?. , utilisé pour de la détection homogène de glucose, est calculé en fonction des indices de réfraction montrant des sensibilités prometteuses de l'ordre de 640 nm/UIR. Des premiers guides d'onde réalisés présentent des pertes de propagation optiques élevées de 27 dB/cm. Le premier micro-résonateur réalisé présente des raies de résonance mais l'étude semble montrer que le guide d'onde présente une propagation bimodale

, Les taux de couplage obtenus sont aussi très différents de ceux calculés en raison très certainement du caractère multimodal du micro-résonateur obtenu. De plus, les guides d'onde ridges réalisés présentent une sur-gravure latérale, le taux d'anisotropie de gravure n'est pas encore égal à 1, ce qui entraine une réduction de la largeur du guide d'onde ce qui modifie les propriétés optiques du guide d'onde. La technologie de fabrication des couches poreuses et des guides d'onde ridges doit être encore optimisée afin d'obtenir des porosités et des dimensions plus reproductibles. La détection en volume et homogène de glucose est réalisé à l'aide du micro-résonateur à base de silicium poreux oxydé partiellement malgré le possible caractère bimodal de la propagation, Les pertes otiques obtenues sont élevées par rapport à celles obtenues pour le microrésonateur en silice poreuse ; en effet, la silice poreuse est plus transparente dans l'infrarouge que le silicium poreux

M. Bibliographie,

C. Y. Chao and L. J. Guo, Design and optimization of microring resonators in biochemical sensing applications, Journal of lightwave technology, t, vol.24, issue.3, p.1395, 2006.

C. Y. Chao, W. Fung, and L. J. Guo, Polymer microring resonators for biochemical sensing applications, IEEE Journal of selected topics in quantum electronics, t, vol.12, issue.1, p.134, 2006.

Y. Chen, Z. Li, H. Yi, Z. Zhou, and J. Yu, Microring resonator for glucose sensing applications, Frontiers of Optoelectronics China, p.304, 2009.

C. Ciminelli, F. Dell'olio, D. Conteduca, C. M. Campanella, and M. N. Armenise, High performance soi microring resonator for biochemical sensing, Optics and Laser Technology, t, vol.59, p.60, 2014.

E. Krioukov, J. Greve, and C. Otto, Performance of integrated optical microcavities for refractive index and fluorescence sensing, Sensors and Actuators B, t. 90, p.58, 2003.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn et al., Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation, IEEE Journal of selected topics in quantum electronics, t, vol.16, issue.3, p.654, 2010.

J. Charrier, C. Lupi, L. Haji, and C. Boisrobert, Optical study of porous silicon buried waveguides fabricated from p-type silicon, Materials Science in Semiconductor Processing, p.357, 2000.

E. Secret, K. Smith, V. Dubljevic, E. Moore, P. Macardle et al., Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs, p.718, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00804203

T. Hutter, N. Bamiedakis, and S. R. Elliott, Theoretical study of porous silicon waveguides and their applicability for vapour sensing, Proceedings of the COMSOL Conference Paris, 2010.

C. Ciminelli, F. Dell'olio, C. E. Campanella, and M. N. Armenise, Labelfree optical resonant sensors for biochemical applications, Progress in Quantum electronics, vol.37, p.51, 2013.

L. M. Lechuga, Biosensors and modern biospecific analytical techniques, chap. Optical biosensors, p.209, 2005.

P. V. Lambeck, Integrated optical sensors for the chemical domain, Measurement Science And Technology, t. 17, R93, 2006.

Y. Sun and X. Fan, Optical ring resonators for biochemical and chemical sensing, Analytical and Bioanalytical Chemistry, t, vol.399, p.205, 2011.

L. V. Nguyen, S. C. Warren-smith, H. Ebendorff-heidepriem, and T. M. Monro, Interferometric high temperature sensor using suspended-core optical fibers, Optics Express, t, vol.24, issue.8, p.8967, 2016.

P. K. Ang, W. Chen, A. T. Wee, and K. P. Loh, Solution-gated epitaxial graphene as ph sensor, Journal of the american chemical society, vol.130, pp.14-392, 2008.

E. H. Yoo and S. Y. Lee, Glucose biosensors : an overview of use in clinical practice, Sensors, t, vol.10, p.4558, 2010.

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel et al., Cross-reactive chemical sensor arrays, Chemical Reviews, t, vol.100, p.2595, 2000.

D. Grieshaber, R. Mackenzie, J. Voros, and E. Reimhult, Electrochemical biosensors -sensor principles and architectures, Sensors, issue.8, p.1400, 2008.

P. Estrela, P. Li, S. D. Keighley, and P. Migliorato, Label-free electrical biosensor arrays : a new challenge for tft technology, Journal of the Korean Physical Society, issue.1, p.498, 2009.

X. Luo and J. J. Davis, Electrical biosensors and the label free detection of protein disease biomarkers, Chemical Society Reviews, t, vol.42, issue.13, p.5944, 2013.

K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel et al., Magnetic gmi sensor for detection of biomolecules, Journal of Magnetism and Magnetic Materials, t, vol.293, p.671, 2005.

D. L. Graham, H. A. Ferreira, and P. P. Freitas, Magnetoresistive-based biosensors and biochips, TRENDS in Biotechnology, t, vol.22, issue.9, p.455, 2004.

M. Alvarez and L. M. Lechuga, Microcantilever-based platforms as biosensing tools, Analyst, t, vol.135, p.827, 2010.

P. S. Waggoner and H. G. Craighead, Micro-and nanomechanical sensors for environmental, chemical, and biological detection, p.1238, 2007.

L. C. Clark and C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Annals New York Academy of Sciences, t, vol.102, p.29, 1962.

B. T. Cunningham-;-m and . Cooper, Label-free biosensors : techniques and applications, chap. Label-free optical biosensors : An introduction, 2009.

S. Weiss, Fluorescence spectroscopy of single biomolecules, Science, t, vol.283, p.1676, 1999.

L. Yin, W. Wang, S. Wang, F. Zhang, S. Zhang et al., How does fluorescent labeling affect the binding kinetics of proteins with intact cells ?, Biosensors and Bioelectronics, vol.66, p.412, 2015.

