S. Alarifi, D. Ali, S. Alkahtani, and M. S. Alhader, Iron Oxide Nanoparticles Induce Oxidative Stress, DNA Damage, and Caspase Activation in the Human Breast Cancer Cell Line, Biological Trace Element Research, vol.159, issue.1-3, pp.416-440, 2014.

P. Bihari, M. Vippola, S. Schultes, M. Praetner, A. G. Khandoga et al., Optimized Dispersion of Nanoparticles for Biological in Vitro and in Vivo Studies, Particle and Fibre Toxicology, vol.5, 2008.

G. M. Bishop, F. Ivo, R. Scheiber, S. R. Dringen, and . Robinson, Synergistic Accumulation of Iron and Zinc by Cultured Astrocytes, Journal of Neural Transmission, vol.117, issue.7, pp.809-826, 2010.

M. Campone, I. Valo, P. Jézéquel, M. Moreau, A. Boissard et al., Prediction of Recurrence and Survival for Triple-Negative Breast Cancer (TNBC) by a Protein Signature in Tissue Samples, Molecular & Cellular Proteomics, vol.14, issue.11, pp.2936-2982, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01820133

A. L. Cortajarena, D. Ortega, S. M. Ocampo, A. Gonzalez-garcía, P. Couleaud et al., Engineering Iron Oxide Nanoparticles for Clinical Settings, Nanobiomedicine, vol.1, 2014.

C. Costa, F. Brandão, M. J. Bessa, S. Costa, V. Valdiglesias et al., In Vitro Cytotoxicity of Superparamagnetic Iron Oxide Nanoparticles on Neuronal and Glial Cells. Evaluation of Nanoparticle Interference with Viability Tests, Journal of Applied Toxicology, vol.36, issue.3, pp.361-72, 2016.

. Dalzon, C. Bastien, V. Aude-garcia, H. Collin-faure, D. Diemer et al., Differential Proteomics Highlights Macrophage-Specific Responses to Amorphous Silica Nanoparticles, Nanoscale, vol.9, issue.27, pp.9641-58, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01691353

M. J. Edelmann, A. Leslie, C. D. Shack, K. B. Naske, B. Walters et al., SILAC-Based Quantitative Proteomic Analysis of Human Lung Cell Response to Copper Oxide Nanoparticles, PLoS ONE, vol.9, issue.12, pp.1-32, 2014.

G. Fleige, C. Nolte, M. Synowitz, F. Seeberger, H. Kettenmann et al., Magnetic Labeling of Activated Microglia in Experimental Gliomas, Neoplasia, vol.3, issue.6, pp.489-99, 2001.

S. Triboulet, C. Aude-garcia, M. Carrière, H. Diemer, F. Proamer et al., Molecular Responses of Mouse Macrophages to Copper and Copper Oxide Nanoparticles Inferred from Proteomic Analyses, Molecular & Cellular Proteomics, vol.12, issue.11, pp.3108-3130, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00879643

C. Vogt, M. Pernemalm, P. Kohonen, S. Laurent, K. Hultenby et al., Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages, vol.10, pp.1-20, 2015.

H. T. Wiogo, M. Lim, V. Bulmus, J. Yun, and R. Amal, Stabilization of Magnetic Iron Oxide Nanoparticles in Biological Media by Fetal Bovine Serum (FBS), Langmuir, vol.27, issue.2, pp.843-50, 2011.

J. R. Wisniewski, . Zougman, M. Nagaraj, J. Mann, and . Wi, Universal Sample Preparation Method for Proteome Analysis, Nature Methods, vol.6, issue.5, pp.377-362, 2009.

Z. Yarjanli, K. Ghaedi, A. Esmaeili, S. Rahgozar, and A. Zarrabi, Iron Oxide Nanoparticles May Damage to the Neural Tissue through Iron Accumulation, Oxidative Stress, and Protein Aggregation, BMC Neuroscience, vol.18, issue.1, 2017.

, BioMed Central, p.51

X. Zhang, N. Surguladze, B. Slagle-webb, A. Cozzi, and J. R. Connor, Cellular Iron Status Influences the Functional Relationship between Microglia and Oligodendrocytes, GLIA, vol.54, issue.8, pp.795-804, 2006.

J. Ai, Nanotoxicology and nanoparticle safety in biomedical designs, International journal of nanomedicine, vol.6, pp.1117-1127, 2011.

S. Amara, Acute exposure to zinc oxide nanoparticles does not affect the cognitive capacity and neurotransmitters levels in adult rats, Nanotoxicology, vol.8, issue.sup1, pp.208-215, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02013112

S. Announcement, FDA strengthens warnings and changes prescribing instructions to decrease the risk of serious allergic reactions with anemia drug Feraheme ( ferumoxytol ), pp.1-4, 2015.

E. A. Bleeker, Considerations on the EU definition of a nanomaterial: Science to support policy making, Regulatory Toxicology and Pharmacology, vol.65, issue.1, pp.119-125, 2013.

C. Chua and E. H. Morgan, Effects of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat, Biological trace element research, vol.55, issue.1-2, pp.39-54, 1996.

A. L. Cortajarena, Engineering Iron Oxide Nanoparticles for Clinical Settings, Nanobiomedicine, vol.1, issue.2, 2014.

Y. Kim, In vivo nanoneurotoxicity screening using oxidative stress and neuroinflammation paradigms, Nanomedicine: Nanotechnology, Biology, and Medicine, vol.9, issue.7, pp.1057-1066, 2013.

V. Labrie, Genetic inactivation of D-amino acid oxidase enhances extinction and reversal learning in mice, Learning & memory, vol.16, issue.1, pp.28-37, 2009.

O. M. Lemine, Fe2O3by sol-gel with large nanoparticles size for magnetic hyperthermia application, Journal of Alloys and Compounds, vol.607, pp.125-131, 2014.

M. Lu, FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease, American Journal of Hematology, vol.85, issue.5, pp.315-319, 2010.

K. Maaroufi, Impairment of emotional behavior and spatial learning in adult Wistar rats by ferrous sulfate, Physiology & behavior, vol.96, issue.2, pp.343-349, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01576948

B. A. Maher, Magnetite pollution nanoparticles in the human brain, Proceedings of the National Academy of Sciences, vol.113, issue.39, pp.10797-10801, 2016.

R. Morris, Developments of a water maze procedure for studying spatial learning in the rat, Journal of Neuroscience Methods, vol.11, pp.7336-7336, 1984.

A. Nieoullon, Dopamine and the regulation of cognition and attention, Progress in Neurobiology, vol.67, issue.1, pp.53-83, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00307886

E. Park, Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice, Toxicology, vol.275, issue.1-3, pp.65-71, 2010.

S. Pellow, Validation of open : closed arm entries in an elevated plus-maze as a measure of anxiety in the rat, Journal of Neuroscience Methods, vol.14, issue.3, pp.149-167, 1985.

M. Pitkethly, Nanotechnology: past, present, and future, Nano Today, vol.3, issue.3-4, p.6, 2008.

P. Remy, Depression in Parkinson's disease: Loss of dopamine and noradrenaline innervation in the limbic system, Brain, vol.128, issue.6, pp.1314-1322, 2005.

I. Van-rooy, In vivo methods to study uptake of nanoparticles into the brain, Pharmaceutical Research, vol.28, issue.3, pp.456-471, 2011.

L. Sadeghi, V. Yousefi-babadi, and H. R. Espanani, Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue, Bratislavske lekarske listy, vol.116, issue.6, pp.373-381, 2015.

E. Sheida, The effect of iron nanoparticles on performance of cognitive tasks in rats, Environmental Science and Pollution Research, vol.24, issue.9, pp.8700-8710, 2017.

A. Shirband, Dose-dependent effects of iron oxide nanoparticles on thyroid hormone concentrations in liver enzymes: Possible tissue destruction, Global Journal of Medicine Researches and Studies, vol.1, issue.1, pp.28-31, 2014.

M. Simko and M. Mattsson, Interactions Between Nanosized Materials and the Brain, Current Medicinal Chemistry, vol.21, issue.37, pp.4200-4214, 2014.

Z. Sun, Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood-brain barrier, International Journal of Nanomedicine, vol.9, issue.1, pp.3013-3026, 2014.

B. Szalay, Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments, Journal of Applied Toxicology, vol.32, issue.6, pp.446-453, 2012.

P. Umarao, Neuroprotective Potential of Superparamagnetic Iron Oxide Nanoparticles Along with Exposure to Electromagnetic Field in 6-OHDA Rat Model of, 2016.

, Parkinson's Disease. Journal of Nanoscience and Nanotechnology, vol.16, issue.1, pp.261-269

D. Vayenas, Influence of iron overload on manganese, zinc, and copper concentration in rat tissues in vivo: study of liver, spleen, and brain, Int J Clin Lab Res, vol.28, issue.3, pp.183-186, 1998.

L. Wang, Acute Toxicity of Ferric Oxide and Zinc Oxide Nanoparticles in Rats, Journal of Nanoscience and Nanotechnology, vol.10, pp.8617-8624, 2010.

Y. X. Wáng and J. Idée, A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging, Quantitative Imaging in Medicine and Surgery, vol.7, issue.1, pp.88-122, 2017.

C. S. Yah, S. E. Iyuke, and G. S. Simate, A review of nanoparticles toxicity and their routes of exposures, Iranian Journal of Pharmaceutical Sciences, vol.8, issue.1, pp.299-314, 2012.

Z. Yarjanli, Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation, BMC Neuroscience, vol.18, issue.1, p.51, 2017.

G. Oberdörster, Safety assessment for nanotechnology and nanomedicine: Concepts of nanotoxicology, J. Intern. Med, pp.89-105, 2010.

