. Tse-15-;-tzyyjang, W. Tseng, and . Cheng, EMBEDDED COMPONENT STRUCTURE AND PROCESS THEREOF, p.1, 2015.

R. Rao and E. J. Turnmula, Rym'wzewski. Microelectronics Puckuging Handbook. New York Van Nostrand Reinhold, pp.366-391, 1989.

, Government printing office, Revised Octobre, Code of Federal Regulation, vol.3, 2005.

C. Val, P. Couderc, N. Boulay, and ;. C. Vasseure, Stacking Technique of Known Good Rebuilt Wafers Without Thru-Silicon Via Commercial Applications, IEEE Electronics Packaging Technology Conference, 2005.

Z. Yang, F. Gunawan, X. Gu, K. Ding, and H. He, Classification and 3D stack of Embedded Components technology in Substrate, 16th International Conference on Electronic Packaging Technology (ICEPT), pp.666-671, 2015.

A. James, . Zolo, K. John, . Arledge, B. Nitin et al., Multilayer circuit board with embedded components and method of manufacture, pp.7594318-7594320, 2005.

V. R. Aitharaju and R. C. Averill, Three-Dimensional Properties Of Woven-Fabric Composites, Composites Science and Technology, vol.59, 1901.

L. Anand, Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Temperatures, Transaction of the ASME, vol.104, pp.12-17, 1982.

S. Bao, Y. Fu, S. Gu, ;. S. Hu, A. Belhenini et al., 3D FEM Simulations of Drop Test Reliability on 3D-WLP: Effects of Solder Reflow Residual Stress and Molding Resin Parameters, Evolution of the Piezomagnetic Field of Ferromagnetic Steels Subjected to Cyclic Tensile Stress with Variable Amplitudes, vol.43, pp.708-716, 2014.

M. Biebl, T. Scheiter, C. Hierold, H. V. Philipsborn, and H. Klose, Micromechanics Compatible with an 0.8mm CMOS Process, Sensors and Actuators A, pp.593-597, 1995.

H. Bilim-atli-veltin, S. Ling, S. Zhao, J. Noijen, L. Caers et al., Thermo-Mechanical Investigation of the Reliability of Embedded Components in PCBs During Processing and Under Bending Loading, 13th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, vol.2012, 2006.

A. L. Cauchy, 1822) Memoir, communicated to Paris Academy

J. Charmet, Mécanique du solide et des matériaux, Elasticité-Plasticité-Rupture », ESPCI -Laboratoire d'Hydrodynamique et Mécanique Physique

, Civen Metal product

Y. Chevalier, Comportements élastique et viscoélastique des composites, Tech. l'Ingénieur, vol.7750, 1988.

S. C. Chen, Y. C. Lin, C. H. Cheng-;-sri-ramakanth-kappaganthu, A. Karmarkar, X. Xu et al., The numerical analysis of strain behavior at the solder joint and interface in a flip chip package, Reliability Analysis of Bumping Schemes under Chip Package Interaction, vol.171, pp.125-131, 2006.

J. Koskinen, E. Steinwall, R. Soave, and H. H. Johnson, Microtensile Testing of Free-Standing Polysilicon Fibers of Various Grain Sizes, Journal of Micromechanics and Microengineering, vol.35, pp.13-17, 1993.

W. Kpobie, Thermo-mechanical simulation of PCB with embedded components, Microelectronics Reliability, vol.65, pp.108-130, 2016.

L. Niu, D. Yang, and M. Zhao, Study on Thermo-mechanical Reliability of Embedded Chip during Thermal Cycle Loading, 2009 International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP)

K. Macurova, P. Angerer, R. Schöngrundner, T. Krivec, M. Morianz et al., Simulation of stress distribution in assembled silicon dies and deflection of printed circuit boards, 15th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), vol.1, pp.1-7, 2014.

D. Maier-schneider, J. Maibach, E. Obermeir, and D. Schneider, Variations in Young's Modulus and Intrinsic Stress of LPCVD-Polysilicon due to High-Temperature Annealing, Journal of Micromechanics and Microengineering, vol.5, pp.121-124, 1995.

H. Metzger and F. R. Kessler, Der Debye-Sears Effect zur Bestimmung der Elastischen Konstanten von Silicium, Z. Naturf, vol.25, pp.904-906, 1970.

M. A. Michalicek, D. E. Sene, and V. M. Bright, Advanced Modeling of Micromirror Devices, Proceedings of the International Conference on Integrated Micro/Nanotechnology for Space Applications, pp.214-229, 1995.

. Multi-cb, Standard FR4 datasheet, 2014.

K. Mysore, G. Subbarayan, V. Gupta, and R. Zhang, Constitutive and Aging Behavior of Sn3.0Ag0.5Cu Solder Alloy », IEEE Transactions on Electronics Packaging Manufacturing, vol.32, pp.221-232, 2009.

S. D. Poisson, Liva Rabemananjara. « Etude de l'influence de la vitesse de déformation sur la réponse à l'indentation des matériaux polymères, 1811.

, Français. <NNT: 2015REN1S075>. <tel-01285396> Available, 2015.

, Multilayer Printed Circuit Boards -Multilayer PCB with Latest Technology

D. T. Read and J. C. Marshall, Measurements of Fracture Strength and Young's Modulus of Surface-micromachined Polysilicon, Microlithography and Metrology in Micromachining II, SPIE, vol.2880, pp.56-63, 1996.

A. Salahouelhadj, M. Martiny, S. Mercier, L. Bodin, D. Manteigas et al., Reliability of thermally stressed rigid-flex printed circuit boards for High Density Interconnect applications, Microelectron. Reliab, vol.54, issue.1, pp.204-213, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01513627

N. W. Sharpe, B. Yuan, and R. Vaidyanathan, Measurements of Young's modulus, poisson's ratio, and tensile strength of polysilicon, The Tenth IEEE International Workshop on Microelectromechanical Systems, pp.424-429, 1997.

