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Abstract

Background: Phenols and phthalates include chemicals widely used in daily-life
products, resulting in ubiquitous exposure of the general population. There is grow-
ing concern regarding the effects on human health of these compounds, suspected to
be endocrine disruptors, particularly during early life. Epidemiological research on the
health effects of phenols and phthalates in offspring generally rely on a few biospecimens
to assess exposure. These studies are limited by the possibly strong within-subject va-
riability, which may result in exposure misclassification. The within-subject variability
in the context of pregnancy and its possible impact on dose-response functions are
poorly characterized.

Objective: The aim of this thesis was to study the exposure to several phenols
and phthalates during pregnancy by: 1) investigating the possible associations between
this exposure and respiratory outcomes in childhood; 2) characterizing the temporal
within-subject variability of these compounds during pregnancy; and finally 3) study-
ing the efficiency of a within-subject pooling approach using a small number of daily
biospecimens for exposure assessment.

Methods: Associations between exposure to phenols and phthalates and respira-
tory health relied on n = 587 mother-child pairs from the French EDEN prospective
cohort. Developments about the assessment of exposure during pregnancy relied on
n = 16 pregnant participants of the SEPAGES-feasibility study who had collected all
their urine samples for three weeks.

Results: Ethyl-paraben was associated with increased asthma rate in the first
5 years of life (Hazard Rate, HR per each unit increase in ln-transformed concen-
tration: 1.10; 95% Confidence Interval, CI: 1.00, 1.21) and tended to be negatively
associated with the forced expiratory volume in one second (FEV1%) at 5 years of
age (beta: -0.59; 95% CI: -1.24, 0.05). Bisphenol A tended to be associated with
increased rates of asthma diagnosis (HR: 1.23; 95% CI: 0.97, 1.55) and bronchioli-
tis/bronchitis (HR: 1.13; 95% CI: 0.99, 1.30). Isolated trends for deleterious associa-
tions were also observed between 2,5-dichlorophenol and wheezing and between mono-
(carboxynonyl) phthalate (MCNP), a metabolite of di-isodecyl phthalate (DIDP), and
wheezing. Conversely, increases in methylparaben, propylparaben, benzophenone-3
and mono-(3-carboxypropyl) phthalate (MCPP, metabolite of di-n-butyl phthalate,
DnBP; di-n-octyl phthalate, DNOP; and other high molecular weight phthalates) con-
centration tended to reduce rates of bronchiolitis/bronchitis and/or wheezing.

Most phenol biomarkers were highly variable over the course of a day (intraclass
correlation coefficients, ICCs, below 0.3), while the between-day variability of their



iv

daily averages over one week was much lower (ICCs above 0.6). This pattern was op-
posite for bisphenol S. The variability of the weekly averages considered several weeks
apart was low for some compounds (2,5-dichlorophenol, butylparaben, methylparaben,
propylparaben, ICCs above 0.8) and high for others (ethylparaben, bisphenol S, tri-
closan, ICCs below 0.4).

When estimating daily, weekly and pregnancy exposures, correlations between wi-
thin-subject pools of all and of only three daily voids were above 0.8, except for ben-
zophenone-3 and triclosan daily exposure (below 0.7). Relying on one biospecimen
per subject for exposure assessment resulted in an attenuation bias in dose-response
functions of 30% (methylparaben) and 68% (bisphenol A). Four and 18 samples, re-
spectively for methylparaben and bisphenol A, were required to decrease bias in dose-
response functions to 10%.

Conclusion: This work quantified the within-subject variability of phenol and
phthalate biomarker concentrations during pregnancy over various time scales (day to
months), and confirmed empirically that this variability is likely to strongly bias the
dose-response functions in human-based epidemiological studies exploring the effects
of gestational exposure to these chemicals. This thesis adds to the emerging literature
on respiratory health impacts of early-life exposure to several phenols and phthalates.
However, as for most studies on the human health effects of phenol and phthalate
exposure, it is potentially challenged by this exposure assessment issue. Thus, this work
emphasizes the relevance of more elaborate sampling strategies for exposure biomarkers
in future epidemiological studies. These results have relevance for studies outside the
context of pregnancy, and also for other nonpersistent compounds. New designs, such
as the within-subject pooling of biospecimens validated in this study, are needed so as
to efficiently characterize the health impact of nonpersistent chemicals.

Keywords: endocrine disruptors, phenols and phthalates, childhood respiratory
health, prenatal exposure, within-subject temporal variability, exposure measurement
error

Ph.D carried out at the Institute for Advances Biosciences: research center Inserm
U 1209, CNRS UMR 5309, University Grenoble Alpes; F-38700 La Tronche, France.
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Résumé

Contexte : Les phénols et les phtalates incluent des composés très largement
utilisés dans des produits de la vie quotidienne. Une grande partie de la population
générale y est donc largement exposée. Ces composés sont suspectés d’être des pertur-
bateurs endocriniens et des effets sur la santé chez l’Homme ont été rapportés, notam-
ment après une exposition périnatale. Les études épidémiologiques sur les effets sur
la santé humaine reposent généralement sur un faible nombre de biospécimens pour
estimer l’exposition. Cependant, la variabilité intra-individuelle des phénols et des ph-
talates est potentiellement forte, ce qui peut entraîner une mauvaise classification de
l’exposition dans les études sur les effets des phénols et des phtalates et limite leurs
conclusions. La variabilité intra-individuelle des phénols et des phtalates au cours de
la grossesse n’est pas très bien caractérisée à l’heure actuelle.

Objectif : L’objectif de cette thèse est d’explorer l’exposition aux phénols et aux
phtalates et plus précisément : 1) d’étudier les associations entre une telle exposition
pendant la grossesse et la santé respiratoire de l’enfant au cours de ses premières années
de vie ; 2) de caractériser la variabilité temporelle intra-individuelle de ces composés
au cours de la grossesse ; et 3) d’évaluer l’efficacité d’une approche basée sur le pooling
intra-sujet d’un nombre réduit d’échantillons journaliers pour estimer l’exposition.

Méthodes : Les associations entre l’exposition aux phénols et phtalates et la
santé respiratoire reposent sur n = 587 couples mères-enfants de la cohorte prospective
française EDEN. Les développements sur l’estimation de l’exposition au cours de la
grossesse s’appuient sur n = 16 femmes enceintes ayant participé à l’étude de faisabi-
lité de la cohorte SEPAGES.

Résultats : L’exposition prénatale à l’éthylparabène est associée à une augmenta-
tion du ratio du taux d’incidence de l’asthme diagnostiqué par un médecin dans les 5
premières années de vie (rapport des risques instantanés ou Hazard Rate [HR] pour une
augmentation de la concentration log-transformée d’une unité : 1.10; avec un intervalle
de confiance [IC], à 95% : 1.00, 1.21) et a tendance à être associée avec une diminution
du Volume Expiratoire Maximum par Seconde en pourcents prédits (VEMS%) à 5 ans
(beta, -0.59 ; 95% IC: -1.24, 0.05). Nous avons aussi mis en évidence une tendance à
l’augmentation du risque d’asthme (HR : 1.23 ; IC à 95% : 0.97, 1.55) et de bronchi-
olite ou bronchite (HR : 1.13 ; IC à 95% : 0.99, 1.30) avec l’exposition au bisphénol
A. Des tendances d’associations délétères avec un unique paramètre respiratoire sont
aussi observées entre le 2,5-dichlorophénol et le risque de sifflements dans la poitrine, et
entre le mono-(carboxynonyl) phtalate (MCNP), un métabolite du di-isodécyl phtalate
(DIDP), et le risque de sifflements. A l’inverse, nous avons observé une tendance à la
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diminution du risque de sifflements et/ou de bronchiolite/bronchite avec l’augmentation
des concentrations de méthylparabène, propylparabène, benzophénone-3 et le mono-(3-
carboxypropyl) phtalate (MCPP, métabolite du di-n-butyl phthalate, DnBP ; du di-n-
octyl phtalate, DNOP ; et d’autres phtalates de haut poids moléculaire).

Pour la plupart des phénols, la variabilité intra-jour est forte, avec des coefficients
de corrélation intra-classe (CCI) entre 0.03 et 0.5. La variabilité des moyennes jour-
nalières entre les jours d’une même semaine est plus faible, avec des CCI supérieurs
à 0.6 sauf pour le bisphénol S (CCI, 0.14, IC à 95% : 0.00-0.39). La variabilité des
moyennes hebdomadaires estimées à plusieurs semaines d’intervalle est faible pour cer-
tains composés (2,5-dichlorophénol, propylparabène, butylparabène et méthylparabène,
CCI supérieur à 0.8) ; et forte pour d’autres (éthylparabène, bisphénol S, et triclosan,
CCI inférieur à 0.4).

Les estimations d’exposition moyenne de la journée, de la semaine et de la grossesse,
obtenues par la méthode du pooling intra-sujet "allégée" (reposant sur le pooling répété
de 3 échantillons journaliers) ou la méthode de pooling intra-sujet "idéale" (pooling
de tous les échantillons journaliers) sont très corrélées (coefficient de corrélation de
Pearson supérieurs à 0.8), excepté pour l’estimation des moyennes d’exposition jour-
nalières de benzophénone-3 et triclosan (coefficients de corrélation inférieurs à 0.7).
L’utilisation d’un biospécimen unique pour estimer l’exposition au méthylparabène en-
traîne un biais d’atténuation de 30% dans les estimations des relations doses-réponses.
Ce biais est encore plus important pour le bisphénol A (68%). L’utilisation d’au moins
4 et 18 biospécimens, respectivement pour le méthylparabène et le bisphénol A, est
nécessaire pour ramener ce biais dans les estimations des relations doses-réponses sous
le seuil des 10%.

Conclusion : Les travaux de cette thèse quantifient la variabilité intra-individuelle
des concentrations urinaires des biomarqueurs d’exposition aux phénols et des phtalates
au cours de la grossesse pour des échelles de temps variées (du jour à plusieurs mois).
Ils confirment empiriquement que cette variabilité peut biaiser fortement les fonctions
doses-réponses dans les études épidémiologiques explorant les effets de l’exposition fœ-
tale à ces composés chez l’Homme. Les résultats de cette thèse enrichissent la lit-
térature émergente sur les effets des expositions précoces aux phénols et phtalates sur
la santé respiratoire de l’Homme. Cependant, notre étude ainsi que la plupart des
recherches précédentes sont potentiellement limitées par les problématiques liées à la
mesure de l’exposition. Ce travail souligne l’importance de stratégies d’échantillonnage
des biomarqueurs d’exposition plus élaborées pour l’étude de ces composés dans de fu-
tures études épidémiologiques. Ces résultats sont aussi pertinents en dehors du contexte
de la grossesse et pour d’autres composés non-persistants. De nouvelles approches,
telles que le pooling répété pour chaque sujet d’un petit nombre de biospécimens jour-
naliers, validé dans cette thèse, sont nécessaires pour caractériser efficacement l’impact
des composés non-persistants sur la santé de l’Homme.

Mots-clés: perturbateurs endocriniens, phénols et phtalates, santé respiratoire de
l’enfant, exposition prénatale, variabilité temporelle intra-individuelle, erreur de mesure
de l’exposition

Thèse réalisée au sein du l’Institut pour l’Avancée des Biosciences: centre de re-
cherche Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes; F-38700 La
Tronche, France.
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CHAPTER 1. GLOBAL INTRODUCTION 1

Chapter 1
Global introduction

"Many compounds introduced into the environment by human ac-
tivity are capable of disrupting the endocrine system of animals,
including fish, wildlife, and humans. The consequences of such dis-
ruption can be profound because of the crucial role hormones play
in controlling development."

–Meeting at the Wingspread Conference Center in Racine, Wisconsin, USA.
July 1991

Millions of different man-made compounds have been produced since 1900.202,157

Between 1940 and 1980, the production of synthetic chemical expanded 350-fold in
weight, and between 1972 and 1992, it was estimated that 1000 new chemicals were
newly synthesized each year, and made available in the market to be commercialized.157

Among these synthesized compounds, pesticides (from the English word, pest and
the Latin word cida, kill) were intensively developed to improve agricultural production
and to control pest organisms such as insects, rodents, fungi bacteria, snails and un-
wanted weeds in cities. Dichlorodiphenyl-trichloroethane (DDT) commercialized since
1939, was one of the first chemicals developed to be widely used as pesticides 1. After
the Second World War, pesticides were extensively manufactured and commercialized
in industrialized countries worldwide without regulation or restriction until the 1960’s
for uses in crops and residential settings.210,334 Agricultural production increased and
human health benefited from this as well as from the lessening of vector-borne diseases.
Paul Müller, who discovered the biocidal properties of DDT was awarded the Nobel
Prize in Physiology (Medicine) in 1948.

However, meanwhile, the nontarget wildlife was also affected. The aquatic biolo-
gist Rachel Carson gathered several years of environmental research and narrated it

1. DDT was used in control of vector-borne diseases such as typhus and malaria.
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for a general audience in a book, "Silent Spring", published in 1962 2. In this book,
she warned the general population about the hazards of use of pesticides on wildlife
and human health.68 DDT and other organochlorine pesticides caused environmental
damage through contamination of soils, water, vegetation and finally affected nontar-
get species (e.g., certain bird or fish species) by biomagnification and bioaccumulation
in food chains. This book made the potential environmental problems of synthesized
chemicals everyone’s concern, triggered technical development for environmental re-
search, and pressured politics to change management and control of pesticides in the
United States of America (USA) 3 and other industrialized countries.48 DDT and other
pesticides were banned in several countries including the USA (1972) within ten years
after the publication of Carson’s book (Sweden in 1969 and France in 1971).

Main adverse effects reported worldwide in various wildlife species were related to
the reproductive function, with for instance eggshell thinning for top predator birds,
and deleterious effects on reproductive organs in fish species.211 In 1991, several decades
after "Silent Spring", Theo Corborn, whose research focused on the Great Lakes of
North America, made the connection between all these observed reproductive effects
and a possible mode of action involving the endocrine system. With a small group
of multidisciplinary scientists, she coined the term endocrine disruptors (EDs) 4, to
point to man-made chemicals "capable of disrupting the endocrine system of animals,
including fish, wildlife, and humans". At the end of the twentieth century, endocrine
disrupting effects were reported for chemicals such as persistent organic pollutants
(POPs) including polychlorinated bisphenyls (PCBs), DDT and dioxins. Over the last
decades, as the scientists and public’s knowledge of EDs increased, so did the number of
man-made chemicals used and released in the environment, including many potential
emergent EDs, less persistent and less bioaccumulative than the formerly identified
ones.345,93

The commonly accepted definition for EDs was developed in 2002 by the World
Health Organization / International Program for Chemical Safety (WHO)/(IPCS),
and defines:

— an ED as "an exogenous substance or mixture that alters function(s) of the en-
docrine system and consequently causes adverse health effects in an intact or-
ganism, or its progeny, or (sub) populations";

2. The book title refers to the decline of bird populations and the possibly ensuing silence.
3. e.g., creation of the United States Environmental Protection Agency (EPA).
4. Meeting at the Wingspread Conference Center in Racine, Wisconsin, USA. Twenty-Five Years

of Endocrine Disruption Science: remembering Theo Colborn. http://dx.doi.org/10.1289/EHP746

http://dx.doi.org/10.1289/EHP746
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— a potential ED as "an exogenous substance or mixture that possesses properties
that might be expressed to lead to endocrine disruption in an intact organism,
or its progeny, or (sub) populations" (WHO/IPCS 2002).

Also, at the 2011 meeting of the Organisation for Economic Cooperation and Develop-
ment (OECD), several experts proposed to add a third category to take into account
substances that may satisfy only part of the definition (i.e., endocrine mechanisms or
the health effects) 5:

— a possible ED is "a chemical that is able to alter the functioning of the endocrine
system but for which information about possible adverse consequences of that al-
teration in an intact organism is uncertain" (OECD 2011).

More recently the scientific committee of the European Food Safety Authority (EFSA)
elaborated a definition for any substance having the ability to interfere with the en-
docrine system without the need of demonstrating evidence of adverse health effects:97

— an endocrine active substance is "a chemical that can interact directly or indi-
rectly with the endocrine system, and subsequently result in an effect on the
endocrine system, target organs and tissues" (EFSA 2013).

The endocrine system is a set of glands secreting hormones (see Box 1.1). It is
involved in primordial body processes, from the cell differentiation at the embryonic
stage to the control of organs and reproduction process in adulthood. EDs can mimic or
antagonize the role of hormones; modulate their synthesis, transport and metabolism;
or bind to their dedicated (cell membrane or nuclear) receptors. Also, interactions be-
tween the endocrine, nervous and immune systems exist,96,220 blurring the boundaries
between all these systems, and widening the range of possible effects of EDs. In the last
decades, evidence that EDs play a role in reproductive, metabolic and immune disor-
ders; and thyroid-related diseases (including neurodevelopmental effects), is increasing,
especially from animal and experimental (cellular and molecular) studies. However, in
many cases, additional literature in humans is required.345,326

Although the investigations regarding the first identified EDs (e.g., DDT, PCBs,
tributyltin or dioxins) are still ongoing, understanding the impact of emergent EDs
currently in the commerce is becoming essential, given the constant exposure of the
population in thousands of synthesized chemicals.

5. Second Meeting of the Advisory Group on Endocrine Disrupter Testing and Assessment. OECD,
Paris, France.
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In this thesis, we focus on two families of currently commercialized man-made chem-
icals suspected to disrupt the endocrine system: the phenols and phthalates (detailed
in the next chapters 2.2 and 4).

Many toxicological studies, as well as the unfortunate examples of diethylstilbestrol
reproductive and carcinogenic consequences in prenatally-exposed daughters, methyl-
mercury neurodevelopmental disorders in Minamata and thyroid-related disease such
as cretinism have shown the importance of exposure timing, especially during the em-
bryonic and fetal development.178,345 We explore the impact of exposure to phenols and
phthalates, during the fetal development on respiratory health. The human respiratory
function is controlled by hormones for embryonic, fetal and postnatal developments
(Chapters 2.4 and 4), but the effects of EDs on respiratory health are poorly studied
in humans (see Vrijheid et al.326, Chapters 2.4 and 4).

Additionally, such chemicals create new challenges for epidemiologists aiming at
characterizing the impact of these substances on human health. These emergent EDs
have a short biological half-life, i.e. they are nonpersistent in human organisms (see
Chapter 2.2.3). This can lead to temporal variability in biomarker concentrations used
for exposure assessment (detailed in Chapter 2.3.3), which is poorly characterized in
the context of pregnancy. Hence, we study this within-subject variability over several
time windows during pregnancy and its impact on dose-response functions (Chapters
5 and 6). While classical approaches for exposure assessment, relying for instance on
biomarker concentrations in a few number of biospecimens, are efficient in most cases
for persistent EDs, they are likely no longer valid for less persistent substances and
innovative methods are required to study the relationships between these chemicals
and health disorders in observational settings in humans. Therefore, we evaluate the
efficiency of a more elaborate sampling design, the within-subject pooling approach, for
exposure assessment to such substances (Chapter 6). Finally, thesis results are overall
discussed (Chapter 7), and perspectives for future research are presented (Chapter 8).
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Box 1.1 – THE HUMAN ENDOCRINE SYSTEM, based on the State
of the science of endocrine disrupting chemicals (WHO)345

Basic features of the endocrine system
— The endocrine system is composed of various glands that secrete hormones

into the blood system to reach distant target cells, organs or tissues. The
main glands include the hypothalamus, the pituitary, thyroid parathyroid
and adrenal glands, pancreas and gonads (see Fig. 1.1). Additionally, other
organs and tissues (e.g., liver, heart, intestines, kidneys, adipose tissue) have
also an endocrine function.121 Several hormones such as steroids are carried
into the blood via specific transport proteins.205

— The hormones interact with dedicated receptors outside (on the cell mem-
brane, membrane receptors) or inside (on the nuclear membrane, nuclear
receptors) the target cells to trigger their effects.

— Hormones act at very low concentrations, typically nano or picomolar ranges,
and the dose-response functions are not always monotonic.121,315

— Hormones are crucial for the development stages during the embryonic and
fetal life and during the whole life, as they are involved in essential body’s
functions.205

— Endocrine, nervous, and immune systems are closely intertwined.

Fig 1.1 – Major human’s endocrinally-sensitive organs and endocrine glands. Extracted
from Gore et al.115.
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Chapter 2
Phenols, phthalates and respiratory health:
background

In this chapter, we first provide an overview of the sources and of the exposure
of the general population to these two families of EDs, as well as information about
their metabolism in the body. In a second time, we review the implications for the
assessment of exposure in epidemiological studies. Thirdly, we focus on respiratory
health, lung development during embryonic and fetal life, and the possible impact of
adverse exposure during this sensitive period. Finally, in the last section, we evaluate
the plausibility of adverse affects of phenol and phthalate exposures on respiratory
health, based on the evidence from experimental, animal and epidemiological literature.
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2.1 French summary

Les phénols et phtalates sont deux familles de composés suspectés d’être des per-
turbateurs endocriniens avec des demi-vies courtes dans l’organisme. L’exposition de
la population générale est ubiquitaire et chronique, du fait de leur utilisation dans les
matériaux de construction de nos bâtiments/habitations et dans de nombreux produits
de la vie quotidienne. Plusieurs de ces composés ont déjà été retrouvés dans les ma-
trices biologiques telles que le liquide amniotique et le méconium chez l’animal et chez
l’Homme, attestant d’une exposition fœtale très probable. Chez l’Homme, la phase pré-
natale est une période cruciale pour le bon développement de la fonction respiratoire
de l’enfant et du futur adulte, mais l’impact possible d’une exposition intra-utérine aux
phénols et phtalates sur la santé respiratoire durant l’enfance et à plus long terme a été
très peu étudié. Les phénols et les phtalates pourraient agir sur le développement pul-
monaire par interactions avec certains récepteurs (par exemple, la famille des PPARs),
ou modifier la fonction respiratoire par immunomodulation ou par des mécanismes
proinflammatoires.

Les études visant à identifier et quantifier les effets des phénols et des phtalates
chez l’Homme reposent en majorité sur des concentrations de biomarqueurs dans un à
trois échantillons d’urine pour estimer l’exposition. Cependant, les biomarqueurs uri-
naires des phénols et des phtalates varient probablement fortement dans le temps chez
un même sujet, du fait de leur courte demi-vie et de la nature plus ou moins épisodique
de l’exposition. L’étude de cette variabilité dans le contexte de la grossesse repose prin-
cipalement sur deux ou trois échantillons, ce qui est probablement insuffisant. De plus,
peu d’études basées sur des données réelles ont cherché à caractériser l’impact possible
de cette variabilité intra-individuelle sur les relations doses-réponses pour estimer les
associations entre une exposition et un effet sur la santé donnés ; ou à proposer des
stratégies d’échantillonnage plus élaborées pour améliorer l’estimation de l’exposition.

L’objectif de cette thèse est d’étudier l’exposition aux phénols et aux phtalates au
cours de la grossesse et ses possibles effets sur la santé respiratoire de l’enfant. Plus
précisément, ce travail vise à :

1. étudier les associations entre l’exposition in utero aux phénols et aux phtalates,
et la santé respiratoire de l’enfant au cours de ses premières années de vie ;

2. caractériser la variabilité temporelle intra-individuelle des phénols et des phta-
lates au cours de la grossesse ;

3. proposer une approche d’estimation de l’exposition basée sur le pooling d’échantil-
lons intra-sujet et évaluer son efficacité en comparant avec une approche "idéale",
et en quantifiant le biais et la puissance statistique dans les études épidémi-
ologiques en fonction du nombre d’échantillons utilisés pour estimer l’exposition.
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2.2 Phenols and phthalates

2.2.1 Sources

Phenolic compounds and phthalates include high volume manufactured chemicals,
several of which being suspected to be EDs. Phenols are defined as chemicals with an
hydroxyl group (–OH) bonded to a phenyl group (C6H5–, see Figure 2.1.a.). Phthalates
are esters of phthalic acid (see Figure 2.1.b.), which can be classified according to their
molecular weight, as high and low molecular weight phthalates (HMW and LMW
phthalates, above and below 250 g/mol, respectively). The most common phenols and
phthalates are listed in Box 2.1 and are studied in this thesis.

(a) Phenol and examples of phenolic com-
pounds suspected to be EDs. (b) The basic phthalate structure.

Figure 2.1 – Basic chemical structures of (a) phenols and (b) phthalates.

These compounds have specific properties. Some are e.g., antifungal and antimi-
crobial preservatives, ultraviolet-blockers, monomers adding strength and toughness in
plastic polymers, plasticizers softening plastics, increasing their flexibility and durabil-
ity, and solvents holding color and fixing fragrance. Consequently, compounds from the
two families have a wide range of uses and can be found in many products present in our
environment. Among others, such compounds are used in resins, plastic and vinyl ma-
terial for consumer products (including food and cosmetic packaging), medical devices,
automobile manufacturing, and building construction (bisphenols, benzophenone-3,
butyl-benzyl phthalate (BBzP), di-2-ethylhexyl phthalate (DEHP), di-isononyl phtha-
late (DINP), di-isodecyl phthalate (DIDP), di-n-octyl phthalate (DNOP)); in personal
care products (benzophenone-3, triclosan, parabens, diethyl phthalate (DEP), di-n-
butyl phthalate (DnBP)); in clothing and kitchenware (triclosan, DnBP); diet (in-
cluding beverages), food supplements and pharmaceuticals (parabens, benzophenone-
3, DEP, DEHP, di-isobutyl phthalate (DiBP), DnBP); in paints, lacquers, rubbers,
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Box 2.1 – PHENOLS, PARENT PHTHALATES AND THEIR
METABOLITES STUDIED IN THIS THESIS

Phenols Abb.

2,4-Dichlorophenol 2,4-DCP
2,5-Dichlorophenol 2,5-DCP
Bisphenol A BPA
Bisphenol S BPS
Benzophenone-3 BP3
Triclosan TCS
Methylparaben MP
Ethylparaben EP
Propylparaben PP
Butylparaben BP

Phthalates Abb.
Primary
metabolites Abb.

Secondary
metabolites Abb.

LMW phthalates
Diethyl phthalate DEP Mono-ethyl

phthalate
MEP

Di-n-butyl
phthalate

DnBP Mono-n-butyl
phthalate

MnBP Mono-(3-carboxypropyl)
phthalate

MCPP

Di-isobutyl
phthalate

DiBP Mono-isobutyl
phthalate

MiBP

HMW phthalates
Di-n-octyl
phthalate

DNOP Mono-(3-carboxypropyl)
phthalate

MCPP

Butyl-benzyl
phthalate

BBzP Mono-benzyl
phthalate

MBzP

Di-2-ethylhexyl
phthalate

DEHP Mono-2-ethylhexyl
phthalate

MEHP Mono-(2-ethyl-5-hydroxyhexyl
phthalate

MEHHP

Mono-(2-ethyl-5-oxohexyl)
phthalate

MEOHP

Mono-(2-ethyl-5-carboxypentyl)
phthalate

MECPP

Di-isodecyl
phthalate

DIDP Mono-(carboxynonyl)
phthalate

MCNP

Di-isononyl
phthalate

DINP Mono(carboxyoctyl)
phthalate

MCOP

inks, adhesives, sealants, thermal printer paper (benzophenone-3, phthalates, bisphe-
nols); and in insecticides, or pesticides (dichlorophenols, benzophenone-3, DNOP,
DEP).316,74,40,308,224,227,223,353,171,225 A more detailed description of phenols and phtha-
lates sources is provided in Appendix A.

Evolution of the regulation and ongoing market changes
Exposure of the population to phenols and phthalates depends on their specific uses and
on regulatory decisions. Due to growing health concerns and environmental awareness,
several phenols and phthalates were banned or restricted in some products (see Table
2.1), while other ones are increasingly used, resulting in changes in exposure levels (see
Figure 2.2).
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Table 2.1 – Main regulations in Europe and in the USA regarding the compounds
studied in this thesis.

Compound Country Year Legislation Current EFSA Tolera-
ble daily intake (TDI)
and/or EPA reference
dose (RfD)

DEHP France 2015 Ban from medical tubes in pediatrics, neonatology
and maternity wards in hospitals.

TDI: 50µg/kg bw/day
RfD: 20µg/kg bw/day

DEHP, BBzP,
DBP

EU

USA

2005

2007
2009
2008

Ban from toys and childrencare articles (Directive
2005/84/EC)
Ban from food packaging (Directive 2007/19/EC)
Ban from cosmetics (EC Regulation 1223/2009)
Restricted to <0.1% w/w in toys and childcare
articles

TDI (DBP): 10µg/kg
bw/day
RfD (DBP): 100µg/kg
bw/day
TDI (BBzP): 500µg/kg
bw/day
RfD (BBzP): 200µg/kg
bw/day

DINP EU

USA

2005

2008

2014

Ban from toys that can be put in the mouth by
children (Directive 2005/84/EC)
Interim restriction for toys that can be put in the
mouth by children
Restricted to <0.1% w/w in toys and childcare
articles

TDI: 150µg/kg bw/day
RfD: 120µg/kg bw/day

DIDP USA 2014 Restricted to <0.1% w/w in toys and childcare
articles

TDI: 150µg/kg bw/day

Bisphenol A Canada
France
EU

USA

France

2009
2010
2011

2012
2013
2014

Ban from baby bottles
Ban from baby bottles
Ban from baby bottles (Directive 2011/8/EU and
EU Regulation 321/2011)
Ban from baby bottles
Ban from infant formula packaging
Ban from material in contact with food (food
packaging or kitchenware)

TDI: 4µg/kg bw/day
RfD: 50µg/kg bw/day

Butylparaben,
propylparaben

EU 2009

2014

Restricted to <0.4% w/w for one paraben and
0.8% for a mixture of parabens in cosmetics (EC
Regulation 1223/2009)
Restricted to <0.14% w/w for one paraben in
cosmetics (EU regulation 1004/2014)

NA*

Methylparaben,
ethylparaben

EU 2009 Restricted to <0.4% w/w for one paraben and
0.8% for a mixture of parabens in cosmetics (EC
Regulation 1223/2009)

TDI: 10µg/kg bw/day

Triclosan EU

Switzerland
USA

EU

2009

2014

2015
2015
2016
2016

Restricted to <0.3% w/w in cosmetics (EC Regu-
lation 1223/2009)
Restricted to <0.2% w/w in mouthwashes
and 0.3% in in toothpastes, hand and body
soaps/shower gels, deodorants, face powders and
blemish concealers (EU Regulation 358/2014)
Ban from clothing
Ban from clothing
Ban from consumer antiseptic wash products
Ban from biocidal products for hygiene pur-
pose (EU Commission Implementing Decision
2016/110)

TDI: NA*
RfD: 300µg/kg bw/day

Benzophenone-3 EU 2017 Restricted to <6% w/w in cosmetic sunscreen
products and <0.5% in all types of cosmetics (EU
Regulation 2017/238)

NA*

EFSA: European Food Safety Authority; EPA: United States Environmental Protection Agency; EU: European
Union; EC: European Commission, NA: not applicable.
* No official health-based threshold value.