V. A. Grover, J. Hu, K. E. Engates, and H. J. Shipley, Adsorption and desorption of bivalent metals to hematite nanoparticles, Environ. Toxicol. Chem, vol.31, pp.86-92, 2012.

Y. X. Wáng and J. Idée, A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging, Quant. Imaging Med. Surg, vol.7, pp.88-122, 2017.

I. Van-rooy, S. Cakir-tascioglu, W. E. Hennink, G. Storm, R. M. Schiffelers et al.,

. Mastrobattista, vivo methods to study uptake of nanoparticles into the brain, vol.28, pp.456-471, 2011.

M. Simko and M. Mattsson, Interactions Between Nanosized Materials and the Brain, Curr. Med. Chem, vol.21, pp.4200-4214, 2014.

A. L. Cortajarena, D. Ortega, S. M. Ocampo, A. Gonzalez-garcía, P. Couleaud et al.,

C. Miranda, A. Belda-iniesta, and . Ayuso-sacido, Engineering Iron Oxide Nanoparticles for Clinical Settings, Nanobiomedicine, vol.1, 2014.

Z. Yarjanli, K. Ghaedi, A. Esmaeili, S. Rahgozar, and A. Zarrabi, Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation, BMC Neurosci, vol.18, p.51, 2017.

Y. Kim, S. D. Kong, L. H. Chen, T. R. Pisanic, S. Jin et al., In vivo nanoneurotoxicity screening using oxidative stress and neuroinflammation paradigms, Nanomedicine Nanotechnology, Biol. Med, vol.9, pp.1057-1066, 2013.

Z. Sun, M. Worden, Y. Wroczynskyj, V. Yathindranath, J. Van-lierop et al.,

D. W. Miller, Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood-brain barrier, Int. J. Nanomedicine, vol.9, pp.3013-3026, 2014.

H. S. Huang and J. F. Hainfeld, Intravenous magnetic nanoparticle cancer hyperthermia, Int. J. Nanomedicine, vol.8, pp.2521-2532, 2013.

A. Elias and A. Tsourkas, Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles, Hematology Am. Soc. Hematol. Educ. Program, pp.720-726, 2009.

M. Lu, M. H. Cohen, D. Rieves, and R. Pazdur, Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease, Am. J. Hematol, vol.85, pp.315-319, 2010.

S. Announcement, FDA strengthens warnings and changes prescribing instructions to decrease the risk of serious allergic reactions with anemia drug Feraheme ( ferumoxytol ), pp.1-4, 2015.

E. Kim, J. M. Kim, L. Kim, S. J. Choi, I. S. Park et al., The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways, Int. J. Nanomedicine, vol.11, pp.4595-4607, 2016.

B. González-flecha, Oxidant mechanisms in response to ambient air particles

, Aspects Med, vol.25, pp.169-182, 2004.

J. Muller, F. Huaux, N. Moreau, P. Misson, J. F. Heilier et al.,

J. B. Fonseca, D. Nagy, and . Lison, Respiratory toxicity of multi-wall carbon nanotubes

, Appl. Pharmacol, vol.207, pp.221-231, 2005.

L. Wang, L. Wang, W. Ding, and F. Zhang, Acute Toxicity of Ferric Oxide and Zinc Oxide Nanoparticles in Rats, J. Nanosci. Nanotechnol, vol.10, pp.8617-8624, 2010.

S. Alarifi, D. Ali, S. Alkahtani, and M. S. Alhader, Iron oxide nanoparticles induce oxidative stress, DNA damage, and caspase activation in the human breast cancer cell line, Biol. Trace Elem. Res, vol.159, pp.416-424, 2014.

A. Shirband, H. Azizian, M. Pourentezari, M. E. Rezvani, M. Anvari et al.,

. Esmaeilidehaj, Dose-dependent effects of iron oxide nanoparticles on thyroid hormone concentrations in liver enzymes: Possible tissue destruction, Glob, J. Med. Res. Stud, vol.1, pp.28-31, 2014.

L. Sadeghi, V. Babadi, and H. R. Espanani, Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue, vol.116, pp.373-381, 2015.

O. M. Lemine, K. Omri, M. Iglesias, V. Velasco, P. Crespo et al., Fe2O3by sol-gel with large nanoparticles size for magnetic hyperthermia application, J. Alloys Compd, vol.607, pp.125-131, 2014.

S. Pellow, P. Chopin, S. E. File, and M. Briley, Validation of open : closed arm entries in an elevated plus-maze as a measure of anxiety in the rat, J. Neurosci. Methods, vol.14, pp.90031-90038, 1985.

K. Maaroufi, M. Ammari, M. Jeljeli, V. Roy, M. Sakly et al., Impairment of emotional behavior and spatial learning in adult Wistar rats by ferrous sulfate, Physiol. Behav, vol.96, pp.343-349, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01576948

D. Treit, J. Menard, and C. Royan, Anxiogenic stimuli in the elevated plus-maze, Pharmacol. Biochem. Behav, vol.44, pp.463-469, 1993.

R. Morris, Developments of a water maze procedure for studying spatial learning in the rat, J. Neurosci. Methods, vol.11, pp.7336-7336, 1984.

J. Deguil, F. Chavant, C. Lafay-chebassier, M. C. Pérault-pochat, B. Fauconneau et al., Neuroprotective effect of PACAP on translational control alteration and cognitive decline in MPTP Parkinsonian mice, Neurotox. Res, vol.17, pp.142-155, 2010.

S. Amara, I. Ben-slama, I. Mrad, N. Rihane, M. Jeljeli et al.,

W. Rachidi, M. Sève, H. Abdelmelek, and M. Sakly, Acute exposure to zinc oxide nanoparticles does not affect the cognitive capacity and neurotransmitters levels in adult rats, Nanotoxicology, vol.8, pp.208-215, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02013112

T. Enkel, S. M. Berger, K. Schönig, B. Tews, and D. Bartsch, Reduced expression of nogoa leads to motivational deficits in rats, Front. Behav. Neurosci, vol.8, pp.1-7, 2014.

C. S. Yah, S. E. Iyuke, and G. S. Simate, A review of nanoparticles toxicity and their routes of exposures, Iran, J. Pharm. Sci, vol.8, pp.299-314, 2012.

E. Sheida, O. Sipailova, S. Miroshnikov, E. Sizova, S. Lebedev et al.,

. Notova, The effect of iron nanoparticles on performance of cognitive tasks in rats

, Sci. Pollut. Res, vol.24, pp.8700-8710, 2017.

X. T. Huang, Z. M. Qian, X. He, Q. Gong, K. C. Wu et al., Reducing iron in the brain: A novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer's disease, Neurobiol. Aging, vol.35, pp.1045-1054, 2014.

M. G. Du, L. Zhao, Z. Cui, A. Zhu, Y. Zhang et al., Increased Iron Deposition on Brain Quantitative Susceptibility Mapping Correlates with Decreased Cognitive Function in Alzheimer's

. Disease, ACS Chem. Neurosci, 2018.

A. Nieoullon, Dopamine and the regulation of cognition and attention, Prog. Neurobiol, vol.67, pp.53-83, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00307886

P. Umarao, S. Bose, S. Bhattacharyya, A. Kumar, and S. Jain, Neuroprotective Potential of Superparamagnetic Iron Oxide Nanoparticles Along with Exposure to Electromagnetic Field in 6-OHDA Rat Model of Parkinson's Disease, J. Nanosci. Nanotechnol, vol.16, pp.261-269, 2016.

P. Remy, M. Doder, A. Lees, N. Turjanski, and D. Brooks, Depression in Parkinson's disease: Loss of dopamine and noradrenaline innervation in the limbic system, Brain, vol.128, pp.1314-1322, 2005.

S. Z. Imam, S. M. Lantz-mcpeak, E. Cuevas, H. Rosas-hernandez, S. Liachenko et al.,

S. Zhang, J. Sarkar, B. L. Ramu, Y. Robinson, B. Jones et al.,

. Binienda, Iron Oxide Nanoparticles Induce Dopaminergic Damage: In vitro Pathways and In Vivo Imaging Reveals Mechanism of Neuronal Damage, Mol. Neurobiol, vol.52, pp.913-926, 2015.

D. M. Hasan, M. Amans, T. Tihan, C. Hess, Y. Guo et al.,

E. A. Lawton, D. A. Neuwelt, W. L. Saloner, and . Young, Ferumoxytol-Enhanced MRI to Image Inflammation Within Human Brain Arteriovenous Malformations: A Pilot Investigation, Transl. Stroke Res, vol.3, pp.166-173, 2012.

E. Park, H. Kim, Y. Kim, J. Yi, K. Choi et al., Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice, Toxicology, vol.275, pp.65-71, 2010.

B. J. Cherayil, The role of iron in the immune response to bacterial infection, Immunol. Res, vol.50, pp.1-9, 2011.

M. P. Soares and I. Hamza, Macrophages and Iron Metabolism, Immunity, vol.44, pp.492-504, 2016.

A. Willemetz, S. Beatty, E. Richer, A. Rubio, A. Auriac et al.,

S. Thibaudeau, D. Vaulont, F. Malo, and . Canonne-hergaux, Iron-and hepcidin-independent downregulation of the iron exporter ferroportin in macrophages during Salmonella infection, Front. Immunol, vol.8, 2017.

M. A. Abdelhalim and S. A. Moussa, The gold nanoparticle size and exposure duration effect on the liver and kidney function of rats: In vivo, Saudi Journal of Biological Sciences. King Saud University, vol.20, issue.2, pp.177-181, 2013.

