, The bottom of the damping chamber is removed compared to the previous configuration, see figure 5.16. The other parameters stay the same

, There is no damping chamber. The other parameters stay the same, see figure 5, vol.18

, We start again from the configuration 1. For this setup, the gabions' size is divided by 2, b = 6.8cm. The other parameters stay the same

, The range of periods is 0.6s ? T ? 2.0s. and the wave heights are A i = 8mm and A i = 16mm. The wave steepness is then in the range 0.4% ? H /? ? 2.8% for A i = 8mm and 0.8% ? H /? ? 5

G. Arnaud, V. Rey, J. Touboul, D. Sous, B. Molin et al., Wave propagation through dense vertical cylinder arrays: Interference process and specific surface effects on damping, Applied Ocean Research, vol.65, pp.229-237, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01516817

S. Azhar, C. Dardab, J. Brossard, and M. Chagdali, Etude analytique de l'interaction houle-digue poreuse, pp.667-676, 2008.

J. Bougis, Prise d'eau et rejet en mer, 2015.

H. Burcharth and O. Andersen, On the one-dimensional steady and unsteady porous flow equations, Coastal Engineering, vol.24, issue.3-4, pp.233-257, 1995.

H. F. Burcharth and C. Christensen, On Stationary and Non-stationary Porous Flow in Coarse Granular Materials: European Community, MAST G6-S: Project 1, Wave Action on and in coastal structures. Aalborg Universitetsforlag, 1991.

P. C. Carman, Fluid flow through granular beds, Transactions, Institution of Chemical Engineers, issue.15, pp.150-166, 1937.

P. C. Carman, Flow of gases through porous media. London : Butterworths scientific publications, 1956.

X. Chen, G. Yao, E. Herrero-bervera, J. Cai, K. Zhou et al., A new model of pore structure typing based on fractal geometry, Marine and Petroleum Geology, vol.98, pp.291-305, 2018.

C. Ciria and C. G. Enrochement, L'utilisation des enrochements pour les ouvrages hydrauliques. Version française du Rock Manual, CETMEF, 2009.

F. Civan and D. Tiab, Steady and semi-steady state radial flow and partial water-drive oil and gas reservoirs using Darcy, Forchheimer, Brinkman, and capillary-orifice models, pp.381-386, 1991.

A. Costa, Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption, Geophysical Research Letters, vol.33, issue.2, 2006.

R. A. Dalrymple, M. A. Losada, and P. A. Martin, Reflection and transmission from porous structures under oblique wave attack, J. Fluid Mech, vol.224, pp.625-644, 1991.

H. Darcy, Les fontaines publiques de la ville de Dijon : Détermination des lois d'écoulement de l'eau à travers le sable, 1856.

M. Jesus, J. L. Lara, and I. J. Losada, Three-dimensional interaction of waves and porous coastal structures. Part I: Numerical model formulation, Coastal Engineering, vol.64, pp.57-72, 2012.

G. Delhommeau, Les problèmes de diffraction-radiation et de résistance des vagues, 1987.

H. D. Adel, Re-analysis of permeability measurements using Forchheimers' equation, 1987.

F. Dentale, Simulation of Flow within Armour Blocks in a Breakwater, Journal of Coastal Research, vol.30, issue.3, p.528, 2014.

Y. Goda and T. Suzuki, Estimation of incident and reflected waves in random wave experiments, vol.15, pp.828-845, 1976.

Z. Gu and H. Wang, Gravity waves over porous bottoms, Coastal engineering, vol.15, issue.5-6, pp.497-524, 1991.

A. A. Hannoura and J. A. Mccorquodale, Virtual Mass of Coarse Granular Media, Journal of the Waterway Port Coastal and Ocean Division, vol.104, issue.2, pp.191-200, 1978.

S. M. Hassanizadeh and W. G. Gray, High velocity flow in porous media, Transport in porous media, vol.2, pp.521-531, 1987.

N. Henderson, J. C. Brêttas, and W. F. Sacco, A three-parameter Kozeny-Carman generalized equation for fractal porous media, Chemical Engineering Science, vol.65, issue.15, pp.4432-4442, 2010.

P. Higuera, J. L. Lara, and I. J. Losada, Three-dimensional interaction of waves and porous coastal structures using OpenFOAM. Part I: Formulation and validation, Coastal Engineering, vol.83, pp.243-258, 2014.

P. Higuera, J. L. Lara, and I. J. Losada, Three-dimensional interaction of waves and porous coastal structures using OpenFOAM, Part II: Application. Coastal Engineering, vol.83, pp.259-270, 2014.

B. Jensen, B. M. Sumer, and E. D. Christensen, Wave interaction with porous coastal structures, 2014.

O. Jensen and P. Klinting, Evaluation of scale effects in hydraulic models by analysis of laminar and turbulent flows, Coastal Engineering, vol.7, issue.4, pp.319-329, 1983.

G. H. Keulegan, Wave transmission through rock structures, 1973.

M. Koenders, Hydraulic criteria for filters. Estuary Physics, 1985.

D. J. Korteweg and G. De-vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philosophical Magazine, vol.39, issue.240, pp.422-443, 1895.

J. Kozeny, Ueber kapillare Leitung des Wassers im Boden, Sitzungsber Akad. Wiss, pp.271-306, 1927.

Z. Kun-can, W. Tong, L. Hai-cheng, G. Zhi-jun, and W. Wen-fei, Fractal analysis of flow resistance in random porous media based on the staggered pore-throat model, International Journal of Heat and Mass Transfer, vol.115, pp.225-231, 2017.