2.2.2 Exposure of the general population

Exposure routes
Due to the variety of uses of phenols and phthalates, exposure of the general population
occurs via multiple routes (ingestion, inhalation and dermal absorption).
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Figure 2.2 – Urinary concentrations of key LMW and HMW phthalate metabolites
(median, in µg/L) in Germany over the years 1988-2015. Extracted from Koch et
al.168.

Chemicals of the two families can migrate from packaging to food and beverages
and be absorbed into the body through ingestion of contaminated diet.111,169,342 For
compounds such as bisphenol A (outside France, owing to the ban of this use since
2015) and several phthalates, diet is a major exposure source.345 Other dietary sources
include drinking water for benzophenone and dichlorophenols, and beverages and food
for benzophenone and parabens. Infants and children can be exposed through similar
routes of exposure, and are also exposed through their hand-to-mouth activities (e.g.
for phthalates and bisphenol A).112,189 For babies and infants, ingestion of breast milk
constitutes another exposure source for many phenols (e.g., bisphenol A, parabens,
benzophenone-3, triclosan) and phthalates (e.g., metabolites of DEP, DBP, DEHP,
BBzP).345,342

For parabens used in cosmetics and other personal care products, the exposure oc-
curs predominantly via skin absorption.40,20 This route of exposure is also relevant for
benzophenone and phthalates that are present in some personal care products172,171,149,147

and for bisphenols through handling of thermal printer papers.139,95,35

Human exposure to phthalates, benzophenone and bisphenols occurs additionally
via inhalation or ingestion of contaminated dust and particles.112,189,137,341,346,143

Because of the ubiquity of these phenols and phthalates in the environment of
Western countries, the exposure of the general population and thus of sensitive pop-
ulations such as pregnant women (see Figure 2.3) and children is widespread and
continuous.71,214,88,87,69 Since pregnant women are chronically and widely exposed to
these chemicals, so are fetuses.
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Figure 2.3 – Median values of urinary (a) phenols and (b) phthalate metabolites (µg/L)
in selected publications among pregnant women. Adapted from Mortamais et al.214.
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2.2.3 Toxicokinetics

Exposure of the population and possible adverse health effects depends on the
toxicokinetics of the compounds of interest, i.e. on the behavior of the compounds in the
(human) body. Toxicokinetics includes the absorption into the body, the distribution
in the systemic circulation or in specific organs, the metabolism which can transform
the chemical in several metabolites and finally the excretion of compounds from the
body via for example urines, feces, or the accumulation in specific tissues. Metabolism
differs between phenols and phthalates and also between compounds of the same family.

Metabolism and excretion of phthalates
First, by the action of nonspecific lipases and esterases, phthalates are rapidly metab-
olized to hydrolytic monoester metabolites (primary metabolites). This occurs in the
stomach; in the intestine after oral exposure; directly in the blood with an intravenous
infusion; and during skin permeation after a percutaneous exposure.237,164,160,303,147,148

Monoesters are rapidly absorbed from the gastrointestinal tract or the skin layers into
the blood systemic circulation to reach predominantly the liver and the kidneys.201 In
a second stage (see Figure 2.4), monoesters can undergo multistep oxidation of their
alkylchains which generates secondary more hydrophilic metabolites (with hydroxy-,
carboxy- and oxo- groups).167

HMW phthalates, with the longest side-chains, undergo preferentially oxidative
pathways before being excreted, while LMW phthalates are mainly excreted in their
simple monoester forms.27,282,268 Primary or secondary metabolites will preferentially
be transformed in a second metabolic phase in the liver, as glucuronide and sulfate
conjugates, except for DEP monoester, mostly excreted in its free form.282,280,13,175,209

The biotransformation pathways last only several hours (less than one day) for most
phthalates before the excretion of metabolites, mostly in urines. A small fraction of
metabolites can also be found in bile and feces but these excretion pathways are minor
in humans.163,164,160 Bioaccumulation in the body is presumably limited, even though
an accumulation in lipid reserve may exist.90,163,148,147 Elimination half-lives are short,
especially for monoesters (2-8 hours) – and therefore for LMW phthalates – and slightly
longer (3-24 hours) for some secondary metabolites.237,276,163,164,156,12,13,209,148,147 Few is
known regarding metabolism and excretion of phthalates during pregnancy in humans
(see below, Section 2.2.4).
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Figure 2.4 – Metabolic pathways for phthalates in humans.

Metabolism and Excretion of Phenols
Upon exposure, phenolic compounds are also readily absorbed through skin and the
gastrointestinal tract. Phase I metabolism is minor for phenols, except for parabens,
which are mainly transformed in a nonspecific metabolite, p–hydroxybenzoic acid
(PHBA); and possibly benzophenone-3,309,350,85 and a significant fraction of the parent
compound is absorbed unchanged. Metabolites and parent forms are most likely conju-
gated to increase their solubility in water before being excreted in the urine with a short
(between 1 and 20 hours) elimination half-life.309,331,351,259,308,289,353,306,307,324 Elimina-
tion half-lives are not known in pregnant women (Section 2.2.4). As for phthalates,
oxidized metabolites have also been measured in urines in non-negligible amounts for
parabens with a more complex ester side chain (e.g., butylparaben), while this is not
expected to happen for those with a shorter one (e.g., methylparaben).330,213

To summarize, based on toxicological studies, phenols and phthalates studied in
this thesis are reportedly quickly absorbed (oral and dermal exposure) into the human
body, and mainly excreted in urine with an elimination half-life between one and 24
hours, depending of the route of exposure, the compound, and the dose. In addition,
there is no (or scant) evidence of accumulation in human tissues. Detailed information
on compound-specific toxicokinetics are given in Appendix B. However, toxicokinetics
data in humans is limited for dichlorophenols, benzophenone-3, some parabens, and
bisphenols other than bisphenol A; and is very scarce in the context of pregnancy.
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2.2.4 Toxicokinetics during pregnancy

Pregnancy induces many physiological modifications such as increased gastric pH;
decrease of the intestinal motility; greater glomerular filtration rate; increase cardiac
output; overexpression of some hepatic enzymes. These can alter the toxicokinetics of
xenobiotics, from the absorption to the elimination of such compounds.11,98 Besides,
pregnancy-related pathologies such as hypertension, gestational diabetes, preeclampsia
can occur and additionally complicate the metabolic process.

Due to increased glomerular filtration rate and renal blood flow during pregnancy,
it is assumed that renal clearance is increased in pregnant women, which would lead
to a shorter elimination half-life, compared to non-pregnant women.11,2 For example,
cotinine, a urinary biomarker of tobacco smoke exposure, has been found to have about
twice as fast elimination half-life during pregnancy compared to postpartum.86 How-
ever, for other substances, excretion is reportedly unaffected by pregnancy, suggesting
that other mechanisms, which change during pregnancy, also contribute to renal clear-
ance. This is for example the case of amoxicillin.215,216 Regarding phenols and phthala-
tes, differences in bisphenol A metabolism between pregnant and non-pregnant subjects
have been reported in nonhuman primates, with a longer residence time of bisphenol
A (i.e. total time spent by the compound inside the body) during pregnancy.265

The feto-placental unit, with its own metabolism activities, plays a critical role
in the overall gestational toxicokinetics of xenobiotics since compounds are also dis-
tributed to the fetal compartment, sometimes within one hour following exposure.265

Some phenols and phthalates are capable of crossing the placenta, and can be found in
placental tissue,318 amniotic fluid279,246 and cord blood.340,22,142,113 Additionally, phtha-
lates and bisphenol A were found to have an extended elimination half-life in amniotic
fluid and fetal serum,106,317 resulting in sustained exposure of fetus.

For phenols, the free form is often considered as the bioactive one whereas the
conjugated forms are assumed to be toxicologically inactive and more stable. For
example, conjugated forms of bisphenol A were found to be less active than the free
bisphenol A.113 However, conjugated forms can undergo deconjugation in many tissues
in the presence of non-specific β-glucuronidases and sulfatases. Among these tissues,
placenta was found capable of deconjugating glucuronide bisphenol A in small amount,
thus possibly increasing the fetal exposure to the biologically active bisphenol A.232

Besides, it has been reported that metabolites can also be biologically active,127,126,321,85

so that toxicity should probably not be predicted only on the basis of the free form
concentration.
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As seen above, phenols and phthalates are nonpersistent in human bodies, although
data in the specific context of pregnancy are very limited. However, fetuses are exposed
to phenols and phthalates (possibly continuously) that may adversely affect their pre-
and postnatal health. Exposure assessment of phenols and phthalates in epidemiolog-
ical studies is challenged by the nonpersistent nature of these compounds, which can
creates within-subject variability in exposure levels. This aspect is developed in the
next section.
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2.3 Assessment of exposure to phenols and phtha-
lates in epidemiological studies

Contrary to experimental studies, for which levels and routes of exposure (the
amount of a given external chemical in the immediate body environment, and which
can enter the body) are controlled by scientists, observational studies investigating the
health effects of exposure to environmental toxicants in humans need to deal with mul-
tiples sources and routes of exposure, as well as mixtures of compounds, and generally
without direct information on exposure. Since fetuses are protected in their mothers’
womb, accurately assessing the fetal exposure during pregnancy is not straightforward.

2.3.1 Assessment in the environment

Exposure to phenols and phthalates can be assessed from environmental data,
through job title, questionnaires,145,45,176 and measurements in environmental media,
such as in air or house dust.7,8,46,170,354 However, owing to the abundance of exposure
sources detailed in Sections 2.2.1, 2.2.2 and in Appendix A, exposure assessment re-
lying on occupation title, questionnaires (also subject to memory bias), measurement
in air and house dust, are probably very limited and can lead to significant exposure
misclassification. None of these methods take into account all the routes of exposure
nor do they provide an estimate of the amount of chemicals that actually enters the
human body (dose).

2.3.2 Human biomonitoring

Human biomonitoring (formed from the contraction of "biological" and "monitor-
ing") consists in the measurement of chemical substances, i.e. the parent compound or
one of its metabolites, in the body fluids or tissues, i.e. the biological matrix.229 The
species measured in the biological matrix are termed biomarkers of exposure, as they
indicate exposure to environmental toxicants.14 Contrary to the exposure assessment
methods seen above, human biomonitoring tells whether individuals are exposed to a
particular environmental toxicant, and integrating all the known and unknown sources
and pathways, so as to provide an estimate of the amount of the chemical that has ac-
tually entered into the body (Figure 2.5). This is why, given the multiplicity of sources
and routes of exposure for phenols and phthalates, human biomonitoring is currently
the preferred method to assess exposure to these chemicals.151,165 However, this is not
a direct measurement of the internal dose.

Various biological matrices can be used, including human fluids (e.g., urine, blood,
saliva, breast milk, feces, seminal fluid, sweat, nails, pulmonary liquid or air) and
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Figure 2.5 – Scheme of environmental and biological monitoring

tissues (e.g., hair, fat tissue, bone, teeth). Among these matrices, some are directly
related to fetuses.

2.3.2.1 Fetus-related biological matrices

Amniotic fluid, which is mainly composed of fetal urine after the second half of
pregnancy; meconium, i.e. the first stools of the newborn accumulated by the fetus
from the 12th week of gestation, hair nails, and cord blood may be biologically relevant
media for direct fetal exposure assessment.312,186

Collecting amniotic fluid requires an amniocentesis, an invasive medical procedure
which can be harmful to the fetus and the mother, with a risk of miscarriage. Also, there
is a continuous turn-over of the amniotic fluid, and toxicants may be eliminated via the
placenta in several hours.340 If amniotic fluid is collected at birth, there is a possibility
of contamination through maternal blood, urine, feces or delivery material.340

While collecting meconium is non-invasive and may provide information on long
and chronic exposures via its accumulation until birth,186 meconium samples can be
easily contaminated or unavailable. Indeed, the fetus can discharge meconium into
amniotic fluid before birth, during the delivery or several days after birth, resulting
in possible contamination of meconium samples via maternal or fetal fluids, as well as
extraneous material. Analytical techniques are also less developed for meconium than
for other media, such as fluids.

Newborn’s hair and nails are interesting as they are easily collected and might pro-
vide information on more ancient exposures.17,10 However, their use is limited because
the toxicokinetics (bioaccumulation) of nonpersistent biomarkers in these matrices is
not well documented; difficulties exist to differentiate internal and external exposure
(risk of external contamination); and the amount of hair or nails requested to have
a good sensitivity may be too substantial, especially for analyzing several substances
simultaneously.17,9,10,73

Cord blood, collected at birth, may only represent a measure of the recent exposure
due to the transience of metabolites in the blood, and hence may not reflect exposure
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during the whole pregnancy.151

Therefore, relying on exposure biomarkers in amniotic fluid, meconium, cord blood,
hair and nails for prenatal phenol and phthalate exposure assessment in epidemiological
studies is not straightforward. Information about fetal exposure can be provided indi-
rectly with maternal exposure. Other matrices which have been used in environmental
epidemiology for phenols and phthalates exposure assessment are maternal biological
matrices.

2.3.2.2 Maternal biological matrices

Maternal hair and nails might be promising matrices but suffer from the same
limitations detailed for newborns. Urine and blood are the preferred media used in
environmental epidemiology for many biomarkers, since they are easy to collect; not
much invasive; and efficient analytical methods are already developed to quantify even
trace amounts of many families of compounds.165,281,161 Phenols and phthalates do not
accumulate in the body and, with a short terminal elimination half-life predominantly
through the urine (see Section 2.2.3), their presence in the blood is possibly more than
in urine. Also, enzymes in blood can transform compounds such as phthalates present
in the containers or the (laboratory) atmosphere into their monoesters, resulting in
possible contamination of samples. On the contrary, these enzymes are not present in
urine and hence, such reactions do not exist in this media. Moreover, urine collection
is a less invasive procedure, and detection frequencies are usually higher in urines than
in blood.64 Thus, although the relationship between measures of exposure biomarkers
in urine and fetal exposure is not defined yet – and would imply to rely on complex
toxicokinetic models – urine is the preferred matrix to assess phenols and phthalates
for epidemiological studies64,165 evaluating the effects of pregnancy exposure (including
pregnancy outcomes and health effects in the offspring).

2.3.2.3 Issues related to urinary biomarkers of phenols and phthalates

Urine Samples and Urine Dilution
One issue related to the use of biomarkers when measured in urine samples is that
chemical concentrations are related to urine dilution. For instance, since urine volu-
mes vary from void to void, high hydration preceding the urine collection can lead to
higher urine volume and artificially lower metabolite concentrations compared to low
hydration.

Creatinine or specific gravity are commonly used for adjusting urine dilution in
chemical exposure assessment. Creatinine is a waste product of the body primarily
excreted in the urine at a fairly constant rate by glomerular filtration, and specific
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gravity is the ratio of the sample-specific density to the density of water. Urine density,
and consequently specific gravity, are related to molecules present in urine, the most
abundant being urea, electrolytes, creatinine, and other metabolite waste products
including xenobiotic metabolites.

No consensus exists for the optimal approach to control for urine dilution as both
markers have limitations. If chemicals undergo active tubular secretion, which is likely
the preferred type of renal excretion for conjugated species,42 creatinine adjustment,
and hence an approach using specific gravity which is related to creatinine urinary
concentration, would not correct appropriately for urine dilution.

Additionally, creatinine concentration and specific gravity can be affected by preg-
nancy conditions: creatinine through body mass variations and gestational (physiologic
or pathologic) modifications impacting on the renal clearance; and specific gravity
through possible gestational excretion of glucose or proteins in the urine.42,28,78

Choice of exposure biomarkers
Although the risk of measuring extraneous phthalate and phenol contamination (e.g.,
from the containers, reagents, equipment) is lower in urines where hydrolytic enzymes
are not present,151,161 a careful choice of the sampling material and the laboratory for
assays is required. Measuring secondary oxidized metabolites for HMW phthalates
is one way to limit the risk of measuring the contaminated part since they are not
influenced by external contamination. However using only secondary metabolites does
not take into account the small fraction of the parent compound which is excreted as
its simple monoester.27,282,161,160,165 The metabolites can be further grouped using their
molar concentrations in an attempt to better reflect the overall exposure to the parent
compound.245,110

For LMW phthalates, mainly excreted as their monoester metabolites, and for
most phenols, there is no oxidative species used to limit the risk of contamination.64

However, pharmacokinetic data (see Section 2.2.3) indicate that conjugated species
represent the largest fraction of the excreted dose and are least likely to be due to
external contamination.64,160,27,282,161

To sum up, owing to the multitude sources of exposure to phenols and phthalates
and the short half-life of these compounds, measuring their metabolites in maternal
urine is currently the preferred method to assess exposure in epidemiological studies
investigating their impact on the offspring following pregnancy exposure. However, as
for exposure assessment in the environment, relying on biomonitoring is also subject to
misclassification. Biomarker quantification to estimate the individual’s true exposure
may include some random measurement error, with part of the error being related to
the instrumental precision, and for another part to within-subject variations.273,293
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2.3.3 Within-subject variability

2.3.3.1 Temporal variability during pregnancy

Phenols and phthalates are likely to have within-subject temporal variations over
a given time window,166,162,352,249 due to (i) their short elimination half-lives, and (ii)
behavior and episodic exposures.

Studies evaluating the within-subject reproducibility of urinary concentrations of
phenol and phthalate metabolites during pregnancy65,101,314,4,37,50,51,119,153,204,246,294,103

are presented in Tables 2.2 and 2.3. The Intraclass Correlation Coefficient (ICC),
which corresponds to the ratio of the between-subject variance to the total variance
(see Eq 2.1) can be used to give an estimation of the within-subject variability. ICCs
vary between 0 and 1, and the greater the ICC, the lower the ratio of the within-subject
variance to the between-subject variance.

ICC = σ2
between−subject

σ2
between−subject + σ2

within−subject
(2.1)

A few of these studies investigated the within-subject variability of phenols other than
bisphenol A.294,204,246,119,287,103 Variability was moderate for most phenols (ICC between
0.4 and 0.5) except bisphenol A, with higher variability (ICC below 0.3). In general,
phthalates exhibited high variability, especially HMW phthalates.

2.3.3.2 Within-day and between-day variability

Most of the studies presented in Tables 2.2 and 2.3 relied on two or three spot
biospecimens collected in each pregnant woman several weeks or months apart. This
is not enough to conclude on the within-subject temporal variability of phenols and
phthalates throughout pregnancy. Also, the heterogeneity of gestational ages at urine
collection, of time of day when urine is collected, and of intervals between within-
subject biospecimens may explain differences observed in their results. Additionally,
the design of these studies did not allow to characterize the within-day or the within-
week variability of biomarker concentrations.

Few studies, but in non-pregnant subjects, had a more comprehensive design (see
Figure 2.6 for examples). Based on complete urine collections throughout four to seven
consecutive days in eight non-pregnant participants, these studies described the within-
subject (within-day and between-day) variability of phenols and phthalates.162,352,21,249

The within-subject variability was high for bisphenol A and MEHHP (metabolite of
DEHP) and rather limited for MEP (metabolite of DEP), some parabens, triclosan
and benzophenone-3.162,352,21,249 These studies could not describe the variability over
periods longer than a week.
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In the context of pregnancy, information on within-subject variability over several
consecutive days is, to the best of our knowledge, limited to one study focusing on
bisphenol A and phthalates concentrations from complete urine collection during one
day in 66 pregnant women.103 This study focused on within-day variability but did not
investigate between-day variability, as they relied on a single day. Hence, within-subject
variability of phenols and phthalates needs to be studied more deeply in pregnant
women.

Figure 2.6 – Creatinine-corrected urinary concentrations of MEHHP (µg/g creatinine)
(extracted from Preau et al.249); and bisphenol A in log10 scale (µg/g creatinine) (ex-
tracted from Ye et al.352); and urinary concentration of benzophenone-3 for all spot
urine samples from one non-pregnant individual (extracted from Koch et al.162).
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Table 2.2 – Publications on the variability of phenols levels in biospecimens collected during pregnancy.

Reference Meeker et al.204 Bertelsen et al.37

Guidry et al.119
Quirós-Alcalá et
al.252

Philippat et al.246 Jusko et al.153 Braun et al.50

Stacy et al.294
Braun et al.51 Smith et al.287 Fisher et al.103

Population Puerto Rico
PROTECT study

Norway
MoBa cohort

USA Salinas
Valley
CHAMACOS
study

USA New York
SARAEH cohort

Netherlands
Generation R
study

USA Cincinnati
HOME study

USA Mas-
sachusetts
EARTH study

USA Mas-
sachusetts
Fertility Center

Canada
P4 study

Period 2010-2012 2007-2008 1999-2000 2005-2008 2004-2006 2003-2006 2004-2009 2005-2010 2009-2010
No of women 105 45 375 71 80 389 137 129 80
No of samples
per woman

3/pregnancy 3/pregnancy 2/pregnancy 3/pregnancy 3/pregnancy 3/pregnancy ≥2 before preg-
nancy
≥2 during preg-
nancy

2-3/pregnancy All urine voids for
1 weekday (T1)
and/or 1 week-end
day (T1)
1 spot (T2, T3,
delivery, post-
partum)

Gestational age 20 GW, 24 GW,
28 GW

17 GW, 23 GW,
29 GW

14 GW, 26 GW 18 GW, 23 GW,
33 GW

13 GW, 20 GW,
30 GW

16 GW, 26 GW,
delivery

5 GW, 20 GW,
33 GW

6 GW, 21 GW,
34 GW

≤ 20 GW, 24-28
GW, 32-36 GW,
delivery, 2-3 mo
post-partum

Remark Uncorrected for
urine dilution

Uncorrected for
urine dilution

Uncorrected for
urine dilution

Uncorrected for
urine dilution

Uncorrected for
urine dilution

Uncorrected for
urine dilution

Specific gravity
correction

Specific gravity
correction

Uncorrected for
urine dilution

ICC (95% CI)
2,4-DCP 0.37 (0.25, 0.50) 50% < LOD 0.47
2,5-DCP 0.50 (0.38, 0.62) 50% < LOD 0.52
MP 0.36 (0.24, 0.50) 0.48 (0.33, 0.61) 0.52 0.38
EP 0.48
PP 0.31 (0.19, 0.46) 0.55 (0.41, 0.67) 0.51 0.36
BP 0.45 (0.33, 0.57) 0.34 (0.18, 0.49) 0.54 0.48
TCS 0.42 (0.30, 0.55) 0.45 0.56 0.38-0.58
BP3 0.58 (0.47, 0.68) 0.43 (0.28, 0.57) 0.57
BPA 0.27 (0.15, 0.42) 0.24 (0.09, 0.39) 0.22 0.23 0.32 (0.18, 0.46) 0.25 0.12 0.11 (0.04, 0.26)a

0.31 (0.22, 0.42)b

0.33 (0.23, 0.44)c

GW, gestational weeks; mo, months; T1, T2, T3, trimesters of pregnancy; 2,4-DCP, 2,4-dichlorophenol; 2,5-DCP, 2,5-dichlorophenol; BPA, bisphenol A; BP3, benzophenone-3; TCS, triclosan;
MP, methyl-paraben; EP, ethyl-paraben; PP, propyl-paraben; BP, butyl-paraben.
a ICC across all time points (5 spot samples: one in each trimester of pregnancy, one at delivery, and one in post-partum); biomarker concentrations not measured for all compounds in T2,
T3, delivery and post-partum samples.
b Within-day (weekday) ICC.
c Within-day (week-end day) ICC.
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Table 2.3 – Publications on the variability of phthalate metabolites levels in biospecimens collected during pregnancy.

Reference Cantonwine et al.65 Ferguson et al.101 Valvi et al.314 Adibi et al.4 Braun et al.51 Fisher et al.103

Population Puerto Rico
PROTECT study

USA Boston Spain Sabadell
INMA cohort

USA New York
CCCEH study

USA Massachusetts
EARTH study

Canada
P4 study

Period 2010-2012 2006-2008 2004-2006 2001-2004 2004-2009 2009-2010
No of women 139 129 401 28 137 80
No of samples
per woman

3/pregnancy 4/pregnancy 2/pregnancy 2-4/pregnancy ≥2 before pregnancy
≥2 during pregnancy

All urine voids for 1 weekday (T1)
and/or 1 week-end day (T1)
1 spot (T2, T3, delivery, post-partum)

Gestational age 18 GW, 22 GW,
26 GW

10 GW, 18 GW,
26 GW, 35 GW

13 GW, 34 GW 33 GW, 35 GW,
37 GW, 39 GW

5 GW, 20 GW,
33 GW

≤20 GW, 24-28 GW, 32-36 GW,
delivery, 2-3 mo post-partum

Remark Uncorrected for
urine dilution

Specific-gravity
correction

Creatinine
correction

Uncorrected for
urine dilution

Specific gravity
correction

Uncorrected for
urine dilution

ICC (95% CI)
MEP 0.43 (0.33, 0.54) 0.47 (0.42, 0.52) 0.23 0.30 0.50 0.38 (0.27, 0.51)a 0.66 (0.57, 0.75)b

0.68 (0.59, 0.76)c

MiBP 0.35 (0.24, 0.47) 0.52 (0.48, 0.57) 0.20 0.54 0.38 NDa 0.37 (0.24, 0.53)b

0.41 (0.27, 0.57)c

MnBP 0.41 (0.30, 0.59) 0.57 (0.53, 0.62) 0.19 0.62 0.45 0.30 (0.19, 0.42)a 0.35 (0.25, 0.46)b

0.38 (0.28, 0.48)c

MCPP 0.23 (0.13, 0.37) 0.36 (0.31, 0.41) 0.44 0.21 (0.11, 0.36)a 0.21 (0.14, 0.32)b

0.36 (0.26, 0.47)c

MCNP 0.09 (0.03, 0.27)
MCOP 0.29 (0.19, 0.41)
MBzP 0.37 (0.27, 0.49) 0.61 (0.56, 0.65) 0.24 0.66 0.25 0.24 (0.14, 0.37)a 0.60 (0.50, 0.69)b

0.60 (0.51, 0.69)c

MEHHP 0.25 (0.15, 0.38) 0.21 (0.17, 0.27) 0.06 0.36 0.18 (0.10, 0.32)a 0.34 (0.25, 0.45)b

0.30 (0.21, 0.41)c

MEOHP 0.26 (0.16, 0.39) 0.19 (0.15, 0.25) 0.07 0.34 0.22 (0.13, 0.35)a 0.33 (0.24, 0.44)b

0.29 (0.20, 0.40)c

MECPP 0.20 (0.11, 0.35) 0.31 (0.26, 0.36) 0.19 0.33 NDa 0.49 (0.34, 0.63)b

0.18 (0.09, 0.34)c

MEHP 0.35 (0.24, 0.47) 0.30 (0.25, 0.35) 0.18 0.35 0.08 0.16 (0.08, 0.29)a 0.28 (0.19, 0.38)b

0.39 (0.29, 0.50)c

GW, gestational weeks; mo, months; T1, T2, T3, trimesters of pregnancy; ND, no data; MEP, monoethyl phthalate; MiBP, mono-isobutyl phthalate; MnBP, mono-n-butyl phthalate; MCPP,
mono (3-carboxypropyl) phthalate; MCNP, mono-(carboxynonyl) phthalate; MCOP, monocarboxy-isooctyl phthalate; MBzP, monobenzyl phthalate; MEHHP, mono(2-ethyl-5-hydroxyhexyl)
phthalate; MEOHP, mono(2-ethyl-5-oxohexyl) phthalate; MECPP, mono(2-ethyl-5-carboxypentyl) phthalate; MEHP, mono(2-ethylhexyl) phthalate.
a ICC across all time points (5 spot samples: one in each trimester of pregnancy, one at delivery, and one in post-partum); biomarker concentrations not measured for all compounds in T2,
T3, delivery and post-partum samples.
b Within-day (weekday) ICC.
c Within-day (week-end day) ICC.
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2.3.4 Exposure measurement error

2.3.4.1 Measurement error in exposure assessment via exposure biomar-
kers

When within-subject temporal variations are high (as expected for short half-lived
chemicals such as phenols and phthalates and described from the few available studies),
relying on biomarker concentrations measured in a few number of biospecimens per
subject (e.g. one to three) is likely to imperfectly represent the true exposure over time
windows longer than a few hours, such as a day, a week, or the whole pregnancy.54

Thus, within-subject variability in biomarker concentrations is likely to be a source
of measurement error in epidemiological studies examining the effects of nonpersistent
compounds such as phenols and phthalates.59,67 This issue is of importance given that
most epidemiological studies investigating human health effects of phthalates or phenols
exposure generally rely on only one single (occasionally three) exposure measure. Since
the true exposure of the subject (e.g., global exposure over the entire pregnancy) is
only estimated through surrogates of exposure, i.e. biomarker concentrations measured
in a few biospecimens, the exposure measurement error is expected to be of classical
type (Eq 2.2).59,67

Classical measurement error model, additive
W = X + U , with (2.2)

W the surrogate of exposure (e.g., one spot measure of urinary biomarkers),
X the true exposure (e.g., the pregnancy average exposure),
U the error, independent of X.