J. Ai, Nanotoxicology and nanoparticle safety in biomedical designs, International journal of nanomedicine, vol.6, pp.1117-1127, 2011.

S. Amara, Acute exposure to zinc oxide nanoparticles does not affect the cognitive capacity and neurotransmitters levels in adult rats, Nanotoxicology, vol.8, issue.sup1, pp.208-215, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02013112

S. Amara, Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain, Toxicology and Industrial Health, vol.31, issue.12, pp.1202-1209, 2015.

D. Askri, S. Ouni, S. Galai, and J. Arnaud, Intranasal instillation of iron oxide nanoparticles induces inflammation and perturbation of trace elements and neurotransmitters, but not behavioral impairment in rats, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01989139

, Environmental Science and Pollution Research, pp.1-11

D. Askri, S. Ouni, S. Galai, and B. Chovelon, Sub-acute intravenous exposure to Fe2O3nanoparticles does not alter cognitive performances and catecholamine levels, but slightly disrupts plasma iron level and brain iron content in rats, Journal of Trace Elements in Medicine and Biology, vol.50, pp.73-79, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01989121

V. Y. Babadi, Evaluation of iron oxide nanoparticles effects on tissue and enzymes of liver in rats, Journal of Pharmaceutical and Biomedical Science, vol.23, issue.4, pp.67-69, 2012.

L. Barhoumi and D. Dewez, Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris, BioMed Research International, 2013.

C. Chua and E. H. Morgan, Effects of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat, Biological trace element research, vol.55, issue.1-2, pp.39-54, 1996.

A. L. Cortajarena, Engineering Iron Oxide Nanoparticles for Clinical Settings, Nanobiomedicine, vol.1, issue.2, 2014.

J. Deguil, Neuroprotective effect of PACAP on translational control alteration and cognitive decline in MPTP Parkinsonian mice, Neurotoxicity Research, vol.17, issue.2, pp.142-155, 2010.

R. Gupta, H. Xie, and H. Sciences, , vol.37, pp.209-230, 2018.

C. Y. Huang, Compare analysis for the nanotoxicity effects of different amounts of endocytic iron oxide nanoparticles at single cell level, PLoS ONE, issue.5, p.9, 2014.

Y. Huang, Recent Developments in Food Packaging Based on Nanomaterials, pp.1-29, 2018.

L. Du, Z. Zhao, A. Cui, Y. Zhu, L. Zhang et al., Increased Iron Deposition on Brain Quantitative Susceptibility Mapping Correlates with Decreased Cognitive Function in Alzheimer's Disease, ACS Chemical Neuroscience, 2018.

M. M. Lashof-sullivan, Intravenously administered nanoparticles increase survival following blast trauma, Proceedings of the National Academy of Sciences, vol.111, pp.10293-10298, 2014.

O. M. Lemine, 2014) '??-Fe2O3by sol-gel with large nanoparticles size for magnetic hyperthermia application, Journal of Alloys and Compounds, vol.607, pp.125-131

A. Y. Liu, SC', Toxicology Letters, 2018.

K. Maaroufi, Impairment of emotional behavior and spatial learning in adult Wistar rats by ferrous sulfate, Physiology & behavior, vol.96, issue.2, pp.343-349, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01576948

K. Maaroufi, Spatial learning, monoamines and oxidative stress in rats exposed to 900MHz electromagnetic field in combination with iron overload', Behavioural Brain Research, vol.258, pp.80-89, 2014.

B. A. Maher, Magnetite pollution nanoparticles in the human brain, Proceedings of the National Academy of Sciences, vol.113, pp.10797-10801, 2016.

R. Morris, Developments of a water maze procedure for studying spatial learning in the rat, Journal of Neuroscience Methods, vol.11, pp.7336-7336, 1984.

S. Opinion, Scientific Opinion on the re-evaluation of iron oxides and hydroxides, vol.13, pp.1-57, 2015.

S. Patel, Toxicity evaluation of magnetic iron oxide nanoparticles reveals neuronal loss in chicken embryo', Drug and Chemical Toxicology, Informa Healthcare USA, pp.1-8, 2017.

S. Pellow, Validation of open : closed arm entries in an elevated plus-maze as a measure of anxiety in the rat, Journal of Neuroscience Methods, vol.14, issue.3, pp.90031-90038, 1985.

S. Raj, Nanotechnology in cosmetics: Opportunities and challenges, Journal of Pharmacy and Bioallied Sciences, vol.4, issue.3, p.186, 2012.

L. Sadeghi, V. Yousefi-babadi, and H. R. Espanani, Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue, Bratislavske lekarske listy, vol.116, issue.6, pp.373-381, 2015.

E. Sheida, The effect of iron nanoparticles on performance of cognitive tasks in rats, Environmental Science and Pollution Research. Environmental Science and Pollution Research, vol.24, issue.9, pp.8700-8710, 2017.

I. Slama and . Ben, Sub-Acute Oral Toxicity of Zinc Oxide Nanoparticles in Male Rats, Journal of Nanomedicine & Nanotechnology, vol.6, issue.3, 2015.

B. Szalay, Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments, Journal of Applied Toxicology, vol.32, issue.6, pp.446-453, 2012.

D. Treit, J. Menard, and C. Royan, Anxiogenic stimuli in the elevated plus-maze, Biochemistry and Behavior, vol.44, issue.2, pp.463-469, 1993.

V. Valdiglesias, Are iron oxide nanoparticles safe? Current knowledge and future perspectives, Journal of Trace Elements in Medicine and Biology, vol.38, pp.53-63, 2016.

D. Vayenas, Influence of iron overload on manganese, zinc, and copper concentration in rat tissues in vivo: study of liver, spleen, and brain, Int J Clin Lab Res, vol.28, issue.3, pp.183-186, 1998.

C. S. Yah, S. E. Iyuke, and G. S. Simate, A Review of Nanoparticles Toxicity and Their Routes of Exposures, IRANIAN jOURNAL OF PHARMACEUTICAL SCIENCE, vol.8, issue.1, pp.299-314, 2012.

Y. Yoshioka, Engineered Cell Manipulation for Biomedical Application, pp.259-271, 2014.

N. R. Younes and . Ben, Subacute toxicity of titanium dioxide (TiO<inf>2</inf>) nanoparticles in male rats: emotional behavior and pathophysiological examination, Environmental Science and Pollution Research, vol.22, issue.11, pp.8728-8737, 2015.

J. Yun, Comparative toxicity of silicon dioxide , silver and iron oxide nanoparticles after repeated oral administration to rats, pp.681-693, 2014.

M. Baek, H. E. Chung, J. Yu, J. A. Lee, T. H. Kim et al., Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles, Int J Nanomedicine, vol.7, pp.3081-3097, 2012.

M. Pitkethly, Nanotechnology: past, present, and future, Nano Today, vol.3, p.6, 2008.

S. Bhatia, Natural polymer drug delivery systems: Nanoparticles, plants, and algae, 2016.

A. L. Cortajarena, D. Ortega, S. M. Ocampo, A. Gonzalez-garcía, P. Couleaud et al., Engineering Iron Oxide Nanoparticles for Clinical Settings, Nanobiomedicine, vol.1, 2014.

K. Gajanan and S. N. Tijare, Applications of nanomaterials, pp.1093-1096, 2018.

C. Santhosh, V. Velmurugan, G. Jacob, S. K. Jeong, A. N. Grace et al., Role of nanomaterials in water treatment applications: A review, Chem. Eng. J, vol.306, pp.1116-1137, 2016.

S. Raj, U. Sumod, S. Jose, and M. Sabitha, Nanotechnology in cosmetics: Opportunities and challenges, J. Pharm. Bioallied Sci, vol.4, p.186, 2012.

P. A. Schulte and D. B. Trout, Nanomaterials and worker health: Medical surveillance, exposure registries, and epidemiologic research, J. Occup. Environ. Med, vol.53, 2011.

J. Ai, E. Biazar, M. Jafarpour, M. Montazeri, A. Majdi et al., Nanotoxicology and nanoparticle safety in biomedical designs, Int. J. Nanomedicine, vol.6, pp.1117-1127, 2011.

A. Seaton, L. Tran, R. Aitken, and K. Donaldson, Nanoparticles, human health hazard and regulation, J. R. Soc. Interface, vol.7, issue.1, pp.119-129, 2010.

G. Oberdörster, A. Elder, and A. Rinderknecht, Nanoparticles and the Brain: Cause for Concern?, J. Nanosci. Nanotechnol, vol.9, pp.4996-5007, 2009.

C. D. Klaassen, Casarett and Doull's Toxicology-The Basic Science of Poisons, 2008.

M. Skocaj, M. Filipic, J. Petkovic, and S. Novak, Titanium dioxide in our everyday life; Is it safe?, Radiol. Oncol, vol.45, pp.227-247, 2011.

Y. Yoshioka, K. Higashisaka, S. Tsunoda, and Y. Tsutsumi, Engineered Cell Manipulation for Biomedical Application, pp.259-271, 2014.

F. Larese-filon, M. Mauro, G. Adami, M. Bovenzi, and M. Crosera, Nanoparticles skin absorption: New aspects for a safety profile evaluation, Regul. Toxicol. Pharmacol, vol.72, pp.310-322, 2015.

F. F. Larese, F. D&apos;agostin, M. Crosera, G. Adami, N. Renzi et al., Human skin penetration of silver nanoparticles through intact and damaged skin, Toxicology, vol.255, pp.33-37, 2009.

F. Larese-filon, M. Crosera, G. Adami, M. Bovenzi, F. Rossi et al., Human skin penetration of gold nanoparticles through intact and damaged skin, Nanotoxicology, vol.5, pp.493-501, 2011.