X. Fan, I. M. Whiten, S. I. Shopova, H. Zhu, J. D. Suter et al., Sensitive optical biosensors for unlabeled targets : a review, Analytica chimica Acta, vol.620, issue.8, 2008.

R. L. Richn, L. R. Hoth, K. F. Geoghegan, T. A. Brown, P. K. Lemotte et al., Kinetic analysis of estrogen receptor ligand interactions, Proceedings of the National Academy of Sciences, t. 99, p.8562, 2002.

I. P. Kaminow, T. Li, and A. E. Willner, Optical fiber telecommunications vi a : components and subsystems, 2013.

, Optical fiber telecommunications vi b : systems and networks, 2013.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Highly sensitive fiber bragg grating refractive index sensors, Applied Physics Letters, t, vol.86, p.1, 2005.

B. H. Lee, Y. Liu, S. B. Lee, and S. S. Choi, Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index, Optics Letters, t, vol.22, issue.23, p.1769, 1997.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor, Biosensors and Bioelectronics, p.474, 2011.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, High sensitivity evanescent field fiber bragg grating sensor, IEEE Photonics Technology Letters, issue.6, p.1253, 2005.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, Dual-peak long-period fiber gratings with enhanced refractive index sensitivity by finely tailored mode dispersion that uses the light cladding etching technique, Applied Optics, t, vol.46, p.451, 2007.

M. J. Yin, B. Huang, S. Gao, A. Pingzhang, and X. Ye, Optical fiber lpg biosensor integrated microfluidic chip for ultrasensitive glucose detection, Optics Express, issue.5, p.2067, 2016.

V. Bhatia and A. M. Vengsarkar, Optical fiber long-period grating sensors, Optics Letters, t, vol.21, issue.9, p.692, 1996.

D. K. Wu, B. T. Kuhlmey, and B. J. Eggleton, Ultrasensitive photonic crystal fiber refractive index sensor, Optics Letters, t, vol.34, issue.3, p.322, 2009.

P. Antunes, F. Domingues, M. Granada, and P. André, Selected topics on optical fiber technology, chap. Mechanical Properties of Optical Fibers, p.537, 2012.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, Integrated optical devices for lab-on-chip biosensing apllications, Lasers Photonics Review, t, vol.6, p.463, 2012.

D. Janasek, J. Franzke, and A. Manz, Scaling and the design of miniaturized chemical-analysis systems, Nature, t, vol.442, p.374, 2006.

D. Psaltis, S. R. Quake, and C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics, Nature, t, vol.442, p.381, 2006.

P. S. Dittrich and A. Manz, Lab-on-a-chip : microfluidics in drug discovery, Nature Reviews, t, vol.5, p.210, 2006.

G. M. Whitesides, The origins and the future of microfluidics, Nature, t, vol.442, p.368, 2006.

F. B. Myers and L. P. Lee, Innovations in opticals microfluidic technologies for point-of-care diagnostics, p.2015, 2008.

D. Duval and L. M. Lechuga, Breakthroughs in photonics 2012 : 2012 breakthroughs in lab-on-a-chip and optical biosensors, IEEE Photonics Journal, t, vol.5, issue.2, pp.0-700, 2013.

C. R. Taitt, G. P. Anderson, and F. S. Ligler, Evanescent wave fluorescence biosensors : advances of the last decade, Biosensors and Bioelectronics, t, vol.76, p.103, 2016.

A. Airoudj, D. Debarnot, B. Beche, and F. Poncin-epaillard, Design and sensing properties of an integrated optical gas sensor based on a multilayer structure, Analytical Chemistry, t, vol.80, p.9188, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00674509

C. Mcdonagh, C. S. Burke, and B. D. Maccraith, Optical chemical sensors, Chemical Reviews, t, vol.108, p.400, 2008.

H. H. Qazi, A. B. Mohammad, and M. Akram, Recent progress in optical chemical sensors, Sensors, t, vol.12, pp.16-522, 2012.

B. Liedberg, C. Nylander, and I. Lundstrom, Surface plasmon resonance for gas detection and biosensing, Sensors and Actuators, p.299, 1983.

M. T. Flanagan and R. H. Pantell, Surface plasmon resonance and immunosensors, Electronics Letters, t, vol.20, issue.23, p.968, 1984.

P. B. Daniels, J. K. Deacon, M. J. Eddowes, and D. G. Pedley, Surface plasmon resonance applied to immunosensing, Sensors and Actuators, t, vol.15, p.11, 1988.

J. Homola, S. S. Yee, and G. Gauglitz, Surface plasmon resonance sensors : review, Sensors and Actuators B, t, vol.54, p.3, 1999.

J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species, Chemical Reviews, t, vol.108, p.462, 2008.

A. K. Sharma, R. Jha, and B. D. Gupta, Fiber-optic sensors based on surface plasmon resonance : a comprehensive review, IEEE Sensors Journal, t, vol.7, issue.8, p.1118, 2007.

J. Homola, On the sensitivity of surface plasmon resonance sensors with spectral interrogation, Sensors and Actuators B, t. 41, p.207, 1997.

Z. Chen, L. Liu, Y. He, and H. Ma, Resolution enhancement of surface plasmon resonance sensors with spectral interrogation : resonant wavelength considerations, Applied Optics, t, vol.55, p.884, 2016.

N. J. Tao, S. Boussaad, W. L. Huang, R. A. Arechabaleta, and J. D'agnese, High resolution surface plasmon resonance spectroscopy, Review of Scientific Instruments, t, vol.70, p.4656, 1999.

G. Nenninger, P. Tobiska, J. Homola, and S. Yee, Long-range surface plasmons for high-resolution surface plasmon resonance sensors, Sensors and Actuators B, t, vol.74, p.145, 2001.

F. C. Chien and S. J. Chen, A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes, Biosensors and Bioelectronics, t, vol.20, p.633, 2004.

G. Nenninger, P. Tobiska, J. Homola, and S. Yee, Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification, Analytical Chemistry, t, vol.84, p.5898, 2012.

