Q2) < &(), the first being dense in the second, and thus &’ (Q2) < D'(Q).

Definition 7.3.12. Consider f and g two continuous functions on R"”, one of which has compact support. Then
we have a continuous function f * g with compact support:

frgiax— Jf(m —y)g(y)dy.

This operation called the convolution of functions, and is commutative and associative on functions when at leat
two of the functions considered have compact suupport[41, Thm 1.6.2].

Definition 7.3.13. We define the convolution between a distribution ¢ € D’(R™) and a function f € CZ°(R™) as
the function ¢ = f : © — ¢(y — f(x—y)). Then ¢+ f € C*°(R™). In particular, beware that the function resulting
from the convolution does not necessarily have a compact support.

Remark 7.3.14. For any f € CX(R™) we have dp * f = f.

Convolution is now extended to a convolution product between distributions by the following unicity results.

Proposition 7.3.15. [41, Thm 1.6.3] CZ(R"™) is sequentially dense in C*(R™), and thus C*(R") is weakly se-
quentially dense in D' (R"™).

Proof. The first assertion follows by definition of the topology on C*(R™), and by multiplying a function f by
partition of the unity. Thus by Hahn-Banach C*(R™) is sequentially dense in D’(R") endowed with its weak
topology. O

Proposition 7.3.16. [41, Thm 1.6.4] Consider a continuous linear mapping U : C°(R™) — C*(R) which com-
mutes with translations. Then there is a unique ¢ € D' (R™) such that U(f) = ¢ = f for all f € CX(R™).

Proof. The function ¢ : f — U(f)(0) is linear and continuous and thus ¢ € D’'(R™). We have indeed for x € R™:
pxu(x) =y — fle —y)) = Uy — f(z —y))(0), and this equals U(f)(z) as U is invariant by translation.
The unicity of ¢ follows from the previous theorem. O

Definition 7.3.17. Consider ¢) € £'(R™) and ¢ € D’'(R™). Then ¢ = 1) is the unique distribution in D’(R™) such
that:

VfeDR™), (pxv)* [ == (Y= f)

This definition is made possible by the fact that f — ¢ = (¢ = f) is invariant by translation. Thus ¢ = v is
definedas ¢« : f = @ = (b= f)(0) = ¢y = b= f(0—y)) = d(y = ¥(z = f(y — 2)).

Proposition 7.3.18. [4], Thm 1.6.5] The convolution product defines a commutative operation on ' (R™), and the
support of ¢ = 1 is included in the sum of the support of ¢ and i respectively. If ¢, ¢' € E'(R™) and ip € D'(R™),
then we have associativity:

¢x (Y g)) = (¢x1))x¢f

Remark 7.3.19. By definition and proposition 7.3.16, the convolution product is a bilinear continuous operation
x: D'(R™) x &' (R™)—=&"(R™). The previous theorem implies that it is a commutative and associative operation,
and moreover that it preserves &’ (R™): if ¢ and v have compact support, then so has ¢ = 1.

As a corollary, we have the following domains of definition for the convolution product. This classification
will be important for the model considered below in section 7.4, and later in Chapter 8.

Proposition 7.3.20. The convolution product= defines a bilinear continuous function:
e from &' (R™) x D'(R™) to D' (R™),
e from &' (R™) x &' (R™) to &' (R™).
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7.3.4 Other spaces of distributions and Fourier transforms
We refer to [76] for this section, and in particular to Chapter 25.

Definition 7.3.21. The space of tempered functions is defined as

SR™) :={f e C*(R"),VP,Q € R[ X1, ..., X;,], sup |P(z)Q(0/dx) f(x)| < oo}

zeRn
and is endowed with the topology generated by the semi-norms ||_||  : f — sup, |P(z)Q(d/0x) f(x)|.

We define on tempered functions a Fourier transform F and an inverse Fourier transform F':

Fif>(f:(eR"— Jexp(—%ﬂ@c, O)f(z)dz),

Fifo(fizeR" o j exp(2in(z, C3) F(C)dC).

Theorem 7.3.22. F and F defines linear homeomorphisms of S(R™) into itself.

Moreover, we have continuous linear injections: D <— S < &, and thus if we define S’(R™) as the strong
dual of S(R™), we have the continuous linear injections

& — S 7D

The les S'(R™) is called the space of tempered distributions on R™. The Fourier transform of a tempered
distribution ¢ is then ¢ : f — ¢(f). Likewise, Fourier transform is a linear homeomorphism of §’(R™). Moreover,
this operation behaves remarkably with respect to convolution and partial differential operators:

Proposition 7.3.23. [76, Chapter 30]

e Consider ¢, € &' (R™). Then the Fourier transform of the convolution is the scalar multiplication of the

7

Fourier transforms ¢ * 1 = ¢21/A13

e Consider f € E(R™) and j € {1, ....,n}. Then .7-'(%)(() = iGF(f)(C).

Generalized to polynomials, the second points thus gives for any polynomial P € R[xz1, ..., X,,]: F(P(Z)(f)) =
P@)F(f).

7.4 Smooth Differential Linear Logic and its models

In this section we introduce a toy syntax called Smooth Differential Linear Logic for which Nuclear spaces and
distributions form a classical and smooth model. This is a calculus with no-higher order. We distinguish two classes
of formulas, the finitary ones on which an exponential can be applied, and the smooth ones, which represents those
on which an exponential has already been applied.

Outlook 11. This calculus should be seen as a toy calculus, allowing to play with the mathematical tools of
distributions and (F)-spaces. This is useful, as it allows to highlight the traditional mathematical objects attached to
Differential Linear Logic. In section 7.5, we provide a higher order negative model of DiLL where the exponential
is interpreted as a space of higher order distributions.

7.4.1 The categorical structure of Nuclear and (F)-spaces.

Nuclear (F)-spaces gather all the stability properties to be a (polarized) model of LL, except that we do not have
an interpretation for higher-order smooth functions. If IR™ is interpreted as £’(R™), we do not have an immediate
way to define !!/R".

3Beware that the multiplication between distribution is in general not possible [69], and that it is possible here only because the Fourier
transform of a convolution with compact support is a generalized function.
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Definition 7.4.1. One defines the exponential as a space of Distributions:

!{ R” — IR" = &' (R",R) an
R —R"— (?7(0) : p€ E'(R™) > ¢(_ol) € E'(R™)
From the kernel theorem 7.3.9 and example 7.2.22 it follows:
Theorem 7.4.2. The exponential | : EUCL —= NDF is a strong monoidal functor.
Definition 7.4.3. Dually, one defines the following functor:
R" — 7R" = C*(R",R)
! {Z (R"—=R"™— (?(f) : f e C*(R",R) = fol €C®(R™, R)) where ¢ is the dual of ¢ 7.2)

The the Kernel theorem on functions 7.3.5 states that ? is strong monoidal from (EUCL,®) to (NUCL, ®).

Remark 7.4.4. The Kernel Theorem is all about proving the strong monoidality of 7, thus allowing for an interpre-
tation of the co-structural rules ¢ and w. The fact that there is a natural transformation from 7R™ ® 7R"" is the easy
part, which allows for the interpretation of the structural rules ¢ and w.

Thus the structure of Nuclear (F)-space or Nuclear (F)-spaces gives us a strong monoidal closure (_);3 :

NF —=NDF - (_)j; : NDF —NF:

()5
TN
(NDE,®,,R) T (NF?,®,R)

and a strong monoidal functor:

(EucL, x,R) T (NDF’,®,,R)

\_/
()5

but no interpretation for the shift. We must interpret proofs in the category of complete spaces.

7.4.2 Smooth Differential Linear Logic

In this section, we construct a version of DILL for which Nuclear spaces and distributions are a model, by dis-
tinguishing several classes of formulas. We introduce now SDiLL: its grammar, defined in figure 7.1, separates
formulas into finitary ones and polarized smooth ones.

Definition 7.4.5. We call Smooth DiLL, denoted SDiLL, the sequent calculus whose formulas are constructed
according to the grammar of figure 7.1, and whose rules are the ones of DiL.LLy (without promotion, as usual).

Its rules are those of DiLL. Thus, the cut-elimination procedure is the same as the one defined originally [23].
What makes it different is the grammar of its formulas: the construction of the formula !! A is not possible. We see
this Smooth Differential Linear Logic as a first step towards Chapter 8. In fact, we construct in the next section a
model of DiLL with higher-order, base on Nuclear and (F)-spaces.

If we forget about the polarisation of SDILL, a model of it would be a model of DiLL where the object ! A
does not need to be defined. It is thus a model of DiLL where ! does not need to be an endofunctor, but just a strong
monoidal functor ! : FIN —- SMOOTH between two categories. The categories FIN and SMOOTH need to be both
a model of MALL.

This distinction is necessary here to account for spaces of distributions and spaces of smooth functions, which
cannot be understood as part of the same %-autonomous category. Indeed, if both type of space are reflexive,
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E.F:=A|N|P
Finitary formulas: A,B:=aeA|[0|1|T|L|At | AQB|ABB|A®B|A x B.
Negative Smooth Formulas: N, M := A|?A| [N M | N x M | P+
Positive Smooth Formulas: P,Q := A |!A| PRQ | P®Q | N*

Figure 7.1: The syntax of Smooth DiLL

T ~T.7A7A ~rA
FT,7A FT,74 1,74
_— DA A T, A
14 FT,A, A ¢ +T,14

Figure 7.2: Exponential Rules of SDiLL

reflexive Ics are not preserved by topological tensor products nor spaces of linear maps. One must then refine this
category into two monoida subcategories of REFL, and construct an adjunction between the negation functors.

We also give a categorical semantics for an unpolarized version of SDiLL. Remember that considering the
development by Fiore [25], if the product on FIN is a biproduct, the interpretation of w, ¢, w, ¢ follow from the
strong monoidality of |. One then needs to make precise the interpretation of d and d.

7.4.3 A model of Smooth DiLLLL with distributions

A categorical model of DILL is clearly a model of SDILL. On the other hand, to interpret SDILL one does not
need the co-monadic structure on !|. But then, in order to interpret the dereliction, one must ask for a natural
transformation accounting for the lost co-unit of the co-monad.

Definition 7.4.6. A unpolarized categorical model of SDIiLL consists of a model of MALL EUCL, and a model of
MALL with biproduct NUCL, equipped with wa strong monoidal functor

!': (BucL, x) — (NUCL, ®),

a forgetful functor U : EUCL —=NUCL strong monoidal in ®, %, &, ® and two natural transformation d : ! —=U
and d : ! — U such that d o d = Idgycr.

The model of smooth formulas is the one with biproduct, as the biproduct accounts for the necessity to sum the
interpretation of non-linear proofs, interpreted as maps in NUCL. Thus a polarized model of SDiLL would consist
into two polarized model of MALL, with a forgetful functor respecting polarities and an exponential inversing the
polarities. This would amount to describe 4 chiralities, and their respective coherence laws. We leave this to future
work, and describe a concrete polarized model of Smooth DiLL with Nuclear (F)-space or Nuclear DF spaces.

A concrete model of SDiLLL.. Positive formulas of SDiLL are interpreted as complete nuclear D F' spaces. Nega-
tive formulas are interpreted as Nuclear (F)-spaces. A sequent - I', A of Smooth DiL.L is intepreted as a continuous
linear map in L([I'};, A).

Remark 7.4.77. Notice that we are not here in the categorical context of chiralities. Nuclear (F)-space and Nuclear
DF Ics are not a chirality, as we don’t have of a (covariant) adjunction between the two interpreting the shifts.
However, as the two are subcategories of TOPVEC, we don’t need these shifts to interpret the sequents, as they can
be interpreted as arrows of TOPVEC, that is continuous linear arrows.

Theorem 7.4.8. The categories of Euclidean, and (F)-space Nuclear, and DF Nuclear spaces, defines a model of
SmoothDiLL.

Proof. We interpret finitary formulas A as euclidean spaces. Without any ambiguity, we denote also by A the
interpretation of a finitary formula into euclidean spaces. The exponential is interpreted as !A = £'(A), extended
by precomposition to functions. We explain the interpretation for the rules, which follow the intuition of [23]. We
define:

d'{ 1A —A" J{ A" —1A
e — P | evy = (f — eva(Do(f)))
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Then we have indeed: d o d = Id4~». The interpretation of w, ¢, w, ¢ follows from the biproduct structure on
EucL and from the monoidality of !, as explained in 2.4.2. O

We now detail the description of the bialgebraic structure on !R".
Proposition 7.4.9. The weakening and contraction have the following interpretation in NUCL:
IR” —R
c:
o [
(1.3) (7.4)

IR" — IR"QIR" ~ I(R" x R")
¢ (feER™ xR") = ¢(z — f(z,2)))

Proof. The contraction rules is interpreted from the cartesian structure on EUCL and the Kernel Theorem: if
we write A : A —> A x A the diagonal morphisms, we have !A : 14— (A4 x A) ~ IA®!A. From the
introduction of section 7.3, remember that the isomorphism (A4 x A) ~ !A®!A ~ (?A1®?AL) coincides to
kel(Ax A)— (h@K € 2A+*®?AL) s k((z,2") — h(z)h (2")).

Weakening is then interpreted by the exponentiation of the terminal morphism @ = !(ng» ), thus @(¢ € /R") =
const, € £({0}) — ¢(const, ongn). Thus w, as a constant scalar function, identifies to a scalar in R. This scalar
is its constant value. If ¢ coincides with the generalization of a function g € C2°(R"™) then we would have:

w(@)=arra| gl

n

from which follows the notation used in the proposition. O
Proposition 7.4.10. Thus the dual of the contraction is :
. {?R”@?R"%?R” ~ I(R" x R™)
c

7.5
f®g— (x— f(x)g(x)) and then extended via the universal property of completion (75)

Proof. The dual ¢ of ¢ corresponds to the composition of the diagonalisation morphism and of the isomorphism
resulting from the Kernel theorem on functions 7.3.5, which is exactly proved by density of 7R™ — ?R" in
7(R™ x R™) . O

Remark 7.4.11. During the proofs of this Chapter and of Chapter 8, we will equally use the interpretation ¢ or ¢/
when interpreting the contraction.

We show that w, ¢ have a direct interpretation which follows the intuitions of [6].

Proposition 7.4.12. The cocontraction and codereliction defined through the kernel theorem coincide in fact with
the convolution product of distributions and the introduction of d.

_ { IAR!A —1A - {R%!A
. 0
PQY > Pxp 1= 6o : (f € £(A) = f(0))
Proof. wa = !(u: {0} — A) coincides with w (1) = (f € E(A) — fou = f(0)), thus @ = Jp.

During the rest of the proof we use Fourier transforms and tamed distributions, as exposed in section 7.3.4. The
co-contraction is defined categorically as ¢ = !V o m;} 4~ In the categorical setting, addition in hom sets is defined
through the biproduct. But here the reasoning is done backward. We know that @ = X is a biproduct thanks to
ViAx A—A;(z,y) — x+y,andthus !V : g€ (A x A) — (f € E(A) — ¢((z,y) — f(x +1y)). Moreover
if f € £(A x A) is the sequential limit of (f, ® gn)n € (£(A) ® E(A))N (see theorem 7.3.9)

M3l (0 @ V)(f) = Hm(¢(fa)(gn)).

If we write by F ¢ the Fourier transform of a distribution, we have that of F¢ % ¢ = F¢F 1. From the details
above we deduce moreover: . . o

Fed, )(f) = m3' 4 (@) (w,y) = fz +y)) = m3'4 (6@ ) fufy = S())P(f)-

As distributions with compact support are temperate, we can apply the inverse Fourier transform to F¢ *
and and F¢&(¢, 1), and thus ¢ coincides to the convolution. O

Outlook 12. Let us notice that we could use Sobolev spaces [76] as a model for exponentials in Smooth DiLL. This
would lead to the possibility of greater applications in the theory of Linear partial differential operators. Indeed,
Sobolev spaces are reflexive when one considers derivatives in L2. However, we must refine the Kernel theorem
to do so. This is work in progress.
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7.5 Higher-Order models with Distributions

In Section 7.4 we constructed a strong monoidal functor ! : EUCL — NDF. This functor is also defined in an
unpolarized way as | : EUCL — REFL, the category of reflexive spaces. In this section, we construct a strong
monoidal co-monad on reflexive Ics with isomorphisms between them ! : REFL;s, —> REFL;,, which generalizes
the exponential ! : EUCL — REFL.

This construction is based on the one for differential algebras developed by Kriegl, Michor [46], and bears
similarity with the free exponential of Mellies, Tabareau and Tasson [63]. It differs however by the fact that
the exponential is constructed as an injective limit, in order to have a good interpretation of the % on negative
spaces (see Section 7.5.4). The originality here consists in proving reflexivity of ! F, and using it to construct the
interpretation of the rules of Differential Linear Logic, and on the fact that we index the limit defining C*(E, R)
by injections of euclidean spaces in E’, allowing thus to prove covariance of a functor 7.

This section emphasizes a behaviour of structural morphisms on ! ' which are lost in the case £ = R™ as R™
is its own dual. Let us also note that what we do later should be further explored in terms of Kan extensions.

Notation 7.5.1. In this section, we will especially distinguish over linear continuous injective indexes f : R™ — E
and smooth scalar functions indexed by f : f; € & (R™). We thus borrow the Linear Logic notation —o to oppose
linear functions to non-linear ones.

This work is inspired by the construction of differential algebras in [46]. Note that while the authors take an
inductive definition of spaces of functions, we define here inductively the space of distributions. Moreover, while
in their article the inductive limit of functions space is indexed by finite bases of a Ics, here we index the limit by
linear continuous injective functions f : R® — F.

Categories with isomorphisms Let us highlight an important drawback in our work. Injectivity of the indices is
needed in order to have an order on these indices. Therefore, the space of functions we construct cannot be functo-
rial with respect to every linear continuous morphism in TOPVEC, and is only defined on linear homeomorphisms
between Ics. Thus, we do not have an exponential described as an endofunctor of REFL, but a functor of REFL;,,
the category of Reflexive spaces and linear continuous isomorphisms between them towards. Indeed, one needs to
compose injective indices f with maps £ of the category (resp. their dual ¢), and these composition £ o f (resp
¢ o g) must stay injective. As shown by Treves [76, 23.2], ¢ is injective if and only if ¢ has dense image, and
therefore we have no choice but to ask for isomorphisms.

In his survey on Differential Linear Logic [23], Ehrhard encountered the same issue and proved that this models
in particular the finitary part of Differential Linear Logic. The basic idea is that functoriality on the isomorphisms
is necessary to guaranty an involutive linear negation, but is not needeed to interpreted w, c, d, w, ¢, d. That is, we
do not have a model of L L nor a model of DiLLLL but we have a model of DiL.Lg.

Outlook 13. In this section, we will construct an exponential ! E' of a reflexive space E as an inductive limit of
spaces &’ (R"™), indexed by linear continuous functions f : R" —o E.

E'(E):= lim &R
fRnoFE

We also consider the space & (F), thought of as the space of smooth scalar functions on £ C* (E, R), as a projective
limit of spaces & (R), indexed by inclusions f : R™ —o E. The interpretation of the "why not" connective is thus :

TE:= lim & (R").
fR?—oF

7.5.1 Higher-order distributions and Kernel

In all this section the term reflexive refers to S-reflexive spaces. Without further indication, the notation £’ will
refer to the Ics E’B, the strong dual of the Ics E.

Definition 7.5.2. Consider F a Ics and two continuous linear injective functions f : R” — EF and g : R"™ — F
such that n > m. We say that f > g when

f= g|rn
or said otherwise, when f = g o ¢y, ,,, Where ¢y, ,,, : R™ —= R™ is the canonical injection. This defines indeed an
order on the set of all linear continuous injective functions from an euclidean space to E. Then we consider the
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family of spaces (67(R"™) := C*(R"™), f : R® —o E)y, directed by the order above mentioned. If f < g then we
have an inclusion seen as a linear continuous injective map Sy, : & (R") —=&4(R™), phi — (h — ¢(hoiym)).

Definition 7.5.3. Consider E any lcs. We define then the space of distributions on E as the inductive limit* in the
category TOPVEC:
&'(E) := lim @@}(R")
fRr—FE
where f : R" —o E is linear continuous injective , and & (R™) denotes the copy of &”(R") corresponding to
f:R" — E.

Remark 7.5.4. With this definition we are basically saying that distributions with compact support on £ are the
distributions with a finite dimensional compact support K < R™.

Proposition 7.5.5. For any lcs E, &' (E) is reflexive Ics.

Proof. As the inductive limit of reflexive and thus barrelled spaces, &' (F) is barrelled (see [44, 11.3.1]). Thus
we just need to prove that &’(F) is semi-reflexive, that is that every bounded closed subset of &’ (E) is weakly
compact (then we will have that the strong dual E;j coincides to the Mackey dual, and thus that we have the linear
isomorphism (E7)" ~ E, see section 3.5.2).

Let use a well known method and show that this inductive limit is regular, that is any bounded set B is contained
in one of the éaf’(]R”) Suppose that it is not. Then we have some bounded set B such that for every n there is f,
such that we have b, € B\&}(R"). The les F' = lim &} (R™) is a strict (i.e. indexed by N) inductive limit of
spaces such that &} (R™*1) is closed in & (R™*1), and as such it is regular ([44, 4.6.2]). But the topology on F’
is the one induced its inclusion in & (E), and thus the image B of B in F' is bounded. So as F' is a regular limit
By should be included in one of the &% (R™), and we have a contradiction.

Thus any bounded set B of &’ (F) is bounded in one @@Jﬁ(R"). As these spaces are reflexive (as duals of nuclear
(F)-spaces, see section 7.2.2), B is in particular éa}{ (R™)-weakly compact. But the dual of an inductive limit is
contained in the product of the duals ([44, 8.8]) and as such B is also weakly compact in &(E). Thus &'(E) is
semi-reflexive, and as it is barrelled it is reflexive. O

In fact, &'(E) is can be characterized as an inductive limit of nuclear DF spaces. What we showed in the
previous proof is that any inductive limit of nuclear DF space is reflexive. By analogy with the strict inductive limit
of Fréchet spaces which are denoted LF-spaces in the literature, we introduce in section 7.5.4 the characterization
of LNDF spaces. Now we show that our notation is indeed coherent with the one used in the previous sections.

Proposition 7.5.6. If E ~ R™ for some m, then &' (E) ~ &' (R™), where &' (R™) denotes here the usual space
of distributions on R™ with compact support.

Proof. If E ~ R™, the linear continuous injective map id : R™ —o R™, results, by definition of the inductive
limit, in a linear continuous injective map &;d(R™) ~ &'(R™) — &”(FE). Now consider ¢ € &’ (E). Suppose
that we have an index f : R™ — F on which ¢ is non-null. Then as f is an injection one has n < m and thus a
linear injection &’ (R™) — &”(R™). This injection is continuous: indeed any compact in R™ is compact in R™,
and thus the topology induced by &”(R™) on &”’(R"™) is exactly the strong topology on &”’(R™). As we have in
particular a linear map f : R™ — R™, we have the desired equality. [

Definition 7.5.7. For any reflexive space £/ we denote by & (E) the strong dual (&”(E))}; of &”(E). As the strong
dual of a reflexive space it is reflexive.

We recall the duality between projective and inductive limits: the dual of a projective limit is linearly isomor-
phic to the inductive limit of the duals, however the topology may not coincide by [44, 8.8.12]. When £ is endowed
with its Mackey topology (which is the case in particular when F is reflexive), then the topologies coincides.

Notation 7.5.8. We consider the projective system (&(R™) := C*(R"), f : R® — E)y, directed by the order
above mentioned. We denote by & (R™) the lcs copy of &(R™).

Proposition 7.5.9. When E is reflexive, the lcs & (E) is linearly homeomorphic to the projective limit

lm (R,
fRr—FE

4see section 3.1.4
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indexed by
TQ-,f = S;‘,g : éag(Rm) %gf(Rn)ag — g0 lnm

for f < g, thatis for f = g oty .

Proof. According to [44, 8.8.7], as F' = lim 5 C}O (R™) is reduced, then its dual is linearly isomorphic to

FR?—o
/ .
F'=lim Cy(R")
R —E

by reflexivity of the spaces C}C (R™). Let us prove that this is a linear homeomorphism. As a reflexive space,
&r(Ry,) s is endowed with its Mackey topology. As the Mackey-topology is preserved by inductive limits, we have
that the topology on the Ics F/ ~ &'(E) ~ liLnf.Rn_oE C¥(R™)" is also the Mackey-topology p(F, F"). But as
we know that &(E) is reflexive, this topology is exactly the strong dual topology.

O

Remark 7.5.10. Thus elements f € &(F) are families (fy) y.rn g such thatif f : R* — E, g : R™ — F and
f =gotnm, wehave:
fr=_10tnm.

Remark 7.5.11. Thus we are saying that distributions a Ics E are in fact distributions with compact support in an
euclidean space, or equivalently that smooth functions a Ics E are those with are smooth when restricted to one
R™. This makes it possible to define multinomials on Ics E :
1 I
P(zeRF) = Z aaTs ...z
Ic[1,n]]

where we embed R* in R™ for k < n, and project it for & > n. This definition, which as we said is inspired
by work on differential algebras [46]. One could thought of another setting restricted specifically to higher order
spaces of distributions and not to every reflexive space. Indeed, we would like to describe smooth scalar functions
onalcs £ := &(R") as :

he &R™) — f(0)%

thus taking into account that we have as input non-linear functions. This seems to indicate that we would like to
construct smooth functions indexed by dirac functions, that is by functions 0 : R” — E' = &'(R").

The Kernel Theorem As what was argued for negative interpretations of LL,,,; in 2.3.2, here we need to prove
the Kernel theorem on negative spaces, that is on spaces of functions as & (FE). Indeed, the spaces of functions
are the one which can be described as projective limits, and projective limits are the one which commutes with a
completed projective tensor product. Let us highlight the fact that this theorem strongly depend of the fact that the
considered spaces of functions are nuclear.

Theorem 7.5.12. For every lcs E and F we have a linear homeomorphism:
E(E)®:E(F)~EEDF).

Proof. By section 3.6 or [44, 15.4.2] we have that the completed projective tensor product of two projective limits
indexed respectively by I and J is the projective limit, indexed by I x J with the pointwise order, of the completed
tensor product. Thus:

E(E)®&'(F) ~ ( lim &R)&( lim &(R™))
f:R"—FE g:R™— F
~ lim E4(R)(@E)(R™))
(f:.9)

~ lim "(R" @R™) through the Kernel theorem 7.3.9
(f:9)

However, the direct sum R™ x R™ is isomorphic to R"*™ as we deal here with finite indices. Thus any linear
continuous injective function h : R¥—=E@®F is by definition of the biproduct topology a sum f +g¢ : R"@R™ —o
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E @ F?. Indeed, as h is linear we have that A~} (E,0) is a sub-linear space of R”, that is an euclidean space R™
for n < k. Thus the indexing by pairs (f, g) : R**™ — E x F coincide with the indexation by linear smooth
functions h : R¥ —= E x I, with corresponding pre-order, and thus:

FE)@E ()~ lm @Y
FRF —> ExF
~ éa/(E X F)

O

Now we proceed to the definition of a functor 7, which agrees to the previous characterization 7E ~ C*(E’, R)
when F ~ R"™.

Notation 7.5.13. We denote by REFL;s, and linear homeomorphism between them.
Proposition 7.5.14. We extend the definition of & (E) to a functor ? : REFL;5, —> REFL;5,, by:

REFL;s, —> REFL;s,
7. E— &(F) (7.6)
L:E—Fw—%U:E8FE)—&F)

As &(F') is a projective limit, ?{ is defined by postcomposition with the projections mq : &(E') — &,(R™), for

g:R™ — ' as
(M((ff)f € g}(R”)))g =foog:

Here V' : F' — E' denotes the transpose of {.
This is well defined as Ci5 ¢ gn_op(R",R) — &(F"). The linear map ?{ is continuous as the composition of
20 with the projections m is continuous, and injective as ' is injective.

Proof. We check immediately that indeed 7/d = Id. Let us see that ? is covariant: consider ¢; : £ — F and
{5 : F— @ linear continuous surjective functions between the Ics F, F' and G. Consider h : R¥ —~ @&, and
f=(ff); € 7E. Letus write f = ({0 ¢1)" o h : R¥ —= E’. Then by definition:

((?(ba 0 £1))(0))n = £y

Consider g : R™ —o F”’. Then
((?6)(0)g = fr;0
Moreover one has for any g € &(F):
(?(62)(g)n = 8e0n-
Thus
(g 0 261)8)p, = (P62 (61)(B)])n = (P01 (£)eyon = oy oyon = £y

Thus ? is covariant. O

Notation 7.5.15. We denote by REFL;s, the category of reflexive lcs and linear continuous isomorphisms between
them.

Definition 7.5.16. We define the functor ! : REFL;,, —> REFL;,, defined as:

REFL;s, —> REFL;4,
I E— &'(E) (71.7)
(:E—Fw—We&(F)

where !/ is defined by precomposition with the injections tj.g >  : &4(R") — &"(E) by
lpous(fy e C?‘O(Rn’ R)) = foof:rn—oF-

The functoriality of ! follows from the one of 7, as we have indeed |F := (?E’) and ¢ = (?¢')'.

SNotice here the link between direct sum, biproduct and sums of smooth functions f : RX — E and g : R¥ — F', as exposed in section
2.4.2.
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Remark 7.5.17. We showed previously that when F ~ R", then ?7E ~ &(R"). The notation !F := &’(E) is still
coherent with the euclidean case, as (R™)" ~ R™ and thus &(E’)’ ~ &'(R"™) when E ~ R™.

Remark 7.5.18. Let us point out that constructing & (FE) and &’ (E) as projective and inductive limits over linear
functions f : R® — &’ (thus embedding into the dual of the codomain F and not into E itself) would have made
the definition of the codereliction and the co-multiplication much easier. Indeed, for example, the codereliction
would have been defined as :

reE—fe&(E)— Dyf)(f (),

where f' : B ~ F—R" denotes the transpose of f. However, we must index &' (F) by f : R™ — & in order
to make & a covariant functor (proposition 7.5.14).

Outlook 14. In order to avoid the use of isomorphisms in REFL, and to have the functoriality of ! with respect
to any linear continuous function £ —o F', we could try to define the following. Consider E and F' two Ics and
¢ : E — F alinear continuous map. Let ¢ € &'(F) and we denote by f : R” —o E the linear continuous
injections indexing & (E).

Then one defines a linear continuous injection as :

— R™

loF : ———— L.
¢ Ker(EOf)‘>

The quotient vector space % is finite dimensional and thus isomorphic to some R?, for p < n. We denote
by 7y, the projection of R™ onto RP. Then one could define:

E(0)(0)(8) = (8757 © Tnp)s-

The linear continuous map ¢ o f is indeed injective, while 857 © Tnp € C*(R™,R). However, one still needs
to check that the dereliction, co-multiplication and co-dereliction stated below are still natural with that definition
of | on maps.

7.5.2 Dereliction and co-dereliction

Remark 7.5.19. A guideline in defining the structural morphisms on ! F are the structural morphisms on the con-
venient exponential of [6], as detailed in section 2.4.3. Indeed, in this model of DiLL, the exponential is the
Mackey-completion (and bornologification) of the vector spaces generated by all the dirac maps J, € C*(E)’.
What is important is that every structural operation is defined on the dirac map. For example, the codereliction
deony maps &, to z, while the co-multiplication maps d, to s, .

In our context, the mapping §, must be understood as the linear continuous function which maps z € E to
((ff)r € &(E') — £(f1(x)) in &'(E), which is well defined as we show below.

Definition 7.5.20. We define the dereliction as the natural transformation d : ! —= I'drgr. Such that:

(E)—=E" ~ F € REFL
dg : (7.8)

¢ (LeE" — ¢((lof)rrrop € E(E))
This is well defined as £ o f is a linear continuous injectivefunction from R™ to R, and thus is smooth and belongs
in particular to &(R™).

Remark 7.5.21. As we are working with reflexive spaces, d could have been described equivalently as a natural
transformation
d: IdREFL —7

by the following:

(7.9)

E—&(F)
dE :
T — (EUI o f € ﬁ(Rn,R))‘f:Rn_OE/

Proposition 7.5.22. The map dg :, cE — E is linear continuous, and natural with respect to linear homeomor-
phisms.

144



Proof. dg is clearly linear, and it is continuous as it is continuous on every é”} (R™). Let us show that it is a natural
transformation. Consider ¢ : E—s F linear continuous. We must then show:

dpoll =lodg
Consider ¢ € !E. Then !4(¢) : g € &(F) — ¢(8sos) f:Rn—E, ans thus
drpoll(¢)=Ilpe F' — ¢(lpolof)rm_op.
Conversely, £ o dg(¢) = {(lp € E' — ¢((Lo f)), thus :
todp(¢) =L(ip e E" — ¢((lgo f)y)
Seeing £ o dg(¢) € F as an element of the dual of F”, we have thus
Codp(p) =pe F' > ¢(lpolo f);.
O

Let us study the interpretation of the codereliction. We denote by D the operator which maps a function to its
differential at 0.

C\'.D (R’Il) s (R'n/)/
Do f— <v eR" — lim Jltn) = 7O _ i of (0)vi>

t—>0 t Oz,
1=1

The operator Dy is then linear in f. It is continuous as the reciprocal image of the polar By ; of the unit ball
contains the set of all functions in C*(R™) whose partial derivatives of order one have maximal value 1 on the
compact {0}.

Definition 7.5.23. We define the codereliction with respect to indices f which contains x in their image. We prove
that this is well-defined.

(7.10)

F E—E~ (&(E))
P lew (fr e CF(R",R)) s —opr = Dofs(f~(z)) where f is injective such that = € Im(f) .

Before proving that the codereliction is indeed well-defined, let us point out that the arbitrary in the choice of
f~1(x) does not matter morally : f~!(x) is the linear argument of the differentiation.

Proof. This is well defined thanks to the same reasoning as before: suppose that f < g. Then we have f = goty, .
Thus by definition of the projective limit we have f; = £, o ¢,, ,,, and:

Dofy(f~!(x)) = Do(fg © tn,m) (g © tnm) ™" (2))
= Dofy(Dotn,m(trm (9~ ())))
= Dofy(tnm (i3 (97 (%)) @S L m is linear
= Dofy (97" (2)))
As any couple of linear functions f : R” — E and g : R"™ — E is bounded by f + ¢ : R**™ — FE, we have
the unicity required. U

Proposition 7.5.24. The map dg : E —=FE is linear continuous and natural with respect to linear homeomor-
phisms..

Proof. The linearity is deduced by the linearity of the indices f : R® — FE. The continuity follows from the
one of Dy. To prove its naturality, we must prove that for any linear continuous function ¢ : £ — F' we have:
Wodgp = dp o . Consider a family (g,), € &(F) =~ li_r)ng CSL(R™) and x € E. On one hand dr o £(x)

maps (g,)g t0 Dogy (g~ (¢(x))) when £(z) is in the image of g. On the other hand, !¢ o dg(z) maps (gg), to
dp(2)((8eof) f:rn—ok) = Dogros(f~!(x)) when x is in the image of f. Thus when we consider g = £ o f, which
has indeed x in his image, we have indeed (¢ o dg(z))((8g)g) = (dr 0 €(2z))((84)g)- O
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Remark 7.5.25. As we are working with reflexive spaces, d could have been described equivalently by its trans-
pose, a natural transformation d : 7 —s I dggp_ by:

- { SFE)—PE'~E
dE : / -1
(£) rn—opr — (L€ E > Dofp(f7(0))

Proposition 7.5.26. For any lcs E we have:

(7.11)

dE OJE = IdE

Proof. Consider z € E. Then dgodg(z) = dg ((fr); — Dof(f~'(z)) = £~ Do(Lo f)(f~*(x) for any f with
x in its image, thus as/ o f is linear we have £ — Dy o f)(f~(z)) = £ — Lo f(f~(z)) = {(z). O

7.5.3 Co-multiplication, and the bialgebraic natural transformations

We define co-multiplication as:

\E—lE

BE (7.12)

¢ ((gg)g e &(IE) ~ h_r)nC;C(Rm)> > g4(97"(¢)) when ¢ € Im(g) and g is injective
9

This is well defined, as we can show as for the dereliction 7.8 and the codereliction 7.10 that the term
g4(97"(¢)) is unique when g : R™ — !E linear and g, € C;°(R™) vary. There is necessarily at least one
linear function g : R™ — | E which has ¢ in its image.

Proposition 7.5.27. The co-multiplication pg : \E —FE is linear continuous and natural with respect to linear
homeomorphisms.

Proof. Consider a linear continuous function ¢ : F — F between two Ics. We need to show that we have an
equality between the functions ptr o !¢ and !4 o ;1. On one hand, we have for ¢ € !E and (g,), € (I F),

(1 0 10)(0)((89) = 8g(g~ ([(hn)n € E(F) = d(hyer)n])
On the other hand,

(Mo pp) (@) = M((hpgm —>15 — ha(h ™ ((¢5)f)))
= (gg)g = [(((hh:Rm%!E = hh(h_l((ébf)f))] (&1eon )
= (89)g — 8ieon((R) " (#1)5)))

By denoting g = !¢ o h, we have h = (1£)~! o g on the image of !/, and thus

(Mo pp)(0)(8g)g = Breon((h) " (7))
= gy(g7" o U((d5)y))

and the last line results exactly in g, (¢! ([(hn)n € E(F) — ¢(heos)n]) by definition of 4. O
Theorem 7.5.28. The structure (!, d, 1) defines a co-monad on REFL.

Proof. Let us check that the morphisms of 2.2.12 are satisfied.

1. Consider ¢ € !E. On one hand, we have diz o up(¢) : h € &'(E) — (uZ(¢))(h o g)yrn—ok, thus
dig o pg(¢)(h) = (ho g(g~t(¢)) when ¢ € Im(g), thus dig o up(¢)(h) = h(¢). Through the isomorphism
'E ~ (IE'), we have thus

digopg =Idg.
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On the other hand, we have ldg : ¢ € 'E — ((ff); € &(E) — ¢((fagog) grm —>1£))- Thus

ldp o g (9) = (fr) € E(E) = fapog(97" (0))

when ¢ € Im(g). Consider f : R™ —o F linear continuous injective such that dp(¢) € Im(f). Then writing
g = dg o f in the above equation we have,as g~! = f~lodgp

ldp o pp(0) ()5 = £1(F 1 (dp(9))) (7.13)

Remember that d(¢) coincides to the vector z € E such that for all £ € E’ we have {(z) = ¢(({ o f) p.rn—oE)-
However in equation 7.13 f7 o f~! is a linear continuous function from I'm(f) to R. It can be extended through
Hahn-Banach to a linear continuous injectivefunction also denoted f; o f~! from F to R, that is f; o f “leF.
Thus we have ldg o up(¢)(£r)r = (¢((£r o f~1 o f) ) = ¢(f;) and we have the desired identity.

2. Let us show that !(ug) o pp = up o pug for all E. One the one hand, !((ug) : !E —!!'E sends ¢ and a
projective limit of functions (gy)y € &( 0cE'E) to ¢((8upon)n € €(!E). On the other hand /i sends ¢ € !!F
and (gy), € E(I1E) to gg(g~ ().

Consider ¢ € |F and ¢ = ug(v), we know that ¢((hy) € &(IE)) = hp(h~1(¢)) for any h : R® —F
containing ¢ in its image. Consider a projective limit of functions (gg), € & (!!'E). Thus on the one hand we have:

Hue)(@)((8g)g) = ¢((8ugon)n) € E(1E)
= gﬂth(h_l(d))) for any h containing 1) in its image.

On the other hand we have:

me(®)((8g)g) = gg(g_1(¢)) for g such that ¢ € Im(g)

Thus we have the desired equality. O

Theorem 7.5.29. The endo-functor! : REFL—=REFL forms a co-monad with co-dereliction d and co-multiplication
. We also have a natural transformation d : Id —s! such that for any E € REFL, dg o dg = Idg.

7.5.4 A model of MALL for our higher-order exponential

The product and biproduct of topological vector spaces 3.1.4 are linearly homeomorphic on finite indexed and
forms a biproduct, which leads to the usual sum on hom-sets as described in proposition 2.4.8.

Let us explore the monoidal structure. It should be clear now that the difficulty in constructing a model of
MLL in topological vector spaces is to choose the topology which will make the tensor product associative and
commutative on the already chosen category of Ics. The kernel theorem implies that one should interpret % as the
completed tensor ®., and thus the tensor product as its dual (which may not equal the completed projective product
®, in general). Thus we consider the category CREFL of complete reflexive Ics and continuous linear maps, which
contains in particular nuclear (F)-spaces and their duals, and thus all spaces of smooth functions and their dual, the
spaces of compact-supported distributions. Following [44, 16.2.7], . is associative and commutative on complete
spaces.

If we study more closely the definition of spaces of Higher-order smooth functions, we see that they reflexivity
follows the one of a more restrictive of spaces.

Definition 7.5.30. A Ics is said to be a LNF-space if it is a regular projective limit of nuclear Fréchet spaces. The
category of LNF-spaces and linear continuous injective maps is denoted LNF.

Example 7.5.31. A typical example of LNF-space are the spaces &(E), when E is any Ics.

Remark 7.5.32. Observe that this definition is again the result of a good interplay between topologies and bornolo-
gies. This should be characterized in terms of the categories TOPVEC and BORNVEC.

Proposition 7.5.33. A LNF-space FE is always [3-reflexive.

Proof. As nuclear (F)-space are reflexive (proposition 7.2.27), and as reflexive spaces are stables by projective
limit (proposition 3.5.13), a LNDF space is reflexive. O
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By using the same proofs as those computing the dual of &(E), one can characterize the duals of LNF-space.
Definition 7.5.34. A Ics F is said to be a LNDF-space if it is an inductive limit of nuclear complete (DF)-spaces.

Corollary 7.5.35. As an inductive limit of reflexive and thus barrelled Ics, a LNDF space is barrelled. Following
the methods of the proof 7.5.5, we show that any LNDF space is semi-reflexive, and thus any LNDF space is
reflexive.

Proposition 7.5.36. The class of LNDF spaces is stable by completed projective tensor product (equivalently,
completed tensor product).

Proof. This follows from the fact that completed tensor product preserves projective limits [44], and by the fact
that nuclear and (DF)-spaces are stable by projective tensor product (propositions 7.1.6, 7.2.20). O

Proposition 7.5.37. The dual of a LNF-space is a LNDF-space.

Proof. Again, by [44, 8.8.12], the dual E’ of a LNF-space E = h_n)lz FE; identifies as a linear space to a projective
limit of complete nuclear (DF)-spaces. As the limit h_H)ll E; is regular, we have that any bounded set in E is
bounded in some of the F;. Thus the strong topology on E’ coincide with the projective topology. [

Notation 7.5.38. We denote by LNDF (resp. LNF) the category of LNDF-spaces (resp. LNF-spaces) and isomor-
phisms between them.

Because we defined spaces of functions &(FE) as projective limit, we have still a good knowledge of the
interpretation of the % between LNF spaces (which are thus the interpretation of negatives formulas). Indeed, the
completed injective tensor product ®. of a projective limit of Ics is the projective limit of the completed injective
tensor products [44, 16.3.2]. Taking the duals of theorem 7.5.12 applied to E’ and F” gives us immediately:

Proposition 7.5.39. For any reflexive spaces E and F we have a linear homeomorphism:
PER.F ~?(E®F).

