I. M. Results-;-nordon, R. J. Hinchliffe, I. M. Loftus, and M. M. Thompson, Among the 752 miRs screened in PBMCs, 275 were detected in all samples, Nat Rev Cardiol, vol.1, issue.2, pp.92-102, 2011.

F. L. Moll, J. T. Powell, G. Fraedrich, F. Verzini, S. Haulon et al.,

, Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery, Eur J Vasc Endovasc Surg, vol.41, issue.1, pp.1-58, 2011.

K. Shimizu, R. N. Mitchell, and P. Libby, Inflammation and cellular immune responses in abdominal aortic aneurysms, Arterioscler Thromb Vasc Biol, vol.26, issue.5, pp.987-94, 2006.

J. Raffort, F. Lareyre, M. Clement, R. Hassen-khodja, G. Chinetti et al., Monocytes and macrophages in abdominal aortic aneurysm, Nat Rev Cardiol, vol.14, issue.8, pp.457-71, 2017.
URL : https://hal.archives-ouvertes.fr/tel-02383749

J. Raffort, F. Lareyre, M. Clement, and Z. Mallat, Micro-RNAs in abdominal aortic aneurysms: insights from animal models and relevance to human disease, Cardiovasc Res, vol.110, issue.2, pp.165-77, 2016.

V. Iyer, S. Rowbotham, E. Biros, J. Bingley, and J. Golledge, A systematic review investigating the association of microRNAs with human abdominal aortic aneurysms

, Atherosclerosis, vol.261, pp.78-89, 2017.

L. Maegdefessel, J. Azuma, R. Toh, D. R. Merk, A. Deng et al., Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development, J Clin Invest, vol.122, issue.2, pp.497-506, 2012.

E. Biros, C. S. Moran, Y. Wang, P. J. Walker, J. Cardinal et al., microRNA profiling in patients with abdominal aortic aneurysms: the significance of miR-155, Clin Sci (Lond), vol.126, issue.11, pp.795-803, 2014.

L. Maegdefessel, J. M. Spin, U. Raaz, S. M. Eken, R. Toh et al., miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development, Nat Commun, vol.5, p.5214, 2014.

C. W. Kim, S. Kumar, D. J. Son, I. H. Jang, K. K. Griendling et al., Prevention of abdominal aortic aneurysm by anti-microRNA-712 or anti-microRNA-205 in angiotensin II-infused mice, Arterioscler Thromb Vasc Biol, vol.34, issue.7, pp.1412-1433, 2014.

R. A. Boon, T. Seeger, S. Heydt, A. Fischer, E. Hergenreider et al.,

, MicroRNA-29 in aortic dilation: implications for aneurysm formation, Circ Res, vol.109, issue.10, pp.1115-1124, 2011.

K. Pafili, I. Gouni-berthold, N. Papanas, and D. P. Mikhailidis, Abdominal aortic aneurysms and diabetes mellitus, J Diabetes Complications, vol.29, issue.8, pp.1330-1336, 2015.

P. De-rango, P. Cao, E. Cieri, G. Parlani, M. Lenti et al., Effects of diabetes

, J Vasc Surg, vol.56, issue.6, pp.1555-63, 2012.

J. S. Weiss and B. E. Sumpio, Review of prevalence and outcome of vascular disease in patients with diabetes mellitus, Eur J Vasc Endovasc Surg, vol.31, issue.2, pp.143-50, 2006.

J. Xiong, Z. Wu, C. Chen, Y. Wei, and W. Guo, Association between diabetes and prevalence and growth rate of abdominal aortic aneurysms: A meta-analysis, Int J Cardiol, vol.221, pp.484-95, 2016.

C. V. Collares, A. F. Evangelista, D. J. Xavier, D. M. Rassi, T. Arns et al.,

, Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients, BMC Res Notes, vol.6, p.491, 2013.

H. Zhu and S. W. Leung, Identification of microRNA biomarkers in type 2 diabetes: a metaanalysis of controlled profiling studies, Diabetologia, vol.58, issue.5, pp.900-911, 2015.

X. Wang, J. Sundquist, B. Zoller, A. A. Memon, K. Palmer et al.,

, Determination of 14 circulating microRNAs in Swedes and Iraqis with and without diabetes mellitus type 2, PLoS One, vol.9, issue.1, p.86792, 2014.

Z. Su, W. Si, L. Li, B. Zhou, X. Li et al., MiR-144 regulates hematopoiesis and vascular development by targeting meis1 during zebrafish development, Int J Biochem Cell Biol, vol.49, pp.53-63, 2014.

K. M. Turczynska, A. Bhattachariya, J. Sall, O. Goransson, K. Sward et al.,

, Stretch-sensitive down-regulation of the miR-144/451 cluster in vascular smooth muscle and its role in AMP-activated protein kinase signaling, PLoS One, vol.8, issue.5, p.65135, 2013.

Z. Liu, J. Yi, R. Ye, J. Liu, Q. Duan et al., miR-144 regulates transforming growth factor-beta1 iduced hepatic stellate cell activation in human fibrotic liver, Int J Clin Exp Pathol, vol.8, issue.4, pp.3994-4000, 2015.

J. R. Nansseu, J. Fokom-domgue, J. J. Noubiap, E. V. Balti, E. Sobngwi et al.,

, Fructosamine measurement for diabetes mellitus diagnosis and monitoring: a systematic review and meta-analysis protocol, BMJ Open, vol.5, issue.5, p.7689, 2015.

Y. Zhu, F. Tian, H. Li, Y. Zhou, J. Lu et al., Profiling maternal plasma microRNA expression in early pregnancy to predict gestational diabetes mellitus, Int J Gynaecol Obstet, vol.130, issue.1, pp.49-53, 2015.

K. Kin, S. Miyagawa, S. Fukushima, Y. Shirakawa, K. Torikai et al.,

, Tissue-and plasma-specific MicroRNA signatures for atherosclerotic abdominal aortic aneurysm, J Am Heart Assoc, vol.1, issue.5, p.745, 2012.

A. Zampetaki, R. Attia, U. Mayr, R. S. Gomes, A. Phinikaridou et al., Role of miR-195 in aortic aneurysmal disease, Circ Res, vol.115, issue.10, pp.857-66, 2014.

C. Doebele, A. Bonauer, A. Fischer, A. Scholz, Y. Reiss et al., Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells, Blood, vol.115, issue.23, pp.4944-50, 2010.

H. T. Deng, H. L. Liu, B. B. Zhai, K. Zhang, G. C. Xu et al., Vascular endothelial growth factor suppresses TNFSF15 production in endothelial cells by stimulating miR-31 and miR-20a expression via activation of Akt and Erk signals, FEBS Open Bio, vol.7, issue.1, pp.108-125, 2017.

Y. Suarez, C. Fernandez-hernando, J. Yu, S. A. Gerber, K. D. Harrison et al.,

, Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis, Proc Natl Acad Sci U S A, vol.105, issue.37, pp.14082-14089, 2008.

E. Choke, M. M. Thompson, J. Dawson, W. R. Wilson, S. Sayed et al.,

, Abdominal aortic aneurysm rupture is associated with increased medial neovascularization and overexpression of proangiogenic cytokines, Arterioscler Thromb Vasc Biol, vol.26, issue.9, pp.2077-82, 2006.

M. Brock, V. J. Samillan, M. Trenkmann, C. Schwarzwald, S. Ulrich et al.,

, AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension, Eur Heart J, vol.35, issue.45, pp.3203-3214, 2014.

M. B. Lopes, R. C. Freitas, M. H. Hirata, R. Hirata, A. A. Rezende et al., mRNA-miRNA integrative analysis of diabetes-induced cardiomyopathy in rats, Front Biosci, vol.9, pp.194-229, 2017.