F. Larese-filon, M. Crosera, E. Timeus, G. Adami, M. Bovenzi et al., Human skin penetration of cobalt nanoparticles through intact and damaged skin, Toxicol. Vitr, vol.27, pp.121-127, 2013.

M. Senzui, T. Tamura, K. Miura, Y. Ikarashi, Y. Watanabe et al., Study on penetration of titanium dioxide (TiO2) nanoparticles into intact and damaged skin in vitro, J. Toxicol. Sci, vol.35, pp.107-113, 2010.

R. D. Brohi, L. Wang, H. S. Talpur, D. Wu, F. A. Khan et al., Toxicity of nanoparticles on the reproductive system in animal models: A review, vol.8, pp.1-22, 2017.

V. E. Kagan, N. V. Konduru, W. Feng, B. L. Allen, J. Conroy et al., Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation, Nat. Nanotechnol, vol.5, pp.354-359, 2010.

A. S. Arbab, L. B. Wilson, P. Ashari, E. K. Jordan, B. K. Lewis et al., A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: Implications for cellular magnetic resonance imaging, NMR Biomed, vol.18, pp.383-389, 2005.

M. Lévy, F. Lagarde, V. A. Maraloiu, M. G. Blanchin, F. Gendron et al., Degradability of superparamagnetic nanoparticles in a model of intracellular environment: Follow-up of magnetic, structural and chemical properties, Nanotechnology, vol.21, 2010.

S. Wahajuddin and . Arora, Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers, Int. J. Nanomedicine, vol.7, pp.3445-3471, 2012.

E. S. Gurzau, C. Neagu, and A. E. Gurzau, Essential metals -Case study on iron, Ecotoxicol. Environ. Saf, vol.56, pp.190-200, 2003.

R. M. Cornell and U. Schwertmann, The iron oxides: structure, properties, reactions, occurences and uses, pp.3-527, 2003.

G. Dura and B. Szalay, Particle exposure through the indoor air environment, NATO Secur. through Sci. Ser. C Environ. Secur, pp.271-276, 2007.

K. S. Galea, C. Mair, C. Alexander, F. De, M. Vocht et al., Occupational Exposure to Respirable Dust, Respirable Crystalline Silica and Diesel Engine Exhaust Emissions in the London Tunnelling Environment, Ann. Occup. Hyg, vol.60, pp.263-269, 2015.

C. T. Wang and S. H. Ro, Nanocluster iron oxide-silica aerogel catalysts for methanol partial oxidation, Appl. Catal. A Gen, vol.285, pp.196-204, 2005.

T. Naseem and M. A. Farrukh, Antibacterial activity of green synthesis of iron nanoparticles using lawsonia inermis and gardenia jasminoides leaves extract, J. Chem, 2015.

S. Sun, C. Wei, Z. Zhu, Y. Hou, S. S. Venkatraman et al., Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications, Chinese Phys. B, vol.23, p.37503, 2014.

A. Ali, H. Zafar, M. Zia, I. Haq, A. R. Phull et al., Synthesis, characterization, applications, and challenges of iron oxide nanoparticles, Nanotechnol. Sci. Appl, vol.9, pp.49-67, 2016.

G. Ennas, A. Musinu, G. Piccaluga, D. Zedda, D. Gatteschi et al., Characterization of Iron Oxide Nanoparticles in an Fe2O3?SiO2 Composite Prepared by a Sol?Gel Method, Chem. Mater, vol.10, pp.495-502, 1998.

S. G. Ullattil and P. Periyat, Sol-Gel Materials for Energy, Environment and Electronic Applications, pp.271-283, 2017.

W. Wu, Z. Wu, T. Yu, C. Jiang, and W. S. Kim, Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications, Sci. Technol. Adv. Mater, vol.16, 2015.

E. Umut, Surface Modification of Nanoparticles Used in Biomedical Applications, Mod. Surf. Eng. Treat, pp.185-208, 2013.

T. Stueckle, J. Antonini, Y. Rojanasakul, V. Castranova, Y. Yang et al., Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk, Nanomaterials, vol.7, p.307, 2017.

I. Van-rooy, S. Cakir-tascioglu, W. E. Hennink, G. Storm, R. M. Schiffelers et al., In vivo methods to study uptake of nanoparticles into the brain, Pharm. Res, vol.28, pp.456-471, 2011.

H. Jing, J. Wang, P. Yang, X. Ke, G. Xia et al., Magnetic fe3O4 nanoparticles and chemotherapy agents interact synergistically to induce apoptosis in lymphoma cells, Int. J. Nanomedicine, vol.5, pp.999-1004, 2010.

Z. Sun, M. Worden, Y. Wroczynskyj, V. Yathindranath, J. Van-lierop et al., Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood-brain barrier, Int. J. Nanomedicine, vol.9, pp.3013-3026, 2014.

A. Elias and A. Tsourkas, Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles, Hematology Am. Soc. Hematol. Educ. Program, pp.720-726, 2009.

M. Lu, M. H. Cohen, D. Rieves, and R. Pazdur, Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease, Am. J. Hematol, vol.85, pp.315-319, 2010.

C. Hoskins, The Use of Iron Oxide Nanoparticles for Pancreatic Cancer Therapy, J. Nanomedicine Res, vol.1, pp.1-17, 2014.

Y. Kim, S. D. Kong, L. H. Chen, T. R. Pisanic, S. Jin et al., In vivo nanoneurotoxicity screening using oxidative stress and neuroinflammation paradigms, Nanomedicine Nanotechnology, Biol. Med, vol.9, pp.1057-1066, 2013.

S. Shin, I. Song, and S. Um, Role of Physicochemical Properties in Nanoparticle Toxicity, Nanomaterials, vol.5, pp.1351-1365, 2015.

R. Gliga, S. Skoglund, I. O. Wallinder, B. Fadeel, and H. L. Karlsson, Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release, Part Fibre Toxicol, vol.11, p.11, 2014.

H. Qiao, W. Liu, H. Gu, D. Wang, and Y. Wang, The transport and deposition of nanoparticles in respiratory system by inhalation, J. Nanomater, 2015.

H. M. Braakhuis, F. R. Cassee, P. H. Fokkens, L. J. De-la-fonteyne, A. G. Oomen et al., Identification of the appropriate dose metric for pulmonary inflammation of silver nanoparticles in an inhalation toxicity study, Nanotoxicology, vol.10, pp.63-73, 2016.

M. Zhu, G. Nie, H. Meng, T. Xia, A. Nel et al., Physicochemical properties determine nanomaterial cellular uptake, transport, and fate, Acc. Chem. Res, vol.46, pp.622-631, 2013.

K. Murugan, Y. E. Choonara, P. Kumar, D. Bijukumar, L. C. Du-toit et al., Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures, Int. J. Nanomedicine, vol.10, pp.2191-2206, 2015.

S. Zhang, H. Gao, and G. Bao, Physical Principles of Nanoparticle Cellular Endocytosis, ACS Nano, vol.9, pp.8655-8671, 2015.

S. Skoglund, J. Hedberg, E. Yunda, A. Godymchuk, E. Blomberg et al., Difficulties and flaws in performing accurate determinations of zeta potentials of metal nanoparticles in complex solutions -Four case studies, PLoS One, vol.12, pp.1-19, 2017.

R. Atif and F. Inam, Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers, Beilstein J. Nanotechnol, vol.7, pp.1174-1196, 2016.

S. V. Sokolov, K. Tschulik, C. Batchelor-mcauley, K. Jurkschat, and R. G. Compton, Reversible or Not? Distinguishing Agglomeration and Aggregation at the Nanoscale, Anal. Chem, vol.87, pp.10033-10039, 2015.

H. Bahadar, F. Maqbool, K. Niaz, and M. Abdollahi, Toxicity of nanoparticles and an overview of current experimental models, Iran. Biomed. J, vol.20, pp.1-11, 2016.

B. Dahneke, Simple kinetic theory of Brownian diffusion in vapors and aerosols, Theory Dispersed Multiph. Flow. Proc. an Adv. Semin, pp.97-133, 1983.

S. Parasuraman, Toxicological screening, J. Pharmacol. Pharmacother, vol.2, p.74, 2011.

C. T. Han, M. J. Kim, S. H. Moon, Y. R. Jeon, J. S. Hwang et al., Acute and 28-day subacute toxicity studies of hexane extracts of the roots of Lithospermum erythrorhizon in sprague-dawley rats, Toxicol. Res, vol.31, pp.403-414, 2015.

A. Domínguez, G. G. Brown, K. D. Sautter, C. M. De-oliveira, E. C. De-vasconcelos et al., Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil, Sci. Rep, vol.6, 2016.

B. González-flecha, Oxidant mechanisms in response to ambient air particles, Mol. Aspects Med, vol.25, pp.169-182, 2004.

J. Muller, F. Huaux, N. Moreau, P. Misson, J. F. Heilier et al., Respiratory toxicity of multi-wall carbon nanotubes, Toxicol. Appl. Pharmacol, vol.207, pp.221-231, 2005.

M. I. Khan, A. Mohammad, G. Patil, S. A. Naqvi, L. K. Chauhan et al., Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles, Biomaterials, vol.33, pp.1477-1488, 2012.

S. Alarifi, D. Ali, S. Alkahtani, and M. S. Alhader, Iron oxide nanoparticles induce oxidative stress, DNA damage, and caspase activation in the human breast cancer cell line, Biol. Trace Elem. Res, vol.159, pp.416-424, 2014.