P. Kvasni?k, K. Chadt, M. Vala, M. Bocková, and J. Homola, Toward singlemolecule detection with sensors based on propagating surface plasmons, Optics Letters, t, vol.37, issue.2, p.163, 2012.

M. Piliarik and J. Homola, Surface plasmon resonance (spr) sensors : approaching their limits ?, Optics Express, t, vol.17, pp.16-505, 2009.

M. C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, Trends and challenges of refractometric nanoplasmonic biosensors : a review, Analytica chimica Acta, t, vol.806, p.55, 2014.

F. Fernandez, K. Hegnerova, M. Piliarik, F. Sanchez-baeza, J. Homola et al., A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples, Biosensors and Bioelectronics, vol.26, p.1231, 2010.

J. Cao, T. Sun, and K. T. Grattan, Gold nanorod-based localized surface plasmon resonance biosensors : a review, Sensors and Actuators B : Chemical, t, vol.195, p.332, 2014.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky et al., Surface plasmon resonance biosensor based on integrated optical waveguide, Sensors and Actuators B, t, vol.76, issue.8, 2001.

P. M. Nellen, K. Tiefenthaler, and W. Lukosz, Integrated optical input grating couplers as biochemical sensors, Sensors and Actuators, t, vol.15, p.28, 1988.

J. Voros, J. J. Ramsden, G. Csucs, I. Szendr, S. D. Paul et al., Optical grating coupler biosensors, Biomaterials, issue.23, p.3699, 2002.

W. Lukosz, D. Clerc, P. M. Nellen, C. Stamm, and P. Weiss, Output grating couplers on planar optical waveguides as direct immunosensors, Biosensors and Bioelectronics, issue.6, p.227, 1991.

M. Wiki and R. E. Kunz, Wavelength-interrogated optical sensor for biochemical applications, Optics Letters, t, vol.25, issue.7, p.463, 2000.

K. Cottier, M. Wiki, G. Voirin, H. Gao, and R. E. Kunz, Label-free highly sensitive detection of (small) molecules by wavelength interrogation of integrated optical chips, Sensors and Actuators B, t. 91, p.241, 2003.

J. Adrian, S. Pasche, J. M. Diserens, F. Sanchez-baeza, H. Gao et al., Waveguide interrogated optical immunosensor (wios) for detection of sulfonamide antibiotics in milk, Biosensors and Bioelectronics, t, vol.24, p.3340, 2009.

E. Yablonovich, Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters, vol.20, p.2059, 1987.

S. John, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters, issue.23, p.2486, 1987.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer et al., Photonic-bandgap microcavities in optical waveguides, Nature, t, vol.390, p.143, 1997.

S. Mandal and D. Erickson, Nanoscale optofluidic sensor arrays, p.1623, 2008.

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity, Optics Letters, t, vol.35, p.2523, 2004.

S. Chakravarty, X. Chen, N. Tang, W. C. Lai, Y. Zou et al., Review of design principles of 2d photonic crystal microcavity biosensors in silicon and their applications, Frontiers of Optoelectronics, t, vol.9, issue.2, p.206, 2016.

C. Y. Kuo, S. Y. Lu, S. Chen, M. Bernards, and S. Jiang, Stop band shift based chemical sensing with three-dimensional opal and inverse opal structures, Sensors and Actuators B, t, vol.124, p.452, 2007.

J. Wu, D. Day, and M. Gu, A microfluidic refractive index sensor based on a threedimensional photonic crystal, Applied Physics Letters, t, vol.92, p.1, 2008.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen et al., Photonic crystal nanostructures for optical biosensing applications, Biosensors and Bioelectronics, t, vol.24, p.3688, 2009.

J. Jagerska, H. Zhang, Z. Diao, N. L. Thomas, and R. Houdre, Refractive index sensing with an air-slot photonic crystal nanocavity, Optics Letters, t, vol.35, p.2523, 2010.

S. Kita, K. Nozaki, and T. Baba, Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration, Optics Express, t, vol.16, issue.11, p.8174, 2008.

S. Mandal, J. M. Goddard, and D. Erickson, A multiplexed optofluidic biomolecular sensor for low mass detection, p.2924, 2009.

S. Chakravarty, W. C. Lai, Y. Zou, H. A. Drabkin, R. M. Gemmill et al., Multiplexed specific label-free detection of nci-h358 lung cancer cell line lysates with silicon based photonic crystal microcavity biosensors, Biosensors and Bioelectronics, vol.43, p.50, 2013.

A. K. Sana, K. Honzawa, Y. Amemiya, and S. Yokoyama, Silicon photonic crystal resonators for label free biosensor, Japanese Journal of Applied Physics, t, vol.55, issue.04EM11, p.1, 2016.

Y. Liu, P. Hering, and M. O. Scully, An integrated optical sensor for measuring glucose concentration, Applied Physics B, t, vol.54, p.18, 1992.

R. G. Heideman, R. Kooyman, and J. Greve, Performance of a highly sensitive optical waveguide mach-zehnder interferometer immunosensor, Sensors and Actuators B, issue.10, p.209, 1993.

R. G. Heideman and P. V. Lambeck, Remote opto-chemical sensing with extreme sensitivity : design, fabrication and performance of a pigtailed integrated optical phase-modulated mach-zehnder interferometer system, Sensors and Actuators B, t. 61, p.100, 1999.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin et al., Highly sensitive mach-zehnder interferometer biosensor based on silicon nitride slot waveguide, Sensors and Actuators B, vol.188, p.681, 2013.

P. Kozma, F. Kehl, E. Ehrentreich-förster, C. Stamm, and F. F. Bier, Integrated planar optical waveguide interferometer biosensors : a comparative review, Biosensors and Bioelectronics, t, vol.58, p.287, 2014.

V. Toccafondo and C. J. Oton, Robust and low-cost interrogation technique for integrated photonic biochemical sensors based on mach-zehnder interferometers, Photonics Research, issue.2, p.57, 2009.