R. Tables and . Bibliographiques,

F. L. Moll, J. T. Powell, and G. Fraedrich, Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery, Eur J Vasc Endovasc Surg, vol.41, issue.1, pp.1-58, 2011.

N. Sakalihasan, R. Limet, and O. D. Defawe, Abdominal aortic aneurysm, Lancet, vol.365, issue.9470, pp.1577-1589, 2005.

E. L. Chaikof, R. L. Dalman, and M. K. Eskandari, The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm, J Vasc Surg, vol.67, issue.1, pp.2-77, 2018.

I. M. Nordon, R. J. Hinchliffe, I. M. Loftus, and M. M. Thompson, Pathophysiology and epidemiology of abdominal aortic aneurysms, Nat Rev Cardiol, vol.8, issue.2, pp.92-102, 2011.

M. J. Bown, A. J. Sutton, P. R. Bell, and R. D. Sayers, A meta-analysis of 50 years of ruptured abdominal aortic aneurysm repair, Br J Surg, vol.89, issue.6, pp.714-730, 2002.

M. J. Sweeting, R. Balm, P. Desgranges, P. Ulug, and J. T. Powell,

, Individual-patient meta-analysis of three randomized trials comparing endovascular versus open repair for ruptured abdominal aortic aneurysm, Br J Surg, vol.102, issue.10, pp.1229-1239, 2015.

P. W. Stather, D. A. Sidloff, I. A. Rhema, E. Choke, M. J. Bown et al., A review of current reporting of abdominal aortic aneurysm mortality and prevalence in the literature, Eur J Vasc Endovasc Surg, vol.47, issue.3, pp.240-242, 2014.

K. A. Vardulaki, N. M. Walker, N. E. Day, S. W. Duffy, H. A. Ashton et al., Quantifying the risks of hypertension, age, sex and smoking in patients with abdominal aortic aneurysm, Br J Surg, vol.87, issue.2, pp.195-200, 2000.

R. A. Scott, S. G. Bridgewater, and H. A. Ashton, Randomized clinical trial of screening for abdominal aortic aneurysm in women, Br J Surg, vol.89, issue.3, pp.283-285, 2002.

F. A. Lederle, D. B. Nelson, and A. M. Joseph, Smokers' relative risk for aortic aneurysm compared with other smoking-related diseases: a systematic review, J Vasc Surg, vol.38, issue.2, pp.329-334, 2003.

T. B. Wilmink, C. R. Quick, and N. E. Day, The association between cigarette smoking and abdominal aortic aneurysms, J Vasc Surg, vol.30, issue.6, pp.1099-1105, 1999.

S. T. Macsweeney, M. Ellis, P. C. Worrell, R. M. Greenhalgh, and J. T. Powell, Smoking and growth rate of small abdominal aortic aneurysms, Lancet, vol.344, issue.8923, pp.651-652, 1994.

K. Jamrozik, P. E. Norman, and C. A. Spencer, Screening for abdominal aortic aneurysm: lessons from a population-based study, Med J Aust, vol.173, issue.7, pp.345-350, 2000.

C. Iribarren, J. A. Darbinian, A. S. Go, B. H. Fireman, C. D. Lee et al., Traditional and novel risk factors for clinically diagnosed abdominal aortic aneurysm: the Kaiser multiphasic health checkup cohort study, Ann Epidemiol, vol.17, issue.9, pp.669-678, 2007.

S. H. Forsdahl, K. Singh, S. Solberg, and B. K. Jacobsen, Risk factors for abdominal aortic aneurysms: a 7-year prospective study: the Tromso Study, Circulation, vol.119, issue.16, pp.2202-2208, 1994.

H. J. Pleumeekers, A. W. Hoes, and E. Van-der-does, Aneurysms of the abdominal aorta in older adults. The Rotterdam Study, Am J Epidemiol, vol.142, issue.12, pp.1291-1299, 1995.

J. Golledge, F. Van-bockxmeer, K. Jamrozik, M. Mccann, and P. E. Norman, Association between serum lipoproteins and abdominal aortic aneurysm, Am J Cardiol, vol.105, issue.10, pp.1480-1484, 2010.

E. Torsney, G. Pirianov, and N. Charolidi, Elevation of plasma high-density lipoproteins inhibits development of experimental abdominal aortic aneurysms

, Arterioscler Thromb Vasc Biol, vol.32, issue.11, pp.2678-2686, 2012.

O. Schouten, J. H. Van-laanen, and E. Boersma, Statins are associated with a reduced infrarenal abdominal aortic aneurysm growth, Eur J Vasc Endovasc Surg, vol.32, issue.1, pp.21-26, 2006.

J. Golledge, P. Clancy, K. Jamrozik, and P. E. Norman, Obesity, adipokines, and abdominal aortic aneurysm: Health in Men study, Circulation, vol.116, issue.20, pp.2275-2279, 2007.

A. Long, H. T. Bui, and C. Barbe, Prevalence of abdominal aortic aneurysm and large infrarenal aorta in patients with acute coronary syndrome and proven coronary stenosis: a prospective monocenter study, Ann Vasc Surg, vol.24, issue.5, pp.602-608, 2010.

J. Cornuz, S. Pinto, C. Tevaearai, H. Egger, and M. , Risk factors for asymptomatic abdominal aortic aneurysm: systematic review and meta-analysis of population-based screening studies, Eur J Public Health, vol.14, issue.4, pp.343-349, 2004.

A. Wanhainen, D. Bergqvist, K. Boman, T. K. Nilsson, J. Rutegard et al., Risk factors associated with abdominal aortic aneurysm: a population-based study with historical and current data, J Vasc Surg, vol.41, issue.3, pp.390-396, 2005.

L. C. Brown and J. T. Powell, Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK Small Aneurysm Trial Participants, Ann Surg, vol.230, issue.3, pp.296-287, 1999.

G. R. Gadowski, M. A. Ricci, E. D. Hendley, and D. B. Pilcher, Hypertension accelerates the growth of experimental aortic aneurysms, J Surg Res, vol.54, issue.5, pp.431-436, 1993.

K. Pafili, I. Gouni-berthold, N. Papanas, and D. P. Mikhailidis, Abdominal aortic aneurysms and diabetes mellitus, J Diabetes Complications, vol.29, issue.8, pp.1330-1336, 2015.

N. Dattani, R. D. Sayers, and M. J. Bown, Diabetes mellitus and abdominal aortic aneurysms: A review of the mechanisms underlying the negative relationship, Diab Vasc Dis Res, p.1479164118780799, 2018.

C. M. Wahlgren, E. Larsson, P. K. Magnusson, R. Hultgren, and J. Swedenborg, Genetic and environmental contributions to abdominal aortic aneurysm development in a twin mediates transcriptional silencing during SMC phenotypic switching in vivo, Circ Res, vol.111, issue.6, pp.685-696, 2012.

T. Yoshida, K. H. Kaestner, and G. K. Owens, Conditional deletion of Kruppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury, Circ Res, vol.102, issue.12, pp.1548-1557, 2008.

J. Labat-robert and L. Robert, Introduction: matrix biology in the 21st century. From a static-rheological role to a dynamic-signaling function, Pathol Biol (Paris), vol.53, issue.7, pp.369-371, 2005.

M. Van-der-rest and R. Garrone, Collagen family of proteins, FASEB J, vol.5, issue.13, pp.2814-2823, 1991.

R. , The collagen family, Cold Spring Harb Perspect Biol, vol.3, issue.1, p.4978, 2011.

P. Lu, K. Takai, V. M. Weaver, and Z. Werb, Extracellular matrix degradation and remodeling in development and disease, Cold Spring Harb Perspect Biol, vol.3, issue.12, 2011.