L. Wang, L. Wang, W. Ding, and F. Zhang, Acute Toxicity of Ferric Oxide and Zinc Oxide Nanoparticles in Rats, J. Nanosci. Nanotechnol, vol.10, pp.8617-8624, 2010.

A. Shirband, H. Azizian, M. Pourentezari, M. E. Rezvani, M. Anvari et al., Dosedependent effects of iron oxide nanoparticles on thyroid hormone concentrations in liver enzymes: Possible tissue destruction, Glob, J. Med. Res. Stud, vol.1, pp.28-31, 2014.

L. Sadeghi, V. Babadi, and H. R. Espanani, Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue, vol.116, pp.373-381, 2015.

B. J. Marquis, S. A. Love, K. L. Braun, and C. L. Haynes, Analytical methods to assess nanoparticle toxicity, Analyst, vol.134, p.425, 2009.

J. Sun, Q. Zhang, Z. Wang, and B. Yan, Effects of nanotoxicity on female reproductivity and fetal development in animal models, Int. J. Mol. Sci, vol.14, pp.9319-9337, 2013.

C. Chakraborty, A. R. Sharma, G. Sharma, and S. S. Lee, Zebrafish: A complete animal model to enumerate the nanoparticle toxicity, J. Nanobiotechnology, vol.14, pp.1-13, 2016.

S. Lanone, F. Rogerieux, J. Geys, A. Dupont, E. Maillot-marechal et al., Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines, Part. Fibre Toxicol, vol.6, pp.1-12, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00407214

C. F. Jones and D. W. Grainger, In vitro assessments of nanomaterial toxicity, Adv. Drug Deliv. Rev, vol.61, pp.438-456, 2009.

S. Triboulet, C. Aude-garcia, M. Carrière, H. Diemer, F. Proamer et al., Molecular Responses of Mouse Macrophages to Copper and Copper Oxide Nanoparticles Inferred from Proteomic Analyses, Mol. Cell. Proteomics, vol.12, pp.3108-3122, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00879643

C. Awortwe, P. S. Fasinu, and B. Rosenkranz, Application of Caco-2 cell line in herb-drug interaction studies: current approaches and challenges, J. Pharm. Pharm. Sci. a Publ. Can. Soc. Pharm. Sci. Société Can. Des Sci. Pharm, vol.17, pp.1-19, 2014.

Y. Lai, P. C. Chiang, J. D. Blom, N. Li, K. Shevlin et al., Comparison of in vitro nanoparticles uptake in various cell lines and in vivo pulmonary cellular transport in intratracheally dosed rat model, Nanoscale Res. Lett, vol.3, pp.321-329, 2008.

P. Chairuangkitti, S. Lawanprasert, S. Roytrakul, S. Aueviriyavit, D. Phummiratch et al., Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways, Toxicol. Vitr, vol.27, pp.330-338, 2013.

B. Ekstrand-hammarström, C. M. Akfur, P. O. Andersson, C. Lejon, L. Österlund et al., Human primary bronchial epithelial cells respond differently to titanium dioxide nanoparticles than the lung epithelial cell lines A549 and BEAS-2B, Nanotoxicology, issue.6, pp.623-634, 2012.

L. Capasso, M. Camatini, and M. Gualtieri, Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells, Toxicol. Lett, vol.226, pp.28-34, 2014.

T. He, J. Long, J. Li, L. Liu, and Y. Cao, Toxicity of ZnO nanoparticles (NPs) to A549 cells and A549 epithelium in vitro: Interactions with dipalmitoyl phosphatidylcholine (DPPC), vol.56, pp.233-240, 2017.

Z. Wang, N. Li, J. Zhao, J. C. White, P. Qu et al., CuO nanoparticle interaction with human epithelial cells: Cellular uptake, location, export, and genotoxicity, Chem. Res. Toxicol, vol.25, pp.1512-1521, 2012.

E. Moschini, M. Gualtieri, D. Gallinotti, E. Pezzolato, M. Camatini et al., Metal oxide nanoparticles induce cytotoxic effects on human lung epithelial cells A549, Assoc. Ital. Di Ing. Chim, 2009.

H. R. Xie, L. S. Hu, and G. Y. Li, SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease, Chin Med J, vol.123, pp.1086-1092, 2010.

J. H. Park, S. Gurunathan, Y. Choi, J. W. Han, H. Song et al., Silver nanoparticles suppresses brain-derived neurotrophic factor-induced cell survival in the human neuroblastoma cell line SH-SY5Y, J. Ind. Eng. Chem, vol.47, pp.62-73, 2017.

S. Rahmani, L. Mogharizadeh, F. Attar, S. M. Rezayat, S. E. Mousavi et al., Probing the interaction of silver nanoparticles with tau protein and neuroblastoma cell line as nervous system models, J. Biomol. Struct. Dyn, pp.1-15, 2017.

L. Wang, Y. Liu, W. Li, X. Jiang, Y. Ji et al., Selective targeting of gold nanorods at the mitochondria of cancer cells: Implications for cancer therapy, Nano Lett, vol.11, pp.772-780, 2011.

A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, Zebrafish as a model vertebrate for investigating chemical toxicity, Toxicol. Sci, vol.86, pp.6-19, 2005.

Y. Yang, Z. Qin, W. Zeng, T. Yang, Y. Cao et al., Toxicity assessment of nanoparticles in various systems and organs, Nanotechnol. Rev, vol.6, pp.279-289, 2017.

V. Stone, H. Johnston, R. P. Schins, and V. Stone, Development of in vitro systems for nanotoxicology: Methodological considerations in vitro methods for nanotoxicology, Crit. Rev. Toxicol, vol.39, pp.613-626, 2009.

T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Methods, vol.65, pp.55-63, 1983.

C. M. Sayes, K. L. Reed, and D. B. Warheit, Assessing toxicology of fine and nanoparticles: Comparing in vitro measurements to in vivo pulmonary toxicity profiles, Toxicol. Sci, vol.97, pp.163-180, 2007.

W. Strober, Trypan blue exclusion test of cell viability, Curr. Protoc. Immunol. Appendix, vol.3, 2001.

J. M. Hillegass, M. B. Macpherson, J. C. Magill, M. F. Byl, B. Goldwaser et al., , vol.3, pp.1-17, 2010.

M. Van-engeland, L. J. Nieland, F. C. Ramaekers, B. Schutte, and C. P. Reutelingsperger, Annexin V-affinity assay: A review on an apoptosis detection system based on phosphatidylserine exposure, Cytometry, vol.31, pp.1-9, 1998.

S. Nagata, H. Nagase, K. Kawane, N. Mukae, and H. Fukuyama, Degradation of chromosomal DNA during apoptosis, Cell Death Differ, vol.10, pp.108-116, 2003.

S. Elmore, Apoptosis: A Review of Programmed Cell Death, Toxicol. Pathol, vol.35, pp.495-516, 2007.

J. Kain, H. L. Karlsson, and L. Möller, DNA damage induced by micro-and nanoparticles -interaction with FPG influences the detection of DNA oxidation in the comet assay, Mutagenesis, vol.27, pp.491-500, 2012.

N. P. Singh, M. T. Mccoy, R. R. Tice, and E. L. Schneider, A simple technique for quantitation of low levels of DNA damage in individual cells, Exp. Cell Res, vol.175, issue.88, pp.90265-90265, 1988.

C. A. Barnes, A. Elsaesser, J. Arkusz, A. Smok, J. Palus et al., Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity, Nano Lett, vol.8, pp.3069-3074, 2008.

B. N. Ames, J. Mccann, and E. Yamasaki, Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity test, Mutat. Res. Mutagen. Relat. Subj, vol.31, pp.90046-90047, 1975.

D. M. Maron and B. N. Ames, Revised methods for the Salmonella mutagenicity test, Mutat. Res. Mutagen. Relat. Subj, vol.113, issue.83, pp.90010-90019, 1983.

Y. Li, D. H. Chen, J. Yan, Y. Chen, R. A. Mittelstaedt et al., Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay, Mutat. Res. -Genet. Toxicol. Environ. Mutagen, vol.745, pp.4-10, 2012.

T. Chen, J. Yan, and Y. Li, Genotoxicity of titanium dioxide nanoparticles, J. Food Drug Anal, vol.22, pp.95-104, 2014.

X. Guo, Y. Li, J. Yan, T. Ingle, M. Y. Jones et al., Size-and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays, 2016.

B. Hellack, C. Nickel, C. Albrecht, T. A. Kuhlbusch, S. Boland et al., Analytical methods to assess the oxidative potential of nanoparticles: a review, Environ. Sci. Nano, vol.4, pp.1920-1934, 2017.

F. J. Kelly, Oxidative Stress : Its Role in Air Pollution and Adverse Health Effects, 2003.

S. I. Dikalov and D. G. Harrison, Methods for Detection of Mitochondrial and Cellular Reactive Oxygen Species, Antioxid. Redox Signal, vol.20, pp.372-382, 2014.

K. S. Subramanian, Determination of metals in biofluids and tissues: Sample preparation methods for atomic spectroscopic techniques, Spectrochim. Acta -Part B At. Spectrosc, vol.51, pp.291-319, 1996.

J. Szpunar, Bio-inorganic speciation analysis by hyphenated techniques, Analyst, vol.125, pp.963-988, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00291437

U. S. Patil, S. Adireddy, A. Jaiswal, S. Mandava, B. R. Lee et al., In vitro/in vivo toxicity evaluation and quantification of iron oxide nanoparticles, 2015.

A. Ostrowski, D. Nordmeyer, A. Boreham, C. Holzhausen, L. Mundhenk et al., Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques, Beilstein J. Nanotechnol, vol.6, pp.263-280, 2015.