A. Brandenburg and R. Henniger, Integrated optical young interferometer, Applied Optics, t, vol.33, p.5941, 1994.

V. M. Passaro, F. Dell'olio, and F. D. Leonardis, Ammonia optical sensing by microring resonators, Sensors, issue.7, p.2741, 2007.

H. K. Mulder, C. Blum, V. Subramaniam, and J. S. Kange, Size-selective analyte detection with a young interferometer sensor using multiple wavelengths, Optics Express, t, vol.24, issue.8, p.8594, 2016.

A. Brandenburg, R. Krauter, C. Künzel, M. Stefan, and H. Schulte, Interferometric sensor for detection of surface-bound bioreactions, vol.34, p.6396, 2000.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, Development of a multichannel integrated interferometer immunosensor, Sensors and Actuators B, t, vol.83, p.1, 2002.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, Interferometric biosensor based on planar optical waveguide sensor chips for labelfree detection of surface bound bioreactions, Biosensors and Bioelectronic, vol.22, p.2591, 2007.

A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn et al., Realization of a multichannel integrated young interferometer chemical sensor, Applied Optics, t, vol.42, p.5649, 2003.

B. H. Schneider, J. G. Edwards, and N. F. Hartman, Hartman interferometer : versatile integrated optic sensor for label-free, real-time quantification of nucleic acids, proteins, and pathogens, Clinical Chemistry, t, vol.43, issue.9, p.1757, 1997.

G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel et al., A new quantitative optical biosensor for protein characterisation, Biosensors and Bioelectronics, t, vol.19, p.383, 2003.

K. E. Zinoviev, A. B. González-guerrero, C. Domínguez, and L. M. Lechuga, Integrated bimodal waveguide interferometric biosensor for label-free analysis, Journal of Lightwave Technology, t, vol.29, issue.13, p.1926, 2011.

P. Kozma, A. Hámori, S. Kurunczi, K. Cottier, and R. Horvath, Grating coupled optical waveguide interferometer for label-free biosensing, Sensors and Actuators B, t. 155, p.446, 2011.

H. J. Tarigan, P. Neill, C. K. Kenmore, and D. J. Bornhop, Capillary-scale refractive index detection by interferometric backscatter, Analytical Chemistry, t, vol.68, p.1762, 1996.

A. N. Oraevsky, Whispering-gallery waves, Quantum Electronics, t, vol.32, issue.5, p.377, 2002.

T. Claes, J. G. Molera, K. D. Vos, E. Schacht, R. Baets et al., Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator, IEEE Photonics Journal, t. 1, issue.3, p.197, 2009.

A. Maalouf, M. Gadonna, D. Bosc, and I. Hardy, Integrated polymers (pvci/pmatrife) microring resonators for low power tunable filters, Optics Communications, t, vol.285, p.4088, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00723997

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, Polymer micro-ring filters and modulators, Journal of Lightwave Technology, t, vol.20, issue.11, p.1968, 2002.

J. V. Campenhout, L. Liu, P. R. Romeo, D. V. Thourhout, C. Seassal et al., A compact soi-integrated multiwavelength laser source based on cascaded inp microdisks, IEEE Photonics Technology Letters, t, vol.20, p.1345, 2008.

B. Bhola, H. C. Song, H. Tazawa, and W. H. Steier, Polymer microresonator strain sensors, IEEE Photonics Technology Letters, t, vol.17, p.867, 2005.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, Optical gyroscope with whispering gallery mode optical cavities, Optics Communictions, t, vol.233, p.107, 2004.

M. Brenci, R. Calzolai, F. Cosi, G. N. Conti, S. Pelli et al., Microspherical resonators for biophotonic sensors, Proceedings of SPIE, t. 6158, n o 61580S, 2006.

H. K. Hunt, C. Soteropulos, and A. M. Armani, Bioconjugation strategies for microtoroidal optical resonators, Sensors, t, vol.10, p.9317, 2010.

M. Ghulinyan, D. Navarro-urrios, A. Pitanti, A. Lui, G. Pucker et al., Whispering-gallery modes and light emission from a si-nanocrystal-based single microdisk resonator, Optics Express, t, vol.16, pp.13-218, 2008.

I. M. White, H. Zhu, J. D. Suter, X. Fan, and M. Zourob, Label-free detection with the liquid core optical ring resonator sensing platform, Methods in Molecular Biology, issue.503, p.139, 2009.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin et al., Spherical whispering-gallery-mode microresonators, Laser and Photonics Reviews, p.457, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00489454

G. C. Righini and S. Soria, Biosensing by wgm microspherical resonators, p.905, 2016.

A. Rasoloniaina, V. Huet, T. K. Nguye, E. L. Cren, M. Mortier et al., Controling the coupling properties of active ultrahigh-q wgm microcavities from undercoupling to selective amplification, Scientific Reports, issue.4023, p.1, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01358975

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, Refractometric sensors based on microsphere resonators, Applied Physics Letters, t, vol.87, p.1, 2005.

I. M. White, N. M. Hanumegowda, and X. Fan, Subfemtomole detection of small molecules with microsphere sensors, Optics Express, t, vol.30, issue.23, p.3189, 2005.

X. Fan, I. M. White, H. Zhu, J. D. Suter, and H. Oveys, Overview of novel integrated optical ring resonator bio/chemical sensors, Proceedings of SPIE, t. 6452, n o 65520M, p.1, 2007.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Label-free, single-molecule detection with optical microcavities, Science, t, vol.317, p.783, 2007.

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim et al., High sensitivity nanoparticle detection using optical microcavities, Proceedings of the National Academy of Sciences USA, t. 108, vol.15, p.5976, 2011.

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi et al., Silicon photonic micro-disk resonators for label-free biosensing, Optics Express, t, vol.21, issue.7, p.7994, 2013.

S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung et al., Labelfree optical biosensing using a horizontal air-slot sinx microdisk resonator, Optics Express, t, vol.18, pp.20-638, 2010.

J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal et al., Planar waveguide-coupled, high-index-contrast, high-q resonators in chalcogenide glass for sensing, Optics Express, t, vol.33, p.2500, 2008.