C. M. Kielty, M. J. Sherratt, and C. A. Shuttleworth, Elastic fibres, J Cell Sci, vol.115, pp.2817-2828, 2002.

C. Chothia and E. Y. Jones, The molecular structure of cell adhesion molecules, Annu Rev Biochem, vol.66, pp.823-862, 1997.

E. Ruoslahti, Structure and biology of proteoglycans, Annu Rev Cell Biol, vol.4, pp.229-255, 1988.

R. V. Iozzo, Matrix proteoglycans: from molecular design to cellular function, Annu Rev Biochem, vol.67, pp.609-652, 1998.

M. J. Mulligan-kehoe and M. Simons, Vasa vasorum in normal and diseased arteries, Circulation, vol.129, issue.24, pp.2557-2566, 2014.

B. T. Baxter, G. S. Mcgee, and V. P. Shively, Elastin content, cross-links, and mRNA in normal and aneurysmal human aorta, J Vasc Surg, vol.16, issue.2, pp.192-200, 1992.

N. Sakalihasan, A. Heyeres, B. V. Nusgens, R. Limet, and C. M. Lapiere, Modifications of the extracellular matrix of aneurysmal abdominal aortas as a function of their size, Eur J Vasc Surg, vol.7, issue.6, pp.633-637, 1993.

R. Pyo, J. K. Lee, and J. M. Shipley, Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms, J Clin Invest, vol.105, issue.11, pp.1641-1649, 2000.

Y. Qin, X. Cao, and J. Guo, Deficiency of cathepsin S attenuates angiotensin IIinduced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice, Cardiovasc Res, vol.96, issue.3, pp.401-410, 2012.

G. M. Longo, S. J. Buda, and N. Fiotta, MMP-12 has a role in abdominal aortic aneurysms in mice, Surgery, vol.137, issue.4, pp.457-462, 2005.

D. M. Hovsepian, S. J. Ziporin, M. K. Sakurai, J. K. Lee, J. A. Curci et al., Elevated plasma levels of matrix metalloproteinase-9 in patients with abdominal aortic aneurysms: a circulating marker of degenerative aneurysm disease, J Vasc Interv Radiol, vol.11, issue.10, pp.1345-1352, 2000.

W. D. Mcmillan and W. H. Pearce, Increased plasma levels of metalloproteinase-9 are associated with abdominal aortic aneurysms, J Vasc Surg, vol.29, issue.1, pp.122-127, 1999.

J. B. Knox, G. K. Sukhova, A. D. Whittemore, and P. Libby, Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic diseases, Circulation, vol.95, issue.1, pp.205-212, 1997.

N. A. Tamarina, W. D. Mcmillan, V. P. Shively, and W. H. Pearce, Expression of matrix metalloproteinases and their inhibitors in aneurysms and normal aorta, Ann Vasc Surg, vol.122, issue.2, pp.462-466, 1997.

M. L. Mccormick, D. Gavrila, and N. L. Weintraub, Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms, Arterioscler Thromb Vasc Biol, vol.27, issue.3, pp.461-469, 2007.

J. B. Michel, Anoikis in the cardiovascular system: known and unknown extracellular mediators, Arterioscler Thromb Vasc Biol, vol.23, issue.12, pp.2146-2154, 2003.

O. Meilhac, B. Ho-tin-noe, X. Houard, P. M. Michel, J. B. Angles-cano et al.,

, Pericellular plasmin induces smooth muscle cell anoikis, FASEB J, vol.17, issue.10, pp.1301-1303, 2003.

M. A. Dale, M. K. Ruhlman, and B. T. Baxter, Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy, Arterioscler Thromb Vasc Biol, vol.35, issue.8, pp.1746-1755, 2015.

K. Shimizu, R. N. Mitchell, and P. Libby, Inflammation and cellular immune responses in abdominal aortic aneurysms, Arterioscler Thromb Vasc Biol, vol.26, issue.5, pp.987-994, 2006.

H. Li, S. Bai, and Q. Ao, Modulation of Immune-Inflammatory Responses in Abdominal Aortic Aneurysm: Emerging Molecular Targets, J Immunol Res, p.7213760, 2018.

H. Hirose and M. D. Tilson, Abdominal aortic aneurysm as an autoimmune disease, Ann N Y Acad Sci, vol.947, pp.416-418, 2001.

J. A. Curci and R. W. Thompson, Adaptive cellular immunity in aortic aneurysms: cause, consequence, or context?, J Clin Invest, vol.114, issue.2, pp.168-171, 2004.

G. S. Herron, E. Unemori, M. Wong, J. H. Rapp, M. H. Hibbs et al., Connective tissue proteinases and inhibitors in abdominal aortic aneurysms. Involvement of the vasa vasorum in the pathogenesis of aortic aneurysms, Arterioscler Thromb, vol.11, issue.6, pp.1667-1677, 1991.

D. R. Holmes, S. Liao, W. C. Parks, and R. W. Thompson, Medial neovascularization in abdominal aortic aneurysms: a histopathologic marker of aneurysmal degeneration with pathophysiologic implications, J Vasc Surg, vol.21, issue.5, pp.771-762, 1995.

P. K. Shah, Inflammation, metalloproteinases, and increased proteolysis: an emerging pathophysiological paradigm in aortic aneurysm, Circulation, vol.96, issue.7, pp.2115-2117, 1997.

A. E. Koch, S. L. Kunkel, and W. H. Pearce, Enhanced production of the chemotactic cytokines interleukin-8 and monocyte chemoattractant protein-1 in human abdominal aortic aneurysms, Am J Pathol, vol.142, issue.5, pp.1423-1431, 1993.

K. M. Newman, J. Jean-claude, H. Li, W. G. Ramey, and M. D. Tilson, Cytokines that activate proteolysis are increased in abdominal aortic aneurysms, Circulation, vol.90, issue.5, pp.224-227, 1994.

K. A. Hance, M. Tataria, S. J. Ziporin, J. K. Lee, and R. W. Thompson, Monocyte chemotactic activity in human abdominal aortic aneurysms: role of elastin degradation peptides and the 67-kD cell surface elastin receptor, J Vasc Surg, vol.35, issue.2, pp.254-261, 2002.

A. E. Koch, G. K. Haines, and R. J. Rizzo, Human abdominal aortic aneurysms

, Immunophenotypic analysis suggesting an immune-mediated response, Am J Pathol, vol.137, issue.5, pp.1199-1213, 1990.

E. Ocana, J. C. Bohorquez, J. Perez-requena, J. A. Brieva, and C. Rodriguez, Characterisation of T and B lymphocytes infiltrating abdominal aortic aneurysms, Atherosclerosis, vol.170, issue.1, pp.39-48, 2003.

N. Sakalihasan, P. Delvenne, B. V. Nusgens, R. Limet, and C. M. Lapiere, Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms, J Vasc Surg, vol.24, issue.1, pp.127-133, 1996.

V. Fontaine, M. P. Jacob, and X. Houard, Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms, Am J Pathol, vol.161, issue.5, pp.1701-1710, 2002.

J. Swedenborg and P. Eriksson, The intraluminal thrombus as a source of proteolytic activity, Ann N Y Acad Sci, vol.1085, pp.133-138, 2006.

K. S. Chapple, D. J. Parry, S. Mckenzie, K. A. Maclennan, P. Jones et al.,

, Cyclooxygenase-2 expression and its association with increased angiogenesis in human abdominal aortic aneurysms, Ann Vasc Surg, vol.21, issue.1, pp.61-66, 2007.

E. Choke, M. M. Thompson, and J. Dawson, Abdominal aortic aneurysm rupture is associated with increased medial neovascularization and overexpression of proangiogenic cytokines, Arterioscler Thromb Vasc Biol, vol.26, issue.9, pp.2077-2082, 2006.