S. Amara, I. Ben-slama, I. Mrad, N. Rihane, M. Jeljeli et al., Acute exposure to zinc oxide nanoparticles does not affect the cognitive capacity and neurotransmitters levels in adult rats, Nanotoxicology, vol.8, pp.208-215, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02013112

N. R. Ben-younes, S. Amara, I. Mrad, I. Ben-slama, M. Jeljeli et al., Subacute toxicity of titanium dioxide (TiO2) nanoparticles in male rats: emotional behavior and pathophysiological examination, Environ. Sci. Pollut. Res. Int, vol.22, pp.8728-8765, 2015.

I. Ben-slama, S. Amara, I. Mrad1, N. Rihane, K. Omri et al., Sub-Acute Oral Toxicity of Zinc Oxide Nanoparticles in Male Rats, J. Nanomed. Nanotechnol, vol.6, 2015.

H. S. Huang and J. F. Hainfeld, Intravenous magnetic nanoparticle cancer hyperthermia, Int. J. Nanomedicine, vol.8, pp.2521-2532, 2013.

P. Lin, J. W. Chen, L. W. Chang, J. P. Wu, L. Redding et al., Computational and ultrastructural toxicology of a nanoparticle, Quantum Dot 705, in mice, Environ. Sci. Technol, vol.42, pp.6264-6270, 2008.

X. Liu, J. Tan, I. Hatem, and B. L. Smith, Image processing to facilitate histological evaluation of tissue specimens stained with Perl's Prussian blue, Toxicol. Mech. Methods, vol.13, pp.213-220, 2003.

S. Amara, I. Ben, K. Slama, J. E. Omri, L. E. Ghoul et al., Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain, Toxicol. Ind. Health, vol.31, pp.1202-1209, 2015.

J. M. Souza, B. Mendes, A. T. Guimarães, A. S. Rodrigues, T. Q. Chagas et al., Zinc oxide nanoparticles in predicted environmentally relevant concentrations leading to behavioral impairments in male swiss mice, Sci. Total Environ, pp.653-662, 2018.

X. Li, X. Liu, T. Li, X. Li, D. Feng et al., SiO 2 nanoparticles cause depression and anxiety-like behavior in adult zebrafish, RSC Adv, vol.7, pp.2953-2963, 2017.

I. , M. Jeljeli, N. Rihane, P. Hilber, M. Sakly et al., Aluminium oxide nanoparticles compromise spatial learning and memory performance in rats, EXCLI J, vol.17, pp.200-210, 2018.

E. Sheida, O. Sipailova, S. Miroshnikov, E. Sizova, S. Lebedev et al., The effect of iron nanoparticles on performance of cognitive tasks in rats, Environ. Sci. Pollut. Res, vol.24, pp.8700-8710, 2017.

Y. Ibuki and T. Toyooka, Nanoparticle uptake measured by flow cytometry, Methods Mol. Biol, vol.926, pp.157-166, 2012.

R. M. Zucker, E. J. Massaro, K. M. Sanders, L. L. Degn, and W. K. Boyes, Detection of TiO2 nanoparticles in cells by flow cytometry, vol.77, pp.677-685, 2010.

R. M. Zucker, J. N. Ortenzio, and W. K. Boyes, Characterization, detection, and counting of metal nanoparticles using flow cytometry, Cytom. Part A, vol.89, pp.169-183, 2016.

M. Wade, Y. Li, and G. M. Wahl, Nat. Rev. Cancer, vol.13, pp.83-96, 2013.

A. P. Brown, R. M. Brydson, and N. S. Hondow, Measuring in vitro cellular uptake of nanoparticles by transmission electron microscopy, J. Phys. Conf. Ser, vol.522, p.12058, 2014.

E. Fröhlich, Role of omics techniques in the toxicity testing of nanoparticles, J. Nanobiotechnology, vol.15, pp.1-22, 2017.

T. H. Shin, D. Y. Lee, H. S. Lee, H. J. Park, M. S. Jin et al., Integration of metabolomics and transcriptomics in nanotoxicity studies, BMB Rep, vol.51, pp.14-20, 2018.

B. Kumar, A. Prakash, R. K. Ruhela, and B. Medhi, Potential of metabolomics in preclinical and clinical drug development, Pharmacol. Reports, vol.66, pp.956-963, 2014.

M. Yamamoto, A. Singh, F. Sava, M. Pui, S. J. Tebbutt et al., MicroRNA expression in response to controlled exposure to diesel exhaust: Attenuation by the antioxidant Nacetylcysteine in a randomized crossover study, Environ. Health Perspect, vol.121, pp.670-675, 2013.

M. Ehrlich, DNA hypomethylation in cancer cells, Epigenomics, vol.1, pp.239-259, 2009.

J. S. You and P. A. Jones, Cancer Genetics and Epigenetics: Two Sides of the Same Coin?, Cancer Cell, vol.22, pp.9-20, 2012.

F. Cheng, D. Theodorescu, I. G. Schulman, and J. K. Lee, In vitro transcriptomic prediction of hepatotoxicity for early drug discovery, J. Theor. Biol, vol.290, pp.27-36, 2011.

M. Chen, H. Bisgin, L. Tong, H. Hong, H. Fang et al., Toward predictive models for drug-induced liver injury in humans: are we there yet?, Biomark Med, vol.8, pp.201-213, 2014.

M. Otava, Z. Shkedy, W. Talloen, G. R. Verheyen, and A. Kasim, Identification of in vitro and in vivo disconnects using transcriptomic data, BMC Genomics, p.16, 2015.

P. Kohonen, J. A. Parkkinen, E. L. Willighagen, R. Ceder, K. Wennerberg et al., A transcriptomics data-driven gene space accurately predicts liver cytopathology and drug-induced liver injury, Nat. Commun, vol.8, 2017.

R. Van-assche, V. Broeckx, K. Boonen, E. Maes, W. De-haes et al., Integrating -Omics: Systems Biology as Explored Through C. Elegans Research, J. Mol. Biol, vol.427, pp.3441-3451, 2015.

W. Shim, M. J. Paik, D. T. Nguyen, J. K. Lee, Y. Lee et al., Analysis of changes in gene expression and metabolic profiles induced by silica-coated magnetic nanoparticles, ACS Nano, vol.6, pp.7665-7680, 2012.

T. Rabilloud and P. Lescuyer, Proteomics in mechanistic toxicology: History, concepts, achievements, caveats, and potential, Proteomics, vol.15, pp.1051-1074, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01134895

D. Roy, R. Goswami, and A. , Nanomaterial and toxicity: what can proteomics tell us about the nanotoxicology?, Xenobiotica, vol.47, pp.632-643, 2017.

C. H. Johnson, J. Ivanisevic, and G. Siuzdak, Metabolomics: Beyond biomarkers and towards mechanisms, Nat. Rev. Mol. Cell Biol, vol.17, pp.451-459, 2016.

C. Smith, E. J. Want, G. O&apos;maille, R. Abagyan, G. Siuzdak et al., XCMS: processing mass spectrometry data for metabolite profiling using Nonlinear Peak Alignment,Matching,and Identification, vol.78, pp.779-87, 2006.

T. W. Fan, R. M. Higashi, and A. N. Lane, Integrating metabolomics and transcriptomics for probing Se anticancer mechanisms, Drug Metab. Rev, pp.707-732, 2006.

B. Pilch and M. Mann, Large-scale and high-confidence proteomic analysis of human seminal plasma, Genome Biol, issue.7, 2006.

M. R. Wilkins, J. C. Sanchez, A. A. Gooley, R. D. Appel, I. Humphery-smith et al., Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it, Biotechnol. Genet. Eng. Rev, vol.13, pp.19-50, 1996.

M. R. Wilkins, J. C. Sanchez, K. L. Williams, and D. F. Hochstrasser, Current challenges and future applications for protein maps and post-translational vector maps in proteome projects, pp.830-838, 1996.

A. Pandey and M. Mann, Proteomics to study genes and genomes, Nature, vol.405, pp.837-846, 2000.

S. Fields, Proteomics: Proteomics in genomeland, Science, pp.1221-1224, 2001.

G. Scherperel and G. E. Reid, Emerging methods in proteomics: top-down protein characterization by multistage tandem mass spectrometry, Analyst, vol.132, p.500, 2007.

C. E. Parker and C. H. Borchers, Mass spectrometry based biomarker discovery, verification, and validation -Quality assurance and control of protein biomarker assays, Mol. Oncol, vol.8, pp.840-858, 2014.

J. H. Gross, Mass spectrometry: A textbook, 2011.

J. R. Wisniewski, A. Zougman, N. Nagaraj, M. Mann, and J. R. Wi, Universal sample preparation method for proteome analysis, Nat. Methods, vol.6, pp.377-362, 2009.

J. Erde, R. R. Loo, and J. A. Loo, Improving proteome coverage and sample recovery with enhanced FASP (eFASP) for quantitative proteomic experiments, Methods Mol. Biol, pp.11-18, 2017.

C. S. Hughes, S. Foehr, D. A. Garfield, E. E. Furlong, L. M. Steinmetz et al., Ultrasensitive proteome analysis using paramagnetic bead technology, Mol. Syst. Biol, vol.10, pp.757-757, 2014.

N. A. Kulak, G. Pichler, I. Paron, N. Nagaraj, and M. Mann, Minimal, encapsulated proteomicsample processing applied to copy-number estimation in eukaryotic cells, Nat. Methods, vol.11, pp.319-324, 2014.

C. Lenz and H. Urlaub, Separation methodology to improve proteome coverage depth, Expert Rev. Proteomics, vol.11, pp.409-414, 2014.