Classical-type error corresponds to a situation in which biomarker concentrations
measured in spot biospecimens vary randomly around the true unmeasured exposure,
so that the true exposure can be approximated by the mean of many repeated mea-
surements over the time window of interest.293,59,67 Such an error is expected to result
in a loss of precision (and hence of statistical power), and to bias the exposure-health
outcome association estimates towards the null (attenuation bias).59,67 The attenua-
tion in regression estimates can be related to the within-subject variability through
the attenuation factor, also called reliability ratio.59,67,269 In simple linear regression,
this attenuation factor corresponds to the ICC for the classical additive error model
(detailed in Appendix C). For example, in a recent simulation-based study from Perrier
et al.242, relying on only one biospecimen to assess exposure in a classical-type error
setting was shown to attenuate by 80% the true effect estimate for a chemical with high
within-subject variability (ICC of 0.2). The attenuation bias was lower (40%), but still



CHAPTER 2. BACKGROUND 27

important for compounds with moderate within-subject variability (ICC of 0.6). This
study is detailed in Box 2.2.

2.3.4.2 Limiting exposure measurement error in epidemiological studies

One simple approach to reduce measurement error and increase reliability of the
exposure average measured with biomarkers is to increase the number of biospecimens
by repeating exposure assessment for each subject in the time window of interest.67,256

Based on Perrier et al.242, at least 35 biospecimens for highly variable compounds
(ICC of 0.2), and six samples for moderately variable compounds (ICC of 0.6) are
required to limit the bias in the effect estimate to 10% or less. When biomarkers are
assessed in several biospecimens per subject in at least a subgroup of subjects, statistical
methods such as simulation extrapolation (SIMEX)81,124 and regression calibration67,123

can be used to correct for measurement error. Although repeating the collection of
biospecimens is efficient to reduce measurement error, this approach increases analytical
costs if biomarkers are measured in each biospecimen.

Woman 1 Woman 2 Woman n

Exposure window

of interest

…

Within-subject pools 

of biospecimens

Cohort of pregnant

women

Figure 2.7 – Within-subject pooling of urine biospecimens.

Within-subject pooling of biospecimens
It is only recently that within-subject pooling approaches consisting in collecting sev-
eral samples per subject over the time window of interest and pooling them within-
subject prior to biomarker analysis (see Figure 2.7), have been proposed as cost-efficient
strategies for exposure assessment.70,129,271,242 Within-subject pooling benefits from the
repeated sampling, but without increasing analytical costs since only samples pooled
within-subject are assayed. The underlying hypothesis of within-subject pooling is that
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the biomarker concentration measured in the pooled sample represents the average of
concentrations from the spot samples over the corresponding time window (e.g., a week
if all samples of a given week are pooled). This assumes, among others, that there is
no chemical reaction in urine242,271 and no influence of urine dilution (if a given volume
is taken from each biospecimen). This approach appears to be theoretically efficient
to decrease bias and increase statistical power.242,336 Such an approach is used in the
SEPAGES cohort, which included 484 parent-child trios recruited in Grenoble urban
area at an early stage of pregnancy (before the 18th week of gestation) 1. Although
Perrier et al.242 showed theoretically that within-subject pooling could limit misclas-
sification bias (see Box 2.1), this approach has, to the best of our knowledge, never
been applied on a large scale, and it leaves many practical questions open in terms of
sampling design.

To conclude this section, phenols and phthalates are widespread in the environment,
resulting in chronic and wide exposure of the general population, including pregnant
women. Phenols and phthalates exposure is usually assessed through the measurements
of exposure biomarkers in urines. Although these compounds are likely nonpersistent
in human organisms, within-subject variability is not well characterized in pregnant
women. This variability can be an important issue for epidemiological studies, and
the within-subject pooling of biospecimens has been suggested to handle it, but is
not tested empirically. Several phenols and phthalates can cross the placenta, which
results in exposure of the offspring starting in the early stages of life. This may impact
physiological functions with critical stages of development in the in utero period. Since
the embryonic and fetal stages are of high importance for normal lung development
and are controlled by the hormonal and immune systems, this thesis is focused on
respiratory health as one example of physiological functions which may be adversely
affected by these two families of EDs. This aspect is developed in the next section
(Section 2.4).

1. http://sepages.inserm.fr/en/home/

http://sepages.inserm.fr/en/home/
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Box 2.2 –The within-subject pooling of biospecimens, Perrier et al.242

The aim of this simulation study was to characterize the ability of within-subject pooling of biospecimens
to reduce bias due to exposure measurement error for chemicals with high within-subject variability in
biomarker concentrations

Methods
Two chemicals were considered, with distinct ICCs: 0.6 (moderate within-subject variability, chemical A)
and 0.2 (high within-subject variability, chemical B). Assuming a classical additive measurement error
model, they generated X the true exposure, X ∼ N (0, σ2

x = 1).
Then, for each subject i(i = 1, ..., n = 3, 000), they generated 1 to 50 biospecimens, with biomarker con-
centrations (Wij), corresponding to error-prone measures of Xi. Wij were affected by the within-subject
error Uij ∼ N (0, σ2

Uwithin
), assumed to be due to the within-subject variability, creating random variations

around the true value. The variance of the error term Uij was calculated as

σ2
Uwithin

= σ2
x

( 1
ICC

− 1
)

(2.3)

Then, they simulated continuous health outcomes Yi for each subject i as

Yi = α+ β1Xi + ε, (2.4)

with β1 = −100g the effect of the true exposure X (biomarker urinary concentrations averaged over a given
time period), i.e., the true effect; ε the random error ∼ N (0, σ2

ε ); α = 14, 900g and the standard deviation of
ε(1,500g). β1 = 0 was considered to characterize the impact on the risk type I error. They characterized the
associations between the health outcomes and the concentration measured in the pool. This concentration
was assumed to be the mean of individual samples. Binary outcomes were also simulated. Finally, statistical
power and bias were estimated. Bias was estimated as

Bias = β1 − βobs
β1

, (2.5)

with βobs the observed effect estimate with the pooling method.
Several approaches to correct for measurement error were tested:

— a posteriori disattenuation. For a given number k of biospecimens in the pool:

β̂corr = β̂obs

(
k − 1
k

+ 1
kICC

)
, (2.6)

— Two measurement error models: Regression calibration and simulation extrapolation SIMEX.

Main results
For linear and binary outcomes, using 1 sample led to attenuation bias in the association estimate (40%
for ICC=0.6; 80% for ICC=0.2), but did not increase the risk of type I error. Power was also reduced (71
and 32%, respectively for chemicals A and B). With the pooling method, increasing the number of samples
in the pool increased power. Compared with pooling, correction methods did not improve power. To limit
bias ≤10%, 6, 2, 2, and 1 biospecimens were required when ICC=0.6 with the pooling, SIMEX, regression
calibration and pooling followed by disattenuation methods, respectively. When ICC=0.2, these values were
greater: 35, 8, 2, 1 samples.

Fig 2.1 – Bias in the health effect estimate (%) according to the number of biospecimens collected per
subject to assess exposure (1,000 simulations of studies with n=3,000 subjects) for Chemicals A (ICC=0.6)
and B (ICC=0.2). Continuous health outcome with β1 = −100g.
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2.4 Respiratory health

Respiratory diseases are a global public health problem, currently responsible for
a high social and economic burden worldwide. Asthma is a complex disease charac-
terized by bronchial hyperresponsiveness to inhaled stimuli (irritants, aeroallergens)
or exercise, and chronic airway inflammation, resulting in recurrent respiratory symp-
toms that vary over time, such as wheezing and coughing episodes (predominantly at
night), chest tightness and breathlessness, and airflow obstruction.222,133 Today, more
than 300 million of people in the world are suffering from asthma and over recent
decades, asthma has become one of the most frequent chronic disease in childhood,
affecting around 10% of children in western countries.5,133,114 Direct (e.g., hospital and
physician visits, drugs) and indirect (including work disability and management of co-
morbidities) economic costs are considerable.5,94,233 Pediatric morbidity and mortality
associated with childhood lower tract respiratory infections (e.g., pneumonia, atypical
pneumonia, bronchitis, and bronchiolitis) is worse in the lowest-income and developing
countries but morbidity is still high in developed countries159,185 and these illnesses
are associated with chronic respiratory diseases such as asthma later in life.199 There is
growing evidence that chronic respiratory diseases such as asthma and chronic obstruc-
tive pulmonary disease (COPD) have their origin in the early stages of life.5,133,114,197,66

2.4.1 Early-life origins of respiratory diseases

Pre- and postnatal lung development
Intra-uterine life is a critical period for development. As for many other vital functions,
major developmental steps occur in utero for the lungs. The respiratory system starts
its structural and functional development during the embryonic stage by formation of
the trachea, the main bronchi and the lobes and lobules, followed by multiple fetal
stages to achieve its general structure at birth with the branching of the conducting
airways (pseudoglandular stage); the development of the respiratory airways with aci-
nar structures, the production of surfactant (canalicular stage); and finally the alveolar
formation and maturation (saccular-alveolar stage). Development continues through
lung growth and expansion with the multiplication of alveoli (areas for gas exchanges)
in early childhood, which will complete around 20 years of age (see Figure 2.8 and
Stocks et al.299 for details about the process).

This prenatal morphogenesis process is tightly regulated, particularly by the en-
docrine and immune systems. During specific developmental windows, precise struc-
tural and functional modifications of tissues are controlled by hormonal signaling.
Thus, during these critical windows, and due to immaturity of the lungs, the im-
mune system and other developmental events, the respiratory system is particularly
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vulnerable and could be impaired in utero by both endogenous or exogenous factors,
with possible long-term consequences in childhood, and later in adult life.207,66,197 This
is coherent with Barker’s hypothesis, now known as the hypothesis of Developmental
Origins of Health and Diseases (DOHaD).

Main bronchus

Trachea

Bronchi

Bronchioli

Alveoli

Appearance of lung buds

and main pulmonary

arteries

Trachea and main 

bronchi

All conducting airways

and accompagnying

blood vessels form, wall

structure and epithelial

cells differentiate

Bronchi 8-13 

generations

Bronchioli 3-10 

generations

Respiratory airways form, 

blood-gas barrier thins, 

surfactant appears

Respiratory bronchioli

3-5 generations

Alveolar ducts

2-3 generations

Saccules and then

alveoli appear, 

100 million by birth

Alveoli multiply

for 2-4 years,* 

300-600 million

Airways double in size
Embryonic stage

4-7 weeks of gestation

Pseudoglandular stage

5-17 weeks of gestation

Canalicular stage

16-27 weeks of gestation

Saccular-alvelolar stage

28 weeks of gestation; term

Birth Postnatal growth 0-22 yearsIntrauterine development

Acinus

Figure 2.8 – Formation of airway and parenchymal structures during prenatal and
postnatal lung development. Adapted from Stocks et al.299.
*Although alveoli are thought to be all formed by 2-4 years of age, alveoli might have the capability to
multiply beyond this age. Timings are approximate, with some overlap between the different stages.

Developmental Origins of Health and Diseases (DOHaD): implications
for respiratory health
This hypothesis suggests that adverse environmental conditions occurring during early-
life development and especially during fetal life, when organs and systems have most
plasticity, can directly affect the susceptibility to diseases by fetal or early-life pro-
gramming, i.e., by permanently changing the structure, metabolism, and physiologic
functions of organs.25,23

Many epidemiological studies provide support to the DOHaD hypothesis in the
context of respiratory health (see Martinez197, Carraro et al.66, Duijts et al.92, for
review). For example, pediatric respiratory illnesses, including acute lower respiratory
infections and bronchopulmonary dysplasia, have been associated with a deficit in
lung function, and an increased risk of chronic obstructive respiratory diseases such
as asthma later in life.24,61,197 Additionally, reduced lung function in childhood, and
previous to the appearance of respiratory symptoms, has also been associated with a
permanent lung function deficit in young adults and an increased risk of developing a
chronic obstructive disease over the life course.198,267,296,197,66,92
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Prenatal risk factors of childhood respiratory impairment
Endogenous factors include genetically predisposition factors inherited from parents,
inducing a higher risk of allergic sensitization, lower lung function; which are known as
risk factors of wheezing and asthma in later life.356,212,134,250,288 Sex and ethnicity are
other endogenous factors of susceptibility.32

Additionally, preterm delivery and respiratory distress syndrome at birth highly
increase the risk of childhood asthma, wheezing and life-long respiratory diseases, in-
cluding COPD, and a reduced lung function in adult life290,323 (see Martinez197, Carraro
et al.66, Duijts et al.92 for review).

In addition to endogenous factors and birth events, in utero exposure to exogenous
substances can also impact respiratory health in the offspring. A positive example is
the administration of corticoids to the mother to reduce the risk of infant respiratory
disease, which accelerates fetal production of surfactant in the lungs.43,58 Among dele-
terious agents, it is now indisputable that maternal smoking during pregnancy is asso-
ciated with increased risk of incident asthma and wheezing in childhood.298,60,235,197,66,92

There is also growing evidence that air pollution in the prenatal period may play a role
in the development of respiratory diseases,181,319 but effects of prenatal and postnatal
exposures to air pollution are difficult to distinguish.

Lung development being highly hormone-dependent, respiratory defects due to en-
vironmental EDs exposure, capable of crossing the human placenta (see Section 2.2)
at critical developmental windows, is a relevant hypothesis, and could explain part of
the asthma burden in the last decades. Among these chemicals, several phenols and
phthalates are suspected.207,45

2.4.2 Prenatal exposure to phenols and phthalates and respi-
ratory health

2.4.2.1 Biological plausibility

Experimental studies have suggested several biological mechanisms, by which in
utero exposure to phenols and phthalates could adversely affect respiratory health in
childhood.

Phthalates
Phthalates are suspected to modulate the immune system resulting in proallergic ef-
fects. Some phthalates such as DEHP, DnBP, DINP, may modify the balance between
T-helper type 1 (Th1) and T-helper type 2 (Th2) cells, which is important in allergic
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processes.348 Disturbed Th1/Th2 balance is a major mediator of the allergic airway in-
flammation observed in the pathogenesis of asthma.203 Studies conducted both in vivo
and in vitro reported an adjuvant effect of these phthalates on Th2-differentiation fol-
lowing exposure through diet, inhalation or subcutaneous injection, and consequently
on Th2-dependent production, as inflammatory cytokines and chemokines; interleukin
4 (IL4), immunoglobulin E (IgE), and G1 (IgG1).120,77,122,266,183 It means that phtha-
lates may act as adjuvants, inducing allergic sensitization after exposure to allergens,
and might lead to allergic asthma later in life.179,348 Some toxicological studies were
reviewed in Bornehag and Nanberg45.

Another possible mechanism involved is the modulation of inflammatory responses.
DEHP, DnBP and DiBP exposures have been associated with an increase of the re-
cruitment of eosinophils, the production of interleukin 5 (IL5) and antigen-induced
degranulation in mast cells of rats. This might result in a phthalate-dependent in-
filtration of inflammatory cells in lung tissue, leading to the inflammation of pul-
monary tissue or bronchial eosinophilic inflammation which may enhance airway hyper-
responsiveness.219,266,207,254

Oxidative stress has been suggested as a potential biological mechanism in ad-
verse health effects in the case of other environmental contaminants, such as air
pollution.72,332 Oxidative stress induced by phthalates has been reported in several
studies, including studies among pregnant women.355,99,102,100 Additionally, phthalate
exposure might also induce oxidative stress directly in lung cells, as reported in elderly
and adolescent populations.234,105,328

Asthma-promoting effect of some phthalates (e.g. DEHP and BBzP) may be me-
diated through altered DNA methylation in the offspring. In a recent study, BBzP
prenatal exposure has been found to induce global DNA hypermethylation in the off-
spring, resulting in a reduced expression of several genes involved in the Th2 cell
differentiation.146 Also, a lower DNAmethylation in the tumor necrosis factor α (TNFα)
gene has been suggested by a recent study to mediate part of the association between
DEHP exposure and asthma.329

The action of phthalates could be hormonally mediated, since estrogens or sex
steroidal hormones are involved in the control of the respiratory system,31 with therefore
possible sex-specific effects. For instance, a study examining the effects of maternal
exposure to DEHP in mice offspring suggested effects on allergic immune response only
in male newborns.348

The action of phthalates may not be limited to estrogen or androgen-sensitive sys-
tems, since several phthalates may produce their effect through interaction with the
peroxisome proliferator-activated receptors (PPARs) α or γ,44,190 potentially leading
to abnormal alveolar maturation and reduced surfactant production.207 PPAR-α and
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PPAR-γ are also involved in the control of the immune system by both pro- and anti-
inflammatory effects.357,358,80

Phenols
Little is known about the possible effects of phenols on respiratory health. The plausible
hypotheses mainly rely on the experimental evidence available for bisphenol A.

Experimental studies showed that prenatal exposure to bisphenol A might modulate
the immune system by increasing induced Th2-polarization and increasing the IgE
serum levels and the production of proallergic mediators such as the cytokine IL4
(several studies reviewed in Kwak et al.176, Yan et al.347, Rogers et al.260). In another
study in mice, prenatal exposure to bisphenol A through drinking water promoted the
development of postnatal allergic sensitization and allergic asthma in offspring.218

Moreover, prenatal exposure to bisphenol A was associated with bronchial eosino-
philic inflammation and airway hyper-responsiveness in mice, suggesting a potential
negative effect in lung function in humans through a proinflammatory action.206

As for phthalates, the immune effects might be mediated by hormonally-induced
interactions between bisphenol A and estrogen and androgenic receptors or the PPARs
family.207,260 As most other phenols have also weak estrogenic or (anti)androgenic
activities,52,228,226,238,85,41,76,83,84,300,359,339,275,194,304 they might induce similar effects on
respiratory health.

2.4.2.2 Plausibility from epidemiological studies

Few longitudinal studies focused on the prenatal exposure window. These studies
are summarized in Table 2.4.

Phthalates
For phthalates, studies investigating the prenatal exposure to BBzP through its mo-
noester metabolite MBzP reported deleterious effects on respiratory health, with an
increased risk of current asthma or history of asthma in children between 5 and 11 years
of age,110,338 as well as an increased risk of wheezing.110,173 Prenatal exposure to DEHP
(via one of its oxidative metabolite MEHHP) was not associated with wheezing or
asthma among 300 children338 whereas the sum of several DEHP metabolites was asso-
ciated with increased risk of wheeze in two studies.110,173 Gascon et al.110 also reported
increased risks of bronchitis, asthma and a trend of higher risk of chest infections. Re-
lying on DEHP metabolites assessed in a maternal prenatal blood sample, Smit et al.286

did not find evidence for an association with asthma in 1,024 children aged between 5
and 9 years old, but found increased odds of current wheezing in the Ukrainian cohort
(n=492). The most recent study (n=371 mother-child pairs)146 did not observe any
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association with doctor-diagnosed asthma in the first six years of life 2. DnBP prenatal
exposure assessed through MnBP measurement in one maternal spot urine sample in-
creased significantly the odds of asthma in two mother-child cohorts (follow-up until 11
years of age, n=300 mother-child pairs;338 and 420 mother-child pairs followed up until
age 6 years,146) whereas DnBP prenatal exposure assessed through the mean MnBP
concentration of two urine samples was not associated with respiratory symptoms in
the first seven years of life.110 DEP prenatal exposure assessed via measurement of
MEP in spot urine sample(s) was not associated with respiratory symptoms and atopy
in three studies at ages seven, eleven and eight, respectively,110,338,173 but Jahreis et
al.146 observed increased asthma odds at 6 years of age and higher IgE levels.

No prospective study has investigated the impact of prenatal exposure to phthalates
on lung function. Whyatt et al.338 used pre/postbronchodilator spirometry but only as
a criteria for diagnosis of current asthma. Two cross-sectional studies have investigated
associations of several phthalates and pulmonary function. Cakmak et al.63 reported
deleterious associations of spirometric measurements (forced Expiratory Volume in 1
second (FEV1), forced vital capacity (FVC), and the FEV1 / FVC ratio) with DnBP,
BBzP, and DEHP metabolites among 3,071 individuals, but only DnBP metabolites
were associated with reduced lung function parameters in children of 6-16 years old
(n=1,642). The associations were stronger in males. Hoppin et al.138 observed reduced
FEV1 and FVC for increases in MBP but did not report an association with MEHP
(DEHP metabolite) or MBzP (BBzP metabolite).

Phenols
The epidemiological literature studying the associations between prenatal exposure to
phenols and respiratory outcomes is very scarce and is only focused on bisphenol A
(studies summarized in Table 2.4). Regarding associations between prenatal bisphenol
A exposure and questionnaire-based respiratory outcomes, Donohue et al.91 reported a
protective association of prenatal bisphenol A with wheezing between 5 and 7 years of
age (n=375 children), whereas two other studies with bisphenol A assessed from two
maternal urine samples during pregnancy reported trends of increased risk of wheezing
until 5 (n=360 mother-child pairs292) and 7 years of age (n=462 mother-child pairs110).
Additionally, Gascon et al.110 observed deleterious associations with asthma at age 7
and respiratory infections but two other studies did not report association with asthma
during the 6-year follow-up (n=420 mother-child pairs146), and between 5 and 11 years
of age (n=375 mother-child pairs91).

Only one study in 208 children aimed at studying the effects of prenatal exposure
to bisphenol A on lung function.292 An increase in prenatal bisphenol A concentration

2. This article was published after the acceptation of the article in this thesis and was therefore
not discussed in Chapter 4
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was associated with a decrease in FEV1 in percent predicted (FEV1%) at 4 years of
age (beta, -14%; 95% confidence interval, CI: -25, -4 for an increase by one log10 unit),
which totally disappeared at 5 years of age, with a beta of 0.04% (95% CI, -9, 9).

To our knowledge, no prospective study investigated the effects of prenatal expo-
sure to other phenols on respiratory health. A cross-sectional study in 837 children
aged 6-18 years investigated the effects of triclosan and parabens on allergen sensitiza-
tion, wheeze in the past 12 months, and doctor-diagnosed asthma.291 Higher triclosan
concentrations were associated with increased odds of asthma and wheeze, but only in
atopic children, and methylparaben decreased the odds of nonatopic wheeze. In 623
10-year-old Norwegian children, increases in triclosan led to increased odds of allergic
sensitization, current rhinitis but no association was observed with current asthma.36

Regarding dichlorophenols, in a NHANES-based cross-sectional study of children aged
6 years or more (n=2,211 children), no association was reported in non-atopic wheez-
ers, while higher 2,5-dichlorophenol concentrations were significantly associated with
doctor-diagnosed asthma, and higher 2,4-dichlorophenol levels were associated with
more wheezing morbidity in atopic wheezers.150 Both chemicals were associated with
increased levels of at least one allergen-specific IgE.

Overall, only few prospective studies aimed at investigating the effects on respira-
tory health of fetal exposure to phenols and phthalates. Comparability of results is
limited by discrepancies in the postnatal follow-up (e.g., years of follow-up, criteria
for asthma diagnosis), and the metabolites assessed for phthalate exposures. Additio-
nally, the limited number of samples used for the exposure assessment may lead to
strong exposure misclassification (see Section 2.3.4). Except for bisphenol A, no study
sought to evaluate the impact on the lung function despite landmark articles, which
demonstrated early decrements in lung function parameters before any respiratory
symptoms.198,267,296

To summarize this chapter, we have presented phenols and phthalates, two families
of nonpersistent EDs; the assessment of such chemicals in epidemiological studies with
its main issues; and the possible impact of prenatal exposure to these environmental
agents on respiratory health. This raises several research questions:

— What is the impact of in utero exposure to phenols and phthalates on childhood
respiratory health? (Compounds with the strongest a priori hypotheses of an
adverse effect on respiratory health are bisphenol A, DEHP, and, to a lesser
extent, DnBP, BBzP and DINP).

— Can we better characterize the within-subject variability of these compounds in
pregnant women?
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— How does this variability impact dose-response functions in epidemiological stu-
dies?

— Is the within-subject pooling approach efficient in practice?
The aims of the thesis, developed to address these specific questions, are presented in
the next chapter.
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Chapter 3
Objectives of the thesis

3.1 Thesis subject

The detailed aims of this thesis (see Figure 3.1) are:

1. To investigate the potential effects of in utero exposure to phenols and phthalates
on respiratory health in childhood (Aim 1, Chapter 4):

(a) On the onset of wheezing, asthma, and bronchiolitis or bronchitis episodes
until age 5 years;

(b) On the pulmonary function at 5 years of age.

2. To characterize the within-subject temporal variability of phenol biomarkers in
urine of pregnant women for different time periods (Aim 2, Chapter 5):

(a) within a day;

(b) between days within a week;

(c) over the whole pregnancy (between specific weeks).

3. To empirically validate the within-subject biospecimens pooling approach (Aim
3, Chapter 6):

(a) By evaluating the efficiency of a degraded within-subject biospecimens pool-
ing design relying on the collection of three repeated daily spot urine samples.
This degraded design was compared to the ideal approach consisting in col-
lecting all the urine biospecimens to assess the average exposure over specific
time periods of pregnancy;

(b) By characterizing the bias and statistical power in dose-response functions
due to the empirically observed specific measurement error structure of select
urine phenol biomarkers of exposure.
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Figure 3.1 – Overview of the aims of the thesis

3.2 Contributions

Celine Vernet wrote the drafts of the articles (Chapters 4, 5 and 6), conducted
all the statistical analyses (Chapters 4, 5 and 6), drew the draft of the protocols for
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pooled samples (Chapters 5 and 6), and took part in the data management of the
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and communications are listed in Appendix D.
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4.1 French summary

Introduction
Certains phénols et phtalates sont suspectés d’être des perturbateurs endocriniens chez
l’animal et chez l’Homme. Des études in vitro et in vivo chez différentes espèces de
rongeurs ont suggéré des effets pro-inflammatoires, des effets sur le système immuni-
taire par la modulation de la production de cytokines. Ces modifications pourraient
affecter le système respiratoire notamment après une exposition périnatale, i.e. pen-
dant la gestation ou pendant la période néonatale. Chez l’Homme, très peu d’études
se sont intéressées à l’impact d’une exposition in utero à ces substances sur la santé
respiratoire, ce qui ne permet pas de conclure.

Objectif
Notre but est de caractériser les effets de l’exposition aux phénols et aux phtalates au
cours de la grossesse sur la santé respiratoire des enfants mâles.

Méthodes
Notre étude est basée sur les 587 femmes enceintes de la cohorte mères-enfants EDEN
qui ont eu un dosage de 9 phénols et 11 phtalates dans un échantillon d’urines re-
cueilli au cours de la grossesse, et qui ont rempli au moins un questionnaire dédié à
la santé respiratoire de leur enfant après sa naissance. Les dosages ayant été réalisés
uniquement chez les mères de garçons inclus dans le cadre d’études précédentes, notre
étude est centrée sur les enfants de sexe masculin. Les informations sur les symptômes
respiratoires étaient recueillies par questionnaires remplis par les parents pendant les
5 premières années de vie. Au cours de la cinquième année de vie, les enfants ont
réalisé un test de la fonction pulmonaire par spirométrie nous permettant d’analyser
le Volume Expiratoire Maximum par Seconde (VEMS) chez 228 garçons. Les associ-
ations entre l’exposition prénatale aux composés des deux familles et l’apparition de
symptômes respiratoires d’après les questionnaires sont étudiées par des modèles de
survie avec censure par intervalles. L’association avec le VEMS en pourcents prédits
(VEMS%) est étudiée par régression linéaire. Les modèles sont ajustés sur des facteurs
de confusion potentiels sélectionnés d’après la littérature. Les valeurs manquantes des
covariables sont imputées 100 fois par une méthode d’imputation multiple par équations
chaînées (MICE).

Résultats
Aucun des phénols ou phtalates étudiés n’est associé statistiquement avec plusieurs
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paramètres respiratoires. L’augmentation d’une unité de la concentration log-transfor-
mée d’éthylparabène est associée à une augmentation du ratio du taux d’incidence de
l’asthme diagnostiqué par un médecin (rapport des risques instantanés ou Hazard Rate
[HR] : 1.10 ; avec un intervalle de confiance [IC], à 95% : 1.00, 1.21) et a tendance
à être associé avec une diminution du VEMS% (beta, -0.59 ; IC à 95% : -1.24, 0.05).
Le bisphénol A avait tendance à augmenter le risque d’asthme (HR : 1.23 ; IC à 95%
: 0.97, 1.55) et de bronchiolite ou bronchite (HR : 1.13 ; IC à 95% : 0.99, 1.30). Des
tendances d’associations délétères avec un unique paramètre respiratoire sont aussi ob-
servées entre le 2,5-dichlorophénol et le risque de sifflements dans la poitrine, et entre le
mono-(carboxynonyl) phthalate (MCNP), un métabolite du di-isodécyl phtalate (DIDP)
et le risque de sifflements.

Conclusion
L’exposition à l’éthylparabène, le bisphénol A, le 2,5-dichlorophénol, et au DIDP a
tendance à être associée à des effets délétères sur la santé respiratoire des garçons
au cours des cinq premières années de vie. Les tendances d’associations sont plutôt
cohérentes entre les paramètres de santé respiratoire pour l’éthylparabène et le bisphénol
A. Ces tendances d’associations délétères du bisphénol A avec les risques d’asthme et de
bronchiolite ou bronchite sont cohérentes avec ceux d’une précédente étude de cohorte
européenne chez des garçons et des filles.9
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4.2 Abstract

Background
Phenols and phthalates may have immunomodulatory and pro-inflammatory effects
and thereby adversely affect respiratory health.