L. Stern, I. Goykhman, B. Desiatov, and U. Levy, Frequency locked micro disk resonator for real time and precise monitoring of refractive index, Optics Letters, t, vol.37, issue.8, p.1313, 2012.

C. Doolin, P. Doolin, B. C. Lewis, and J. P. Davis, Refractometric sensing of li salt with visible-light si3n4 microdisk resonators, Applied Physics Letters, t, vol.106, pp.81-104, 2014.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, Integrated refractive index optical ring resonator detector for capillary electrophoresis, Analytical Chemistry, t, vol.79, p.930, 2007.

I. M. White, H. Oveys, and X. Fan, Liquid-core optical ring-resonator sensors, Optics Letters, t, vol.31, issue.9, p.1319, 2006.

F. Ghasemi, E. S. Hosseini, X. Song, D. S. Gottfried, M. Chamanzar et al., Multiplexed detection of lectins using integrated glycan-coated microring resonators, Biosensors and Bioelectronics, vol.80, p.682, 2016.

U. Plachetka, N. Koo, T. Wahlbrink, J. Bolten, M. Waldow et al., Fabrication of photonic ring resonator device in silicon waveguide technology using soft uv-nanoimprint lithography, IEEE Photonics Technology Letters, t, vol.20, issue.7, p.490, 2008.

A. H. Yang and D. Erickson, Optofluidic ring resonator switch for optical particle transport, p.769, 2009.

K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, Siliconon-insulator microring resonator for sensitive and label-free biosensing, Optics Express, t, vol.15, p.7610, 2007.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja et al., Silicon microring resonators, Laser and Photonics Reviews, issue.1, p.47, 2012.

S. Yan, M. Li, L. Luo, K. Ma, C. Xue et al., Optimisation design of coupling region based on soi micro-ring resonator, p.151, 2015.

D. X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post et al., High bandwidth soi photonic wire ring resonators using mmi couplers, Optics Express, t, vol.15, issue.6, p.3149, 2007.

A. Ramachandran, S. Wang, J. Clarke, S. Ja, D. Goad et al., A universal biosensing platform based on optical micro-ring resonators, Biosensors and Bioelectronics, issue.23, p.939, 2008.

H. Sohlstrom and M. Oberg, Refractive index measurement using integrated ring resonators, Proceedings of Eighth European conference on Integrated Optics, p.322, 1997.

C. Y. Chao and L. J. Guo, Biochemical sensors based on polymer microrings with sharp asymmetrical resonance, Applied Physics Letters, t, vol.83, p.1527, 2003.

A. Yalçin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz et al., Optical sensing of biomolecules using microring resonators, IEEE Journal of selected topics in quantum electronics, t, vol.12, issue.1, p.148, 2006.

K. D. Vos, J. Girones, S. Popelka, E. Schacht, R. Baets et al., Soi optical microring resonator with poly(ethylene glycol) polymer brush for labelfree biosensor applications, Biosensors and Bioelectronics, t, vol.24, p.2528, 2009.

K. D. Vos, J. Girones, T. Claes, Y. D. Koninck, S. Popelka et al., Multiplexed antibody detection with an array of siliconon-insulator microring resonators, IEEE Photonics Journal, t, vol.1, p.225, 2009.

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn et al., Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform, Biosensors and Bioelectronics, vol.26, p.1283, 2010.

C. Delezoide, M. Salsac, J. Lautru, H. Leh, C. Nogues et al., Vertically coupled polymer microracetrack resonators for label-free biochemical sensors, IEEE Photonics Technology Letters, t, vol.24, p.270, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02368526

G. D. Kim, G. S. Son, H. S. Lee, K. D. Kim, and S. S. Lee, Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers, Optics Communications, t, vol.281, p.4644, 2008.

M. S. Kwon and W. H. Steier, Microring-resonator-based sensor measuring both the concentration and temperature of a solution, Optics Express, t, vol.16, issue.13, p.9372, 2008.

S. M. Abdulla, B. M. De-boer, J. M. Pozo, J. H. Van-den, A. Berg et al., Sensing platform based on micro-ring resonator and on-chip reference sensors in soi, Proceedings of SPIE, t. 8990, n o 8990W, p.1, 2014.

M. W. Royal, N. M. Jokerst, and R. B. Fair, Integrated sample preparation and sensing polymer microresonator sensors embedded in digital electrowetting microfluidic systems, IEEE Photonics Journal, issue.6, p.2126, 2012.

L. Wang, V. Kodeck, S. V. Vlierberghe, J. Ren, J. Teng et al., A low cost photonic biosensor built on a polymer platform, Proceedings of SPIE, t. 8311, p.1, 2011.

D. Ullien, P. J. Harmsma, S. M. Abdulla, B. M. De-boer, D. Bosma et al., Protein detection on biotin-derivatized polyallylamine by optical microring resonators, Optics Express, t, vol.22, issue.13, pp.16-585, 2014.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich et al., A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (tnt), Sensors, issue.10, p.6788, 2010.

J. Liu, X. Zhou, Z. Qiao, J. Zhang, C. Zhang et al., Integrated optical chemical sensor based on an soi ring resonator using phase-interrogation, IEEE Photonics Journal, t, vol.6, issue.5, pp.6-802, 2014.

R. Guider, D. G. Fi, T. Chalyan, L. Pasquardini, A. Samusenko et al., Sensitivity and limit of detection of biosensors based on ring resonators, p.99, 2015.

P. K. Tien, Light waves in thin films and integrated optics, Applied Optics, t, vol.10, issue.11, p.2395, 1971.

D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. Mckinnon et al., Folded cavity soi microring sensors for high sensitivity and real time measurement of biomolecular binding, Optics Express, t, vol.16, pp.15-137, 2008.

S. Hu, K. Qin, I. I. Kravchenko, S. T. Retterer, and S. M. Weiss, Suspended micro-ring resonator for enhanced biomolecule detection sensitivity, Proceedings of SPIE, t. 8933, vol.893306, p.1, 2014.

