G. , Random walks on discrete groups of polynomial volume growth, The Annals of Probability, vol.30, issue.2, pp.723-801, 2002.

G. , Sub-laplacians with drift on Lie groups of polynomial volume growth, vol.155, 2002.

J. Angst, I. Bailleul, and C. Tardif, Kinetic Brownian motion on Riemannian manifolds, Electronic Journal of Probability, vol.20, pp.1-40, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01263340

I. Bailleul, Flows driven by rough paths, Revista Iberoam. Math, vol.31, issue.3, p.29, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00704959

E. Baur, An invariance principle for a class of non-ballistic random walks in random environment. Probability Theory and Related Fields, vol.166, pp.463-514, 2016.

. Ch, P. Bayer, and . Friz, Cubature on Wiener space : Pathwise convergence, Applied Mathematics & Optimization, vol.67, issue.2, pp.261-278, 2013.

. Ph and . Biane, Calcul stochastique non-commutatif, Lectures on probability theory, pp.1-96, 1993.

. Ph, M. Biane, and . Yor, Annales de l'I.H.P. Probabilités et statistiques, vol.23, pp.359-377, 1987.

P. Billingsley, Convergence of Probability Measures, 1999.

J. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Annales scientifiques de l'École Normale Supérieure, vol.14, pp.209-246, 1981.

E. Breuillard, Random walks on Lie groups, 2007.

E. Breuillard, P. Friz, and M. Huesmann, From random walks to rough paths

, Proc. Amer. Math. Soc, vol.137, issue.10, pp.3487-3496, 2009.

Y. Bruned, I. Chevyrev, and P. Friz, Examples of renormalized SDEs, 2017.

Y. Bruned, I. Chevyrev, P. Friz, and R. Preiss, A rough path perspective on renormalization, 2017.

Y. Bruned, M. Hairer, and L. Zambotti, Algebraic renormalisation of regularity structures, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02090026

M. Capitaine and C. Donati-martin, The Lévy area process for the free Brownian motion, Journal of Functional Analysis, vol.179, issue.1, pp.153-169, 2001.

R. Catellier, Rough linear transport equation with an irregular drift, Stochastics and Partial Differential Equations : Analysis and Computations, vol.4, pp.477-534, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01110491

K. Chen, Iterated path integrals, Bulletin of the American Mathematical Society, vol.83, issue.5, pp.831-879, 1977.

Y. Chen and W. Geng, Wavelet method for nonlinear partial differential equations of fractional order, Computer and Information Science, vol.4, issue.5, 2011.

I. Chevyrev, Random walks and Lévy processes as rough paths, pp.1-42, 2017.

L. Coutin and Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions. Probability Theory and Related Fields, vol.122, pp.108-140, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00266874

W. Dahmen, A. Kurdila, and P. Oswald, Multiscale Wavelet Methods for Partial Differential Equations, 1997.

A. Davie, Differential equations driven by rough paths : an approach via discrete approximation, Appl. Math. Res. Express, pp.9-40, 2007.

A. Deya, M. Gubinelli, and S. Tindel, Non-linear rough heat equations. Probability Theory and Related Fields, vol.153, pp.97-147, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00658081

A. Deya, A. Neuenkirch, and S. Tindel, A milstein-type scheme without Lévy area terms for sdes driven by fractional Brownian motion. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, vol.48, issue.2, pp.518-550, 2012.

A. Deya and R. Schott, On the rough-paths approach to non-commutative stochastic calculus, Journal of Functional Analysis, vol.265, pp.594-628, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00781383

J. Diehl, P. Friz, and P. Gassiat, Stochastic control with rough paths, Applied Mathematics & Optimization, vol.75, issue.2, pp.285-315, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01419763

S. Eilenberg and S. Lane, On the groups H(?, n), I. Annals of Mathematics, vol.58, pp.55-106, 1953.

N. Enriquez and Y. Kifer, Markov chains on graphs and Brownian motion, Journal of Theoretical Probability, vol.14, issue.2, 2001.

S. Fang, Canonical Brownian motion on the diffeomorphism group of the circle, Journal of Functional Analysis, vol.196, issue.1, pp.162-179, 2002.

P. Friz, P. Gassiat, and T. Lyons, Physical Brownian motion in a magnetic field as a rough path, Trans. Amer. Math. Soc, vol.367, pp.7939-7955, 2015.

P. Friz and M. Hairer, A Course on Rough Paths -With an introduction to regularity structures, 2014.

P. Friz and N. Victoir, Approximations of the Brownian rough path with applications to stochastic analysis. Annals of Institute Henri Poincaré, vol.41, pp.703-724, 2005.

P. Friz and N. Victoir, Multidimensional Stochastic Processes as Rough Paths : Theory and Applications, 2010.

C. Garban, R. Rhodes, and V. Vargas, Liouville Brownian motion, The Annals of Probability, vol.44, issue.4, pp.3076-3110, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00773389

Z. Ghahramani, An introduction to hidden Markov models and Bayesien networks, International journal of pattern recognition and artificial intelligence, vol.15, issue.1, pp.9-42, 2001.

D. Griffiths and D. Higham, Numerical Methods for Ordinary Differential Equations. Springer Undergraduate Mathematics Series, 2010.