Thus we have a model of polarized DiL.Ly with distributions, from which proofs are interpreted as arrows in
TOPVEC as in our previous section (see also [23]).

7.5.5 An exponential for convenient spaces

In this section we sketch how the exponential constructed here also could also fit the polarized refinement of
convenient spaces developed in Chapter 6. We recall in the diagram below the model of MALL at stakes:

O

/\

(CONV, @)24) 1 (COMPLMACKEY®, ¢)

\/

7\, conv
O

Proposition 7.5.40. The lcs |p = &'(E) =:= lim
and bornological Ics.

FR7—oE &4(R™) (see Definition 7.5.3) is a Mackey-complete

Proof. Bornological spaces are stable by inductive limits (Section 3.4.2 and [44, 13.1]), thus ! E is bornological.
We proved also that |1 E is reflexive (Proposition 7.5.5), and as such it is weakly quasi-complete ( every bounded
Cauchy sequence converges weakly), and thus Mackey-complete (if B is bounded in E, a Cauchy sequence in
E — B is in particular bounded, and if it converges weakly it converges in ). O

Proposition 7.5.41. The lcs &(E) is in particular Nuclear, and thus has the Approximation property (that is, if E
is Nuclear, for every lcs F we have E' ® F dense in L(E, F)).

Proof. This follows directly from the fact that the class of Nuclear Ics is stable by projective limits [44, 21.2.3],
and from the fact that nuclear spaces have the approximation property ( [44, 21.2.2]). O
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As the injective tensor product is exactly the topology induced on the tensor product F} ® Fy by FieFs, we
have for any lcs F; and Fs :
(o@(E1>®EéD(E2) ja (gD(El)Eé()(Eg)

Thus the higher-order kernel theorem 7.5.12 gives us a strong monoidal functor :

?: (REFL, x) —> (MACKEYCOMPL, ¢).
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Chapter 8

LPDE and D — DiLLL

We provide in this chapter a sequent calculus whose syntax and semantics describe the resolution of linear partial
differential equations with constants coefficients. In section 8.1, we review the theory of linear partial differential
operators on distributions, and introduce a specific space of distributions !, . We then discuss in Section 8.2 the
possible extensions of DiLL to Linear Partial Differential Equations. In Section 8.3, we give a non-deterministic
sequent calculus for which D, and Linear Partial Differential Equations with constant coefficients give a model.
In 8.4, we give a deterministic sequent calculus for which Linear Partial Differential Equations with constant
coefficients give a model. For the two sequent calculi detailed above, the cut-elimination rule between dereliction
and co-dereliction is interpreted by the resolution of the Differential Equation at stake.
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8.1 Linear Partial Equations

In this section we give very quick and partial background in the theory of linear partial differential equations
with constant coefficients. We are not considering in this Section border conditions, regularity of the solutions to
equations with non-constant coefficients, nor modern research subjects in this theory such as non-linear equations.

Outlook 15. As in the previous chapter, we are almost always considering distributions and equations defined on a
whole euclidean space R™. The Kernel theorem also restrict to open subsets of euclidean subsets, and the study of
partial differential equations which are not necessarily linear with constant coefficients requires to work on specific
subsets of euclidean spaces. Translating this in logic and type systems, via subtyping, is work which is still to be
done.

We refer mainly to the books by Hormander for this section [41], [42]. We also refer to the book by Treves
[75] for a more categorical point of view.

8.1.1 Linear Partial Differential operators
Functions with compact support Let us recall the properties of D(IR™), which differ from the ones of C*(R"™).

Proposition 8.1.1. [76, Ch.13, Ex.II] The lcs D(R") is linearly homeomorphic to the strict inductive limit liny . C* (K, R)

n

indexed by the closed balls of radius n K,, ce R", ordered by inclusion.

This limit is in particular regular (see Definition 3.1.20), as C* (K, ) is closed in C* (K, +1). The spaces which
are strict countable inductive limits of (F)-spaces are called LF'-spaces in the literature. They are in particular
complete (see [44, 4.6]) and barreled (see Proposition 3.4.25). A countable inductive limit of nuclear spaces is also
nuclear (see Proposition 7.2.20). As such, a strict countable inductive limit of nuclear fréchet spaces is complete
and nuclear, thus semi-reflexive (see proposition 7.2.25) and reflexive as it is barreled. This combination of stability
properties proves the following proposition:

Proposition 8.1.2. The lcs D(R™) is a complete nuclear and reflexive space.

Linear Partial Differential operators For o = (ay, ..., o, ) € N we write 0% the linear continuous function:

olelf
© n > n - —
feCPR", Z)—xeR PG (z)

where || denotes the sum oy + - - - + a,, of the coefficients of a.

Definition 8.1.3. Consider smooth functions a, € C*°(R",R) indexed by multi-indices o € N™ . Then a Linear
Partial Differential Operator (LPDO) is defined as an operator D : D(R™) — D(R") of the form:

D = Z aq0%.
aeNn

D is a LPDO with constant coefficients (denoted as LPDOcc) when the a,, are constants. Notice that D could also
have been defined as an endomorphism of & (R™), as the support of 0% f is contained in the support of f. We will
sometimes consider this point of of view, and in particular when defining ! p F' in Section 8.1.3.2.

Proposition 8.1.4. [76] D is a linear continuous endomorphism of D(R™) (resp. &(R™)).

Proof. Remember that &(R") is endowed with the topology generated by the semi-norms:

[l = sup [0%f()]

zeK,|a|<N

where N € N and K is a compact subset of R”. If By - denotes the open ball for | [l 5, ¢+ then ()" (Bn k)

contains B N+]a|, k- Thus any LPDO is continuous as the finite linear combination with continuous factors of
continuous maps. O
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Example 8.1.5. LPDO’s with constant coefficients appear in several phenomena. Let us recall the definition of the

Laplacian:
2\
Ve = _
1,; oz’

or of the heat operator, for A > 0:

fee(R"Jrl)Haa—{—)\va

where f takes as variables t and 1, ..., Tj,.

Remark 8.1.6. In the literature, LPDO’s with constant coefficients are sometimes written

N
P(D) =] > aa0°

n=1aeNn
where P = Y] _n 0o X* € R[X1,...X,,] is a polynomial with n variables.

Definition 8.1.7. The definition of D is then extended to D’(R™) (resp. £'(R™)) as follows: the derivative of a
distribution ¢ € & (E) or ¢ € D'(FE) is defined as:

D(): [t (Z(—l)aaa o/ ) .

[e3

We denote by D the LPDOcc:
. o~
D := 1) %q=—

This definition agrees with the intuition that distributions are generalized functions. In that case indeed, the differ-
entiation of the generalized function is the generalized differentiated function:

oot

Dyy(f) = f 9(y) (Z(—l)aaa(.}xa(y)> dy

e

09
= f (Z aaaza(y)> f(y)dy by integration by part
Yy [}

= ng(f)

A fundamental example Consider the interpretation for the dereliction and co-dereliction in NUCL:
dp:pe &'(E)—~ (e E'— ¢(l))e "~ F

dp € E" — (f € E(E) = (Do(f))

Remember that in the definition of the codereliction, we have 1) = ew, for some x. Moreover, one could define as
previously Dg on distributions ¢ € &’ (E):

Do() : f = (=1)¥(Dof)

which is again a distribution Dy () € &' (F).
Looking now at Dy as a differential operator on distribution, we have in NUCL:

dE : ¢) € (g)/(E) —> d)Do(éa(E)) eE'~F

dg : ¢ € E" — —Do()
Here, we would like indeed to generalize by replacing Dy by D and E” by !p E (see Section 8.1.3.2).

D(¢) = ¢oD = f > and(f),
so that when g € CZ(R™) we have D(f — § fg) = f — § fD(g).
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Definition 8.1.8. The resolution of the equation then consists, when a distribution ¢ € D’'(R™) is fixed, in finding
9 such that Dy = ¢.

The regularity of 1 regarding the one of ¢ is then a major field of study, through Sobolev spaces for example
[11].

Definition 8.1.9. Consider D a LPDO. By D(&(R™)) we denote the image of D in &' (R™). It is a vector space by
linearity of D. We endow it with the lcs topology induced by & (R™). Beware that D is of course not injective in
general.

8.1.2 Differentiation and convolution
Convolution and solutions to LPDE’s with constant coefficients behave particularly well:
Proposition 8.1.10 ([42] 4.2.5). Consider f € E(R™) and ¢ € E'(R™). Then 0*(¢ * f) = ¢ = (0*f) = (0%¢) * f.

Proof. We prove the result for |«| = 1 and the general result will follow by induction. Consider z € R™. By
definition

A1) )y BN

t—>0 t
o Qe e —y)

t—>0 t

=¢(y'—> lim flz+tv—y)
t

—0 t

) as ¢ is linear and continuous.

Thus the first equality is proved. The second equality follows from Definition (8.1.7):

(2 @) = Ly fla— )

O

This result extends to convolutions of distributions via Definition 7.3.17: for ¢ € D'(R™) and ¢ € &'(R™) the
distribution 0% (¢ * 1) maps f € D(R") to (—1)1®l(¢ = 1) (% f). Thus:

0%(p ) (f) = ((0%¢) * ¥)(f) (8.1)
= ¢ ((0“¢)(f)) by commutativity of the convolution (8.2)

8.1.3 Solving linear partial differential equations with constant coefficients
8.1.3.1 Fundamental solutions

Among the solutions to LPDE’s, some are particularly studied: these are the fundamental solutions, that is solutions
E to the equation:
DE = dg

where the parameter is a Dirac distribution. Because partial differential linear operators with constant coefficients
behave particularly well with respect to convolution, the answer to this particular input is enough to compute the
answers to any input f.
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Definition 8.1.11. A fundamental solution for the LPDO D consists in a distribution 1) € D’(R"™)! to the equation:
Dip = 8.

Remark 8.1.12. Notice that such a fundamental solution is in general not unique: if ¢ is such that D¢ = 0, then
Ep + ¢ is also a fundamental solution to D.

Example 8.1.13. Because of linear partial differential operators, we are working with distributions whose support
is not necessarily compact. Indeed, the existence of a fundamental solution is not ensured when distributions must
apply to any smooth function. The typical example is

D:feC®R,R)— f,

where f’ is the derivative of the real, one-variable function f. If f has compact support, one can define:

EDIfHLZf

and one has indeed DEp(f) = f(0). This however is not possible in full generality when f € C*(R™). Observe
that it would be enough for the partial derivative of f to be bounded by an integrable function for = big enough.
Then the derivative of f would be integrable, and Ep could be defined. Extended to any partial differential
operator, this says that if any partial derivative 0 f, o € N" of f are integrable on R™, then Ep can be defined.
This idea is implemented in the construction of a tamed fundamental solution Fp € . (RR) [43].

Notation 8.1.14. Consider D : &(R™) — &(R™) a LPDO. When a fundamental solution for D exists and it is
fixed, it is denoted by Ep € D'(R™).

Remark 8.1.15. We will recall later in theorem 8.1.18 that when D is a LPDO with constant coefficients there is
always of at least one fundamental solution for D.

The resolution of LPDOs with constant coefficients is always possible, and particularly elegant, due to the
behaviour of convolution with respect to partial differentiation.

Proposition 8.1.16. Consider D = ) a,0“ a LPDO with constant coefficients. Suppose that D admits a
Sfundamental solution Ep. Then for any ¢ € E'(R™) we have:

D(Ep * ¢) = ¢. 8.3)
Proof. Thanks to the bilinearity of the convolution product
D(Ep *¢) = ) aa[0"(Ep * )]
= (Z ao0“Ep) * ¢ thanks to equation 8.1 and the bilinearity of =,
= (5:* ¢ by definition of Ep,
=9¢
O

Remark 8.1.17. Beware that equation 8.3 is valid in D’(R™), but not in &’ (R"™). Indeed, the convolution between
¢ € &' (R™) and v € D/'(R™) only yields a distribution ) * ¢ € D’(R™). This is by construction of the convolution
following proposition 7.3.16. It is also a particular case of the theorem of support [42, Thm 4.2.4] which says that
the support of convolution ¢ = 1) of two distributions ¢ € D/'(R™) and ¢ € &’(R™) is contained is the sum of the
respective supports of ¢ and ¢. We do not emphasize on support and singularities of distributions here.

Theorem 8.1.18. Every LPDEcc admits a fundamental solution Ep € D' (R™).

'note that we do not ask for Pe & (R™), as this is not possible in general, even for the LPDO with constant coefficients
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Comments on the proof. Several constructions of a fundamental solution exist: we refer to the one of Mal-
grange, refined and exposed by Hormander [41, Thm 3.1.1] or to [42, 7.3.10] which gives a fundamental solution
with optimal local growth. Others construct a fundamental solution which is temperate [43]. The proof starts with
a technical Lemma [41, 3.1.1], which says that for any smooth function with compact support f € D(R™), we
have that

1£(0)] < C || (cosh(el2))D(f)]

where C' does not depend of f. Thus if D(f) = D(g), one has D(f — ¢g) = 0 and f(0) = g(0). Then defines
the function £ on D(D(R™)) as E(D(f)) = f(0). This function is well defined, linear and continuous. The
above majoration allows then to extend this function to E' € D’(R™) through Hahn-Banach 3.3.6. The theorem is
in fact much more precise as we have information about the local growth of E'p. We do not have in general that
Ep e &' (R™).

Remark 8.1.19. Notice that equation 8.4 ensures that Ep is well defined on D(D(R™)), as for f € D(D(R™)) the
function g such that f = Dg is unique. This is not true for functions in D(&(R"™))

- (8.4)

1 Jeg P

8.1.3.2 The space !p

This section studies the question of which space is the good interpretation of ! pR™ for " the space of distributions
which are solutions to a LPDEcc "

Let us sum up the situation: the computation Ep(g) is well defined as soon as g € D(R™), as Theorem 8.1.18
shows that Ep € D'(R™). If f € D(R"), then obviously D(f) € D(R") and we have:

Ep(D(f)) = DEp(f) = £(0).
If f € &(R™) (thatis, f does not necessarily have compact support) is such that ZD(f))V € D(R™), then Ep(D(f))
is well defined, and we have also Ep (D(f)) = f(0). However, when f € &(R™) and D(f) does not have compact

support, then Ep (D(f)) is not defined, and thus we can’t compute f(0) as Ep applied to D(f). Let us export this
this reasoning to distributions.

Definition 8.1.20. We denote by ! pR" the sub-vector space of D’(R™) consisting of the distributions ¢ € D’(R™)
such that D¢ € &' (R™).
IpR™ := {¢ € D'(R™) | D¢ € &' (R™)}

Example 8.1.21. A typical example of distribution in !pR™ is Ep , as DEp = dy € &' (R™).

Proposition 8.1.22. Endowed with the topology inherited from D' (R™), the space |pR™ is a lcs. Moreover, we
have the topological embeddings* &' (R") «— |pR™ < D'(R™).

Proof. If we consider D as linear continuous endomorphism:
D :D'(R")—TD'(R"™)

then ! pR™ is the inverse image of &'(R™) by D. As &(R™) is closed in D(R™), and as D is continuous, then
!p is a closed sub-locally convex topological vector space of D’(R™). It is Hausdorff: consider ¢ # ¢ are
both distributions, and if D¢ and D¢’ both have compact support. Consider V' and V' disjoint neighbourhoods
D'(R™) of ¢ and ¢’ respectively. Then as &’ (R") is dense in D'(R™), V n &' (R™) and V' n &'(R™) are two
non-empty open sets contained in ! pR™ whose intersection is empty and containing respectively ¢ and ¢’. The
topological embeddings follows from the fact that if ¢ has compact support, then D¢ has compact support: thus
&'(R™) < !pR™. This embedding is topological as D'(R™) and &’ (R™) carry the same topology. The other
embedding follows from the fact that by definition, ! pR™ is a sub-Ics of D’ (R™). O

Notation 8.1.23. We denote by ? pR"™ the lcs (!pR™)’ endowed with the strong topology on the dual.

As D commutes with convolution (proposition 8.1.10) and as the convolution of two distributions with compact
support has compact support, we have immediately:

Corollary 8.1.24. For any ¢ € |pR™ and any 1) € &(R"™) we have ¢ = 1 € |[pR™.

Corollary 8.1.25. For f € ?7pR™ and g € C*(R"), D(f * g) is defined as D f = g. It is coherent with the notation
when f € D(R™), as partial differentiation commutes with convolution (Proposition 8.1.10).

2that is, the linear continuous injections
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Analogy with DILL  Defining ! p,R™ as the inverse image of &’ (R™) by Dy in D’(R™) does not make any sense.
Indeed, Dy f is a linear function: it has compact support if and only if it is null. Thus with the definition used
before, we have ?p R™ = {0} and | p,R™ = R™.

Remark 8.1.26. Although Dy is not a LPDOCC, § kind of behaves as a fundamental solution to Dg. Indeed, if a
function f € C*(R™, R) is such that there is g € C*(R"™, R) such that:

D09:f7

then f is necessarily linear, and thus one can take g = f = g * f.

The good definition for “the space of distributions solutions to Dy = ¢ “is
p,R" := Dy ' (£(R)),
and thus
'p,R" ~ L(R",R)" ~ R".

In that case dereliction and codereliction rules are interpreted in NUCL by:

dp, : 'R" —=1p R" ¢ — (£ — (L))
JDO . !DORH%!RH,¢ = €Uy — (f [ d (b(DQ(f))

However if we look for a fundamental solution Ep, € E”, it must satisfy:

Ep,(Dof) = f(0)

and thus in particular, for any ¢ € FE’, we have Ep,(¢) = Ep,(Dof) = ¢(0) = 0. Thus the analogy with
fundamental solutions does not hold between Dy and LPDOcc, outside of the interpretation of dereliction and
co-dereliction.

Outlook 16. One should explore the similarities between the work of Ehrhard on anti-derivatives [20], and the
proof theory of fundamental solutions as described in this chapter.

8.2 Discussion: Linear Logic for differential equations

In the previous semantical study, we saw the appearance of a connective !p such that E'(E) < !pE < D(E)’
when E ~ R". This space is D~!(&”(E)), that is it represents the space of distributions ¢ which are solutions to
the equation

D¢ =1,

when ¢ € &'(F). We noticed that defining ! p, E as Dy ' (&”(E)) was not meaningful and that the good analogy
was Ip, E = (Do(&(R™)) = (R™)” ~ R™.

We also saw that while E ~ E” represents the space of distributions with solutions to Dg¢ = 1), the space
!p E represents the space of distributions solutions to D¢ = 1. In sections 8.3 and 8.4, we develop thus a syntax
for LPDE, where the interactions between ! p A and ! A mimic the ones between A and ! A in DiLL.

Remark 8.2.1. In the semantics developed in the previous section, (??) is only valid when F is euclidean, but it
should extend to higher order in view of the results in section 7.5.

Remark 8.2.2. Beware that all the intuitions cannot be retrieved from the model of chapter 7. In particular while
we have E ~ E” < |FE, we have here an embedding !E — !pE. The interpretation of |E as D'(E) would
have yield the inverse embedding between !E and !p F, thus alike the embedding £ ~ E” — |E. However, we
really need to use distribution with compact support as the interpretation of the exponential, as they are needed in
a convolution product (interpreting co-contraction).
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Dereliction and co-dereliction Dereliction, which in a category of reflexive spaces was interpreted as
d:vYe&(E)— (e E'—y)e E" ~F,
should now be interpreted as the restriction to !p:
dp : e &'(E)— Ep*vyelpE. (8.5)

This is well-defined thanks to 8.1.21 and 8.1.24. It coincides with the intuitions of DiLL. When D = Dy, then
Ep = 0g € E”, thus ¢ * §g € E” is just the restriction of f to linear forms in E.
Conversely, the codereliction which was interpreted as

d:¢peE"— ¢poDy= Dy(¢)e!(E)

should now be interpreted as -
dDZ¢€ 'DEHD(bE(ga(E)/

This is made possible by the very definition of ! ,. Moreover, when in DiL.LL we had, for = € A:
dod = Idg»
we have now, by proposition 8.1.16, for ¢ € |p FE
dpodp(¢) = Ep * Dp = ¢.

We will see indeed in Section 8.4 that for any LPDOcc D, the interpretation for ! p given in definition 8.1.20 results
in a model (without higher-order) for the sequent calculus D — DiLL.

Remark 8.2.3. Distinguishing isomorphisms from identities is matter for future work. However, one should notice
now that the isomorphism E” ~ FE is really used only for the generalization of structural rules (the interpretation
of d,c and w) while the generalization of co-structural rules only uses the canonical injection F — E”.

Remark 8.2.4. Fixpoints and quantitative semantics Thus elements of E’ are exactly the functions f € C*(E,R)
such that Do f = f (which is equivalent, as pointed out earlier, to the fact that there is ¢ € C*°(E,R) such that
Dyg = f). Thatis, E' is exactly the space of fixpoints for Dy : 7FE — ?E. Thus:

E~ !DOE-

We have obviously
\E ~ 1 4F.

We argue here that this exponential indexed by a Differential Operator has a meaning beyond Dy, Id and LPDOcc.
Let us note that if 7" denotes a Taylor sum operator:

T:feC®(E,R)— (x—= Y. Djf())

then power series are exactly the functions f € C®(E,R) such that T'(f) is well defined (that is T'(x) is a
convergent sum for every x), and such that

T(f)=r

Thus if we denote by S(F) the set of scalar power series (taking for example the definition appearing in [49], over
complex topological vector spaces) the quantitative exponential is exactly the space of fixpoints for 7', and

S(E) ~IrE.
As T' is idempotent, one can define dereliction and codereliction for T":

dp \E—=7E; ¢ — dg(p)
dr :'7E—=Exp—poT

As T is idempotent we have indeed d%. o dp = Id.
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The Identity rule

s 1
AL em - F’AF " 5 A8
The multiplicative rules
— il MY =I,N, M HILP HAQ
-1 T, B B VAR FT.APRG @
The additive rules
T HT,N =TI, M —T,P FT,Q
DT S VA “T Paqg OF CT.Pomg OR
The Exponential Rules
4 w = A, TP TP . = A, 7pP d
— A, 7P - A, 7P P P
— @ = A IN M,IN _ }—JV,!DNd
=N - MIN € -/ IN 9P
Figure 8.1: The deriving rules for sequents of Dy — DiLL
8.3 Dy — DiLL

We introduce in this section a toy polarized sequent calculus, with sums, for which both Dy and LPDOcc D are
a model. This sequent calculus captures the idea that dereliction and codereliction correspond to the resolution
of a differential equation. We justify this idea by giving two semantics for Dy — DiLL without higher order: one
which corresponds to the semantics of Chapter 7, and another one corresponding to the resolution of LPDEcc.

8.3.1 Grammar and rules
Definition 8.3.1. The formulas of Dy — DiLL are constructed with the following polarized syntax:
N, M :=?A|7pA|NB®M|NxM
P,Q:=A|1pA| P®Q|P®Q
Definition 8.3.2. Then the negation is the one of LL, with the addition definitions:
IpAt =7pAL 7pAt =IpAt

Then the proofs of Dy — DiLLLL are constructed according to the rules in figure 8.3.1. Notice that these are the
rules of polarized DiLL (see 2.8), with modified the dereliction and the codereliction accounting for the introduc-
tion of the newly introduced connectives ?p and !p.

Cut-elimination The cut elimination procedure in Dy — DiLL follows exactly the one of DiLL,,; (see section
2.4.1.3). In particular, the cut between the dereliction dp and the codereliction dp is:

HN,?pP FM,IpN _
: ’ N,?pP M,IpN
A I o L e
=N, M cu ’
and the one between contraction and codereliction involves the usual co-weakening:
FI,74,7A . FAIpA F
—T,7A A A f o
FT,A cu
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= Z&,![)fl

~T,74,74 FALIA Cﬁt -
—T.A 74 -l
AT
FAA _
- T,74,7A 14 Ci -
—T,A Y
AT cut

Remark 8.3.3. With no introduction rule for !, this system is not finished. It should be enhanced with promotion
and functorial promotion for !p. However, as in this thesis we did not detail the commutative rules between
promotion and the co-structural rules of DiLLL, we do not do that here.

8.3.2 Models
8.3.2.1 A model with D,.

We consider the semantics introduced in chapter 7, section 7.4. Thus formulas are interpreted as complete nuclear
spaces, and negative formulas are in particular interpreted as nuclear (F)-space. Remember that the exponential
was interpreted as:

EucL — NuCL

¥ R" — &'(R") (8.6)
0:R"—=R"— (pe &' (R") — pole & (R™))
We work here within the setting of a toy semantics without higher order, when ! p and ! are only functor between
EUCL and NF.
Outlook 17. The semantics developed in section 7.5 should give a model with higher order for Dy — DiLL.

Definition 8.3.4. Following the discussions in section 8.2, we give the following interpretation:

8.7)

| EucL — NucL
P R - DFNERY) =R

Then A and !p, A have the same interpretation. Thus the semantics developed in chapter 7 gives a semantics for
Dy — DiLL, and we have in particular:

dpyrr = drn : 9 € &'(R") — (L€ (R") — ¢(0))

dpy rr = dgn : 7 ~ evy € (R") — (f € &R") — evy(Do(f))

8.3.2.2 A model with any LPDOcc D

Consider D a linear partial differential operator with constant coefficients, acting on functions in &'(R).

D= Z a0

aeNn
We adopt the notations of chapter 7 which were used also for the model with Dy in section 8.3.2.1: ! : EUCL—=NUCL
is the functor mapping R™ to &’ (R™).
Conjecture 1. As for Dy, we give here a first order semantics which should extend to higher order following the
method of 7.5.

We defined the lcs | pR™ as the inverse image of &’(R™) under D : D'(R") — D’'(R™). The LPDOcc D
applies to scalar functions of n real variables.. It can however be extended to functions defined on any euclidean
space R™, following the basic idea that we should only consider the n first variables when applying D to a function
f e D(R™).
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Definition 8.3.5. Consider m < n and f € &(R™), one defines an extension of f to R™ as f : (x1,...x,) —
f(x1,...,xy), and thus defines D on &(R™). It m > n and f € D(R™), one define D(f) as D applied to the
restriction of f to R™: D(f) := D((z1,...,2n) — f(21,...,22,0,...,0)).

This definition is fundamental, at is accounts for the deferministic cut-elimination of the system D — DiLL,
introduced in section 8.4.

Remark 8.3.6. We reused here a convention in mathematical physics (see for example the introduction of chapter
52 in [76]). One denotes by D, the operator D applied to a function f € CX(R™ x R™), to indicate that D applies
only to the variable x of the function (x,y) € R" x R™ — f(x,y).

Definition 8.3.7. We define the functor: !p : EUCL — TOPVEC.

EucL — NDF
'p: R" — IpR" (8.8)
(R —R"™ > (¢ |pR" — ¢ : (f € 7pR™) > (f 0 £)))

This functor is well defined: consider ¢ : R"—R™ and ¢ € | pR", thenforany f € 7pR™ : D((!pf)(#))(f) =
(IpO)(A)(D(f)) = ¢(D(f o £) = ¢((D(f) o €). As D has compact support and £ is linear continuous, so has

(D(f)od.
Definition 8.3.8. We define the following natural transformations dp : ! —!p and dp : !p — .

&' (R™) —>1pR™
dD)]Rm :

Y= (fe ER™) = D)(f))

The codereliction is well defined thanks to Proposition ??. The dereliction is well defined thanks to Corollary
8.1.24 and Example 8.1.21. Moreover, this denotational interpretation is unchanged under the cut-elimination
procedure, as by Proposition 8.1.16:

V(b S !DRTL, dD’]Rn ] JD,R” ((;5) :dD7R7L (D¢) € éBI(Rn)
= Ep * (Do)
— e D'(RY)

— 'DRm —IR™
dD)Rm : {

Remark 8.3.9. Let us note that to extend this model to higher order, one cruelly misses a proof of the fact that
'pR™ is reflexive.

8.4 D-DILL

‘We now depart from the intuitions conveyed by Dy and DiLL, to study more specifically the case of Linear Partial
Differential Operators with constant coefficients.

8.4.1 The sequent calculus D — DiLL
8.4.1.1 Grammar and rules

We introduce a generalisation of (higher-order, polarized, without promotion) DiLL, where the role of A ~ ALt
in the exponential rules d and d is played by a new formula ! p A. The other exponential rules are moreover replaced
by equivalent rules involving !p, in order to account for the specificities of the convolution and the fundamental
equation. In particular, this modification implies that this sequent calculus does not involve sums of proofs (see
Section 8.3). The formulas of D — DiLL are constructed following the same grammar as those of Dy — DiLL:

Definition 8.4.1. The formulas of D — DiLL are constructed with the following polarized syntax:
N, M :=?A|7pA|NB®M|NxM
PQ:=A[IpA|PRQ|P®Q
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The Identity rule

L (axi 1
- A, Al (axiom) =T, A}_ T Z A% A (cut)
The additive rules
— I MY _ELNM 0P -AQ
-1 T, 1 B B VAR FT.APRG @
The multiplicative rules
T HT,N =TI, M —T,P FT,Q
DT S VA “T Paqg OF CT.Pomg OR
The exponential rules
BN, ENIPIOP NP
=N TP =N, P N, 7P
= e - N, IN =M IpN - N,IpN Z
- 1pN - M,N,IpN P NN TP

Figure 8.2: Rules for D — DiLL

Definition 8.4.2. The negation is the one of LL, with the additional definitions:

IpAt = 2,44 7pAt =14t
Remark 8.4.3. Let us relate the specific form of the co-contraction with the "coabs" rule in the parcimonious types
of Mazza [57]:

ARt A I"A'+u:lA
DTS AA —tau:lA

which underlines that a modified version of the co-dereliction should type the constructions of lists. Now remember
that semantically, ! p A is interpreted as a space which contains !A = &’(A). Thus the D-co-contraction ¢p could
imply that one should see the type ! p A as the type of lists of elements of type ! 4. The operation extracting the first
element of a list should then be typed by dp.

Remark 8.4.4. Thus the connectives !p and 7p are only introduced via coweakening and weakening, which is
quite weak. As for Dg — DiLL,, one should add to the present sequent calculus functorial promotions rules for !
(which are well interpreted in the semantics were !, : EUCL—NUCL is indeed a functor). This is not done here,
as the meaning in terms of distributions of cut-elimination rules between a promotion for ! p and structural rules is
not clear.

8.4.1.2 Admissible rules

Before going to cut-elimination, let us show that the version of the structural rule ¢, w, ¢, w involving only !N and
not ! p N are admissible in D — DiLL.

Proposition 8.4.5. The rules w, w are admissible in D — DiLL.

Proof. The following proof-trees can be understood through their interpretation in terms of distributions and partial
differential operators. For example, wp : R—!pF is the intrO(_iuction of a fundamental solution 1 — E'p. Thus
the usual coweakening @ : 1 € R — &g € |E is exactly w(1) = dp o wp (1) = DEp = dy.

- - N
_ w w
=N W= 1N JD ';\/:Aipw= —N,?7pP dD
FIN P =N — N 7P P
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Proposition 8.4.6. The rules c and ¢ are admissible in D — DiLL.

Proof. In terms of distributions and fundamental solutions, ¢p and ¢ are both interpreted as the convolution, but
they are not defined on the same spaces. The usual cocontraction is the convolution between to distributions with
compact support &(¢, 1)) = ¢ * 1) while ép asks for one of them to be in !pE = D~(&(E)) < D'(E). Thus

(¢, 9) = ¢ = D(Ep % ¢) x ¢ = dp o ép(dp(9), ).
Wy

AN IN FIpN _

F N, IN M, IN N pN L L MIN

- N, M,IN N, M, IpN ¢
FN MNP

N, 2P, 7P
- N,?P,7P,7p A

c=  FN,?P,7pA
— N, 7pP

- N,7P

Wp
¢D

~N,?P,?P

=N,?P
dp

Proposition 8.4.7. The rules wp, ¢p, wp and cp are admissible in DiLL, when |p A is equivalent to A.

8.4.2 The cut-elimination procedure in D — DiLLLL

This cut-elimination is inspired by the one of DiLL and by the calculus of distributions, see section 8.1. We de-
scribe the cut-elimination rules and commutative rules in figure 8.3. They are best understood from the semantical
point of view developed in section 8.4.3.

Notice that the differences between DiLL and D — DiLL makes the cut-elimination procedure much simpler:
cuts between d, and w, or dp and wp are not possible. Moreover, the fact that the contraction and co-contraction
rules are no longer symmetrical suppress the need for sums of proofs. Thus proofs of D — DiLL are simple proofs.

The commutative rules for the exponential rules of D — DiLLL are the same as the ones of DiLL (see [81]), and
are immediate as the exponential rules are multiplicative and do not interfere with the context.

8.4.3 A concrete semantics without higher order

Let us define formally the semantics of D — DiLLLL which was used informally throughout the last sections. This
section is peculiar, as it uses the notations used in mathematical physics to interpret the rules of D — DiLL, see
theorem 8.4.11.

In this section we show that the categories EUCL, NDF and NF, together with distributions of compact support
and a LPDO D with contant coefficients, form a first-order model of D — DiLL. As for Smooth DiLL, we define
Ip as a strong monoidal functor between EUCL and NDF. Extending this to a higher-order model could be possible
using the same techniques as in section 7.5.

Consider D : D'(R™) — D’(R™) a LPDOcc:

D(f,l‘) = Z aaaaf(x)'
aeN"™

In section 8.3.2.2 we saw that we could make D act on any euclidean space:

Definition 8.4.8. If m < n and f € D(R™), one defines an extension of f to R™ as f : (z1,..x,) —
f(z1,...,xm), and thus define D on D(R™). It m > n and f € D(R™), one define D(f) as D applied to
the restriction of f to R™: D(f) := D((z1,...,2n) — f(z1,...,25,0,...,0)).

Remark 8.4.9. In particular, the fundamental solution Fp € | pR™ can be restricted or extended to E'p € R™, for
any m.
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N

— _
— __Wp
l—./\/,?D]Vl I—'DN wDV"") }—./\/‘
N cut
FN,?pNL 2N+ .
DI S ey E gy, RNpNRINY RN
A% 7”“}
I*N,.DN I*DN cut l_N’?Né |_'DN D
N N cut
~N,IpN FNIN =M
7 g N VT B T
FN,N' IpN = M,?pN
NN, M cut
M,
FN,!IpN M, ?pNt cut
o N, M
W
N, M, 7N+ - N7 IN
NN M
=N, ?pN*t - M,IpN
dD s+D d FN ?DNJ_ FM!DN
7Nt IN D : : ut
=N, N M =M cut =N, M o
FN,?pNL 7Nt . M, !pN - M IN -
=N, ?7pN+ - M, M, IpN b
=N ML M cut
N, ?2pNL 2N+t M, pN .
Cu
o N, M,?N+ - M IN
=N, M, M

cut

cut

Figure 8.3: Cut-elimination for the exponential rules of D — DiLLLL
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We interpret finitary formulas A, B as euclidean spaces. One has indeed 1 ~ | = Rand T ~ 0 = {0}. The
connectives of LL are interpreted in EUCL, NF and NDF as in section 7.4.

Definition 8.4.10. We recall the definition of the functor ! p which was made explicit in section 8.3.2.2:

EucL — ToPVEC
D: R™ s I pR™ (8.9)
L:R" —=TRP e IpR™ — (f € D(D(RP) — ¢(f o ¥))

The introduction of !, breaks the symmetry of the Kernel theorem:

Theorem 8.4.11. Consider D : D'(R™) — D'(R™) a LPDOcc. Then for any m = 0, we have natural isomor-
phisms
mD,n : !D(Rn+n) ~ 'DRH®W'RH

Proof. This theorem encodes the definition 8.3.5, which allows to extends D defined on £(R™) to E(R™™).
This theorem is then directly deduced from the Kernel theorem 7.3.5: as £(R"™™) ~ £(R")®QE(R™) we have
D(E(R™™)) ~ DE(R™)®E(R™). Taking the dual gives us the desired result. O

From this strong monoidal isomorphism and the biproduct structure on TOPVEC, one deduces the interpretation
of wp, Wp, c¢p and ¢p, following the categorical procedure introduced by Fiore (see section 2.4.2.1). These
interpretations are to be compared to the ones for the model of DiLL with distributions of Chapter 7, which are
detailed in Section 7.4.3.

Definition 8.4.12. We give the following interpretation for wp, wp, c¢p and ¢p:

e In Section 2.4.2), we interpreted the coweakening as the map w 4 :! —!4 resulting of the application of the
functor ! on the initial map u4 : I — A . Concretely, we have I = {0} ugm (0 € {0}) — 0 € R™ , and
'p(ua)(1) = do. Applying !p to u gives exaclty the same result : |p(uy)(1) = g, but this is not what we
want here. Thus one defines:

op | R IDR” (8.10)
D - .
1+— (ED * 'D(UA)(I)) = ED
Notice that E'p was given in ! pR™, but it is extended to ! pR™ following Definition 8.4.8.
e The cocontraction ¢ : |p ® | —!p is interpreted by the convolution product (see prop. 7.4.12)

IpPR™QIR™ IpR™

A e 8.11)
PR — Q)

and is well defined thanks to corollary 8.1.24.
e The interpretation of weakening wp : !p — 1 is defined as:

wp (;56 IpR™ +— fDd)

It is well defined as by definition D¢ has compact support. As explained in Section 7.4.3, integration on
distributions with compact support ¢ € &’ (F) is defined as v applied to a function constant at 1:

jzﬁ = 1(consty).

When 1 is the generalization of a function f with compact support, then we have indeed

wleonsty) = [1-7 = [ £

e The contraction ¢p : |p —!p ®! is interpreted as in proposition 7.4.9 by:

? P RMQTR™ —> 7 p(R™
cD:{D QIR —7p(R™) (8.12)

f®g = (z— flz)g(x))
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Remark 8.4.13. Notice that the interpretation of cp follows the intuitions of theorem 8.4.11:
feD(ER™ x R™))

is in fact in D(&(R™))®& (R™), as differentiation occurs only on the first m variables. In particular, if m > 0,
then the differentiation on R™ x R™ is defined as:

D ® Idgm : C*(R™ x R™) —=C®(R™ x R™)
Thus the fundamental solution Fp € !p(R™*™) corresponds to Ep ® dg € |pR"™ ® IR™.
Dereliction and the codereliction are defined as previously for Dy — DiLL (see Section 8.3.2.1).
Definition 8.4.14. We interpret the dereliction dp : | —!p as
dp,p(¢ € E'(R™)) — (Ep * ¢)
and codereliction dp : | — ! as
dp.g: (¢ €!pR™) — (Dg¢) € &'(R™).

Proposition 8.4.15. This denotational semantics of the rules of D — DiLL is preserved by cut-elimination (see
figure 8.3).

In figure 8.4.3, we provide the cut-elimination rules annotated with the interpretation of the proofs, to support
the proof of proposition 8.4.15.

Proof. e Cut elimination between dp and dp. By equation 8.3 one has for every ¢ € £&'(R") and f € £(R"™):

dp,p © dp,p(¢)(f) = Ep * (4(D(f))
= ¢(Ep * D(f))
= o(f)

e Cut elimination between wp and wp:
wp O’IDD(l € R) = fDED = J(SO =1

e Cut elimination between cp and wp: by definition of the interpretation of cp, one has:
cp owp(1) = (fp,9) € D(E(R")) ® E(R") — wp(z — f(2)g(2)).
Thus as wp (1) = Ep, and by making use of remark 8.4.13, we have:
cpowp(l) = Ep®do((z — f(z)g(z)))
which corresponds to the interpretation of the reduced cut-rule.

e Cut elimination between ¢p and wp: consider ¢ € | pR™ and ¢ € !R™. We are used to see the cocontrac-
tion as the convolution between distribution, but remember that we can also understand it as the resulting
distribution which sums in the codomain of its function (see Proposition 7.4.12). Then:

wowbwwﬁ=JDU€&MWUH¢@H¢@“*ﬂw+WW]

~ [17 = 66 Dula’ = fla+ )
= ¢(x — Dy(x' — consti(z + 2")))

= ¢(Con5tD'¢1(const1 ) )

Again by definition 8.3.5, D applies only to ¢. Thus the interpretation of the cut-rule and its reduced form
corresponds.
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e Cut elimination between ¢p and c¢p: consider ¢ € |pR™ and ¢ € !R™. Then up to the kernel isomorphism
we have: DA '
cpoip =p(Ax A) 224154 2274, 15 (A x A)

Thus

cpoiplpe!p(AxA)) =feDEAxA) — (epd)(z — f(z,z))
= [ o((zy) = fz,2)f(y,9))-

Through the Kernel isomorphism we can suppose by density that ¢ = ¢’ ® v, with ¢’ € |p A and ¢ € A,
and f = f' ® g with f’ € 2p A+ and g € ?A*. Thus

(cpocp)(d €lp(A x A)) = f'@®g — ¢ ®¥((z,y) — f'(2)9(y))
= ['®g— &' (f")(9),

and the last proposition corresponds to the interpretation of the reduced cut-rule between cp and cp.
O
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=N =

T WP ——— Wp
N, ¢ — (Dg¢)(consty) : 7pN —Ep:!pN tw FAN,1:K
N, d(const;) =1: K cu
FN,Df:?2pN*t g 2N+ u B
= T CD —————— Wp
=N,Df-g:?pN ~Ep:!pN cut
=N, Ep(Df-g) =bo(f - g) = f(0)g(0) : R
B
FN,Df:?7pNL g 2Nt oo IN . F )
N> v Ccu B ——
- N,Df 2N, g(0) : R - Ep pN th
. cu
FN,Ep(Df)=f(0):R,g(0):R
FN Y pN BN N M, 1:R o
FN N Y*¢:!pN b - M, D(const,) :?N* .
- cu
NN M, (2 x @) (D(consty)) = (D = ¢)(consty) : R
M wp
N, ¢:IpN M, D(consty) : 2pN* .
NS N, M, D(¢)(consty) : R o
w
- /\/',/\/LconstD(w)(constl) N+ RN, G IN .
= N7 Nl:M7w(conStD(1/))(const1)) ‘R “
HN,Df:?7pN* M, IpN .
! d RS R S e Df:?7pN+t :IpN
N, f: 2Nt P —M,Diy: IN o .., =N Df 7o Vl_Mﬂb D cut
= cut FN, M, ¢(Df): R
=N, M, DY(f) =¢(Df): R
N, Df:7pNt g N NN N IN .
- N,Df-g:?pN* NN g N b
E N, ?2pNL 6 INY M, IpN
cut
A =N, M,?N*+ - M IN
- N, MM cut

Figure 8.4: Cut-elimination for the exponential rules of D — DiLL, annotated with the semantics
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Chapter 9

Conclusion

In this thesis, we conducted a study of the semantics of Differential Linear Logic: our goal was to find a model of
DiLL in which functions were smooth (making coincide the intuitions of analysis concerning differentiation and
the requirements of logic), and spaces continuous and reflexive (as DiLLL features an involutive linear negation).