, Références bibliographiques, vol.7

M. Balmont, I. Bord-majek, Y. Ousten-;-basquin, and O. H. , Comparative FEM thermo-mechanical simulations for built-in reliability: Surface mounted technology versus embedded technology for silicon dies, 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition, vol.10, pp.625-630, 1910.
URL : https://hal.archives-ouvertes.fr/hal-01593354

L. Boettcher, D. Manessis, A. Ostmann, S. Karaszkiewicz, and H. Reichl, Embedding of Chips for System in Package realization -Technology and Applications, 3rd International Microsystems, Packaging, Assembly & Circuits Technology Conference, pp.383-386, 2008.

W. Chenniki, I. Bord-majek, B. Levrier, K. Wongtimnoi, and . Jean-luc, Diot et Yves Ousten « FEM simulations for built-in reliability of innovative Liquid Crystal Polymer-based QFN packaging and Sn96.5Ag3Cu0.5 solder joint, 15th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, pp.978-979, 2014.

R. Darveaux-;-muhammad-faiz-harun, R. Mohammad, N. Othman, A. Amrin, S. Chelliapan et al., METHODS FOR ESTIMATING THE FATIGUE PROPERTIES OF UNS C70600 COPPER-NICKEL 90/10, Effect of simulation methodology on solder joint crack growth correlation, vol.8, pp.976-6359, 2000.

W. W. Lee, L. T. Nguyen, and G. Selvaduray, « Solder joint fatigue models: review and applicability to chip scale packages, Microelectronics Reliability, vol.40, pp.231-244, 2000.

P. Luka´-s?, M. Klensil, J. Pola´-k-;-manson, and S. S. , Fatigue: a complex subject-some simple approximations, Experimental mechanics, vol.15, issue.7, pp.193-226, 1965.

H. Mughrabi and R. Wang, Cyclic stress-strain response and high cycle behaviour of copper polycrystals, in Basic Mechanisms in Fatigue of Metals, P. Luka´ s? and, p.1, 1988.

J. Park and J. Song, Detailed evaluation of methods for estimation of fatigue properties, International Journal of Fatigue, vol.17, pp.365-373, 1995.

R. Schwerz, B. Boehme, M. Roellig, K. -. Wolter, and N. Meyendorf, Reliability of embedding concepts for discrete passive components in organic circuit boards, 2013 IEEE 63rd Electronic Components and Technology Conference, pp.1243-1251, 2013.

A. Syed, Accumulated creep strain and energy density based thermal fatigue life prediction models for SnAgCu solder joints, Proceedings. 54th Electronic Components and Technology Conference, vol.1, pp.737-746, 2004.

R. A. Testin, Interim Report on Fatigue Behavior of High Hardness Nodular Cast Iron. University of Illinois, 1973.

U. Partenaires, Ecole Nationale Supérieure des Mines de Douai, 2010.

A. Vinogradov, M. Maruyama, Y. Kaneko, and S. Hashimoto, Effect of dislocation hardening on monotonic and cyclic strength of severely deformed copper, Philosophical Magazine, pp.1-24, 2011.

, A Background to Silicon and its Applications, Références bibliographiques, 2001.

O. Fassi-fehri, Le problème de paire d'inclusions plastiques et hétérogènes dans une matrice anisotrope -Application à l'étude du comportement des matériaux composites et de la plasticité, 1985.

K. Janc, Micromechanical modeling of bone elastic properties based on computed tomography, 2013.

G. Kneer, Über die Berechnung der Elastizitätsmoduln vielkristalliner Aggregate mit Textur, Solid State Phys, vol.9, issue.3, pp.825-838, 1965.

W. Kpobie, .. C. Mura-;-k, A. H. Norris, and . Landzberg, Thermo-mechanical simulation of PCB with embedded components, Micron Technology, Flash memory N25Q032A datasheet, vol.65, p.266, 1969.

S. Osmolovskyi, « Parameters of the manufacturing process and reliability of embedded components, 36 th Int. Spring Seminar on Electronics Technology, 2013.

R. Schwerz, B. Boehme, M. Roellig, K. -. Wolter, and N. Meyendorf, Reliability of embedding concepts for discrete passive components in organic circuit boards, 2013 IEEE 63rd Electronic Components and Technology Conference, pp.1243-1251, 2013.

, Versatile imaging processor, STV 0991 datasheet, 2018.

G. Weidinger, Multiple power management for automotive vision and radar systems L5965 datasheet, New Embedded Inductors For Power Converter Applications, 2018.

, Analyse tensorielle de circuits imprimés multicouches : Applications numériques et ébauche d'analyse multiphysique, 2019.

Z. Yang, F. Gunawan, X. Gu, K. Ding, and H. He, Classification and 3D stack of Embedded Components technology in Substrate, 16th International Conference on Electronic Packaging Technology (ICEPT), pp.666-671, 2015.

P. Zattarin, Etude de l'intégration d'un modèle polycristallin dans un code d'éléments finis en élastoplasticité, ANNEXES ANNEXE, vol.1, 2000.

, Mesures de traction réalisées sur un banc de traction mécanique Instron 5565

, Types d'échantillons

, Eprouvette de 10 cm de long et de 2 cm de large et d'épaisseur en fonction du matériau ? 3 matériaux différents : Core R1577

, Pour chaque type d'échantillon, 3 à 5 mesures ont été réalisées pour obtenir un résultat moyen de courbe de contraintes-déformations