E. Mostovenko, C. Hassan, J. Rattke, A. M. Deelder, P. A. Van-veelen et al., Comparison of peptide and protein fractionation methods in proteomics, EuPA Open Proteomics, vol.1, pp.30-37, 2013.

A. Moreda-piñeiro, N. García-otero, and P. Bermejo-barrera, A review on preparative and semipreparative offgel electrophoresis for multidimensional protein/peptide assessment, Anal. Chim. Acta, vol.836, pp.1-17, 2014.

G. Tezel, A proteomics view of the molecular mechanisms and biomarkers of glaucomatous neurodegeneration, Prog. Retin. Eye Res, vol.35, pp.18-43, 2013.

K. Chandramouli and P. Qian, Proteomics: Challenges, Techniques and Possibilities to Overcome Biological Sample Complexity, Hum. Genomics Proteomics, pp.1-22, 2009.

N. Rauniyar and J. R. Yates, Isobaric labeling-based relative quantification in shotgun proteomics, J. Proteome Res, vol.13, pp.5293-5309, 2014.

F. Xie, T. Liu, W. J. Qian, V. A. Petyuk, and R. D. Smith, Liquid chromatography-mass spectrometrybased quantitative proteomics, J. Biol. Chem, vol.286, pp.25443-25449, 2011.

P. L. Ross, Y. N. Huang, J. N. Marchese, B. Williamson, K. Parker et al., Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents, Mol. Cell. Proteomics, vol.3, pp.1154-1169, 2004.

R. D. Unwin, J. R. Griffiths, and A. D. Whetton, Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC-MS/MS, Nat. Protoc, vol.5, pp.1574-1582, 2010.

G. Pottiez, J. Wiederin, H. S. Fox, and P. Ciborowski, Comparison of 4-plex to 8-plex iTRAQ quantitative measurements of proteins in human plasma samples, J. Proteome Res, vol.11, pp.3774-3781, 2012.

K. A. Neilson, N. A. Ali, S. Muralidharan, M. Mirzaei, M. Mariani et al., Less label, more free: Approaches in label-free quantitative mass spectrometry, Proteomics, vol.11, pp.535-553, 2011.

D. A. Megger, L. L. Pott, M. Ahrens, J. Padden, T. Bracht et al., Comparison of label-free and label-based strategies for proteome analysis of hepatoma cell lines, Biochim. Biophys. Acta -Proteins Proteomics, vol.1844, pp.967-976, 2014.

P. M. Palagi, P. Hernandez, D. Walther, and R. D. Appel, Proteome informatics I: Bioinformatics tools for processing experimental data, Proteomics, issue.6, pp.5435-5444, 2006.

K. G. Calderón-gonzález, J. Hernández-monge, M. E. Herrera-aguirre, and J. P. Luna-arias, Bioinformatics tools for proteomics data interpretation, pp.281-341, 2016.

O. M. Lemine, K. Omri, M. Iglesias, V. Velasco, P. Crespo et al., Fe2O3by sol-gel with large nanoparticles size for magnetic hyperthermia application, J. Alloys Compd, vol.607, pp.125-131, 2014.

T. Enkel, S. M. Berger, K. Schönig, B. Tews, and D. Bartsch, Reduced expression of nogo-a leads to motivational deficits in rats, Front. Behav. Neurosci, vol.8, pp.1-7, 2014.

S. Pellow, P. Chopin, S. E. File, and M. Briley, Validation of open : closed arm entries in an elevated plus-maze as a measure of anxiety in the rat, J. Neurosci. Methods, vol.14, pp.90031-90038, 1985.

K. Maaroufi, M. Ammari, M. Jeljeli, V. Roy, M. Sakly et al., Impairment of emotional behavior and spatial learning in adult Wistar rats by ferrous sulfate, Physiol. Behav, vol.96, pp.343-349, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01576948

D. Treit, J. Menard, and C. Royan, Anxiogenic stimuli in the elevated plus-maze, Pharmacol. Biochem. Behav, vol.44, pp.463-469, 1993.

R. Morris, Developments of a water maze procedure for studying spatial learning in the rat, J. Neurosci. Methods, vol.11, pp.7336-7336, 1984.

K. Maaroufi, L. Had-aissouni, C. Melon, M. Sakly, H. Abdelmelek et al., Spatial learning, monoamines and oxidative stress in rats exposed to 900MHz electromagnetic field in combination with iron overload, Behav. Brain Res, vol.258, pp.80-89, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01112604

J. Deguil, F. Chavant, C. Lafay-chebassier, M. C. Pérault-pochat, B. Fauconneau et al., Neuroprotective effect of PACAP on translational control alteration and cognitive decline in MPTP Parkinsonian mice, Neurotox. Res, vol.17, pp.142-155, 2010.

Y. A. Chen, L. P. Tripathi, and K. Mizuguchi, TargetMine, an integrated data warehouse for candidate gene prioritisation and target discovery, PLoS One, vol.6, 2011.

H. Mi, A. Muruganujan, and P. D. Thomas, PANTHER in 2013: Modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees, Nucleic Acids Res, vol.41, pp.377-386, 2013.

B. Fahmy and S. Cormier, Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells, Toxicol. Vitr, 2009.

A. A. Khalaf, A. R. Zaki, M. K. Galal, H. A. Ogaly, M. A. Ibrahim et al., The potential protective effect of ?-lipoic acid against nanocopper particle-induced hepatotoxicity in male rats, Hum. Exp. Toxicol, vol.36, pp.881-891, 2017.

M. J. Ribeiro, V. L. Maria, J. J. Scott-fordsmand, and M. J. Amorim, Oxidative stress mechanisms caused by Ag nanoparticles (NM300K) are different from those of AgNO3: Effects in the soil invertebrate Enchytraeus Crypticus, Int. J. Environ. Res. Public Health, vol.12, pp.9589-9602, 2015.

E. Paszek, J. Czyz, O. Wo?nicka, D. Jakubiak, J. Wojnarowicz et al., Zinc oxide nanoparticles impair the integrity of human umbilical vein endothelial cell monolayer in vitro, J. Biomed. Nanotechnol, vol.8, pp.957-967, 2012.

B. K. Gaiser, S. Hirn, A. Kermanizadeh, N. Kanase, K. Fytianos et al., Effects of silver nanoparticles on the liver and hepatocytes in vitro, Toxicol. Sci, vol.131, pp.537-547, 2013.

S. J. Soenen, N. Nuytten, S. F. Meyer, S. C. De-smedt, and M. D. Cuyper, High intracellular iron oxide nanoparticle concentrations affect cellular cytoskeleton and focal adhesion kinasemediated signaling, Small, vol.6, pp.832-842, 2010.

C. Hoskins, A. Cuschieri, and L. Wang, The cytotoxicity of polycationic iron oxide nanoparticles: Common endpoint assays and alternative approaches for improved understanding of cellular response mechanism, J. Nanobiotechnology, vol.10, p.15, 2012.

S. Triboulet, C. Aude-garcia, L. Armand, V. Collin-faure, M. Chevallet et al., Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages, PLoS One, vol.10, pp.1-22, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01170847

R. Hachani, M. A. Birchall, M. W. Lowdell, G. Kasparis, L. D. Tung et al., Assessing cell-nanoparticle interactions by high content imaging of biocompatible iron oxide nanoparticles as potential contrast agents for magnetic resonance imaging, Sci. Rep, vol.7, p.7850, 2017.

A. Panariti, G. Miserocchi, and I. Rivolta, The effect of nanoparticle uptake on cellular behavior: Disrupting or enabling functions?, Nanotechnol. Sci. Appl, vol.5, pp.87-100, 2012.

K. Buyukhatipoglu and A. M. Clyne, Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation, J. Biomed. Mater. Res. -Part A. 96 A, pp.186-195, 2011.

J. Kovalevich and D. Langford, Neuronal Cell Culture, pp.9-21, 2013.

H. Xicoy, B. Wieringa, and G. J. Martens, The SH-SY5Y cell line in Parkinson's disease research: a systematic review, Mol. Neurodegener, vol.12, pp.1-11, 2017.

R. A. Ross, B. A. Spengler, and J. L. Biedler, Coordinate Morphological and Biochemical Interconversion of Human Neuroblastoma Cells, J. Natl. Cancer Inst, vol.71, pp.741-747, 1983.

C. Costa, F. Brandão, M. J. Bessa, S. Costa, V. Valdiglesias et al., In vitro cytotoxicity of superparamagnetic iron oxide nanoparticles on neuronal and glial cells. Evaluation of nanoparticle interference with viability tests, J. Appl. Toxicol, vol.36, pp.361-372, 2016.

P. Bihari, M. Vippola, S. Schultes, M. Praetner, A. G. Khandoga et al., Optimized dispersion of nanoparticles for biological in vitro and in vivo studies, Part. Fibre Toxicol, vol.5, 2008.

M. C. Hohnholt, M. Geppert, and R. Dringen, Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells, Acta Biomater, vol.7, pp.3946-3954, 2011.

E. M. Luther, C. Petters, F. Bulcke, A. Kaltz, K. Thiel et al., Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells, Acta Biomater, vol.9, pp.8454-8465, 2013.

G. Fleige, C. Nolte, M. Synowitz, F. Seeberger, H. Kettenmann et al., Magnetic labeling of activated microglia in experimental gliomas, Neoplasia, vol.3, pp.489-499, 2001.

X. Zhang, N. Surguladze, B. Slagle-webb, A. Cozzi, and J. R. Connor, Cellular iron status influences the functional relationship between microglia and oligodendrocytes, vol.54, pp.795-804, 2006.