We met this goal by constructing several model for it. During this study, it appeared that a polarized was better
fit to interpret DiLLL, as we may want to interpret differently the linear negation on the positives or and the negative
( Chapter 6), or as a space and its dual may not belong to a same monoidal closed category (Chapter 7). Throughout
this study, we highlighted the fact spaces distributions with compact support are the canonical interpretation for the
exponential. In this spaces of distributions, one can resolve Linear Partial Differential Equations, and we provide
a sequent calculus supporting the idea that the exponential is the space of solutions for a Linear Partial Differential
Equation.

Directly following this thesis: Among other points, let us mention what could appear in this thesis and is not:

1. Categorical models of DiLLg ,,; presented in section 2.5.2.3 are not optimal. Indeed, they always provide
for an interpretation of the promotion rule, even when this one does not figure in DiLLLy. Moreover, the
symmetry between the dereliction and codereliction rules is broken in the categorical axiomatization: dere-
liction comes with the strong monoidal adjunction between ! and U, while codereliction is ad-hoc. In view
of results in Chapter 8, we should have a symmetric axiomatization.

2. In Chapter 6, one would want an interpretation for the exponential which is intrinsically bornological, thus
emphasizing on the fact that the adjunction between convenient spaces and complete Mackey spaces is the
good linear classical refinement of convenient spaces.

3. In Chapter 7, we detailed a model of DiLL using the theory of Nuclear Spaces. One should explore the link
between this model and the model of Kothe spaces, using in particular Fourier transformation. In particular,
as any nuclear fréchet space is a subset of a denumerable product of the Kothe spaces of rapidly decreasing
sequences [44, 21.7.1], introducing subtyping may lead to a complete semantics.

4. In Chapter 8, the proof that ! p E is reflexive is cruelly missing. We also miss a good notion of categorical
model for D — DiL.L.

5. Chapter 8 gives a logical account for the notion of fundamental solution for Linear Partial Differential
Operator. Let us note that the Cauchy Problem for Linear Partial Differential Equation behaves well with
respect to solutions defined on cones, and that a link with the recent models of probabilistic programming
by Ehrhard, Pagani and Tasson may exists [21].

6. This thesis emphasized the importance of reflexivity when constructing models of Differential Linear Logic.
One should now investigate the differential A-calculus in terms of linear continuations, and linear exceptions,
in the spirit of [16] and [35].

What’s more important: In Chapter 8, we build a deterministic sequent calculus D — DiLLL with a concrete
first-order denotational model in which applying the dereliction rule corresponds to solving a linear partial differ-
ential equation, with the basic intuition that several exponential exists, and each one is associated with a Linear
Differential Operator
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1. The priority is to work towards completing the Curry-Howard-Lambek correspondence for Linear Partial
Differential Equations. This means finding the good categorical axiomatization for models of D — DiLL,
and most importantly refining the differential A-calculus [22] into a deterministic calculus for Linear Partial
Differential Equations. This should be done by understanding computationally the proof of the Existence of
Ep.

2. In Chapter 7, we gave a sequent calculus D-DiLL, which corresponds to a fixed Linear Partial Differential
Operator D. We would like to generalize this procedure, by constructed a graduated sequent calculus a la
BLL [34], which would describe any Linear Partial Differential operator with constant coefficient.

3. Of course, the global objective is to work towards a computational understanding of non-linear Partial Dif-
ferential Equations.
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Appendix A

Index of symbols

We indicate symbols, and then give the name of the mathematical object they denote, and the page or section in
which they are introduced.

Categories

TOPVEC: the category of Hausdorff and locally convex topological vector spaces and linear continuous
bounded maps between them.

BORNVEC: the category of vector spaces endowed with a vector bornology, with linear bounded maps
between them.

The following categories are full and faithful subcategories of TOPVEC.

KOTHE, model of DIiLL : the category of kothe spaces, page 22.

Mco, model of intuitionist DiLLL: the category of Mackey-Complete spaces, page 45.
CHU, model of MALL : the category of Chu spaces, Section 4.

WEAK, model of DiLL: the category oflcs endowed with their Weak topology, Chapter 5.
bTOPVEC: the category of bornological Ics, page 107.

MACKEY : the category of Ics endowed with their Mackey topology, Section 4.

CoNv, model of :DiLL [6] and interpretation for the positives formulas of a model in Section 6.4 : the
category of bornological and Mackey-Complete spaces.

COMPL : the category of Complete Ics, Section 3.1.5.

MACKEYCOMPL, interpretation for the negative formulas a model of DiLL Section ?? the category of Ics
which are Mackey and Complete, see Section 6.4.

NucL: the category of Nuclear Ics, Section 7.2.2.

NF, NDF interpreting negatives (resp. positives) in Chapter 7 : the category of Nuclear Fréchet (resp.
Nuclear DF) Ics, Section 7.1.1.

Chapter 2

L(E,F),Lin(E, F), L(E, F) : the vector space of all (resp. of all bounded, resp of all continuous) linear
functions betwenn the Ics E and F'.

w, ¢, d : the weakening, contraction and dereliction rules of LL, page 17.

(T, d, ) : aco-monad with co-unit d and co-multiplication p., page 20.
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Ly Co-Kleisli category of the co-monad !, page 20.
T, 4 : the shifts of LLy,;, page 24.

A, P : categories involved in a model of LL,,,;, page 28.

w, ¢, d : the co-weakening, co-contraction, co-dereliction rules of DiLL, page 35.

©, V,u, 2\, n : abiproduct structure on a category , page 40.

Chapter 3

E : when B is a absolutely convex and weakly-closed subset of E, it is the vector space generated by B,
normed by the distance to B, page 57

E the completion of a Ics E, page 59.
lim, lim : the Ics injective (resp. projective) limit of Ics, page 58.

CP(R™) = D(R™) : the vector space of all smooth functions f : R™ — R with compact support, endowed
with the topology of uniform convergence of compact subsets of every derivatives of finite order, page 60

C*(R™) = &(R™) : the vector space of all smooth functions f : R” — R, endowed with the topology of
uniform convergence of compact subsets of every derivatives of finite order, page 60.

E,, E., . : the weak and weak* topologies on F and E’ respectively, page 63.

E,x, EL : the Mackey* and Mackey topologies on F and F’ respectively, page 68.

E : the strong dual, page 68

®x,» ®r: the projective tensor product, the completed projective tensor product, page 74.

®e, Qe the injective tensor product, the completed injective tensor product, page 74.

Chapter 5

®;: the inductive tensor product, page 86.
‘H"(E, F): The space of n-linear symmetric separately continuous functions from E to F, page 89.
I': the exponential for which arrows in the co-kleisli category are formal power series.

l1: the exponential for which arrows in the co-kleisli category are formal power series without constant

coefficients, whose composition correspond to the Faa di Bruno Formula.cde"

Chapter 6

bom: the bornologification of a Ics , page 108.

)
~ M .

(L) : the Mackey-completion of a Ics, page 110.

_onv : The bornologification of the Mackey-completion, making a space convenient, page 111.

E,, : The Mackey topology on the Ics F, considered as the dual (equivalently pre-dual) of E; , page 69.
e: the € product, page 78.

Chapter 7
D'(R") = COC(R”)};, the space of distributions,, page 132.

(&

&'(R™) = C*(R™)7, the space of distributions with compact support, page 132.

177



519,49, h,h... . smooth functions, sometimes with compact support. If it is not explicitly mentioned, f’
will never designate the derivative of f, as f is not in general a function defined on R.

¢, ¢’ .4, ... . Distributions, sometimes with compact support. Beware that Hormander [41, 42] uses
reverse notations for functions and distributions.

Chapter 8

Dy : the operator mapping a smooth function to its differential at 0 (which is linear continuous).

e D : aLinear Partial Differential Operator with constant coefficients.

ot
b= Z o ox®

aeNn
aeNn?

e Dy — DiLL : a non-deterministic sequent calculus for which both D and Dy results in a model.

e D — DiLL : a deterministic sequent calculus for which D results in a model.
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Appendix B

Models of Linear Logic based on the
Schwartz c-product.

This chapter consist in a submitted paper in collaboration with Y. Dabrowksi. In contrary to chap-
ters 6, 7, we develop here an unpolarized, and therefore more difficult, approach to smooth and
reflexive model of DiLL. From the interpretation of Linear Logic multiplicative disjunction as the
e-product defined by Laurent Schwartz, we construct several models of Differential Linear Logic
based on usual mathematical notions of smooth maps. We isolate a completeness condition, called
k-quasi-completeness, and an associated notion stable by duality called k-reflexivity, allowing for a
=-autonomous category of k-reflexive spaces in which the dual of the tensor product is the reflexive
version of the € product. We adapt Meise’s definition of Smooth maps into a first model of Differential
Linear Logic, made of k-reflexive spaces. We also build two new models of Linear Logic with con-
veniently smooth maps, on categories made respectively of Mackey-complete Schwartz spaces and
Mackey-complete Nuclear Spaces (with extra reflexivity conditions). Varying slightly the notion of
smoothness, one also recovers models of DiLL on the same #-autonomous categories. Throughout
the article, we work within the setting of Dialogue categories where the tensor product is exactly the
e-product (without reflexivization).
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B.0.0.1 Introduction

Smooth models of classical Linear Logic. Since the discovery of linear logic by Girard [29], thirty years ago,
many attempts have been made to obtain denotational models of linear logic in the context of some classes of
vector spaces with linear proofs interpreted as linear maps [5, 6, 18, 19, 33]. Models of linear logic are often
inspired by coherent spaces, or by the relational model of linear logic. Coherent Banach spaces [31], coherent
probabilistic or coherent quantum spaces [33] are Girard’s attempts to extend the first model, as finiteness spaces
[19] or Kothe spaces [18] were designed by Ehrhard as a vectorial version of the relational model. Following the
construction of Differential linear logic [24], one would want moreover to find natural models of it where non-
linear proofs are interpreted by some classes of smooth maps. This requires the use of more general objects of
functional analysis which were not directly constructed from coherent spaces. We see this as a strong point, as it
paves the way towards new computational interpretations of functional analytic constructions, and a denotational
interpretation of continuous or infinite data objects.

A consequent categorical analysis of the theory of differentiation was tackled by Blute, Cockett and Seely [8, 9].
They gave several structure in which a differentiation operator is well-behaved. Their definition then restricts to
models of Intuitionistic Differential Linear Logic. Our paper takes another point of view as we look for models
of classical DiLL, in which spaces equal some double dual. We want to emphasize on the classical computational
nature of Differential Linear Logic.

Three difficulties appear in this semantical study of linear logic. The equivalence between a formula and
its double negation in linear logic asks for the considered vector spaces to be isomorphic to their double duals.
This is constraining in infinite dimension. This infinite dimensionality is strongly needed to interpret exponential
connectives. Then one needs to find a good category with smooth functions as morphisms, which should give a
Cartesian closed category. This is not at all trivial, and was solved by using a quantative setting, i.e. power series
as the interpretation for non-linear proofs, in most of the previous works [18, 19, 31, 33]. Finally, imposing a
reflexivity condition to respect the first requirement usually implies issues of stability by natural tensor products
of this condition, needed to model multiplicative connectives. This corresponds to the hard task of finding -
autonomous categories [Ba79]. As pointed out in [20], the only model of differential Linear logic using smooth
maps [6] misses annoyingly the #-autonomous property for classical linear logic.

Our paper solves all these issues simultaneously and produces several denotational models of classical linear
logic with some classes of smooth maps as morphism in the Kleisli category of the monad. We will show that the
constraint of finding a *-autonomous category in a compatible way with a Cartesian closed category of smooth
maps is even relevant to find better mathematical notions of smooth maps in locally convex spaces. Let us explain
this mathematical motivation first.

A framework for differential calculus. It seems that, historically, the development of differential calculus be-
yond normed spaces suffered from the lack of interplay between analytic considerations and categorical, synthetic
or logic ones. Partially as a consequence, analysts often forgot looking for good stability properties by duality and
focused on one side of the topological or bornological viewpoint.

Take one of the analytic summary of the early theory in the form of Keller’s book [Kel]. It already gives
a unified and simplified approach based on continuity conditions of derivatives in various senses. But it is well-
known that in order to look for good categorical properties such as Cartesian closedness, the category of continuous
maps is not a good starting point, the category of maps continuous on compact sets would be better. This appears
strongly in all the developments made to recover continuity of evaluation on the topological product (instead of
considering the product of a Cartesian closed category), which is unavoidable for full continuity of composition
of derivatives in the chain rule. This leads to considering convergence notions beyond topological spaces on
spaces of linear maps, but then, no abstract duality theory of those vector convergence spaces or abstract tensor
product theory is developed. Either one remains with spaces of smooth maps that have tricky composition (of
module type) between different notions of smoothness or composition within the classes involving convergence
vector spaces whose general theory remained underdeveloped with respect to locally convex spaces. At the end,
everything goes well only on restricted classes of spaces that lack almost any categorical stability properties, and
nobody understands half of the notions introduced. The situation became slightly better when [58] considered
k-space conditions and obtained what analysts call kernel representation theorems (Seely isomorphisms for linear
logicians), but still the class of spaces considered and the k-space conditions on products limited having a good
categorical framework for the hugest classes of spaces: the only classes stable by products were Fréchet spaces
and (DFM)-spaces, which are by their very nature not stable by duality.

The general lesson here is that, if one wants to stay within better studied and commonly used locally convex
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spaces, one should better not stick to functions continuous on products, and the corresponding projective topologi-
cal tensor product, but always take tensor products that come from a -autonomous category, since one also needs
duality, or at least a closed category, to control the spaces of linear maps in which the derivatives take values. -
autonomous categories are the better behaved categories having all those data. Ideally, following the development
of polarization of Linear logic in [MT] inspired by game semantics, we are able to get more flexibility and allow
larger dialogue categories containing such #-autonomous categories as their category of continuation. We will get
slightly better categorical properties on those larger categories.

A better categorical framework was later found and summarized in [? KM] the so-called convenient smooth-
ness. A posteriori, as seen [Ko], the notion is closely related to synthetic differential geometry as diffeological
spaces are. It chooses a very liberal notion of smoothness, that does not imply continuity except on very special
compact sets, images of finite dimensional compact sets by smooth maps. It gives a nice Cartesian closed category
and this enabled [6] to obtain a model of intuitionistic differential linear logic. As we will see, this may give
the wrong idea that this very liberal notion of smoothness is the only way of getting Cartesian closedness and it
also takes the viewpoint of focusing on bornological properties. This is the main reason why, in our view, they
don’t obtain x-autonomous categories since bornological locally convex spaces have complete duals which gives
an asymmetric requirement on duals since they only need a much weaker Mackey-completeness on their spaces to
work with their notion of smooth maps. We will obtain in this paper several models of linear logic using conve-
niently smooth maps, and we will explain logically this Mackey-completeness condition in section 6.2. It is exactly
a compatibility condition on F' enabling to force our models to satisfy !E — F' = (IE — 1) % F. Of course, as
usual for vector spaces, our models will satisfy the mix rule making the unit for multiplicative connectives self-dual
and this formula is interpreted mathematically as saying that smooth maps with value in some complete enough
space are never a big deal and reduced by duality to the scalar case. But of course, this requires to identify the right
completeness notion.

A smooth interpretation for the ?. Another insight in our work is that the setting of models of Linear
logic with smooth maps offers a decisive interpretation for the multiplicative disjunction. In the setting of smooth
functions, the epsilon product introduced by Laurent Schwartz is well studied and behave exactly as wanted: under
some completeness condition, one indeed has C*(E, #Z)eF ~ C*(E, F'). This required for instance in [58] some
restrictive conditions. We reduce these conditions to the definition B.1.27 of k-complete spaces, which is also
enough to get associativity and commutativity of . The interpretation of the tensor product follows as the negation
of the ¢ product. We would like to point out that plenty of possibilities exists for defining a topological tensor
product (see subsection 2.2 for reminders), and that choosing to build our models from the e product offers a
simplifying and intuitive guideline.

With this background in mind, we can describe in more detail our results and our strategy.

Organisation of the first part about MALL The first part of the paper will focus on building several -
autonomous categories. This work started with a negative lesson the first author learned from the second author’s
results in [Ker]. Combining lots of strong properties on concrete spaces as for instance in [BD, D] will never be
enough, it makes stability of these properties by tensor product and duality too hard. The only way out is to get a
duality functor that makes spaces reflexive for this duality in order to correct tensor products by double dualization.
The lesson is that identifying a proper notion of duality is therefore crucial if one wants to get an interesting analytic
tensor product. From an analytic viewpoint, the inductive tensor product is too weak to deal with extensions to
completions and therefore the weak dual or the Mackey dual, shown to work well with this tensor product in [Ker],
and which are the first duality functors implying easy reflexivity properties, are not enough for our purposes. The
insight is given by a result of [S] that implies that another slightly different dual, the Arens dual always satisfies the
algebraic equality ((E.).).. = E! hence one gets a functor enabling to get reflexive spaces, in some weakened sense
of reflexivity. Moreover, Laurent Schwartz also developed there a related tensor product, the so called e-product
which is intimately related. This tensor product is a dual tensor product, generalization of the (dual) injective tensor
product of (dual) Banach spaces and logicians would say it is a negative connective (for instance, as seen from its
commutation with categorical projective limits) suitable for interpreting %. Moreover, it is strongly related with
Seely-like isomorphisms for various classes of non-linear maps, from continuous maps (see e.g. [76]) to smooth
maps [58]. It is also strongly related with nuclearity and Grothendieck’s approximation property. This is thus a
well established analytic tool desirable as a connective for a natural model of linear logic. We actually realize that
most of the general properties for the Arens dual and the e-product in [S] are nicely deduced from a very general
=-autonomous category we will explain at the end of the preliminary section 2. This first model of MALL that we
will obtain takes seriously the lack of self-duality of the notion of locally convex space and notices that adjoining a
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bornology with weak compatibility conditions enables to get a framework where building a s-autonomous category
is almost tautological. This may probably be related to some kind of Chu construction (cf. [Ba96] and appendix
to [Ba79]), but we won’t investigate this expectation here. This is opposite to the consideration of bornological
locally convex vector spaces where bornology and topology are linked to determine one another, here they can be
almost independently chosen and correspond to encapsulating on the same space the topology of the space and of
its dual (given by the bornology).

Then, the work necessary to obtain a *-autonomous category of locally convex spaces is twofold, it requires to
impose some completeness condition required to get associativity maps for the e-product and then make the Arens
dual compatible with some completion process to keep a reflexivity condition and get another duality functor with
duals isomorphic to triple duals. We repeat this general plan twice in sections 4 and 5 to obtain two extreme
cases where this plan can be carried out. The first version uses the notion of completeness used in [S], or rather
a slight variant we will call k-quasi-completeness and builds a model of MALL without extra requirement than
being k-quasi-complete and the Arens dual of a k-quasi-complete space. This notion is equivalent to a reflexivity
property that we call k-reflexivity. This first =-autonomous category is important because its positive tensor product
is a completed variant of an algebraic tensor product -, having universal properties for bilinear maps which have
a so-called hypocontinuity condition implying continuity on product of compact sets (see section 2.2 for more
preliminary background). This suggested us a relation to the well-known Cartesian closed category (equivalent to
k-spaces) of topological spaces with maps all maps continuous on compact sets. Using strongly that we obtained
a x-autonomous category, this enables us to provide the strongest notion of smoothness (on locally convex spaces)
that we can imagine having a Cartesian closedness property. Contrary to convenient smoothness, it satisfies a
much stronger continuity condition of all derivatives on compacts sets. Here, we thus combine the #-autonomous
category with a Cartesian closed category in taking inspiration of the former to define the latter. This is developed
in subsection 4.2.

Then in section 5, we can turn to the complementary goal of finding a #-autonomous framework that will be
well-suited for the already known and more liberal notion of smoothness, namely convenient smoothness. Here, we
need to combine Mackey-completeness with a Schwartz space property to reach our goals. This is partially based
on preliminary work in section 3 that actually makes appear a strong relation with Mackey duals which can actually
replace Arens duals in this context, contrary to the first author’s original intuition alluded to before. Technically,
it is convenient to decompose our search for a x-autonomous category in two steps. Once identified the right
duality notion and the corresponding reflexivity, we produce first a Dialogue category that deduces its structure
from a kind of intertwining with the %-autonomous category obtained in section 2. Then we use [MT] to recover
a *-autonomous category in a standard way. This gives us the notion of p-dual and the *-autonomous category
of p-Reflexive spaces. As before, those spaces can be described in saying that they are Mackey-complete with
Mackey-complete Mackey dual (coinciding with Arens dual here) and they have the Schwartz topology associated
to their Mackey topology. We gave the name p-dual since this was the first and more fruitful way (as seen its
relation developed later with convenient smoothness) of obtaining a reflexive space by duality, hence the letter p
for reflexive, while staying close to the letter o that would have remembered the key Schwartz space property, but
which was already taken by weak duals.

At the end of the first part of the paper, we have a kind of generic methodology enabling to produce -
autonomous categories of locally convex spaces from a kind of universal one from section 2. We also have obtained
two examples that we want to extend to denotational models of full (differential) Linear logic in the second part.

Organisation of the second part about LL and DiLL. In the second part of the paper, we develop a theory
for variants of conveniently smooth maps, which we restrict to allow for continuous, and not only bounded, differ-
entials. We start with the convenient smoothness setting in section 6. Actually we work with several topological
variants of this setting (all having the same bornologification). To complement our identification of a logical mean-
ing of Mackey-completeness, we also relate the extra Schwartz property condition with the logical interpretation
of the transpose of the dereliction dE* —o (1E)*. This asks for the topology on E* to be finer than the one
induced by (!E)*. If moreover one wants to recover later a model of differential linear logic, we need a morphism:
d:!E—= E such thatd o d = Idg. This enforces the fact that the topology on E* must equal the one induced by
('E)*. In this way, various natural topologies on conveniently smooth maps suggest various topologies on duals.
We investigate in more detail the two extreme cases again, corresponding to well-known functional analytic con-
ditions, both invented by Grothendieck, namely Schwartz topologies and the subclass of nuclear topologies. We
obtain in that way in section 6 two denotational models of LL on the same *-autonomous category (of p-reflexive
spaces), with the same Cartesian closed category of conveniently smooth maps, but with two different comonads.
We actually show this difference in remark B.2.24 using Banach spaces without the approximation property. This
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also gives an insight of the functional analytic significance of the two structures. Technically, we use dialogue
categories again, but not trough the models of tensor logic from [MT], but rather with a variant we introduce to
keep Cartesian closed the category equipped with non-linear maps as morphisms.

Finally, in section 7, we extend our models to models of (full) differential linear logic. In the k-reflexive space
case, we have already identified the right notion of smooth maps for that in section 4, but in the p-reflexive case,
which generalizes convenient vector spaces, we need to slightly change our notion of smoothness and introduce
a corresponding notion of p-smoothness. Indeed, for the new p-reflexive spaces which are not bornological, the
derivative of conveniently smooth maps are only bounded and need not be in spaces of continuous linear maps
which are the maps of our x-autonomous categories. Taking inspiration of our use of dialogue categories and
its interplay with Cartesian closed categories in section 6, we introduce in section 7.1 a notion merging dialogue
categories with differential A-categories of [BEM] and realize the correction of derivative we need in a general
context in section 7.2. This enables us to get a class of models of DiLL with at least 3 new different models in
that way, one on k-reflexive spaces (section 7.4) and two being on the same category of p-reflexive spaces with
p-smooth maps (section 7.3). This is done concretely by considering only smooth maps whose derivatives are
smooth in their non-linear variable with value in (iterated) spaces of continuous linear maps.

A first look at the interpretation of Linear Logic constructions For the reader familiar with other denota-
tional models of Linear Logic, we would like to point out some of the constructions involved in the first model
k — Ref. Our two other main models make use of similar constructions, with a touch of Mackey-completeness.

First, we define a k-quasi-complete space as a space in which the closed absolutely convex cover of a compact
subset is still compact. We detail a procedure of k-quasi-completion, which is done inductively.

We take as the interpretation E- of the negation the k-quasi completion of ', the dual of F endowed with the
compact-open topology, at least when E is k-quasi-complete. We define |E as CX(E, K)*, the k-quasicompletion
of the dual of the space of scalar smooth functions. This definition is in fact enforced as soon as we have a -
autonomous category with a co-Kleisli category of smooth maps. Here we define the space of smooth functions as
the space of infinitely many times Gateaux-differentiable functions with derivatives continuous on compacts, with
a good topology (see subsection B.1.3.2). This definition, adapted from the one of Meise, allows for Cartesian
closedeness.

We then interpret the % as the (double dual of) the € product: FeF' = L (E., F), the space of all linear
continuous functions from E’, to F' endowed with the topology of uniform convergence on equicontinuous subsets
of E’. The interpretation of ® is the dual of €, and can be seen as the k-quasi-completion of a certain topological
tensor product ®.

The additive connectives x and @ are easily interpreted as the product and the co-product. In our vectorial
setting, they coincide in finite arity.

In the differential setting, codereliction d is interpreted as usual by the transpose of differentiation at 0 of scalar
smooth maps.

B.1 Three Models of MALL

B.1.1 Preliminaries

We will be working with locally convex separated topological vector spaces. We will write in short Ics for such
spaces, following [K] in that respect. We refer to the book by Jarchow [Ja] for basic definitions. We will recall the
definitions from Schwartz [S] concerning the € product. We write 2 = F' when two Ics are equal algebraically and
E ~ F when the Ics equal topologically as well.

Remark B.1.1. We will call embedding a continuous linear map '—F which is one-to-one and with the topology
of F induced from this inclusion. In the functional analytic literature [K2, p 2] this is called topological monomor-
phism and abbreviated monomorphism, this is also the case in [S]. This disagrees with the categorical terminology,
hence our choice of a more consensual term. A monomorphism in the category of separated locally convex vector
spaces is an injective continuous linear map, and a regular monomorphism is a embedding with closed image (a
closed embedding). A regular monomorphism in the category of non-separated locally convex spaces coincide
with an embedding but we won’t use this category.

Remark B.1.2. We will use projective kernels as in [K]. They are more general than categorical limits, which are
more general than projective limits of [K], which coincide with those categorical limits indexed by directed sets.
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B.1.1.1 Reminder on topological vector spaces

Definition B.1.3. Consider E' a vector space. A bornology on F is a collection of sets (the bounded sets of E)
such that the union of all those sets covers E, and such that the collection is stable under inclusion and finite unions.

When F is a topological vector space, one defines the Von-Neumann bornology /3 as those sets which are
absorbed by any neighbourhood of 0. Without any other precision, the name bounded set will refer to a bounded
set for the Von-Neumann bornology. Other examples of bornology are the collections « of all absolutely convex
compact subsets of E, and o of all bipolars of finite sets. When E is a space of continuous linear maps, one can
also consider on E the bornology ¢ of all equicontinuous parts of £. When E'is a Ics, we only consider saturated
bornologies, namely those which contain the subsets of the bipolars of each of its members.

Definition B.1.4. Consider £, F', GG topological vector spaces and h : Ef x F' — G a bilinear map.
e h is continuous if it is continuous from E x F' endowed with the product topology to G.

e h is separately continuous if for any z € F and y € F, h(x,.) is continuous from F' to G and h(.,y) is
continuous from E to G.

e Consider B (resp. Bs) a bornology on E (resp. F). Then h is said to be 31,85 hypocontinuous [S2] if
for every 0-neighbourhood W in GG, every bounded set Ag in F, and every bounded set Ap in F, there are
0-neighbourhoods Vi < F and Vg < E such that h(Ag x Vi) € W and h(Vg x Arp) ¢ W. When
no precision is given, an hypocontinuous bilinear map is a map hypocontinuous for both Von-Neumann
bornologies.

Consider A an absolutely convex and bounded subset of a Ics E. We write E4 for the linear span of A in E. It
is a normed space when endowed with the Minkowski functional

|2][a = pa(z) = inf {\e Z" |zeAA}.

A lcs F is said to be Mackey-complete (or locally complete [Ja, 10.2]) when for every bounded closed and abso-
lutely convex subset A, F 4 is a Banach space. A sequence is Mackey-convergent if it is convergent in some Fp.
This notion can be generalized for any bornology 3 on E' a sequence is said to be B-convergent if it is convergent
is some E'g for B € B.

Consider E a lcs and 7 its topology. Recall that a filter in E’ is said to be equicontinuously convergent if it
is e-convergent. F is a Schwartz space if it is endowed with a Schwartz topology, that is a space such that every
continuously convergent filter in E’ converges equicontinuously. We refer to [HNM, chapter 1] and [Ja, sections
10.4, 21.1] for an overview on Schwartz topologies. We recall some facts below.

The finest Schwartz locally convex topology coarser than 7 is the topology 7y of uniform convergence on
sequences of F’ converging equicontinuously to 0. We write ./ (E) = . (E, 1) = (E,79). Wehave . (E) = F/,
and . (F) is always separated. A Ics F is a Schwartz space if and only if (E) = E, if and only if the completion
E is a Schwartz space. We do know also that . (F) is Mackey-complete as soon as E is (as both space have the
same dual, they have the same bounded sets by Mackey-Arens Theorem). Any subspace of a Schwartz space is a
Schwartz space.

B.1.1.2 Reminder on tensor products and duals of locally convex spaces.

Several topologies can be associated with the tensor product of two topological vector space.
Definition B.1.5. Consider F and F' two Ics.

e The projective tensor product E®, F' is the finest locally convex topology on EQF making Ex F' — EQ, F
continuous.

e The inductive tensor product E®); F' is the finest locally convex topology on E® F making £ x F' — E®; F
separately continuous.

e The hypocontinous tensor product ¥ ®g F' is the finest locally convex topology on E'® F' making E' x F' —
E ®g F' hypocontinuous.
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e The ~ tensor product F ®. F' is the finest locally convex topology on £ ® F' making £ x F — E®, F
~-hypocontinuous.

e Suppose that F and F' are duals. The e-hypocontinous tensor product £ ®g. F' is the finest locally convex
topology on ¥ ® F' making I x ' — E ®g. F' e-hypocontinuous.

o Consider B; (resp. B2) a bornology on E (resp. F').The B; — Bz-hypocontinous tensor product £ ®g, 5, F
is the finest locally convex topology on E ® F' making £ x F' — E ®g, g, F' B1, Ba-hypocontinuous.

All the above tensor products, except the last one, are commutative and the &®,. product is associative. With the
last generic notation one gets ; = 4,5,8 = 8,8,y = v,v> ®ge = &,c and we will sometimes consider during proofs
non-symmetric variants such as: . -, » etc. Note that the injective tensor product . # . . is a dual version we will
discuss later. It does not have the above kind of universal properties.

Definition B.1.6. One can define several topologies on the dual E’ of a Ics E. We will make use of :

e The strong dual £/ ,/3 endowed with the strong topology S(E’, E') of uniform convergence on bounded subsets
of E.

e The Arens dual E! endowed with the topology v(E’, E') of uniform convergence on absolutely convex
compact subsets of E.

e The Mackey dual E',, endowed with the Mackey topology of uniform convergence on absolutely convex
weakly compact subsets of F.

e The weak dual E/ endowed with the weak topology o (E’, F) of simple convergence on points of E.

e The e-dual E. of a dual E = F’ is the dual E’ endowed with the topology of uniform convergence on
equicontinuous sets in F”.

Remember that when it is considered as a set of linear forms acting on E’, E is always endowed with the topology
of uniform convergence on equicontinuous parts of E’, equivalent to the original topology of F, hence (£},); =~
(Ep)e =~ (E)e ~ E. Alcs is said to be reflexive when it is topologically equal to its strong double dual (£7)7.

The Mackey-Arens theorem [Ja, 8.5.5] states that whenever E’ is endowed with a topology finer that the weak
topology, and coarser than the Mackey topology, then F = E” algebraically. Thus one has

E = (Bl ®.1)

As explained by Laurent Schwartz [S, section 1], the equality E' ~ (E’)’ holds as soon as FE is endowed with
its 7y topology, i.e. with the topology of uniform convergence on absolutely convex compact subsets of E’. He
proves moreover that an Arens dual is always endowed with its y-topology, that is: E/ ~ ((E’)")". This fact is the
starting point of the construction of a s-autonomous category in section B.1.4.

The e-product has been extensively used and studied by Laurent Schwartz [S, section 1]. By definition FeF' =
(E! ®pe F.)' is the set of e-hypocontinuous bilinear forms on the duals E/ and F.. When E, F' have their v
topologies this is the same as EcF = (E, ®, F!)".

The topology on EcF is the topology of uniform convergence on products of equicontinuous sets in E’, F”. If
E| F' are quasi-complete spaces (resp. complete spaces , resp. complete spaces with the approximation property)
sois EeF (see [S, Prop 3 p29, Corol 1 p 47]). The € tensor product E ®. F’ coincides with the topology on £ ® F'
induced by EeF (see [S, Prop 11 p46]), ®. is associative, and E®.F ~ EcF if E, F are complete and E has the
approximation property.

The e-product is also defined on any finite number of space as ¢; F;, the space of e-equicontinuous multilinear
forms on [ [,(E;).., endowed the the topology of uniform convergence on equicontinuous sets. Schwartz proves the
associativity of the e-product when the spaces are quasi-complete. We do so when the spaces are Mackey-complete
and Schwartz, see lemma B.1.51.
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B.1.1.3 Dialogue and x-autonomous categories

It is well known that models of (classical) linear logic requires building #-autonomous categories introduced in
[Ba79]. If we add categorical completeness, they give models of MALL. We need some background about them, as
well as a generalization introduced in [MT]: the notion of Dialogue category that will serve us as an intermediate
in between a general =-autonomous category we will introduce in the next subsection and more specific ones
requiring a kind of reflexivity of locally convex spaces that we will obtain by double dualization, hence in moving
to the so-called continuation category of the Dialogue category.

Recall the definition (cf. [Ba79]):

Definition B.1.7. A x-autonomous category is a symmetric monoidal closed category (C, ¢, 1c, [, ]c) with an
object L giving an equivalence of categories (-)* = [, L]¢ : C°’—C and with the canonical map d 4 : A—(A*)*
being a natural isomorphism.

Since our primary data will be functional, based on space of linear maps (and tensorial structure will be deduced
since it requires various completions), we will need a consequence of the discussion in [Ba79, (4.4) (4.5) p 14-15].
We outline the proof for the reader’s convenience. We refer to [DeS, p 25] (see also [DL]) for the definition of
symmetric closed category.

Lemma B.1.8. Let (C,1¢c,[-,]c) a symmetric closed category, which especially implies there is a natural iso-
morphism sxy,z : [X,[Y,Z]clc — [Y,[X, Z]c]c and let L= [1¢,1lc]c. Assume moreover that there is a
natural isomorphism, dx : X — [[X, L]¢, L]¢. Define X* = [X, L]¢ and (XcY) = ([X,Y*]¢)*. Then
(C,e,1c, [ ]e, ()*) is a x-autonomous category.

Proof. Recall for instance that ix : X —[1¢, X]¢ is an available natural isomorphism. Note first that there is a
natural isomorphism defined by:

[X,dy]e Sx, vk 1

dX,Y : [X, Y]C —— [X, Y**]C [Y*, [X, J—]C]C-

The assumptions give a natural isomorphism:

C(Xv [K Z*]C) = C(]-v [X7 [Y7 Z*]C]C) = C(]-v [Xa [27 Y*]C]C)
= C(L [Zv [Xa Y*]C]C) = C(Zv [KX*]C)

Moreover, we have a bijection C(X*,Y*) ~ C(1,[X*,Y*]¢c) ~ C(1,[Y, X]c) ~ C(Y, X) so that the assump-

tions in [Ba79, (4.4)] are satisfied. His discussion in (4.5) gives a natural isomorphism: wxy 7 : C(XcY, Z)—C(X,[Y, Z]c]c)-
We are thus in the third basic situation of [DeS, IV .4] which gives (from s) a natural transformation pxy 7 :

[XcY, Z]e — [ X, [Y, Z]c]c- Then the proof of his Prop V1.4.2 proves his compatibility condition MSCC1 from

SCC3, hence we have a monoidal symmetric closed category in the sense of [DeS, Def IV.3.1].
Then [DeS, Thm VI.6.2 p 136] gives us a usual symmetric monoidal closed category in the sense of [EK]. This

concludes. [

We finally recall the more general definition in [MT]:

Definition B.1.9. A Dialogue category is a symmetric monoidal category (C, ¢, 1¢) with a functor, called tensorial
negation: — : C — C°P which is associated to a natural bijection o4 g,c : C(A¢cB,—C) ~ C(A, —~(BcC)) and
satisfying the commutative diagram with associators AssQ p o+ Ac(BcC) —= (AcB)cC:

$AcB,C,D $A,B,CcD

C((ACB)CO7 ﬁD)

c g ¢
C(AssAYBYC,ﬂD) C(A7_‘ASSB,C,D)

\
C<A» ﬁ[(BcC)cD])

C(AcB,—(CeD)) C (A, ﬁ[Bc(CCD)]) (B.2)

$A,BC,D

C(Ac(BcC),—D)
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B.1.1.4 A model of MALL making appear the Arens dual and the Schwartz c-product

We introduce a first x-autonomous category that captures categorically the part of [S] that does not use quasi-
completeness. Since bornological and topological concepts are dual to one another, it is natural to fix a saturated
bornology on FE in order to create a self-dual concept. Then, if one wants every object to be a dual object as in
a x-autonomous category, one must consider only bornologies that can arise as the natural bornology on the dual,
namely, the equicontinuous bornology. We could take a precompactness condition to ensure that, but to make
appear the Arens dual and e-product (and not the polar topology and Meise’s variant of the e-product), we use
instead a compactness condition. A weak-compactness condition would work for the self-duality requirement by
Mackey Theorem but not for dealing with tensor products.

We will thus use a (saturated, topological) variant of the notion of compactology used in [Ja, p 157]. We say
that a saturated bornology Br on a lcs E is a compactology if it consists of relatively compact sets. Hence, the
bipolar of each bounded set for this bornology is an absolutely convex compact set in E, and it is bounded for this
bornology. A separated locally convex space with a compactology will be called a compactological locally convex
space.

Definition B.1.10. Let LCS be the category of separated locally convex spaces with continuous linear maps and
CLCS the category of compactological locally convex spaces, with maps given by bounded continuous linear
maps. For E, F' € CLCS the internal Hom L, (F, F’) is the above set of maps given the topology of uniform con-
vergence on the bornology of E and the bornology of equibounded equicontinuous sets. We call B} = L;(E, K)
(its bornology is merely the equicontinuous bornology, see step 1 of next proof). The algebraic tensor product
E i F is the algebraic tensor product with the topology having the universal property for Bg, Br-hypocontinuous
maps, and the bornology generated by bipolars of sets AC for A € Bg,C € Bp.

Note that we didn’t claim that E g F' is in CLCS, it may not be. It gives a generic hypocontinuous tensor
product. Note that composition of bounded continuous linear maps are of the same type, hence CLCS is indeed a
category.

Recall also that LCS is complete and cocomplete since it has small products and coproducts, kernels and
cokernels (given by the quotient by the closure Im[f — ¢]) [K, 18.3.(1,2,5), 18.5.(1)].

In order to state simultaneously a variant adapted to Schwartz spaces, we introduce a variant:

Definition B.1.11. Let Sch < LCS be the full subcategory of Schwartz spaces and CSch < CLCS the full
subcategory of Schwartz compactological Ics, namely those spaces which are Schwartz as locally convex spaces
and for which £ is a Schwartz Ics too.

This second condition is well-known to be equivalent to the bornology being a Schwartz bornology [HNM],
and to a more concrete one:

Lemma B.1.12. For E € CLCS, Ej is a Schwartz Ics if and only if every bounded set in B is included in the
closed absolutely convex cover of a Bg-null sequence.

Proof. Ej is Schwartz if and only if E; = .(E}). But .(E}) is known to be the topology of uniform convergence
on (Bg)., the saturated bornology generated by Bg-null sequences of E = (E})’ [Ja, Prop 10.4.4]. Since both
bornologies are saturated this means [K, 21 .1. (4)] that E} is a Schwartz space if and only if By = (Bg)s,. O

We call .7 Ly (E, F) the same Ics as Ly (E, F') but given the bornology (By, (g, r))e, namely the associated
Schwartz bornology. Note that .’ L, (E, K) = Ej as compactological Ics for E' € CSch.

Theorem B.1.13. CLCS (resp. CSch) is a complete and cocomplete x-autonomous category with dualizing object
K and internal Hom Ly(E, F) (resp. ./ Ly(E, F)).

1. The functor (.)., : LCS — CLCS®? giving the Arens dual the equicontinuous bornology, is right adjoint to
U((.);), with U the underlying lcs and U((.);) o (.).. = Idvcs. The functor (.),, : LCS — CLCS®? giving
the weak dual the equicontinuous bornology, is left adjoint to U((.);) and U((.);) o (.),, = Idrcs.

2. The functor U : CLCS — LCS is left adjoint and also left inverse to (.)., the functor E — E. the space
with the same topology and the absolutely convex compact bornology. U is right adjoint to (.),, the functor

E — E, the space with the same topology and the saturated bornology generated by finite sets. U, (.)c, (.)o
are faithful.
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3. The functor U : CSch — Sch is left adjoint and also left inverse to (.)s., the functor E — Eg. the space
with the same topology and the Schwartz bornology associated to the absolutely convex compact bornology.
U is again right adjoint o (.), (restriction of the previous one). U, (.)s¢, (.)o are faithful.

4. The e-product in LCS is given by EcF = U(E. % F.) with G By, H = Ly(G}, H) and of course the
Arens dual by U((E.);), and more generally L.(E,F) = U(Ly(E,, F.)). The inductive tensor product
E,F = U(E,pFy) with GyH = (G}, %y Hy);, and of course the weak dual is U ((E,)},).

Proof. Step 1: Internal Hom functors Ly, .7 Ly,

We first need to check that the equibounded equicontinuous bornology on Ly (E, F') is made of relatively compact
sets when E/, F' € CLCS. In the case F' = K, the bornology is the equicontinuous bornology since an equicon-
tinuous set is equibounded for von Neumann bornologies [K2, 39.3.(1)]. Our claimed statement is then explained
in [S, note 4 p 16] since it is proved there that every equicontinuous closed absolutely convex set is compact in
E! = (U(FE)). and our assumption that the saturated bornology is made of relatively compact sets implies there is
a continuous map E, —= E;. This proves the case F' = K.

Note that by definition, G = L (F, F') identifies with the dual H = (E g F});. Indeed, the choice of bornolo-
gies implies the topology of H is the topology of uniform convergence on equicontinuous sets of F’ and on
bounded sets of E which is the topology of G. An equicontinuous set in H is known to be an equihypocontinuous
set [S2, p 10], i.e. a set taking a bounded set in E and giving an equicontinuous set in (F})’, namely a bounded set
in F', hence the equibounded condition, and taking symmetrically a bounded set in F i.e. an equicontinuous set
and sending it to an equicontinuous set in E’, hence the equicontinuity condition [K2, 39.3.(4)].