M. M. Tedesco, M. Terashima, and F. G. Blankenberg, Analysis of in situ and ex vivo vascular endothelial growth factor receptor expression during experimental aortic aneurysm progression, Arterioscler Thromb Vasc Biol, vol.29, issue.10, pp.1452-1457, 2009.

T. Nishibe, A. Dardik, and Y. Kondo, Expression and localization of vascular endothelial growth factor in normal abdominal aorta and abdominal aortic aneurysm, Int Angiol, vol.29, issue.3, pp.260-265, 2010.

B. Vijaynagar, M. J. Bown, R. D. Sayers, and E. Choke, Potential role for anti-angiogenic therapy in abdominal aortic aneurysms, Eur J Clin Invest, vol.43, issue.7, pp.758-765, 2013.

J. Raffort, G. Chinetti, and F. Lareyre, Glucagon-Like peptide-1: A new therapeutic target to treat abdominal aortic aneurysm?, Biochimie, vol.152, pp.149-154, 2018.

J. Senemaud, G. Caligiuri, H. Etienne, S. Delbosc, J. B. Michel et al., Translational Relevance and Recent Advances of Animal Models of Abdominal Aortic Aneurysm

, Arterioscler Thromb Vasc Biol, vol.37, issue.3, pp.401-410, 2017.

Y. S. Yoo, H. S. Park, G. H. Choi, and T. Lee, Recent Advances in the Development of Experimental Animal Models Mimicking Human Aortic Aneurysms, Vasc Specialist Int, vol.31, issue.1, pp.1-10, 2015.

A. Trollope, J. V. Moxon, C. S. Moran, and J. Golledge, Animal models of abdominal aortic aneurysm and their role in furthering management of human disease, Cardiovasc Pathol, vol.20, issue.2, pp.114-123, 2011.

A. Daugherty and L. A. Cassis, Mouse models of abdominal aortic aneurysms, Arterioscler Thromb Vasc Biol, vol.24, issue.3, pp.429-434, 2004.

F. P. Boudghene, M. R. Sapoval, M. Bonneau, A. F. Leblanche, F. C. Lavaste et al., Abdominal aortic aneurysms in sheep: prevention of rupture with endoluminal stentgrafts, Radiology, vol.206, issue.2, pp.447-454, 1998.

D. Pavcnik, R. T. Andrews, and Q. Yin, A canine model for studying endoleak after endovascular aneurysm repair, J Vasc Interv Radiol, vol.14, issue.10, pp.1303-1310, 2003.

E. Allaire, C. Guettier, P. Bruneval, D. Plissonnier, and J. B. Michel, Cell-free arterial grafts: morphologic characteristics of aortic isografts, allografts, and xenografts in rats, J Vasc Surg, vol.19, issue.3, pp.446-456, 1994.

E. Allaire, B. Muscatelli-groux, and C. Mandet, Paracrine effect of vascular smooth muscle cells in the prevention of aortic aneurysm formation, J Vasc Surg, vol.36, issue.5, pp.1018-1026, 2002.

E. Allaire, C. Mandet, P. Bruneval, S. Bensenane, J. P. Becquemin et al., Cell and extracellular matrix rejection in arterial concordant and discordant xenografts in the rat, Transplantation, vol.62, issue.6, pp.794-803, 1996.

S. Anidjar, J. L. Salzmann, D. Gentric, P. Lagneau, J. P. Camilleri et al., Elastaseinduced experimental aneurysms in rats, Circulation, vol.82, issue.3, pp.973-981, 1990.

J. Azuma, T. Asagami, R. Dalman, and P. S. Tsao, Creation of murine experimental abdominal aortic aneurysms with elastase, J Vis Exp, issue.29, 2009.

C. M. Bhamidipati, G. S. Mehta, and G. Lu, Development of a novel murine model of aortic aneurysms using peri-adventitial elastase, Surgery, vol.152, issue.2, pp.238-246, 2012.

J. Azuma, L. Maegdefessel, T. Kitagawa, R. L. Dalman, M. V. Mcconnell et al., Assessment of elastase-induced murine abdominal aortic aneurysms: comparison of ultrasound imaging with in situ video microscopy, J Biomed Biotechnol, 2011.

A. Nchimi, A. Courtois, E. Hachemi, and M. , Multimodality imaging assessment of the deleterious role of the intraluminal thrombus on the growth of abdominal aortic aneurysm in a rat model, Eur Radiol, vol.26, issue.7, pp.2378-2386, 2016.

T. Yamaguchi, M. Yokokawa, and M. Suzuki, The time course of elastin fiber degeneration in a rat aneurysm model, Surg Today, vol.30, issue.8, pp.727-731, 2000.

C. G. Carsten, W. C. Calton, and J. M. Johanning, Elastase is not sufficient to induce experimental abdominal aortic aneurysms, J Vasc Surg, vol.33, issue.6, pp.1255-1262, 2001.

A. C. Chiou, B. Chiu, and W. H. Pearce, Murine aortic aneurysm produced by periarterial application of calcium chloride, J Surg Res, vol.99, issue.2, pp.371-376, 2001.

Y. Wang, S. Krishna, and J. Golledge, The calcium chloride-induced rodent model of abdominal aortic aneurysm, Atherosclerosis, vol.226, issue.1, pp.29-39, 2013.

A. Daugherty, M. W. Manning, and L. A. Cassis, Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice, J Clin Invest, vol.105, issue.11, pp.1605-1612, 2000.

S. H. Zhang, R. L. Reddick, J. A. Piedrahita, and N. Maeda, Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E, Science, vol.258, issue.5081, pp.468-471, 1992.

S. Ishibashi, M. S. Brown, J. L. Goldstein, R. D. Gerard, R. E. Hammer et al., Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery, J Clin Invest, vol.92, issue.2, pp.883-893, 1993.

A. Daugherty and L. Cassis, Angiotensin II and abdominal aortic aneurysms, Curr Hypertens Rep, vol.6, issue.6, pp.442-446, 2004.

B. Trachet, R. A. Fraga-silva, and A. Piersigilli, Dissecting abdominal aortic aneurysm in Ang II-infused mice: suprarenal branch ruptures and apparent luminal dilatation, Cardiovasc Res, vol.105, issue.2, pp.213-222, 2015.

G. G. Deng, B. Martin-mcnulty, and D. A. Sukovich, Urokinase-type plasminogen activator plays a critical role in angiotensin II-induced abdominal aortic aneurysm

, Circ Res, vol.92, issue.5, pp.510-517, 2003.

C. Rush, M. Nyara, J. V. Moxon, A. Trollope, B. Cullen et al., Whole genome expression analysis within the angiotensin II-apolipoprotein E deficient mouse model of abdominal aortic aneurysm, BMC Genomics, vol.10, p.298, 2009.

E. R. Neptune, P. A. Frischmeyer, and D. E. Arking, Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome, Nat Genet, vol.33, issue.3, pp.407-411, 2003.

H. Pannu, V. Tran-fadulu, and D. M. Milewicz, Genetic basis of thoracic aortic aneurysms and aortic dissections, Am J Med Genet C Semin Med Genet, vol.139, issue.1, pp.10-16, 2005.

B. L. Loeys, U. Schwarze, and T. Holm, Aneurysm syndromes caused by mutations in the TGF-beta receptor, N Engl J Med, vol.355, issue.8, pp.788-798, 2006.

M. Nataatmadja, J. West, and M. West, Overexpression of transforming growth factor-beta is associated with increased hyaluronan content and impairment of repair in Marfan syndrome aortic aneurysm, Circulation, vol.114, issue.1, pp.371-377, 2006.