X. Li, Z. Zhang, S. Qin, T. Wang, F. Liu et al., Sensitive label-free and compact biosensor based on concentric silicon-on-insulator microring resonators, Applied Optics, t, vol.48, p.25, 2009.

H. Ren, C. L. Zou, J. Lu, L. L. Xue, S. Guo et al., Highly sensitive intensity detection by a self-interference micro-ring resonator, IEEE Photonics Technology Letters, t, vol.28, issue.13, p.1469, 2016.

G. Y. Oh, T. K. Lee, H. S. Kim, D. G. Kim, and Y. W. Cho, Design of ultrasensitive biosensor applying surface plasmon resonance to a triangular resonator, Optics Express, t, vol.20, pp.19-067, 2012.

J. Hu and D. Dai, Cascaded-ring optical sensor with enhanced sensitivity by using suspended si-nanowires, IEEE Photonics Technology Letters, issue.23, p.842, 2011.

K. Malmir, H. Habibiyan, and H. Ghafoorifard, An ultrasensitive optical label-free polymeric biosensor based on concentric triple microring resonators with a central microdisk resonator, Optics Communications, t, vol.365, p.150, 2016.

L. Sun, J. Yuan, T. Ma, X. Sang, B. Yan et al., Design and optimization of silicon concentric dual-microring resonators for refractive index sensing, Optics Communications, 2016.

R. Zafar, K. Sethia, V. Mathur, T. Arora, U. Kabra et al., Ultra-high sensitive plasmonic refractive index sensor based on ring resonator, IEEE Conference EESCO, 2015.

X. Jiang, J. Ye, J. Zou, M. Li, and J. J. He, Cascaded silicon-on-insulator doublering sensors operating in high-sensitivity transverse-magnetic mode, Optics Letters, t. 38, p.1349, 2013.

L. Jin, M. Li, and J. J. He, Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect, Optics Communications, t, vol.284, p.156, 2011.

T. Claes, W. Bogaerts, and P. Bienstman, Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the vernier-effect and introduction of a curve fitting method for an improved detection limit, Optics Express, t, vol.18, pp.22-747, 2010.

V. Zamora, P. Lützow, M. Weiland, and D. Pergande, A highly sensitive refractometric sensor based on cascaded sin microring resonators, Sensors, t, vol.13, pp.14-601, 2013.

J. T. Robinson, L. Chen, and M. Lipson, On-chip gas detection in silicon optical microcavities, Optics Express, t, vol.16, issue.6, p.4296, 2008.

C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström et al., Slot-waveguide biochemical sensor, Optics Letters, t, vol.32, p.3080, 2007.

C. A. Barrios, M. J. Banuls, V. Gonzalez-pedro, K. B. Gylfason, B. Sánchez et al., Label-free optical biosensing with slot-waveguides, Optics Letters, t, vol.33, issue.7, p.708, 2008.

C. F. Carlborg, K. B. Gylfason, A. Ka?mierczak, F. Dortu, M. J. Polo et al., A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips, p.281, 2010.

M. Mancuso, J. M. Goddard, and D. Erickson, Nanoporous polymer ring resonators for biosensing, Optics Express, t, vol.20, issue.1, p.245, 2012.

M. Gabalis, D. Urbonas, and R. Petruskevicius, A perforated microring resonator for optical sensing applications, p.1, 2014.

S. M. Weiss, G. Rong, and J. L. Lawrie, Current status and outlook for siliconbased optical biosensors, p.1071, 2009.

I. Rea, M. Iodice, G. Coppola, I. Rendina, A. Marino et al., A porous silicon-based bragg grating waveguide sensor for chemical monitoring, Sensors and Actuators B : Chemical, t, vol.139, p.39, 2009.

X. Wei and S. M. Weiss, Guided mode biosensor based on grating coupled porous silicon waveguide, Optics Express, t, vol.19, p.11, 2011.

L. A. Delouise, P. M. Kou, and B. L. Miller, Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. insights into biosensor sensitivity, Analytical Chemistry, t, vol.77, p.3222, 2005.

K. Kim and T. E. Murphy, Porous silicon integrated mach-zehnder interferometer waveguide for biological and chemical sensing, Optics Express, t, vol.21, pp.19-488, 2013.

G. A. Rodriguez, S. Hu, and S. M. Weiss, Porous silicon ring resonator for compact, high sensitivity biosensing applications, Optics Express, t, vol.23, issue.6, p.7111, 2015.

M. Hiraoui, M. Guendouzand, N. Lorrain, L. Haji, and M. Oueslati, Buried anti resonant reflecting optical waveguide based on porous silicon material for an integrated mach zehnder structure, Applied Physics Letters, t, vol.36, p.212, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00804184

N. Lorrain, M. Hiraoui, M. Guendouz, and L. Haji, Functionalization control of porous silicon optical structures using reflectance spectra modeling for biosensing applications, Materials Science and Engineering B, t, vol.176, p.1047, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00804199

M. Hiraoui, L. Haji, M. Guendouz, N. Lorrain, A. Moadhen et al., Towards a biosensor based on anti resonant reflecting optical waveguide fabricated from porous silicon, Biosensors and Bioelectronics, vol.36, p.212, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00728030

P. D. Trinh, S. Yegnanarayanan, and B. Jalali, Integrated optical directional couplers in silicon-on-insulator, Electronics Letters, t, vol.31, p.2097, 1995.

C. Dragone, C. A. Edwards, and R. C. Kistler, Integrated optics nxn multiplexer on silicon, IEEE Photonics Technology Letters, issue.10, p.896, 1991.

A. W. Snyder and J. D. Love, Optical Waveguide Theory, 1983.

B. E. Saleh and M. C. Teich, Fundamentals of Photonics, 2007.

D. L. Lee, Electromagnetic Pinciples of Integrated Optics, 1986.

R. G. Hunsperger, Integrated Optics : Theory and Technology, 1991.

P. Pirasteh, Etude de guides d'onde en matériaux nanocomposites à base de silicium poreux, 2005.

A. Maalouf, Contribution à l'étude des procédés de réalisation de circuits intégrés optiques en matériaux polymères, 2007.