Let EyF) c E Fj the subset of the completion obtained by taking the union of bipolars of bounded sets. It
is easy to see this is a vector subspace on which we put the induced topology. One deduces that H = (EFy);,
where the E'F} is given the bornology generated by bipolars of bounded sets (which covers it by our choice of
subspace). Indeed the completion does not change the dual and the equicontinuous sets herein [K, 21.4.(5)] and
the extension to bipolars does not change the topology on the dual either. But in E'y F}, bounded sets for the above
bornology are included into bipolars of tensor product of bounded sets. Let us recall why tensor products AB of
such bounded sets are precompact in E'y Fy (hence also in Ey Fy by [K, 15.6.(7)]) if E, F € CLCS. Take U’
(resp. U) a neighbourhood of 0 in it (resp. such that U + U < U’), by definition there is a neighbourhood V'
(resp. W) of 0 in E (resp. F}) such that VB < U (resp. AW < U). Since A, B are relatively compact hence
precompact, cover A < u;x; + V, x; € A (resp. B < ujy; + W, y; € B) so that one gets the finite cover giving
totally boundedness:

AB c u;z;B+ VB cC Ui, ZiY; + z, W+ VB cC Ui, Y5 + U+Uc Ui, Y5 + U'.

Note that we used strongly compactness here in order to exploit hypocontinuity, and weak compactness and
the definition of Jarchow for compactologies wouldn’t work with our argument.

Thus from hypocontinuity, we deduced the canonical map E x Fy—E F} send A x B to a precompact (using
[K, 5.6.(2)]), hence its bipolar is complete (since we took the bipolar in the completion which is closed there) and
precompact [K, 20.6.(2)] hence compact (by definition [K, 5.6]). Thus Ey Fy € CLCS, if E, F € CLCS. From
the first case for the dual, one deduces L,(E, F') € CLCS in this case. Moreover, once the next step obtained, we
will know Ey F) ~ E,F}.

Let us explain why CSch is stable by the above internal Hom functor. First for E/, F' € CSch we must see
that Ly (E, F) is a Schwartz Ics. By definition F, Ej are Schwartz spaces, hence this is [Ja, Thm 16.4.1]. From the
choice of bornology, . L, (E, F') € CSch since by definition U((-Ly(E, F));) ~ Z(U((Ly(E, F))}))-

Step 2: CLCS and CSch as Closed categories.

It is well know that Vect the category of Vector spaces is a symmetric monoidal category and especially a
closed category in the sense of [EK]. CLCS < Vect is a (far from being full) subcategory, but we see that we can
induce maps on our smaller internal Hom. Indeed, the linear map L%, : L, (F,G)—=Ly(Ly(E, F), Ly(E,Q)) is
well defined since a bounded family in L;(F, G) is equibounded, hence it sends an equibounded set in Ly,(E, F')
to an equibounded set in L;(E, G), and also equicontinuous, hence its transpose sends an equicontinuous set in
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(Ly(E, @))’ (described as bipolars of bounded sets in E tensored with equicontinuous sets in G”) to an equicon-
tinuous set in (Ly(E, F))’. This reasoning implies L, is indeed valued in continuous equibounded maps and
even bounded with our choice of bornologies. Moreover we claim L%, is continuous. Indeed, an equicontinuous
setin (Ly(Ly(E, F), Ly(E, G)))’ is generated by the bipolar of equicontinuous C set in G’, a bounded set B in F
and an equibounded set A in (L,(E, F')) and the transpose consider A(B) c F and C' to generate a bipolar which
is indeed equicontinuous in (L,(F,G))’. Hence, L, is a map of our category. Similarly, the morphism giving
identity maps jg : K — Ly(E, E) is indeed valued in the smaller space and the canonical ig : E— L,(KC, E)
indeed sends a bounded set to an equibounded equicontinuous set and is tautologically equicontinuous. Now all
the relations for a closed category are induced from those in Vect by restriction. The naturality conditions are
easy.
Let us deduce the case of CSch. First, let us see that for £ € CSch,

S Ly(E, S Ly(F,Q)) = L Ly(E, Ly(F,G)) (B.3)

By definition of boundedness, a map f € Ly(E, Ly(F, G)) sends a Mackey-null sequence in E to a Mackey-
null sequence in L, (F, G) hence by continuity the bipolar of such a sequence is sent to a bounded set in . L, (F, G),
hence from lemma B.1.12, so is a bounded set in E. We deduce the algebraic equality in (B.3). The topology of
L,(E, H) only depends on the topology of H, hence we have the topological equality since both target spaces have
the same topology. It remains to compare the bornologies. But from the equal target topologies, again, the equicon-
tinuity condition is the same on both spaces hence boundedness of the map Ly, (E, . Ly (F, G))—Ly(E, Ly (F, G))
is obvious. Take a sequence f,, of maps Mackey-null in L;(E, Ly (F, G)) hence in the Banach space generated
by the Banach disk D of another Mackey-null sequence (g, ). Let us see that {g,,n € N}°° is equibounded
in Ly(E,.Ly(F,G)). For take B < Ly(E, Ly(F, G)) the disk for (g,) with ||g,||z — 0 and take a typical
generating bounded set A = {z,,,n € N'}°° c FE for z,, Bg-Mackey-null. Then g, (A4) < {gm(zn),m,n €
N0 =: C and ||gm(zn)ll(B(a))yee < |gmllBl|zn|l4 and since B(A) is bounded by equiboundedness of B,
(gm(xy)) is Mackey-null, hence C is bounded in . L, (F,G) and hence D = {g,,n € N}°° is equibounded
as stated. But since D is also bounded in L, (F, Ly(F, G)) it is also equicontinuous, hence finally, bounded in
Ly(E, S Ly(F,G)). This gives that f,, Mackey-null there which concludes to the bornological equality in (B.3).

As a consequence, for E, F, G € CSch, the previous map L%, induces a map

Lfi:G : SLy(F,G) — S Ly(Ly(E, F), Ly(E,GQ)) — S Ly(L Ly(E, F), Ly(E,Q))
= SL(SLy(E, F), S Ly(E,G))

coinciding with the previous one as map. Note that we used the canonical continuous equibounded map Ly (Ly (E, F'), G)—=Ly(7 Ly (E
obviously given by the definition of associated Schwartz bornologies which is a smaller bornology.

Step 3: =x-autonomous property.

First note that L, (E, F') ~ Ly(F}, E}) by transposition. Indeed, the space of maps and their bornologies are the
same since equicontinuity (resp. equiboundedness) ' — F' is equivalent to equiboundedness (resp. equiconti-
nuity) of the transpose Fy — E} for equicontinuous bornologies (resp. for topologies of uniform convergence of
corresponding bounded sets). Moreover the topology is the same since it is the topology of uniform convergence on
bounded sets of F (identical to equicontinuous sets of (FE})’) and equicontinuous sets of F’ (identical to bounded
sets for F}). Similarly .’ L, (E, F') ~ . Ly(F}, E}) since on both sides one considers the bornology generated by
Mackey-null sequences for the same bornology.

It remains to check Ly(E, Ly(F,G)) ~ Ly(F, Ly(E,G)). The map is of course the canonical map. Equi-
boundedness in the first space means sending a bounded set in £ and a bounded set in F' to a bounded set in G
and also a bounded set in E and an equicontinuous set in G’ to an equicontinuous set in F’. This second condition
is exactly equicontinuity F' — L;(E, G). Finally, analogously, equicontinuity £ — L(F, G) implies it sends
a bounded set in F' and an equicontinuous set in G’ to an equicontinuous set in £’ which was the missing part of
equiboundedness in L, (F, Ly,(E, G)). The identification of spaces and bornologies follows. Finally, the topology
on both spaces is the topology of uniform convergence on products of bounded sets of E, F.

Again, the naturality conditions of the above two isomorphisms are easy, and the last one induces from Vect
again the structure of a symmetric closed category, hence lemma B.1.8 concludes to CLCS #-autonomous.

Let us prove the corresponding statement for CSch. Note that (B.3) implies the compactological isomorphism

yLb(E,yLb(F, G)) ~ yLb(E,Lb(F7 G)) >~ yLb(F, Lb(E7G)) =~ yLb(F7 yLb(E7G))
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Hence, application of lemma B.1.8 concludes in the same way.

Step 4: Completeness and cocompleteness.

Let us describe first coproducts and cokernels. This is easy in CLCS it is given by the colimit of separated
locally convex spaces, given the corresponding final bornology. Explicitely, the coproduct is the direct sum of
vector spaces with coproduct topology and the bornology is the one generated by finite sum of bounded sets,
hence included in finite sums of compact sets which are compact [K, 15.6.(8)]. Hence the direct sum is in CLCS
and clearly has the universal property from those of topolocial/bornological direct sums. For the cokernel of
fyg : E—F, we take the coproduct in LCS, Coker(f,g) = F/(f — g)(F) with the final bornology, i.e. the
bornology generated by images of bounded sets. Since the quotient map is continuous between Hausdorff spaces,
the image of a compact containing a bounded set is compact, hence Coker(f,g) € CLCS. Again the universal
property comes from the one in locally convex and bornological spaces. Completeness then follows from the
*-gutonomous property since one can see lim; E; = (colim,(E;)}); gives a limit.

Similarly in CSch the colimit of Schwartz bornologies is still Schwartz since the dual is a projective limit of
Schwartz spaces hence a Schwartz space (cf lemma B.1.18). We therefore claim that the colimit is the Schwartz
topological space associated to the colimit in CLCS with same bornology. Indeed this is allowed since there are
more compact sets hence the compatibility condition in CLCS is still satisfied and functoriality of . in lemma
B.1.18 implies the universal property.

Step 5: Adjunctions and consequences.

The fact that the stated maps are functors is easy. We start by the adjunction for U in (2): LCS(U(F), E) =
Ly(F, E.) = CLCS(F, E.) since the extra condition of boundedness beyond continuity is implied by the fact that
a bounded set in F' is contained in an absolutely convex compact set which is sent to the same kind of set by a
continuous linear map. Similarly, LCS(E,U(F)) = Ly(E,,F) = CLCS(E,, F) since the image of a finite
set is always in any bornology (which must cover E and is stable by union), hence the equiboundedness is also
automatic.

For (3), since (E, ), = E! is always Schwartz, the functor (.), restricts to the new context, hence the ad-
junction. Moreover U((E.);) = (E.) by construction. The key identity Sch(U(F),E) = Ly(F,E;) =
CSch(F, E,.) comes from the fact that a Mackey-null sequence in F' is send by a continuous function to a
Mackey-null sequence for the compact bornology hence to a bounded set in E,.. All naturality conditions are
easy.

Moreover, for the adjunction in (1), we have the equality as set (using involutivity and functoriality of (.)} and
the previous adjunction):

CLCS™(F, E;) = Lo((Ec)y, F) = Ly(Fy, Ec) = LCS(U(Fy), E),
CLCSOP(E(/T,F) = Lb(Fv (Ea);) = Lb(EaaFl;) = LCS(EaU(Fl:))
The other claimed identities are obvious by definition. O

The second named author explored in [Ker] models of linear logic using the positive product ; and (.)! . We
will use in this work the negative product  and the Arens dual (.), appearing with a dual role in the previous result.
Let us summarize the properties obtained in [S] that are consequences of our categorical framework.

Corollary B.1.14. 1. Let E; € LCS, i € I. The iterated e-productis e;e1 E; = U (%D ie1 (E;).), it is symmetric
in its arguments and commute with limits.

2. There is a continuous injection (EyeE2cF3) —> Ere(EqcE3).

3. For any continuous linear map f : F} — FE; (resp. continuous injection, closed embedding), so is feld :
FlEEQ — E1€E2.

Note that (3) is also valid for non-closed embeddings and (2) is also an embedding [S], but this is not a
categorical consequence of our setting.
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Proof. The equality in (1) is a reformulation of definitions, symmetry is an obvious consequence. Commutation
with limits come from the fact that U, (). are right adjoints and %, commutes with limits from universal properties.

Using associativity of ,: F1e(EseE3) = U((E1)e By [U((E2)e B (E3)c)]e) hence functoriality and the
natural transformation coming from adjunction Id — (U(+)). concludes to the continuous map in (2). It is
moreover a monomorphism since £ — (U(FE)).. is one since U(E) — U((U(FE)).) is identity and U reflects
monomorphisms and one can use the argument for (3).

For (3) functorialities give definition of the map, and recall that closed embeddings in LCS are merely regular
monomorphisms, hence a limit, explaining its commutation by (1). If f is a monomomorphism, in categorical
sense, so is U(f) using a right inverse for U and so is (f). since U((f).) = f and U reflects monomorphisms as
any faithful functor. Hence it suffices to see %}, preserves monomorphisms but g1, go : X — E %, F' correspond
by Cartesian closedness to maps X, F] —= E that are equal when composed with f : E—G if f monomorphism,
hence so is f By idp. O]

In general, we have just seen that € has features for a negative connective as %, but it lacks associativity. We
will have to work to recover a monoidal category, and then models of LL. In that respect, we want to make our fix
of associativity compatible with a class of smooth maps, this will be the second leitmotiv. We don’t know if there
is an extension of the model of MALL given by CLCS into a model of LL using a kind of smooth maps.

B.1.2 Mackey-complete spaces and a first interpretation for %

Towards our goal of obtaining a model of LL with conveniently smooth maps as non-linear morphismes, it is natural
to follow [53] and consider Mackey-complete spaces as in [6, KT]. In order to fix associativity of ¢ in this context,
we will see appear the supplementary Schwartz condition. This is not such surprising as seen the relation with
Mackey-completeness appearing for instance in [Ja, chap 10] which treats them simultaneously. This Schwartz
space condition will enable to replace Arens duals by Mackey duals (lemma B.1.19) and thus simplify lots of
arguments in identifying duals as Mackey-completions of inductive tensor products (lemma B.1.23). This will
strongly simplify the construction of the strength for our doubly negation monad later in section B.1.4. Technically,
this is possible by various results of [K] which points out a nice alternative tensor product 1 which replaces e-
product exactly in switching Arens with Mackey duals. But we need to combine 7 with .# in a clever way in yet
another product ¢ in order to get an associative product. Said in words, this is a product which enables to ensure
at least two Schwartz spaces among three in an associativity relation. This technicality is thus a reflection of the
fact that for Mackey-complete spaces, one needs to have at least 2 Schwartz spaces among three to get a 3 term
associator for an e-product. In course of getting our associativity, we get the crucial relation .77 (7 (E)eF') =
S (E)e(F) in corollary B.1.24. This is surprising because this seems really specific to Schwartz spaces and we
are completely unable to prove an analogue for the associated nuclear topology functor .4, even if we expect it for
the less useful associated strongly nuclear topology. We conclude in Theorem B.1.26 with our first interpretation
of ¥ as (.

B.1.2.1 A Mackey-Completion with continuous canonical map

Note that for a v-Mackey-Cauchy sequence, topological convergence is equivalent to Mackey convergence (since
the class of bounded sets is generated by bounded closed sets).

Remark B.1.15. Note also that is £ < F' is a continuous inclusion, then a Mackey-Cauchy/convergent sequence
in E is also Mackey-Cauchy/convergent in F' since a linear map is bounded.

We now recall two alternative constructions of the Mackey-completion, from above by intersection and from
below by union. The first construction is already considered in [PC].

Lemma B.1.16. The intersection £ of all Mackey-complete spaces containing E' and contained in the comple-
tion E of E, is Mackey-complete and called the Mackey-completion of E.

We define Eys,0 = E, and for any ordinal ), the subspace Eps. a1 = u(zn)nzoeM(EM;A)F({mn, n=0})c E
where the union runs over all Mackey-Cauchy sequences M (E M; z) of E M;x, and the closure is taken in the
completion. We also let for any limit ordinal Eps,x = Upu<xEary,. Then for any ordinal A, Epr,y < EM and
eventually for A > w; the first uncountable ordinal, we have equality.

Proof. The first statement comes from stability of Mackey-completeness by intersection (using remark B.1.15). It
is easy to see that /.y is a subspace. At stage Eys..,, +1, by uncountable cofinality of w; any Mackey-Cauchy
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sequence has to be in Eys.» for some A < w; and thus each term of the union is in some Fjr.a11, therefore
EJW;w1+1 = E]W;wy
Moreover if at some A, Far.a+1 = Ear;y, then by definition, Fjy  is Mackey-complete (since we add with
every sequence its limit that exists in the completion which is Mackey-complete) and then the ordinal sequence is
eventually constant. Then, we have sy D EM _ One shows for any A the converse by transfinite induction. For,
let (., )n>0 is a Mackey-Cauchy sequence in Ejr.\ < F' := EM _ Consider A a closed bounded absolutely convex
setin F' with 2, —x in F4. Then by [Ja, Prop 10.2.1], F4 is a Banach space, thus I'({z,,,n = 0}) computed in
this space is complete and thus compact (since {z} U {z,,,n = 0} is compact in the Banach space), thus its image
in E is compact and thus agrees with the closure computed there. Thus every element of I'({x,,,n > 0}) is a limit
in E4 of a sequence in I'({x,,,n = 0}) < Ejr, thus by Mackey-completeness, I'({z,,n > 0}) < F. We thus
conclude to the successor step Eps;a41 < E'M, the limit step is obvious.
O

B.1.2.2 A 7 for Mackey-complete spaces
We first define a variant of the Schwartz e-product:

Definition B.1.17. For two separated Ics E and F', we define EnF' = L(E], F') the space of continuous lin-
ear maps on the Mackey dual with the topology of uniform convergence on equicontinuous sets of E’. We
write n(E, F) = (E] g.F},)" with the topology of uniform convergence on products of equicontinuous sets
and ((E,F) = E(F for the same space with the weakest topology making continuous the canonical maps to

n(Z(E), F)and n(E, 7 (F)).

This space E'nF' has already been studied in [K2] and we can summarize its properties similar to the Schwartz
€ product in the next proposition, after a couple of lemmas.

We first recall an important property of the associated Schwartz topology from [45]. These properties follow
from the fact that the ideal of compact operators on Banach spaces in injective, closed and surjective. Especially,
from [45, Corol 6.3.9] it is an idempotent ideal.

Lemma B.1.18. The associated Schwartz topology functor . commutes with arbitrary products, quotients and
embeddings (and as a consequence with arbitrary projective kernels or categorical limits).

Proof. For products and (topological) quotients, this is [45, Prop 7.4.2]. For embeddings (that he calls topological
injections), this is [45, Prop 7.4.8] based on the previous ex 7.4.7. The consequence comes from the fact that any
projective kernel is a subspace of a product, as a categorical limit is a kernel of a map between products. [

We will also often use the following relation with duals

Lemma B.1.19. If £ is a Schwartz Ics, E|, ~ EJ, so that for any lcs F', EnF' ~ EcF topologically. Thus for any
les B, E), ~ (S(E)).

Proof. Take K an absolutely convex o(E’, E')-weakly compact in E, it is an absolutely convex closed set in F
and precompact as any bounded set in a Schwartz space [Ho, 3, 15 Prop 4]. [Bo2, IV.5 Rmq 2] concludes to K
complete since £ —= (E},);, continuous with same dual and K complete in (£},),,, and since K precompact, it is
therefore compact in F. As a consequence £, is the Mackey topology. Hence, EnF = L(E,, F) = L(E,, F) =
EeF algebraically and the topologies are defined in the same way. The last statement comes from the first and
E, ~ (#(E)), O

ne

Proposition B.1.20. Let £, F, G, H, be separated Ics, then:
1. We have a topological canonical isomorphisms ((E, F) = ((F, F),
EnF = FnE ~n(E,F)

and we have a continuous linear map Ec F'—s EnF —s E(F which is a topological isomorphism as soon
as either E or F is a Schwartz space. In general, EcF is a closed subspace of EnF..

2. EnF is complete if and only if E and F' are complete.

3. IfA: G—E, B: H—F are linear continuous (resp. linear continuous one-to-one, resp. embeddings)
so are the tensor product map (AnB), (ACB) both defined by (AnB)(f) = Bo f o A, f € L(E|,, F).
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4. If F = Kic1(A;) "1 F; is a projective kernel so are EnF = K;cr(1nA4;) Y EnF; and ECF = K1 (1CA;) "1 ECF;.
Moreover, both 1, (, € commute with categorical limits in LCS.

5. n(E, F) is also the set of bilinear forms on EL x F! which are separately continuous. As a consequence,

m
the Mackey topology ((E},pcF),)},);, = E,,:F), is the inductive tensor product.

6. A setis bounded in1)(E, I) or ((E, F) if and only if it is e-equiltypocontinuous on Ej x Fj.

Proof. 1tis crucial to note that n(E, F), n(-7(E), F), n(E, 7 (F")) are the same space algebraically since (' (E));, ~
E.

8 (2)is [K, 40.4.(5)] and (1) is similar to the first statement there. With more detail functoriality of Mackey dual
givesamap L(E},, F')—L(F), (E));,) and since (£}, ), —=FE continuous we have also amap L(F},, (E,);,)—=L(F},, E).
This explains the first map of the first isomorphism (also explained in [Ja, Corol 8.6.5]). The canonical linear map
from a bilinear map in n(E, F) is clearly in EnF, conversely, if A € EnF, {A(.), .)r r is right e-hypocontinuous
by definition and the other side of the hypocontinuity comes from the A* € F'nE.

The closed subspace property is [K2, 43.3.(4)].
(3) for ny is [K2, 44.4.(3,5,6)]. For ( since A, B are continuous after taking the functor ., one deduces AnB
is continuous (resp one-to-one, resp. an embedding using lemma B.1.18) on

(S (G), H)—=n(L(E),F), n(G,(H)) —=n(E, 7 (F))

and this conclude by universal properties of projective kernels (with two terms) for (. Since the spaces are the
same algebraically, the fact that the maps are one-to-one also follows.
(4) The 7 case with kernels is a variant of [K2, 44.5.(4)] which is also a direct application of [K2, 39.8.(10)].
As a consequence ECF is a projective kernel of . (E)nF = K;er(1nA;) " [.#(E)|nF; and, using lemma B.1.18
again, of :
Ens(F) = En(KieIA;ly(Fi)) = Kier(1n4;) " (Ens (Fy)).

The transitivity of locally convex kernels (coming from their universal property) concludes.

For categorical limits, it suffices commutation with products and kernels. In any case the continuous map
I : (lim E;)nF — lim(E;nF) comes from universal properties , it remains to see it is an algebraic isomor-
phism, since then the topological isomorphism will follow from the kernel case. We build the inverse as fol-
lows, for f € F}, the continuous evaluation map E;nF" = L(F}, E;) — E; induces a continuous linear map
Jy lim(E;nF) — (lim E;). It is clearly linear in f and gives a bilinear map J : im(E;nF) x F), — (lim Ej).
We have to see it is separately continuous yielding a linear inverse map I~ and then continuity of this map. We
divide into the product and kernel case.

For products one needs for g € [[;.;(EinF) J(g,.)" : (I ;c; B:)' — (F},)" send equicontinuous sets i.e.
a finite sum of equicontinuous set in the sum »;_; ; to an equicontinuous set in (F7,)". But absolutely convex
weakly compact sets are stable by bipolars of sum, since they are stable by bipolars of finite unions [K, 20.6.(5)]
(they don’t even need closure to be compact, absolutely convex cover is enough), hence it suffices to see the case
of images of equicontinuous sets £ — F but they are equicontinuous by assumption. This gives the separate con-
tinuity in this case. Similarly, to see the continuity of ~! in this case means that we take A — F’ equicontinuous
and a sum of equicontinuous sets B; in (] [,.; £;)’ and one notices that (I7') (A x ¥, B;) < >,(I71)*(A x B))
is a sum of equicontinuous sets in (] [,.,;(E;nF’))" and it is by hypothesis equicontinuous.

For kernels, of f,g : E— G, I : Ker(f — g)nF' — Ker(fnidr — gnidr) is an embedding by (3)
since source and target are embeddings in EnF’, the separate continuity is obtained by restriction of the one of
EnF x F,—E > Ker(f — g) and similarly continuity by restriction of EnF' — L(F},, E).

For (, this is then a consequence of this and lemma B.1.18 again. (5) is an easier variant of [S, Rmq 1 p 25].
Of course 7n(E, F) is included in the space of separately continuous forms. Conversely, if f : EL X FL — K
is separately continuous, from [Ja, Corol 8.6.5], it is also separately continuous on E/ x F. and the non-trivial
implication follows from [K, 40.4.(5)]. For the second part, the fact that both algebraic tensor products have
the same dual implies there is, by Arens-Mackey Theorem, a continuous identity map ((E},sc F),)},);, —= E},i F},.
Conversely, one uses the universal property of the inductive tensor product which gives a separately continuous map
B, x F,—=F g I, Butapplying functoriality of Mackey duals on each side gives for each = € £}, a continuous
map I, —= ((E},eF),)},),, and by symmetry, a separately continuous map Ej, x F, — ((E} g.F},), ), The
universal property of the inductive tensor product again concludes.

(6) can be obtained for 1 with the same reasoning as in [K2, 44.3.(1)]. For ( the first case gives by definition
equivalence with e-equihypocontinuity both on (.’(E))}s x I and on Ej x (' (F"));. But the second implies that
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for equicontinuous on E’, one gets an equicontinuous family on (-#'(F))}; ~ Fj and the first gives the converse,
and the other conditions are weaker, hence the equivalence with the first formulation. O

We then deduce a Mackey-completeness result:

Proposition B.1.21. If L, and Ly are separated Mackey-complete locally convex spaces, then so are LynLo and
L1CLo.

Proof. Since both topologies on the same space have the same bounded sets (proposition B.1.20.(6)), it suffices
to consider L17Lsy. Consider a Mackey-Cauchy sequence (., )n>0, thus topologically Cauchy. By completeness
of the scalar field, x,, converges pointwise to a multilinear form z on Hle(LZ)L Since the topology of the
n-product is the topology of uniform convergence on products of equicontinuous parts (which can be assumed
absolutely convex and weakly compact), x,, —> x uniformly on these products (since (x,,) Cauchy in the Banach
space of continuous functions on these products). From proposition B.1.20.(5) we only have to check that the
limit x is separately continuous. For each y € (Lz)’, and B a bounded set in LinLs = L((L2)},, L1), one
deduces B(y) is bounded in ((L1),,)" = L; with its original topology of convergence on equicontinuous sets
of L}. Therefore, (z,(y)) is Mackey-Cauchy in L;, thus Mackey-converges, necessarily to (y). Therefore x(y)
defines an element of ((L1)],)’. With the similar symmetric argument, v is thus separately continuous, as expected.
We have thus obtained the topological convergence of x,, to x in LinLs. It is easy to see x,, Mackey converges
to x in L1nL, in taking the closure of the bounded set from its property of being Mackey-Cauchy. Indeed, the
established topological limit x,, — x transfers the Mackey-Cauchy property in Mackey convergence as soon as
the bounded set used in Mackey convergence is closed. O

We will need the relation of Mackey duals and Mackey completions:

————

Lemma B.1.22. For any separated Ics F', we have a topological isomorphism ((F},)},) =~ ((ﬁM);L):L

Proof. Recall also from [K, 21.4.(5)] the completion of the Mackey topology has its Mackey topology ((/ETZ)Z) =
((ﬁ);)it therefore an absolutely convex weakly compact set in F” coincide for the weak topologies induced by F'

and F and therefore also ™, which is in between them. Thus the continuous inclusions (F))—=(FM )y —( (ﬁ););
have always the induced topology. In the transfinite description of the Mackey completion, the Cauchy sequences
and the closures are the same in ((F),);, and F' (since they have same dual hence same bounded sets), therefore
one finds the stated topological isomorphism. O

Lemma B.1.23. If L, M are separated locally convex spaces we have embeddings:
uﬂeM’ (LCM);%(L’”M);% uﬂeMl
with the middle duals coming with their e-topology as biduals of L/ upeM L The same holds for:

L M' L M ‘>L'NM'
n

/1,7 7%

Finally, (LnM). < LM&M’ as soon as either L or M is a Schwartz space, and in any case we have (L(M). <
Ly, ﬁeM !

Proof. Step 1: First line of embeddings.

From the identity continuous map LnM — L{M, there is an injective linear map (L{M )" — (LnM)’. Note
that, on L, M, one can consider the strongest topology weaker than ((L))],seM,, and L} g.(”(M));,. Let
us call it L, M), and see it is topologically equal to L/ 5. M, by checking its universal property. We know

by definition the map L) M, —= L;, g M,,. Conversely, there is an e-equihypocontinuous map (.'(L));, x
M, —=L;,c M}, so that for every equicontinuous set in M’, the corresponding family is equicontinuous (.’ (L));A =

L’ —I/ weMy, ! from the topological equality. Similarly, by symmetry, one gets for every equicontinuous set in L/ w
an equicontinuous family of maps M, | — L weMy,. /. As a consequence, the universal property gives the expected
map L), g M|, — L} M, concludmg to equahty As a consequence, since by definition (L, M},)" = L{M is the
dual kernel for the hull defining the ¢ tensor product, one gets that an equicontinuous set in the kernel is exactly an
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equicontinuous setin (L, ¢ M,,)" = (L} s M,,)" namely an e-equihypocontinuous family. This gives the continuity
of our map (L{M ), — (LnM), and even the embedding property (if we see the first as bidual of L}, M, but we
only stated an obvious embedding in the statement).

We deduce that LL seM L ~ LLCM L — (L¢M)” is an embedding from [K, 21.3.(2)] which proves that the
original topology on a space is the topology of uniform convergence on equicontinuous sets.

We then build a continuous linear injection (LnM); —= L; 3¢ M|, to the full completion.Since both spaces
have the same dual, it suffices to show that the topology on LnM is stronger than Grothendieck’s topology
gif ( L geM L) following [K] in notation. Indeed, let C' in LnM equicontinuous. Assume a net in C' con-
verges pointwise r,, —x € C' in the sense z,(a,b) —= x(a,b),a € Lj,b € M. For equicontinuous sets
Ac L;“ Bc M L which we can assume absolutely convex weakly compact, it is easy to see C' is equicontinuous
on products A x B. Thus it is an equicontinuous bounded family in C°( A x B) thus relatively compact by Arzela-
Ascoli Theorem [Ho, 3.9 p237]. Thus since any uniformly converging subnet converges to z, the original net must
converge uniformly on A x B to x. As a consequence the weak topology on C coincides with the topology of
LnM, and by definition we have a continuous identity map, (LnM,Z'/ (L’.5.M!)) —= LnM. By Grothendieck’s
construction of the completion, the dual of the first space is the completion and this gives the expected injection
between duals. Since a space and its completion induce the same equicontinuous sets, one deduces the continuity
and induced topology property with value in the full completion.

Step 2: Second line of embeddings.

It suffices to apply ((.)},)}, to the first line. We identified the first space in proposition B.1.20.(5) and the last
space as the completion of the first (hence of the second and this gives the induced topologies) in the proof of
lemma B.1.22.

Step 3: Reduction of computation of Mackey completion to the Schwartz case.

It remains to see the (L¢M)” is actually valued in the Mackey completion.

Note that as a space, dual of a projective kernel, (L{M)!, is the inductive hull of the maps A = (. (L)e M ).—(L{M). =
Cand B = (LeS(M)). — (L{(M). = C. Therefore, it suffices to check that the algebraic tensor product is
Mackey-dense in both these spaces A, B that span C since the image of a bounded set in A, B being bounded in
C, there are less Mackey-converging sequences in A, B. This reduces the question to the case L or M a Schwartz
space. By symmetry, we can assume L is.

Step 4: Description of the dual (L{M)" = (Le M)’ for L Schwartz and conclusion.

We take inspiration from the classical description of the dual of the injective tensor product as integral bilinear
maps (see [K2, 45.4]). As in [S, Prop 6], we know any equicontinuous set (especially any point) in (LeM)’ is
included in the absolutely convex weakly closed hull T" of AB with A equicontinuous in L', B in M’. Since the
dual of LgfgweM ;/t is the same, this weakly closed hull can be computed in this space too. Moreover, since L is
a Schwartz space, we can and do assume that A = {x,,,n € N} is a e-Mackey-null sequence in I/, since they
generate the equicontinuous bornology as a saturated bornology. We can also assume A, B are weakly compact
and B absolutely convex.

Any element f € LeM defines a continuous map on A x B (see e.g. [S, Prop 2] and following remark). We
equip A x B with the above weakly compact topology to see f|axp € C°(A x B). For ;1 a (complex) measure
on A x B (ie. p€ (C°(A x B))’, we use measures in the Bourbaki’s sense, which define usual Radon measures
[S4]) with norm ||u|| < 1sothat §, . f(2)du(z) = p(flaxs) =: wy(f) make sense.

Note that |w,,(f)| < |[f[lco(ax ) Which is a seminorm of the e-product, so that 1 defines a continuous linear
map w,, € (LeM)’. Note also that if f is in the polar of AB, so that |w,(f)| < 1 and thus by the bipolar theorem,
wy, € I'. We want to check the converse that any element of w € I' comes from such a measure. But if H is the
subspace of C°(A x B) made of restrictions of functions f € Le M, w induces a continuous linear map on H with
|w(f)| < ||fllcoax ), Hahn-Banach theorem enables to extend it to a measure w,,, ||u|| < 1. This concludes to
the converse.
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Define the measure f, by §,, 5 f(2)dun(z) = m §Savn f(2) iz, 1xB(2)du(z) using its canonical
extension to semicontinuous functions. Note that by Lebesgue theorem (dominated by constants)

Z Lz yxB)) Wy, (f)

As above one sees that the restriction of w,,,, to f € Le M belongs to the weakly closed absolute convex hull of
{z,} x B. Thus since B absolutely convex closed w,,, (f) = f(zn ® yn) for some y,, € B. We thus deduces that
any wy, € I has the form:w,,(f) = Y i(1(z,1x5)).f(@n @ yn)- Since the above convergence holds for any f,
this means the convergence in the weak topology:

ve]

W = 2 1y 8)) %0 ® Yo -

n=0

Let D the equicontinuous closed disk such that z,, tends to 0 in (L')p. Consider the closed absolutely convex
cover A = I'(DB). The closed absolutely convex cover can be computed in (LeM). or (LeM)., both spaces
having same dual [K, 20.7.(6) and 8.(5)], and D B being equicontinuous [S, Corol 4 p 27, Rmq p 28], so is A [K,
21.3.(2)] hence it is weakly compact by Mackey Theorem, so complete in (Le M) [Bo2, IV.5 Rmq 2], so that A is
therefore a Banach disk there. But ||z,yy|(zcary, < 1 so that since >, |M(1{zn}x3))\ < 1 the above series is

summable in (LeM)), and thus Mackey converges in (LeM). As a conclusion, I' = L}/ BEM ' and this gives the
final statement. O

The above proof has actually the following interesting consequence:

Corollary B.1.24. For any E, F separated locally convex spaces, we have the topological isomorphism:
(L7 (B)eF) = [#(B)e[# (F)]

Proof. We have the canonical continuous map [ (E)|eF — [ (E)]e[- (F)], hence since the e-product of
Schwartz spaces is Schwartz (see below proposition B.1.50), one gets by functoriality the first continuous linear
map:

7 (A (E)eF) — [ (Bl (F)). (B.5)
Note that we have the algebraic equality [/ (E)]eF' = L(E,,F) = L(E,,7(F)) = [/ (E)]e[(F)]

where the crucial middle equality comes from the map (see [Ja, Corol 8.6.5])

L(E,, F) = L(E,, (F,),) = L(E,, (7 (F)],),) = L(E,,, 7 (F)).

To prove the topological equality, we have to check the duals are the same with the same equicontinuous sets.
We can apply the proof of the previous lemma (and we reuse the notation there) with L = .#(FE), M = F or
M = [ (F)]. First the space in which the Mackey duals are included L;;; M, is the same in both cases, and the
duals are described as union of absolutely convex covers, it suffices to see those unions are the same to identify

! !
the duals. Of course, the transpose of (B.5) gives ([Y (E)]e[” (F)]) c ([5” (E)]aF) so that we have to show

the converse. From (B.4) and rewriting x,,y,, as /\i:cn)\nyn with A\, = /||zn]] 1, one gets that both sequences

2, = (L), ¥, (1) = (Anyn) are null sequences for the equicontinuous bornology of E’, F' and therefore

n
included in equicontinuous sets for the duals of associated Schwartz spaces. This representation therefore gives
the equality of duals. Finally, to identify equicontinuous sets, in the only direction not implied by (B.5), we must
see that an e-null sequence w,,, of linear forms in the dual is included in the closed absolutely convex cover of a
tensor product of two such sequences in [ (E)]’, [.(F)]’. From the null convergence, v,, can be taken measures
on the same A x B, for each v,, we have a representation w,,, = Y. 2y (Vn )20, 4l (V) Where . is a fixed
sequence and (y),, (v»))m are null sequences in the same Banach space M. Moreover Y |z, (4,)| < ||vn|| —=0
from the assumption that v, is a null sequence in the Banach space generated by I (we can assume ||v,|| # 0
otherwise w,,, = 0). Therefore, we rewrite, the series as w,, = ), mzm(l/n)xlmy;n(vn) ||vn|| and we gather all
the sequence (Y, (vn)||Vn|])m into a huge sequence converging to 0 in M, which generates the equicontinuous
set B’ of (.#(M))" we wanted. (z],) generates another such equicontinuous set A’. This concludes to w,,, €
I'(A’B’) so that the equicontinuous set generated by our sequence (w,,, ) must be in this equicontinuous set for

([ (E)Jel- (F)])" O
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We are ready to obtain the associativity of the ( tensor product:

Proposition B.1.25. Let L1, Lo, L3 be lcs with L3 Mackey-complete, then there is a continuous linear map
ASS : L1<(L2CL3) I (Lchg)CLg
If also Ly is Mackey-complete, this is a topological isomorphism.

Proof. First note that we have the inclusion
L1((LoCLs) < L((L1),,; Lo ((L2)y,, Ls)) = L((L1)},i(L2),,, Ls)-

Since L3 is Mackey-complete, such a map extends uniquely to the Mackey completion L((Ll)ifZM (L2),,, L3) and
since lemma B.1.23 gives (L17L2);, as a subspace, we can restrict the unique extension and get our expected linear
map:

i+ L1¢(L2CL3) —= L((L1nL2)),, Ls) = (LinL2)nLs.

It remains to check continuity. Since the right hand side is defined as a topological kernel, we must check
continuity after applying several maps. Composing with

Jl : (Ll’I]LQ)’I]Lg—)(lefy(Lg))Ey(Lg),

one gets a map .J; 0% which is continuous since it coincides with the composition of the map obtained from corollary
B.1.24:
Il : L1C(L2<L3) %Llé‘y(y(Lz)&Lg,) = L1€(e5ﬂ(L2)€y(L3))

with a variant ¢’ : L1e(#(L2)e.#(L3))—(L1e.%(L2))e. (L3) of i in the Schwartz case, so that i’ o I; = ioJ;.
And ¢’ is continuous since the equicontinuous set in their duals are generated by tensor products of equicontinuous
sets for the base spaces (easy part in the corresponding associativity in [S]). The case of composition with Jy :
(L1nLa)nLs — (.¥(L1)eLs)e.(L3) is similar and easier.

The last two compositions are gathered in one using corollary B.1.24 again. We have to compose with the map

Js : (LinLa)nLs — (Y(Y(L1)5L2)>5L3 - ((y(Ll))g(y(LQ)))eLg - (Y(Lls(Y(Lg))))ng.

Again we use the canonical continuous factorization via L1 ((L2(L3) — (¥ (L1))e ((y(Lg))eL;g) and use
the same argument as before between e-products. O

We can now summarize the categorical result obtained, which gives a negative connective, hence an interpre-
tation of 7.

Theorem B.1.26. The full subcategory Mc < LCS of Mackey-complete spaces is a reflective subcategory with
reflector (i.e. left adjoint to inclusion) the Mackey completion M qris complete and cocomplete and symmetric
monoidal with product ¢ which commutes with limits.

Proof. The left adjoint relation MC(E M F) = LCS(FE, F) is obvious by restriction to £ < EM and functoriality
of M [PC, Prop 5.1.25]. As usual, naturality is easy. As a consequence, limits in Mc are those of LCS and
colimits are the Mackey-completed colimits. The unit for ¢ is of course K. The associator has been built in
Proposition B.1.25. With ECF' = L(FE), I), we saw the braiding is the transpose map, left unit Ar is identity
and right unit is identification pg : (£,); ~ E. Taking the Mackey-dual of expected maps in relations (pentagon,
triangle and hexagon identities) one gets the transposed relations, which restrict to the known relations for (LCS, ;)
as symmetric monoidal category. By Mackey-density obtained in proposition B.1.23, the relations extend to the
expected relations for the transpose maps. Hence, transposing again (i.e. applying functor (-). from dual spaces
with linear maps preserving equicontinuous sets to LCS) imply the expected relations. We already saw in lemma
B.1.20 the commutation of limits with (. O
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B.1.3 Original setting for the Schwartz c-product and smooth maps.

In his original paper [S], Schwartz used quasi-completeness as his basic assumption to ensure associativity, instead
of restricting to Schwartz spaces and assuming only Mackey-completeness as we will do soon inspired by section
3. Actually, what is really needed is that the absolutely convex cover of a compact set is still compact. Indeed,
as soon as one takes the image (even of an absolutely convex) compact set by a continuous bilinear map, one
gets only what we know from continuity, namely compactness and the need to recover absolutely convex sets, for
compatibility with the vector space structure, thus makes the above assumption natural. Since this notion is related
to compactness and continuity, we call it k-quasi-completeness.

This small remark reveals this notion is also relevant for differentiability since it is necessarily based on some
notion of continuity, at least at some level, even if this is only on %" as in convenient smoothness. Avoiding the
technical use of Schwartz spaces for now and benefiting from [S], we find a *-autonomous category and an adapted
notion of smooth maps.

We will see this will give us a strong notion of differentiability with Cartesian closedness. We will come back
to convenient smoothness in the next sections starting from what we will learn in this basic example with a stronger
notion of smoothness.

B.1.3.1 =+-autonomous category of k-reflexive spaces.

Definition B.1.27. A (separated) locally convex space F is said to be k-quasi-complete, if for any compact set
K c E, its closed absolutely convex cover I'(K) is complete (equivalently compact [K, 20.6.(3)]). We denote by
Kc the category of k-quasi-complete spaces and linear continuous maps.

Remark B.1.28. There is a k-quasi-complete space which is not quasi-complete, hence our new notion of k-quasi-
completeness does not reduce to the usual notion. Indeed in [78], is built a completely regular topological space W
such that C°(W) with compact-open topology is bornological and such that it is an hyperplane in its completion,
which is not bornological. If C°(W) were quasi-complete, it would be complete by [Ja, Corol 3.6.5] and this is
not the case. C°(W) is k-quasi-complete since by Ascoli Theorem twice [Bo, X.17 Thm 2] a compact set for the
compact open topology is pointwise bounded and equicontinuous, hence so is the absolutely closed convex cover
of such a set, which is thus compact too.

The following result is similar to lemma B.1.16 and left to the reader.

Lemma B.1.29. The intersection £X of all k-quasi-complete spaces containing E' and contained in the completion
E of E, is k-quasi-complete and called the k-quasi-completion of F.

We define £y = FE, and for any ordinal A, the subspace F\11 = Ugec( EA)W < E where the union runs
over all compact subsets C'(E)) of E with the induced topology, and the closure is taken in the completion. We
also let for any limit ordinal £y = U, <xFE,,. Then for any ordinal A\, F) < EX and eventually for A large enough,
we have equality.

Definition B.1.30. For a (separated) locally convex space F, the topology k(E’, E) on E’ is the topology of
uniform convergence on absolutely convex compact sets of E¥. The dual (E’, k(E', E)) = (E¥)’ is nothing but
K

the Arens dual of the k-quasi-completion and is written Ej . We let E}f = E;’C . A (separated) locally convex space
E is said k-reflexive if E is k-quasi-complete and if E = (E},)/, topologically. Their category is written k — Ref.