D. Gomez, A. Haj-zen, A. Borges, and L. F. , Syndromic and non-syndromic aneurysms of the human ascending aorta share activation of the Smad2 pathway, J Pathol, vol.218, issue.1, pp.131-142, 2009.

J. P. Habashi, D. P. Judge, and T. M. Holm, Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome, Science, vol.312, issue.5770, pp.117-121, 2006.

M. E. Lindsay and H. C. Dietz, Lessons on the pathogenesis of aneurysm from heritable conditions, Nature, vol.473, issue.7347, pp.308-316, 2011.

Z. Mallat, H. Ait-oufella, and A. Tedgui, The Pathogenic Transforming Growth Factor-beta Overdrive Hypothesis in Aortic Aneurysms and Dissections: A Mirage?, Circ Res, vol.120, issue.11, pp.1718-1720, 2017.

A. B. Roberts, M. B. Sporn, and R. K. Assoian, Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro, Proc Natl Acad Sci, vol.83, issue.12, pp.4167-4171, 1986.

A. Bobik, Transforming growth factor-betas and vascular disorders, Arterioscler Thromb Vasc Biol, vol.26, issue.8, pp.1712-1720, 2006.

J. Dai, F. Losy, and A. M. Guinault, Overexpression of transforming growth factor-beta1 stabilizes already-formed aortic aneurysms: a first approach to induction of functional healing by endovascular gene therapy, Circulation, vol.112, issue.7, pp.1008-1015, 2005.

Y. Wang, H. Ait-oufella, and O. Herbin, TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice, J Clin Invest, vol.120, issue.2, pp.422-432, 2010.

J. M. Maki, J. Rasanen, and H. Tikkanen, Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice, Circulation, vol.106, issue.19, pp.2503-2509, 2002.

J. S. Li, H. Y. Li, L. Wang, L. Zhang, and Z. P. Jing, Comparison of beta-aminopropionitrileinduced aortic dissection model in rats by different administration and dosage, Vascular, vol.21, issue.5, pp.287-292, 2013.

J. E. Wagenseil and R. P. Mecham, New insights into elastic fiber assembly, Birth Defects Res C Embryo Today, vol.81, issue.4, pp.229-240, 2007.

S. Liu, Z. Xie, and A. Daugherty, Mineralocorticoid receptor agonists induce mouse aortic aneurysm formation and rupture in the presence of high salt, Arterioscler Thromb Vasc Biol, vol.33, issue.7, pp.1568-1579, 2013.

F. Lareyre, M. Clement, and J. Raffort, Transforming Growth Factor-beta) Blockade Induces a Human-Like Disease in a Nondissecting Mouse Model of Abdominal Aortic Aneurysm, Arterioscler Thromb Vasc Biol, vol.37, issue.11, pp.2171-2181, 2017.

J. Raffort, F. Lareyre, M. Clement, R. Hassen-khodja, G. Chinetti et al., Monocytes and macrophages in abdominal aortic aneurysm, Nat Rev Cardiol, vol.14, issue.8, pp.457-471, 2017.
URL : https://hal.archives-ouvertes.fr/tel-02383749

L. Ziegler-heitbrock, P. Ancuta, and S. Crowe, Nomenclature of monocytes and dendritic cells in blood, Blood, vol.116, issue.16, pp.74-80, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00611173

E. Idzkowska, A. Eljaszewicz, P. Miklasz, W. J. Musial, A. M. Tycinska et al., The Role of Different Monocyte Subsets in the Pathogenesis of Atherosclerosis and Acute Coronary Syndromes, Scand J Immunol, vol.82, issue.3, pp.163-173, 2015.

J. Yang, L. Zhang, C. Yu, X. F. Yang, and H. Wang, Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases, Biomark Res, vol.2, issue.1, p.1, 2014.

K. L. Wong, J. J. Tai, and W. C. Wong, Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets, Blood, vol.118, issue.5, pp.16-31, 2011.

G. J. Randolph, The fate of monocytes in atherosclerosis, J Thromb Haemost, vol.7, issue.1, pp.28-30, 2009.

C. Auffray, M. H. Sieweke, and F. Geissmann, Blood monocytes: development, heterogeneity, and relationship with dendritic cells, Annu Rev Immunol, vol.27, pp.669-692, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00407757

T. Satoh, K. Nakagawa, and F. Sugihara, Identification of an atypical monocyte and committed progenitor involved in fibrosis, Nature, vol.541, issue.7635, pp.96-101, 2017.

M. Drechsler, J. Duchene, and O. Soehnlein, Chemokines control mobilization, recruitment, and fate of monocytes in atherosclerosis, Arterioscler Thromb Vasc Biol, vol.35, issue.5, pp.1050-1055, 2015.

G. Ghigliotti, C. Barisione, and S. Garibaldi, CD16(+) monocyte subsets are increased in large abdominal aortic aneurysms and are differentially related with circulating and cell-associated biochemical and inflammatory biomarkers, Dis Markers, vol.34, issue.2, pp.131-142, 2013.

A. Rubio-navarro, A. Villalobos, J. M. Lindholt, and J. S. , Hemoglobin induces monocyte recruitment and CD163-macrophage polarization in abdominal aortic aneurysm, Int J Cardiol, vol.201, pp.66-78, 2015.

N. Lamblin, P. Ratajczak, and D. Hot, Profile of macrophages in human abdominal aortic aneurysms: a transcriptomic, proteomic, and antibody protein array study, J Proteome Res, vol.9, issue.7, pp.3720-3729, 2010.

C. S. Moran, R. J. Jose, and J. V. Moxon, Everolimus limits aortic aneurysm in the apolipoprotein E-deficient mouse by downregulating C-C chemokine receptor 2 positive monocytes, Arterioscler Thromb Vasc Biol, vol.33, issue.4, pp.814-821, 2013.

S. Mellak, H. Ait-oufella, and B. Esposito, Angiotensin II mobilizes spleen monocytes to promote the development of abdominal aortic aneurysm in Apoe-/-mice

, Arterioscler Thromb Vasc Biol, vol.35, issue.2, pp.378-388, 2015.

H. Yu, C. S. Moran, and A. F. Trollope, Angiopoietin-2 attenuates angiotensin II-induced aortic aneurysm and atherosclerosis in apolipoprotein E-deficient mice, Sci Rep, vol.6, p.35190, 2016.

P. J. Murray, J. E. Allen, and S. K. Biswas, Macrophage activation and polarization: nomenclature and experimental guidelines, Immunity, vol.41, issue.1, pp.14-20, 2014.

F. O. Martinez and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment, Rep, vol.6, p.13, 2014.

B. C. Tieu, C. Lee, and H. Sun, An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice, J Clin Invest, vol.119, issue.12, pp.3637-3651, 2009.

G. H. Turner, A. R. Olzinski, and R. E. Bernard, Assessment of macrophage infiltration in a murine model of abdominal aortic aneurysm, J Magn Reson Imaging, vol.30, issue.2, pp.455-460, 2009.

Y. X. Wang, B. Martin-mcnulty, and A. D. Freay, Angiotensin II increases urokinasetype plasminogen activator expression and induces aneurysm in the abdominal aorta of apolipoprotein E-deficient mice, Am J Pathol, vol.159, issue.4, pp.1455-1464, 2001.

K. Saraff, F. Babamusta, L. A. Cassis, and A. Daugherty, Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice, Arterioscler Thromb Vasc Biol, vol.23, issue.9, pp.1621-1626, 2003.

C. A. Dutertre, M. Clement, and M. Morvan, Deciphering the stromal and hematopoietic cell network of the adventitia from non-aneurysmal and aneurysmal human aorta, PLoS One, vol.9, issue.2, p.89983, 2014.

J. Rao, B. N. Brown, and J. S. Weinbaum, Distinct macrophage phenotype and collagen organization within the intraluminal thrombus of abdominal aortic aneurysm, J Vasc Surg, vol.62, issue.3, pp.585-593, 2015.