Objective
We estimated the associations between gestational exposure to select phthalates and
phenols and respiratory health in boys.

Methods
Among 587 pregnant women from the EDEN (Etude des Déterminants pré et post
natals du développement et de la santé de l’Enfant) cohort who delivered a boy, 9 phe-
nols and 11 phthalates metabolites were quantified in spot pregnancy urine samples.
Respiratory outcomes were followed-up by questionnaires until age 5, when Forced
Expiratory Volume in 1 second (FEV1) was measured by spirometry. Adjusted associ-
ations of urinary metabolites log-transformed concentrations with respiratory outcomes
and FEV1 in percent predicted (FEV1%) were estimated by survival and linear regres-
sion models, respectively.

Results
No phenol or phthalate metabolite exhibited clear deleterious associations simultane-
ously with several respiratory outcomes. Ethyl-paraben was associated with increased
asthma rate (Hazard Rate, HR: 1.10; 95% Confidence Interval, CI: 1.00, 1.21) and
tended to be negatively associated with FEV1% (beta: -0.59; 95% CI: -1.24, 0.05);
bisphenol A tended to be associated with increased rates of asthma diagnosis (HR: 1.23;
95% CI: 0.97, 1.55) and bronchiolitis/bronchitis (HR: 1.13; 95% CI: 0.99, 1.30). Iso-
lated trends for deleterious associations were also observed between 2,5-dichlorophenol
and wheezing and between mono-(carboxynonyl) phthalate (MCNP), a metabolite of
di-isodecyl phthalate (DIDP) and wheezing.

Conclusion
Ethyl-paraben, bisphenol A, 2,5-dichlorophenol, and DIDP tented to be associated with
altered respiratory health, with ethyl-paraben and bisphenol A exhibiting some con-
sistency across respiratory outcomes. The trends between bisphenol A pregnancy level
and increased asthma and bronchiolitis/bronchitis rates in childhood were coherent
with a previous cohort study.
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4.3 Introduction

Asthma is now the most frequent chronic childhood disease, affecting around 10% of
children in Western countries.1 Changes in the prevalence of exposure to environmental
factors in the 20th Century, including synthetic chemicals, have been suggested to
contribute to the increased asthma prevalence.3 Concern exists specifically regarding
phenols and phthalates, two families of suspected endocrine disruptors.

Phenols and phthalates are produced in large volumes. Bisphenol A is found in food
packaging or epoxy resins (such uses were banned in France in 2015). Other phenols,
such as parabens, benzophenone-3, and triclosan are found in cosmetics, sunscreens,
and antibacterial soaps, while some dichlorophenols are intermediates in the production
of herbicides and room deodorizers. Phthalates are mainly used as plasticizers and
are present in many plastic products, such as polyvinyl chloride floor covering, toys,
and food packaging. Some phthalates are components of solvents and personal care
products (e.g., soap, nail polish, lotion, fragrances), and are used as excipients in
pharmaceuticals.15

Due to immaturity of the lungs, and of the immune system and due to the physi-
ology of development, early-life exposures may have long-term adverse effect on respi-
ratory health.20 Experimental evidence suggests that bisphenol A and phthalates such
as di(2-ethylhexyl) phthalate (DEHP), di-isononyl phthalate (DINP) and butylbenzyl
phthalate (BBzP) or their monoester metabolites can cross the placenta and may have
proallergic properties.3,17 In mice, prenatal exposure to bisphenol A has been asso-
ciated with increased allergic sensitization and bronchial inflammation.22 In humans,
few longitudinal studies focused on the prenatal exposure window and have reported
increased rates of asthma, wheeze and respiratory tract infections with bisphenol A,
BBzP and DEHP metabolites.8,9,16,35,38,37,40,41 No prospective study evaluated the im-
pact of phenols other than bisphenol A on respiratory health; regarding phthalates,
DINP and di-isodecyl phthalate (DIDP) which are increasingly used as DEHP sub-
stitutes, have not been studied. Only one study examined the association between
pulmonary function in childhood and prenatal exposure to phenols or phthalates; the
study related bisphenol A to spirometric tests; this study suggested an adverse asso-
ciation between bisphenol A level and spirometric tests at 4 years but not at 5 years
of age.38 To our knowledge, no study investigated effects of prenatal exposure to other
phenols or phthalates on pulmonary function measurements.

Our aim was to characterize associations between prenatal exposure to select phe-
nols and phthalates and the development of respiratory pathologies in the first five
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years of life and pulmonary function in male offspring aged 5 years. Compounds with
the highest a priori likelihood in favour of an effect were, on the basis of animal studies
DEHP, bisphenol A, and, to a lesser extent, DINP.
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4.4 Methods

4.4.1 Data source

This study relied on a subgroup of the EDEN (Etude des Déterminants pré et post
natals du développement et de la santé de l’Enfant) mother-child cohort. Briefly, 2,002
pregnant women were recruited before 24 gestational weeks in two Nancy and Poitiers
(France) University hospitals between 2003 and 2006. Exclusion criteria included pre-
pregnancy diabetes, multiple gestation, inability to read or speak French, and moving
outside the region planned within the next three years. The detailed study protocol
has been described previously.25

The present study included all male offspring with metabolites of pregnancy phe-
nols and phthalates measured in a maternal spot urine sample and for whom at least
one completed respiratory questionnaire or an acceptable pulmonary function test (spi-
rometry) was available. Phenols and phthalates biomarkers were originally quantified
in the urines of male offspring’s mothers only, as part of previous studies investigating
the impact of maternal exposure to endocrine disruptors on male genital anomalies
and further on male fetal and postnatal growth.7,25 All participants provided written
informed consent for themselves and their offspring for biological measurements and
data collection. The EDEN cohort was approved by the following ethics committees:
Comité Consultatif de Protection des Personnes dans la Recherche Biomédicale (CCP-
PRB) of Kremlin Bicêtre on 12 December 2002 and from the Commission Nationale
Informatique et Liberté (CNIL), which is the French data privacy institution.12 The in-
volvement of the Centers for Disease Control and Prevention (CDC) did not constitute
engagement in human subject research.

4.4.2 Exposure assessment

Between 23 and 29 gestational weeks, pregnant women were asked to come for a
clinical examination with a sample of their first morning void. If forgotten, the urine
sample was collected during the study visit. Polypropylene containers were used to
avoid any contamination and urines were stored at -80oC before shipments for analyses
to the CDC laboratory in Atlanta (Georgia, USA) at two distinct periods.

Urinary concentrations of creatinine, nine phenols and 11 phthalates metabolites
(listed in Tables 4.1 and 4.5) were measured. Molar concentrations were summed for
four parabens (∑ parabens), 2,4 and 2,5-dichlorophenols (∑ dichlorophenols) and four
DEHP metabolites (∑DEHP ), total low molecular weight (< 250 g/mol) phthalates
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(∑LMW ) and high molecular weight (> 250 g/mol) phthalates (∑HMW ). Con-
centrations under the limit of detection were replaced by instrumental reading values,
or by the compound-specific lowest instrumental reading value divided by square root
of two when the instrumental reading value was missing. Biomarkers and creatinine
concentrations were quantified following identical analytical methodology in 2008 (n
= 191) and in 2011 (n = 413).25 A two-step standardization approach was applied to
reduce the undesirable variability in biomarker urinary concentrations owed to sam-
pling conditions. First, linear regressions were conducted to estimate the effects of
sampling conditions (day and hour of sampling, gestational age at urine collection,
storage duration at room temperature before freezing, and year of biomarker analysis)
and level of creatinine on each ln-transformed biomarker concentration. Second, these
regression estimates were used to predict standardized concentrations that would have
been observed if all samples had been collected under identical conditions.21

4.4.3 Respiratory health

The French-enriched version of the International Study of Allergy and Asthma
in Children (ISAAC) self-report questionnaires was used to assess doctor-diagnosed
asthma, wheezing at age 8 months and at each year until age 5 years and bronchi-
olitis/bronchitis episode until age 3 years in offspring. Doctor-diagnosed asthma and
wheezing were defined from the question "Did your child ever have a medical diagnosis
of asthma?" and "In the last 12 months (or since birth for the first questionnaire), has
your child had wheezing in the chest?" Bronchiolitis/bronchitis was defined from the
question: "In the last 12 months (or since birth for the first questionnaire), has your
child had a bronchiolitis or bronchitis?"

Spirometry was performed using SpiroBank® G Spirometer by MIR (Rome, Italy)
at about 5 years of age by trained personnel, following the American Thoracic Society
/ European Respiratory Society (ATS/ERS) guidelines. Boys were seated, wearing
nose clips. Between three and eight forced expiratory manoeuvres were performed.
Results were classified by a paediatric pulmonologist as acceptable or unacceptable
in accordance with ATS/ERS recommendations for preschool children.2 Criteria for
an acceptable manoeuvre were: a rapid rise and a smooth or convex descending limb
in the flow-volume curve, without artefact (glottic closure, cough, leaks), with forced
expiration times larger than 1 second. We considered the Forced Expiratory Volume in
1 second (FEV1), a standardized and reproducible test.23 The highest FEV1 from any
of the satisfactory manoeuvres was expressed as a percentage of the age-, height-, sex-
and ethnic-specific predicted value (FEV1%) calculated with the Global Lung Initiative
(GLI) equations.27
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Table 4.1 – Raw and standardized urinary concentrations of phthalate and phenol
biomarkers among pregnant women from included population (n = 587, EDEN cohort).

Raw
concentrations (µg/L)a

Standardized
concentrations (µg/L)b

Analyte LOD
(µg/L)

>LOD
(%) 5th 50th 95th 5th 50th 95th Spearman

correlationc

2,4-Dichlorophenol 0.2 97 0.3 1.0 9.9 0.3 1.0 9.0 0.95
2,5-Dichlorophenol 0.2 100 1.6 9.8 278.0 1.8 9.4 279.4 0.97∑

Dichlorophenols (µmol/L) 0.0 0.1 1.8 0.0 0.1 1.8 0.96
Bisphenol A 0.4 99 0.6 2.6 10.7 0.8 2.4 8.9 0.86
Benzophenone-3 0.4 91 0.2 2.1 81.2 0.3 2.3 75.4 0.97
Triclosan 2.3 81 0.1 29.3 744.0 0.2 27.6 697.9 >0.99
Methyl-paraben 1.0 100 7.8 118.0 1730.0 7.9 111.4 1152.2 0.96
Ethyl-paraben 1.0 72 0.1 4.5 74.4 0.1 3.4 68.6 0.94
Propyl-paraben 0.2 98 0.5 16.1 289.0 0.5 14.3 258.3 0.97
Butyl-paraben 0.2 82 0.1 1.9 59.7 0.1 1.9 57.6 0.96∑

Parabens (µmol/L) 0.1 1.0 13.8 0.1 0.9 9.9 0.96∑
LMW (µmol/L) 0.3 1.3 8.4 0.4 1.1 6.2 0.85

MEP 0.8 100 20.6 113.0 1050.0 22.0 99.0 703.2 0.90
MnBP 0.6 100 8.1 52.4 515.0 12.5 44.4 444.8 0.89
MiBP 0.3 100 8.9 45.1 218.0 11.8 40.2 167.6 0.84∑

HMW (µmol/L) 0.1 0.5 2.2 0.2 0.5 1.7 0.84
MCPP 0.2 99 0.5 2.3 11.2 0.7 1.9 9.3 0.87
MBzP 0.3 100 3.0 20.0 135.0 4.6 18.2 105.5 0.85
MCNP 0.6 97 0.5 1.5 12.9 0.5 1.3 10.2 0.90
MCOP 0.7 98 0.9 3.7 18.4 1.2 4.0 19.6 0.90
MEHHP 0.7 100 5.4 30.4 124.0 6.8 26.7 99.2 0.87
MEOHP 0.7 100 4.2 24.2 105.0 5.4 22.3 84.2 0.87
MECPP 0.6 100 9.9 43.0 183.0 12.3 38.2 156.9 0.88
MEHP 1.2 96 0.9 8.3 40.7 1.3 7.4 34.4 0.90∑

DEHP (µmol/L) 0.1 0.4 1.5 0.1 0.3 1.2 0.87

LOD = Limit of Detection; 5th 25th 50th 75th 95th = percentiles;
∑

Dichlorophenols = molar sum of Dichlorophenols
(2,4-Dichlorophenol, 2,5-Dichlorophenol);

∑
Parabens = molar sum of parabens (Methyl-, Ethyl-, Propyl-, Butyl-parabens);∑

LMW = molar sum of Low Molecular Weight phthalates (MEP, MnBP, MiBP); MEP = Monoethyl phthalate; MnBP =
Mono-n-butyl phthalate; MiBP = Mono-isobutyl phthalate;

∑
HMW = molar sum of High Molecular Weight phthalates

(MCPP, MBzP, MCNP, MCOP, MEHHP, MEOHP, MECPP, MEHP); MCPP = Mono (3-carboxypropyl) phthalate; MBzP
= Monobenzyl phthalate; MCNP = Mono-(carboxynonyl) phthalate, MCOP = Monocarboxyoctyl phthalate; MEHHP
= Mono(2-ethyl-5-hydroxyhexyl) phthalate; MEOHP = Mono(2-ethyl-5-oxohexyl) phthalate; MECPP = Mono(2-ethyl-5-
carboxypentyl) phthalate; MEHP = Mono(2-ethylhexyl) phthalate;

∑
DEHP = molar sum of di(2-ethylhexyl) phthalate

metabolites (MEHHP, MEOHP, MECPP, MEHP). Parent phthalates detailed in Table 4.5.

a Biomarker concentrations <LOD were replaced by instrumental reading values. Machine values equal to 0 were
replaced by the lowest machine value divided by square root of 2.
b Standardized for urine sampling conditions (creatinine level, day and hour of sampling, gestational age, storage duration at
room temperature and year of analysis), as detailed in Mortamais et al.21.
c Spearman correlation between measured and standardized biomarkers concentrations
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4.4.4 Statistical analysis

Associations between each biomarker standardized concentration and the first oc-
currence of respiratory outcomes were investigated by distinct discrete-time survival
models with a complementary log-log link function.14 FEV1% followed approximately
a normal distribution and was analysed by distinct linear regression models in which
biomarker concentrations were considered separately as ln-transformed continuous con-
centrations. To describe the dose-response relationship, exposure was additionally cat-
egorized into tertiles of biomarker concentrations. We calculated p-values for trends
using a variable with three categories whose values corresponded to the median value
in each tertile, coded in models as a continuous variable.32

Adjustment variables were identified a priori from a review of the literature. Vari-
ables were retained in the model if they were associated with the outcome (p ≤ 0.20)
and/or if their removal or addition changed the regression coefficients of the associations
between phenols or phthalates biomarkers and the outcome by >10%. Selected vari-
ables included: centre of recruitment (Nancy / Poitiers); residence area (city-centre
/ urban area / rural area); maternal country of birth (mainland France / others);
parental history of asthma, rhinitis, eczema or food allergies; the highest parental ed-
ucation level (≤ high school+1 year / high school+2 years / ≥ high-school+3 years);
passive or active maternal smoking during pregnancy (yes / no); presence of older
siblings; child-care attendance before 1 year; and postnatal passive smoking (yes /
no, time-varying covariate in survival models). FEV1% models were additionally ad-
justed for offspring’s age (continuous), and height (restricted cubic splines coding) at
pulmonary function assessment. Missing data in covariates (between 0.17 and 24.7%)
were imputed with multiple imputation methods.39

We did not formally test statistical significance nor correct for multiple comparison,
but in interpreting results, we looked for consistency of deleterious associations across
several respiratory phenotypes.

We conducted further sensitivity analyses to address the robustness of the re-
sults a) to the standardization of the concentrations by repeating analyses with non-
standardized concentrations, and b) after excluding offspring with major risk factors of
respiratory symptoms: preterm birth, smoking mother, or parental history of asthma.

Analyses were conducted using STATA 12.1 (Stata Corp, College Station, Texas).
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4.5 Results

4.5.1 Population

The EDEN cohort included 995 live-born male offspring. From previous studies that
investigated the effects of maternal exposure to endocrine disruptors on male genital
anomalies and male foetal and postnatal growth, 604 boys had phenol and phthalate
biomarkers measured in maternal urines. At least one respiratory questionnaire that
had been completed by a parent was available for 587 boys who were included in the
analyses of respiratory outcomes. The numbers of boys with complete follow-up data
were 428 (73%) for bronchiolitis/bronchitis (until 3 years of age), 350 (60%) and 447
(76%) for wheezing and asthma diagnosis, respectively (follow-up until 5 years of age).
One value for at least one covariate was missing for 277 boys. A spirometric test has
been performed in 397 (68%) out of the 587 boys. For 95% of these boys, spirometry
occurred between 5.4 and 6.0 years of age; 39% out of 397 boys were excluded due to
insufficient forced expiratory times and 4% did not meet the criteria considered accept-
able for at least one of their spirometric tests, so that 228 boys (57%) were included in
the present study for FEV1% analysis. Participants included in the analyses were com-
parable to the excluded EDEN male offspring with regard to most characteristics, but
were more likely to have highly educated parents, to be born from French metropolitan
mothers and to live in a non-smoking environment (Table 4.2).

Of the compounds measured, those with the highest (raw or standardized) urinary
concentrations were for phenols, triclosan and methyl-paraben and, for phthalates,
monoethyl phthalate (MEP) and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP)
(Table 4.1). Within compounds, crude and standardized concentrations were highly
correlated (r ≥ 83%). Standardized concentrations of dichlorophenols, parabens and
DEHP metabolites were highly correlated within each family of compounds (r ≥ 0.80).
Strong correlations (r ≥ 0.83) existed also between molar sums and associated com-
pounds. The other correlation coefficients between standardized concentrations were
below 0.66 (Tables 4.6-4.7).

Asthma was diagnosed in 112 boys by age 5 years (cumulative incidence rate (CIR)
at 5 years, 20.4%; 95% Confidence Interval (CI): 17.2, 24.0%) and parents reported
wheezing in 254 boys (CIR = 45.0%; 95% CI: 41.0, 49.3%). Bronchiolitis/bronchitis
cumulative incidence was 70.4% at 3 years (95% CI: 66.6, 74.2%, Figure 4.3). Ave-
rage FEV1% was 91.0% (5th-95th percentiles: 72.7-107.5%) and tended to be lower in
children with doctor-diagnosed asthma, history of wheezing or bronchiolitis/bronchitis
(not detailed).
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Table 4.2 – Characteristics of included and excluded boys in the two analyses from the
EDEN cohort [N (%) or mean±SD].

Spirometry
analysis

Repiratory outcomes
analysis

Characteristic Included
(n=228)

Excluded
(n=767) P

value

Included
(n=587)

Excluded
(n=408) P

value

Centre of recruitment
Nancy 93 (41) 371 (48) 0.04 247 (42) 217 (53) 0.001
Poitiers 135 (59) 396 (52) 340 (58) 191 (47)

Living area
Rural area 85 (37) 238 (31) 0.11 200 (34) 123 (30) 0.41
Urban area 100 (44) 346 (45) 258 (44) 188 (46)
City-center 42 (18) 183 (24) 128 (22) 97 (24)
Missing 1 (<1) ND 1 (<1) ND

Maternal country of birth
Mainland France 221 (97) 717 (93) 0.11 563 (96) 375 (92) 0.02
All others 6 (3) 39 (5) 19 (3) 26 (6)
Missing 1 (<1) 11 (1) 5 (<1) 7 (2)

Parental higher education level
≤ High school + 1y 71 (31) 274 (36) 0.25 193 (33) 152 (37) 0.04
High school + 2y 56 (25) 161 (21) 128 (22) 89 (22)
≥ High school + 3y 93 (41) 278 (36) 241 (41) 130 (32)
Missing 8 (4) 54 (7) 8 (4) 37 (9)

Pregnancy maternal active smoking (cig/day)
0 173 (76) 561 (73) 0.06 449 (76) 285 (70) <0.001
1-5 38 (17) 106 (14) 89 (15) 55 (13)
≥6 17 (7) 100 (13) 49 (8) 68 (17)

Passive smoking during pregnancy
Yes 143 (63) 437 (57) 0.13 372 (63) 199 (49) <0.001
No 85 (37) 329 (43) 215 (37) 208 (51)
Missing ND 1 (<1) ND 1 (<1)

Parental history of asthma/allergies
Yes 98 (43) 339 (44) 0.68 253 (43) 184 (45) 0.44
No 130 (57) 422 (55) 333 (57) 219 (54)
Missing ND 6 (<1) 1 (<1) 5 (1)

Gestational duration (weeks) 39.7±1.5 39.6±1.9 0.41 39.8±1.5 39.4±2.6 0.002
Presence of older siblings

Yes 104 (46) 325 (42) 0.39 324 (55) 242 (59) 0.20
No 124 (54) 442 (58) 263 (45) 166 (41)

Day-care attendance before 1 year
Yes 38 (17) 124 (16) 0.39 104 (18) 58 (14) 0.39
No 179 (78) 490 (64) 453 (77) 216 (53)
Missing 11 (5) 153 (20) 30 (5) 134 (33)

Postnatal passive smoking
Yes 112 (49) 364 (47) 0.005 295 (50) 181 (44) <0.001
No 109 (48) 228 (30) 262 (45) 75 (18)
Missing 7 (3) 175 (23) 30 (5) 152 (37)

Age at spirometry (years) 5.7±0.1 5.6±0.1 0.05
Height at spirometry (cm) 115.7±4.9115.1±4.6 0.13

SD = standard deviation, ND = no data.
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4.5.2 Phenols and respiratory health

Ln-transformed ethyl-paraben standardized concentration was associated with in-
creased rate of doctor-diagnosed asthma (Hazard Rate, HR for one-unit increase in
ln-transformed concentration, 1.10; 95% CI: 1.00, 1.21, p = 0.04) and reduced mean
FEV1% (beta for one-unit increase in ln-transformed concentration, -0.59%; 95% CI:
-1.24, 0.05; p = 0.07). Bisphenol A tended to be associated with increased rates of
asthma (HR, 1.23; 95% CI: 0.97, 1.55; p = 0.09) and of bronchiolitis/bronchitis (HR,
1.13; 95% CI: 0.99, 1.30; p = 0.08). Ln-transformed 2,5-dichlorophenol concentration
was associated with an increased incidence of wheeze (HR, 1.08; 95% CI: 1.00, 1.17; p
= 0.04). Methyl-paraben was associated with reduced rates of bronchiolitis/bronchitis
(HR, 0.94; 95% CI: 0.88, 1.00; p = 0.05) and of wheezing (HR, 0.92; 95% CI: 0.85,
1.00; p = 0.05). Similar trends were found for propyl-paraben (Table 4.3, Figure 4.1A).
Benzophenone-3 tended to be associated with reduced rate of wheezing (HR, 0.93; 95%
CI: 0.86, 1.01; p = 0.08). Models with concentrations coded in tertiles showed coherent
results (Table 4.3). No clear association with any respiratory outcome was observed
with the other phenols.
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Table 4.3 – Adjusted associations between pregnancy phenols standardized concentrations and respiratory outcomes (n = 587) and FEV1%
(n = 228) in boys.

Wheezing a Asthma diagnosis a Bronchiolitis/Bronchitis a

(until age 5y) (until age 5y) (until age 3y) FEV1% b

N = 587 N = 587 N = 587 N = 228
Phenol c HR (95% CI) phet

e p-value HR (95% CI) phet
e p-value HR (95% CI) phet

e p-value beta (95% CI) phet
e p-value

2,4-Dichlorophenol
Continuousd 1.06 (0.95, 1.19) 0.27 1.02 (0.87, 1.20) 0.79 0.98 (0.89, 1.08) 0.68 0.29 (-0.94, 1.54) 0.64

T1 1.00 0.64 0.74f 1.00 0.49 0.96f 1.00 0.50 0.40f 0.00 0.50 0.93f

T2 1.16 (0.85, 1.58) 1.30 (0.83, 2.05) 1.08 (0.84, 1.38) 2.01 (-1.57, 5.60)
T3 1.09 (0.81, 1.49) 1.07 (0.66, 1.72) 0.93 (0.73, 1.19) 0.45 (-3.04, 3.94)

2,5-Dichlorophenol
Continuousd 1.08 (1.00, 1.17) 0.04 1.04 (0.93, 1.16) 0.52 1.00 (0.94, 1.07) 0.97 0.14 (-0.71, 1.00) 0.74
T1 1.00 0.01 0.13f 1.00 0.24 0.35f 1.00 0.82 0.54f 0.00 0.93 0.71f

T2 1.66 (1.20, 2.28) 1.46 (0.90, 2.34) 1.03 (0.81, 1.33) 0.03 (-3.58, 3.64)
T3 1.51 (1.10, 2.08) 1.41 (0.88, 2.25) 1.08 (0.85, 1.38) 0.59 (-2.94, 4.11)∑
Dichlorophenols

Continuousd 1.08 (1.00, 1.17) 0.048 1.04 (0.92, 1.17) 0.55 1.00 (0.93, 1.07) 0.99 0.17 (-0.72, 1.07) 0.70
T1 1.00 0.03 0.08f 1.00 0.24 0.24f 1.00 0.76 0.47f 0.00 0.95 0.78f

T2 1.45 (1.05, 1.99) 1.41 (0.87, 2.27) 1.00 (0.78, 1.29) -0.16 (-3.81, 3.48)
T3 1.47 (1.07, 2.01) 1.45 (0.91, 2.32) 1.08 (0.85, 1.39) 0.38 (-3.14, 3.91)

Bisphenol A
Continuousd 0.97 (0.82, 1.15) 0.75 1.23 (0.97, 1.55) 0.09 1.13 (0.99, 1.30) 0.08 -0.51 (-2.33, 1.32) 0.58
T1 1.00 0.99 0.90f 1.00 0.28 0.12f 1.00 0.52 0.26f 0.00 0.46 0.62f

T2 0.98 (0.72, 1.33) 1.04 (0.63, 1.71) 1.06 (0.83, 1.36) -2.20 (-5.69, 1.27)
T3 0.98 (0.72, 1.34) 1.39 (0.87, 2.22) 1.15 (0.90, 1.48) -1.38 (-4.99, 2.23)

Benzophenone-3
Continuousd 0.93 (0.86, 1.01) 0.08 0.97 (0.87, 1.09) 0.60 1.00 (0.94, 1.06) 0.91 -0.42 (-1.31, 0.47) 0.36
T1 1.00 0.03 0.01f 1.00 0.26 0.16f 1.00 0.65 0.85f 0.00 0.83 0.56f

T2 0.87 (0.65, 1.17) 0.81 (0.52, 1.26) 0.89 (0.70, 1.14) -0.60 (-4.10, 2.90)
T3 0.66 (0.48, 0.91) 0.68 (0.42, 1.09) 0.93 (0.73, 1.19) -1.08 (-4.55, 2.40)

Triclosan
Continuousd 0.98 (0.93, 1.03) 0.46 0.99 (0.92, 1.07) 0.86 1.00 (0.96, 1.04) 0.83 0.17 (-0.40, 0.73) 0.56
T1 1.00 0.79 0.57f 1.00 0.91 0.75f 1.00 0.80 0.62f 0.00 0.96 0.91f

T2 0.94 (0.69, 1.27) 1.06 (0.67, 1.66) 1.05 (0.82, 1.34) 0.48 (-2.97, 3.94)
T3 0.90 (0.67, 1.22) 0.96 (0.60, 1.52) 0.97 (0.76, 1.23) 0.69 (-3.13, 3.84)

Methyl-paraben
Continuousd 0.92 (0.85, 1.00) 0.051 1.00 (0.89, 1.13) 0.99 0.94 (0.88, 1.00) 0.046 -0.46 (-1.30, 0.37) 0.28

Continued on Next Page. . .
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Table 4.3 – Continued

. . .Continued from Previous Page
Wheezing a Asthma diagnosis a Bronchiolitis/Bronchitis a

(until age 5y) (until age 5y) (until age 3y) FEV1% b

N = 587 N = 587 N = 587 N = 228
Phenol c HR (95% CI) phet

e p-value HR (95% CI) phet
e p-value HR (95% CI) phet

e p-value beta (95% CI) phet
e p-value

T1 1.00 0.03 0.17f 1.00 0.90 0.94f 1.00 0.02 0.01f 0.00 0.19 0.18f

T2 0.68 (0.50, 0.92) 0.90 (0.57, 1.43) 0.80 (0.64, 1.03) 1.66 (-1.89, 5.21)
T3 0.74 (0.55, 1.00) 0.99 (0.62, 1.58) 0.70 (0.54, 0.89) -1.63 (-5.06, 1.78)

Ethyl-paraben
Continuousd 1.01 (0.95, 1.07) 0.72 1.10 (1.00, 1.21) 0.04 0.99 (0.94, 1.03) 0.53 -0.59 (-1.24, 0.05) 0.07
T1 1.00 0.63 0.65f 1.00 0.047 0.08f 1.00 0.004 0.15f 0.00 0.52 0.31f

T2 1.15 (0.85, 1.57) 1.66 (1.02, 2.71) 1.40 (1.10, 1.79) -1.13 (-4.61, 2.36)
T3 1.13 (0.83, 1.55) 1.81 (1.10, 2.98) 0.97 (0.76, 1.26) -2.02 (-5.51, 1.47)

Propyl-paraben
Continuousd 0.95 (0.89, 1.02) 0.14 0.99 (0.90, 1.09) 0.85 0.95 (0.91, 1.00) 0.08 -0.22 (-0.92, 0.49) 0.55
T1 1.00 0.58 0.44f 1.00 0.91 0.89f 1.00 0.13 0.12f 0.00 0.63 0.38f

T2 0.88 (0.66, 1.19) 0.91 (0.58, 1.45) 0.83 (0.65, 1.06) -0.43 (-3.06, 3.91)
T3 0.86 (0.63, 1.17) 1.00 (0.63, 1.59) 0.79 (0.61, 1.00) -1.23 (-4.71, 2.25)

Butyl-paraben
Continuousd 0.98 (0.92, 1.04) 0.49 1.01 (0.92, 1.11) 0.89 0.98 (0.93, 1.03) 0.36 -0.41 (-1.09, 0.27) 0.23
T1 1.00 0.24 0.15f 1.00 0.59 0.68f 1.00 0.02 0.01f 0.00 0.30 0.15f

T2 1.13 (0.84, 1.53) 1.26 (0.79, 2.01) 1.13 (0.89, 1.44) -1.07 (-4.50, 2.36)
T3 0.86 (0.62, 1.20) 1.22 (0.75, 2.01) 0.79 (0.61, 1.03) -2.75 (-6.26, 0.76)∑
Parabens

Continuousd 0.92 (0.85, 1.00) 0.05 1.00 (0.89, 1.13) 0.98 0.94 (0.88, 1.00) 0.054 -0.46 (-1.30, 0.38) 0.29
T1 1.00 0.06 0.11f 1.00 0.94 0.75f 1.00 0.05 0.10f 0.00 0.06 0.13f

T2 0.73 (0.54, 0.99) 0.95 (0.61, 1.50) 0.77 (0.61, 0.98) 2.58 (-0.92, 6.09)
T3 0.73 (0.54, 0.99) 0.92 (0.57, 1.48) 0.77 (0.60, 0.98) -1.61 (-5.04, 1.82)

HR = hazard rate; FEV1% = forced expiratory volume in 1 second expressed in percent predicted; CI = confidence interval;
∑

Dichlorophenols = molar sum of Dichlorophenols (2,4-, 2,5-
dichlorophenols);

∑
Parabens = molar sum of parabens (Methyl-, Ethyl-, Propyl-, Butyl-parabens).

a Models adjusted for centre, residence area, parental history of asthma or allergies, maternal ethnicity, maximal parental education level, maternal or passive smoking during pregnancy, postnatal
passive smoking, older siblings and child-care. Missing values in covariates were imputed for at least one covariate in 277 boys, using the multiple imputation by chained equations (MICE)
method (100 imputations were performed). b additionally adjusted for child’s height and age.
c Standardized for urine sampling conditions (creatinine level, day and hour of sampling, gestational age, storage duration at room temperature and year of analysis), as detailed in Mortamais
et al.21.
d Estimates for 1 unit increase in ln-transformed standardized concentration.
e p-values of heterogeneity test.
f p-values of monotonic trend test.
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In sensitivity analyses, very small variations in regression estimates were observed
when standardized biomarkers concentrations were replaced by raw concentrations.
Analyses restricted to full-term boys (n = 562 and 217 for survival analyses and FEV1%
analyses, respectively), to boys from non-smoking mothers (n = 447 and 171), or non-
asthmatic parents (n = 470 and 185), led to similar trends of deleterious associations
between ethyl-paraben and both asthma diagnosis and FEV1%, between bisphenol
A and asthma as well as bronchiolitis/bronchitis and between 2,5-dichlorophenol and
wheezing. Similarly, trends for protective associations between methyl-paraben and
wheezing or bronchiolitis/bronchitis remained (Tables 4.8-4.14).