From Mackey theorem, we know that (E}) = (E})" = EF.

We first want to check that k — Ref is logically relevant in showing that (E},)} and E}* are always in it. Hence
we will get a k-reflexivization functor. This is the first extension of the relation E!, = ((E.).)., that we need.

We start by proving a general lemma we will reuse several times. Of course to get a *-autonomous category,
we will need some stability of our notions of completion by dual. The following lemma says that if a completion
can be decomposed by an increasing ordinal decomposition as above and that for each step the duality we consider
is sufficiently compatible in terms of its equicontinuous sets, then the process of completion in the dual does not
alter any kind of completeness in the original space.

Lemma B.1.31. Let D a contravariant duality functor on LCS, meaning that algebraically D(E) = E’. We
assume it is compatible with duality ((D(FE))’ = E). Let Ey c E) < Ej an increasing family of subspaces of the
completion Ey indexed by ordinals A < Ag. We assume that for limit ordinals Ey = u,<xE, and, at successor

ordinals that every point « € E) 1 lies in I'(L), for a set L < E}, equicontinuous in [D(E),)]’.
Then any complete set K in D(E)) is also complete for the stronger topology of D(FE), ).
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Proof. Let E = Ejy. Note that since D(E) = D(F) we have D(E) = D(E),) algebraically.

Take a net x,, € K which is a Cauchy net in D(FE),). Thus z,, —x € K in D(E,). We show by transfinite
induction on X that 2, — x in D(E)).

First take A limit ordinal. The continuous embeddings F,, — E gives by functoriality a continuous identity
map D(E\) — D(E,,) for any u < A. Therefore since we know x,, — x in any D(E,,) the convergence takes
place in the projective limit Dy = projlim, . D(E),).

But we have a continuous identity map D(Ey) — D) and both spaces have the same dual E\ = U, \E,,.
For any equicontinuous set L in (D(E)))’ x,, is Cauchy thus converges uniformly in C°(L) on the Banach space
of weakly continuous maps. It moreover converges pointwise to x, thus we have uniform convergence to x on any
equicontinuous set i.e. x, —x in D(E)).

Let us prove convergence in D(E) 1) at successor step assuming it in D(FE)). Take an absolutely convex
closed equicontinuous set L in (D(E+1))" = Ex41, we have to show uniform convergence on any such equicon-
tinuous set. Since L is weakly compact, one can look at the Banach space of weakly continuous functions C°(L).
Letir, : D(Exy1)—=CO9(L). t1,(z,,) is Cauchy by assumption and therefore converges uniformly to some y7,. We
want to show yr,(2) = t1(x)(2) for any z € L. Since z € E) 1 there is by assumption a set M — F equicontinu-
ous in [D(E),)] such that z € I'(M) computed in E;1. Let N = I'(M) computed in E),, so that z € N. Since
M is equicontinuous in (D(E}),))" we conclude that so is N and it is also weakly compact there. One can apply
the previous reasoning to N instead of L (since x,, Cauchy in D(E},), not only in D(Ex11)). tn(2n) —yn
and since z € L n N and using pointwise convergence yr,(z) = yn(z). Note also ty(x)(2) = tp(z)(2).
Moreover, for m € M < Ej, ty(x,)(m) — tn(x)(m) since {m} is always equicontinuous in (D(E)))’ so
that 1 (z)(m) = yn(m). Since both sides are affine on the convex N and weakly continuous (for ¢y () since
r € D(E),) = E} ), we extend the relation to any m € N and thus ¢y (7)(2) = yn(z). Altogether, this gives the
expected yr,(z) = vr,(x)(2). Thus K is complete as expected. O

Lemma B.1.32. For any separated locally convex space, £} = ((E},),);, is k-reflexive. A space is k-reflexive if
and only if F = (E')’, and both E and E/, are k-quasi-complete. More generally, if F is k-quasi-complete, so are

(Bi)e = (EQ) and (E); and y(E) = y((EX).) = v((ER)R)-

Remark B.1.33. The example F = CO(W) in Remark B.1.28, which is not quasi-complete, is even k-reflexive.
Indeed it remains to see that E., is k-quasi-complete. But from [Ja, Thm 13.6.1], it is not only bornological but
ultrabornological, hence by [Ja, Corol 13.2.6], £}, is complete (and so is F' = .(E},). But for a compact set in
E!, the closed absolutely convex cover is closed in E/, hence E:L hence complete there. Thus, by Krein’s Theorem
[K, 24.5.(4)], it is compact in E’, making F’, k-quasi-complete.

Proof. One can assume F is k-quasi-complete (all functors start by this completion) thus so is (F.). by [Bo2,
IV.5 Rmq 2] since (E!), — E continuous with same dual (see [S]). There is a continuous map (E}*),, — (E.).,

we apply lemma B.1.31 to Ey = E!, E, the A-th step of the completion in lemma B.1.29. Any I'(K) in the
union defining E; is equicontinuous in ((Ex41),)" so a fortiori in ((E),),)" for A large enough. We apply
the lemma to another K closed absolutely convex cover of a compact set of (£;)!, computed in (E)’, therefore
compact there by assumption. The lemma gives K is complete there contains the bipolar of the compact computed
in (E})., which must also be compact as a closed subset of a compact. In this case we deduced (E})., = (E})), is
k-quasi-complete.

Clearly ((E})}) = (Ef)}),—=E; continuous. Dualizing the continuous ( E},),—E one gets E;,—((E})}.)). =
((E})L)—FE; and since the space in the middle is already k-quasi-complete inside the last which is the k-quasi-
completion, it must be the last space and thus £} k-reflexive and we have the stated equality.

For the next-to-last statement, sufficiency is clear, the already noted (£});. = (Ef), — (E.)., — E in
the k-quasi-complete case which implies (E), ~ FE if (E;); ~ E and E} = ((E}),), = (EL)R). = E.
implies this space is also k-quasi-complete. For the comparison of absolutely convex compact sets, note that
(Ef)y — (E.).. ensures one implication and if K" € y((E).) we know it is equicontinuous in (E.)’ hence [K,

~K ~K
21.4.(5)] equicontinuous in (E’. )" and as a consequence included in an absolutely convex compact in (E’, )., =

(Ef)y e Key(EH). v(E) =~((£L).) is a reformulation of E, ~ ((E).)... O

We consider v — Kc the full subcategory of Kc with their y-topology, and v-Kb the full subcategory of LCS
made of spaces of the form E’, with E k-quasi-complete.

We first summarize the results of [S]. We call v — LCS < LCS the full subcategory of spaces having their
~-topology, namely E = (E.).. This is equivalent to saying that subsets of absolutely convex compact sets in E,
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are (or equivalently are exactly the) equicontinuous subsets in E’. With the notation of Theorem B.1.13, this can
be reformulated by an intertwining relation in CLCS which explains the usefulness of these spaces:

Eey—LCS = (E)). = (E.), = (Eo), = [U((E)y)]e (B.6)

Proposition B.1.34. k-quasi-complete spaces are stable by e-product, and (Kc, e, K) form a symmetric monoidal
category . Moreover, if E, F are k-quasi-complete, a set in EcF is relatively compact if and only if it is e-
equihypocontinuous. Therefore we have canonical embeddings:

é/@ch/ — (E&F)é — EZKBe C/
Proof. The characterization of relatively compact sets is [S, Prop 2 ], where it is noted that the direction proving
relative compactness does not use any quasi-completeness. It gives (EeF)!, = (EeF)". with the epsilon topology
as a bidual of E/ g F, and in general anyway a continuous linear map:

(EeF), — (EeF). (B.7)

For a compact part in E< I, hence equicontinuous in (E! g, F')’, its bipolar is still -equihypocontinuous hence
compact by the characterization, as we have just explained. This gives stability of k-quasi-completeness.

Associativity of e is Schwartz’ Prop 7 but we give a reformulation giving a more detailed proof that (Kc, ¢)
is symmetric monoidal. The restriction to Kc of the functor (-). of Theorem B.1.13 gives a functor we still call
(-)e : Kc — CLCS. It has left adjoint ~* o U. Note that for E, F € Kc¢, EeF =% o U(E, %, F,) from our
previous stability of Kc. Moreover, note that

VE,FeKc, (EeF),=E.%,F, (B.8)

thanks to the characterization of relatively compact sets, since the two spaces were already known to have same
topology and the bornology on the right was defined as the equicontinuous bornology of (E.g.F.) and on the
left the one generated by absolutely convex compact sets or equivalently the saturated bornology generated by
compact sets (using EcF' € Kc). Lemma B.1.36 concludes to (Kc, ¢, K) symmetric monoidal. They also make
(+)¢ a strong monoidal functor.

We could deduce from [S] the embeddings, but we prefer seeing them as coming from CLCS.

Let us apply the next lemma to the embedding of our statement. Note that by definition E/ g F. = U((E.), u (F¢)}),
and (EecF). = U((E. B F)},) = U((E.)y(Fe);) so that we got the embeddings for E, F' € LCS:

ElgcF.— (EBcF).— E/}, F! (B.9)

which specializes to the statement in the k-quasi-complete case by the beginning of the proof to identify the middle
terms. O

We have used and are going to reuse several times the following:

Lemma B.1.35. Let E,F' € CLCS (resp. with E, F} having moreover Schwartz bornologies) we have the
topological embedding (for U the map giving the underlying Ics):

U(ExF) —=U(EyF))— [ c U(Ex F}). (B.10)

(resp. U(EgF))—=U(EyF))—[™M o U|(EgxF)). ) (B.11)

Proof. Recall that for E, F' € CLCS, EgF has been defined before the proof of Theorem B.1.13 and is the
algebraic tensor product. Let us explain that, even before introducing the notion of k-quasi-completion, we already
checked the result of the statement. By construction we saw (E,F); = E| %, F = L,(E, F) = (EF)}, hence
by =-autonomy EF;) = ((EgF}););, = (Ly(E, F)); and it has been described as a subspace Ey F} inside the
completion (in step 1 of this proof) with induced topology, obtained as union of bipolars of AB or AB (image of
the product), for A bounded in F, B bounded in Fg . Hence the embeddings follows from the fact we checked AB
is precompact, and of course closed in the completion hence compact and the bipolar is one of those appearing in
the first step of the inductive description of the k-quasicompletion.
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For the case E, F] having Schwartz bornologies, bounded sets are of the form A < I'(z,,neN),B c
' (ym, m € N) with (z,,), (ym) Mackey-null in their respective bornologies. Take C, D absolutely convex pre-
compact sets bounded in the respective bornologies with ||z, ||c —= 0, |[ym||p —= 0, hence ||zpym|l(cD)or <
[|zn]lc||ym || p and since we checked in the proof of Theorem B.1.13 that (C'D)°° is precompact hence bounded,
TnYm can be gathered in a Mackey-null sequence has the one whose bipolar appears in the first term of the
Mackey-completion. O

We have also used the elementary categorical lemma:

Lemma B.1.36. Let (C, ¢, I) a symmetric monoidal category and D a category. Consider a functor R : D —C
with left adjoint L : C — D and define J = L(I), and EpF = L(R(E)cR(F)). Assume that for any E, F € D,
L(R(E)) =E,R(J) =1and

R(EpF) = R(E)cR(F).

Then, (D, p, J) is a symmetric monoidal category.

Pro.of The assqciator is obtained as Assg = L(As.s%( B, R(F), R(G)) apd the same intertwining defines the
braiding and units and hence transports the relations which concludes. For instance in the pentagon we used the

relation L(Ass%(E)’R(F)CR(g)’R(H)) = Assp poa.m -

We deduce a description of internal hom-sets in these categories: we write L., (E, F), the space of all con-
tinuous linear maps from E' to F' endowed with the topology of uniform convergence on compact subsets of F.
When F is a k-quasi-complete space, note this is the same Ics as L.(F, F'), endowed with the topology of uniform
convergence on absolutely convex compacts of F.

Corollary B.1.37. For F € v — Kc and F' € Kc (resp. F' € Mc), one has L.(E., F) ~ EcF, which is
k-quasi-complete (resp. Mackey-complete).

Proof. Algebraically, EeF' = L(FE., F) and the first space is endowed with the topology of uniform convergence
on equicontinuous sets in E/, which coincides with subsets of absolutely convex compact sets since F has its
~-topology. O

Using that for E € v-Kb, E = F for F' € Kc, hence E.. = (F.)., € Kc by lemma B.1.32.

Corollary B.1.38. Consider E € y-Kb , F € Kc (resp. F' € Mc) then L.(E, F) is k-quasi-complete (resp.
Mackey-complete).

Proposition B.1.39. v—Kc < Kc is a coreflective subcategory with coreflector (right adjoint to inclusion) ((-)..).,,

which commutes with ™~ on ~v-Kb. For F' € v—Ke, AffFC’ : LCS—Kc (resp. Kc—Kc,y—Kc—v—Kc)
is left adjoint to Fe - (resp. Fe -, ((Fe -).).). More generally, for F € Kc,-”fiEFc’ : LCS —Kc is left adjoint to
Fe - . Finally, v-Kb is stable by/f.

Proof. (1) We start by proving the properties of the inclusion y—Kc < Kc. Let £ € Kc. We know the continuous
map (E.), — FE and both spaces have the same dual, therefore for K compact in (E.)., its closed absolutely
convex cover is the same computed in both by the bipolar Thm [K, 20.7.(6) and 8.(5)] and it is complete in E
by assumption so that by [Bo2, IV.5 Rmq 2] again also in (), which is thus k-quasi-complete too. Hence, by
functoriality of Arens dual, we got a functor: ((-).). : Kc —~ — Kc. Then we deduce from functoriality the
continuous inverse maps L(F, E) — L((F))., (E!)!) = L(F,(E.).) — L(F, E) (for F € v — Kc, E € Kc)
which gives the first adjunction. The unit is 7 = id and counit given by the continuous identity maps: cp :
((B)e). —E.

(2) Let us turn to proving the commutation property with completion. For H € v-Kb, H = G', = ((G,).).,G €
Kc we thus have to note that the canonical map ((I;T Ky
map H — oK by applying functoriality: H — (ﬁ K)7)! and then k-quasi-completion (since we saw the target
isiny — Ke:) HX — (HK).)".

(3) For the adjunctions of tensor products, let us start with a heuristic computation. Fix F' € v — K¢, E €
LCS, G € Kc. From the discussion before (B.6), L~ (F., G) ~ FeG thus, there is a canonical injection

— H¥ is inverse of the map obtained from canonical

Kc(EL F,G) = L(E,F,,G)—= L(E, L, (F.,G)) = L(E, FG).
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Butan element in L(F, FeG) sends a compact set in F to a compact set in F'eG therefore an e-equihypocontinuous
set by proposition B.1.34 which is a fortiori an equicontinuous set in L(F’, G). This gives the missing hypoconti-
nuity to check the injection is onto.

Let us now give a more abstract alternative proof of the first adjunction. Fix F' € v — Kc. Let us define
’fch’ : LCS —> Kc as the composition ™ o U o (-s(Fe)p) © ()¢ so that we will be able to describe the unique

adjunction by composing known adjunctions. (Similarly, for /' € Kc one can define -'ﬁeF " : LCS — Kc as

the same composition ~ o U o (-s(Fe)p) © (-)e)- We have to check this is possible by agreement on objects. This

reads for £ € LCS as application of (B.10), (B.6) and reformulation of the definition -+ = U((-)ca (+)c) :
o U(Ecb(FC)Z) =" U(EcH(FC)é) =0 U(EcH(Fc,)C) = E/);(Fc/

The case F' € Kc is similar since by definition - o (-). = U((:)cr ((-)e)})-

c
Then, to compute the adjunction, one needs to know the adjoints of the composed functors, which are from

Theorem B.1.13 and the proof of proposition B.1.34. This gives as adjoint U o (- &, F.) o (.). = -F.

(4) The second adjunction is a consequence and so is the last if we see ch’ :v—Kc—v —Kc as
composition of ¢ : v — Kc — Ke, ’ch’ : Kc — Kc and the right adjoint of ¢ (which we will see is not
needed here). Indeed, by proposition B.1.34, for £ € v — Kc, E;ff F! = ES F! is the k-quasi-completion of

cBet c
(EeF)., € v — Kb, and therefore from the commutation of ~y-topology and k-quasi-completion in that case, that

we have just established in (2), it is also in v — Kc. Hence, the adjunction follows by composition of previous
adjunctions and we have also just proved that v-Kb is stable by”ff. O

We emphasize expected consequences from the x-autonomous category we will soon get since we will use
them in slightly more general form.

Corollary B.1.40. Forany Y € K¢, X, 7y, ..., Z,,, Y1,..., Y, € v — Kc,T € k — Ref the following canonical
linear maps are continuous

evx: (YeX)ffXé —Y, compk, : (YsT)'f((Téle el e —>(YeZy - eZp),
compyy : (Yie - eYyel ) (TieZy - eZy) —> (YeYy - -eYpeZy - - €Zy,),

compGy : (YeYy - eYneT)oy(TreZy - eZpm) —= (YeY1 - eYpeZi - eZm),

Moreover for any I, G € Kc, V,W € v — Kb and U, E any separated Ics, there are continuous associativity maps
Ass. : Be(FeG)— (EeF)eG, Ass, : (USVEEW —UN (vEW),
Assy o VI (TeX) — (VI T)eX.

Proof. (1) From the adjunction, the symmetry map in L((YeX), (XeY)) = L((Y&:X)’;(Xé, Y') gives the first
evaluation map.
(2) For the associativity Ass., recall that using definitions and (B.8) (using F, G € Kc):

Ec(FeG) =U(E. By [FeG].) =U(E: B [F. By Ge|) —U([E. B F.] B, G,)
—U([U(E. B F.)] By G.) = (EeF)eG,
where the first map is U (Assgl; FC,GC) and the second obtained by functoriality from the unit ng_ z,r. : Ec B
F,—[U(E.®, F.)]..
(3) For the associativity Ass., we know from the adjunction again, since V!, W/ e v — Kc,V = (V!),, W =
(Wo)e:
L(UE VW, UX (vEw)) = L), Wgs(Uf(va))) - LU, vge(wgs(Uf(VfW)))).

Then composing with Ass. (note the -y tensor product term is the term requiring nothing but k-quasi-completeness
for the adjunction to apply) gives a map:

L, (veewz) (U0 w))) = L, (view?)e (TR (vVEW) ) — L, Vie (Wie (U5 (75w) )
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i
Since an equicontinuous set in (VC%WC’) is contained in an absolutely convex compact set, one gets by
c

universal properties a continuous linear map: UK (V’ eW! ) — UK (V’ eW! )

Finally by functoriality and the embedding of proposition B.1.34 there is a canonical continuous linear map:
UK (V’ eW! ) — UK (VKW) Dualizing, we also have a map which we can evaluate at the identity map com-
posed with all our previous maps to get Ass.:

!
LW vEw), (UF 7 wW)) — LWl (view?) L (v (vEw))
(4) We treat similarly the map comp7, in the case m = 2, for notational convenience. It is associated to

evr, o (idev(z,y.) o (idev(z,) id) via the following identifications. One obtains first a map between Hom-sets
using the previous adjunction:

([( (YeTYE (Tle 1) 22)8); V(Zg);}f(zl);,y) (YT ((TleZ1)e20)E)E, (YeZi)e Za).

We compose this twice with Ass, and the canonical map (E}!)} — E for E k-quasi-complete:

L((very | (T2 2T (22). ) (20 ¥ ) — L((VeT P | ((Tez0)ezo) D (Za) ) (2] Y ) —
L[ver s ((ezeza) ) (22 [ (200 Y ) — L[ ((ver s (Tezn)eZ)Di i (2L [ (201 Y ).

Note that the first associativity uses the added ((-)})y making the Arens dual of the space k-quasi-complete as it
should to use Ass., and the second since (((Téle)eZg)k)m (Z3)!, € v — Kb from Proposition B.1.39.

Note that 77, € Kc is required for definition of ev(z,), hence the supplementary assumption 7' € k£ — Ref and
notonly 7' € v — Ke.

(5)By the last statement in lemma B.1.32, we already know that ((TeZ, - - -€Z,,)5 )5 and T)e Z; - - - € Zyy, have
the same absolutely convex compact sets. Hence for any absolutely compact set in this set compT, induces an
equicontinuous family in L(Y; - - - eY,,eT,YeYy - - -eYneZy - - -£Z,,). But now by symmetry on & product and of
the assumption on Y;, Z; one gets the second hypocontinuity to define compy by a symmetric argument.

(6)One uses comprs on ((Y!).eYy---eYyeT) = (YeY - - - €Y,eT) algebraically, since (Y,),. € v — Kc. This
gives the separate continuity needed to define comp"Té , the one sided y-hypocontinuity follows from compi}c, as in
(5).

(7) We finish by Ass., .. We know from the adjunction again composed with Ass. and symmetry of € that we
have a map:

L(TeX, (VET)e (vgsx)) o L(TeX, Ve ((Vf T)sX)) = L(V¥(TeX), (VET)eX)
Similarly, we have canonical maps:
L(Tex < (VET), (VC%X)) ~ L(TeX, (VET).)e (Vgsx>) — L(TeX, (VET)e (VC'eX))
L((X=T (1Y), (XeV2)) —= L(TeX P (VET)L), (VieX ) —= LT XV (VAT (VieX ).
The image of compr, € L((XeTYX (TleV?), (ngg)) gives Ass. . since X, V! € v — Kc. O

We refer to [MT, T] for the study of dialogue categories from their definition, already recalled in subsection
2.3. Note that =-autonomous categories are a special case.

We state first a transport lemma for dialogue categories along monoidal functors, which we will use several
times.

Lemma B.1.41. Consider (C,®c,1¢), and (D,®p, 1p) two symmetric monoidal categories, R : C —D a
functor, and L : D —C the left adjoint to R which is assumed strictly monoidal. If — is a tensorial negation on
C, then E — R(—L(E)) is a tensorial negation on D.
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Proof. Let ¢€ the natural isomorphism making — a tensorial negation. Let us call the natural bijections given by
the adjunction
wA,B : D(A7 R(B)> = C(L(A)7 B)

Define

CAB.C = VAt LBoncy © PLA)LE).LE) © Yago B ~(L(c) : D(A®p B, F(—~(L(C)))) —D(A, F(~(L(B®p C))))
It gives the expected natural bijection:

D(A®p B, F(—=(L(C)))) ~ C(L(A®p B), ~(L(C))) = C(L(A) & L(B)), ~(L(C)))
~ C(L(A), ~(L(B®p () ~ D(A, F(=(L(B®p ())))

where we have used strict monoidality of L: L(B®p C') = L(B)®c¢ L(C'), and the structure of dialogue category
on C.

It remains to check the compatibility relation (B.2). For it suffices to note that by naturality of the adjunction,
one has for instance:

'D(ASSZ,B,C7F(_'(L(D)))) = wZ(}ED(B(@DC),—\(L(D)) © C(L(ASSE,B,C)7 —(L(D))) o V(A®p B)®pC,~(L(D))*

and since L(Ass’j‘y B,C) = AssCL( A),L(B),L(C) from compatibility of a strong monoidal functor, the new commu-
tative diagram in D reduces to the one in C by intertwining. [

Remark B.1.42. Note that we have seen or will see several examples of such monoidal adjunctions:

e between (Kc°, &) and (CLCS??, %9,) through the functors L = (-). and R = (*¥ o U) (proof of proposi-
tion B.1.34 and (B.8)),

e between (CSch’,%,) and (McSch? &) through the functors L = (-)s. and R = ( *™ o U)(proposition
B.1.65).

Theorem B.1.43. Kc is a dialogue category with tensor product € and tensorial negation (-)} which has a

commutative and idempotent continuation monad ((-)})5.
Its continuation category is equivalent to the x-autonomous category k — Ref with tensor product E,F =

(EfeFy)y, dual ()} and dualizing object K. It is stable by arbitrary products and direct sums.

Proof. The structure of a dialogue category follows from the first case of the previous remark since (CLCS?, %%, (-)})
is a x-autonomous category, hence a Dialogue category by Theorem B.1.13 and then the new tensorial negation is
R(—L(-)) = ¥ o (). which coincides with (-); on Kc. The idempotency of the continuation monad comes from
lemma B.1.32.

In order to check that the monad is commutative, one uses that from [T, Prop 2.4], the dialogue category
already implies existence of right and left tensor strengths say ¢x v, 7x,y. Note that in order to see they commute,
it suffices to see the corresponding result after applying (-). Then from proposition B.1.34, the two maps obtained

on )/(ZK®§€}//2K must be extensions by continuity of an e-hypocontinuous multilinear map on X, ®g. Y, which
is unique by [K2, 40.3.(1)] which even works in the separately continuous case but strongly requires known the
separate continuity of the extension. Hence we have the stated commutativity.

The *-autonomous property follows from the following general lemma. O

Lemma B.1.44. Let (C°P, %, I, —) a dialogue category with a commutative and idempotent continuation monad
and D c C the full subcategory of objects of the form —C, C' € C. Then D is equivalent to the Kleisli category of
the comonad T' = —— in C. If we define -p- = —(—(-) B¢ —(-)), then (D, p, I, —) is a *-autonomous category
and — : C°? —D is strongly monoidal.

Proof. From the already quoted [T, Prop 2.9] of Hagasawa, the cited Kleisli category (or Continuation cate-
gory C7) is a =-autonomous category since we start from a Dialogue category with commutative and idempo-
tent continuation monad. Consider — : C~ —D. D(—A,—-B) = C°?(—B,—~A) = C(A, B) which gives
that — is fully faithful on the continuation category. The map — : D — C™ is the strong inverse of the
equivalence since — o — ~ Idp by choice of D, and idempotency of the continuation and the canonical map
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Ja€C (——(A),idc-(A)) = C?(—A, —(T(a)) is indeed natural in A and it is an isomorphism in C . There-
fore we have a strong equivalence. Recall that the commutative strength t4 5 : A%c T'(B)—=T(A%¢ B),ty g :
T(A) Bc B—T(AcB) in C°P, implies that we have isomorphisms

Lap = ~(T(h5) o trcay 5) © P famepy : ~(ABc B) = ~(=—AT¢ B) > ~(==A%¢ ~=B)

with commutation relations I4 g = — (T(t AB)© t147T( B)) o Jz‘zi’mc B)" This gives in D the compatibility map

for the strong monad: p14 p = Iip; : =(A%®¢ B) ~ —Ap—DB. Checking the associativity and unitarity for
this map is a tedious computation left to the reader using axioms of strengths, commutativity, functoriality. This
concludes. =

B.1.3.2 A strong notion of smooth maps

During this subsection, K = Z so that we deal with smooth maps and not holomorphic ones while we explore the
consequence of our #-autonomy results for the definition of a nice notion of smoothness.

We recall the definition of (conveniently) smooth maps as used by Frolicher, Kriegl and Michor: a map f :
E—F is smooth if and only if for every smooth curve ¢ : R—=F, f ocis a smooth curve. See [53]. They define
on a space of smooth curves the usual topology of uniform convergence on compact subsets of each derivative.
Then they define on the space of smooth functions between Mackey-complete spaces F and F' the projective
topology with respect to all smooth curves in F (see also section 6.1 below).

As this definition fits well in the setting of bounded linear maps and bounded duals, but not in our setting using
continuous linear maps, we make use of a slightly different approach by Meise [58]. Meise works with k-spaces,
that is spaces F in which continuity on F is equivalent to continuity on compacts subsets of E. We change his
definition and rather use a continuity condition on compact sets in the definition of smooth functions.

Definition B.1.45. For X, F separated lcs we call C% (X, F) the space of infinitely many times Géateaux-differentiable
functions with derivatives continuous on compacts with value in the space L1 (E, F) = L.,(E, L (E, F)) with
at each stage the topology of uniform convergence on compact sets. We put on it the topology of uniform conver-
gence on compact sets of all derivatives in the space L (E, F').

We denote by C2(X) the space C° (X, K).

One could treat similarly the case of an open set {2 — X. We always assume X k-quasi-complete.

Our definition is almost the same as in [58], except for the continuity condition restricted to compact sets.
Meise works with k-spaces, that is spaces E in which continuity on E' is equivalent to continuity on compacts
subsets of E. Thus for X a k-space, one recovers exactly Meise’s definition. Since a (DFM) space X is a k-space
([KM, Th 4.11 p 39]) his corollary 7 gives us that for such an X, C% (X, F') is a Fréchet space as soon as F is.
Similarly for any (F)-space or any (DFS)-space X then his corollary 13 gives C% (X, %) is a Schwartz space.

As in his lemma 3 p 271, if X k-quasi-complete, the Gateaux differentiability condition is automatically
uniform on compact sets (continuity on absolutely convex closure of compacts of the derivative is enough for
that), and as a consequence, this smoothness implies convenient smoothness. We will therefore use the differential
calculus from [53].

One are now ready to obtain a category.

Proposition B.1.46. k—Ref is a category with CX (X, F) as spaces of maps, that we denote k—Ref .. Moreover,
forany g € CE(X,Y),Y, X € k — Ref, any F Mackey-complete, - o g : CL(Y,F) — C%(X, F) is linear

continuous.

Proof. For stability by composition, we show more, consider g € C(X,Y), f € CL(Y, F) with X, Y € k—Ref
and F' € Mc we aim at showing fog e CL(X, F). We use stability of composition of conveniently smooth maps,
we can use the chain rule [KM, Thm 3.18]. This enables to make the derivatives valued in F' if F' is Mackey-
complete so that, up to going to the completion, we can assume F' € Kc since the continuity conditions are the
same when the topology of the target is induced. This means that we must show continuity on compact sets of
expressions of the form

l
(xz,h) — dfl(g(x))(dklg(m), ...,dklg(ac))(hl, vy B )y m = Z ki,he Q™.

i=1
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First note that L., (X, F) ~ X/eF, L (X, F) ~ (X/)*"¢F fully associative for the spaces above.

Of course for K compact in X, g(K) < Y is compact, so df' o g is continuous on compacts with value in
(Y)ele F so that continuity comes from continuity of the map obtained by composing various Comp¥., Ass. from
Corollary B.1.40 (note Ass., is not needed with chosen parentheses):

((-((DeF) @, ((XDM2Y))7) @, ) @, ((XOHeY)})p ) —= ((X)™eF)

and this implies continuity on products of absolutely convex compact sets of the corresponding multilinear map
even without ((-)7)F since from lemma B.1.32 absolutely convex compact sets are the same in both spaces (of
course with same induced compact topology). We can compose it with the continuous function on compacts with
value in a compact set (on compacts in z):z — (df'(g(x)),d* g(z),...,d* g(z)). The continuity in f is similar
and uses hypocontinuity of the above composition (and not only its continuity on products of compacts). O

We now prove the Cartesian closedeness of the category k — Ref, the proofs being slight adaptation of the
work by Meise [58]

Proposition B.1.47. For any X € k — Ref, CX(X, F) is k-quasi-complete (resp. Mackey-complete) as soon as
Fis.

Proof. This follows from the projective kernel topology on C°(X, F'), Corollary B.1.38 and the corresponding
statement for C°(K, F') for K compact. In the Mackey-complete case we use the remark at the beginning of step 2
of the proof of Theorem B.1.56 that a space is Mackey-complete if and only if the bipolar of any Mackey-Cauchy
sequence is complete. We treat the two cases in parallel, if F' is k-quasi-complete (resp Mackey-complete), take
L a compact set (resp. a Mackey-Cauchy sequence) in C°(K, F'), M its bipolar, its image by evaluations L, are
compact (resp. a Mackey-null sequence) in F' and the image of M is in the bipolar of L, which is complete in
F hence a Cauchy net in M converges pointwise in F'. But the Cauchy property of the net then implies as usual
uniform convergence of the net to the pointwise limit. This limit is therefore continuous, hence the result. O

The following two propositions are an adaptation of the result by Meise [58, Thm 1 p 280]. Remember though
that his £ product and E/, are different from ours, they correspond to replacing absolutely convex compact sets by
precompact sets. This different setting forces him to assume quasi-completeness to obtain a symmetric e-product
in his sense.

Proposition B.1.48. For any k-reflexive space X, any compact K, and any separated k-quasi-complete space F
one has CX(X,F) ~ C*(X)eF,C°(K,F) ~ C°(K)eF. Moreover, if F is any lcs, we still have a canonical
embedding Jx : CP(X)eF —CP (X, F).

Proof. We build a map evx € CE(X,(CL(X)).) defined by evx(x)(f) = f(x) and show that - o evy :
CE(X)eF = L((CE(X))., F) — CL(X,F) is a topological isomorphism and an embedding if F' only

Mackey-complete. The case with a compact K is embedded in our proof and left to the reader.
(a) We first show that the expected j-th differential ev’ (z)(h)(f) = d f(x).h indeed gives a map:

evh € O (X, L1, (X, (CE(X))L)).

First note that for each z € X, evg( (x) is in the expected space. Indeed, by definition of the topology f — d’ f(x)
is linear continuous in L(C2(X), LI (X, %)) = L(((CL(X)).)., LI (X, %)) = (CL(X)).e(X.)%I. Using
successively Ass® from Corollary B.1.40 (note no completeness assumption on (C¢(X)).. is needed for that)
hence ev’ (z) € (- ((CE(X))eX])---eX]) = LI (X,(CZ(X)).). Then, once the map well-defined, we
must check its continuity on compacts sets in variable z € K < X, uniformly on compacts sets for h € Q,
one must check convergence in (C%(X))... But everything takes place in a product of compact sets and from the
definition of the topology on C%(X), ev’ (K)(Q) is equicontinuous in (CZ(X))". But from [K, 21.6.(2)] the
topology (CX(X))’, coincides with (CX(X)).. on these sets. Hence we only need to prove for any f continuity
of d’ f and this follows by assumption on f. This concludes the proof of (a). 4

(b) Let us note that for f € L.((CEH(X)).,F), foevx € CH(X,F). We first note that f o ev} (z) =
d’(f o evx)(x) as in step (c) in the proof of [58, Thm 1]. This shows for F = (C% (X)), that the Gateaux
derivative is devy = ev’ and therefore the claimed evx € CX (X, (CL(X))L).

(¢)f — f oevx is the stated isomorphism. The monomorphism property is the same as (d) in Meise’s proof.
Finding a right inverse j proving surjectivity is the same as his (e) . Let us detail this since we only assume k-
quasi-completeness on F. We want j : C2 (X, F) — CX(X)eF = L(F,,CE (X)) fory € F', f e CE(X, F)
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we define j(f)(y') = ¢ o f. Note that from convenient smoothness we know that the derivatives are 3’ o d’ f ()
and d’ f(z) € (X.)"eF = (X])*"e(F), algebraically so that, since (F.)!, k-quasi-complete, one can use evp
from Corollary B.1.40 to see y' o d’ f(z) € (X)=" and one even deduces (using only separate continuity of ev )
its continuity in 3. Hence j(f)(y’) is valued in C2(X) and from the projective kernel topology, j(f) is indeed
continuous. The simple identity showing that j is indeed the expected right inverse proving surjectivity is the same
as in Meise’s proof. O

Proposition B.1.49. For any space X1, X2 € k — Ref and any Mackey-complete Ics F we have:
ng(Xl X X27 F) = Cg(o)(Xh CS(OJ(X27 F))

Proof. Construction of the curry map A is analogous to [58, Prop 3 p 296]. Since all spaces are Mackey-complete,
we already know from [KM, Th 3.12] that there is a Curry map valued in C* (X, C®(Xa, F)), it suffices to see
that the derivatives d/ A(f)(z1) are continuous on compacts with value C% (X5, F). But this derivative coincides
with a partial derivative of f, hence it is valued pointwise in C% (X3, F') < C% (X, FK ). Since we already know
all the derivatives are pointwise valued in F', we can assume F' k-quasi-complete. But the topology for which
we must prove continuity is a projective kernel, hence we only need to see that d*(d? A(f)(x1))(z2) continuous
on compacts in z1 with value in LI (X1, C°(Kz, Li(X2, F))). But we are in the case where the € product is
associative, hence the above space is merely C°(K3)eLi (X1, L1 (X2, F)) = CO(Ko, LI(X1, Li(X2, F))). We
already know the stated continuity in this space from the choice of f. The reasoning for the inverse map is similar
using again the convenient smoothness setting (and Cartesian closedness C°(K1, C%(K3)) = CY(K; x K»)). O

B.1.4 Schwartz locally convex spaces, Mackey-completeness and p-dual.

In order to obtain a x-autonomous category adapted to convenient smoothness, we want to replace k-quasi-
completeness by the weaker Mackey-completeness and adapt our previous section.

In order to ensure associativity of the dual of the e-product, Mackey-completeness is not enough as we saw
in section B.1.2. We have to restrict simultaneously to Schwartz topologies. After some preliminaries in sub-
section 5.1, we thus define our appropriate weakened reflexivity (p-reflexivity) in subsection 5.2, and investigate
categorical completeness in 5.3.

We want to put a x-autonomous category structure on the category p — Ref of p-reflexive (which implies
Schwartz Mackey-complete) locally convex spaces with continuous linear maps as morphisms.

It turns out that one can carry on as in section B.1.3 and put a Dialogue category structure on Mackey-complete
Schwartz spaces. Technically, the structure is derived via an intertwining from the one in CSch in Theorem B.1.13.
This category can even be seen as chosen in order to fit our current Mackey-complete Schwartz setting. We actually
proved all the results first without using it and made appear the underlying categorical structure afterwards.

Then the continuation monad will give the x-autonomous category structure on p — Ref where the internal
hom is described as

E —, F = ([EXJeF)):

and based on a twisted Schwartz e-product. The space is of course the same (as forced by the maps of the category)
but the topology is strengthened. Our preliminary work on double dualization in section 6.2 make this construction
natural to recover an element of p — Ref anyway.

B.1.4.1 Preliminaries in the Schwartz Mackey-complete setting

We define Mc (resp. Sch) the category of Mackey-complete spaces (resp Schwartz space) and linear continuous
maps. The category McSch is the category of Mackey-complete Schwartz spaces.

We first recall [Ja, Corol 16.4.3]. Of course it is proven their for the completed variant, but by functoriality, the
original definition of this product is a subspace and thus again a Schwartz space.

Proposition B.1.50. If E and F are separated Schwartz locally convex spaces, then so is EcF'.
We can benefit from our section 3 to obtain associativity:

Proposition B.1.51. (McSch, ¢) is a symmetric monoidal complete and cocomplete category. McSch ¢ Mc
is a reflective subcategory with reflector (left adjoint to inclusion) . and the inclusion is strongly monoidal.
Moreover on LCS, .7 and “™ commute and their composition is the reflector of MlcSch < LCS.
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Proof. From Theorem B.1.26, we know (Mc, {) is of the same type and for E, F' € McSch, lemma B.1.20 with
the previous lemma gives EcF' = E(F € McSch. Hence, we deduce McSch is also symmetric monoidal and
the inclusion strongly monoidal. The unit of the adjunction is the canonical identity map ng : F — . (F) and
counit is identity satisfying the right relations hence the adjunction. From the adjunction the limits in McSch are
the limits in Mc and colimits are obtained by applying . to colimits of Mc. It is easy to see that McSch —
Sch < LCS are also reflective, hence the two ways of writing the global composition gives the commutation of
the left adjoints. O

B.1.4.2 p-reflexive spaces and their Arens-Mackey duals

We define a new notion for the dual of E, which consists of taking the Arens-dual of the Mackey-completion of
the Schwartz space . (E'), which is once again transformed into a Mackey-complete Schwartz space E7.

Definition B.1.52. For a lcs FE, the topology Zp(E',E) on E’ is the topology of uniform convergence on
M
absolutely convex compact sets of 5”( ) . We write By, = (E',p(E',E)) = (S(E) ). We write

EY = Y(E{’yp) and Ep = S(Ely,).

Remark B.1.53. Note that £, , 1s in general not Mackey-complete: there is an Arens dual of a Mackey-complete
space (even of a nuclear complete space with its Mackey topology) which is not Mackey-complete using [BD,
thm 34, step 6]. Indeed take I' a closed cone in the cotangent bundle (with O section removed) T*R™. Consider
Hormander’s space E = D (%™) of distributions with wave front set included in I' with its normal topology in
the terminology of [BD, Prop 12,29]. It is shown there that F is nuclear complete. Therefore the strong dual
is EB E!. Moreover, [BD, Lemma 10] shows that this strong dual if £}, the space of compactly supported
distributions with a wave front set in the open cone A = —I'“ with a standard inductive limit topology. This dual
is shown to be nuclear in [BD, Prop 28]. Therefore we have £, = E’, ,- Finally, as explained in the step 6 of the
proof of [BD, Thm 34] where it is stated it is not complete, as soon as A is not closed (namely by connectedness
when I ¢ {¢F, T*R"}), then E/ is not even Mackey-complete. This gives our claimed counter-example. The fact
that F above has its Mackey topology is explained in [D].

First note the functoriality lemma :

Lemma B.1.54. (-)* and (-)p are contravariant endofunctors on LCS.
Proof. They are obtained by composing ., (-)., and ~ (recalled in Theorem B.1.26). O

From Mackey theorem and the fact that completion does not change the dual, we can deduce immediately that

/

M
we have the following algebraic identities ' ((E', )y ,) = (£ )y, = S (E)
From these we deduce the fundamental algebraic equality:

—M

(E;), = S(E) (B.12)

M
Definition B.1.55. A lcs E is said p-reflexive if the canonical map £ —= .(E) = (E})% gives a topological

isomorphism £ ~ (E£7)%.

We are looking for a condition necessary to make the above equality a topologically one. The following
theorem demonstrates an analogous to E/, = ((E’)")’ for our new dual. For, we now make use of lemma B.1.31.

Theorem B.1.56. Let E be a separated locally convex space, then E;f is p-reflexive. As a consequence, if E is
p-reflexive, so is B and /' ((E,).) ~ E ~ J((E,,),,) topologically. Moreover, when E is Mackey-complete
(EX)% = (E¥)g and E have the same bounded sets.

Proof. Note that the next-to-last statement is obvious since if E' p-reflexive, we have (E7) = ((£)%)% and the
last space is always p-reflexive. Moreover, from the two first operations applied in the duality, one can and do
assume . (E) is Mackey-complete.

Let us write also € (.) =M for the Mackey-completion functor and for an ordinal A€ (E) = Ejs,» from
lemma B.1.16.

Note also that since the bounded sets in F and .(F) coincide by Mackey Theorem [Ho, Th 3 p 209], one is
Mackey-complete if and only if the other is.

Step 1: .7((E},);,) is Mackey-complete if . (E) is Mackey-complete.
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This follows from the continuity .7’ ((E},)},) —=-(E) and the common dual, they have same bounded sets, hence
same Mackey-Cauchy/converging sequences.

Step 2: 7((E'y,)"»,) is Mackey-complete if .’(E) is Mackey-complete.

First note that a space is Mackey-complete if and only if any K, closed absolutely convex cover of a Mackey-
Cauchy sequence, is complete. Indeed, if this is the case, since a Mackey-Cauchy sequence is Mackey-Cauchy
for the saturated bornology generated by Mackey-null sequences [Ja, Thm 10.1.2], it is Mackey in a normed space
having a ball (the bipolar of the null sequence) complete in the Ics, hence a Banach space in which the Cauchy
sequence must converge. Conversely, if a space is Mackey-complete, the sequence converges in some Banach
space, hence its bipolar in this space is compact, and thus also in the lcs and must coincide with the bipolar
computed there which is therefore compact hence complete.