D. Lajoie, Modélisation de la houle en zone côtière : prévision de l'agitation à l'intérieur des ports et mise au point d'atténuateurs de houle dynamiques, 1996.

D. Lajoie, Optimisation du fonctionnement des atténuateurs de houle de type dos de chameau à l'aide de perforations dans la structure, pp.749-760, 2008.

D. Lajoie, J. Bougis, and J. Dolidon, Conception d'un atténuateur de houle de type caisson à double parois poreuses, 2014.

F. D. Latief and U. Fauzi, Kozeny-Carman and empirical formula for the permeability of computer rock models, International Journal of Rock Mechanics and Mining Sciences, vol.50, pp.117-123, 2012.

C. Lin and C. Huang, Decomposition of incident and reflected higher harmonic waves using four wave gauges, Coastal Engineering, vol.51, issue.5-6, pp.395-406, 2004.

P. Lin and S. A. Karunarathna, Numerical Study of Solitary Wave Interaction with Porous Breakwaters, Journal of Waterway, Port, Coastal, and Ocean Engineering, vol.133, issue.5, pp.352-363, 2007.

I. J. Losada, J. L. Lara, and M. Del-jesus, Modeling the Interaction of Water Waves with Porous Coastal Structures, Journal of Waterway, Port, Coastal, and Ocean Engineering, vol.142, issue.6, p.3116003, 2016.

T. Andersen, M. R. Eldrup, and P. Frigaard, Estimation of incident and reflected components in highly nonlinear regular waves, Coastal Engineering, vol.119, pp.51-64, 2017.

O. S. Madsen and S. M. White, Reflection and transmission characteristics of porous rubble-mound breakwaters, 1976.

E. P. Mansard and E. R. Funke, The Measurement of Incident and Reflected Spectra Using a Least Square Method, 1980.

B. Molin, Hydrodynamique des structures offshore, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01320917

B. Molin and F. Remy, Etude expérimentale d'amortisseurs dynamiques de type TSD, 2014.

B. Molin and F. Remy, Inertia effects in TLD sloshing with perforated screens, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01316728

B. Molin, F. Remy, G. Arnaud, V. Rey, J. Touboul et al., On the dispersion equation for linear waves traveling through or over dense arrays of vertical cylinders, Applied Ocean Research, vol.61, pp.148-155, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01400090

P. Y. Polubarinova-kochina, Theory of Ground Water Movement, 1962.

S. Crowley and R. Porter, The effect of slatted screens on waves, 2011.

R. Shih, Permeability characteristics of rubble material, new formulae, Proc. ICCE, vol.2, pp.1499-1512, 1990.

G. Smith, Comparison of stationary and oscillatory flow through porous media. PhD thesis, Queen's University, 1991.

C. K. Sollitt and R. H. Cross, Wave transmission through permeable breakwaters, Coastal Engineering, pp.1827-1846, 1973.

K. Suh, Y. W. Kim, and C. Ji, Calculation of permeability parameter of perforated wall, Coastal Engineering Proceedings, vol.1, issue.32, 2011.

W. Sulisz, Wave reflection and transmission at permeable breakwaters of arbitrary cross-section, Coastal Engineering, vol.9, issue.4, pp.371-386, 1985.

S. P. Tamrin, H. Parung, and A. Thaha, Experimental Study of Perforated Concrete Block Breakwater, International Journal of Engineering & Technology IJET-IJENS, vol.14, issue.03, pp.6-10, 2014.

L. Tao, H. Song, and S. Chakrabarti, Wave interaction with a perforated circular breakwater of non-uniform porosity, Journal of Engineering Mathematics, vol.65, issue.3, pp.257-271, 2009.

S. Twu and C. Liu, Interaction of non-breaking regular waves with a periodic array of artificial porous bars, Coastal Engineering, vol.51, issue.3, pp.223-236, 2004.

S. Twu, C. Liu, and C. Twu, Wave damping characteristics of vertically stratified porous structures under oblique wave action, Ocean Engineering, vol.29, issue.11, pp.1295-1311, 2002.

F. J. Valdes-parada, J. A. Ochoa-tapia, and J. Alvarez-ramirez, Validity of the permeability Carman-Kozeny equation: A volume averaging approach, Physica A: Statistical Mechanics and its Applications, vol.388, issue.6, pp.789-798, 2009.

M. R. Van-gent, Formulae to describe porous flow, 1992.

M. R. Van-gent, Stationary and oscillatory flow through coarse porous media, 1993.

M. R. Van-gent, Wave interaction with permeable coastal structures, 1995.

R. Van't-veer and A. Pistidda, Forces on Bilge Keels in Regular and Irregular Oscillating Flow, 2012.

J. C. Ward, Turbulent Flow in Porous Media, Journal of the Hydraulics Division, vol.90, issue.5, pp.1-12, 1964.

G. B. Whitham, Linear and Nonlinear Waves, 1974.

K. W. Wilson, Scale Effect in Rubble-Mound Breakwater, 1971.

P. Xu and B. Yu, Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry, Advances in Water Resources, vol.31, issue.1, pp.74-81, 2008.

X. Yu and A. T. Chwang, Wave-induced oscillation in harbor with porous breakwaters, Journal of waterway, vol.120, issue.2, pp.125-144, 1994.

Z. Zeng and R. Grigg, A Criterion for Non-Darcy Flow in Porous Media, Transport in Porous Media, vol.63, issue.1, pp.57-69, 2006.