4.5.3 Phthalates and respiratory health

No phthalate metabolite was clearly associated with several respiratory outcomes,
but monocarboxynonyl phthalate (MCNP) tended to be associated with increased rate
of wheezing (HR for one-unit increase in ln-transformed concentration, 1.11; 95% CI:
0.98, 1.24; p = 0.09) and asthma (HR, 1.13; 95% CI: 0.95, 1.35; p = 0.16) and mono-
carboxyoctyl (MCOP) tended to be associated with increased bronchiolitis/bronchitis
rate (HR, 1.09; 95% CI: 0.97, 1.22; p = 0.17) and decreased FEV1% (beta, -1.25; 95%
CI: -2.86, 0.35; p = 0.13). Mono-isobutyl phthalate (MiBP) and DEHP metabolites
tended to be associated with reduced FEV1% (p between 0.12 and 0.26, Table 4.4,
Figure 4.1B). Mono(3-carboxypropyl) phthalate (MCPP) tended to be associated with
a reduced rate of bronchiolitis/bronchitis (HR, 0.89; 95% CI: 0.79, 1.02). When bio-
marker concentrations were categorized into tertiles, we observed the same trends of
associations (Table 4.4).

Sensitivity analyses led to similar results for the phthalates metabolites, with con-
sistent hazard rates and beta coefficients (Tables 4.9-4.15).



60 CHAPTER 4. IN UTERO EDS EXPOSURE AND RESPIRATORY HEALTH

0.
8

1.
0

1.
2

1.
4

1.
6

W
he

ez
in

g

(A)

0.
8

1.
0

1.
2

1.
4

1.
6

(B)
0.

8
1.

0
1.

2
1.

4
1.

6

A
st

hm
a 

di
ag

no
si

s

0.
8

1.
0

1.
2

1.
4

1.
6

0.
8

1.
0

1.
2

1.
4

1.
6

B
ro

nc
hi

ol
iti

s/
B

ro
nc

hi
tis

0.
8

1.
0

1.
2

1.
4

1.
6

−
4

−
2

0
2

4

C
ha

ng
e 

in
 F

E
V

1 
%

2,
4−

Dich
lor

op
he

no
l

2,
5−

Dich
lor

op
he

no
l

∑Dich
lor

op
he

no
ls

Bisp
he

no
l A

Ben
zo

ph
en

on
e 

3

Tr
icl

os
an

M
et

hy
l P

ar
ab

en

Ethy
l P

ar
ab

en

Pro
py

l P
ar

ab
en

But
yl 

Par
ab

en

∑Par
ab

en
s

−
4

−
2

0
2

4

∑LM
W

− ph
th

ala
te

s
M

EP

M
nB

P
M

iB
P

∑HM
W

− ph
th

ala
te

s

M
CPP

M
BzP

M
CNP

M
COP

M
EHHP

M
EOHP

M
ECPP

M
EHP

∑DEHP
−m

et
ab

oli
te

s

Figure 4.1 – Adjusted associations of phenols (A) and phthalates metabolites (B)
ln-transformed standardized concentrations with respiratory outcomes (HR, n = 587)
and FEV1% in boys (beta, n = 228, EDEN cohort).

Effect estimates for 1 unit increase in ln-transformed standardized concentra-
tions. Adjusted for centre, residence area, parental history of asthma/allergies,
maternal ethnicity, maximal parental education level, passive or active smoking during
pregnancy, postnatal passive smoking, older siblings, child-care (and additionally
adjusted for boy’s height and age in spirometry analysis). Multiple imputation was
used to handle missing values in covariates (100 imputations were performed). Phenols
and phthalates metabolites concentrations were standardized for urine sampling
conditions (see methods section). Diamond and triangle markers represent HR and
beta values, respectively; with error bars for 95% CI.
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Table 4.4 – Adjusted associations between pregnancy phthalate metabolites standardized concentrations and respiratory outcomes (n = 587)
and FEV1% (n = 228) in boys.

Wheezing a Asthma diagnosis a Bronchiolitis/Bronchitis a

(until age 5y) (until age 5y) (until age 3y) FEV1%b

N = 587 N = 587 N = 587 N = 228
Phthalate c HR (95% CI) phet

e p-value HR (95% CI) phet
e p-value HR (95% CI) phet

e p-value beta (95% CI) phet
e p-value∑

LMW
Continuousd 0.96 (0.82, 1.11) 0.55 0.99 (0.80, 1.24) 0.96 1.00 (0.89, 1.13) 0.99 -0.55 (-2.30, 1.19) 0.54

T1 1.00 0.92 0.77f 1.00 0.53 0.91f 1.00 0.86 0.75f 0.00 0.17 0.06f

T2 1.03 (0.76, 1.40) 1.29 (0.82, 2.02) 1.07 (0.84, 1.37) -0.37 (-3.83, 3.09)
T3 0.97 (0.71, 1.33) 1.09 (0.68, 1.76) 1.05 (0.82, 1.35) -3.02 (-6.46, 0.42)

MEP
Continuousd 0.97 (0.86, 1.09) 0.62 1.07 (0.90, 1.27) 0.44 1.02 (0.93, 1.12) 0.70 -0.36 (-1.75 1.02) 0.61

T1 1.00 0.87 0.97f 1.00 0.56 0.38f 1.00 0.84 0.63f 0.00 0.74 0.44f

T2 0.92 (0.68, 1.25) 0.90 (0.56, 1.46) 1.06 (0.83, 1.35) -0.35 (-3.79, 3.09)
T3 0.97 (0.72, 1.32) 1.16 (0.74, 1.83) 1.07 (0.84, 1.37) -1.34 (-4.86, 2.19)

MnBP
Continuousd 1.04 (0.93, 1.17) 0.49 0.97 (0.80, 1.16) 0.72 0.97 (0.88, 1.07) 0.59 -0.18 (-1.54, 1.17) 0.79

T1 1.00 0.53 0.33f 1.00 0.75 0.57f 1.00 0.52 0.51f 0.00 0.92 0.83f

T2 0.95 (0.69, 1.29) 0.87 (0.55, 1.36) 0.88 (0.69, 1.12) 0.43 (-3.06, 3.92)
T3 1.12 (0.83, 1.52) 0.85 (0.54, 1.35) 0.90 (0.70, 1.14) -0.27 (-3.84, 3.29)

MiBP
Continuousd 0.97 (0.84, 1.13) 0.74 1.03 (0.82, 1.30) 0.79 1.02 (0.90, 1.16) 0.71 -1.35 (-3.04, 0.34) 0.12

T1 1.00 0.76 0.94f 1.00 0.83 0.74f 1.00 0.99 0.99f 0.00 0.14 0.05f

T2 0.89 (0.65, 1.22) 1.09 (0.70, 1.71) 1.02 (0.79, 1.30) -0.40 (-3.91, 3.10)
T3 0.96 (0.72, 1.31) 0.95 (0.59, 1.52) 1.00 (0.78, 1.28) -3.26 (-6.73, 0.21)∑
HMW

Continuousd 1.07 (0.91, 1.26) 0.39 1.11 (0.87, 1.43) 0.40 0.91 (0.79, 1.04) 0.15 -1.03 (-2.87, 0.80) 0.27
T1 1.00 0.25 0.89f 1.00 0.97 0.98f 1.00 0.50 0.29f 0.00 0.26 0.47f

T2 1.29 (0.95, 1.75) 1.06 (0.67, 1.69) 0.91 (0.71, 1.16) -2.80 (-6.22, 0.61)
T3 1.09 (0.79, 1.49) 1.02 (0.64, 1.62) 0.87 (0.68, 1.11) -1.85 (-5.32, 1.62)

MCPP
Continuousd 1.05 (0.90, 1.22) 0.55 0.94 (0.74, 1.20) 0.62 0.89 (0.79, 1.02) 0.09 -0.27 (-2.12, 1.58) 0.77

Continued on Next Page. . .
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Table 4.4 – Continued

. . .Continued from Previous Page
Wheezing a Asthma diagnosis a Bronchiolitis/Bronchitis a

(until age 5y) (until age 5y) (until age 3y) FEV1% b

N = 587 N = 587 N = 587 N = 228
Phthalate c HR (95% CI) phet

e p-value HR (95% CI) phet
e p-value HR (95% CI) phet

e p-value beta (95% CI) phet
e p-value

T1 1.00 0.66 0.37f 1.00 0.78 0.58f 1.00 0.37 0.23f 0.00 0.31 0.73f

T2 1.06 (0.77, 1.44) 0.88 (0.56, 1.38) 1.05 (0.83, 1.33) -2.22 (-5.64, 1.21)
T3 1.15 (0.85, 1.57) 0.86 (0.54, 1.37) 0.88 (0.69, 1.13) 0.18 (-3.29, 3.64)

MBzP
Continuousd 1.00 (0.87, 1.13) 0.93 1.15 (0.95, 1.39) 0.15 0.97 (0.87, 1.07) 0.55 -0.10 (-1.63, 1.42) 0.90

T1 1.00 0.32 0.45f 1.00 0.39 0.97f 1.00 0.46 0.21f 0.00 0.20 0.25f

T2 1.18 (0.87, 1.60) 1.37 (0.86, 2.19) 0.99 (0.77, 1.26) -2.85 (-6.35, 0.66)
T3 0.94 (0.69, 1.29) 1.11 (0.69, 1.79) 0.86 (0.68, 1.11) -2.63 (-6.11, 0.84)

MCNP
Continuousd 1.11 (0.98, 1.24) 0.09 1.13 (0.95, 1.35) 0.16 0.97 (0.88, 1.07) 0.56 0.60 (-0.82, 2.03) 0.41

T1 1.00 0.22 0.18f 1.00 0.19 0.26f 1.00 0.69 0.88f 0.00 0.72 0.84f

T2 1.24 (0.91, 1.70) 1.51 (0.93, 2.46) 1.10 (0.87, 1.41) -1.30 (-4.75, 2.15)
T3 1.29 (0.95, 1.76) 1.46 (0.91, 2.35) 1.01 (0.79, 1.30) -0.15 (-3.63, 3.32)

MCOP
Continuousd 1.03 (0.89, 1.20) 0.67 1.03 (0.83, 1.29) 0.76 1.09 (0.97, 1.22) 0.17 -1.25 (-2.86, 0.35) 0.13

T1 1.00 0.81 0.52f 1.00 0.52 0.77f 1.00 0.90 0.92f 0.00 0.42 0.22f

T2 0.96 (0.71, 1.31) 0.80 (0.50, 1.27) 1.05 (0.82, 1.34) 0.02 (-3.55, 3.59)
T3 0.90 (0.67, 1.23) 1.01 (0.65, 1.58) 1.00 (0.78, 1.28) -1.99 (-5.42, 1.43)

MEHHP
Continuousd 1.07 (0.92, 1.23) 0.38 1.02 (0.82, 1.28) 0.83 0.95 (0.85, 1.07) 0.43 -0.90 (-2.46, 0.66) 0.26

T1 1.00 0.70 0.71f 1.00 0.41 0.62f 1.00 0.71 0.54f 0.00 0.33 0.35f

T2 1.14 (0.84, 1.56) 1.26 (0.80, 2.00) 1.05 (0.82, 1.33) -2.54 (-5.95, 0.87)
T3 1.09 (0.80, 1.48) 0.95 (0.59, 1.53) 0.94 (0.73, 1.20) -1.72 (-5.27, 1.83)

MEOHP
Continuousd 1.07 (0.93, 1.24) 0.36 1.03 (0.82, 1.29) 0.80 0.93 (0.83, 1.05) 0.26 -1.23 (-2.83, 0.37) 0.13

T1 1.00 0.39 0.70f 1.00 0.89 0.68f 1.00 0.38 0.45f 0.00 0.10 0.10f

T2 1.24 (0.91, 1.69) 1.02 (0.65, 1.62) 1.11 (0.87, 1.41) -3.35 (-6.79, 0.09)
T3 1.11 (0.81, 1.51) 0.92 (0.58, 1.46) 0.94 (0.73, 1.20) -3.10 (-6.56, 0.35)

Continued on Next Page. . .
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Table 4.4 – Continued

. . .Continued from Previous Page
Wheezing a Asthma diagnosis a Bronchiolitis/Bronchitis a

(until age 5y) (until age 5y) (until age 3y) FEV1% b

N = 587 N = 587 N = 587 N = 228
Phthalate c HR (95% CI) phet

e p-value HR (95% CI) phet
e p-value HR (95% CI) phet

e p-value beta (95% CI) phet
e p-value

MECPP
Continuousd 1.07 (0.92, 1.25) 0.38 1.11 (0.88, 1.41) 0.36 0.92 (0.81, 1.05) 0.21 -1.31 (-3.02, 0.40) 0.13

T1 1.00 0.18 0.52f 1.00 0.42 0.81f 1.00 0.88 0.62f 0.00 0.12 0.15f

T2 1.34 (0.98, 1.82) 1.36 (0.85, 2.15) 0.98 (0.77, 1.24) -3.33 (-6.80, 0.14)
T3 1.17 (0.85, 1.61) 1.13 (0.70, 1.83) 0.94 (0.74, 1.20) -2.89 (-6.36, 0.57)

MEHP
Continuousd 1.02 (0.90, 1.15) 0.73 0.99 (0.83, 1.20) 0.95 0.92 (0.84, 1.02) 0.12 -0.87 (-2.19, 0.45) 0.19

T1 1.00 0.59 0.36f 1.00 0.69 0.44f 1.00 0.27 0.48f 0.00 0.35 0.15f

T2 0.97 (0.71, 1.33) 0.97 (0.61, 1.55) 0.82 (0.64, 1.04) -0.72 (-4.14, 2.70)
T3 1.13 (0.83, 1.53) 1.17 (0.74, 1.83) 0.89 (0.69, 1.13) -2.50 (-5.97, 0.97)∑
DEHP

Continuousd 1.06 (0.91, 1.24) 0.42 1.05(0.83, 1.33) 0.66 0.92 (0.82, 1.05) 0.22 -1.20 (-2.87, 0.47) 0.16
T1 1.00 0.19 0.86f 1.00 0.61 0.77f 1.00 0.70 0.44f 0.00 0.27 0.49f

T2 1.32 (0.97, 1.79) 1.20 (0.76, 1.90) 1.01 (0.79, 1.28) -2.84 (-6.28, 0.61)
T3 1.09 (0.80, 1.50) 0.98 (0.61, 1.57) 0.92 (0.72, 1.17) -1.50 (-4.96, 1.97)

HR = hazard rate; FEV1% = forced expiratory volume in 1 second expressed in percent predicted; CI = confidence interval;
∑

LMW = molar sum of Low Molecular Weight phthalates (MEP,
MnBP, MiBP);

∑
HMW = molar sum of High Molecular Weight phthalates (MCPP, MBzP, MCNP, MCOP, MEHHP, MEOHP, MECPP, MEHP);

∑
DEHP = molar sum of di(2-ethylhexyl)

phthalate metabolites (MEHHP, MEOHP, MECPP, MEHP). Parent compounds and associated metabolites are detailed in Table 4.5 (Supplemental material).
a Models adjusted for centre, residence area, parental history of asthma or allergies, maternal ethnicity, maximal parental education level, maternal or passive smoking during pregnancy, postnatal
passive smoking, older siblings, day-care. Missing values in covariates were imputed for at least one covariate in 277 boys, using the multiple imputation by chained equations (MICE) method
(100 imputations were performed). b additionally adjusted for child’s height and age.
c Standardized for urine sampling conditions (creatinine level, day and hour of sampling, gestational age, storage duration at room temperature and year of analysis), as detailed in Mortamais
et al.21.
d Estimates for 1 unit increase in ln-transformed standardized concentration.
e p-values of heterogeneity test.
f p-values of monotonic trend test.
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4.6 Discussion

This study evaluated possible deleterious effects of prenatal exposure to phtha-
lates and phenols on respiratory health in childhood. In our male population, as-
sociations were not in the same direction across chemicals. First, increased levels of
ethyl-paraben, bisphenol A, 2,5-dichlorophenol, and DIDP tented to be associated with
altered respiratory health, with ethyl-paraben and bisphenol A exhibiting some consis-
tency across respiratory outcomes. Inversely, and contrary to our a priori hypothesis,
we observed reduced rates of bronchiolitis/bronchitis and wheezing with increased ex-
posure to methyl-, propyl-parabens and benzophenone-3. MCPP, a metabolite of di-
n-octylphthalate (DNOP), di-n-butyl phthalate (DnBP) and several HMW phthalates,
tended to reduce the rate of bronchiolitis/bronchitis.

Regarding bisphenol A, a study of 208 children reported a strong inverse association
between prenatal bisphenol A concentration and FEV1% at age 4 years (beta, -14%;
95% CI: -25, -4 for an increase by one log10 unit) which totally disappeared at age 5
years (beta, 0.04; 95% CI: -9, 9).38 The latter wide CI is consistent with our results
at age 5 years estimated for a log10 unit (beta, -1, 95% CI: -5, 3). Regarding asso-
ciations between prenatal bisphenol A exposure and questionnaire-based respiratory
outcomes, Donohue et al.8 reported no association with asthma status evaluated once
between ages 5 and 12 years, whereas Gascon et al.9 reported trends of deleterious
association with asthma, bronchitis and chest infections until age 7 years (point esti-
mates for relative risks for one-unit increase in log2-transformed concentration varied
from 1.15 to 1.21 across phenotypes). In a larger population with a similar bisphenol
A concentration range, our results also suggested elevated rates of doctor-diagnosed
asthma and bronchiolitis/bronchitis of similar effect sizes to those in Gascon et al.9.
Regarding wheezing, our study did not evidence any association and results from the
previous studies are inconsistent, with studies reported either "protective" association8

or trend for deleterious association.9,37,38 Spanier et al.37 showed that the association
was stronger considering concentrations from urine samples collected at 16 gestational
weeks compared to 26 gestational weeks, suggesting that the exposure window may
play a role in the association with wheezing. In mice, prenatal exposure to bisphenol
A through drinking water promoted the development of allergic asthma in offspring.22

Bisphenol A may affect the immune functions and increase IgE serum levels or the
production of proallergic mediators such as cytokine IL4.17,30 Such immune effects
might be mediated by interactions with oestrogen receptors or the family of peroxi-
some proliferator-activated receptors (PPARs).30

The literature regarding other phenols is limited to cross-sectional studies. In
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our study, 2,5-dichlorophenol tended to be associated with wheezing rate, an asso-
ciation never considered, to our knowledge, in a prospective setting. The protective
associations we observed between methyl-paraben or propyl-paraben and wheezing
or bronchiolitis/bronchitis are in line with those previously reported with non-atopic
wheezing.34,36 One proposed hypothesis might be an effect through their antimicrobial
properties.34 To our knowledge, no previous experimental or human study considered
association between benzophenone-3 and risk of wheezing.

Only one cross-sectional study has investigated associations of several phthalates
and pulmonary function, reporting deleterious associations of spirometric measure-
ments with MCPP, mono-n-butyl phthalate (MnBP) and DEHP metabolites.4 In a
population somewhat older than ours (boys were 6-16 year-old), FEV1% decreased with
urinary concentrations of DEHP metabolites, consistently with the trend observed in
our study; associations were stronger with the forced vital capacity (FVC) and the
ratio FEV1/FVC, outcomes that we could not consider. We also observed suggestive
associations between MCOP and MiBP concentrations and decreased FEV1% (p, 0.12
and p, 0.13, respectively, for the log-transformed concentrations), associations which
have, to our knowledge, never been considered so far.

Combining two cohorts, Smit et al.35 did not observe any association between serum
oxidative metabolites of DEHP, DINP and wheeze or asthma in children evaluated at
one-time point between 5 and 9 years of age. Whyatt et al.40, reported elevated risks
of asthma or asthma-like symptoms between 5 and 11 years associated with urinary
metabolites of BBzP and DnBP (represented by MBzP and MnBP respectively), which
were not observed in the boys from our study. Gascon et al.9 showed deleterious associ-
ations of BBzP and DEHP urinary metabolites with asthma, wheeze, chest infections
and bronchitis until age 7 years, which we did not confirm in our male population
followed until 5 years. Ku et al.16 reported deleterious associations between urinary
metabolites of BBzP or DEHP and wheeze at 8 years in boys, which, again, we could
not confirm until age 5. The strongest deleterious association of phthalates metabo-
lites with respiratory outcomes was observed for MCNP (DIDP metabolite), not in-
vestigated in the previous longitudinal studies, and for which our study provides only
limited evidence in favour of associations with wheezing (p, 0.09 for log-transformed
coding) and asthma diagnosis (p, 0.16). Currently, DIDP and DINP are increasingly
used as substitutes to DEHP and are the most commonly used plasticizers in Western
Europe.13

Experimental studies suggested that phthalates as DINP and DEHP could release
proinflammatory mediators in lung cells and have an adjuvant effect on immune re-
sponse in mice or rats, following dietary exposure,6,10,33 inhalation11 or subcutaneous
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injection.18 These mechanisms may enhance airway hyperresponsiveness by the infiltra-
tion of inflammatory cells in lung tissue.20,28 DEHP may also interact with the PPARs
nuclear receptors superfamily and lead to abnormal alveolar maturation and reduced
surfactant production.20

We relied on discrete time survival modelling to assess associations with respiratory
diseases. This approach was justified by the prospective nature of our study and has the
advantage of allowing for efficiently taking into account subjects lost to follow-up and
timing of disease occurrence as well as incorporating time-varying adjustment factors
such as postnatal passive smoking. Few previous studies on this topic (e.g. Gascon
et al.9) had relied on survival modelling, to our knowledge.

The present study considered an objective measure of the pulmonary function at
an early age. FEV1 is the most widely used lung function measurement in epidemi-
ology, with strong reproducibility.23 However, obtaining satisfactory forced expiratory
manoeuvres is difficult in children under 6 years of age, as very young children are not
always able to produce prolonged expirations.2 We therefore did not analyse the FVC
and the ratio FEV1/FVC and 39% of the eligible children were not considered in the
analysis of FEV1 because of exhalation times shorter than one second. Still, like in a
previous study in a similar age range population,38 mean FEV1% (90.0%) was lower
than expected. In young children, FEV0.5 or FEV0.75 could be of interest but were
not available in our study. From the questionnaires, we were not able to differentiate
bronchiolitis and bronchitis occurrences since only one question was asked for these
diseases. Additionally, our study did not take into account the well-known wheezing
phenotypic heterogeneity relying on age at onset and symptoms persistency19 as it
would require a larger sample size to ensure a satisfactory statistical power.

The initial purpose of phenols and phthalates assays in the EDEN cohort was to
investigate the impact of maternal exposure to ubiquitous endocrine disruptors on male
genital organogenesis.7 This was followed by studies on foetal and postnatal growth in
male offspring.26,25 Hence, data on prenatal exposures were available in boys only.
Thus, our study was unable to address the existence of sex-specific effects suggested by
previous studies.4,9,16 However, focusing on one sex does not bias results, which only
apply to boys and should not be generalized to girls. From a statistical point of view,
focusing on a single sex is a way to optimize the study accuracy (limiting variance) in
a context of limited total sample size (defined by our budget for chemicals assays), and
possible sex-specific effects suggested by previous studies. From a public health point
of view, identifying effects in a single sex, or in a specific sensitive subgroup, should
be enough to support risk management decisions. Our analyses were conducted in a
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relatively well-educated population with a majority of non-smoking mothers during
pregnancy, but representativeness is not a condition of validity in etiological studies
such as ours,31 and focusing on rather homogeneous populations might actually limit
bias due to unmeasured confounders. However, we cannot rule out the possibility of
selection bias.

Reliance on a single maternal urine sample generally leads to exposure misclassifi-
cation in the case of chemicals with high intra-individual temporal variability.24 If we
assume that error is of classical type, then the expected impact corresponds to atten-
uation bias, its amplitude being highest for bisphenol A and DEHP metabolites, the
compounds with the largest within-subject variability.24,29 For this reason, the lack of
significant association with most exposure biomarkers, in particular bisphenol A and
DEHP metabolites (those with the lowest intra-class correlations and hence the largest
attenuation bias), should not be seen as strong evidence of a lack of effect of these
compounds. We had no information on postnatal exposures which might be correlated
to maternal pregnancy levels, so that in theory, any of the associations reported here
could be due to postnatal (and not specifically prenatal) exposures. However, it has
been shown that phenols and phthalates biomarker concentrations measured postna-
tally in children were poorly to moderately correlated with those from their mother
during pregnancy.5,40

In conclusion, our prospective study relying on respiratory outcomes and pulmonary
function tests showed possible adverse associations between prenatal urinary concen-
trations of 2,5-dichlorophenol, ethyl-paraben, bisphenol A, and DIDP biomarkers and
respiratory health in boys until age 5 years, with ethyl-paraben and bisphenol A ex-
hibiting some consistency across respiratory outcomes. The associations of bisphenol
A pregnancy level with asthma diagnosis and bronchiolitis/bronchitis have been previ-
ously reported in a cohort study among boys and girls.9 Our results add to an emerging
literature on respiratory health impacts of early exposure to several phenols and phtha-
lates.
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Figure 4.2 – Flow chart of the study in the EDEN mother-child cohort (not included
in the online supplemental material).
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Table 4.5 – Parent phthalates and associated urinary metabolites in the EDEN cohort.

Parent compounds Abbreviation Urinary metabolites Abbreviation

Diethyl phthalate DEP Mono-ethyl phthalate MEP

Di-n-butyl phthalate DnBP Mono-n-butyl phthalate MnBP

Di-isobutyl phthalate DiBP Mono-isobutyl phthalate MiBP

Di-n-butyl phthalate
Di-n-octylphthalate
Other high molecular
weight phthalates

DnBP
DNOP
/

}
Mono-(3-carboxypropyl) phthalate MCPP

Butylbenzyl phthalate BBzP Mono-benzyl phthalate MBzP

Di-isodecyl phthalate DIDP Mono-(carboxynonyl) phthalate MCNP

Di-isononyl phthalate DINP Mono(carboxyoctyl) phthalate MCOP

Di-2-ethylhexyl phthalate DEHP
{ Mono-(2-ethyl-5-hydroxyhexyl phthalate

Mono-(2-ethyl-5-oxohexyl) phthalate
Mono-(2-ethyl-5-carboxypentyl) phthalate
Mono-2-ethylhexyl phthalate

MEHHP
MEOHP
MECPP
MEHP
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Table 4.6 – Spearman correlation between ln-transformed standardized a phenol concentrations.