We thus apply lemma B.1.31 to K the closed absolutely convex cover of a Mackey-Cauchy sequence in
S (Ey,)s,)s Bo = S (Ely,), D =7(().), Ex = % (Eo) eventually yielding to the Mackey completion so
that D(E),) = 7 ((Ely,)'»,) for Ao large enough and with D(Ey) = .#’((£7,);,) using lemma B.1.19. The result
will conclude since the above bipolar K computed in D(E),) must be complete by Mackey-completeness of this
space hence complete in .%’((E',,)'s,,) by the conclusion of lemma B.1.31 and hence the bipolar computed in
there which is a closed subset will be complete too. We thus need to check the assumptions of lemma B.1.31. The
assumption at successor ordinal comes from the definition of ‘51\)‘[1 since any point there z satisfy z € N = I'(L)
with L = {t,,n € N'} a Mackey-Cauchy sequence in F. Thus there is an absolutely convex bounded B ¢ E)
with (¢,,) Cauchy in the normed space (Ey)p < (E\,)5. We know t,, —t in the completion so t € N.

But since E), is Mackey-complete, this last space is a Banach space, t,,—t and it is contained in C; = {sg =
2t, sp, = 2(t, —t),n € N}°°. ||sy||g —= 0 we can define 7,, = s,,/4/||sn||5 Which converges to 0 in (Ey,)g.
Hence {r,,,n € N'} is precompact as any converging sequence and so is its bipolar say C' computed in the Banach
space (E, )5, which is also complete thus compact. C'is thus compact in E too. Since ||s,||c < +/||sn||g—0
it is Mackey-null for the bornology of absolutely convex compact sets of Ey,. Thus C; is equicontinuous in
(D(E),))" and so is t,, as expected.

Step 3: Conclusion.

Note we will use freely lemma B.1.19. If .(E) is Mackey-complete, and Z = (E'; ), then from step 2,
S (Z),S(Z',,) are Mackey-complete and as a consequence Z',, = Z), and then (Z',)'s, = (Z'5 )}, = (Z},);,
topologically. In particular we confirm our claimed topological identity:

(ED)) = eu(7(2)) = S (Z) = S (E}),)-

From the continuous linear identity map: (Z},),, — Z one gets a similar map .*’((Z',,)'s,) — 7 (Z).
Similarly, since there is a continuous identity map Z—.%(Z), one gets a continuous linear map Z,, — 7, =

— M
(Hi).;—(FE'y,) = H. Since the last space is a Schwartz topology on the same space, one deduces a continu-

—

M
ous map . (Z L) —7(F', p) . Finally, an application of Arens duality again leads to a continuous identity map:
Z—(2,), = ((2)'y,)s,- This concludes to the equality - ((Z,)'»,) = 7 ((Z}),,) = L ((Z));) = S (Z).
As a consequence if E is p-reflexive, it is of the form F' = .#/(Z) and one deduces ' ((E});) = E = S ((E},)},)-

)

M
tinuous linear maps E, — . (E.) — ./ (E’) — . (E") which by duality and functoriality give continuous
linear maps:

Consider E a Mackey-complete and Schwartz space. Then (E;"); =7

] and we have con-
C

—_— /
(#(B)) —(E}); — 7 ((EL)) —E. (B.13)
Let us show that a p-dual Y = E7 is always p-reflexive (for which we can and do assume E is Mackey-
complete and Schwartz). According to equation (B.12), as Y is Mackey-complete and Schwartz we already have
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the algebraic equality (Y,*)% = Y. The above equation gives a continuous identity map (Y,*)* — Y. Now accord-
ing to step 2 of this proof Y, = (E',,)'y,, = Z and (Y};)}, are Mackey-complete. Thus (Y )% = 7 ([/(Y/)]¢) =

Z([Y,]},). However the equation (B.13) gives a continuous identity map (E%)% — #(E) , which by duality
and functoriality of .¥ leads to a continuous identity map ¥ — (Yp*);f. Every p-dual is thus p-reflexive.

Let us show the last statement, since a space and its associated Schwartz space have the same bounded sets,
we can assume F Mackey-complete and Schwartz. As a consequence of the equation (B.13) and of the next
lemma, the bounded sets in the middle term (E;“);‘j have to coincide too, and the last statement of the proposition
is shown. O

—_—

Lemma B.1.57. If E is Mackey-complete Ics, then [.(E")]’, has the same bounded sets as F.

Proof. Since E is Mackey-complete bounded sets are included in absolutely convex closed bounded sets which
are Banach disks. On E’ the topology 7, of uniform convergence on Banach disk (bornology 5;) coincides with
the topology of the strong dual Eg

Moreover, by [Ja, Th 10.1.2] B,-Mackey convergent sequences coincide with (B;)o-Mackey convergent se-
quences but the closed absolutely convex cover of a null sequence of a Banach space is compact in this Banach
space, therefore compact in F, thus they coincide with ¢((E”)’)-null sequences (i.e. null sequences for Mackey
convergence for the bornology of absolutely convex compact sets). Therefore /' (E;) = 7 (E', Tp,) = 7 (Ej}).
As a consequence, combining this with [Ja, Th 13.3.2], the completion of .’ (E") is linearly isomorphic to the dual

—_—

of both the bornologification and the ultrabornologification of E. Therefore, the bounded sets in (. (E”))’, are by

—_—

Mackey theorem the bounded sets for o (F, .7 (E")) = 0(E, (Epor)") namely the bounded of Ej,, or E. O

The p-dual can be understood in a finer way. Indeed, the Mackey-completion on E, = .’(E', ) is unneces-
sary, as we would get a Mackey-complete space back after three dualization.

Proposition B.1.58. Forany lcs E,
—~ M
(BR)p)r ~ Bp = E;
and if E Mackey-complete, (Ep)p = (E7)%.

Proof. We saw in step 3 of our theorem B.1.56 that, for any Mackey-complete Schwartz space E, first (E})g is
Mackey-complete hence (Eg)p = (£)% and then (B.13) gives a continuous identity map ((Ep)g) —= E. By

~M
functoriality one gets a continuous linear map: Ep — ((Eg)g)g- Moreover ((Eg)r)r = (Ef  )r)r is Mackey-

~ M
complete by step 2 of our previous theorem, thus the above map extends to Ef, —((E})g ). This is of course the

—~ M —~ M
inverse of the similar continuous (identity) map given by (B.13): ((E; )z)g—>FEf which gives the topological
identity. O

We finally relate our definition with other previously known notions:

Theorem B.1.59. A lcs is p-reflexive, if and only if it is Mackey-complete, has its Schwartz topology associated to
the Mackey topology of its dual ) (E, E') and its dual is also Mackey-complete with its Mackey topology. As a
consequence, Arens=Mackey duals of p-reflexive spaces are exactly Mackey-complete locally convex spaces with
their Mackey topology such that their Mackey dual is Mackey-complete.

Remark B.1.60. A k-quasi-complete space is Mackey-complete hence for a k-reflexive space E, . ((E),)},) is
p-reflexive (since E!, k-quasi-complete implies that so is E;L which is a stronger topology). Our new setting is a
priori more general than the one of section 4. We will pay the price of a weaker notion of smooth maps. Note that
a Mackey-complete space need not be k-quasi-complete (see lemma B.1.61 below).

Proof. 1f E is p-reflexive we saw in Theorem B.1.56 that £ ~ .#((E},);,) and both E, B, = #(E},) (or E}) are
Mackey-complete with their Mackey topology.

Conversely, if £ with i) (E, E') is Mackey-complete as well as its dual, £, , = Ey and thus Ep = .7'(E)
which has the same bornology as the Mackey topology and is therefore Mackey-complete too, hence Ep = E5.
Therefore we have a map (E', u,)(E', E)) — Ep = .7 (E;). Conversely, note that E, = (E', u(E’, E)) from
lemma B.1.19 so that one gets a continuous isomorphism.

From the completeness and Schwartz property and dualisation, and then lemma B.1.19 again, there is a con-
tinuous identity map (E%), = ([ (E.)].) = Z((E}),) = E, which is Mackey-complete. Therefore
(E3)s = (Eg)y = B, ie. Eis p-reflexive.
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For the last statement, we already saw the condition is necessary, it is sufficient since for F' Mackey-complete
with its Mackey topology with Mackey-complete Mackey-dual, .7 (F') is p-reflexive by what we just saw and so
that (. (F))", is the Mackey topology on F’, by symmetry [. ([.#(F)].)]. = F and therefore F is both Mackey
and Arens dual of the p-reflexive space . ([.7(F')]%.). O

(&

Several relevant categories appeared. M < LCS the full subcategory of spaces having their Mackey topology.
uSch < LCS the full subcategory of spaces having the Schwartz topology associated to its Mackey topology.
Mb < LCS the full subcategory of spaces with a Mackey-complete Mackey dual. And then by intersection
always considered as full subcategories, one obtains:

McuSch = Mc n uSch, MbuSch = Mb n uSch,, McMb = Mb n Mc,

uMcMb = McMb n M, p— Ref = McMb n pSch.

We can summarize the situation as follows: There are two functors (.)!, and p the associated Mackey topology
(contravariant and covariant respectively) from the category p — Ref to uIMcMb the category of Mackey duals
of p-Reflexive spaces (according to the previous proposition). There are two other functors ( .);, . and they are
the (weak) inverses of the two previous ones.

Finally, the following lemma explains that our new setting is more general than the k-quasi-complete setting
of section 4:

Lemma B.1.61. There is a space E' € McuSch which is not k-quasi-complete.

Proof. We take K = Z (the complex case is similar). Let F = C°([0, 1]) the Banach space with the topology of
uniform convergence. We take G = .(F,) = I which is complete since [ ultrabornological [Ja, Corol 13.2.6].

Consider H = Span{d,,z € [0,1]} the vector space generated by Dirac measures and E = HM the Mackey
completion with induced topology (since we will see E identifies as a subspace of GG). Let K be the unit ball
of F”, the space of measures on [0, 1]. It is absolutely convex, closed for any topology compatible with duality,
for instance in G, and since G is a Schwartz space, it is precompact, and complete by completeness of (=, hence
compact. By Krein-Millman’s theorem [K, 25.1.4] it is the closed convex cover of its extreme points. Those are
known to be d,, —d,,x € [0, 1] [K, 25.2.(2)]. Especially, F is dense in G, which is therefore its completion. By
the proof of lemma B.1.22, the Mackey-topology of E is induced by G and thus by lemma B.1.18, . (E,,) is also
the induced topology from G. Hence ' € McuSch. But by Maharam decomposition of measures, it is known
that F’ has the following decomposition (see e.g. [Ha, p 22]) as an ¢!-direct sum:

F' = L'({0,1})®12” @, £1(]0,1])

and the Dirac masses generate part of the second component, so that H < ¢1([0, 1]) in the previous decomposition.
But the bounded sets in GG are the same as in Fé (by principle of uniform boundedness), hence Mackey-convergence
in G implies norm convergence in F}, so that by completeness of ¢*([0,1]), E = £'([0,1]). Hence Lebesgue
measure (which gives one of the summands L' ({0,1}*)) gives A\ ¢ E. Finally, consider § : [0,1] — K < G
the dirac mass map. It is continuous since a compact set in F' is equicontinuous by Ascoli theorem, which gives
exactly uniform continuity of § on compact sets in F'. Hence ([0, 1]) is compact in E while its absolutely convex
cover in GG contains A so that the intersection with £ cannot be complete, hence E is not k-quasi-complete. O

B.1.4.3 Relation to projective limits and direct sums
We now deduce the following stability properties from Theorem B.1.59.

Corollary B.1.62. The class of p-reflexive spaces is stable by countable locally convex direct sums and arbitrary
products.

Proof. Let (E;);er a countable family of p-reflexive spaces, and £ = @;c;E;. Using Theorem B.1.59, we aim
at proving that E' is Mackey-complete, has its Schwartz topology associated to the Mackey topology of its dual
pi(s)(E, E") and its dual is also Mackey-complete with its Mackey topology.

From the Theorem B.1.59, E; itself has the Schwartz topology associated to its Mackey topology. From [K,
22. 5.(4)], the Mackey topology on E is the direct sum of Mackey topologies. Moreover the maps E; — . (E;)
give a direct sum map E — @®;c; - (E;) and thus a continuous map .7 (E) — @;cr - (E;) since a countable
direct sum of Schwartz spaces is a Schwartz space. Conversely the maps F; — E give maps . (E;) — . (E)
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and by the universal property this gives .7 (E) ~ @;c1. (F;). Therefore, if all spaces E; are p-reflexive, F carries
the Schwartz topology associated to its Mackey topology. From [KM, Th 2.14, 2.15], Mackey-complete spaces
are stable by arbitrary projective limits and direct sums, thus the Mackey-completeness condition on the space and
its dual (using the computation of dual Mackey topology from [K, 22. 5.(3)]) are also satisfied.

For an arbitrary product, [K, 22. 5.(3)] again gives the Mackey topology, universal properties and stability
of Schwartz spaces by arbitrary products give the commutation of .’ with arbitrary products and the stability of
Mackey-completeness can be safely used (even for the dual, uncountable direct sum).

O

Lemma B.1.63. For (E;,i € I) a (projective) directed system of Mackey-complete Schwartz locally convex space
if £ = proj lim;e; F; , then:
®q %
(2)5)5 ~ [ [proi lm(2)pp)] ] .
The same holds for general locally convex kernels and categorical limits.

Proof. The bidualization functor and universal property of projective limits give maps (E£)%)% — ((£;)%)% and
then ((E})% — proj limer((E;)})5, (see [K, 19.6.(6)] for l.c. kernels) and bidualization and p-reflexivity
concludes to the first map. Conversely, the canonical continuous linear map in the Mackey-complete Schwartz
case ((E;)%)%) = ((E).)4) — E; gives the reverse map after passing to the projective limit and double p-dual.
The localy convex kernel case and the categorical limit case are identical. O

Proposition B.1.64. The category p — Ref is complete and cocomplete, with products and countable direct sums
agreeing with those in LCS and limits given in lemma B.1.63

Proof. Bidualazing after application of LCS-(co)limits clearly gives (co)limits. Corollary B.1.62 gives the product
and sum case. O

B.1.4.4 The Dialogue category McSch.
We first deduce from Theorem B.1.13 and a variant of [S, Prop 2] a useful:

Lemma B.1.65. Let %, be the % of the complete #-autonomous category CSch givenby A%, B = ./ (Ly((A);, B).
Then we have the equality in CSch:

VE,F € McSch, FE. %y Fys. = (FeF)s.. (B.14)
As a consequence, (McSch, ¢, K) is a symmetric monoidal category.

Proof. We already know that (McSch, ¢, K) is symmetric monoidal but we give an alternative proof using lemma
B.1.36.

All spaces E, F' are now in McSch. Note that (E,.); is #(E!) with equicontinuous bornology, which is
a Schwartz bornology, hence a continuous linear map from it to any F' sends a bounded set into a bipolar of a
Mackey-null sequence for the absolutely convex compact bornology. Hence

U(Es. By Fse) = U(Ly((Ese)y, Fse)) = Le(FL(EL), F) = L (E., F) = EeF

since the boundedness condition is satisfied hence equality as spaces, and the topology is the topology of conver-
gence on equicontinuous sets, and the next-to-last equality since F' Schwartz. Moreover an equicontinuous set in
L.(&(E.), F) coincide with those in L.(E’, F') and an equibounded set in Ly ((Es.);, Fsc) only depends on the
topology on F, hence in CLCS:

Lb((ESC)gw FSC) = Lb((EC);w FSC)

Now in CSch we have Es. Bg Fse = L Ly((Ese)y, Fse) = L Ly((Ee)y, Fse) and Fyo = S Ly((Fe);, K)
hence (B.3) gives:

Ese Bsp Fse = yLb((EC)gvyLb((FC)gvK)) = yLb((EC);;va((FC);;vK)) = yLb((EC);wFC)

so that the bornology is the Schwartz bornology associated to the e-equicontinuous bornology of EcF (the one
of E. %y, F.). It remains to identify this bornology with the one of [EcF]s.. Of course from this description the
identity map Fs. s Fs. —>= [EeFs. is bounded, one must check the converse.
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This is a variant of [S, Prop 2]. Thus take an absolutely convex compact K < EeF = L(E.,F) and a
sequence {z,,,n € N'} € (FeF), with ||z, || x —0. We must check it is Mackey-null in E. %, F... For take as
usual {y,,,n € N'} another sequence with ||y, || x —=0and C = {y,,,n € N'}°° such that ||x,,||c —=0. It suffices
to check that C' is e-equicontinous in EeF, the bornology of E. %, F.,.

For instance, one must show that for A equicontinuous in E’, D = (C(A))°° is absolutely convex compact
in F' (and the similar symmetric condition). But since E is Schwartz, it suffices to take A = {z,,n € N}°°
with z,, e-null in E’ and especially, Mackey-null. But D < {y,(zm),n, m € N'}°° so that it suffices to see that
(Yn(2m))n.men2 is Mackey-null (since F' is Mackey-complete, this will imply Mackey-null for the bornology
of Banach disk, hence with compact bipolar). But from [S, Prob 2bis p 28] since C is bounded in FeF' it is
e-equihypocontinuous on E’, x F} and hence it sends an equicontinuous set as A to a bounded set in F, so that D
is bounded in F. Finally, ||(yn(zm))||lp < ||Zn]]allym||c hence the claimed Mackey-null property.

Let us prove again that (McSch, ¢, KC) is symmetric monoidal using lemma B.1.36 starting from (CSch, %, K).
We apply it to the adjunction (-);. : McSch — CSch with left adjoint Mou using U from Theorem
B.1.13.(3). The lemma concludes since the assumptions are easily satisfied, especially EcF = U([EeF]s.) =
M o U([EeF],.) from stability of Mackey-completeness and using the key (B.14) O

We will now use lemma B.1.41 to obtain a Dialogue category.

Proposition B.1.66. The negation (.)% gives McSch® the structure of a Dialogue category with tensor product
E.

Proof. Proposition B.1.51 or lemma B.1.65 gives McSch®? the structure of a symmetric monoidal category. We
have to check that (.)% : McSch® —McSch is a tensorial negation on McSch.

For, we write it as a composition of functors involving CSch. Note that (-)s. : McSch — CSch the com-
position of inclusion and the functor of the same name in Theorem B.1.13 is right adjoint to L := Mo Uin
combining this result with the proof of Proposition B.1.51 giving the left adjoint to McSch — Sch. Then on
McSch,

(=Moo ()o=LoS o(yo()e=Lo()po()se

P
Lemma B.1.41 and the following remark concludes. O

B.1.4.5 Commutation of the double negation monad on McSch

Tabareau shows in his theses [T, Prop 2.9] that if the continuation monad —— of a Dialogue category is commu-
tative and idempotent then, the continuation category is *-autonomous. Actually, according to a result attributed
to Hasegawa [MT], for which we don’t have a published reference, it seems that idempotency and commutativity
are equivalent in the above situation. This would simplify our developments since we chose our duality functor to
ensure idempotency, but we don’t use this second result in the sequel.

Thus we check ((-)7)7% is a commutative monad. We deduce that from the study of a dual tensor product. Let
us motivate its definition first.

As recalled in the preliminary section the e-product is defined as EcF' = (E., ®g. F..)'. Moreover, we saw in
Theorem B.1.56 that when E is p-reflexive (or E € uSch) then E = .((E")".). Recall also from [Ja, 10.4] that a
Schwartz space is endowed with the topology of uniform convergence on the e-null sequences of E’.

Thus when E € pSch, its equicontinuous subsets £(E’) are exactly the collection R(E”) of all sets included
in the closed absolutely convex cover of a (((E").)")-Mackey-null sequence.'

Remember also from section B.1.1.1 that every Arens-dual F/, is endowed with its y-topology of uniform con-
vergence on absolutely convex compact subsets of E. Thus if v(E”) is the bornology generated by absolutely
convex compact sets, the equicontinuous sets of (((E.).)’) equals y(E.), as F is always endowed with the topol-
ogy of uniform convergence on equicontinuous subsets of E’. Thus R(E’) = (vy(E.))o is the bornology generated
by bipolars of null sequences of the bornology ~(E’,) (with the notation of [Ja, subsection 10.1]). We write in
general R(E) = (v(E))o.

We call R(E) the saturated bornology generated by ~-null sequences. Note that they are the same as null
sequences for the bornology of Banach disks hence [Ja, Th 8.4.4 b] also for the bornology of absolutely convex
weakly compact sets.

'Remember that a Mackey-null sequence is a sequence which Mackey-converges to 0. By [Ja, Prop 10.4.4] any such Mackey-null sequence
is an equicontinuous set: indeed the associated Schwartz topology is the topology of uniform convergence on those sequences and conversely
using also the standard [K, 21.3.(2)].
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Definition B.1.67. The R-tensor product £ ®g F' is the algebraic tensor product endowed with the finest locally
convex topology making £ x F' - E® F a (R(E) — R(F'))-hypocontinuous bilinear map. We define Lg (F, F')
the space of continuous linear maps with the topology of convergence on Z(E).

Note that with the notation of Theorem B.1.13, for any E, F' € LCS, this means
E®r F = U(ES(:HFSC)7 LQ(EvF) = U(Lb(EscaEsc))-

Pay attention By = Lz (7 (EM),K) # Ly (E, K) in general, which may not be the most obvious convention
when F ¢ McSch.

For the reader’s convenience, we spell out an adjunction motivating those definitions even if we won’t really
use it.

Lemma B.1.68. Let E, F, G separated Ics. If F' is a Schwartz space, so is Lg(E, F'). Moreover, if we also assume
FE € McuSch, then:
Lg(E,F) ~ FgeF.

Finally if F, F, G are Schwartz spaces and ' € MbuSch, then we have an algebraic isomorphism:
L(E®gr F,G)— L(E, Lg(F, G)).

Proof. For the Schwartz property, one uses [Ja, Th 16.4.1], it suffices to note that Lg (F, K) is a Schwartz space
and this comes from [Ja, Prop 13.2.5]. If E is Mackey-complete Schwartz space with £ = 7((E},);,) then
(Eg). = (E,),, and therefore Epel' = L((Eg)., ') = L(E, I) and the topology is the one of convergence on
equicontinuous sets, namely on R(E) = R((Eg).) since Mackey-null sequences coincides with v(E)-null ones
since EZ Mackey-complete and thus does not depend on the topology with same dual.

Obviously, there is an injective linear map

L(E®g F,G)— L(E, Ly(F,G))

Let us see it is surjective. For f € L(E, Lg(F, G)) defines a separately continuous bilinear map and if K € R(F")
the image f(.)(K) is equicontinuous by definition. What is less obvious is the other equicontinuity. For (x,,)n>0
a v(F)-null sequence, i.e null in Fx for K absolutely convex compact set, we want to show {f(z,),n > 0}
equicontinuous, thus take U° in G’ an equicontinuous set, since G is a Schwartz space, it is contained in the closed
absolutely convex cover of a ¢(G')-null sequence, say {y,,n = 0} with ||y,||ve —=0. f(K) is compact thus
bounded, thus f(K)*(V°) is bounded in Ly (F,K) = . (F.) orin F.. Thus (f(2n)"(Ym))n.m is Mackey-null in
F;. Since F' = /((F}).), Fi. = F}, and as recalled earlier R(F,) = ¢(F"). If moreover, F, is Mackey-complete,
(f(zn)"(Ym))n,m is Mackey for the bornology of Banach disks hence in R(F?), thus it is equicontinuous in F”. [

We continue with two general lemmas deduced from lemma B.1.35.

Lemma B.1.69. Let X, Y € Sch and define G = (XeY'). the dual with the topology of convergence on equicon-
tinuous sets from the duality with H = X/ ®g. Y,. Then we have embeddings
M M M
HeGe Y, (H),), < (G)), < (HY)) L (H),),) = L ((G)),) = (HY),))

Proof. We apply lemma B.1.35 to (X.);, (Yc); which have a Schwartz bornology since X,Y € Sch. Note that
H = U((X. )} (Y.)}) and that

(X)) = U ([ (o] ) =v([xemv] ) =6

Lemma B.1.35 concludes exactly to the first embedding. The second follows using lemma B.1.22 and the third
from lemma B.1.18. O

Lemma B.1.70. Let X,Y € pSch and define G = (XeY). the dual with the topology of convergence on
equicontinuous sets from the duality with H = X ®g Y;. Then we have embeddings
Hc G Y, ((H),),) < (G),), = (HY),),, L((H),),) =L ((G))) = L (HM),))-

M
As a consequence for X,Y € McpuSch, we have topological identities (XeY)% ~ &(H) and

(XeY)p)p = (X ®r Y.)j.
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Proof. This is a special case of the previous result. Indeed since X € uSch so that X; = X/, X = 7 ((X}),) =
((X;).), equicontinuous sets in its dual are those in R(X}) = R(X,), hence:

(XeY) = (XipeYd) = (XerYd)s  XipeY! = X(gY(.

The Mackey-complete case is a reformulation using only the definition of ()z (and the commutation in Propo-
sition B.1.51). O]

Let us state a consequence on X ®, Y := (X ®r Y)),);, € 4 — LCS. We benefit from the work in lemma
B.1.23 that made appear the inductive tensor product.

Proposition B.1.71. For any X € Mb n u —LCS,Y € u— LCS, then the canonical map is a topological
isomorphism:

1:x0Yy ~ x@Y (™). (B.15)

Proof. Let us write for short ' = ((-)},),G = Mg ()3 ()u = (()},)- Note that from the canonical

continuous linear map F(X) — G(X) one deduces a continuous identity map F(G(X)) — X = F(F(X)).
Similarly, using lemma B.1.70 for the equality, one gets by functoriality the continuous linear map:

[:X®.Y = (](]-'(X)e]-'(Y)) - X®.(PM).

For the converse, we apply lemma B.1.23 to L = F(X) and M = F(Y), we know that [F(X)eF(Y)]. =
[F(X)nF(Y)]. induces on Lj, M|, the e-hypocontinuous tensor product. Using the reasoning of the previous

€
lemma to identify the tensor product, this gives a continuous map

L peM), = XY, —= [F(X)eF (V). — X, 3V,

This gives by definition of hypocontinuity a continuous linear map in L(Y),, Lr(X,,, X &(IYH). Note that from
the computation of equicontinuous sets and lemma B.1.19, we have the topological identity:

Le(Xp, X,z Vi) = Le((Z(X)))e Xk Vi) =~ 7 (X)e (X5 V).

From this identity, one gets Lr(X,, X®,Y)) = S(X (X @Z{Y#) is Mackey-complete since (X)) =
F(X) is supposed so and X' Y}, is too by construction.

—~M
As a consequence by functoriality of Mackey-completion, the map we started from has an extension to L(Y,, .7 (X}, )e(X V)

—~M
LY, ,Lr(X. (X ﬁgY#))). A fortiori, this gives a separately continuous bilinear map and thus a continuous lin-
ear map extending the map we started from:

~M
J: XYy A(XuﬂRIY#)

We apply lemma B.1.23 again to L = F(X) and M = F(YM), we know that []:(X)EF()A/M)];L =
[F(X)nFY™M ))];, induces on L M, the inductive tensor product. Therefore, using also [Ja, Corol 8.6.5], one
gets a continuous linear map

—~M
S Xy @i [V lp— [XH”H;VYML = XY

A MM ~AM 5 PPN ~
In turn this maps extends to the Mackey completion X M@? ! Y, =][ ®]:[ (YM)], and ourmap J : X,®, (Y M)—X ®,{MY

which is the expected inverse of I.
O

Corollary B.1.72. T' = ((-)%)% is a commutative monad on (McSch®, ¢, K).

Proof. Fix X,Y € McSch. Hence there is a continuous identity map Jy : (Y,*)% —Y. In order to build the
strength, we use lemma B.1.23 and (V)% = (Y,*) to get the the identity

—~

(e = (7 (Xe(],)) = () = 7 (X200 ) = 7 (xen' o))
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. ~AM
and similarly (XeY)% = Y(X;@H Yé)
Hence applying proposition B.1.71 to X ZL, Y, one gets that the canonical map is an isomorphism:
(XeY)h —=(Xe((Y,)5)% hence by duality the topological isomorphism:
Ixy : (Xe((Y))5)5)s =~ ((XeY)%)% and we claim the expected strength is

txy = Jxer(v) © Ixly € McSch® (XeT(Y), T(XeY)).
Instead of checking the axioms directly, one uses that from [T, Prop 2.4], the dialogue category already implies ex-

istence of a strength say 7x y so thatit suffices to see 7x y = tx,y to get the relations for a strength for ¢. Of course
we keep working in the opposite category. From the axioms of a strength, see e.g.[T, Def 1.19,(1.10),(1.12)], and of

amonad, we know that 7x y = JxcpyvyoT(Tx,y)o JT_(lxeY)' Hence it suffices to see I)_(}Y =T(rx,y)o J;(lxey)
or equivalenty ((Ixy)%)~' = (‘]T_(lxsy) )i o (x,v)5- Butrecall that the left hand side is defined uniquely by con-

tinuous extension, hence it suffices to see the restriction agrees on X ;/LY;i and the common value is determined for
both sides by axiom [T, (1.12)].

Finally with our definition, the relation for a commutative monad ends with the map Jr(x).7(y) and the map
obtained after removing this map and taking dual of both sides is determined as a unique extension of the same
map, hence the commutativity must be satisfied. O

B.1.4.6 The =-autonomous category p — Ref.

Definition B.1.73. We thus consider p — Ref, the category of p-reflexive spaces, with tensor product £ ®, F' =
((Ey ®r Fu)y)5 and internal hom B —o, F' = (((E})eF)%)5 -

Recall E, = (E},),,. For E € p — Ref we deduce from lemma B.1.68 that F —, F' ~ ((Lr(E, F))})%.
The tensor product E ®, F'is indeed a p-reflexive space by Theorem B.1.56.
We are ready to get that p — Ref is *-autonomous.

Theorem B.1.74. The category p — Ref endowed with the tensor product @,, and internal Hom —o , is a complete
and cocomplete =-autonomous category with dualizing object K. It is equivalent to the Kleisli category of the
comonad T = ((-)%)% in McSch.

Proof. Corollary B.1.64 has already dealt with categorical (co)completeness. (McSch, ¢, K) is a dialogue cat-
egory by proposition B.1.66 with a commutative and idempotent continuation monad by Corollary B.1.72 and
Theorem B.1.56.

The lemma B.1.44 gives +-autonomy. As a consequence, the induced %, is £ %, F' = ((EeF)%)% and the
dual is still (-)%. The identification of —o, is obvious while , comes from lemma B.1.70. O

B.2 Models of LL and DiLLL

From now on, to really deal with smooth maps, we assume C = Z%.

B.2.1 Smooth maps and induced topologies. New models of LL

Any denotational model of linear logic has a morphism interpreting dereliction on any space E: dg : F—7E.
In our context of smooth functions and reflexive spaces, it means that the topology on E' must be finer than the one
induced by C*(E*, K). From the model of k-reflexive spaces, we introduce a variety of new classes of smooth
functions, each one inducing a different topology and a new smooth model of classical Linear Logic. We show in
particular that each time the % is interpreted as the e-product.

We want to start from the famous Cartesian closedness [KM, Th 3.12] and its corollary, but we want an
exponential law in the topological setting, and not in the bornological setting. We thus change slightly the topology
on (conveniently)-smooth maps C*(E, F') between two locally convex spaces. We follow the simple idea to
consider spaces of smooth curves on a family of base spaces stable by product, thus at least on any Z"™. Since we
choose at this stage a topology, it seems reasonable to look at the induced topology on linear maps, and singling out
smooth varieties indexed by Z" does not seem to fit well with our Schwartz space setting for p-reflexive spaces,
but rather with a stronger nuclear setting. This suggests that the topology on smooth maps could be a guide to the
choice of a topology even on the dual space. In our previous developments, the key property for us was stability by
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€ product of the topology we chose, namely the Schwartz topology. This property is shared by nuclearity but there
are not many functorial and commonly studied topologies having this property. We think the Seely isomorphism
is crucial to select such a topology in transforming stability by tensor product into stability by product.

B.2.1.1 %-Smooth maps and %’-completeness

We first fix a small Cartesian category % that will replace the category of finite dimensional spaces Z" as parameter
space of curves.

We will soon restrict to the full category F x DFS < LCS consisting of (finite) products of Fréchet spaces
and strong duals of Fréchet-Schwartz spaces, but we first explain the most general context in which we know our
formalism works. We assume % is a full Cartesian small subcategory of k — Ref containing %, with smooth
maps as morphisms.

Proposition B.1.49 and the convenient smoothness case suggests the following space and topology. For any
X € ¢, forany c € CH(X, E) a (k — Ref space parametrized) curve we define CZ (E, F) as the set of maps f
such that f o c € C2(X, F) for any such curve c¢. We call them &-smooth maps. Note that . o ¢ is in general not
surjective, but valued in the closed subspace:

[Coo(X, F)]e ={g € Co(X, F) : Vo # y : c(x) = c(y) = g(x) = g(y)}.

One gets a linear map . o ¢ : CZ(E, F) — CZ (X, F'). We equip the target space of the topology of uniform
convergence of all differentials on compact subsets as before. We equip CZ (E, F') with the projective kernel
topology of those maps for all X € % and ¢ smooth maps as above, with connecting maps all smooth maps
C¥(X,Y) inducing reparametrizations. Note that this projective kernel can be identified with a projective limit
(indexed by a directed set). Indeed, we put an order on the set of curves C% (%, FE) 1= LxeeCE(X,E)/ ~
(where two curves are identified with the equivalence relation making the preorder we define into an order). This
is an ordered set with ¢; < cif 1 € CO(X, E),co € CL(Y, E) and there is f € C20(X,Y) such that coo f = ¢1.
This is moreover a directed set. Indeed given ¢; € C2(X;, E), one considers ¢; € C5(X; x #,E), ci(z,t) =
te;(x) so that ¢ o (.,1) = ¢; giving ¢; < ¢}. Then one can define ¢ € CX(X; x Z x Xy x %, F) given by
c(z,y) = ¢ (x) + c4(y). This satisfies co (.,0) = ¢}, co (0,.) = ¢, hence ¢; < ¢ < c. We claim that CZ (E, F)
identifies with the projective limit along this directed set (we fix one ¢ in each equivalence class) of [C% (X, F)].
on the curves ¢ € C%(X, E) with connecting maps for ¢; < c¢a, . o f for one fixed f such that c3 o f = ¢5.
This is well-defined since if g is another curve with ¢ o g = ¢, then for u € [C%L (X2, F)]., for any z € X7,
uog(x) =wo f(x)since ca(g(x)) = c1(x) = ca(f(x)) hence -0 g = - o f : [CF(Xa, F)]e, —[CL (X1, Fle,
does not depend on the choice of f.

For a compatible sequence of such maps in [C% (X, F))]., one associates the map u : E — F such that u(z)
is the value at the constant curve ¢, equal to = in CX ({0}, E) = E. For, the curve ¢ € C% (X, E) satisfies for
r € X, coc, = Ce(y), hence uocis the element of the sequence associated to ¢, hence uoc € [CZ (X, F)].. Since
this is for any curve c, this implies v € CZ (E, F') and the canonical map from this space to the projective limit is
therefore surjective. The topological identity is easy.

We summarize this with the formula:

C(E F) =proj li (X, FY], B.16
Cg(E,F) prOJCGCg%r(r;(’E)[CCO( ol (B.16)

For ¢ = F'in the category of finite dimensional spaces, C'y, (E, F') = C®(E, F') is the space of conveniently
smooth maps considered by Kriegl and Michor. We call them merely smooth maps. Note that our topology on this
space is slightly stronger than theirs (before they bornologify) and that any €’-smooth map is smooth, since all our
% o Fin. Another important case for us is 4 = Ban the category of Banach spaces (say, to make it into a small
category, of density character smaller than some fixed inaccessible cardinal, most of our considerations would be
barely affected by taking the category of separable Banach spaces instead).

Lemma B.2.1. We fix ¥ any Cartesian small and full subcategory of k — Ref containing % and the above pro-
jective limit topology on C. For any E, F, G Ics, with G k-quasi-complete, there is a topological isomorphism:

(B, C2(F,G)) ~ CZ(E x F,G) ~ CL(E x F)eG.

Moreover, the first isomorphism also holds for G Mackey-complete, and CZ (F, G) is Mackey-complete (resp.
k-quasi-complete) as soon as G is. If X € € then CZ (X, G) ~ C%(X,G) and if only X € k — Ref there is a
continuous inclusion: C% (X, G) — CZ (X, G).
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Proof. The first algebraic isomorphism comes from [KM, Th 3.12] in the case € = F'in (since maps smooth on
smooth curves are automatically smooth when composed by “smooth varieties" by their Corollary 3.13). More
generally, for any &, the algebraic isomorphism works with the same proof in using Proposition B.1.49 instead of
their Proposition 3.10. We also use their notation f“, f* for the maps given by the algebraic Cartesian closedness
isomorphism.

Concerning the topological identification we take the viewpoint of projective kernels, for any curve ¢ =
(c1,¢2) : X—=FE x F, one can associate a curve (¢c; X c2) : (X x X)—=E X F, (c1 x c2)(z,y) = (c1(x), c2(y))
and for f € C*(E,C*(F,G)), one gets (-oca)(foey) = f* o(e1 x ¢g) composed with the diagonal embedding
gives f” o (e1, ce) and thus uniform convergence of the latter is controlled by uniform convergence of the former.
This gives by taking projective kernels, continuity of the direct map.

Conversely, for f € C*(E x F,G), (-oc2)(f¥ oc1) = (fo(cy X ¢a))Y with ¢; on X7, ¢y on X is controlled
by amap f o (c1 x c2) with (¢1 X ¢) : X7 x Xog — F x F and this gives the converse continuous linear map
(using proposition B.1.49).

The topological isomorphism with the € product comes from its commutation with projective limits as soon as
we note that [CE (X, G)]. = [CE(X,%)].cG but these are also projective limits as intersections and kernels of
evaluation maps. Therefore this comes from lemma B.1.20 and from proposition B.1.48.

Finally, CZ (F, G) is a closed subspace of a product of C7;(X, ) which are Mackey-complete or k-quasi-
complete if so is G by proposition B.1.47.

For the last statement, since id : X — X is smooth, we have a continuous map I : CZ(X,G) —C% (X, G)
in case X € %. Conversely, it suffices to note that for any Y € €, c € CE(Y, X), f € CL(X,G), then
foce C%(Y,G) by the chain rule from proposition B.1.46 and that this map is continuous linear in f for ¢ fixed.
This shows [ is the identity map and gives continuity of its inverse by the universal property of the projective
limit. O

We now want to extend this result beyond the case G k-quasi-complete in finding the appropriate notion of
completeness depending on €.

Lemma B.2.2. Consider the statements:
1. F' is Mackey-complete.
2. Forany X € €, Jx : C%(X)eF —C%(X, F) is a topological isomorphism
3. Forany lcs E, J§ : C2(E)eF — CZ£(E, F) is a topological isomorphism.

4. Forany X € €, f € (CZ(X))., any c € CL(X,F) c CX(X,F) = C%(X)eF, we have (feld)(c) € F
instead of its completion (equivalently with its k-quasi-completion).

We have equivalence of (2),(3) and (4) for any ¢ Cartesian small and full subcategory of k¥ — Ref containing %.
They always imply (1) and when ¥ < F x DF'S, (1) is also equivalent to them.

This suggests the following condition weaker than k-quasi-completeness:

Definition B.2.3. A locally convex space F is said %-complete (for a % as above ) if one of the equivalent
conditions (2),(3),(4) are satisfied.

This can be the basis to define a ¥’-completion similar to Mackey completion with a projective definition (as
intersection in the completion) based on (2) and an inductive construction (as union of a chain in the completion)
based on (4).

Proof. (2) implies (3) by the commutation of € product with projective limits as in lemma B.2.1 and (3) implies
(2) using CZ(X, F) = C%(X, F), for X € €. (2) implies (4) is obvious since the map (fe/d) gives the same
value when applied in C%(X)eF. Conversely, looking at u € CX(X, F) ¢ C2(X,F) = L((CZ(X))., F) 4)
says that the image of the linear map w is valued in F’ instead of F, so that since continuity is induced, one gets
ue L((CL(X)),, F) which gives the missing surjectivity hence (2) (using some compatibility of .Jx for a space
and its completion).

Let us assume (4) and prove (1). We use a characterization of Mackey-completeness in [KM, Thm 2.14 (2)], we
check that any smooth curve has an anti-derivative. As in their proof of (1) implies (2) we only need to check any
smooth curve has a weak integral in E (instead of the completion, in which it always exists uniquely by their lemma
2.5). But take Lebjg 5] € (Cgg(#))’, for a curve c € C*(Z, F) it is easy to see that (Lebpg z1eld)(c) = §; c(s)ds
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is this integral (by commutation of both operations with application of elements of F”). Hence (4) gives exactly
that this integral is in F' instead of its completion, as we wanted.

Let us show that (1) implies (2) first in the case ¥ = F'in and take X = Z™. One uses [? , Thm 5.1.7]
which shows that S = Span(evgn (Z™)) is Mackey-dense in C*(%£™).. But for any map ¢ € C® (%", F), there
is a unique possible value of f € L(C*(%"),, F') such that Jx(f) = c once restricted to Span(evgn (%Z")).

Moreover f € L(C*(%")., F) exists and Mackey-continuity implies that the value on the Mackey-closure of S
lies in the Mackey closure of F' in the completion, which is F'. This gives surjectivity of Jx.

In the case X € ¥ < F x DF'S, it suffices to show that S = Span(ukeNevgéc) (Xk+1)) is Mackey dense in
C®(X).. Indeed, one can then reason similarly since for c € C%(X, F) and f € L(CZ(X)’, F) with Jx(f) = ¢
satisfies f o evg?) = ¢®) which takes value in F' by convenient smoothness and Mackey-completeness, hence
also Mackey limits so that f will be valued in F. Let us prove the claimed density. First recall that C2(X) is a
projective kernel of spaces C°(K, (X”)*) via maps induced by differentials and this space is itself a projective
kernel of C°(K x LF) for absolutely convex compact sets K, L = X. Hence by [K, 22.6.(3)], (C%(X)) is a
locally convex hull (at least a quotient of a sum) of the space of signed measures (C°(K x LF))’. As recalled in
the proof of [58, Corol 13 p 279], every compact set K in X € F x DF'S is a compact subset of a Banach space,
hence metrizable. Hence the space of measure signed measures (C°(K x L¥))’ is metrizable too for the weak-*
topology (see e.g. [DM]), and by Krein-Millman’s Theorem [K, 25.1.(3)] every point in the (compact) unit ball
is a weak-* limit of an absolutely convex combination of extreme points, namely Dirac masses [K, 25.2.(2)],
and by metrizability one can take a sequence of such combinations, which is bounded in (C°(K x L¥))’. Hence
its image in F = (C% (X))’ is bounded in some Banach subspace, with equicontinuous ball B (by image of an
equicontinuous sets, a ball in a Banach space by the transpose of a continuous map) and converges weakly. But
from [58, Prop 11 p 276], C%(X) is a Schwartz space, hence there is an other equicontinuous set C' such that B
is compact in E¢ hence the weakly convergent sequence admitting only at most one limit point must converge
normwise in E¢. Finally, we have obtained Mackey convergence of this sequence in E = (C% (X))’ and looking
at its form, this gives exactly Mackey-density of S. O

B.2.1.2 Induced topologies on linear maps

In the setting of the previous subsection, £’ < CZ(E,Z#). From Mackey-completeness, this extends to an in-
clusion of the Mackey completion, on which one obtains an induced topology which coincides with the topology
of uniform convergence on images by smooth curves with source X € % of compacts in this space. Indeed, the
differentials of the smooth curve is also smooth on a product and the condition on derivatives therefore reduces to
this one. This can be described functorially in the spirit of ..