W. Theiss, Optical properties of porous silicon, Surface Science Reports, t, vol.29, p.91, 1997.

E. A. Marcatili, Bends in optical dielectric guides, p.2103, 1969.

D. Marcuse, Bending losses of the asymmetric slab waveguide, p.2551, 1971.

R. J. Deri and E. Kapon, Low-loss iii-v semiconductor optical waveguides, IEEE Journal of Quantum Electronics, t, vol.27, issue.3, p.626, 1991.

Y. A. Vlasov and S. J. Mcnab, Losses in single-mode silicon-on-insulator strip waveguides and bends, Optics Express, t, vol.12, issue.8, p.1622, 2004.

Y. Takuma, M. Miyagi, and S. Kawakami, Bent asymmetric dielectric slab waveguides : a detailed analysis, Applied Optics, t, vol.20, issue.13, p.2291, 1981.

E. A. Marcatili, Dielectric rectangular waveguide and directional coupler for integrated optics, p.2071, 1969.

A. Yariv, Coupled-mode theory for guided-wave optics, IEEE Journal Quantum Electronics, issue.9, p.919, 2006.

S. E. Miller, Coupled wave theory and waveguide applications, p.661, 1954.

A. Yariv, Universal relations for coupling of optical power between microresonators and dielectric waveguides, Electronics Letters, t, vol.36, p.321, 2000.

W. R. Mckinnon, D. X. Xu, C. Storey, E. Post, A. Densmore et al., Extracting coupling and loss coefficients from a ring resonator, Optics Express, t, vol.17, pp.18-971, 2009.

C. Arnaud, Etude de fonctions actives et/ou passives à base de micro-résonateurs à modes de galerie, 2006.

H. Yi, D. S. Citrin, and Z. Zhou, Highly sensitive athermal optical microring sensor based on intensity detection, IEEE Journal of selected topics in quantum electronics, issue.3, p.354, 2011.

Y. Sanogo, A. F. Obaton, C. Delezoide, J. Lautru, M. Lièvre et al., Phase sensitive-optical low coherence interferometer : a new protocol to evaluate the performance of optical micro-resonators, Journal of Lightwave Technology, issue.1, p.111, 2013.

C. Y. Chao, Polymer microring resonator and its application as a biosensor, 2005.

C. Delezoide, Microrésoanteur en anneaux polymères pour capteurs optofluidiques à champ evanescent, 2012.

K. Okamoto, Fundamentals of Optical Waveguides, 2006.

H. Ma, A. K. Jen, and L. R. Dalton, Polymer-based optical waveguides : materials, processing and devices, Advanced materials, t, vol.14, p.1339, 2002.

L. Eldada and L. W. Shacklette, Avances in polymer integrated optics, p.54, 2000.

T. Beltrani, M. Bösch, R. Centore, S. Concilio, P. Günter et al., Nonlinear optical properties of polymers containing a new azophenylbenzoxazole chromophore, Polymer, t, vol.42, p.4025, 2001.

A. Maalouf, D. Bosc, P. Grosso, M. Gadonna, M. Thual et al., Wide tunable thermo-optical filters with polymer micro-ring resonators, Proceedings of SPIE, t. 6996, n o 69961S, p.1, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00355588

A. Maalouf, C. Bastianelli, F. Mahé, A. Belmiloudi, M. Gadonna et al., Improved integrated resonators in polymer technology for tunable filter, Proceedings of SPIE, t. 8431, vol.843124, p.1, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00707252

A. Maalouf, M. Gadonna, D. Bosc, and I. Hardy, An improvement in standard photolithography resolution based on kirchhoff diffraction studies, Journal of Physics D : Applied Physics, t, vol.42, p.1, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00353894

K. Tamaki, H. Takase, Y. Eriyama, and T. Ukachi, Recent progress on polymer waveguide materials, Journal of photopolymer science and technologoy, t, vol.16, p.639, 2003.

H. Lorenz, M. Despont, N. Fahrni, N. Labianca, P. Renaud et al., Su-8 : a low-cost negative resist for mems, Journal of Micromechanics and Microengineering, issue.7, p.121, 1997.

L. H. Tam and D. Lau, Moisture effect on the mechanical and interfacial properties of epoxy-bonded material system : an atomistic and experimental investigation, Polymer, t, vol.57, p.132, 2015.

A. P. Gadre, A. J. Nijdam, J. A. Garra, A. H. Monica, M. C. Cheng et al., Fabrication of a fluid encapsulated dermal patch using multilayered su-8, p.478, 2004.

H. Mahe, Contribution à l'étude de la réalisation de fonctions electro-optiques intégrées en polymère, 2012.

J. B. Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry, Optics communications, t, vol.284, p.807, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00601208

H. G. Tompkins and E. A. Irene, Handbook of ellipsometry, 2005.

K. K. Tung, W. H. Wong, and E. Y. Pun, Polymeric optical waveguides using direct ultraviolet photolithography process, Applied Physics A -Materials Science and Processing, vol.80, p.621, 2005.

C. S. Hunag and W. C. Wang, Large-core single-mode rib su8 waveguide using solvent-assisted microcontact molding, Applied Optics, t, vol.47, p.4540, 2008.

D. Salazar-miranda, F. F. Castillon, J. J. Sanchez-sanchez, J. L. Angel-valenzuela, and H. Marquez, Refractive index modulation of su-8 polymer optical waveguides by means of hybrid photothermal process, Revista Mexicana de Ingeniería Química, p.85, 2010.

D. Bosc, A. Maalouf, K. Messaad, H. Mahé, and L. Bodiou, Advanced analysis of optical loss factors in polymers for integrated optics circuits, p.1207, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00813086

D. Kato, Light coupling from a stripegeometry gaas diode laser into an optical fiber with spherical end, Journal of Applied Physics, t, vol.44, issue.6, p.2756, 1973.

H. Kogelnik, Coupling and conversion coefficients for optical modes, Proceeding Symposium Quasi-Optics, t. 14, p.333, 1964.