2,4-DCP 2,5-DCP
∑

-DCP BPA BP3 TCS MP EP PP BP
∑

PB

2,4-DCP 1.00
2,5-DCP 0.82 1.00∑

2-DCP 0.86 1.00 1.00
BPA 0.01 0.05 0.05 1.00
BP3 0.06 0.04 0.04 0.03 1.00
TCS 0.13 -0.11 -0.08 -0.05 0.01 1.00
MP -0.02 -0.09 -0.08 0.07 0.20 0.15 1.00
EP 0.08 -0.04 -0.02 -0.03 0.15 0.16 0.55 1.00
PP 0.00 -0.07 -0.06 0.00 0.12 0.22 0.81 0.49 1.00
BP 0.03 -0.11 -0.09 0.00 0.16 0.23 0.55 0.68 0.53 1.00∑

PB -0.01 -0.09 -0.08 0.05 0.19 0.17 0.99 0.59 0.84 0.58 1.00

2,4-DCP = 2,4-Dichlorophenol; 2,5-DCP = 2,5-Dichlorophenol;
∑

-DCP = molar sum of Dichlorophenols (2,4-DCP, 2,5-DCP); BPA = Bisphenol A; BP3 = Benzophenone-3; TCS = Triclosan;
MP = Methyl-paraben; EP = Ethyl-paraben; PP = Propyl-paraben; BP = Butyl-paraben;

∑
PB = molar sum of parabens (MP, EP, PP, BP).

a Standardized for urine sampling conditions (creatinine level, day and hour of sampling, gestational age, storage duration at room temperature and year of analysis), as detailed in Mortamais
et al. (2012).



76
C

H
A

PT
ER

4.
IN

U
T

ER
O

ED
S

EX
PO

SU
R

E
A

N
D

R
ESPIR

AT
O

RY
H

EA
LT

H

Table 4.7 – Spearman correlation between ln-transformed standardized a phthalate metabolites concentrations.
∑

LMW MEP MnBP MiBP
∑

HMW MCPP MBzP MCNP MCOP MEHHP MEOHP MECPP MEHP
∑

DEHP∑
LMW 1.00

MEP 0.78 1.00
MnBP 0.59 0.08 1.00
MiBP 0.33 0.03 0.39 1.00∑

HMW 0.16 0.00 0.33 0.37 1.00
MCPP 0.41 0.04 0.64 0.24 0.31 1.00
MBzP 0.27 0.12 0.37 0.43 0.57 0.23 1.00
MCNP 0.05 0.03 0.06 0.10 0.28 0.29 0.13 1.00
MCOP 0.06 0.02 0.06 0.12 0.44 0.23 0.25 0.44 1.00
MEHHP 0.11 0.01 0.25 0.31 0.93 0.21 0.38 0.21 0.35 1.00
MEOHP 0.11 0.00 0.26 0.35 0.95 0.23 0.41 0.22 0.37 0.98 1.00
MECPP 0.03 -0.04 0.18 0.26 0.93 0.18 0.32 0.23 0.37 0.94 0.95 1.00
MEHP 0.10 -0.01 0.22 0.36 0.83 0.19 0.38 0.16 0.33 0.82 0.84 0.80 1.00∑

DEHP 0.08 -0.02 0.23 0.31 0.95 0.20 0.37 0.22 0.36 0.98 0.99 0.98 0.86 1.00∑
LMW = molar sum of Low Molecular Weight phthalates (MEP, MnBP, MiBP); MEP = Monoethyl phthalate; MnBP = Mono-n-butyl phthalate; MiBP = Mono-isobutyl phthalate;∑
HMW = molar sum of High Molecular Weight phthalates (MCPP, MBzP, MCNP, MCOP, MEHHP, MEOHP, MECPP, MEHP); MCPP = Mono (3-carboxypropyl) phthalate; MBzP =

Monobenzyl phthalate; MCNP = Mono-(carboxynonyl) phthalate, MCOP = Monocarboxyoctyl phthalate; MEHHP = Mono(2-ethyl-5-hydroxyhexyl) phthalate; MEOHP = Mono(2-ethyl-5-
oxohexyl) phthalate; MECPP = Mono(2-ethyl-5-carboxypentyl) phthalate; MEHP = Mono(2-ethylhexyl) phthalate;

∑
DEHP = molar sum of di(2-ethylhexyl) phthalate metabolites (MEHHP,

MEOHP, MECPP, MEHP).
a Standardized for urine sampling conditions (creatinine level, day and hour of sampling, gestational age, storage duration at room temperature and year of analysis), as detailed in Mortamais
et al. (2012).
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Table 4.8 – Adjusted associations between pregnancy phenols raw (non-standardized)
concentrations and respiratory outcomes (n=587) and FEV1% (n=228) in boys. Models
additionally adjusted for creatinine.

 
Wheezing  

(until age 5y)a 
 

Asthma diagnosis 
(until age 5y)a 

 
Bronchiolitis/Bronchitis  

(until age 3y)a 
 FEV1%

b 

 N = 587  N = 587  N = 587  N = 228 

Phenolc HR (95% CI) phet
e p-value  HR (95% CI) phet

e p-value  HR (95% CI) phet
e p-value  beta (95% CI) phet

e p-value 
2,4-Dichlorophenol                
Continuousd 1.06 (0.95, 1.18)  0.27  1.02 (0.87, 1.20)  0.79  0.98 (0.89, 1.08)  0.69  0.31 (-0.93, 1.55)  0.62 
   T1 1.00 0.31 0.23  1.00 0.85 0.64  1.00 0.93 0.71  0.00 0.91 0.85 
   T2 0.89 (0.64, 1.22)    0.94 (0.58, 1.52)    1.00 (0.78, 1.29)    0.54 (-3.11, 4.18)   
   T3 1.13 (0.83, 1.55)    1.08 (0.67, 1.74)    0.96 (0.74, 1.24)    -0.20 (-3.93, 3.54)   

2,5-Dichlorophenol                

Continuousd 1.08 (1.00, 1.16)  0.04  1.04 (0.93, 1.16)  0.53  1.00 (0.94, 1.07)  0.97  0.18 (-0.67, 1.03)  0.68 
   T1 1.00 0.02 0.39  1.00 0.22 0.50  1.00 0.84 0.67  0.00 0.82 0.85 
   T2 1.57 (1.14, 2.16)    1.51 (0.94, 2.42)    1.06 (0.82, 1.37)    1.15 (-2.50, 4.80)   
   T3 1.38 (1.00, 1.91)    1.37 (0.85, 2.23)    1.07 (0.84, 1.38)    0.87 (-2.82, 4.56)   

∑Dichlorophenols                

Continuousd 1.08 (1.00, 1.17)  0.05  1.04 (0.92, 1.17)  0.56  1.00 (0.94, 1.07)  1.00  0.21 (-0.69, 1.11)  0.65 
   T1 1.00 0.02 0.41  1.00 0.17 0.53  1.00 0.67 0.51  0.00 0.76 0.85 
   T2 1.59 (1.15, 2.19)    1.57 (0.97, 2.53)    1.09 (0.85, 1.41)    1.36 (-2.35, 5.06)   
   T3 1.39 (1.00, 1.93)    1.39 (0.85, 2.27)    1.12 (0.87, 1.44)    0.99 (-2.72, 4.70)   

Bisphenol A                

Continuousd 0.98 (0.83, 1.15)  0.77  1.21 (0.96, 1.53)  0.11  1.13 (0.99, 1.30)  0.07  -0.55 (-2.34, 1.23)  0.54 
   T1 1.00 0.14 0.71  1.00 0.51 0.43  1.00 0.11 0.13  0.00 0.61 0.46 
   T2 1.33 (0.97, 1.82)    1.30 (0.79, 2.14)    1.27 (0.98, 1.63)    -1.52 (-5.13, 2.09)   
   T3 1.05 (0.74, 1.49)    1.32 (0.79, 2.19)    1.29 (0.99, 1.70)    -1.87 (-5.84, 2.10)   

Benzophenone-3                

Continuousd 0.94 (0.87, 1.01)  0.10  0.96 (0.85, 1.07)  0.46  0.99 (0.93, 1.05)  0.82  -0.32 (-1.19, 0.54)  0.46 
   T1 1.00 0.14 0.05  1.00 0.15 0.27  1.00 0.73 0.43  0.00 0.80 0.50 
   T2 0.96 (0.71, 1.30)    0.67 (0.43, 1.07)    0.98 (0.77, 1.25)    -0.09 (-3.61, 3.42)   
   T3 0.74 (0.54, 1.02)    0.68 (0.42, 1.09)    0.91 (0.70, 1.17)    -1.09 (-4.68, 2.50)   

Triclosan                

Continuousd 0.98 (0.94, 1.03)  0.50  0.99 (0.92, 1.07)  0.86  0.99 (0.96, 1.03)  0.79  0.18 (-0.38, 0.75)  0.52 
   T1 1.00 0.74 0.85  1.00 0.83 0.81  1.00 0.95 0.82  0.00 0.97 0.86 
   T2 0.89 (0.65, 1.21)    1.13 (0.72, 1.77)    0.97 (0.76, 1.24)    -0.25 (-3.72, 3.22)   
   T3 0.93 (0.69, 1.25)    1.00 (0.63, 1.60)    0.96 (0.76, 1.23)    0.19 (-3.31, 3.69)   

Methyl-paraben                

Continuousd 0.93 (0.85, 1.00)  0.06  0.99 (0.88, 1.12)  0.91  0.94 (0.88, 1.00)  0.05  -0.38 (-1.22, 0.46)  0.37 
   T1 1.00 0.11 0.21  1.00 0.56 0.70  1.00 0.02 0.01  0.00 0.65 0.44 
   T2 0.75 (0.55, 1.02)    1.23 (0.78, 1.95)    0.82 (0.65, 1.05)    0.65 (-2.85, 4.14)   
   T3 0.76 (0.56, 1.04)    0.99 (0.60, 1.62)    0.68 (0.53, 0.89)    -1.03 (-4.70, 2.63)   

Ethyl-paraben                

Continuousd 1.01 (0.96, 1.08)  0.63  1.09 (1.00, 1.20)  0.06  0.99 (0.94, 1.03)  0.56  -0.55 (-1.19, 0.10)  0.10 
   T1 1.00 0.82 0.55  1.00 0.18 0.31  1.00 0.02 0.05  0.00 0.20 0.08 
   T2 0.98 (0.71, 1.34)    1.51 (0.93, 2.44)    1.22 (0.96, 1.56)    0.19 (-3.41, 3.80)   
   T3 1.07 (0.78, 1.48)    1.51 (0.91, 2.51)    0.87 (0.67, 1.13)    -2.65 (-6.25, 0.96)   

Propyl-paraben                

Continuousd 0.96 (0.90, 1.02)  0.18  0.98 (0.89, 1.08)  0.71  0.96 (0.91, 1.01)  0.09  -0.12 (-0.82, 0.59)  0.74 
   T1 1.00 0.53 0.31  1.00 0.43 0.37  1.00 0.03 0.05  0.00 0.68 0.38 
   T2 0.91 (0.67, 1.23)    1.19 (0.75, 1.86)    0.77 (0.61, 0.99)    -0.37 (-3.94, 3.20)   
   T3 0.84 (0.61, 1.14)    0.87 (0.53, 1.42)    0.73 (0.57, 0.94)    -1.56 (-5.18, 2.07)   

Butyl-paraben                

Continuousd 0.98 (0.92, 1.04)  0.54  1.00 (0.91, 1.10)  0.98  0.97 (0.93, 1.02)  0.29  -0.37 (-1.05, 0.30)  0.28 
   T1 1.00 0.43 0.20  1.00 1.00 0.96  1.00 0.003 0.002  0.00 0.67 0.58 
   T2 1.01 (0.75, 1.37)    1.02 (0.64, 1.61)    1.15 (0.90, 1.46)    -1.30 (-4.79, 2.19)   
   T3 0.84 (0.61, 1.16)    1.00 (0.61, 1.63)    0.75 (0.58, 0.97)    -1.48 (-5.01, 2.04)   

∑Parabens                

Continuousd 0.93 (0.86, 1.00)  0.06  0.99 (0.88, 1.12)  0.93  0.94 (0.88, 1.00)  0.06  -0.37 (-1.21, 0.47)  0.39 
   T1 1.00 0.13 0.07  1.00 0.34 0.46  1.00 0.02 0.004  0.00 0.81 0.56 
   T2 0.83 (0.62, 1.13)    1.27 (0.81, 2.00)    0.90 (0.71, 1.14)    0.28 (-3.19, 3.74)   
   T3 0.72 (0.52, 0.99)    0.92 (0.55, 1.52)    0.69 (0.53, 0.89)    -0.88 (-4.57, 2.80)   
HR = hazard ratio; FEV1%= forced expiratory volume in 1 second expressed in percent predicted; CI = confidence interval; ∑Dichlorophenols = molar sum of Dichlorophenols (2,4-, 2,5- 
dichlorophenols);  ∑Parabens = molar sum of parabens (Methyl-, Ethyl-, Propyl-, Butyl-parabens). 
 
a Models adjusted for creatinine, centre, residence area, parental history of asthma or allergies, maternal ethnicity, maximal parental education level, maternal or passive smoking during 
pregnancy, postnatal passive smoking, older siblings, day-care. Missing values in covariates were imputed for at least one covariate in 277 boys, using the MICE multiple imputation method 
(100 imputations were performed) b additionally adjusted for child’s height and age. 
c Crude concentrations.  
d Estimates for 1 unit increase in ln-transformed standardized concentration. 
e p-values of heterogeneity test.  
Italicized p-values are p-values of monotonic trend test. 
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Table 4.9 – Adjusted associations between pregnancy phthalate metabolites raw (non-
standardized) concentrations and respiratory outcomes (n=587) and FEV1% (n=228)
in boys. Models additionally adjusted for creatinine.

 
Wheezing  

(until age 5y)a 
 

Asthma diagnosis 
(until age 5y)a 

 
Bronchiolitis/Bronchitis  

(until age 3y)a 
 FEV1%

b 

 N = 587  N = 587  N = 587  N = 228 

Phthalatec HR (95% CI) phet
e p-value  HR (95% CI) phet

e p-value  HR (95% CI) phet
e p-value  beta (95% CI) phet

e p-value 
∑LMW                
Continuousd 0.97 (0.84, 1.12)  0.69  0.97 (0.78, 1.21)  0.80  1.00 (0.89, 1.12)  1.00  -0.43 (-2.14, 1.27)  0.62 
   T1 1.00 0.80 0.86  1.00 0.94 0.75  1.00 0.71 0.72  0.00 0.16 0.06 
   T2 1.10 (0.79, 1.52)    0.94 (0.58, 1.52)    0.92 (0.71, 1.19)    0.35 (-3.23, 3.92)   
   T3 1.01 (0.71, 1.43)    0.91 (0.54, 1.53)    1.01 (0.77, 1.34)    -3.00 (-6.96, 0.96)   

MEP                

Continuousd 0.99 (0.88, 1.11)  0.86  1.03 (0.87, 1.22)  0.72  1.02 (0.94, 1.12)  0.63  -0.10 (-1.45, 1.24)  0.88 
   T1 1.00 0.87 0.80  1.00 0.99 0.90  1.00 0.75 0.99  0.00 0.67 0.51 
   T2 1.07 (0.77, 1.47)    0.99 (0.61, 1.60)    1.10 (0.85, 1.42)    0.87 (-2.65, 4.39)   
   T3 0.99 (0.71, 1.38)    1.02 (0.62, 1.69)    1.04 (0.80, 1.36)    -0.77 (-4.72, 3.19)   

MnBP                

Continuousd 1.03 (0.92, 1.16)  0.62  1.00 (0.83, 1.19)  0.96  0.98 (0.89, 1.07)  0.61  -0.35 (-1.69, 0.99)  0.61 
   T1 1.00 0.64 0.36  1.00 0.64 0.89  1.00 0.69 0.98  0.00 0.41 0.34 
   T2 1.01 (0.73, 1.40)    1.23 (0.76, 1.96)    0.90 (0.69, 1.16)    1.47 (-2.13, 5.09)   
   T3 1.15 (0.81, 1.64)    1.04 (0.61, 1.79)    0.96 (0.73, 1.28)    -0.89 (-4.89, 3.11)   

MiBP                

Continuousd 0.98 (0.84, 1.14)  0.76  1.03 (0.81, 1.30)  0.82  1.02 (0.90, 1.16)  0.72  -1.34 (-3.02, 0.34)  0.12 
   T1 1.00 0.28 0.22  1.00 0.36 0.47  1.00 0.92 0.96  0.00 0.14 0.06 
   T2 0.90 (0.65, 1.25)    0.78 (0.48, 1.27)    0.95 (0.74, 1.22)    0.53 (-3.07, 4.14)   
   T3 1.17 (0.83, 1.66)    1.11 (0.65, 1.87)    0.99 (0.75, 1.31)    -3.01 (-7.05, 1.03)   

∑HMW                

Continuousd 1.05 (0.90, 1.23)  0.54  1.14 (0.90, 1.45)  0.28  0.90 (0.79, 1.03)  0.13  -1.26 (-3.06, 0.55)  0.17 
   T1 1.00 0.07 0.21  1.00 0.13 0.20  1.00 0.12 0.09  0.00 0.09 0.03 
   T2 1.46 (1.05, 2.03)    1.64 (1.00, 2.69)    1.05 (0.82, 1.36)    -0.36 (-3.97, 3.24)   
   T3 1.36 (0.95, 1.93)    1.57 (0.91, 2.68)    0.81 (0.61, 1.08)    -4.03 (-8.08, -0.02)   

MCPP                

Continuousd 1.03 (0.89, 1.20)  0.68  0.98 (0.77, 1.24)  0.85  0.90 (0.80, 1.02)  0.11  -0.49 (-2.32, 1.35)  0.60 
   T1 1.00 0.55 0.28  1.00 0.20 0.94  1.00 0.77 0.92  0.00 0.15 0.87 
   T2 1.08 (0.78, 1.49)    1.50 (0.93, 2.41)    0.91 (0.70, 1.18)    -3.59 (-7.19, 0.01)   
   T3 1.21 (0.86, 1.69)    1.13 (0.65, 1.94)    0.96 (0.73, 1.26)    -2.00 (-5.89, 1.90)   

MBzP                

Continuousd 0.98 (0.86, 1.11)  0.75  1.17 (0.97, 1.41)  0.10  0.97 (0.87, 1.07)  0.51  -0.23 (-1.73, 1.25)  0.75 
   T1 1.00 0.87 0.63  1.00 0.14 0.12  1.00 0.28 0.84  0.00 0.82 0.86 
   T2 0.96 (0.71, 1.37)    1.51 (0.91, 2.49)    1.22 (0.94, 1.58)    -1.20 (-4.94, 2.54)   
   T3 1.07 (0.76, 1.51)    1.68 (0.98, 2.86)    1.06 (0.79, 1.40)    -0.79 (-4.79, 3.22)   

MCNP                

Continuousd 1.10 (0.98, 1.24)  0.10  1.15 (0.97, 1.36)  0.12  0.98 (0.89, 1.08)  0.64  0.51 (-0.90, 1.92)  0.48 
   T1 1.00 0.05 0.02  1.00 0.20 0.07  1.00 0.62 0.56  0.00 0.12 0.79 
   T2 1.05 (0.76, 1.46)    1.14 (0.68, 1.89)    1.12 (0.87, 1.45)    -3.50 (-7.17, 0.17)   
   T3 1.44 (1.03, 2.01)    1.54 (0.93, 2.55)    1.12 (0.86, 1.47)    -0.72 (-4.58, 3.15)   

MCOP                

Continuousd 1.03 (0.89, 1.20)  0.67  1.04 (0.84, 1.29)  0.72  1.08 (0.96, 1.22)  0.19  -1.17 (-2.77, 0.42)  0.15 
   T1 1.00 0.84 0.78  1.00 0.75 0.71  1.00 0.86 0.87  0.00 0.64 0.37 
   T2 1.10 (0.80, 1.51)    1.20 (0.74, 1.93)    1.07 (0.83, 1.38)    -0.36 (-3.92, 3.20)   
   T3 1.07 (0.77, 1.50)    1.14 (0.69, 1.90)    1.04 (0.79, 1.36)    -1.70 (-5.51, 2.10)   

MEHHP                

Continuousd 1.05 (0.91, 1.20)  0.54  1.07 (0.86, 1.32)  0.54  0.95 (0.85, 1.07)  0.41  -1.12 (-2.64, 0.40)  0.15 
   T1 1.00 0.21 0.37  1.00 0.32 0.66  1.00 0.68 0.87  0.00 0.06 0.03 
   T2 1.34 (0.97, 1.85)    1.43 (0.89, 2.30)    1.10 (0.86, 1.42)    -3.14 (-6.61, 0.32)   
   T3 1.25 (0.89, 1.75)    1.21 (0.72, 2.04)    1.01 (0.77, 1.32)    -4.49 (-8.30, -0.68)   

MEOHP                

Continuousd 1.05 (0.91, 1.21)  0.51  1.07 (0.86, 1.33)  0.54  0.93 (0.83, 1.04)  0.21  -1.42 (-2.98, 0.14)  0.08 
   T1 1.00 0.27 0.24  1.00 0.55 0.72  1.00 0.77 0.48  0.00 0.25 0.09 
   T2 1.28 (0.92, 1.77)    1.30 (0.81, 2.10)    0.98 (0.76, 1.27)    -1.03 (-4.64, 2.57)   
   T3 1.28 (0.91, 1.80)    1.17 (0.69, 1.98)    0.91 (0.70, 1.20)    -3.30 (-7.29, 0.69)   

MECPP                

Continuousd 1.07 (0.92, 1.25)  0.38  1.11 (0.88, 1.40)  0.37  0.92 (0.81, 1.05)  0.20  -1.38 (-3.08, 0.32)  0.11 
   T1 1.00 0.30 0.57  1.00 0.41 0.62  1.00 0.84 0.55  0.00 0.32 0.15 
   T2 1.30 (0.93, 1.80)    1.40 (0.86, 2.27)    0.98 (0.76, 1.27)    -1.93 (-5.67, 1.81)   
   T3 1.19 (0.84, 1.70)    1.25 (0.74, 2.14)    0.92 (0.70, 1.22)    -3.10 (-7.15, 0.96)   

MEHP                

Continuousd 1.01 (0.89, 1.14) 0.43 0.90  1.03 (0.85, 1.23)  0.79  0.92 (0.83, 1.01)  0.09  -1.02 (-2.33, 0.28)  0.12 
   T1 1.00  0.30  1.00 0.62 0.45  1.00 0.52 0.64  0.00 0.27 0.17 
   T2 0.93 (0.67, 1.29)    0.92 (0.57, 1.49)    0.86 (0.67, 1.11)    0.23 (-3.33, 3.80)   
   T3 1.14 (0.82, 1.58)    1.16 (0.72, 1.88)    0.91 (0.70, 1.19)    -3.10 (-6.25, 1.22)   

∑DEHP                

Continuousd 1.05 (0.90, 1.22)  0.52  1.08 (0.86, 1.36)  0.50  0.92 (0.82, 1.04)  0.20  -1.38 (-3.02, 0.26)  0.10 
   T1 1.00 0.09 0.33  1.00 0.23 0.60  1.00 0.94 0.78  0.00 0.24 0.19 
   T2 1.45 (1.04, 2.01)    1.52 (0.94, 2.47)    0.96 (0.74, 1.24)    -2.71 (-6.28, 0.87)   
   T3 1.30 (0.92, 1.84)    1.29 (0.75, 2.20)    0.96 (0.73, 1.26)    -3.05 (-7.02, 0.91)   
HR = hazard ratio; FEV1%= forced expiratory volume in 1 second expressed in percent predicted; CI = confidence interval; ∑LMW = molar sum of Low Molecular Weight phthalates (MEP, 
MnBP, MiBP); ∑HMW = molar sum of High Molecular Weight phthalates (MCPP, MBzP, MCNP, MCOP, MEHHP, MEOHP, MECPP, MEHP); ∑DEHP = molar sum of di(2-ethylhexyl) 
phthalate metabolites (MEHHP, MEOHP, MECPP, MEHP). Parent compounds and associated metabolites are detailed in Table S1 (Supplemental material) 
 
a Models adjusted for creatinine, centre, residence area, parental history of asthma or allergies, maternal ethnicity, maximal parental education level, maternal or passive smoking during 
pregnancy, postnatal passive smoking, older siblings, day-care. Missing values in covariates were imputed for at least one covariate in 277 boys, using the MICE multiple imputation method 
(100 imputations were performed) b additionally adjusted for child’s height and age. 
c Crude concentrations.  
d Estimates for 1 unit increase in ln-transformed standardized concentration. 
e p-values of heterogeneity test.  
Italicized p-values are p-values of monotonic trend test. 
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Table 4.10 – Adjusted associations between pregnancy phenols standardized concentra-
tions and respiratory outcomes (n=447) and FEV1% (n=171) in boys from non-smoking
mothers.

 
Wheezing  

(until age 5y)a 
 

Asthma diagnosis 
(until age 5y)a 

 
Bronchiolitis/Bronchitis  

(until age 3y)a 
 FEV1%

b 

 N = 447  N = 447  N = 447  N = 171 

Phenolc HR (95% CI) phet
e p-value  HR (95% CI) phet

e p-value  HR (95% CI) phet
e p-value  beta (95% CI) phet

e p-value 
2,4-Dichlorophenol                
Continuousd 1.04 (0.92, 1.18)  0.53  1.04 (0.86, 1.25)  0.72  0.95 (0.85, 1.06)  0.36  0.76 (-0.76, 2.28)  0.32 
   T1 1.00 0.46 0.90  1.00 0.80 0.99  1.00 0.58 0.30  0.00 0.58 0.97 
   T2 1.25 (0.88, 1.80)    1.19 (0.70, 2.02)    0.96 (0.72, 1.27)    2.23 (-2.14, 6.61)   
   T3 1.11 (0.77, 1.59)    1.06 (0.62, 1.81)    0.86 (0.65, 1.14)    0.70 (-3.57, 4.97)   

2,5-Dichlorophenol                

Continuousd 1.06 (0.98, 1.16)  0.16  1.05 (0.92, 1.20)  0.46  0.98 (0.91, 1.05)  0.52  0.46 (-0.58, 1.51)  0.38 
   T1 1.00 0.02 0.29  1.00 0.13 0.43  1.00 0.96 0.86  0.00 0.97 0.90 
   T2 1.70 (1.17, 2.48)    1.76 (1.01, 3.05)    1.03 (0.77, 1.38)    0.54 (-3.79, 4.87)   
   T3 1.46 (1.01, 2.12)    1.50 (0.86, 2.62)    0.99 (0.74, 1.32)    0.43 (-3.84, 4.70)   

∑Dichlorophenols                

Continuousd 1.06 (0.97, 1.16)  0.19  1.05 (0.91, 1.20)  0.52  0.97 (0.90, 1.05)  0.48  0.51 (-0.58, 1.60)  0.36 
   T1 1.00 0.11 0.43  1.00 0.11 0.54  1.00 0.92 1.00  0.00 0.97 0.99 
   T2 1.48 (1.02, 2.15)    1.80 (1.04, 3.12)    1.06 (0.79, 1.42)    0.52 (-3.77, 4.80)   
   T3 1.32 (0.92, 1.91)    1.45 (0.83, 2.54)    1.02 (0.77, 1.36)    0.16 (-4.10, 4.42)   

Bisphenol A                

Continuousd 1.02 (0.83, 1.24)  0.87  1.23 (0.93, 1.62)  0.15  1.16 (0.98, 1.37)  0.08  -0.25 (-2.43, 1.93)  0.82 
   T1 1.00 0.70 0.43  1.00 0.26 0.10  1.00 0.38 0.20  0.00 0.60 0.35 
   T2 1.11 (0.77, 1.59)    1.14 (0.63, 2.05)    1.00 (0.75, 1.33)    -1.92 (-6.12, 2.28)   
   T3 1.17 (0.81, 1.69)    1.54 (0.89, 2.66)    1.19 (0.89, 1.58)    -1.86 (-6.18, 2.46)   

Benzophenone-3                

Continuousd 0.95 (0.87, 1.04)  0.29  1.00 (0.88, 1.14)  0.99  0.99 (0.93, 1.07)  0.88  -0.58 (-1.60, 0.44)  0.26 
   T1 1.00 0.11 0.15  1.00 0.14 0.52  1.00 0.94 0.75  0.00 0.36 0.40 
   T2 0.75 (0.53, 1.07)    0.59 (0.35, 1.02)    0.98 (0.74, 1.31)    -2.59 (-6.81, 1.62)   
   T3 0.69 (0.48, 1.00)    0.69 (0.40, 1.16)    0.95 (0.71, 1.27)    -2.73 (-6.97, 1.51)   

Triclosan                

Continuousd 0.99 (0.94, 1.05)  0.78  0.99 (0.91, 1.08)  0.79  1.01 (0.96, 1.05)  0.77  0.08 (-0.61, 0.76)  0.83 
   T1 1.00 0.77 0.48  1.00 0.71 0.44  1.00 0.53 0.71  0.00 0.92 0.69 
   T2 0.96 (0.68, 1.37)    1.06 (0.64, 1.75)    1.16 (0.87, 1.53)    -0.03 (-4.18, 4.12)   
   T3 0.88 (0.62, 1.25)    0.84 (0.49, 1.46)    1.01 (0.76, 1.34)    0.71 (-3.50, 4.99)   

Methyl-paraben                

Continuousd 0.91 (0.83, 1.00)  0.05  0.98 (0.85, 1.12)  0.72  0.96 (0.89, 1.03)  0.24  -0.48 (-1.45, 0.49)  0.33 
   T1 1.00 0.09 0.24  1.00 0.92 0.93  1.00 0.12 0.09  0.00 0.24 0.18 
   T2 0.70 (0.49, 0.99)    1.12 (0.66, 1.89)    0.81 (0.61, 1.07)    1.62 (-2.59, 5.82)   
   T3 0.75 (0.53, 1.06)    1.05 (0.61, 1.82)    0.75 (0.56, 1.00)    -1.98 (-6.02, 2.07)   

Ethyl-paraben                

Continuousd 0.99 (0.93, 1.07)  0.88  1.10 (0.99, 1.23)  0.08  1.00 (0.96, 1.06)  0.98  -0.57 (-1.32, 0.19)  0.14 
   T1 1.00 0.82 0.53  1.00 0.08 0.05  1.00 0.03 0.38  0.00 0.55 0.28 
   T2 1.04 (0.72, 1.49)    1.47 (0.83, 2.60)    1.41 (1.06, 1.87)    -0.35 (-4.56, 3.87)   
   T3 1.12 (0.78, 1.62)    1.91 (1.08, 3.37)    1.03 (0.76, 1.39)    -2.11 (-6.26, 2.04)   

Propyl-paraben                

Continuousd 0.97 (0.90, 1.04)  0.40  1.01 (0.90, 1.14)  0.83  0.96 (0.91, 1.03)  0.25  -0.30 (-1.11, 0.52)  0.47 
   T1 1.00 0.71 0.57  1.00 0.75 0.97  1.00 0.34 0.17  0.00 0.91 0.86 
   T2 1.09 (0.77, 1.55)    1.22 (0.72, 2.07)    0.91 (0.69, 1.20)    -0.91 (-5.03, 3.20)   
   T3 0.94 (0.66, 1.35)    1.08 (0.63, 1.86)    0.81 (0.61, 1.07)    -0.57 (-4.71, 3.56)   

Butyl-paraben                

Continuousd 0.97 (0.90, 1.05)  0.45  1.00 (0.89, 1.11)  0.93  0.98 (0.93, 1.04)  0.56  -0.43 (-1.23, 0.37)  0.29 
   T1 1.00 0.34 0.35  1.00 0.67 0.85  1.00 0.08 0.08  0.00 0.47 0.34 
   T2 1.21 (0.85, 1.73)    1.28 (0.75, 2.19)    1.20 (0.90, 1.60)    -1.72 (-5.85, 2.41)   
   T3 0.94 (0.64, 1.38)    1.19 (0.67, 2.12)    0.87 (0.64, 1.17)    -2.56 (-6.74, 1.62)   

∑Parabens                

Continuousd 0.91 (0.83, 1.00)  0.04  0.98 (0.85, 1.13)  0.79  0.96 (0.89, 1.03)  0.26  -0.45 (-1.43, 0.52)  0.36 
   T1 1.00 0.15 0.16  1.00 0.82 0.67  1.00 0.18 0.27  0.00 0.52 0.31 
   T2 0.75 (0.53, 1.07)    1.10 (0.66, 1.83)    0.79 (0.60, 1.05)    0.73 (-3.48, 4.95)   
   T3 0.73 (0.51, 1.05)    0.92 (0.53, 1.60)    0.81 (0.61, 1.07)    -1.63 (-5.70, 2.44)   
HR = hazard ratio; FEV1%= forced expiratory volume in 1 second expressed in percent predicted; CI = confidence interval; ∑Dichlorophenols = molar sum of Dichlorophenols (2,4-, 2,5- 
dichlorophenols);  ∑Parabens = molar sum of parabens (Methyl-, Ethyl-, Propyl-, Butyl-parabens). 
 
a Models adjusted for creatinine, centre, residence area, parental history of asthma or allergies, maternal ethnicity, maximal parental education level, maternal or passive smoking during 
pregnancy, postnatal passive smoking, older siblings, day-care. Missing values in covariates were imputed for at least one covariate in 277 boys, using the MICE multiple imputation method 
(100 imputations were performed) b additionally adjusted for child’s height and age. 
c Crude concentrations.  
d Estimates for 1 unit increase in ln-transformed standardized concentration. 
e p-values of heterogeneity test.  
Italicized p-values are p-values of monotonic trend test. 
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Table 4.11 – Adjusted associations between pregnancy phthalate metabolites standard-
ized concentrations and respiratory outcomes (n=447) and FEV1% (n=171) in boys
from non-smoking mothers.