We first consider 4’ < k — Ref a full Cartesian subcategory.

Let € be the smallest class of locally convex spaces containing Co (X, K) for X € ¢ (X = {0} included)
and stable by products and subspaces. Let % the functor on LCS of associated topology in this class described
by [45, 2.6.4]. This functor commutes with products.

Example B.2.4. If ¢ = {0} then €* = Weak the category of spaces with their weak topology, since K is a
universal generator for spaces with their weak topology. Thus the weak topology functor is .%oy (£).

Example B.2.5. If €% < 2% (e.g. if € < 2) then, from the very definition, there is a natural transformation
id—> Sy —> S with each map E — .75 (E) — % (E) is a continuous identity map.

Lemma B.2.6. For any Ics E, (¢ (F))" = E’ algebraically.

Proof. Since {0} < €, there is a continuous identity map £ — Y% (E) — (0} (E£) = (E,),,. The Mackey-
Arens theorem concludes. O

As a consequence, F and .#4(E) have the same bounded sets and therefore are simultaneously Mackey-
complete. Hence .% commutes with Mackey-completion. Moreover, the class €’ is also stable by e-product,
since this product commutes with projective kernels and C2(X, K)eC% (Y, K) = CL(X x Y, K) and we assumed
XxYe®.

We now consider the setting of the previous subsection, namely we also assume & € ¢, ¢ small and identify
the induced topology E!, ¢ CZ(E,Z).

Lemma B.2.7. For any Ics E, there is a continuous identity map: E!, — %% (E.).
If moreover E is ¢’-complete, this is a topological isomorphism.
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Proof. For the direct map we use the universal property of projective kernels. Consider a continuous linear map
f e LE,LCE(X,K)) = CE(X,K)eE and the corresponding Jx (f) € CL(X, E), then by definition of the
topology - o Jx (f) : CZ(X, E)—CZ%(X,Z) is continuous and by definition, its restriction to E’ agrees with f,
hence f : E{, — CZ (X, K) is also continuous. Taking a projective kernel over all those maps gives the expected
continuity.

Conversely, if E is ¢-complete, note that I, — E’, is continuous using again the universal property of a
kernel, it suffices to see that forany X € ¢, ce CZ (X, E) then-oc: E,—CZ (X, K) is continuous, and this is
the content of the surjectivity of Jx in lemma B.2.2 (2) since -oc = J;{l (¢). Hence since E, € €* by definition
as projective limit, one gets by functoriality the continuity of ./ (E.) — El,. O

We are going to give more examples in a more restricted context. We now fix Fin ¢ ¥ < F x DFS.
But the reader may assume 4 < Ban if he or she wants, our case is not such more general. Note that then
CZ(E,F) = C*(E,F) algebraically. For it suffices to see C5(X, F') = C*(X, F) for any X € F x DFS
(since then the extra smoothness condition will be implied by convenient smoothness). Note that any such X is
ultrabornological (using [Ja, Corol 13.2.4], [Ja, Corol 13.4.4,5] since a DFS space is reflexive hence its strong dual
is barrelled [Ja, Prop 11.4.1] and for a dual of a Fréchet space, the quoted result implies it is also ultrabornological,
for products this is [Ja, Thm 13.5.3]). By Cartesian closedness of both sides this reduces to two cases. For
any Fréchet space X, Fréchet smooth maps are included in C2(X, F') which is included in C*°(X, F') which
coincides with the first space of Fréchet smooth maps by [KM, Th 4.11.(1)] (which ensures the continuity of
Gateaux derivatives with value in bounded linear maps with strong topology for derivatives, those maps being the
same as continuous linear maps as seen the bornological property). The case of strong duals of Fréchet-Schwartz
spaces is similar using [KM, Th 4.11.(2)]. The index ¢ in CZ (E, F') remains to point out the different topologies.

Example B.2.8. If € = F x DFS (say with objects of density character smaller than some inaccessible cardinal)
then € < Sch, from [58, Corol 13 p 279]. Let us see equality. Indeed, (¢}(N)). = CE(¢*(N),K) and

(LHN))L = (L1(N));, (since on £ (N') compact and weakly compact sets coincide [HNM, p 37]), and (¢'(N))’,
is a universal generator of Schwartz spaces [HNM, Corol p 36], therefore C% (¢*(N), K) is also such a universal
generator. Hence we even have ¥ = Ban®™ = Sch. Let us deduce even more of such type of equalities.

Note also that Sym(ELeE.) < CX(E,K) is a complemented subspace given by quadratic forms. In case
E = H is an infinite dimensional Hilbert space, by Buchwalter’s theorem H.eH, = (H,H), and it is well-
known that £} (N) ~ D is a complemented subspace (therefore a quotient) of H H as diagonal copy (see e.g.
[Ry, ex 2.10]) with the projection a symmetric map. Thus D! c H'eH and it is easy to see it is included in
the symmetric part Sym(E/cE’). As a consequence, C%(H, K) is also such a universal generator of Schwartz
spaces.

Finally, consider E = ¢"™(N,C) m € N/, m > 1. The canonical multiplication map from Holder £ (N, C)=™—={* (N, C)
is a metric surjection realizing the target as a quotient of the symmetric subspace generated by tensor powers (in-
deed Y ayey, is the image of (3 a,lc/mek)"" so that (1 (N, C)).. = Sym([(¢™ (N, C)).]*™). Thus C% (4™ (N, C), K)
is also such a universal generator of Schwartz spaces.

We actually checked that for any € = F x DFS with /1(N) € € or (2(N) € € or {™(N,C) € € then
%* = Sch so that

S = SBan = LHiv = S = SFxDFS-

As a consequence, we can improve slightly our previous results in this context:

LemmaB.2.9. Let ¢ = F x DFS as above. For any lcs E, there is a continuous identity map: Eo,—=5% (E], )—=S%(Ey).
If moreover E is Mackey-complete, this is a topological isomorphism.

Proof. Indeed by definition .7 (£, ) is described by a projective limit over maps L(E),, C% (X, K)) = EnCH(X,K) =
Coo(X,K)eE = CZ(X, E) by the Schwartz property. As in lemma B.2.7, the identity map Ef, — %% (FE],). But
by functoriality one has also a continuous identity map %% (E},) —= % () and in the Mackey-complete case
S (E.) — E¢, by lemma B.2.7. (This uses that Mackey-complete implies ¢-complete in our case by the last
statement in lemma B.2.2). O

Example B.2.10. Note also that if D is a quotient with quotient topology of a Fréchet space C' with respect to
a closed subspace, then C% (D, K) is a subspace of C%(C, K) with induced topology. Indeed, the injection is
obvious and derivatives agree, and since from [K, 22.3.(7)], compacts are quotients of compacts, the topology is
indeed induced. Therefore if & is obtained from & < F're, the category of Fréchet spaces, by taking all quotients
by closed subspaces, then € = Z%.
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Example B2.11. If € = Fin then Fin® = Nug, since C2 (%", K) ~ N 78, (7) p 383], a countable direct
product of classical sequence space s, which is a universal generator for nuclear spaces. Thus, the associated
nuclear topology functor is A (E) = Spin(F).

We now provide several more advanced examples which will enable us to prove that we obtain different comon-
ads in several of our models of LL. They are all based on the important approximation property of Grothendieck.

Example B.2.12. If E a Fréchet space without the approximation property (in short AP, for instance £ = B(H)
the space of bounded operators on a Hilbert space), then from [58, Thm 7 p 293], C%(E) does not have the ap-
proximation property. Actually, £, = CZ(E) is a continuously complemented subspace so that so is ((E;)%)% <
((C%H(E))%)s. But for any Banach space Ef, = . (E},) is Mackey-complete so that (E7)% = .7 (E), ((E.)})s =
E% = E = 7(E,,). Thus since for a Banach space F has the approximation property if and only if '(E},) has
it [Ja, Thm 18.3.1], one deduces that ((Cg5(E))7% )5 does not have the approximation property [Ja, Prop 18.2.3].

Remark B.2.13. We will see in appendix in lemma B.2.40 that for any lcs E, ((Cf;,,(E))% )5 is Hilbertianizable,
hence it has the approximation property. This implies that .4"(E}) < CF,, (E) with induced topology is not
complemented, as soon as F is Banach space without AP, since otherwise ((A(E},))5)% = ((CF,,(E))5)5
would be complemented and ((#"(E},))5)% = ((E)})5 = E; would have the approximation property, and this
may not be the case. This points out that the change to a different class of smooth function in the next section is
necessary to obtain certain models of DiLL. Otherwise, the differential that would give such a complementation

cannot be continuous.
We define EZ for E € McSch as the Mackey completion of Yag(([i‘M):L), i.e. since S = S

Ef = So(E%).

Proposition B.2.14. Let Fin ¢ € < F x DFS a small and full Cartesian subcategory. The full subcategory
¢ — Mc < McSch of objects satisfying E = S (E) is reflective of reflector Y. (¢ — Mc,e,K, (1)%) isa
Dialogue category.

Proof. Since E — .%¢%(F) is the continuous identity map, the first statement about the reflector is obvious. € —
Mec is stable by e-product since .7 (F)e.%% (F) is a projective kernel of C2 (X )eCE(Y) = CL(X xY) € C*.
We use Proposition B.1.66 to get (McSch, ¢, K, (-)*). One can apply Lemma B.1.41 since we have .% o (-)* =

p p
(-)& and I : ¥ — Mc < McSch satisfies .7 (I(EeF)) = I(EcF') = I(E)eI(F). This concludes. O

B.2.1.3 A general construction for LL models

We used intensively Dialogue categories from [MT, T] to obtain *-autonomous categories, but their notion of
models of tensor logic is less fit for our purposes since the Cartesian category they use need not be Cartesian
closed. For us trying to check their conditions involving an adjunction at the level of the Dialogue category would
imply introducing a non-natural category of smooth maps while we have already a good Cartesian closed category.
Therefore we propose a variant of their definition using relative adjunctions [U].

Definition B.2.15. A linear (resp. and commutative) categorical model of A-tensor logic is a complete and cocom-
plete dialogue category (C°P, %¢, I, —) with a (resp. commutative and idempotent) continuation monad T = ——,
jointly with a Cartesian category (M, x,0), a symmetric strongly monoidal functor NL : M — C°P having a
right —-relative adjoint U. The model is said to be a Seely model if U is bijective on objects.

This definition is convenient for its concision, but it does not emphasize that M must be Cartesian closed.
Since our primitive objects are functional, we will prefer an equivalent alternative based on the two relations we
started to show in lemma B.2.1, namely an enriched adjointness of Cartesian closedness and a compatibility with

z3.

Definition B.2.16. A (resp. commutative) A-categorical model of A-tensor logic is a complete and cocomplete
dialogue category (C°?, ¢, 1¢ = K, —) with a (resp. commutative and idempotent) continuation monad T = ——,
jointly with a Cartesian closed category (M, x,0, [+, ]), and a functor N L : M — C°P having a right —-relative
adjoint U, which is assumed faithful, and compatibility natural isomorphisms in M, C respectively:

Zp.r : UNL(E) B¢ F) —[E,U(F)], Aglpg : NL(E) %c (NL(F) Je G) = NL(Ex F)%: G
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satisfying the following six commutative diagrams (where Ass®, p, A\, ¢” are associator, right and left unitors and
braiding in C°? and A, ¢, ¢, r are the curry map, braiding and unitors in the Cartesian closed category M)
expressing an intertwining between curry maps:

v(NL(E) 3e (NL(F) 3 G) f [B,UNL(F) % G)]' [E.[F,U(G)]]

TU(AE,F,G) AMT

U(NL(E x F) B¢ G) SearG [E x F,U(G)]

NL(F)®cG ide,2r,c]

compatibility of = with the (relative) adjunctions (written ~ and ¢, the characteristic isomorphism of the dialogue
category CP):

op
PNL(E),F,NL(0)

M(0, U(NL(E) Fe F)) C(—(NL(0)), NL(E) B¢ F) 12100 (p 23, NL(0)), NL(E))

TM(IM) ~T

M(U(NL(E) 3 F)) M(Es,r)

compatibility with associativity:

AE,lF,G PNL(ExF)BcG
NL(E) 3¢ (NL(F) Fe G) TS NL(E x F) B G LXEED 707 (

\
?? —_
ASSNL(E&NL(F),G Apip k3G

|
(NL(E) Be (NL(F) B¢ /C)) B G

NL(E x F) % /c) 3 G

(NL(E)%® ﬂNL(F)):?? G

(NL(E) Fe NL(F)) e,

compatibility with symmetry,

NL(E)%® AL
NL(E) 3¢ NL(F) EV o N LE) %, <NL(F) Fe /c) TEIE NL(E x F) Bc K
| |
JEL(E),NL(F) NL(og n)BcK
NL(F)® pyi(m Aplp x

NL(F) B¢ NL(E) NL(F) ¢ (NL(E) N ic) NL(F x E) 3¢ K

and compatibility with unitors for a given canonical isomorphism ¢ : K —= N L(0p):

A—l

NL(0 ks NL(F 0 , F,
NL(Ong) Be NL(F) OV ONLE N L (000) B (NL(F) Je /c) MEE NLOp x F) Be K
e NL(F) NL(p)BcK
>\17\71L F NL(F
K B¢ NL(F) @ NL(F) PR NL(F) B¢ K
NL(E)? 0 Aglop,
NL(E) 3¢ NL(Om) PNECMW NL(E) Be (NL(OM) Je /c) EOME NL(E x 0pq) B K
NL(E)®%ce NL(T;L)WCK
NL(E) B¢ K i NL(E) B¢ K

The model is said to be a Seely model if U is bijective on objects.

In our examples, U must be thought of as an underlying functor that forgets the linear structure of C and sees
it as a special smooth structure in M. Hence we could safely assume it faithful and bijective on objects.
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Proposition B.2.17. A Seely A\-model of A-tensor logic is a Seely linear model of A-tensor logic too

Proof. Start with a A-model. Let
Hop = P&lL(ExF) o Ag'px o (idnrim B pyir)) : NL(E) B¢ NL(F) —= NL(E x F)

using the right unitor p of C°P, and composition in C. The identity isomorphism ¢ is also assumed given. Since p
is an isomorphism it suffices to see it makes N L a lax symmetric monoidal functor. The symmetry condition is
exactly the diagram of compatibility with symmetry that we assumed and similarly for the unitality conditions. The
first assumed diagram with A used in conjection with U faithful enables to transport any diagram valid in the Carte-
sian closed category to an enriched version, and the second diagram concerning compatibility with associativity is
then the only missing part needed so that p satisfies the relation with associators of %, x. O

Those models enable to recover models of linear logic. We get a linear-non-linear adjunction in the sense of
[Ben] (see also [PAM, def 21 p 140]).

Theorem B.2.18. (C°?,%¢,I,—, M, x,0,NL,U) a Seely linear model of \-tensor logic. Let D < C the full
subcategory of objects of the form —C,C € C. Then, N = U(D) is equivalent to M. —o NL : N —=D is left
adjoint to U : D —= N and forms a linear-non-linear adjunction. Finally! = — o NL o U gives a comonad on D
making it a x-autonomous complete and cocomplete Seely category with Kleisli category for | isomorphic to N.

Proof. This is a variant of [T, Thm 2.13]. We already saw in lemma B.1.44 that D is %-autonomous with the
structure defined there. Composing the natural isomorphisms for F' € D, E € M

M(B,U(F)) ~ C°*(NL(E), ~F) ~ D(~(NL(E)), F),

one gets the stated adjunction. The equivalence is the inclusion with inverse —— : M — N which is based on the
canonical map in C, ng : ——FE — E which is mapped via U to a corresponding natural transformation in M. It
is an isomorphism in V" since any element is image of U enabling to use the —-relative adjunction for E € C:

MU(E),U(——FE)) ~CP’(NL(U(E)),~——E) ~C?’(NL(U(E)),~E) ~ M(U(E),U(E)).

Hence the element corresponding to identity gives the inverse of 7. Since D is coreflective in C, the coreflector
preserves limits enabling to compute them in D, and by =-autonomy, it therefore has colimits (which must coincide
with those in C). By [PAM, Prop 25 p 149], since U : D — N is still a bijection on objects, the fact that D is
a Seely category follows and the computation of its Kleisli category too. The co-unit and co-multiplication of the
co-monad ! come from the relative adjunction U ., N L, and correspond respectively to the identity on E in
M, and to the composition of the unit of the adjunction by ! on the left and U on the right. O

Remark B.2.19. In the previous situation, we checked that U (E) ~ U(——F) in M and we even obtained a natural
isomorphism Uo—— =~ U and this has several consequences we will reuse. First — is necessarily faithful on C since
if =(f) = —(g) then U o =—(f) = U 0o =—(g) hence U(f) = U(g) and U is assumed faithful hence f = g. Let
us see that as a consequence, as for €, %¢ preserves monomorphisms. Indeed if f : F — F' is a monomorphism,
—=(f B¢ idg) is the application of the ——(-) % G for the *-autonomous continuation category, hence a right
adjoint functor, hence ——(f %¢ idg) is a monomorphism since right adjoints preserve monomorphisms. Since
—— is faithful one deduces f Z¢ idg is a monomorphism too.

B.2.1.4 A class of examples of LL models

We now fix F'in ¢ 4 < F x DFS. Recall that then CZ (E, F') = C*(FE, F) algebraically for any Ics E, F'. The
index ¢ remains to point out the different topologies.

Definition B.2.20. We define EZ as the Mackey completion of S (EM )i)- Thus we can define ¢-reflexive
spaces as satisfying £ = (E%)%. We denote by C — ref the category of ¢-reflexive spaces and linear maps.

The dialogue category 4 — Mc enables to give a situation similar to p — Ref. First for any Ics E, (E%)" =
Mackey — completeE algebraically from lemma B.2.6.

Corollary B.2.21. For any Ics /', £ is ¢ -reflexive, and (EZ ), is Mackey-complete, hence equal to (EZ% )%
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Proof. We saw E = (L) but from lemma B.2.6 and commutation of Y4 = . o Y% with Mackey
completions, [ (E)]% = E. Hence composing and using Theorem B.1.56, one gets the claimed reflexivity:

(B))s = Zo|(BDD:| = 7| B2 ] - B2
Similarly (E%)e, = % ((E})r) which is Mackey-complete by the same result. O

Theorem B.2.22. Let Fin ¢ ¥ < F x DFS a full Cartesian small subcategory. C — ref is a complete and
cocomplete x-autonomous category with tensor product ExF' = (E%eF3)% and dual (.)% and dualizing object
KC. It is stable by arbitrary products. It is equivalent to the Kleisli category of € — Mc and to p-Ref as a
*-autonomous category via the inverse functors: S« : p-Ref —= €-Ref and . ([.],,) : €-Ref — p-Ref.

Proof. This is a consequence of lemma B.1.44 applied to the Dialogue category (4" — Mc™, ¢, K, (-)%) from
propgsition B.2.14. Recall from the previous proof that (/% (E));,, = Ej, and (E)%)% = S ((E))5). This
implies the two functors are inverse of each other as stated.
We show they intertwine the other structure. We already noticed £ = /% (E}). We computed in lemma
B.1.23:
M
(Epely), = (EpnEy), ~ (E}),5 (F)), =~ (EgeFg),

Since ¢ product keeps Mackey-completeness, one can compute (-)% and ()% by applying respectively .o M
and . (71\4), which gives the missing topological identity:

S ((BreFR)E) = (BE=FE)%.
O

Let C —ref,, ¥ — Mc,, the Cartesian categories with same spaces as C — ref, 4 — Mc and %’-smooth maps,
namely conveniently smooth maps. Let U : C — ref —C — ref, the inclusion functor (forgetting linearity and
continuity of the maps). Note that, for 4 < ¥, ¢ — Mc,, € 9 — Mcy, is a full subcategory.

Theorem B.2.23. Let Fiin € € < F x DFS as above. C — ref is also a Seely category with structure extended
by the comonad !« (-) = (CZ(-))% associated to the adjunction with left adjoint '« : C — ref,, —=C — ref and
right adjoint U.

Proof. We apply Theorem B.2.18 to C = ¢ — Mc so that D = C — ref and N' = C — ref,. For that we
must check the assumptions of a A-categorical model for M = € — Mc,,. Lemma B.2.1 shows that M is a
Cartesian closed category since the internal hom functor CZ (E, F) is almost by definition in ¢ — Mc. Indeed it is
a projective limit of C22 (X )e F' which is a projective kernel of C25(X)eCLH(Y) = CE(X x Y) with X, Y € € as
soon as F' € ¢ — Mc. The identity in lemma B.2.2 gives the natural isomorphisms for the (-)%-relative adjunction
(the last one algebraically using C2 (E) € € — Mc):

CZ(E.F) ~ CZ(E)eF ~ L(FL.CZ(E)) = L(F§,CE(E)) = C(CZ(E), F})

It remains to see that C¥ : M —C is a symmetric unital functor satisfying the extra assumptions needed for a
A-categorical model. Note that Lemmas B.2.1 and B.2.2 also provide the definitions of the map A, = respectively,
the second diagram for =. The diagram for = comparing the internal hom functors is satisfied by definition of the
map A which is given by a topological version of this diagram. Note that unitality and functoriality of C£ are
obvious and that A r ¢ is even defined for any G € Mc. It remains to prove symmetry and the second diagram
for A. We first reduce it to € replaced by F'in. For, note that, by their definition as projective limit, there is a
continuous identity map CZ (E)—=C%,, (F) for any lcs E, and since smooth curves only depend on the bornology,
CFin(E) ~ CF, (AN (E)) topologically (recall A" = Fpyy, is the reflector of I : Fiin — Mc < ¢ — Mc, which
is a Cartesian functor [45], and thus also of I, : Fin — Mcy, © € — Mcy, by this very remark.) Composing
both, one gets easily a natural transformation Je gy, : CZ —=1 o Cf;,, o A", It intertwines the Curry maps A as
follows for G € Mc:

J%,Fin(E)E(J%,FML(F)EG

Cz(B)e(CZ(F)eG) L CF (N (B))e(CE (N (F)G)

TAW(E),JV(F),G

TAE,F,G
J¢ rin(EXF)eG
C2(E x F)eG rm (B

Cin (N (E) x N (F))eG
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Now, the associativity, symmetry and unitor maps are all induced from McSch, hence, it suffices to prove the
compatibility diagrams for A in the case of Cf;,, with G € McSch. In this case, we can further reduce it using
that from naturality of associator, unitor and braiding, they commute with projective limits as € does, and from its
construction in lemma B.2.1 A r ¢ is also a projective limit of maps, hence the projective limit description of C%; ,
reduces those diagrams to E, F' finite dimensional. Note that for the terms with products E x F’ the cofinality of
product maps used in the proof of lemma B.2.1) enables to rewrite the projective limit for £/ x F' with the product of
projective limits for E, F' separately. The key to check the relations is to note that the target space of the diagrams
is a set of multilinear maps on (C* (%™ x %#™))’, G’ and to prove equality of the evaluation of both composition
on an element in the source space, by linearity continuity and since Vectegn+m (Z7+™) = (C*(%"™ x ™)), it
suffices to evaluate the argument in (C® (%™ x %£™))’ on Dirac masses which have a product form. Then when
reduced to a tensor product argument, the associativity and braiding maps are canonical and the relation is obvious
to check. O

Remark B.2.24. In C — ref we defined |4 E = ((CZ(E))%) so that moving it back to p-Ref via the isomorphism
of x-autonomous category of Theorem B.2.22, one gets ([l E],.) = ((CZ(£))}). Let us apply Lemma B.2.40
and Example B.2.12. For ¢ = F'in one gets a space with its p-dual having the approximation property, whereas
for ¢ = Ban, one may get one without it since (!¢ (E))s = ((CH(E))%)s if E is a Banach space (since
we have the topological identity CZ (E,K) ~ CZ((F), K) coming from the identical indexing set of curves
coming from the algebraic equality C% (X, E) = C%,,,(X,E) = C*(X,E) = CX(X, ¥ (E))). Therefore, if E
is a Schwartz space associated to a Banach space in Ban without the approximation property:

<y(['FinE],u,) (—;—‘ !BanE

(since both duals are algebraically equal to C*(E, K), the difference of topology implies different duals alge-
braically). It is natural to wonder if there are infinitely many different exponentials obtained in that way for
different categories ¥. It is also natural to wonder if one can characterize p-reflexive spaces (or even Banach
spaces) for which there is equality .7 ([!rin E],) = !BanE.

B.2.1.5 A model of LL: a Seely category

We referred to [PAM] in order to produce a Seely category. Towards extensions to DiLL models it is better to make
more explicit the structure we obtained. First recall the various functors. When f : E — F'is a continuous linear
map with £, F € € — Mc, we used !¢ f :!l¢ E — !4 F defined as (- o f)%. Hence !¢ is indeed a functor from
€ — Mcto ¢ — —Ref.

Since CZ is a functor too on ¥ — Mc,,, the above functor is decomposed in a adjunction as follows. For
F : E—F %-smooth, CZ (F)(g) = go F,g € CZ(F, %) and for a linear map f as above, U( f) is the associated
smooth map, underlying the linear map. Hence we also noted !¢ F' = (CZ (F))Z% gives the functor, left adjoint to
U :% — Mc— % — Mcy, and our previous !¢ is merely the new ! o U.

For any I € C — ref, we recall the continuous isomorphism from E to (E%)% = 7 ((£),)),)

(B (BN -
CE) o (le B o U(2)

Note that if E' is only Mackey-complete, the linear isomorphism above is still defined, in the sense that we take
the extension to the Mackey-completion of [ — [(x), but it is only bounded/smooth algebraic isomorphism (but
not continuous) by Theorem B.1.56. However, evj.}1 is always linear continuous in this case too.

We may still use the notation e for any separated locally convex space E as the bounded linear injective map,
obtained by composition of the canonical map E—=E™ and ev fa- We also consider the similar canonical maps:

Lemma B.2.25. For any space E¥ € ¥ — Mc, there is a smooth map (the Dirac mass map):
5 E — (CZ2(E)) cl¢E
E
z = (feCZ(E,K) — f(x) = dp(x)(f)),

Proof. We could see this directly using convenient smoothness, but it is better to see it comes from our A-
categorical model structure. We have an adjunction:

Cz (B4 E) ~ ¢ — Mc”(Cg (E), (' E)g) = ¢ — Mc((CZ (E)g)%,CZ (E))

and 0 is the map in the first space, associated to evgé (E) in the last. O
€
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Hence, dg is nothing but the unit of the adjunction giving rise to !, considered on the opposite of the contin-
uation category.

As usual, see e.g. [PAM, section 6.7], the adjunction giving rise to !¢ produces a comonad structure on this
functor. The counit implementing the dereliction rule is the continuous linear map dg :!%(E) — E obtained in
looking at the map corresponding to identity in the adjunction:

Cz (B, E) ~ % —Mc™(CZ(E), (E)g) = ¢ — Mc(EZ,CZ (E)) ~ 6 — Mc((CZ (E))g, E)

The middle map eifg € ¢ — Mc(E%,CZ(E)) is the counit of the (-)¥-relative adjunction and it gives dg =

evgl o) (e%g )& when £/ € C — ref. The comultiplication map implementing the promotion rule is obtained as

Pe =!¢(0r) = (CZ(0r))%.
We can now summarize the structure. Note, that we write the usual T, unit for x as 0, for the {0} vector space.

Proposition B.2.26. The functor | is an exponential modality for the Seely category of Theorem B.2.23 in the
following way:

e (I,p,d) is a comonad, withdg = evy,' o (6%%0)% and pp =%(0p) = (CZ(0r))%.

o lo: (C—ref, x,0) = (C —ref,®, K) is a strong and symmetric monoidal functor, thanks to the isomor-
phisms m° : K ~14(0) and (the map composing tensor strengths and adjoints of 2, A of \-tensor models):

* *
mh e e BQIF = ((C2(E)S)% B (C2(FVE)E ) = (C2(B.K) B¢ C2(FP.K))
*
~ (CR(B.CR(FK)) =~ (C*(E x F,K))y ~le(B x F)
o the following diagram commute:

2

ly EQyle F —2 " o (B x F) 2L 1,14 (E x F)
PE®%PFi \th(!%‘m,hgﬂz)
M B\ F

Moreover, the comonad induces a structure of bialgebra on every space !« F and this will be crucial to obtain
models of DiLL [20]. We profit of this section for recalling how all the diagrams there not involving codereliction
are satisfied. In general, we have maps giving a commutative comonoid structure (this is the coalgebra part of the
bialgebra, but it must not be confused with the coalgebra structure from the comonad viewpoint):

e cp:l¢E = l4(Ex E) ~ lgEQ®4E given by cg = (m3, )~ 'oly(Ap) with Ag(z) = (z, ) the
canonical diagonal map of the Cartesian category.

e WEAKE = (m°)~tolg(ng) : l¢E — 140 ~ #Z withng : E—0 the constant map, hence more explicitly
WEAKE(h) = h(1) for h € |4 E and 1 € CZ(FE) the constant function equal to 1.

This is exactly the structure considered in [Bie93, Chap 4.6] giving a Seely category (in his terminology a
new-Seely category) the structure of a Linear category (called Eé@-model in [25]) from his Definition 35 in his
Thm 25. See also [PAM, 7.4] for a recent presentation. This especially also contains the compatibility diagrams
of [20, 2.6.1]. Especially, py : (I E, WEAKE, cg)— (l¢!wE, WEAK!4 E, ¢, i) is a comonoid morphism as in
[20, 2.6.3]. Also !¢ is given the structure of a symmetric monoidal endofunctor on C — ref, (!¢, 1", u?) making
WEAKFE, c coalgebra morphisms. For instance, u° : Z—4 (%) (the space of distributions) is given by [Bie93,
Chap 4 Prop 20] as !¢ (vg) om?, ie. u°(1) = §; with vg : 0—=% the map with ug(0) = 1. By [Bie93], a Linear
category with products is actually the same thing as a Seely category. This is what is called in [25] a Eé,x -model.
So far, this structure is available in the setting of Theorem B.2.18, and we will use it in this setting later.

As explained in [25], the only missing piece of structure to get a bicomoid structure on every !¢ E is a biproduct
compatible with the symmetric monoidal structure, or equivalently a Mon-enriched symmetric monoidal category,
where Mon is the category of monoids. This is what he calls a £!®7*—model.
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His Theorem 3.1 then provides us with the two first compatibility diagrams in [20, 2.6.2] and the second
diagram in [20, 2.6.4].

In our case \/ , : £ x E— E is the sum when seeing £ x £ = E @ E as coproduct and its unit . : 0 — E
is of course the 0 map. Hence (¢ — Mc, 0, x,u, {/;n,A) is indeed a biproduct structure. And compatibility with
the monoidal structure, which boils down to biadditivity of tensor product, is obvious. One gets cocontraction and
coweakening maps:

o Cp:l¢E®!4¢E ~ 4 (E x E) — l¢F is the convolution product, namely it corresponds to !« (V ).
o Wg: % ~4(0) = lxEis given by Wi (1) = (evg)% with evg = CZ (ug) i.e. evo(f) = f(0).

From [25, Prop 3.2] (4 E, cg, WEAKE,Cg, Wg) is a commutative bialgebra. The remaining first diagram in [20,
2.6.4] is easy and comes in our case for f € CZ(!E) from

[l (05 0 up)](f) = 5, (f) = 51(A = F(A(d0)) = [eWr(61)](f) = [leWr (1°(1))](f)-

To finish checking the assumptions in [20], it remains to check the assumptions in 2.5 and 2.6.5. As [25] is a
conference paper, they were not explicitly written there.

E FE
dE dE
OT \ \E p5lo(dE@WEAKE)+ A5 o(WEAK EQd ) \ \E (B.17)
1 %E 'E | {
\E®\E
!
E 10 B Ut g (B.18)
\ / CEil . ,TEF
WEAKE 1 wWg \E ® \E &) \F ® \F

The firstis evy o (e %m)%o( L(up))E = evg'o( ?DS(uE)oe% )(g = evp! ((uE)%)% = up = 0as expected.

c2 ce ce ce
The second is evElo(eE )E o (CE(Vp)E =evg'o(C2(Vg)oer )i =evp' o(Vp)i)Eo (e )E @ (e7)E
which gives the right value since \/ , = r' o (idg x ng) + (5" o (ng x idg).
The third diagram comes from ngug = 0 and the last diagram from V/, o(f x g) o Ax = f + g which is the
definition of the additive structure on maps.

B.2.1.6 Comparison with the convenient setting of Global analysis and Blute-Ehrhard-Tasson

In [6], the authors use the Global setting of convenient analysis [? KM] in order to produce a model of Intuitionistic
differential Linear logic. They work on the category CONV of convenient vector spaces, i.e. bornological Mackey-
complete (separated) Ics, with continuous (equivalently bounded), linear maps as morphisms. Thus, apart for the
bornological requirement, the setting seems really similar to ours. It is time to compare them.

First any bornological space has its Mackey topology, let us explain why . : CONV — p — Ref is an
embedding giving an isomorphic full subcategory (of course with inverse (-),, on its image). Indeed, for E € CONV
we use Theorem B.1.59 in order to see that /() € p — Ref and it only remains to note that £}, is Mackey-
complete.

As in Remark B.1.33, E bornological Mackey-complete, thus ultrabornological, implies ), and even S(E},)
complete hence Mackey-complete (and E, k-quasi-complete).

Said otherwise, the bornological requirement ensures a stronger completeness property of the dual than Mackey-
completeness, the completeness of the space, our functor ((-);,);, should thus be thought of as a replacement of the
bornologification functor in [? ] and (( );’j);,“ is our analogue of their Mackey-completion functor in [53] (recall
that their Mackey completion is what we would call Mackey-completion of the bornologification). Of course, we
already noticed that we took the same smooth maps and . : CONV,, —> p — Ref  is even an equivalence of
categories. Indeed, ' — Ej,,.,, is smooth and gives the inverse for this equivalence.

Finally note that E¥eF' = Lg(FE, ') algebraically if 2 € CONV since EfeF = L ((E})., F) = Lr(E, F)
topologically and the space of continuous and bounded linear maps are the same in the bornological case. Lg(E, F)—Lgr(E, F)
is clearly continuous hence so is . (Lg(E, F)) — . (Lr(E, F)) = Lr(E, F).
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But the closed structure in CONV is given by (Lg(E, F'))porn, Which uses a completion of the dual and hence
we only have a lax closed functor property for ., in form (after applying ((-)%)7%) of a continuous map:

y((Lﬂ(EvF»born)9((E:5F)Z)j' (B.19)

Similarly, most of the linear logical structure is not kept by the functor .#.

B.2.2 Models of DIiLL

Smooth linear maps in the sense of Frlicher are bounded but not necessarily continuous. Taking the differential at
0 of functions in C*(E, F') thus would not give us a morphisms in k — Ref, thus we have no interpretation for the
codereliction d of DiLL. We first introduce a general differential framework fitting Dialogue categories, and show
that the variant of smooth maps introduce in section B.2.2.4 allows for a model of DiLL.

B.2.2.1 An intermediate notion: models of differential \-Tensor logic.

We refer to [20, 20] for surveys on differential linear logic.

According to Fiore and Ehrhard [20, 25], models of differential linear logic are given by Seely #-autonomous
complete categories C with a biproduct structure and either a creation operator natural transformation 0 | EE—E
or a creation map/codereliction natural transformation dg : E2 — | E satisfying proper conditions. We recalled
in subsection B.2.1.5 the structure available without codereliction. Moreover, in the codereliction picture, one
requires the following diagrams to commute [20, 2.5, 2.6.2,2.6.4]:

E_ - E_ - B
dE dE
\ ) ) \ EE dE
0 \E (dp®@Wg)opr+WrQdE)oAs \E (B.20)
1 'E ® 'E ldE
EF — "% _\peir " _(E®F) (B.21)
M 4
E®F
E dr \E PE NE (B.22)
A o _ ,T\E!E
1@ E 2% \poE 22 wpenE

Then from [25, Thm 4.1] (see also [20, section 3]) the creation operator 0 = Cg o (!F ® HE)

We again need to extend this structure to a Dialogue category context. In order to get a natural differential
extension of Cartesian closed category, we use differential A-categories from [BEM]. This notion gathers the
maybe very general Cartesian differential categories of Blute-Cockett-Seely to Cartesian closedness, via the key
axiom (D-curry), relating applications of the differential operator D and the curry map A for f : C x A— B (we
don’t mention the symmetry of Cartesian closed category (C' x C' x A) x A ~ (C x A) x (C x A)):

D) = A(D(f) o{(m % 04), 7)) + (€ x ) —=[A, B].

We also use Diag(F) = E x E the obvious functor. We also suppose that the Cartesian structure is a biproduct,
a supposition that is equivalent to supposing a Mon-enriched category as shown by Fiore [25].

The idea is that while D encodes the usual rules needed for differential calculus, d encodes the fact that we
want the derivatives to be smooth, that is compatible with the linear duality structure we had before.

Definition B.2.27. A (resp. commutative) model of differential A-tensor logic is a (resp. commutative) A-
categorical model of A-tensor logic with dialogue category (C°?,%¢,1c = K,—) with a biproduct structure
compatible with the symmetric monoidal structure, a Cartesian closed category (M, x,0, [-,-]), which is a dif-
ferential A-category with operator D internalized as a natural transformation Dg r : [E, F]—-[Diag(E), F] (so
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that D in the definition of those categories is given by M (Dg r) : M(E, F)— M(E x E, F) with M the basic
functor to sets of the closed category M). We assume U : C —> M and — : C°? —C are Mon-enriched functors.
We also assume given an internalized differential operator, given by a natural transformation

dE,F : NL(U(E)) 78)@ F%-NL(U(E)) 73)@ (_'E ?XC F)
satisfying the following commutative diagrams (with the opposite of the counit of the relative adjointness relation,

giving a map in C written: e}’ : =E —= NL(U(E)) = N Lg) expressing compatibility of the two differentials.
We have a first diagram in M:

U(NLE 3, F)U@: (NLE N (—E e F)>/(NLE)7YC(6E PXCF))U<NLE Ne (NLi e F))
|
EE,F\L lidu(B),EE,FIEE NL(B)3 F
Du(my,u(r AY ey, v ().
[U(B),U(F)] —=5{U(E x B),U(F)] [U(B), [U(E),U(F)]]

and weak differentiation property diagram in C:

Fe
SSNL(U(E)),—~E,F

NLU(E)) Be F— "5 NL(U(E)) B (~F B¢ F) oYX B0 (N L)) B —F) Be F

I)NL(U(E))"?CF\L NL(U(E))®Bcp-—gBcF
dp,kcBcF v

(NL(U(E)) Bc K) Bc F (NL(U(E)) Bc (~ERc K)) Be F

The idea is that while D encodes the usual rules needed for a Cartesian Differential Category, d encodes the
fact that we want the derivatives to be smooth, that is compatible with the linear duality structure we had before.

Theorem B.2.28. (C°?, %¢,1,—, M, x,0,NL,U, D,d) a Seely model of differential \-tensor logic. Let D c C
the full subcategory of objects of the form —C, C € C, equipped with! = —o N LoU as comonad on D making it a
x-autonomous complete and cocomplete Seely category with Kleisli category for ! isomorphic to N' = U(D). With

the dereliction dg as in subsection B.2.1.5 and the codereliction interpreted by: dg = — ((NL(E) Xe p:}g) o

dg x o pNL(E)) o (Wg ® Idg) o Ag, this makes D a model of differential Linear Logic.

Proof. The setting comes from Theorem B.2.18 giving already a model of Linear logic. Recall from subsection
B.2.1.5 that we have already checked all diagrams not involving codereliction. We can and do fix £ = —C so that
€p : ——E— FE is an isomorphism that we will ignore safely in what follows.

Step 1: Internalization of D-curry from [BEM]

Let us check:

NL(E)3 NL(E) % (~E3 KV 2N 1(B) 3 (NL(E) 3 K) Ao NL(E x E)B K

dExE,K
AE,E,~EnK

NL(E x E) 3 (~E 3 K) = PN 1 (5« B) 3 (—~E)®2) 3 K)

Indeed using compatibility with symmetry from definition of A-categorical models, it suffices to check a flipped
version with the derivation acting on the first term. Then applying the faithful U, intertwining with = and using
the compatibility with Dg_r the commutativity then follows easily from D-curry.

Step 2: Internalization of chain rule DS from [BEM]
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Forge M(U(E),U(F)) = M(0,[U(E),U(F)]) = M(0,U(NL(E) B¢ F) ~ C(=(NL(0)), NL(E) B¢ F ¢
K), which givesamap h : =(K)—>NL(E)%¢F %K. One gets dg poh : =(K)—>NL(E)%B¢—E®c FBcK
giving by characteristic diagram of dialogue categories (for C°?, recall our maps are in the opposite of this dialogue
category) amap dH : —F —= NL(E) %: —E B¢ K. We leave as an exercise to the reader to check that D5 can
be rewritten as before:

NL(U(E)) B¢ (—E B¢ K) <25 NLU(E)) B¢ K <292 NL@(F) 3 K
MNL(Aw(5) A ) Be (~EBcK) drx
NL(U(E)) Bc NL(U(E)) B¢ (—E B¢ K) NL(a)Tadl NL(U(F)) Bc (—(F) B¢ K)

Note that we can see dH in an alternative way using our weak differentiation property. Composing with a
minor isomorphism, if we see h : —=(K) — (NL(E) B¢ K) B¢ F then one can consider (dg x % F') o h and it
gives dg p o h after composition by a canonical map. Butif H : —(F') — (N L(E) %¢ K) is the map associated
to h by the map ¢ of dialogue categories, the naturality of this map gives exactly di{ = dg x o H. Note that if
g = U(g’), by the naturality of the isomorphisms giving H, it is not hard to see that H = ¢ o —(g’).

Step 3: Two first diagrams in (B.20).

For the first diagram,by functoriality, it suffices to see dg xc o (NL(ng) % KC) = 0. Applying step 2to g = ng,
one gets H = uyp(g)»k hence dH = dp x o H = 0 as expected thanks to axiom D1 of [BEM] giving D(0) = 0.