M. Saruwatari and K. Nawata, Semiconductor laser to single-mode fiber coupler, Applied Optics, t, vol.18, issue.11, p.1847, 1979.

M. Thual, P. Chanclou, O. Gautreau, L. Caledec, C. Guignard et al., Appropriate micro-lens to improve coupling between laser diodes and singlemode fibres, Electronics Letters, p.1, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00145951

M. Thual, G. Moreau, J. Ribette, P. Rochard, M. Gadonna et al., Micro-lens on polarization maintaining fibre for coupling with 1.55µm quantum dot devices, Optics Communications, t, vol.255, p.278, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00077738

B. Bêche, N. Pelletier, E. Gaviot, and J. Zyss, Single-mode te00-tm00 optical waveguides on su8 polymer, Optics communications, t, vol.230, p.91, 2004.

J. K. Poon, Y. Huang, G. T. Paloczi, and A. Yariv, Soft lithography replica molding of critically coupled polymer microring resonators, IEEE Photonics technology letters, t, vol.16, issue.11, p.2496, 2004.

M. Nordström, D. A. Zauner, A. Boisen, and J. Hübner, Single-mode waveguides with su-8 polymer core and cladding for moems applications, Journal of Lightwave Technology, issue.5, p.1284, 2007.

K. K. Tung, W. H. Wong, and E. Y. Pun, Polymeric optical waveguides using direct ultraviolet photolithography process, p.621, 2005.

S. Samanta, P. K. Dey, P. Banerji, and P. Ganguly, Comparative study between the results of effective index based matrix method and characterization of fabricated su-8 waveguide, Optics communications, t, vol.382, p.632, 2016.

F. Grillot, L. Vivien, S. Laval, and E. Cassan, Propagation loss in singlemode ultrasmall square silicon-on-insulator optical waveguides, Journal of lightwave technology, t, vol.24, issue.2, p.891, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00084884

C. Y. Chao and L. J. Guo, Thermal-flow technique for reducing surface roughness and controlling gap size in polymer microring resonators, Applied Physics Letters, t, vol.84, p.2479, 2004.

Y. L. Yeh, Real-time measurement of glucose concentration and average refractive index using a laser interferometer, Optics and Lasers in Engineering, vol.46, p.666, 2008.

J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel et al., Ultrahigh-quality-factor silicon-on-insulator microring resonator, Optics Letters, t, vol.29, p.2861, 2004.

A. Uhlir, Electrolytic shaping of germanium and silicon, Bell system technical journal, t, vol.35, p.333, 1956.

D. R. Turner, Electropolishing silicon in hydrofluoric acid solutions, Journal of the electrochemical society, issue.7, p.402, 1958.

L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, vol.57, p.1046, 1990.

A. G. Cullis, L. T. Canham, and P. D. Calcott, The structural and luminescence properties of porous silicon, Journal of Applied physics, vol.82, p.909, 1997.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-fischer, H. Munder et al., Porous silicon multilayer optical waveguides, p.143, 1996.

L. T. Canham, T. I. Cox, A. Loni, and A. J. Simons, Progress towards silicon optoelectronics using porous silicon technology, Applied Surface Science, t, vol.102, p.436, 1996.

F. A. Harraz, Porous silicon chemical sensors and biosensors : a review, Sensors and Actuators B, t, vol.202, p.897, 2014.

R. L. Smith and S. D. Collins, Porous silicon formation mechanisms, p.1, 1992.

V. Lehmann and U. Gösele, Porous silicon formation : a quantum wire effect, Applied Physics Letters, t, vol.58, issue.8, p.856, 1991.

H. Gerischer, P. Allongue, and V. C. Kieling, The mechanism of the anodic oxidation of silicon in acidic fluoride solutions revisited, Berichte der Bunsengesellschaft für physikalische Chemie, p.753, 1993.

V. Lehmann and U. Gösele, On the morphology and the electrochemical formation mechanism of mesoporous silicon, Materials Science and Engineering B, t, vol.69, p.11, 2000.

O. Bisi, S. Ossicini, and L. Pavesi, Porous silicon : a quantum sponge structure for silicon based optoelectronics, Surface Science Reports, vol.38, p.1, 1993.

J. Charrier, Contribution à l'étude de guides optiques enterrés en silicium poreux, 2000.

, Les éditions de la Physique, 1995, author = A. Halimaoui, chap. Porous silicon : material processing, properties and applications, p.33

M. A. Hory, R. Hérino, M. Ligeon, F. Muller, F. Gaspard et al., Fourier transform ir monitoring of porous silicon passivation during post-treatments such as anodic oxidation and contact with organic solvents, Thin Solid Films, vol.255, p.200, 1995.

A. Nakajima, T. Itakura, S. Watanabe, and N. Nakayama, Photoluminescence of porous si, oxidized then deoxidized chemically, p.46, 1992.

S. M. Prokes, Light emission in thermally oxidized porous silicon : evidence for oxide related luminescence, p.3244, 1993.

P. Gupta, V. L. Colvin, and S. M. George, Hydrogen desorption kinetics from monohydride and dihydride species on silicon surfaces, p.8234, 1988.

J. J. Yon, K. Barla, R. Herino, and G. Bomchil, The kinetics and mechanism of oxide layer formation from porous silicon formed on psi substrates, Journal of Applied Physics, t, vol.62, issue.3, p.1042, 1987.

R. Herino, A. Perio, K. Barla, and G. Bomchil, Microstructure of porous silicon and its evolution with temperature, Materials Letters, vol.6, issue.2, p.519, 1984.

E. V. Astrova and V. A. Tolmachev, Effective refractive index and composition of oxidized porous silicon films, Materials Science and Engineering B, t, vol.69, p.142, 2000.

C. Pickering, M. I. Beale, and D. J. Robbins, Optical properties of porous silicon films, Thin solid films, t. 125, p.157, 1985.

D. E. Aspnes, Optical properties of thin films, p.249, 1982.

F. Ferrieu, A. Halimaoui, and D. Bensahel, Optical characterisation of porous silicon layers by spectrometric ellipsometry in the 1,5-5 ev range, p.293, 1992.