 
Wheezing  

(until age 5y)a 
 

Asthma diagnosis 
(until age 5y)a 

 
Bronchiolitis/Bronchitis  

(until age 3y)a 
 FEV1%

b 

 N = 447  N = 447  N = 447  N = 171 

Phthalatec HR (95% CI) phet
e p-value  HR (95% CI) phet

e p-value  HR (95% CI) phet
e p-value  beta (95% CI) phet

e p-value 
∑LMW                
Continuousd 0.93 (0.78, 1.11)  0.42  1.01 (0.78, 1.32)  0.93  1.05 (0.91, 1.21)  0.49  -0.13 (-2.36, 2.10)  0.91 
   T1 1.00 0.74 0.89  1.00 0.05 0.90  1.00 0.64 0.36  0.00 0.64 0.35 
   T2 1.15 (0.81, 1.64)    1.84 (1.09, 3.10)    1.07 (0.80, 1.43)    -0.56 (-4.77, 3.65)   
   T3 1.06 (0.74, 1.52)    1.18 (0.66, 2.12)    1.15 (0.86, 1.52)    -1.93 (-6.02, 2.17)   

MEP                

Continuousd 0.97 (0.84, 1.11)  0.62  1.10 (0.90, 1.34)  0.36  1.03 (0.92, 1.15)  0.60  -0.37 (-2.11, 1.37)  0.67 
   T1 1.00 0.97 0.87  1.00 0.55 0.35  1.00 0.92 0.68  0.00 0.77 0.72 
   T2 0.98 (0.69, 1.39)    1.25 (0.72, 2.15)    1.01 (0.76, 1.35)    0.81 (-3.26, 4.50)   
   T3 1.02 (0.71, 1.46)    1.34 (0.78, 2.32)    1.06 (0.80, 1.41)    -0.69 (-4.91, 3.53)   

MnBP                

Continuousd 1.04 (0.91, 1.19)  0.52  1.01 (0.83, 1.24)  0.91  1.03 (0.92, 1.15)  0.65  0.22 (-1.36, 1.79)  0.79 
   T1 1.00 0.73 0.47  1.00 0.71 0.91  1.00 0.93 0.84  0.00 0.93 0.75 
   T2 0.97 (0.67, 1.39)    1.23 (0.73, 2.08)    0.95 (0.72, 1.27)    0.09 (-4.14, 4.31)   
   T3 1.11 (0.78, 1.58)    1.04 (0.60, 1.81)    0.96 (0.72, 1.27)    -0.64 (-4.88, 3.60)   

MiBP                

Continuousd 0.95 (0.79, 1.14)  0.58  1.01 (0.77, 1.33)  0.92  0.98 (0.84, 1.14)  0.80  -0.51 (-2.62, 1.60)  0.63 
   T1 1.00 0.83 0.94  1.00 0.64 0.71  1.00 1.00 0.95  0.00 0.46 0.23 
   T2 0.89 (0.62, 1.29)    1.21 (0.71, 2.06)    1.00 (0.75, 1.34)    -0.11 (-4.34, 4.11)   
   T3 0.96 (0.67, 1.37)    0.95 (0.55, 1.64)    1.01 (0.75, 1.35)    -2.28 (-6.36, 1.80)   

∑HMW                

Continuousd 1.08 (0.90, 1.29)  0.44  1.12 (0.84, 1.48)  0.45  0.92 (0.78, 1.07)  0.27  -0.79 (-2.99, 1.41)  0.48 
   T1 1.00 0.28 0.64  1.00 0.64 0.45  1.00 0.85 0.68  0.00 0.65 0.61 
   T2 1.34 (0.93, 1.92)    0.91 (0.53, 1.58)    1.04 (0.78, 1.37)    -1.96 (-6.19, 2.27)   
   T3 1.16 (0.80, 1.68)    1.17 (0.69, 1.97)    0.95 (0.71, 1.27)    -1.23 (-5.39, 2.93)   

MCPP                

Continuousd 0.98 (0.82, 1.17)  0.85  0.94 (0.72, 1.23)  0.65  0.92 (0.79, 1.06)  0.25  0.08 (-2.08, 2.25)  0.94 
   T1 1.00 0.99 0.90  1.00 0.87 0.62  1.00 0.18 0.14  0.00 0.75 0.83 
   T2 0.99 (0.69, 1.40)    0.93 (0.55, 1.58)    1.11 (0.84, 1.46)    -0.95 (-5.14, 3.23)   
   T3 0.98 (0.68, 1.40)    0.87 (0.50, 1.49)    0.85 (0.63, 1.14)    0.28 (-3.87, 4.83)   

MBzP                

Continuousd 1.01 (0.87, 1.17)  0.90  1.22 (0.99, 1.51)  0.06  0.96 (0.85, 1.08)  0.46  0.20 (-1.62, 2.01)  0.83 
   T1 1.00 0.80 1.00  1.00 0.28 0.38  1.00 0.67 0.39  0.00 0.10 0.31 
   T2 1.13 (0.78, 1.62)    1.56 (0.88, 2.77)    1.00 (0.75, 1.33)    -4.34 (-8.55, -0.13)   
   T3 1.03 (0.72, 1.49)    1.42 (0.82, 2.47)    0.89 (0.67, 1.19)    -3.39 (-7.52, 0.73)   

MCNP                

Continuousd 1.04 (0.90, 1.19)  0.60  0.99 (0.80, 1.22)  0.91  0.93 (0.82, 1.04)  0.19  1.36 (-0.28, 3.01)  0.10 
   T1 1.00 0.70 0.40  1.00 0.24 0.41  1.00 0.95 0.88  0.00 0.09 0.19 
   T2 1.02 (0.71, 1.46)    1.60 (0.92, 2.80)    0.95 (0.72, 1.27)    -2.71 (6.83, 1.41)   
   T3 1.15 (0.81, 1.64)    1.43 (0.82, 2.49)    0.97 (0.73, 1.28)    1.97 (-2.21, 6.14)   

MCOP                

Continuousd 0.97 (0.82, 1.16)  0.77  0.95 (0.73, 1.22)  0.67  1.06 (0.93, 1.22)  0.37  -1.29 (-3.10, 0.53)  0.16 
   T1 1.00 0.50 0.31  1.00 0.62 0.82  1.00 0.33 0.82  0.00 0.46 0.37 
   T2 0.86 (0.60, 1.22)    0.76 (0.44, 1.31)    1.21 (0.91, 1.61)    -2.54 (-6.75, 1.68)   
   T3 0.81 (0.57, 1.16)    0.89 (0.53, 1.50)    1.01 (0.75, 1.36)    -1.89 (-6.03, 2.25)   

MEHHP                

Continuousd 1.09 (0.92, 1.28)  0.32  1.04 (0.80, 1.34)  0.78  0.97 (0.85, 1.11)  0.64  -0.67 (-2.57, 1.23)  0.49 
   T1 1.00 0.37 0.21  1.00 0.93 0.85  1.00 0.89 0.94  0.00 0.63 0.63 
   T2 1.22 (0.84, 1.75)    1.07 (0.63, 1.83)    1.06 (0.80, 1.41)    -1.98 (-6.04, 2.08)   
   T3 1.29 (0.90, 1.85)    0.97 (0.56, 1.67)    1.00 (0.75, 1.34)    -1.14 (-5.37, 3.10)   

MEOHP                

Continuousd 1.08 (0.92, 1.28)  0.34  1.05 (0.81, 1.36)  0.70  0.95 (0.83, 1.09)  0.49  -1.06 (-3.01, 0.89)  0.29 
   T1 1.00 0.48 0.31  1.00 0.69 0.85  1.00 0.95 0.92  0.00 0.43 0.21 
   T2 1.20 (0.83, 1.72)    0.81 (0.47, 1.40)    1.05 (0.79, 1.39)    -2.04 (-6.17, 2.10)   
   T3 1.24 (0.86, 1.78)    1.00 (0.59, 1.68)    1.02 (0.77, 1.36)    -2.63 (-6.87, 1.60)   

MECPP                

Continuousd 1.05 (0.88, 1.25)  0.58  1.07 (0.82, 1.41)  0.60  0.95 (0.82, 1.10)  0.48  -1.15 (-3.17, 0.86)  0.26 
   T1 1.00 0.40 0.36  1.00 0.97 0.80  1.00 0.96 0.79  0.00 0.12 0.04 
   T2 1.26 (0.88, 1.81)    1.04 (0.60, 1.79)    1.00 (0.75, 1.33)    -2.35 (-6.48, 1.78)   
   T3 1.23 (0.85, 1.77)    1.07 (0.63, 1.83)    1.04 (0.78, 1.38)    -4.24 (-8.30, -0.18)   

MEHP                

Continuousd 1.05 (0.91, 1.22)  0.50  1.00 (0.81, 1.25)  0.97  0.95 (0.84, 1.06)  0.35  -1.08 (-2.70, 0.53)  0.19 
   T1 1.00 0.68 0.40  1.00 0.69 0.71  1.00 0.70 0.54  0.00 0.49 0.29 
   T2 1.09 (0.76, 1.57)    0.84 (0.49, 1.44)    0.90 (0.68, 1.20)    0.25 (-3.94, 4.43)   
   T3 1.17 (0.82, 1.67)    1.05 (0.63, 1.76)    0.90 (0.68, 1.20)    -2.05 (-6.20, 2.11)   

∑DEHP                

Continuousd 1.07 (0.90, 1.28)  0.42  1.05 (0.80, 1.37)  0.72  0.95 (0.82, 1.09)  0.45  -1.04 (-3.03, 0.96)  0.30 
   T1 1.00 0.30 0.40  1.00 0.97 0.93  1.00 0.89 0.90  0.00 0.44 0.34 
   T2 1.32 (0.92, 1.90)    0.95 (0.56, 1.63)    1.06 (0.80, 1.41)    -2.53 (-6.61, 1.54)   
   T3 1.23 (0.85, 1.77)    1.01 (0.60, 1.71)    0.99 (0.75, 1.33)    -1.98 (-6.15, 2.19)   
HR = hazard ratio; FEV1%= forced expiratory volume in 1 second expressed in percent predicted; CI = confidence interval; ∑LMW = molar sum of Low Molecular Weight phthalates (MEP, 
MnBP, MiBP); ∑HMW = molar sum of High Molecular Weight phthalates (MCPP, MBzP, MCNP, MCOP, MEHHP, MEOHP, MECPP, MEHP); ∑DEHP = molar sum of di(2-ethylhexyl) 
phthalate metabolites (MEHHP, MEOHP, MECPP, MEHP). Parent compounds and associated metabolites are detailed in Table S1 (Supplemental material) 
 
a Models adjusted for creatinine, centre, residence area, parental history of asthma or allergies, maternal ethnicity, maximal parental education level, maternal or passive smoking during 
pregnancy, postnatal passive smoking, older siblings, day-care. Missing values in covariates were imputed for at least one covariate in 277 boys, using the MICE multiple imputation 
method (100 imputations were performed) b additionally adjusted for child’s height and age. 
c Crude concentrations.  
d Estimates for 1 unit increase in ln-transformed standardized concentration. 
e p-values of heterogeneity test.  
Italicized p-values are p-values of monotonic trend test. 
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Table 4.12 – Adjusted associations between pregnancy phenols standardized concen-
trations and respiratory outcomes (n=470) and FEV1% (n=185) in boys from non-
asthmatic parents.

 
Wheezing  

(until age 5y)a 
 

Asthma diagnosis 
(until age 5y)a 

 
Bronchiolitis/Bronchitis  

(until age 3y)a 
 FEV1%

b 

 N = 470  N = 470  N = 470  N = 185 

Phenolc HR (95% CI) phet
e p-value  HR (95% CI) phet

e p-value  HR (95% CI) phet
e p-value  beta (95% CI) phet

e p-value 
2,4-Dichlorophenol                
Continuousd 1.06 (0.94, 1.20)  0.36  0.95 (0.78, 1.16)  0.62  0.95 (0.86, 1.06)  0.38  -0.30 (-1.77, 1.17)  0.69 
   T1 1.00 0.73 0.91  1.00 0.34 0.38  1.00 0.52 0.34  0.00 0.91 0.76 
   T2 1.15 (0.81, 1.63)    1.28 (0.76, 2.14)    1.06 (0.80, 1.39)    -0.73 (-4.73, 3.28)   
   T3 1.06 (0.75, 1.51)    0.86 (0.49, 1.49)    0.90 (0.69, 1.18)    -0.84 (-4.81, 3.14)   

2,5-Dichlorophenol                

Continuousd 1.08 (0.99, 1.18)  0.08  1.01 (0.88, 1.16)  0.86  0.99 (0.92, 1.07)  0.86  -0.02 (-1.00, 1.03)  0.97 
   T1 1.00 0.11 0.22  1.00 0.23 0.43  1.00 0.76 0.58  0.00 0.96 0.78 
   T2 1.42 (0.99, 2.03)    1.59 (0.91, 2.76)    1.08 (0.82, 1.44)    0.06 (-3.91, 4.03)   
   T3 1.40 (0.98, 2.00)    1.46 (0.84, 2.54)    1.11 (0.84, 1.46)    0.50 (-3.42, 4.42)   

∑Dichlorophenols                

Continuousd 1.08 (0.99, 1.18)  0.10  1.00 (0.87, 1.16)  0.95  0.99 (0.92, 1.07)  0.80  -0.02 (-1.09, 1.04)  0.97 
   T1 1.00 0.11 0.16  1.00 0.20 0.28  1.00 0.79 0.49  0.00 0.99 0.91 
   T2 1.39 (0.97, 1.99)    1.57 (0.90, 2.75)    1.02 (0.77, 1.35)    0.21 (-3.77, 4.19)   
   T3 1.42 (1.00, 2.02)    1.54 (0.89, 2.68)    1.10 (0.83, 1.45)    0.27 (-3.67, 4.21)   

Bisphenol A                

Continuousd 0.94 (0.77, 1.15)  0.56  1.25 (0.93, 1.66)  0.14  1.11 (0.95, 1.29)  0.18  -1.40 (-3.47, 0.67)  0.18 
   T1 1.00 0.86 0.84  1.00 0.47 0.22  1.00 0.50 0.26  0.00 0.45 0.25 
   T2 0.91 (0.64, 1.28)    1.12 (0.63, 1.98)    1.10 (0.83, 1.45)    -1.79 (-5.69, 2.10)   
   T3 0.95 (0.66, 1.34)    1.38 (0.80, 2.39)    1.18 (0.89, 1.57)    -2.49 (-6.47, 1.49)   

Benzophenone-3                

Continuousd 0.95 (0.87, 1.03)  0.21  0.96 (0.84, 1.10)  0.57  1.00 (0.93, 1.07)  0.97  -0.80 (-1.82, 0.22)  0.12 
   T1 1.00 0.13 0.05  1.00 0.36 0.17  1.00 0.78 0.83  0.00 0.36 0.16 
   T2 0.89 (0.63, 1.24)    0.86 (0.52, 1.43)    0.91 (0.69, 1.19)    -0.75 (-4.65, 3.14)   
   T3 0.69 (0.48, 0.99)    0.67 (0.38, 1.16)    0.93 (0.71, 1.24)    -2.73 (-6.61, 1.15)   

Triclosan                

Continuousd 0.99 (0.93, 1.04)  0.62  0.99 (0.91, 1.08)  0.89  0.99 (0.95, 1.04)  0.70  0.07 (-0.57, 0.71)  0.83 
   T1 1.00 0.97 0.80  1.00 1.00 0.93  1.00 0.94 0.73  0.00 0.99 0.94 
   T2 0.98 (0.70, 1.39)    1.00 (0.59, 1.70)    0.99 (0.75, 1.30)    -0.16 (-4.11, 3.79)   
   T3 0.96 (0.68, 1.35)    0.98 (0.58, 1.67)    0.95 (0.73, 1.25)    0.18 (-4.07, 3.70)   

Methyl-paraben                

Continuousd 0.93 (0.85, 1.02)  0.11  1.02 (0.89, 1.17)  0.75  0.94 (0.87, 1.01)  0.10  -0.46 (-1.40, 0.49)  0.34 
   T1 1.00 0.09 0.16  1.00 0.87 0.94  1.00 0.03 0.01  0.00 0.18 0.31 
   T2 0.71 (0.50, 1.00)    1.14 (0.68, 1.91)    0.81 (0.62, 1.06)    2.44 (-1.47, 6.35)   
   T3 0.73 (0.52, 1.03)    1.01 (0.58, 1.75)    0.68 (0.52, 0.90)    -1.21 (-5.02, 2.59)   

Ethyl-paraben                

Continuousd 1.02 (0.95, 1.09)  0.58  1.11 (0.99, 1.23)  0.08  0.99 (0.94, 1.04)  0.69  -0.85 (-1.57, -0.13)  0.02 
   T1 1.00 0.49 0.82  1.00 0.08 0.17  1.00 0.001 0.08  0.00 0.10 0.04 
   T2 1.23 (0.87, 1.75)    1.80 (1.03, 3.16)    1.51 (1.15, 1.98)    -1.98 (-5.79, 1.83)   
   T3 1.13 (0.79, 1.61)    1.82 (1.02, 3.25)    0.95 (0.71, 1.26)    -4.28 (-8.15, -0.41)   

Propyl-paraben                

Continuousd 0.94 (0.88, 1.02)  0.12  1.00 (0.90, 1.12)  0.95  0.96 (0.91, 1.02)  0.19  -0.19 (-0.98, 0.60)  0.63 
   T1 1.00 0.62 0.45  1.00 0.91 0.75  1.00 0.27 0.22  0.00 0.46 0.46 
   T2 0.88 (0.63, 1.24)    0.92 (0.55, 1.61)    0.84 (0.64, 1.11)    1.80 (-2.06, 5.66)   
   T3 0.85 (0.60, 1.20)    1.06 (0.62, 1.81)    0.81 (0.61, 1.06)    -0.62 (-4.52, 3.28)   

Butyl-paraben                

Continuousd 0.99 (0.92, 1.06)  0.77  0.99 (0.88, 1.11)  0.87  0.98 (0.93, 1.03)  0.45  -0.91 (-1.68, -0.14)  0.02 
   T1 1.00 0.46 0.31  1.00 0.98 0.84  1.00 0.004 0.01  0.00 0.15 0.06 
   T2 1.11 (0.79, 1.57)    1.00 (0.59, 1.70)    1.26 (0.96, 1.66)    -1.30 (-5.12, 2.52)   
   T3 0.89 (0.62, 1.29)    1.05 (0.60, 1.85)    0.79 (0.59, 1.06)    -3.78 (-7.63, 0.07)   

∑Parabens                

Continuousd 0.93 (0.85, 1.01)  0.09  1.02 (0.89, 1.17)  0.79  0.95 (0.88, 1.02)  0.13  -0.48 (-1.43, 0.47)  0.32 
   T1 1.00 0.13 0.14  1.00 0.89 0.73  1.00 0.07 0.06  0.00 0.43 0.67 
   T2 0.75 (0.54, 1.06)    1.06 (0.64, 1.78)    0.78 (0.60, 1.02)    2.07 (-1.88, 6.01)   
   T3 0.73 (0.52, 1.04)    0.93 (0.54, 1.61)    0.74 (0.56, 0.98)    -0.38 (-4.19, 3.44)   
HR = hazard ratio; FEV1%= forced expiratory volume in 1 second expressed in percent predicted; CI = confidence interval; ∑Dichlorophenols = molar sum of Dichlorophenols (2,4-, 2,5- 
dichlorophenols);  ∑Parabens = molar sum of parabens (Methyl-, Ethyl-, Propyl-, Butyl-parabens). 
 
a Models adjusted for creatinine, centre, residence area, parental history of asthma or allergies, maternal ethnicity, maximal parental education level, maternal or passive smoking during 
pregnancy, postnatal passive smoking, older siblings, day-care. Missing values in covariates were imputed for at least one covariate in 277 boys, using the MICE multiple imputation 
method (100 imputations were performed) b additionally adjusted for child’s height and age. 
c Crude concentrations.  
d Estimates for 1 unit increase in ln-transformed standardized concentration. 
e p-values of heterogeneity test.  
Italicized p-values are p-values of monotonic trend test. 
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Table 4.13 – Adjusted associations between pregnancy phthalate metabolites standard-
ized concentrations and respiratory outcomes (n=447) and FEV1% (n=171) in boys
from non-smoking mothers.

 
Wheezing  

(until age 5y)a 
 

Asthma diagnosis 
(until age 5y)a 

 
Bronchiolitis/Bronchitis  

(until age 3y)a 
 FEV1%

b 

 N = 470  N = 470  N = 470  N = 185 

Phthalatec HR (95% CI) phet
e p-value  HR (95% CI) phet

e p-value  HR (95% CI) phet
e p-value  beta (95% CI) phet

e p-value 
∑LMW                
Continuousd 0.90 (0.76, 1.07)  0.25  0.92 (0.71, 1.20)  0.55  0.97 (0.85, 1.11)  0.71  -1.29 (-3.26, 0.68)  0.20 
   T1 1.00 0.42 0.26  1.00 0.88 0.67  1.00 0.84 0.61  0.00 0.10 0.03 
   T2 0.85 (0.60, 1.19)    1.04 (0.62, 1.74)    0.94 (0.72, 1.24)    -0.32 (-4.18, 3.54)   
   T3 0.80 (0.56, 1.13)    0.90 (0.52, 1.56)    0.92 (0.70, 1.22)    -3.71 (-7.50, -0.07)   

MEP                

Continuousd 0.95 (0.83, 1.08)  0.43  1.01 (0.82, 1.24)  0.94  0.99 (0.90, 1.10)  0.91  -1.19 (-2.75, 0.36)  0.13 
   T1 1.00 0.65 0.35  1.00 0.80 0.51  1.00 0.69 0.66  0.00 0.43 0.26 
   T2 0.95 (0.67, 1.34)    0.92 (0.54, 1.57)    1.09 (0.83, 1.43)    -2.01 (-5.87, 1.86)   
   T3 0.85 (0.60, 1.21)    0.83 (0.48, 1.43)    0.97 (0.73, 1.28)    -2.36 (-6.24, 1.51)   

MnBP                

Continuousd 1.00 (0.88, 1.14)  0.97  0.97 (0.78, 1.19)  0.74  0.95 (0.85, 1.06)  0.31  -0.18 (-1.65, 1.30)  0.81 
   T1 1.00 0.97 0.85  1.00 0.74 0.56  1.00 0.10 0.34  0.00 0.42 0.51 
   T2 1.04 (0.74, 1.47)    0.85 (0.50, 1.42)    0.75 (0.57, 0.98)    1.76 (-2.20, 5.72)   
   T3 1.04 (0.73, 1.49)    0.83 (0.48, 1.42)    0.80 (0.61, 1.06)    -0.72 (-4.75, 3.32)   

MiBP                

Continuousd 1.01 (0.85, 1.20)  0.88  1.15 (0.87, 1.51)  0.33  1.08 (0.94, 1.24)  0.29  -0.77 (-2.68, 1.14)  0.43 
   T1 1.00 0.81 0.83  1.00 0.98 0.97  1.00 0.86 0.59  0.00 0.38 0.23 
   T2 0.91 (0.63, 1.30)    1.06 (0.62, 1.80)    1.03 (0.78, 1.37)    0.80 (-3.11, 4.71)   
   T3 1.01 (0.71, 1.43)    1.02 (0.60, 1.75)    1.08 (0.82, 1.43)    -1.88 (-5.76, 2.01)   

∑HMW                

Continuousd 1.12 (0.93, 1.34)  0.23  1.15 (0.86, 1.53)  0.35  0.95 (0.82, 1.10)  0.49  -1.31 (-3.47, 0.84)  0.23 
   T1 1.00 0.39 0.89  1.00 0.93 0.81  1.00 0.55 0.37  0.00 0.23 0.76 
   T2 1.24 (0.88, 1.76)    1.06 (0.62, 1.80)    0.88 (0.67, 1.16)    -3.33 (-7.18, 0.52)   
   T3 1.03 (0.72, 1.47)    0.95 (0.56, 1.64)    0.87 (0.66, 1.14)    -1.46 (-5.36, 2.44)   

MCPP                

Continuousd 0.99 (0.84, 1.17)  0.90  0.97 (0.75, 1.27)  0.85  0.87 (0.76, 1.00)  0.04  -0.28 (-2.28, 1.72)  0.78 
   T1 1.00 0.56 0.80  1.00 0.98 0.86  1.00 0.15 0.08  0.00 0.23 0.50 
   T2 1.18 (0.83, 1.65)    0.98 (0.57, 1.66)    1.05 (0.81, 1.38)    -2.66 (-6.47, 1.15)   
   T3 1.00 (0.70, 1.43)    0.95 (0.56, 1.63)    0.81 (0.61, 1.07)    0.38 (-3.51, 4.27)   

MBzP                

Continuousd 1.01 (0.87, 1.16)  0.95  1.16 (0.92, 1.45)  0.20  1.00 (0.89, 1.12)  0.98  -0.82 (-2.60, 0.95)  0.36 
   T1 1.00 0.75 0.53  1.00 0.62 0.95  1.00 0.97 0.96  0.00 0.13 0.05 
   T2 1.04 (0.74, 1.48)    1.29 (0.75, 2.23)    0.97 (0.74, 1.28)    -2.00 (-5.91, 1.92)   
   T3 0.92 (0.64, 1.31)    1.08 (0.61, 1.89)    1.00 (0.76, 1.31)    -3.92 (-7.77, -0.08)   

MCNP                

Continuousd 1.12 (0.98, 1.28)  0.09  1.12 (0.92, 1.36)  0.27  0.98 (0.88, 1.09)  0.69  -0.06 (-1.74, 1.62)  0.94 
   T1 1.00 0.31 0.15  1.00 0.60 0.46  1.00 0.96 0.98  0.00 0.51 0.61 
   T2 1.16 (0.81, 1.65)    1.27 (0.73, 2.20)    1.04 (0.79, 1.37)    -2.14 (-6.02, 1.73)   
   T3 1.31 (0.93, 1.85)    1.29 (0.75, 2.21)    1.02 (0.77, 1.33)    -1.82 (-5.79, 2.15)   