For the second diagram, we compute cpdp = (miﬂ,E)*1 o= (NL(Ayg))o— ((NL(uE) Bepk)odp ko
pNL(E)> o Ag. We must compute [N L(ug) F¢ (—E B¢ K)] odp x o (NL(Ay(g)) 3 K) using step 2 again with

9= Aym =U(Ag), hence H = enlo—(Ag)=ertoV_ 5.
Using (B.23) below, one gets dH = (NL(ng) ¥\ _ 5 BK) o Isom, so that, using Isom o (Ay gy X ng) o
Ay gy = Ay(g), one obtains

CDE = [NL(UE) 7?(3 (_‘E 75’0 IC)] o dE,IC o (NL(AU(E)) 75’](:) = (NL(AU(E) o UE) % V_E % IC) o dEz,IC-

Hence, noting that by naturality NL(0) % V_g % K) = V1,0)»-E»x and using the formula in step 1,

CDEAE}E,IC = VNL(O):rgﬁEvg;C (—D (NL(’LLEz) z s ??’C) o dEQJCAE,lE,IC

i=1,2

= Vro-pvc| (NL(ug) B |(NL(ug) 3 2B 3 K))ds|), (| (NL(ug) 3 2B 3 K))dex | Fe NL(u)|.

On the other hand, we can compute (Wg ® dg) o A\p = — ((NL(uE) Bep_p) oA o (NL(ug) Bedp ) o

(NL(E)%c pn i E))> o Ag. From the symmetric computation, one sees (in using — is additive) that our expected
equation reduces to proving the formula which reformulates our previous result:

CDpodyy x = A‘lo(NL(uE)%’C[(NL(uE)%’ﬁE??IC))dE,K])+p‘1o([(NL(uE)@ﬁEi’S’IC))dEJC]7S’CNL(uE))
Step 4: Final Diagrams for codereliction.

To prove (B.22),(B.21), one can use [25, Thm 4.1] (and the note added in proof making (14) redundant, but we
could also check it in the same vein as below using step 2) and only check (16) and the second part of his diagram
(15) on 0 = ﬂ((NL(E) e p:lE) odgx o pNL(E))- Indeed, our choice dp = (0) o (W ® Idg) o Ag is
exactly the direction of this bijection producing the codereliction.

One must check:

\EE—2 g P2 g
E 1'
CE i/ Pr®0E ¢O'E
\E\EE NE®E
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and recall cp = (7712E’E)*1 o =(NL(AEg)), pg = ~(NL(dg)), and (mEE) b= (AEE( % €7)),with
AE}E = pNL(ExE)AE}EJc(NL(E) ¥ pNL(E)), € : = E — E the counit of self-adjunction.
Hence our diagram will be obtained by application of — (after intertwining with p) if we prove:

dp x L(6g)BcK

NL(U(E)) Bc (—E B¢ K) NL{U(E)) B¢ K< NL(U('E)) Bc K
MNL(AR)AG!,) Be(~EFCK) dip |
NL(U(E)) 3¢ NL{U(E)) 3¢ (~E 3¢ K) NLU(E)) 3¢ (—(1E) B¢ K)

NL(6g)®c(dp,coe )

This is the diagram in step 2 for g = g if we see that dH = (dE,;C o€ ). For, it suffices to see H = ¢, which
is essentially the way dg is defined as in proposition B.2.25.
We also need to check the diagram [25, (16)]which will follow if we check the (pre)dual diagram:

NL(E x E)® (~E 8 K) <225 N1 By 3 (NL(E) 3 K) <2225 NIL(E x B) 3 K

NL(U nK
Ap, g, -3co(NL(U(V ) B (—ER T (U(VEg)

d
NL(E)® (~E83K)~——-  NL(E)®K
Using step 1 and step 2 with g = U(V/ ), it reduces to:

NL(E?)%(m2 %K)

NL(E*)® (-ER®K) NL(E*)® (—mE)®?) B K)

(NL(U(VE))W(ﬁE"WC))T (NL(Ap2)Aps 52) e (—E)®*3cK)

NL(E) 3 (—E 73 k) —L VDY

NL(E*)® NL(E?)® ((-E)®?) B K)
Recall that here, from step 2, dH = dg= x o H. In our current case, we noticed that H = e, E2 o—(V E) Using
(B.23) with E? instead of E, and Isom o (idg> x ng2)Ag2 = idg2, the right hand side of the diagram we must
check reduces to the map NL(U (V))& (m20 =(Vy)) BK = NL(U(V)) B —E % K as expected, using only
the defining property of \/ ;, from the coproduct.

Let us turn to proving the first diagram in [25, (15)], which will give at the end dg odg = Idg. Modulo
applying — and intertwining with canonical isomorphisms, it suffices to see:

NLU(E)) B K (B.23)
dp,x eNEnK

NL{U(E)® -EXK NLU0) 3 -EXK = ~-EXK

NL(ng)®—ERK

For it suffices to get the diagram after precomposition by any & : =K — —F (using the D is closed with unit
—IC for the closed structure). Since E € D this is the same thing as ¢ = —h : E ~ ——F — I so that one can
apply naturality in F of all the maps in the above diagram. This reduces the diagram to the case £ = K.

But from axiom D3 of [BEM], we have D(Idygy) = 2, projection on the second element of a pair, for
E € C. When we apply the compatibility diagram between D and dg, g to d— g, which corresponds through = to
Idy (E), we have (for mo € M (E x E, E) the second projection):

M[Isom oU(NLg B¢ (N B¢ E)) o Udp.g) o U((eN" B K)o (IE))] —

Here we used I : =K — —FE % F used from the axiom of dialogue categories corresponding via ¢ to
id-p and where we use M(Zg g o (U((eg” B K)o (Ig)))) = Idy(x). This comes via naturality for ¢ from the
association via o of (XXX K)o (Ig) to the map e¥ X : =E—=NL(E), and then from the use of the compatibility
of Z with adjunctions in definition B.2.16 jointly with the definition of eN* as counit of adjunction, associating it
to Idy (). Thus applying this to 2 = K and since we can always apply the faithful functors U, M to our relation
and compose it with the monomorphism applied above after U(dg, g) and on the other side to U (Ix) ~ Id, it is
easy to see that the second composition is also 7. [
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B.2.2.2 A general construction for DiLL models

Assume given the situation of Theorem B.2.18, with C having a biproduct structure with U, — Mon-enriched and
assume that M is actually given the structure of a differential A-category with operator internalized as a natural
transformation Dg g : [E, F] — [Diag(E), F] (so that D in the definition of those categories is given by
M(Dg.r) : M(E,F) — M(E x E,F) with M the basic functor to sets of the closed category M) and U
bijective on objects. Assume also that there is a map D', . : NL(E) ¥¢ F—= NL(E x E) %¢ F in C, natural in
E such that

Eexp,FoU(Dyg ) = Dyk)ur) ©Ep,F.

and
Dip = (p;VlL(E2) oD o pNL(E)) B F. (B.24)

Our non-linear variables are the first one after differentiation.

We assume %' commutes with limits and finite coproducts in C and recall from remark B.2.19 that it preserves
monomorphisms and that — is faithful. Note that since C is assumed complete and cocomplete, it has coproducts
@ = X, by the biproduct assumption, and that —=(E x F') = —(E) @ —(F') since — : C°? —C is left adjoint to
its opposite functor — : C — C°? which therefore preserves limits. We will finally need the following:

eNEaBea i o7
—'(EXF) ??CG#)NL(EXF) 7?(3 GNL(U(( dpx0p)or))BcCG

NL(E)®:G  (B.25)

egLWcG

|
—~E¥c G

X <j—

(~E 3 G) x (~F 3 G)

This reduces to the case G = K by functoriality and then, this is a consequence of naturality of ¢V since
the main diagonal of the diagram taking the map via the lower left corner is nothing but —((idg x Op) o r) with
r: E— E x 0 the right unitor for the Cartesian structure on C.

We want to build from that data a new category M giving jointly with C the structure of a model of differential
A-tensor logic.

M has the same objects as M (and thus as C too) but new morphisms that will have as derivatives maps from
C, or rather from its continuation category. Consider the category Dif far with objects {0} x N U {1} x A/*
generated by the following family of morphisms without relations: one morphism d = d; : (0,4) — (0,7 + 1)
for all ¢ € A which will be mapped to a differential and one morphism 7 = 7; : (1,7 + 1) — (0,7 + 1)
for all i € A which will give an inclusion. Hence all the morphism are given by d* : (0,i) — (0,7 + k),
d*oj:(1,i+1)—=(0,i+k+1).

We must define the new Hom set. We actually define an internal Hom. Consider, for E, F' € C the functor
Diffrg r,Dif fg : Dif far —=C on objects by

Dif fr((0,i)) = NLU(E) ™) B K, Dif fa((1,i+1)) = (NLU(E)) Be (~E) " B K))

with the obvious inductive definition (—E)3¢i+1 ¢ K = —E ¥ [(ﬁE)%’ ¥e ic]. Then we define Dif fz 5 =

Diffg %c F.
The images of the generating morphisms are defined as follows:

Dif fr(di) = Ay (20w x © DeNLwmhmer) © M) vk

DfoE(Jz+1) = [pNL(U(E)77+1) © AE%ELU(E)H—l’K: © (NL(U(E)) 73>C [AZ_J%E);H-LIC o ((€gL)7?Ci+1 ??C K)])]

where we wrote

Afl

U(E)ji+1,F — A

NL(U(E) ! Be Ay

1
UE)UE),F° " ° ( ),U(E),F>

Since M has all small limits, one can consider the limit of the functor UoDif g r and write it [U(E), U (F)]c.
Since U bijective on objects, this induces a Hom set:



We define N L¢ (U (E)) as the limitin C of Di f fg. Note that, since %¢ commutes with limits inC, N L¢ (U (E))%¢
Fisthe limitof Dif fp p = Dif fg B¢ F.
From the universal property of the limit, it comes with canonical maps

Dy p: NLe(U(E)) B¢ F—=Dif fu,r((1,k)), j=jpr: NLe(U(E)) B¢ F—=Dif fpr((0,0)).

Note that jg r = jg i B¢ F is a monomorphism since for a pair of maps f, g with target NL¢(U(E)) B¢
F, using that lemma B.2.29 below implies that all Dif fg(j;11) are monomorphisms, one deduces that all the
compositions with all maps of the diagram are equal, hence, by the uniqueness in the universal property of the
projective limit, f, g must be equal.

Moreover, since U : C — M is right adjoint to — o N L, it preserves limits, so that one gets an isomorphism

E’;E%)F :U(NLc(U(E)) B¢ F) ~ U(lim Dif fg r) ~ [U(E), U(F)]c. It will remain to build A**¢ but we can

already obtain dg F.
We build it by the universal property of limits, consider the maps (obtained using canonical maps for the

monoidal category C°P)

k+1

DYy s NLe(U(E)) B¢ F 2 (NL(U(E)) B¢ (—E)3**+! 3¢ K)) B¢ F —— Dif fp,~pm.r((1,k))

J's NLe(U(E) Be F 55 (NL(U(E)) e (=B) Fe K)) B¢ F—=—> Dif fi-mmer((0,0))

Those maps extends uniquely to a cone enabling to get by the universal properties of limits our expected
map:dg r. This required checking the identities

Dif fg~pacr(d") o J' = Dif fg ~pz.r(j) 0 Dg,’ﬁ)

that comes from Dif fg p(d* o j1)o Dy o = Dif fp,p(jrs1) o D};ﬁ (by definition of D}bfﬁ as map coming from
a limit) which is exactly the previous identity after composition with structural isomorphisms and N L(E**+1) 23,

eg L 2§¢ F which is a monomorphism, hence the expected identity, thanks to the next:
Lemma B.2.29. In the previous situation, €% is a monomorphism.

Proof. Since — : C°P — C is faithful, it suffices to see —(e¥%) : =(NL(U(E)) — ——F is an epimorphism.
But its composition with the epimorphism ——FE — F, as counit of an adjunction with faithful functors —, is also
the counit of — o N L with right adjoint U which is faithful too, hence the composition is an epimorphism too. But
U(——E) ~ U(E) by the proof of Theorem B.2.18, thus U(—(e¥)) is an epimorphism and U is also faithful so
reflects epimorphisms. ]

Theorem B.2.30. In the above situation, (C°P, B¢, I, —, Mc, x,0,[.,.]c, NL¢,U, D, d) has a structure of Seely
model of differential \-tensor logic.

Proof. For brevity, we call A, = (1,k),k > 0, Ay = (0,0) = By, B, = (0, k)

Step 1: M is a Cartesian (not full) subcategory of M and U : C — M, NL¢ : M —C are again functors,
the latter being right —-relative adjoint of the former.

Fix
9€ Mc(U(E),U(F)) = C(=K,NLc(U(E)Bc F)—=C(=K, NL(U(E))3c F) ~ C(=F, NL(U(E))) > dg.
Similarly, composing with D,’fl p one obtains:
d*g € C(—K, Dif fp.xc(Ar) Be F) ~ C(=F, Dif fp xc(Ax).

We first show that NL(g) = -og : NL(U(F))—=NL(U(FE)) induces via the monomorphisms j a map N L¢(g) :
NL¢(F) — NL¢(E) such that jg xNLc(g) = NL(g)jrx. This relation already determines at most one
N L¢(g), one must check such a map exists in using the universal property for N L¢ (E). We must build maps:

NLE(g) : NLe(F) —= Dif frx(Ag)
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with NL3(g) = NL(g)jrx satisfying the relations for k > 0 (jo = id):

Dif fpxc(dy o jx) o NLE(9) = Dif fexc(je+1) o NLET (g). (B.26)

An abstract version of Faa di Bruno’s formula will imply the form of NV Lé (g), that we will obtain it as sum
of NLZ”T(g) : Dif fric(Ajr)) —= Dif fec(Ay) for m = {71, ..., 7z} € Py the set of partitions of [[1, k]]. We
define it as

NLE™(g) = (NL(AFYY B¢ Id) o Tsom Asspy o [d0g Be d™lg B - Be diimlg Be idyc]

with ISOTTLASSk : NL(E) 7?(; (NL(E) 78CE1)7?C o 'ch (NL(E) ??C Ek) ™~ NL(Ek+1) 78c (E1 7?c e '??c Ek) and
Ay : E—=FE¥ the diagonal of the Cartesian category C. We will compose it with d** : N L¢ (F)— [Lrep, Dif frc(Apr)
given by the universal property of product composing to d!™! in each projection.

Then using the canonical sum map 3% : []'_, E ~ @*_, E—E obtained by universal property of coproduct
corresponding to identity maps, one can finally define the map inspired by Faa di Bruno’s Formula:

P T
NLE(g) = Elpf}fE,,c(Ak) © ( []~Ee (g)) od™.

TE Py

Applying U and composing with =, (B.26) is then obtained in using the chain rule D5 on the inductive proof of
Faa di Bruno’s Formula, using also that U is additive.

Considering NL¢(g) B¢ G : NL¢(F) B¢ G — NL¢(E) ¥¢ G which induces a composition on Mg,
one gets that M is a subcategory of M (from the agreement with previous composition based on intertwin-
ing with j) as soon as we see idy(g)y € Mc(U(E),U(E)). This boils down to building a map in C, Iy, :
—(IKC)—=NL¢(U(FE))%¢c E using the universal property such that jg golay, = In : =(K)—NL(U(E))BcE
corresponds to identity map. We define it in imposing D}’g’ polpm, =0if k> 2 and

DIE,E ol = NL(OE) ch ic : ﬁ(/C) >~ NL(O) Qgc _'(IC)‘>NL(E) 75)@ -F ?XC E

with i¢c € C(—(K),—~E ®¢ E) ~ C(—E,—E) corresponding to identity via the compatibility for the dialogue
category (C°P,%c, kK, —). This satisfies the compatibility condition enabling to define a map by the universal
property of limits because of axiom D3 in [BEM] implying (recall our linear variables are in the right contrary to
theirs) D(Idy(gy) = 2, D(m2) = mama (giving vanishing starting at second derivative via D-curry) and of course
(eNL' B¢ E) oic = I from the adjunction defining VL.

As above we can use known adjunctions to get the isomorphism

Mc(U(E),U(F)) = M(0,[U(E),U(F)]e) = C*(NL(0), ~(NLc(U(E)) B¢ F))

~ C(_‘ /C), NLc(U(E)) e F) ~ COP(NLc(U(E)), —'F) B.27)

where the last isomorphism is the compatibility for the dialogue category (C°?, %¢, K, —). Hence the map idy (g

we have just shown to be in the first space gives egLC : mE—=NLc(U(E)) with jg x © pnLe(U(E)) © ech =

PNL(U(E)) © e’
Let us see that U is a functor too. Indeed €¥2¢ B¢ F : =E B¢ F —= NLc(U(E)) B¢ F can be composed
with the adjunctions and compatibility for the dialogue category again to get:

C(E,F)—=C(~—E,F) ~ C(~K, ~E %3¢ F) —=C(~NL(0), NLc(U(E)) 3¢ F),

the last space being nothing but M¢(U(E),U(F)) = M(0,[U(E),U(F)]c) giving the wanted U(g) for g €
C(E, F) which is intertwined via j with the M valued one, hence U is indeed a functor too. The previous equality
is natural in F' via the intertwining with j and the corresponding result for M.

Now one can see that (B.27) is natural in U(E), F'. For it suffices to note that the first equality is natural by
definition and all the following ones are already known. Hence the stated —-relative adjointeness.

This implies U preserve products as right adjoint of — o N L¢, hence the previous products U(E) x U(F') =
U(E x F) are still products in the new category, and the category M is indeed Cartesian.

Step 2: Curry map

234



It remains a few structures to define, most notably the internalized Curry map: A% rc @ NLe (E x F)%¢

G—=NL¢(E)%¢ (N Le(F) Be G) . We use freely the structure isomorphisms of the monoidal category C.
For we use the universal property of limits as before, we need to define:

A]I%,F,G : NLC(E X F) Be GéDiffE,(NLC(F)ﬁcG)(Aw

satisfying the relations for k£ > 0 (jo = id):
Dif fe(NLe(Fy3cc) (dk © i) © Ap kg = Dif fE (NLe(Fymec) Ukt1) © A 6. (B.28)

Since Dif fg (NLe(F)ymec)(Ar) ~ NLc(F) Be (NL(E) Be (—E)3ck 3, IC) %c G we use again the same

universal property to define the map A%, .. ¢ and we need to define:

Aplpe: NLe(E x F) B¢ G—= Dif f (A).

F, (NL(E)%?C(—\E)WC"'WCIC) R G

satisfying the relations:

o Ak,l-‘rl

Diff (Ji+1) E,F.G-

dy o ;) o AB! = Di
F,(NL(E)Wc("E)WCk:’?cK:>7YcG( : Jl) B.FG ff

F, (NL(E)"’?c("E)WCk”z?cK> NG

(B.29)
But we can consider the map:

Dj“;;lF’G :NLe(E x F) B¢ G— (NL(U(E x F)) B¢ (—(E x F))3k1 3, ) % G

Let us describe an obvious isomorphism of the space of value to extract the component we need. First, using
the assumptions on %¢ and —:

((—(B1 x Ep))e*H 30 K)) Fe G ~ @ (—Ei, Be —Ey, Be - Be — By, ) Be G
i1, k1] —= {1,2}
~ P (—(By)Fe@# U 3, (B, e 12)) 5, G

1 k41— {1,2}
Hence using also Ag r . one gets:
A (NLU(E x F)) Be (=(E x F))"* e K)) Be G
~ @D Dif fr(Agi-s o) Be (Dif fo(Agios ) Be G).

i:[1,k+1] —={1,2}

Composing with Py ; a projection on a term with #i~*({1}) = k, one gets the map Py ; o A o DEJ;ZFVG =
A’j;;l’ r. We wanted. One could check this does not depend on the choice of term using axiom (D7) of Differential
Cartesian categories giving an abstract Schwarz lemma, but for simplicity we choose (1) = - - - = i(l) = 2 which
corresponds to differentiating all variables in F first and then all variables in F'. The relations we want to check
will follow from axiom (D-curry) of differential \-categories.

Then to prove the relation (B.29) we can prove it after composition by a A (hence the left hand side ends with

application of D;“,NL(U(F)Z)?’S’CIC Be (DiffE(Ak) Be G) ). We can then apply Dif fr(B;)®¢ (DiffE(jk) Be G)
which is a monomorphism and obtain, after decurryfying and applying U and various =, maps in [U (F)2x U (F)! x
U(E)**1, U(G)], and finally only prove equality there, the first variable F' being a non-linear one.

Of course, we start from Dif fry g (dk+1 © jet1) © Df;;leG = Dif fexr.c(Jkti+1) © Df;;l;lG and use an
application of (B.25):

[DiffF(Bl) Be (DiffE(jk) Xe G)] o Dif frpiffsan)sec(i) © PeyoA

= Isomo A ) © NL(Ox) o Dif fexr,c(jri)

E,F,Dif fr(B)%c (Dif f£(Br)3cG
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with 01, : U(E x F) x U(F)! x U(E)* ~U(E x F) x U(0 x F)! x U(E x 0)¥ —U(E x F)*+*1 the map
corresponding to idgx p x (0p X id p)l x (idg x 0 F)k. We thus need the following commutation relation:

NL(OH-l,k,) o DiffExF,G(le-l) = Isomo NL(OLO) o (D ) o NL(Ol’k)

!
ExF,(Dif fr(B)%cDif f5(B)3cG)

This composition NL(01,0) © Dy, . gives exactly after composition with some = the right hand side of (D-
curry), hence composing all our identities, and using canonical isomorphisms of A-models of A-tensor logic, and
this relation gives the expected (B.29) at the level of [U(F)? x U(F)! x U(E)**1,U(G)].

Let us turn to checking (B.28). It suffices to check it after composition with the monomorphism Di f fr (By) % ¢
jr.c- Then the argument is the same as for (B.29) in the case k = 0 and with E' and F' exchanged. The inverse of
the Curry map is obtained similarly.

Step 3: M is a differential A\-category.

We first need to check that M, is Cartesian closed, and we already know it is Cartesian. Since we defined
the internalized curry map and = one can use the first compatibility diagram in the definition B.2.16 to define
AMe . To prove the defining adjunction of exponential objects for Cartesian closed categories, it suffices to see
naturality after applying the basic functor to sets M. From the defining diagram, naturality in E, F' of AMe¢ :
[E x F,U(G)]e —[E, [F,U(G)]c]c will follow if one checks the naturality of E%,F and A%RG that we must
check anyway while naturality in U (G) and not only G will have to be considered separately.

For A%}G, takee: E—=F' f: F—=F' g:G — G the first two in M¢ the last one in C. We must see
Aij,_z«{,c; o[NLc(e) Be (NLe(f) Be g)] = [NLe(e x f) Be g] o A%T},7G/ and it suffices to see equality after
composition with the monomorphism jy—1(gx ), : NLc(E x F)Be G—=NL(E x F') B¢ G. But by definition,
Ju-1Exr).cAEre = Mplea(NL(E) 3 ju-1(p),6)ju-1(E),NLe (F)3c and similarly for N'L¢ functors which
are also induced from NN L, hence the relation comes from the one for A of the original model of A-tensor logic we
started with. The reasoning is similar with =. Let us finally see that M (A*¢) is natural in U(G), but again from
step 1 composition with a map g € M¢(U(G),U(G")) €« M(U(G),U(G")) is induced by the one from M and
so is AMc from A™ in using the corresponding diagram for the original model of A-tensor logic we started with
and all the previous induced maps for =, AC. Hence also this final naturality in U(G) is induced.

Having obtained the adjunction for a Cartesian closed category, we finally see that all the axioms D1-D7
of Cartesian differential categories in [BEM] and D-Curry is also induced. Indeed, our new operator D is also
obtained by restriction as well as the left additive structure. Note that as a consequence the new U is still a
Mon-enriched functor.

Step 4: (M, C) form a A-categorical model of A-tensor logic and Conclusion.

We have already built all the data for definition B.2.16, and shown —-relative adjointness in step 1. It remains
to see the four last compatibility diagrams.

But from all the naturality conditions for canonical maps of the monoidal category, one can see them after
composing with monomorphisms N Ls — N L and induce them from the diagrams for NV L.

Among all the data needed in definition B.2.27, it remains to build the internalized differential D%y p for D in
M/ and see the two compatibility diagrams there. From the various invertible maps, one can take the first diagram
as definition of Dg( B),U(F) and must see that, then M (D,C]( B),U( F)) is indeed the expected restriction of D. Let
jf,{F [UE),U(F)]¢ —[U(E),U(F)] the monomorphism. It suffices to see jjax BE, D[C](E%U(F) o E%‘,F =
EExE,F O U(D’E’F o jg,r) (note that this also gives the naturality in E, F' of d from the one of D’). Hence from
the definition of DC, it suffices to see the following diagram:

U(NLe(U(EY)Se (eNEC23. FYYoU(d
U(NLe(U(E)) Bc F) (NLe(U(E) e (e A F)) <E,Fl>](
EExE,FOU(D;;,FOjE,F)l [idU(E)’E%’F]cOECEvNLc(U(E)VYCF

. Mc
o oF Av(®),um),vur)

[U(E x E),U(F)] <“— [U(E x B),U(F)]c [U(E), [U(E), U(F)]cle-
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First we saw from induction of our various maps that the right hand side of the diagram can be written without
maps with index C:

(A ey, (m),00m) 0 lidu (), ErploZe NLE)ymr OU(NLU(E))) Be (e Be F)) oU(jp,~pmer odp,F).-

The expected diagram now comes the definition of d g, by universal property which gives jp — gz, rode F =
J* = Isom o Dy - and similarly Dif fg r(j1) © Dp p = D p © ju,r so that composing the above diagrams
(and an obvious commutation of the map involving eV through various natural isomorphisms) gives the result.

For the last diagram in definition B.2.27, since j = jg,— gz, r is @ monomorphism, it suffices to compose dg.
and the equivalent map stated in the diagram by j and see equality, and from the recalled formula above reducing
it to D’; p, this reduces to (B.24). O

B.2.2.3 p-smooth maps as model of DiLL

Our previous categories from Theorem B.2.23 cannot give a model of DiLL with C — ref,, as category with
smooth maps. If one wants to obtain a differential map since the map won’t be with value in £ —o F but in
spaces of bounded linear maps Lyq(FE, F). We will have to restrict to maps with iterated differential valued in
E®¢k oy F:= E —og (---(E —og F)---). This is what we did abstractly in the previous subsection that will
enable us to obtain efficiently a model.

Lemma B.2.31. The categories of Theorem B.2.23 satisfy the assumptions of subsection B.2.2.2.

Proof. We already saw in Theorem B.2.23 that the situation of Theorem B.2.18 is satisfied with dialogue category
C = (% —Mc?,¢K,()%), and M = € — Mcy. We already know that e-product commutes with limits and
monomorphisms and the biproduct property is easy. The key is to check that we have an internalized derivative.
From [53] we know that we have a derivative d : CZ (E, F')—CZ(E, Ly(E, F')) and the space of bounded linear
maps Lyqi(E, F) < CZ(E, F) the set of conveniently smooth maps. Clearly, the inclusion is continuous since
all the images by curves of compact sets appearing in the projective kernel definition of C£(E, F') are bounded.
Thus one gets d : CZ (K, F) —CZ(E,CZ(E, F)) ~ CZ(E x E,F). It remains to see continuity. For by the
projective kernel definition, one must check that for ¢ = (¢1,¢2) € CE(X, E x E), f — df o(¢1, ¢2) is continuous
CZ(E,F)—CZ (X, F). Butconsider the curve c3 : X x X x Z—F given by c3(x,y,t) = c1(x)+ca(y)t, since
X x X x Z € €, we know that f o c3 is smooth and 0;(f o c3)(z,y,0) = df (c1(z))(c2(y)) and its derivatives
in z,y are controlled by the seminorms for CZ(E, F'), hence the stated continuity. It remains to note that M
is a differential A-category since we already know it is Cartesian closed and all the properties of derivatives are
well-known for conveniently smooth maps. For instance, the chain rule D7 is [KM, Thm 3.18]. O

Concretely, one can make explicit the stronger notion of smooth maps considered in this case.

We thus consider d” the iterated (convenient) differential giving d* : C2(E, F) — C2(E, Lya(E®#*, F)).
Since E®¢* —oq I is a subspace of Lyq(E®#* F) (unfortunately this does not seem to be in general boundedly
embedded), we can consider:

CL  o(E,F) = {u € CE(E,F): Yk > 1: d"(u) € C2(B, E®¢F oy F)}.

Remark B.2.32. Amap f € CZ_¢(E, F) will be called C — ref-smooth. In the case ¢ = Ban, we say p-smooth
maps, associated to the category p-Ref, and write C° = Cg, g Actually, for Fin = ¢ < F x DFS, from
the equivalence of x-autonomous categories in Theorem B.2.22, and since the inverse functors keep the bornology
of objects, hence don’t change the notion of conveniently smooth maps, we have algebraically

Cret (B, F) = CP(L(E,), 7 (FL))-

Hence, we only really introduced one new notion of smooth maps, namely, p-smooth maps. Of course, the topolo-
gies of the different spaces differ.

Thus d* induces a map CF | ¢(E, F) —=CE(E, E¥¢* —oy F) (d° = id) and we equip CZ ¢(E, F) with
the corresponding locally convex kernel topology K, ¢ (d") ™ (C®(E, E®™ — F)) with the notation of [K] and
the previous topology given on any C*(E, E®* — F) 2

2 This definition is quite similar to one definition (for the corresponding space of value E®* —o F' which can be interpreted as a space of
hypocontinuous multilinear maps for an appropriate bornology) in [58] except that instead of requiring continuity of all derivatives, we require
their smoothness in the sense of Kriegl-Michor.
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We call C — ref,c_rer the category of €-reflexive spaces with C3° ¢ as spaces of maps. Then from section
B.2.2.2 we even have an induced d : CL | ((E, F) —=CL , +(E, E®* —o F).

Let us call do(f) = df(0) sothat dy : CF . ¢(E, F) —> CZ_,..¢(FE, F) is continuous. Recall also that we
introduced 0p = €g o (!F ®dg) and dually 0 = (!F ® dg)cg :!E —=!EE. We conclude to our model:

Theorem B.2.33. Let Fin ¢ ¥ < F x DFS as above. C — ref is also a Seely category with biproducts
with structure extended by the comonad \c_res(-) = (CZ”,4¢("))% associated to the adjunction with left adjoint
le—ret : C —refo,_c_ref —>C — ref and right adjoint U. It gives a model of DiLL with codereliction (dy)%.

Proof. This is a combination of Theorem B.2.30, B.2.28 and the previous lemma. O
Remark B.2.34. One can check that
1. forany F € C — ref, 00 + idy is invertible,

2. The model is Taylor in the sense of [20, 3.1], i.e. for any fi, fo :le_pesl —= F' if f10p = f20p then
f1+ foWgWEAKE = fo + fiwgWEAKE.

Indeed, the Taylor property is obvious since df; = dfs in the convenient setting implies the same Gateaux deriva-
tives, hence f1 + f2(0) = fo + f1(0) on each line hence everywhere.

For (1), we define the inverse by (Ig)% with Ir : CZ(E) — CZ(E) as in [20, 3.2.1] by Ip(f)(z) =
Sé f(tz)dt, which is a well-defined weak Riemann integral by Mackey-completeness of the space [53].

By [20], the two conditions reformulate the two fundamental theorems of calculus. See also [CL] for a further
developments on the two conditions above.

Remark B.2.35. Let us continue our comparison of subsection B.2.1.6. Let us see thatif £, F' € CONV, CZ_ | ¢(E,F) =
CZ(E, F) so that we didn’t introduce a new class of smooth maps for convenient vector spaces. Our notion of
smoothness turning our model into a model of DIiLL is only crucial on the extra-spaces we added to get a *-
autonomous category in p — Ref. For, it suffices to see that f € CZ(E, I') is p-smooth. But (B.19) gives that the
derivative automatically smooth with value Lg(E, F') by convenient smoothness is also smooth by composition
with value E;‘SF as expected. Since this equation only depends on the source space E to be bornological, it
extends to spaces for higher derivatives, hence the conclusion.

Hence we have a functor . : CONVy, —>C — ref,_¢_rer for any € as above. We don’t think this is an
equivalence of category any more, as was the corresponding functor in B.2.1.6. But finding a counterexample to
essential surjectivity may be difficult, even thought we didn’t really try.

B.2.2.4 k-smooth maps as model of DiLL

We now turn to improve the #-autonomous category k& — Ref of section B.1.3 into a model of DiLL using the
much stronger notion of k-smooth map considered in subsection B.1.3.2. For X,Y € k — Ref, CX(X,Y)
C*®(X,Y), hence there is a differential map d : C20(X,Y) — CZ(X, Lg(X,Y)) but it is by definition valued in
C% (X, Leo(X,Y)). But actually since the derivatives of these map are also known, it is easy to use the universal
property of projective limits to induce a continuous map: d : CX(X,Y)—C% (X, L.,(X,Y)). Finally, note that
L.o(X,Y) = X €Y, hence the space of value is the one expected for the dialogue category K¢’ from Theorem
B.1.43.

For simplicity, in this section we slightly change £ — Ref to be the category of k-reflexive spaces of density
character smaller than a fixed inaccessible cardinal &, in order to have a small category 4 = k — Ref and in order
to define without change CZ(X,Y)

We call k — Ref, the category of k-reflexive spaces with maps C (X,Y) as obtained in subsection . We
call Kc, the category of k-quasi-complete spaces (with density character smaller than the same x) with maps
CZ(X,Y). This is easy to see that this forms a category by definition of CZZ. We first check our assumptions to
produce models of LL. We call C£ : Kc,, —= Kc the functor associating C£ (X) = CZ (X, Z) to a space X.

Lemma B.2.36. (Kc”?,¢, K, ()5, Keo, x,0,CZ,U) is a Seely linear model of A-tensor logic.

Proof. We checked in Theorem B.1.43 that C = (Kc”,¢,/C, (+)%) is a dialogue category. Completeness and
cocompleteness are obvious using the k-quasicompletion functor to complete colimits in LCS. Lemma B.2.1
gives the maps =, A and taking the first diagram as definition of A one gets Cartesian closedness of M =
(Kco, x,0,C£(+,-)), and this result also gives the relative adjunction. The other compatibility diagrams are

reduced to conveniently smooth maps C%;,, as in the proof of Theorem B.2.23. O
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Note that since k — Ref? is already *-autonomous and isomorphic to its continuation category
Lemma B.2.37. The categories of the previous lemma satisfy the assumptions of subsection B.2.2.2.

Proof. The differential A-category part reduces to convenient smoothness case. The above construction of d make
everything else easy. O

Theorem B.2.38. k—Ref is also a complete Seely category with biproducts with %-autonomous structure extended
by the comonad \.,(-) = (CL(-))§ associated to the adjunction with left adjoint ., : k — Ref.,—>k — Ref and
right adjoint U. It gives a model of DiLL with codereliction (dy)}.

Proof. Note that on & — Ref which corresponds to D in the setting of subsection B.2.2.2, we know that C%) = CZ
by the last statement in lemma B.2.1. But our previous construction of d implies that the new class of smooth maps
obtained by the construction of subsection B.2.2.2 is again C%. The result is a combination of Theorem B.2.30,
B.2.28 and the previous lemmas. O

B.2.3 Conclusion

This work is a strong point for the validity of the classical setting of Differential Linear Logic. Indeed, if the proof-
theory of Differential Linear Logic is classical, we present here the first smooth models of Differential Linear
Logic which comprehend the classical structure. Our axiomatization of the rules for differential categories within
the setting of Dialogue categories can be seen as a first step towards a computational classical understanding
of Differential Linear Logic. We plan to explore the categorical content of our construction for new models of
Smooth Linear Logic, and the diversity of models which can be constructed this way. Our results also argue for
an exploration of a classical differential term calculus, as initiated by Vaux [Vaux], and inspired by works on the
computational signification of classical logic [? ] and involutive linear negation [Mu].

The clarification of a natural way to obtain *-autonomous categories in an analytic setting suggests to reconsider
known models such a [31] from a more analytic viewpoint, and should lead the way to exploit the flourishing
operator space theory in logic, following the inspiration of the tract [33]. An obvious notion of coherent operator
space should enable this.

This interplay between functional analysis, physics and logic is also strongly needed as seen the more and
more extensive use of convenient analysis in some algebraic quantum field theory approaches to quantum gravity
[BFR]. Here the main need would be to improve the infinite dimensional manifold theory of diffeomorphism
groups on non-compact manifolds. From that geometric viewpoint, differential linear logic went only half the
way in considering smooth maps on linear spaces, rather that smooth maps on a kind of smooth manifold. By
providing nice 7-monads, our work suggests to try using 7-algebras for instance in k-reflexive or p-reflexive spaces
as a starting point (giving a base site of a Grothendieck topos) to capture better infinite dimensional features than
the usual Cahier topos. Logically, this probably means getting a better interplay between intuitionist dependent
type theory and linear logic. Physically, this would be useful to compare recent homotopic approaches [BSS] with
applications of the BV formalism [FR, FR2]. Mathematically this probably means merging recent advances in
derived geometry (see e.g. [To]) with infinite dimensional analysis. Since we tried to advocate the way linear logic
nicely captures (for instance with two different tensor products) infinite dimensional features, this finally strongly
suggests for an interplay of parametrized analysis in homotopy theory and parametrized versions of linear logic [?

1.

B.2.4 Appendix

We conclude with two technical lemmas only used to show we have built two different examples of ! on the same
category p-Ref.

Lemma B.2.39. For any ultrabornological spaces F;, any topological locally convex hull E = ¥;c; A;(E;), then
we have the topological identity:
S (B,) = Kier (A7)~ (L ((Bi),).

m

Proof. We start with case where E; are Banach spaces. By functoriality one gets a map between two topologies
on the same space (see for Mackey duals [K, p 293]):

S (E}) —=Kier (A) T (L ((B),,)) = F.

“w
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In order to identify the topologies, it suffices to identify the duals and the equicontinuous sets on them. From [K,
22.6.(3)], the dual of the right hand side is F' = Sicr(A}") (7 ((E3)},)" = Yier(B;)(E;)— E where the injective
continuous map to E is obtained by duality of the previous surjective map (and the maps called B; again are in
fact compositions of A}’ and the isomorphism between [ ((E;),,)]" = E;). From the description of E the map
above is surjective and thus we must have F = E as vector spaces.

Let us now identify equicontinuous sets. From continuity of ./ (El’,) — F every equicontinuous set in F’
is also equicontinuous in £ = (#(E),))". Conversely an equicontinuous set in F' = (.-*/(E},))" is contained in
the absolutely convex cover of a null-sequence (x,,),>0 for the bornology of absolutely convex weakly-compact
sets, (thus also for the bornology of Banach disks [Ja, Th 8.4.4 b]). By a standard argument, there is (1, ), >0 null
sequence of the same type such that (x,,),>0 is a null sequence for the bornology of absolutely convex compact
sets in a Banach space E'p with B the closed absolutely convex cover of (¥, )n>0-

Of course (Y, )n<m can be seen inside a minimal finite sum G,,, = X,cr,, (B;)(E;)" and G, is increasing in F'
so that one gets a continuous map I : ind lim,,cnr Gy, —= F’. Moreover each G, being a finite hull of Banach
space, it is again a Banach space thus one gets a linear map j : Fg —ind lim,,enr Gy, = G. Since [ o j is
continuous, j is a sequentially closed map, E'p is Banach space, G a (LB) space therefore a webbed space, by De
Wilde’s closed graph theorem [K2, 35.2.(1)], one deduces j is continuous. Therefore by Grothendieck’s Theorem
[K, 19.6.(4)], there is a G, such that j is valued in G, and continuous again with value in G,,,. Therefore
(j(2n))n=o0 is a null sequence for the bornology of absolutely convex compact sets in G,,,. We want to note it is
equicontinuous there, which means it is contained in a sum of equicontinuous sets.

By [K, 19.2.3)], Gy, is topologically a quotient by a closed linear subspace ®,.; (B:)(E;)'/H. By [K,
22.2.(7)] every compact subset of the quotient space (D;; (B;)(£;)’/H of a Banach space by a closed subspace
H is a canonical image of a compact subset of the direct sum, which can be taken a product of absolutely convex
covers of null sequences.Therefore our sequence (j(z,))n>0 is contained in such a product which is exactly an

!
equicontinuous set in G,,, = (Kie 1, (AH~H( ((El)L)) [K, 22.7.(5)] (recall also that for a Banach space

S ((E:);,) = (E;).). Therefore it is also equicontinuous in F (by continuity of F'—G?,,). This concludes to the
Banach space case.

For the ultrabornological case decompose F; as an inductive limit of Banach spaces. Get in this way a three
terms sequence of continuous maps with middle term Kicr(Af) ™' (.-#((E;)),) and end point the corresponding
iterated kernel coming from duals of Banach spaces by transitivity of Kernels/hulls. Conclude by the previous case
of equality of topologies between the first and third term of the sequence, and this concludes to the topological

equality with the middle term too. O

Lemma B.2.40. For any Ics E, ((CF,(E))})5 is Hilbertianizable, hence it has the approximation property.

!
Proof. We actually show that F' = ((C'%,,,(E))%)% = .7 [(%M [(C’%OW(E))' D ] is Hilbertianizable (also called
o

plp I
a (gH)-space) [H, Rmk 1.5.(4)].
Note that G = C%, (E) is a complete nuclear space. It suffices to show that for any complete nuclear space

I
G, [(%M [G;D ] is a complete (gH) space. Of course, we use lemma B.1.31 but we need another description
w

of the Mackey completion %A’}(GL) . Welet By = G’#,E)\H = Ufa,}JeRMC(Ex)Y(Tn, 0 € N)E\ = uuarE,
for limit ordinals.

Here RMC/(E)) is the set of sequences (,,) € EJ which are rapidly Mackey-Cauchy in the sense that if x
is their limit in the completion there is a bounded disk B = Ej; such that for all k, (z,, — ) € n"*B for n
large enough. For \g large enough, E 11 = E), and any Mackey-Cauchy sequence x,, in I, let us take its
limit  in the completion and B a closed bounded disk in E, such that ||z,, — z||g — 0 one can extract x,,,
such that ||z, — z||p < k~F so that (z,,, — ) € k=B for k large enough (for any /) thus (z,,,) € RMC(E,,)
thus its limit is in Ey,+1 = E), which is thus Mackey-complete. To apply lemma B.1.31 with D = 47((-)},))
one needs to see that {z,,,n € N} is equicontinuous in D(E),)’. But since F), is Mackey-complete, one can
assume the bounded disk B is a Banach disk and ||z,, — || = O(n~¥) so that x,, is rapidly convergent. From
[Ja, Prop 21.9.1] {(z,, — x),n € N} is equicontinuous for the strongly nuclear topology associated to the topology
of convergence on Banach disks and a fortiori equicontinuous for D(E),)’. By translation, so is {z,,n € N’} as
expected. From application of lemma B.1.31, H* := A[(4y(G),)),,] is complete since .4 '[(G,)},] is already
complete (G is complete nuclear so that .#[(G),);,] —= G continuous and use again [Bo2, IV.5 Rmq 2]).

H?0 is nuclear thus a (gH)-space. Since H*° is a complete (gH) space, it is a reduced projective limit of Hilbert
spaces [H, Prop 1.4] and semi-reflexive [H, Rmk 1.5 (5)]. Therefore its Mackey=strong dual [K, 22.7.(9) ] is an
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inductive limit of the Mackey duals, thus Hilbert spaces.

One can apply lemma B.2.39 to get . ([H*?],,) as a projective kernel of . (H) with H Hilbert spaces. But
from [Bel, Thm 4.2] this is the universal generator of Schwartz (gH) spaces, therefore the projective kernel is still
of (gH) space.

For g as above, this concludes to .[(€nm ((CF;,,(E))},));.] (gH) space, as expected. O
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