L. Boytard, R. Spear, and G. Chinetti-gbaguidi, Role of proinflammatory CD68(+) mannose receptor(-) macrophages in peroxiredoxin-1 expression and in abdominal aortic aneurysms in humans, Arterioscler Thromb Vasc Biol, vol.33, issue.2, pp.431-438, 2013.

Z. Qin, J. Bagley, and G. Sukhova, Angiotensin II-induced TLR4 mediated abdominal aortic aneurysm in apolipoprotein E knockout mice is dependent on STAT3, J Mol Cell Cardiol, vol.87, pp.160-170, 2015.

D. L. Rateri, D. A. Howatt, J. J. Moorleghen, R. Charnigo, L. A. Cassis et al., Prolonged infusion of angiotensin II in apoE(-/-) mice promotes macrophage recruitment with continued expansion of abdominal aortic aneurysm, Am J Pathol, vol.179, issue.3, pp.1542-1548, 2011.

J. Liu, G. K. Sukhova, and J. T. Yang, Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells, Atherosclerosis, vol.184, issue.2, pp.302-311, 2006.

G. M. Longo, W. Xiong, T. C. Greiner, Y. Zhao, N. Fiotti et al., Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms, J Clin Invest, vol.110, issue.5, pp.625-632, 2002.

Z. Mallat and . Macrophages, Arterioscler Thromb Vasc Biol, vol.34, issue.12, pp.2509-2519, 2014.

A. Duque, G. Descoteaux, and A. , Macrophage cytokines: involvement in immunity and infectious diseases, Front Immunol, vol.5, p.491, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01134410

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nat Rev Immunol, vol.8, issue.12, pp.958-969, 2008.

A. Anzai, M. Shimoda, and J. Endo, Adventitial CXCL1/G-CSF expression in response to acute aortic dissection triggers local neutrophil recruitment and activation leading to aortic rupture, Circ Res, vol.116, issue.4, pp.612-623, 2015.

D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, vol.116, issue.2, pp.281-297, 2004.

D. P. Bartel, MicroRNAs: target recognition and regulatory functions, Cell, vol.136, issue.2, pp.215-233, 2009.

Y. Wei, A. Schober, and C. Weber, Pathogenic arterial remodeling: the good and bad of microRNAs, Am J Physiol Heart Circ Physiol, vol.304, issue.8, pp.1050-1059, 2013.

M. Caputo, J. Saif, C. Rajakaruna, M. Brooks, G. D. Angelini et al., MicroRNAs in vascular tissue engineering and post-ischemic neovascularization, Adv Drug Deliv Rev, vol.88, pp.78-91, 2015.

D. D. Mcmanus and J. E. Freedman, MicroRNAs in platelet function and cardiovascular disease, Nat Rev Cardiol, vol.12, issue.12, pp.711-717, 2015.

J. A. Weber, D. H. Baxter, and S. Zhang, The microRNA spectrum in 12 body fluids, Clin Chem, vol.56, issue.11, pp.1733-1741, 2010.

A. Turchinovich, L. Weiz, and B. Burwinkel, Extracellular miRNAs: the mystery of their origin and function, Trends Biochem Sci, vol.37, issue.11, pp.460-465, 2012.

E. E. Creemers, A. J. Tijsen, and Y. M. Pinto, Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease?, Circ Res, vol.110, issue.3, pp.483-495, 2012.

J. Raffort, F. Lareyre, M. Clement, and Z. Mallat, Micro-RNAs in abdominal aortic aneurysms: insights from animal models and relevance to human disease, Cardiovasc Res, vol.110, issue.2, pp.165-177, 2016.

A. Moushi, K. Michailidou, M. Soteriou, M. Cariolou, and E. Bashiardes, MicroRNAs as possible biomarkers for screening of aortic aneurysms: a systematic review and validation study, Biomarkers, vol.23, issue.3, pp.253-264, 2018.

L. Maegdefessel, J. Azuma, and R. Toh, MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion, Sci Transl Med, vol.4, issue.122, pp.122-122, 2012.

C. W. Kim, S. Kumar, D. J. Son, I. H. Jang, K. K. Griendling et al., Prevention of abdominal aortic aneurysm by anti-microRNA-712 or anti-microRNA-205 in angiotensin IIinfused mice, Arterioscler Thromb Vasc Biol, vol.34, issue.7, pp.1412-1421, 2014.

K. Kin, S. Miyagawa, and S. Fukushima, Tissue-and plasma-specific MicroRNA signatures for atherosclerotic abdominal aortic aneurysm, J Am Heart Assoc, vol.1, issue.5, p.745, 2012.

M. C. Pahl, K. Derr, and G. Gabel, MicroRNA expression signature in human abdominal aortic aneurysms, BMC Med Genomics, vol.5, p.25, 2012.

L. Maegdefessel, J. M. Spin, and U. Raaz, miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development, Nat Commun, vol.5, p.5214, 2014.

P. W. Stather, N. Sylvius, and D. A. Sidloff, Identification of microRNAs associated with abdominal aortic aneurysms and peripheral arterial disease, Br J Surg, vol.102, issue.7, pp.755-766, 2015.

W. Zhang, T. Shang, and C. Huang, Plasma microRNAs serve as potential biomarkers for abdominal aortic aneurysm, Clin Biochem, vol.48, issue.15, pp.988-992, 2015.

A. Zampetaki, R. Attia, and U. Mayr, Role of miR-195 in aortic aneurysmal disease, Circ Res, vol.115, issue.10, pp.857-866, 2014.

A. Wanhainen, K. Mani, and E. Vorkapic, Screening of circulating microRNA biomarkers for prevalence of abdominal aortic aneurysm and aneurysm growth

, Atherosclerosis, vol.256, pp.82-88, 2017.

R. Menghini, R. Stohr, and M. Federici, MicroRNAs in vascular aging and atherosclerosis, Ageing Res Rev, vol.17, pp.68-78, 2014.

K. Vrijens, V. Bollati, and T. S. Nawrot, MicroRNAs as potential signatures of environmental exposure or effect: a systematic review, Environ Health Perspect, vol.123, issue.5, pp.399-411, 2015.

L. Shi, J. Liao, B. Liu, F. Zeng, and L. Zhang, Mechanisms and therapeutic potential of microRNAs in hypertension, Drug Discov Today, vol.20, issue.10, pp.1188-1204, 2015.

E. Flowers and B. E. Aouizerat, MicroRNA associated with dyslipidemia and coronary disease in humans, Physiol Genomics, vol.45, issue.24, pp.1199-1205, 2013.

L. Maegdefessel, J. Azuma, and R. Toh, Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development, J Clin Invest, vol.122, issue.2, pp.497-506, 2012.

P. De-rango, L. Farchioni, B. Fiorucci, and M. Lenti, Diabetes and abdominal aortic aneurysms, Eur J Vasc Endovasc Surg, vol.47, issue.3, pp.243-261, 2014.

J. S. Weiss and B. E. Sumpio, Review of prevalence and outcome of vascular disease in patients with diabetes mellitus, Eur J Vasc Endovasc Surg, vol.31, issue.2, pp.143-150, 2006.

J. Xiong, Z. Wu, C. Chen, Y. Wei, and W. Guo, Association between diabetes and prevalence and growth rate of abdominal aortic aneurysms: A meta-analysis, Int J Cardiol, vol.221, pp.484-495, 2016.

D. Shah, A. Langenberg, C. Rapsomaniki, and E. , Type 2 diabetes and incidence of a wide range of cardiovascular diseases: a cohort study in 1.9 million people, Lancet, vol.385, 2015.