S. Oshiro, K. Kawamura, C. Zhang, T. Sone, M. S. Morioka et al., Microglia and astroglia prevent oxidative stress-induced neuronal cell death: Implications for aceruloplasminemia, Biochim. Biophys. Acta -Mol. Basis Dis, vol.1782, pp.109-117, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00562811

G. M. Bishop, I. F. Scheiber, R. Dringen, and S. R. Robinson, Synergistic accumulation of iron and zinc by cultured astrocytes, J. Neural Transm, vol.117, pp.809-817, 2010.

A. Laskar, M. Ghosh, S. I. Khattak, W. Li, and X. Yuan, Degradation of superparamagnetic iron oxide nanoparticle-induced ferritin by lysosomal cathepsins and related immune response, Nanomedicine, issue.7, pp.705-717, 2012.

S. Laurent, C. Burtea, C. Thirifays, U. O. Häfeli, and M. Mahmoudi, Crucial ignored parameters on nanotoxicology: The importance of toxicity assay modifications and "cell vision, PLoS One, issue.7, 2012.

E. Fröhlich, Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles, Curr. Drug Metab, vol.14, pp.976-88, 2013.

M. Geppert, C. Petters, K. Thiel, and R. Dringen, The presence of serum alters the properties of iron oxide nanoparticles and lowers their accumulation by cultured brain astrocytes, J. Nanoparticle Res, p.15, 2013.

C. Boyer, M. R. Whittaker, V. Bulmus, J. Liu, and T. P. Davis, The design and utility of polymerstabilized iron-oxide nanoparticles for nanomedicine applications, NPG Asia Mater, vol.2, pp.23-30, 2010.

A. Nel, T. Xia, L. Mädler, and N. Li, Toxic potential of materials at the nanolevel, Science, pp.622-627, 2006.

A. K. Gupta and S. Wells, Surface-Modified Superparamagnetic Nanoparticles for Drug Delivery: Preparation, Characterization, and Cytotoxicity Studies, IEEE Trans. Nanobioscience, vol.3, pp.66-73, 2004.

P. M. Doraiswamy and A. E. Finefrock, Metals in our minds: Therapeutic implications for neurodegenerative disorders, Lancet Neurol, vol.3, pp.809-818, 2004.

Y. Wang, Y. W. Ng, Y. Chen, B. Shuter, J. Yi et al., Formulation of Superparamagnetic Iron Oxides by Nanoparticles of Biodegradable Polymers for Magnetic Resonance Imaging, Adv. Funct. Mater, vol.18, pp.308-318, 2008.

J. Petrak, R. Ivanek, O. Toman, R. Cmejla, J. Cmejlova et al., Déjà vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins, Proteomics, vol.8, pp.1744-1749, 2008.

B. Szalay, E. Tátrai, G. Nyír?, T. Vezér, and G. Dura, Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments, J. Appl. Toxicol, vol.32, pp.446-453, 2012.

D. Vayenas, M. Repanti, A. Vassilopoulos, and D. A. Papanastasiou, Influence of iron overload on manganese, zinc, and copper concentration in rat tissues in vivo: study of liver, spleen, and brain, Int J Clin Lab Res, vol.28, pp.183-186, 1998.

X. T. Huang, Z. M. Qian, X. He, Q. Gong, K. C. Wu et al., Reducing iron in the brain: A novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer's disease, Neurobiol. Aging, vol.35, pp.1045-1054, 2014.

M. G. Du, L. Zhao, Z. Cui, A. Zhu, Y. Zhang et al., Increased Iron Deposition on Brain Quantitative Susceptibility Mapping Correlates with Decreased Cognitive Function in Alzheimer's Disease, ACS Chem. Neurosci, 2018.

P. Umarao, S. Bose, S. Bhattacharyya, A. Kumar, and S. Jain, Neuroprotective Potential of Superparamagnetic Iron Oxide Nanoparticles Along with Exposure to Electromagnetic Field in 6-OHDA Rat Model of Parkinson's Disease, J. Nanosci. Nanotechnol, vol.16, pp.261-269, 2016.

P. Remy, M. Doder, A. Lees, N. Turjanski, and D. Brooks, Depression in Parkinson's disease: Loss of dopamine and noradrenaline innervation in the limbic system, Brain, vol.128, pp.1314-1322, 2005.

S. Z. Imam, S. M. Lantz-mcpeak, E. Cuevas, H. Rosas-hernandez, S. Liachenko et al., Iron Oxide Nanoparticles Induce Dopaminergic Damage: In vitro Pathways and In Vivo Imaging Reveals Mechanism of Neuronal Damage, Mol. Neurobiol, vol.52, pp.913-926, 2015.

E. Park, H. Kim, Y. Kim, J. Yi, K. Choi et al., Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice, Toxicology, vol.275, pp.65-71, 2010.

D. M. Hasan, M. Amans, T. Tihan, C. Hess, Y. Guo et al., Ferumoxytol-Enhanced MRI to Image Inflammation Within Human Brain Arteriovenous Malformations: A Pilot Investigation, Transl. Stroke Res, vol.3, pp.166-173, 2012.

E. Kim, J. M. Kim, L. Kim, S. J. Choi, I. S. Park et al., The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways, Int. J. Nanomedicine, vol.11, pp.4595-4607, 2016.

C. Chua and E. H. Morgan, Effects of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat, Biol. Trace Elem. Res, vol.55, pp.39-54, 1996.

S. R. Räisänen, P. Lehenkari, M. Tasanen, P. Rahkila, P. L. Härkönen et al., Carbonic anhydrase III protects cells from hydrogen peroxide-induced apoptosis, FASEB J, vol.13, pp.80745-80746, 1999.

C. Shi, Y. Uda, C. Dedic, E. Azab, N. Sun et al., Carbonic anhydrase III protects osteocytes from oxidative stress, FASEB J, vol.32, pp.440-452, 2018.

R. R. Da-fonseca, W. E. Johnson, S. J. O&apos;brien, V. Vasconcelos, and A. Antunes, Molecular evolution and the role of oxidative stress in the expansion and functional diversification of cytosolic glutathione transferases, BMC Evol. Biol, vol.10, 2010.

A. Klaus, S. Zorman, A. Berthier, C. Polge, S. Ramirez et al., Glutathione S-Transferases Interact with AMP-Activated Protein Kinase: Evidence for S-Glutathionylation and Activation In Vitro, PLoS One, vol.8, pp.1-10, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01987684

Y. R. Lin, C. J. Kuo, H. Y. Lin, C. J. Wu, and S. S. Liang, A proteomics analysis to evaluate cytotoxicity in NRK-52E cells caused by unmodified Nano-Fe, Sci. World J, 2014.

A. Singhal, V. B. Morris, V. Labhasetwar, and A. Ghorpade, Nanoparticle-mediated catalase delivery protects human neurons from oxidative stress, Cell Death Dis, vol.4, pp.903-912, 2013.

M. Gutch, S. Consil, S. Kumar, A. Agarwal, R. Robo et al., Oxidative stress determined through the levels of antioxidant enzymes and the effect of N-acetylcysteine in aluminum phosphide poisoning, Indian J. Crit. Care Med, vol.18, p.666, 2014.

A. Gautam, A. Ray, S. Mukherjee, S. Das, K. Pal et al., Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm, Ecotoxicol. Environ. Saf, vol.148, pp.620-631, 2018.

S. J. Kim, T. Y. Yune, C. T. Han, Y. C. Kim, Y. J. Oh et al., Mitochondrial isocitrate dehydrogenase protects human neuroblastoma SH-SY5Y cells against oxidative stress, J Neurosci Res, vol.85, pp.139-152, 2007.

S. H. Lee, S. O. Ha, H. J. Koh, K. Kim, S. M. Jeon et al., Upregulation of cytosolic NADP+-dependent isocitrate dehydrogenase by hyperglycemia protects renal cells against oxidative stress, Mol. Cells, vol.29, pp.203-208, 2010.

P. Wang, H. Song, H. Cai, L. Kong, K. Yao et al., Preoperative inflammation markers and IDH mutation status predict glioblastoma patient survival, Oncotarget, vol.8, pp.50117-50123, 2017.

J. Dalli, L. Norling, D. Renshaw, D. Cooper, K. Leung et al., Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles, vol.112, pp.2512-2520, 2018.

M. Mirsaeidi, S. Gidfar, A. Vu, and D. Schraufnagel, Annexins family: Insights into their functions and potential role in pathogenesis of sarcoidosis, J. Transl. Med, vol.14, pp.1-9, 2016.

B. Zhao, J. Wang, L. Liu, X. Li, S. Liu et al., Annexin A1 translocates to nucleus and promotes the expression of pro-inflammatory cytokines in a PKC-dependent manner after OGD/R, Sci. Rep, vol.6, pp.1-13, 2016.

J. D. Gilthorpe, F. Oozeer, J. Nash, M. Calvo, D. L. Bennett et al., Extracellular histone H1 is neurotoxic and drives a pro-inflammatory response in microglia, pp.1-14, 2013.

R. Chen, R. Kang, X. Fan, and D. Tang, Release and activity of histone in diseases, Cell Death Dis, vol.5, p.1370, 2014.

T. Vogl, A. L. Gharibyan, and L. A. Morozova-roche, Pro-inflammatory S100A8 and S100A9 proteins: Self-assembly into multifunctional native and amyloid complexes, Int. J. Mol. Sci, vol.13, pp.2893-2917, 2012.

. Nanoscale-why-size-matter-niniti,

. Proteomexchange,

, Etude de la Toxicité Hematologique des Nanoparticules de Fer chez le Rat, ème Congrès annuel de la Société Française d'Hématologie, 2017.