M. Gubinelli, Controlling rough paths, Journal of Functional Analysis, vol.216, pp.86-140, 2004.

M. Gubinelli, Ramification of rough paths, Journal of Differential Equations, vol.248, issue.4, pp.693-721, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00143655

M. Gubinelli, P. Imkeller, and N. Perkowski, Paracontrolled distributions and singular PDEs, 2015.

M. Hairer, Solving the KPZ equation, Annals of Mathematics, vol.178, issue.2, pp.559-664, 2013.

M. Hairer, A theory of regularity structures. Inventiones mathematicae, vol.198, pp.269-504, 2014.

M. Hairer and D. Kelly, Geometric versus non-geometric rough paths. Annals of Institute Henri Poincaré, vol.51, pp.207-251, 2015.

M. Hairer and H. Weber, Rough burgers-like equations with multiplicative noise. Probability Theory and Related Fields, vol.155, pp.71-126, 2013.

M. Hoffman, Quasi-shuffle products, Journal of Algebraic Combinatorics, vol.11, pp.49-68, 2000.

M. Hoffman, Combinatorics on rooted trees and Hopf algebras, Trans. Amer. Math. Soc, vol.355, pp.3795-3811, 2003.

M. Hoffman and K. Ihara, Quasi-shuffle products revisited, Journal of Algebra

S. Ishiwata, H. Kawabi, and M. Kotani, Long time asymptotics of nonsymmetric random walks on crystal lattices, Journal of Functional Analysis, vol.272, issue.4, 2015.

K. Itô, Differential equations determining a Markoff process, Journ. Pan-Japan Math. Coll, p.1077, 1942.

S. Jaffard, Wavelet techniques for pointwise regularity. Annales de la faculté des sciences de Toulouse Mathématiques, vol.15, pp.3-33, 2006.

J. Norris, Markov Chains, 1997.

G. Jones, On the markov chain central limit theorem, Probability Surveys, vol.1, pp.299-320, 2004.

T. Kazami and K. Uchiyama, Random walks on periodic graphs, Trans. Amer. Math. Soc, vol.360, issue.11, pp.6065-6087, 2008.

P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, 2011.

M. Kotani and T. Sunada, Albanese maps and off diagonal long time asymptotics for the heat kernel, Commun. Math. Phys, vol.209, issue.3, pp.633-670, 2000.

G. Lawler, Loop-Erased Random Walk, pp.197-217, 1999.

M. Ledoux, T. Lyons, and Z. Qian, Lévy area of Wiener processes in Banach spaces. The Annals of Probability, vol.30, pp.546-578, 2002.

A. Lejay, Introduction to Rough Paths, vol.1832, pp.1-59, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00102184

A. Lejay, Yet another introduction to rough paths, vol.42, pp.1-101
URL : https://hal.archives-ouvertes.fr/inria-00107460

. Springer, , 2009.

A. Lejay and T. Lyons, On the importance of the Lévy area for studying the limits of functions of converging stochastic processes. application to homogenization. Current Trends in Potential Theory, pp.63-84, 2003.

D. Levin and M. Wildon, A combinatorial method for calculating the moments of Lévy area, Trans. Amer. Math. Soc, vol.360, issue.12, 2007.

Y. Liu and S. Tindel, Discrete rough paths and limit theorems, 2017.

O. Lopusanschi and D. Simon, Area anomaly and generalized drift of iterated sums for hidden Markov walks, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01586794

O. Lopusanschi and D. Simon, Lévy area with a drift as a renormalization limit of Markov chains on periodic graphs, Stochastic Processes and their Applications, 2017.

T. Lyons, Differential equations driven by rough signals, Revista Matemática Iberoamericana, vol.14, issue.2, pp.215-310, 1998.

T. Lyons, M. Caruana, and T. Lévy, Differential Equations Driven by Rough Paths, 2004.

T. Lyons and Z. Qian, System Control and Rough Paths, 2002.

P. Lévy, Processus Stochastiques et Mouvement Brownien. Gauthier-Villars, 1948.

P. Malliavin, The canonic diffusion above the diffeomorphism group of the circle, Comptes Rendus de l'Académie des Sciences -Series I -Mathematics, vol.329, issue.4, pp.325-329, 1999.

P. Meyer, Fock space and probability theory, Stochastic Processes -Mathematics and Physics II, vol.1250, pp.160-170, 1987.

Y. Meyer, Ondelettes et opérateurs : Ondelettes. Hermann, 1990.

D. Nualart, Application of Malliavin Calculus to Stochastic Partial Differential Equations, 2009.

D. Nualart and B. Saussereau, Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion, Stochastic Processes and their Applications, vol.119, pp.391-409, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00485648

S. Qian and J. Weiss, Wavelets and the numerical solution of partial differential equations, Journal of Computational Physics, vol.106, issue.1, pp.155-175, 1993.

L. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, vol.77, issue.2, pp.257-286, 1989.

D. Stroock and S. Varadhan, Limit theorems for random walks on Lie groups

, Sankhyøa Ser. A, vol.35, issue.3, pp.277-294, 1973.

T. Sunada, Topological Crystallography (With a View Towards Discrete Geometric Analysis), volume 6 of Surveys and Tutorials in the Applied Mathematical Sciences, 2013.

N. Victoir, Lévy area for the free Brownian motion : existence and nonexistence, Journal of Functional Analysis, vol.208, issue.1, pp.107-121, 2004.

S. Watanabe, Lectures on Stochastic Differential Equations and Malliavin Calculus, 1984.

B. Yoon, Hidden Markov models and their applications in biological sequence analysis, Curr Genomics, vol.10, issue.6, pp.402-415, 2009.

M. Yor, Remarques sur une formule de Paul Lévy, pp.343-346, 1979.

L. Young, The Theory of Integration, 1927.