A. Lopez-de-andres, I. Jimenez-trujillo, and R. Jimenez-garcia, National trends in incidence and outcomes of abdominal aortic aneurysm among elderly type 2 diabetic and non-diabetic patients in Spain, Cardiovasc Diabetol, vol.14, p.48, 2003.

T. Avdic, S. Franzen, and M. Zarrouk, Reduced Long-Term Risk of Aortic Aneurysm and Aortic Dissection Among Individuals With Type 2 Diabetes Mellitus: A Nationwide Observational Study, J Am Heart Assoc, vol.7, issue.3, 2018.

K. L. Kristensen, M. Dahl, L. M. Rasmussen, and J. S. Lindholt, Glycated Hemoglobin Is Associated With the Growth Rate of Abdominal Aortic Aneurysms: A Substudy From the VIVA (Viborg Vascular) Randomized Screening Trial, Arterioscler Thromb Vasc Biol, vol.37, issue.4, pp.730-736, 2017.

J. Golledge, M. Karan, and C. S. Moran, Reduced expansion rate of abdominal aortic aneurysms in patients with diabetes may be related to aberrant monocyte-matrix interactions, Eur Heart J, vol.29, issue.5, pp.665-672, 2008.

H. Takagi, T. Umemoto, and A. Group, Negative association of diabetes with rupture of abdominal aortic aneurysm, Diab Vasc Dis Res, vol.13, issue.5, pp.341-347, 2016.

M. T. Le, K. Jamrozik, T. M. Davis, and P. E. Norman, Negative association between infra-renal aortic diameter and glycaemia: the Health in Men Study, Eur J Vasc Endovasc Surg, vol.33, issue.5, pp.599-604, 2007.

Y. Kubota, A. R. Folsom, J. S. Pankow, L. E. Wagenknecht, and W. Tang, Diabetes-related factors and abdominal aortic aneurysm events: the Atherosclerotic Risk in Communities Study, Ann Epidemiol, vol.28, issue.2, pp.102-106, 2018.

, American Diabetes A. Diagnosis and classification of diabetes mellitus, Diabetes Care, vol.37, issue.1, pp.81-90, 2014.

S. A. Preil, L. P. Kristensen, and H. C. Beck, Quantitative Proteome Analysis Reveals Increased Content of Basement Membrane Proteins in Arteries From Patients With Type 2 Diabetes Mellitus and Lower Levels Among Metformin Users, Circ Cardiovasc Genet, vol.8, issue.5, pp.727-735, 2015.

N. A. Wahab, S. Parker, J. D. Sraer, and R. M. Mason, The decorin high glucose response element and mechanism of its activation in human mesangial cells, J Am Soc Nephrol, vol.11, issue.9, pp.1607-1619, 2000.

Z. Ferdous, V. M. Wei, R. Iozzo, M. Hook, and K. J. Grande-allen, Decorin-transforming growth factor-interaction regulates matrix organization and mechanical characteristics of three-dimensional collagen matrices, J Biol Chem, vol.282, issue.49, pp.35887-35898, 2007.

K. Ueda, K. Yoshimura, O. Yamashita, T. Harada, N. Morikage et al., Possible dual role of decorin in abdominal aortic aneurysm, PLoS One, vol.10, issue.3, p.120689, 2015.

M. M. Dua, N. Miyama, and J. Azuma, Hyperglycemia modulates plasminogen activator inhibitor-1 expression and aortic diameter in experimental aortic aneurysm disease, Surgery, vol.148, issue.2, pp.429-435, 2010.

N. Miyama, M. M. Dua, and J. J. Yeung, Hyperglycemia limits experimental aortic aneurysm progression, J Vasc Surg, vol.52, issue.4, pp.975-983, 2010.

K. C. Lewandowski, E. Banach, M. Bienkiewicz, and A. Lewinski, Matrix metalloproteinases in type 2 diabetes and non-diabetic controls: effects of short-term and chronic hyperglycaemia, Arch Med Sci, vol.7, issue.2, pp.294-303, 2011.

A. K. Death, E. J. Fisher, K. C. Mcgrath, and D. K. Yue, High glucose alters matrix metalloproteinase expression in two key vascular cells: potential impact on atherosclerosis in diabetes, Atherosclerosis, vol.168, issue.2, pp.263-269, 2003.

S. Zieman and D. Kass, Advanced glycation end product cross-linking: pathophysiologic role and therapeutic target in cardiovascular disease, Congest Heart Fail, vol.10, issue.3, pp.150-141, 2004.

D. Koole, J. A. Van-herwaarden, and C. G. Schalkwijk, A potential role for glycated cross-links in abdominal aortic aneurysm disease, J Vasc Surg, vol.65, issue.5, pp.1493-1503, 2017.

F. Zhang, K. C. Kent, and D. Yamanouchi, Anti-receptor for advanced glycation end products therapies as novel treatment for abdominal aortic aneurysm, Ann Surg, vol.250, issue.3, pp.416-423, 2009.

M. Hofmann-bowman, J. Wilk, and A. Heydemann, S100A12 mediates aortic wall remodeling and aortic aneurysm, Circ Res, vol.106, issue.1, pp.145-154, 2010.

C. Rask-madsen and G. L. King, Vascular complications of diabetes: mechanisms of injury and protective factors, Cell Metab, vol.17, issue.1, pp.20-33, 2013.

T. Tanaka, Y. Takei, and D. Yamanouchi, Hyperglycemia Suppresses Calcium Phosphate-Induced Aneurysm Formation Through Inhibition of Macrophage Activation, J Am Heart Assoc, vol.5, issue.3, p.3062, 2016.

V. Arapoglou, A. Kondi-pafiti, and D. Rizos, The influence of diabetes on degree of abdominal aortic aneurysm tissue inflammation, Vasc Endovascular Surg, vol.44, issue.6, pp.454-459, 2010.

D. J. Ceradini, D. Yao, and R. H. Grogan, Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice, J Biol Chem, vol.283, issue.16, pp.10930-10938, 2008.

H. Thangarajah, D. Yao, and E. I. Chang, The molecular basis for impaired hypoxiainduced VEGF expression in diabetic tissues, Proc Natl Acad Sci U S A, vol.106, issue.32, pp.13505-13510, 2009.

E. J. Dunn, R. A. Ariens, and P. J. Grant, The influence of type 2 diabetes on fibrin structure and function, Diabetologia, vol.48, issue.6, pp.1198-1206, 2005.

H. A. Madi, K. Riches, P. Warburton, D. J. O'regan, N. A. Turner et al., Inherent differences in morphology, proliferation, and migration in saphenous vein smooth muscle cells cultured from nondiabetic and Type 2 diabetic patients, Am J Physiol Cell Physiol, vol.297, issue.5, pp.1307-1317, 2009.

S. Oikawa, K. Hayasaka, and E. Hashizume, Human arterial smooth muscle cell proliferation in diabetes, Diabetes, vol.45, issue.3, pp.114-116, 1996.

A. W. Chung, H. Luo, T. Tejerina, C. Van-breemen, and E. B. Okon, Enhanced cell cycle entry and mitogen-activated protein kinase-signaling and downregulation of matrix metalloproteinase-1 and -3 in human diabetic arterial vasculature, Atherosclerosis, vol.195, issue.1, pp.1-8, 2007.

A. Thompson, J. A. Cooper, M. Fabricius, S. E. Humphries, H. A. Ashton et al., An analysis of drug modulation of abdominal aortic aneurysm growth through 25 years of surveillance, J Vasc Surg, vol.52, issue.1, pp.55-61, 2010.

C. Y. Hsu, Y. W. Su, and Y. T. Chen, Association between use of oral-antidiabetic drugs and the risk of aortic aneurysm: a nested case-control analysis, Cardiovasc Diabetol, vol.15, issue.1, p.125, 2016.

N. Fujimura, J. Xiong, and E. B. Kettler, Metformin treatment status and abdominal aortic aneurysm disease progression, J Vasc Surg, vol.64, issue.1, pp.46-54, 2016.

G. Pirianov, E. Torsney, F. Howe, and G. W. Cockerill, Rosiglitazone negatively regulates c-Jun N-terminal kinase and toll-like receptor 4 proinflammatory signalling during initiation of experimental aortic aneurysms, Atherosclerosis, vol.225, issue.1, pp.69-75, 2012.

A. Jones, R. Deb, and E. Torsney, Rosiglitazone reduces the development and rupture of experimental aortic aneurysms, Circulation, vol.119, issue.24, pp.3125-3132, 2009.

J. Vandesompele, D. Preter, K. Pattyn, and F. , Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes

, Genome Biol, vol.3, issue.7, p.34, 2002.

D. Vasilatou, S. Papageorgiou, V. Pappa, E. Papageorgiou, and J. Dervenoulas, The role of microRNAs in normal and malignant hematopoiesis, Eur J Haematol, vol.84, issue.1, pp.1-16, 2010.

E. Chapnik, N. Rivkin, and A. Mildner, miR-142 orchestrates a network of actin cytoskeleton regulators during megakaryopoiesis, Elife, vol.3, p.1964, 2014.

H. Ait-oufella, Y. Wang, and O. Herbin, Natural regulatory T cells limit angiotensin II-induced aneurysm formation and rupture in mice, Arterioscler Thromb Vasc Biol, vol.33, issue.10, pp.2374-2379, 2013.

S. M. Morris, Arginine metabolism: boundaries of our knowledge, J Nutr, vol.137, issue.6, pp.1602-1609, 2007.

A. Barbul, R. S. Fishel, and S. Shimazu, Intravenous hyperalimentation with high arginine levels improves wound healing and immune function, J Surg Res, vol.38, issue.4, pp.328-334, 1985.

A. Barbul, S. A. Lazarou, D. T. Efron, H. L. Wasserkrug, and G. Efron, Arginine enhances wound healing and lymphocyte immune responses in humans, Surgery, vol.108, issue.2, pp.336-337, 1990.

L. H. Wei, G. Wu, S. M. Morris, J. Ignarro, and L. J. , Elevated arginase I expression in rat aortic smooth muscle cells increases cell proliferation, Proc Natl Acad Sci U S A, vol.98, issue.16, pp.9260-9264, 2001.

X. P. Wang, Y. G. Chen, and W. D. Qin, Arginase I attenuates inflammatory cytokine secretion induced by lipopolysaccharide in vascular smooth muscle cells, Arterioscler Thromb Vasc Biol, vol.31, issue.8, pp.1853-1860, 2011.

D. Teupser, R. Burkhardt, W. Wilfert, I. Haffner, K. Nebendahl et al., Identification of macrophage arginase I as a new candidate gene of atherosclerosis resistance

, Arterioscler Thromb Vasc Biol, vol.26, issue.2, pp.365-371, 2006.

J. Pernow and C. Jung, Arginase as a potential target in the treatment of cardiovascular disease: reversal of arginine steal?, Cardiovasc Res, vol.98, issue.3, pp.334-343, 2013.

B. Ren, E. Van-kampen, V. Berkel, T. J. Cruickshank, S. M. et al., Hematopoietic arginase 1 deficiency results in decreased leukocytosis and increased foam cell formation but does not affect atherosclerosis, Atherosclerosis, vol.256, pp.35-46, 2017.

H. Geng and J. Guan, MiR-18a-5p inhibits endothelial-mesenchymal transition and cardiac fibrosis through the Notch2 pathway, Biochem Biophys Res Commun, vol.491, issue.2, pp.329-336, 2017.

C. Y. Huang, P. Y. Pai, and C. H. Kuo, p53-mediated miR-18 repression activates HSF2 for IGF-IIR-dependent myocyte hypertrophy in hypertension-induced heart failure, Cell Death Dis, vol.8, issue.8, p.2990, 2017.

M. M. Montoya, J. Maul, and P. B. Singh, A Distinct Inhibitory Function for miR-18a in Th17 Cell Differentiation, J Immunol, vol.199, issue.2, pp.559-569, 2017.

L. A. Tesmer, S. K. Lundy, S. Sarkar, and D. A. Fox, Th17 cells in human disease, Immunol Rev, vol.223, pp.87-113, 2008.

Z. Wei, Y. Wang, and K. Zhang, Inhibiting the Th17/IL-17A-related inflammatory responses with digoxin confers protection against experimental abdominal aortic aneurysm, Arterioscler Thromb Vasc Biol, vol.34, issue.11, pp.2429-2438, 2014.

X. Zhang, B. Yu, F. Zhang, Z. Guo, and L. Li, microRNA-18a Promotes Cell Migration and Invasion Through Inhibiting Dicer l Expression in Hepatocellular Carcinoma In Vitro, Chin Med Sci J, vol.32, issue.1, pp.34-67, 2017.

Y. Song, P. Wang, and W. Zhao, MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin, Exp Cell Res, vol.324, issue.1, pp.54-64, 2014.

S. Komatsu, D. Ichikawa, and H. Takeshita, Circulating miR-18a: a sensitive cancer screening biomarker in human cancer, In Vivo, vol.28, issue.3, pp.293-297, 2014.

P. Venkatesh, J. Phillippi, and S. Chukkapalli, Aneurysm-Specific miR-221 and miR-146a Participates in Human Thoracic and Abdominal Aortic Aneurysms, Int J Mol Sci, vol.18, issue.4, 2017.

X. Liu, Y. Zhang, and W. Du, MiR-223-3p as a Novel MicroRNA Regulator of Expression of Voltage-Gated K+ Channel Kv4.2 in Acute Myocardial Infarction, Cell Physiol Biochem, vol.39, issue.1, pp.102-114, 2016.

L. Shi, B. Kojonazarov, and A. Elgheznawy, miR-223-IGF-IR signalling in hypoxiaand load-induced right-ventricular failure: a novel therapeutic approach, Cardiovasc Res, vol.111, issue.3, pp.184-193, 2016.

D. He, C. Huang, and Q. Zhou, HnRNPK/miR-223/FBXW7 feedback cascade promotes pancreatic cancer cell growth and invasion, Oncotarget, vol.8, issue.12, pp.20165-20178, 2017.

V. Neudecker, M. Haneklaus, and O. Jensen, Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome, J Exp Med, vol.214, issue.6, pp.1737-1752, 2017.

C. Cantoni, F. Cignarella, and L. Ghezzi, Mir-223 regulates the number and function of myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis, Acta Neuropathol, vol.133, issue.1, pp.61-77, 2017.

R. Berenstein, A. Nogai, and M. Waechter, Multiple myeloma cells modify VEGF/IL-6 levels and osteogenic potential of bone marrow stromal cells via Notch/miR-223

, Mol Carcinog, vol.55, issue.12, pp.1927-1939, 2016.

Y. Gao, L. Lin, T. Li, J. Yang, and Y. Wei, The role of miRNA-223 in cancer: Function, diagnosis and therapy, Gene, vol.616, pp.1-7, 2017.

J. Krutzfeldt, N. Rajewsky, and R. Braich, Silencing of microRNAs in vivo with 'antagomirs', Nature, vol.438, issue.7068, pp.685-689, 2005.

. Annexe,

, Annexe 1: TGF (Transforming Growth Factor-) Blockade Induces a Human-Like Disease in a Nondissecting Mouse Model of Abdominal Aortic Aneurysm

, Micro-RNAs in abdominal aortic aneurysms: insights from animal models and relevance to human disease, Annexe, vol.3