MCOP                

Continuousd 1.07 (0.91, 1.27)  0.40  1.09 (0.85, 1.38)  0.50  1.15 (1.02, 1.31)  0.03  -1.78 (-3.50, -0.06)  0.04 
   T1 1.00 0.68 0.69  1.00 0.81 0.66  1.00 0.63 0.66  0.00 0.11 0.04 
   T2 1.12 (0.79, 1.58)    0.91 (0.53, 1.57)    1.14 (0.87, 1.50)    -0.87 (-4.74, 3.00)   
   T3 0.96 (0.68, 1.37)    1.09 (0.65, 1.85)    1.09 (0.83, 1.44)    -3.91 (-7.77, -0.05)   

MEHHP                

Continuousd 1.14 (0.96, 1.36)  0.13  1.10 (0.85, 1.42)  0.48  1.00 (0.88, 1.14)  0.98  -0.86 (-2.70, 0.97)  0.35 
   T1 1.00 0.21 0.58  1.00 0.37 0.76  1.00 0.62 0.82  0.00 0.22 0.75 
   T2 1.37 (0.97, 1.95)    1.38 (0.81, 2.35)    1.12 (0.85, 1.47)    -3.20 (-6.98, 0.58)   
   T3 1.18 (0.82, 1.69)    1.00 (0.57, 1.74)    0.99 (0.75, 1.31)    -0.79 (-4.73, 3.15)   

MEOHP                

Continuousd 1.13 (0.95, 1.33)  0.16  1.08 (0.83, 1.41)  0.56  0.97 (0.85, 1.11)  0.68  -1.25 (-3.13, 0.63)  0.19 
   T1 1.00 0.09 0.66  1.00 0.72 0.54  1.00 0.25 0.62  0.00 0.10 0.51 
   T2 1.46 (1.03, 2.07)    1.07 (0.64, 1.81)    1.19 (0.91, 1.57)    -4.19 (-8.02, -0.35)   
   T3 1.15 (0.80, 1.66)    0.86 (0.50, 1.49)    0.96 (0.73, 1.28)    -1.74 (-5.62, 2.13)   

MECPP                

Continuousd 1.13 (0.95, 1.34)  0.17  1.13 (0.87, 1.49)  0.36  0.95 (0.82, 1.10)  0.48  -1.21 (-3.22, 0.80)  0.24 
   T1 1.00 0.11 0.47  1.00 0.78 0.92  1.00 0.91 0.66  0.00 0.28 0.52 
   T2 1.45 (1.02, 2.06)    1.21 (0.70, 2.07)    0.98 (0.75, 1.29)    -3.18 (-7.10, 0.74)   
   T3 1.23 (0.86, 1.76)    1.07 (0.62, 1.85)    0.94 (0.72, 1.24)    -1.91 (-5.81, 2.00)   

MEHP                

Continuousd 1.04 (0.91, 1.20)  0.55  1.06 (0.86, 1.32)  0.57  0.93 (0.83, 1.04)  0.21  -0.81 (-2.32, 0.70)  0.29 
   T1 1.00 0.39 0.19  1.00 0.31 0.17  1.00 0.25 0.75  0.00 0.69 0.39 
   T2 1.00 (0.70, 1.43)    0.93 (0.53, 1.64)    0.81 (0.62, 1.07)    -0.34 (-4.21, 3.53)   
   T3 1.23 (0.87, 1.73)    1.36 (0.81, 2.81)    0.99 (0.76, 1.30)    -1.61 (-5.51, 2.29)   

∑DEHP                

Continuousd 1.13 (0.95, 1.34)  0.18  1.10 (0.84, 1.45)  0.48  0.96 (0.83, 1.11)  0.57  -1.14 (-3.10, 0.82)  0.25 
   T1 1.00 0.10 0.78  1.00 0.66 0.62  1.00 0.69 0.80  0.00 0.16 0.70 
   T2 1.45 (1.02, 2.07)    1.16 (0.68, 1.98)    1.10 (0.84, 1.45)    -3.37 (-7.23, 0.48)   
   T3 1.14 (0.79, 1.63)    0.91 (0.53, 1.57)    0.99 (0.75, 1.30)    -0.30 (-4.21, 3.60)   
HR = hazard ratio; FEV1%= forced expiratory volume in 1 second expressed in percent predicted; CI = confidence interval; ∑LMW = molar sum of Low Molecular Weight phthalates (MEP, 
MnBP, MiBP); ∑HMW = molar sum of High Molecular Weight phthalates (MCPP, MBzP, MCNP, MCOP, MEHHP, MEOHP, MECPP, MEHP); ∑DEHP = molar sum of di(2-ethylhexyl) 
phthalate metabolites (MEHHP, MEOHP, MECPP, MEHP). Parent compounds and associated metabolites are detailed in Table S1 (Supplemental material) 
 
a Models adjusted for creatinine, centre, residence area, parental history of asthma or allergies, maternal ethnicity, maximal parental education level, maternal or passive smoking during 
pregnancy, postnatal passive smoking, older siblings, day-care. Missing values in covariates were imputed for at least one covariate in 277 boys, using the MICE multiple imputation 
method (100 imputations were performed) b additionally adjusted for child’s height and age. 
c Crude concentrations.  
d Estimates for 1 unit increase in ln-transformed standardized concentration. 
e p-values of heterogeneity test.  
Italicized p-values are p-values of monotonic trend test. 
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Table 4.14 – Adjusted associations between pregnancy phenols standardized concen-
trations and respiratory outcomes (n=562) and FEV1% (n=217) in full-term boys.

 
Wheezing  

(until age 5y)a 
 

Asthma diagnosis 
(until age 5y)a 

 
Bronchiolitis/Bronchitis  

(until age 3y)a 
 FEV1%

b 

 N = 562  N = 562  N = 562  N = 217 

Phenolc HR (95% CI) phet
e p-value  HR (95% CI) phet

e p-value  HR (95% CI) phet
e p-value  beta (95% CI) phet

e p-value 
2,4-Dichlorophenol                
Continuousd 1.04 (0.93, 1.17)  0.45  1.07 (0.90, 1.27)  0.45  0.98 (0.89, 1.08)  0.63  0.62 (-0.69, 1.93)  0.35 
   T1 1.00 0.38 0.97  1.00 0.28 0.91  1.00 0.39 0.42  0.00 0.62 0.95 
   T2 1.24 (0.90, 1.70)    1.45 (0.91, 2.31)    1.12 (0.87, 1.44)    1.83 (-1.91, 5.57)   
   T3 1.06 (0.77, 1.46)    1.14 (0.70, 1.86)    0.94 (0.73, 1.21)    0.67 (-2.93, 4.26)   

2,5-Dichlorophenol                

Continuousd 1.07 (0.99, 1.16)  0.08  1.07 (0.95, 1.20)  0.25  1.00 (0.94, 1.07)  1.00  0.27 (-0.62, 1.16)  0.55 
   T1 1.00 0.01 0.19  1.00 0.20 0.20  1.00 0.65 0.57  0.00 0.93 0.80 
   T2 1.68 (1.21, 2.33)    1.45 (0.89, 2.35)    0.92 (0.71, 1.19)    -0.44 (-4.13, 3.24)   
   T3 1.49 (1.07, 2.07)    1.50 (0.93, 2.43)    1.03 (0.80, 1.33)    0.25 (-3.36, 3.86)   

∑Dichlorophenols                

Continuousd 1.07 (0.99, 1.16)  0.10  1.07 (0.95, 1.21)  0.27  1.00 (0.93, 1.07)  0.97  0.32 (-0.62, 1.26)  0.50 
   T1 1.00 0.06 0.18  1.00 0.21 0.19  1.00 0.71 0.42  0.00 0.87 0.89 
   T2 1.44 (1.04, 1.99)    1.42 (0.87, 2.30)    1.00 (0.77, 1.29)    -0.89 (-4.61, 2.82)   
   T3 1.40 (1.01, 1.93)    1.51 (0.93, 2.44)    1.10 (0.85, 1.41)    -0.08 (-3.68, 3.53)   

Bisphenol A                

Continuousd 0.98 (0.83, 1.16)  0.83  1.19 (0.94, 1.51)  0.15  1.14 (0.99, 1.31)  0.06  -0.66 (-2.53, 1.20)  0.48 
   T1 1.00 1.00 0.98  1.00 0.45 0.21  1.00 0.39 0.18  0.00 0.59 0.63 
   T2 1.01 (0.74, 1.38)    1.07 (0.65, 1.76)    1.10 (0.86, 1.42)    -1.85 (-5.45, 1.76)   
   T3 1.01 (0.73, 1.39)    1.32 (0.83, 2.12)    1.20 (0.93, 1.54)    -1.28 (-4.98, 2.42)   

Benzophenone-3                

Continuousd 0.92 (0.85, 1.00)  0.06  0.94 (0.83, 1.06)  0.30  1.00 (0.93, 1.06)  0.90  -0.32 (-1.29, 0.65)  0.69 
   T1 1.00 0.03 0.01  1.00 0.11 0.07  1.00 0.72 0.79  0.00 0.89 0.75 
   T2 0.88 (0.65, 1.20)    0.76 (0.49, 1.20)    0.90 (0.70, 1.16)    -0.71 (-4.33, 2.91)   
   T3 0.65 (0.47, 0.90)    0.59 (0.36, 0.97)    0.93 (0.72, 1.20)    -0.78 (-4.34, 2.78)   

Triclosan                

Continuousd 0.98 (0.94, 1.04)  0.62  0.98 (0.91, 1.06)  0.63  1.00 (0.96, 1.04)  0.94  0.10 (-0.48, 0.69)  0.73 
   T1 1.00 0.88 0.63  1.00 0.88 0.75  1.00 0.98 0.95  0.00 0.91 0.82 
   T2 0.97 (0.71, 1.32)    1.09 (0.69, 1.72)    1.02 (0.80, 1.31)    0.52 (-3.04, 4.08)   
   T3 0.92 (0.68, 1.26)    0.97 (0.60, 1.55)    1.00 (0.78, 1.29)    -0.25 (-3.88, 3.38)   

Methyl-paraben                

Continuousd 0.93 (0.85, 1.01)  0.07  1.01 (0.89, 1.14)  0.93  0.95 (0.89, 1.02)  0.14  -0.42 (-1.29, 0.44)  0.33 
   T1 1.00 0.08 0.14  1.00 0.96 0.99  1.00 0.06 0.03  0.00 0.26 0.22 
   T2 0.74 (0.54, 1.00)    0.94 (0.59, 1.49)    0.85 (0.66, 1.08)    1.57 (-2.08, 5.22)   
   T3 0.74 (0.54, 1.01)    0.99 (0.61, 1.59)    0.73 (0.57, 0.95)    -1.51 (-5.03, 2.01)   

Ethyl-paraben                

Continuousd 1.01 (0.95, 1.07)  0.86  1.10 (1.00, 1.22)  0.04  0.99 (0.95, 1.04)  0.80  -0.52 (-1.19, 0.15)  0.13 
   T1 1.00 0.65 0.83  1.00 0.05 0.10  1.00 0.01 0.29  0.00 0.53 0.31 
   T2 1.16 (0.85, 1.59)    1.67 (1.02, 2.74)    1.38 (1.07, 1.78)    -1.05 (-4.65, 2.55)   
   T3 1.10 (0.79, 1.51)    1.79 (1.08, 2.98)    1.01 (0.78, 1.31)    -2.05 (-5.64, 1.54)   

Propyl-paraben                

Continuousd 0.95 (0.89, 1.02)  0.18  0.99 (0.89, 1.09)  0.79  0.97 (0.92, 1.03)  0.29  -0.18 (-0.91, 0.56)  0.63 
   T1 1.00 0.24 0.31  1.00 0.72 0.72  1.00 0.37 0.22  0.00 0.83 0.55 
   T2 0.79 (0.58, 1.08)    0.83 (0.52, 1.32)    0.90 (0.70, 1.15)    0.05 (-3.56, 3.66)   
   T3 0.80 (0.58, 1.09)    0.87 (0.54, 1.40)    0.84 (0.65, 1.08)    -0.95 (-4.53, 2.63)   

Butyl-paraben                

Continuousd 0.98 (0.92, 1.05)  0.60  1.00 (0.90, 1.10)  0.95  0.99 (0.94, 1.04)  0.73  -0.36 (-1.07, 0.35)  0.32 
   T1 1.00 0.12 0.13  1.00 0.58 0.78  1.00 0.02 0.03  0.00 0.47 0.53 
   T2 1.23 (0.90, 1.67)    1.28 (0.80, 2.06)    1.22 (0.95, 1.57)    -1.94 (-5.50, 1.62)   
   T3 0.88 (0.63, 1.23)    1.20 (0.72, 1.99)    0.85 (0.65, 1.10)    -1.97 (-5.60, 1.66)   

∑Parabens                

Continuousd 0.92 (0.85, 1.00)  0.06  1.01 (0.89, 1.14)  0.93  0.95 (0.89, 1.02)  0.16  -0.42 (-1.28, 0.45)  0.35 
   T1 1.00 0.07 0.08  1.00 0.90 0.73  1.00 0.11 0.19  0.00 0.19 0.26 
   T2 0.76 (0.56, 1.03)    1.05 (0.66, 1.65)    0.79 (0.62, 1.02)    2.15 (-1.47, 5.78)   
   T3 0.72 (0.52, 0.98)    0.94 (0.58, 1.52)    0.80 (0.62, 1.03)    -1.20 (-4.73, 2.32)   
HR = hazard ratio; FEV1%= forced expiratory volume in 1 second expressed in percent predicted; CI = confidence interval; ∑Dichlorophenols = molar sum of Dichlorophenols (2,4-, 2,5- 
dichlorophenols);  ∑Parabens = molar sum of parabens (Methyl-, Ethyl-, Propyl-, Butyl-parabens). 
 
a Models adjusted for creatinine, centre, residence area, parental history of asthma or allergies, maternal ethnicity, maximal parental education level, maternal or passive smoking during 
pregnancy, postnatal passive smoking, older siblings, day-care. Missing values in covariates were imputed for at least one covariate in 277 boys, using the MICE multiple imputation 
method (100 imputations were performed) b additionally adjusted for child’s height and age. 
c Crude concentrations.  
d Estimates for 1 unit increase in ln-transformed standardized concentration. 
e p-values of heterogeneity test.  
Italicized p-values are p-values of monotonic trend test. 
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Table 4.15 – Adjusted associations between pregnancy phthalate metabolites standard-
ized concentrations and respiratory outcomes (n=562) and FEV1% (n=217) in full-term
boys.

 
Wheezing  

(until age 5y)a 
 

Asthma diagnosis 
(until age 5y)a 

 
Bronchiolitis/Bronchitis  

(until age 3y)a 
 FEV1%

b 

 N = 562  N = 562  N = 562  N = 217 

Phthalatec HR (95% CI) phet
e p-value  HR (95% CI) phet

e p-value  HR (95% CI) phet
e p-value  beta (95% CI) phet

e p-value 
∑LMW                
Continuousd 0.94 (0.81, 1.10)  0.46  0.99 (0.79, 1.24)  0.93  1.00 (0.88, 1.13)  0.96  -0.18 (-1.98, 1.63)  0.85 
   T1 1.00 0.75 0.58  1.00 0.67 0.92  1.00 0.84 0.72  0.00 0.26 0.10 
   T2 1.06 (0.77, 1.44)    1.21 (0.77, 1.90)    1.07 (0.83, 1.38)    -0.65 (-4.22, 2.93)   
   T3 0.93 (0.68, 1.29)    1.02 (0.63, 1.66)    1.06 (0.82, 1.37)    -2.82 (-6.35, 0.71)   

MEP                

Continuousd 0.97 (0.86, 1.10)  0.64  1.10 (0.92, 1.31)  0.29  1.02 (0.93, 1.12)  0.67  -0.01 (-1.46, 1.44)  0.98 
   T1 1.00 1.00 0.94  1.00 0.51 0.33  1.00 0.60 0.50  0.00 0.99 0.95 
   T2 1.01 (0.74, 1.38)    0.91 (0.56, 1.48)    1.12 (0.87, 1.44)    0.16 (-3.40, 3.71)   
   T3 1.01 (0.74, 1.39)    1.19 (0.75, 1.89)    1.12 (0.86, 1.44)    -0.08 (-3.69, 3.54)   

MnBP                

Continuousd 1.03 (0.91, 1.16)  0.62  0.93 (0.77, 1.12)  0.43  0.97 (0.88, 1.07)  0.54  -0.27 (-1.66, 1.12)  0.70 
   T1 1.00 0.61 0.42  1.00 0.56 0.31  1.00 0.51 0.51  0.00 0.95 0.82 
   T2 0.95 (0.69, 1.30)    0.87 (0.55, 1.37)    0.87 (0.68, 1.12)    0.27 (-3.33, 3.87)   
   T3 1.10 (0.81, 1.51)    0.77 (0.48, 1.24)    0.89 (0.69, 1.15)    -0.33 (-4.00, 3.34)   

MiBP                

Continuousd 0.97 (0.83, 1.13)  0.67  1.00 (0.79, 1.27)  0.99  1.01 (0.89, 1.15)  0.85  -1.30 (-3.02, 0.41)  0.14 
   T1 1.00 0.75 0.96  1.00 0.69 0.53  1.00 0.93 0.85  0.00 0.09 0.03 
   T2 0.88 (0.64, 1.22)    1.09 (0.69, 1.73)    1.03 (0.80, 1.33)    -0.81 (-4.42, 2.81)   
   T3 0.96 (0.70, 1.32)    0.88 (0.54, 1.44)    0.99 (0.76, 1.27)    -3.77 (-7.32, -0.23)   

∑HMW                

Continuousd 1.07 (0.91, 1.26)  0.43  1.09 (0.84, 1.40)  0.53  0.92 (0.80, 1.05)  0.21  -1.03 (-2.90, 0.84)  0.28 
   T1 1.00 0.30 0.99  1.00 0.91 0.90  1.00 0.60 0.38  0.00 0.24 0.43 
   T2 1.27 (0.92, 1.73)    1.11 (0.69, 1.78)    0.91 (0.71, 1.17)    -2.99 (-6.51, 0.54)   
   T3 1.06 (0.77, 1.46)    1.05 (0.66, 1.69)    0.88 (0.68, 1.14)    -2.04 (-5.62, 1.54)   

MCPP                

Continuousd 1.04 (0.89, 1.21)  0.63  0.88 (0.69, 1.13)  0.32  0.90 (0.79, 1.03)  0.12  -0.50 (-2.40, 1.40)  0.60 
   T1 1.00 0.72 0.46  1.00 0.58 0.30  1.00 0.46 0.30  0.00 0.44 0.89 
   T2 1.09 (0.79, 1.49)    0.97 (0.61, 1.53)    1.05 (0.82, 1.34)    -2.21 (-5.76, 1.34)   
   T3 1.14 (0.83, 1.57)    0.79 (0.48, 1.28)    0.90 (0.69, 1.16)    -0.57 (-4.14, 2.99)   

MBzP                

Continuousd 0.99 (0.87, 1.13)  0.88  1.13 (0.94, 1.38)  0.20  0.96 (0.87, 1.07)  0.51  -0.11 (-1.68, 1.45)  0.89 
   T1 1.00 0.43 0.43  1.00 0.78 0.92  1.00 0.34 0.14  0.00 0.13 0.30 
   T2 1.13 (0.83, 1.54)    1.19 (0.74, 1.92)    0.96 (0.74, 1.23)    -3.58 (-7.19, 0.03)   
   T3 0.92 (0.67, 1.27)    1.07 (0.67, 1.73)    0.83 (0.65, 1.07)    -2.70 (-6.29, 0.89)   

MCNP                

Continuousd 1.10 (0.98, 1.25)  0.11  1.13 (0.95, 1.34)  0.18  1.00 (0.90, 1.10)  0.99  0.49 (-0.98, 1.95)  0.51 
   T1 1.00 0.22 0.17  1.00 0.29 0.24  1.00 0.55 0.66  0.00 0.94 0.89 
   T2 1.25 (0.91, 1.73)    1.39 (0.85, 2.29)    1.15 (0.89, 1.48)    -0.60 (-4.15, 2.96)   
   T3 1.30 (0.95, 1.78)    1.43 (0.88, 2.30)    1.09 (0.85, 1.41)    -0.43 (-3.99, 3.13)   

MCOP                

Continuousd 1.04 (0.89, 1.21)  0.63  1.03 (0.82, 1.28)  0.83  1.11 (0.99, 1.25)  0.08  -1.31 (-2.95, 0.34)  0.12 
   T1 1.00 0.79 0.57  1.00 0.45 0.90  1.00 0.89 0.95  0.00 0.45 0.21 
   T2 0.92 (0.67, 1.26)    0.75 (0.46, 1.21)    1.06 (0.83, 1.37)    -0.59 (-4.28, 3.09)   
   T3 0.90 (0.66, 1.23)    0.97 (0.61, 1.52)    1.02 (0.79, 1.32)    -2.21 (-5.75, 1.34)   

MEHHP                

Continuousd 1.06 (0.92, 1.23)  0.40  1.01 (0.80, 1.26)  0.96  0.96 (0.86, 1.08)  0.54  -0.86 (-2.45, 0.73)  0.29 
   T1 1.00 0.56 0.60  1.00 0.32 0.70  1.00 0.81 0.67  0.00 0.26 0.33 
   T2 1.19 (0.86, 1.64)    1.34 (0.84, 2.15)    1.04 (0.81, 1.34)    -2.88 (-6.39, 0.64)   
   T3 1.12 (0.82, 1.54)    0.98 (0.60, 1.60)    0.96 (0.74, 1.23)    -1.93 (-5.57, 1.72)   

MEOHP                

Continuousd 1.07 (0.92, 1.24)  0.37  1.01 (0.80, 1.27)  0.95  0.94 (0.84, 1.06)  0.34  -1.26 (-2.89, 0.37)  0.13 
   T1 1.00 0.36 0.67  1.00 0.88 0.68  1.00 0.56 0.53  0.00 0.08 0.08 
   T2 1.26 (0.92, 1.73)    1.03 (0.65, 1.64)    1.08 (0.84, 1.39)    -3.58 (-7.13, -0.04)   
   T3 1.11 (0.81, 1.54)    0.92 (0.57, 1.47)    0.94 (0.73, 1.21)    -3.35 (-6.89, 0.20)   

MECPP                

Continuousd 1.06 (0.91, 1.24)  0.44  1.08 (0.86, 1.38)  0.50  0.93 (0.82, 1.06)  0.28  -1.31 (-3.06, 0.44)  0.14 
   T1 1.00 0.14 0.85  1.00 0.44 0.94  1.00 0.92 0.73  0.00 0.12 0.10 
   T2 1.36 (0.99, 1.85)    1.32 (0.83, 2.11)    1.01 (0.79, 1.30)    -3.12 (-6.67, 0.45)   
   T3 1.11 (0.80, 1.53)    1.05 (0.65, 1.72)    0.96 (0.75, 1.24)    -3.35 (-6.91, 0.21)   

MEHP                

Continuousd 1.02 (0.90, 1.15)  0.76  0.98 (0.81, 1.18)  0.84  0.93 (0.84, 1.03)  0.16  -0.83 (-2.18, 0.52)  0.23 
   T1 1.00 0.71 0.41  1.00 0.77 0.48  1.00 0.24 0.65  0.00 0.31 0.16 
   T2 1.02 (0.74, 1.40)    1.01 (0.63, 1.63)    0.81 (0.63, 1.04)    0.04 (-3.51, 3.58)   
   T3 1.13 (0.83, 1.54)    1.17 (0.73, 1.85)    0.91 (0.71, 1.16)    -2.36 (-5.92, 1.20)   

∑DEHP                

Continuousd 1.06 (0.91, 1.24)  0.46  1.03 (0.81, 1.31)  0.81  0.94 (0.82, 1.06)  0.30  -1.18 (-2.88, 0.52)  0.17 
   T1 1.00 0.23 0.98  1.00 0.60 0.70  1.00 0.84 0.59  0.00 0.16 0.32 
   T2 1.30 (0.95, 1.78)    1.19 (0.75, 1.91)    1.01 (0.79, 1.30)    -3.41 (-6.94, 0.12)   
   T3 1.06 (0.77, 1.47)    0.96 (0.59, 1.55)    0.94 (0.73, 1.21)    -1.99 (-5.56, 1.58)   
HR = hazard ratio; FEV1%= forced expiratory volume in 1 second expressed in percent predicted; CI = confidence interval; ∑LMW = molar sum of Low Molecular Weight phthalates (MEP, 
MnBP, MiBP); ∑HMW = molar sum of High Molecular Weight phthalates (MCPP, MBzP, MCNP, MCOP, MEHHP, MEOHP, MECPP, MEHP); ∑DEHP = molar sum of di(2-ethylhexyl) 
phthalate metabolites (MEHHP, MEOHP, MECPP, MEHP). Parent compounds and associated metabolites are detailed in Table S1 (Supplemental material) 
 
a Models adjusted for creatinine, centre, residence area, parental history of asthma or allergies, maternal ethnicity, maximal parental education level, maternal or passive smoking during 
pregnancy, postnatal passive smoking, older siblings, day-care. Missing values in covariates were imputed for at least one covariate in 277 boys, using the MICE multiple imputation 
method (100 imputations were performed) b additionally adjusted for child’s height and age. 
c Crude concentrations.  
d Estimates for 1 unit increase in ln-transformed standardized concentration. 
e p-values of heterogeneity test.  
Italicized p-values are p-values of monotonic trend test. 
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4.9 Additional results and discussion to Chapter 4

This section presents additional results of the article presented in Chapter 4, non-
included in the submitted version to Environmental Health Perspectives. As suggested
in the Discussion section (Section 4.6) of the article, measurement error may introduce
attenuation bias in the regression estimates. In the following, we propose to use the
method described in the article from Perrier et al.3, to correct the results for mea-
surement error. This a posteriori disattenuation takes into account the within-subject
variance as part of the measurement error.

4.9.1 Methods

Corrected effect estimates are obtained by dividing the estimated regression coef-
ficients (beta) by the compound-specific intraclass correlation coefficient (ICC). For
HRs, linear (beta) regression coefficients are divided by the ICC before exponentiation
to result in corrected HRs (see Eq 4.1).

βcorr = β

ICC
and HRcorr = exp ( β

ICC
) = exp (βcorr) (4.1)

Confidence intervals (CI) are corrected by using the standard error of the linear
regression estimate divided by the compound-specific ICC before calculating the upper
and lower bounds (Eq 4.2 and 4.3).

CI(β)corr = βcorr ± t(df,α/2) ∗
se

ICC
(4.2)

CI(HR)corr = exp (βcorr ± t(df,α/2) ∗
se

ICC
), with (4.3)

t(df,α/2) the Student’s t-distribution critical value given a significance level α/2 (α = 0.05);
df the degrees of freedom;
se the standard error of the regression estimate.

Without repeated assays, we were not able to estimate ICCs internal to the EDEN
population. We used ICCs from two studies, in which several urine samples were
collected during pregnancy.4,1 ICCs were 0.1 for MCNP, 0.2 for bisphenol A, MCPP
and DEHP metabolites; 0.3 for MCOP, 0.4 for MEP, MnBP, MiBP and MBzP, and
0.6 for dichlorophenols, triclosan, benzophenone-3 and parabens.

Additionally, in order to take into account the uncertainty of ICC estimates, we
also corrected regression estimates and confidence intervals by using the lower and
upper confidence limits for ICC values instead of the ICC (95% confidence interval).
AS an example, results are shown for the associations between DEHP metabolites and
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FEV1%, given the ICCs values and their confidence intervals previously reported for
phthalates.1

4.9.2 Corrected results and discussion

As expected, HRs and betas corrected for exposure measurement error using the
disattenuation were greater in absolute value than the uncorrected ones (Figures 4.4
and 4.5). Bisphenol A, MCNP, MCOP, MCPP, and DEHP metabolites exhibited the
greatest corrected estimates in absolute value, as well as the widest confidence intervals,
even after taking into account of the incertainty in of ICC estimates. This was partly
expected from the low values of the ICCs for these compounds. We observed that in
some cases, the corrected effect estimates were very big in absolute value. Some care
is needed when using ICCs from external studies, as we show in Chapter 6 that relying
on ICCs external to the study may result is potentially untrustworthy estimates. We
assumed the transportability of ICCs values but differences in the period and time at
urine collection between the present and the two external studies4,1 may greatly limit
the appropriateness of using external data. Inaccuracy in ICCs might partly explain the
somewhat extreme corrected results for some compounds. Additionally, this approach
was shown to work well for simple regression models (no adjustment factors)3 but is
too simplifying for adjusted models, when a more complex attenuation factor should be
used.2 This may explain the extreme corrected estimates and should lead to a cautious
interpretation of the results.

Correction of the effect estimates might be relevant in the context of pooled analyses
or meta-analyses to combine studies.
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Figure 4.4 – Adjusted associations of phenols A) and phthalates metabolites B)
ln-transformed standardized concentrations with respiratory outcomes (HR, n = 587)
and FEV1% in boys (beta, n = 228, EDEN cohort), before (blue triangles) and after
(orange squares) correction for exposure measurement error using the a posteriori
disattenuation method.

Effect estimates for 1 unit increase in ln-transformed standardized concentrations.
Phenols and phthalates metabolites concentrations were standardized for urine sampling
conditions (see methods section). Blue triangle and orange square markers represent,
respectively uncorrected and corrected HR (or beta for FEV1%) values; with error bars for
95% CI.
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Figure 4.5 – Adjusted associations of DEHP metabolites concentrations with FEV1%
in boys (beta, n = 228, EDEN cohort), before (orange squares) and after correction
for exposure measurement error using the a posteriori disattenuation method with
ICC estimates (blue triangles) or lower (grey circles) and upper (green diamonds)
limits of ICC 95% confidence intervals.

Effect estimates for 1 unit increase in ln-transformed concentrations. DEHP metabo-
lites concentrations were standardized for urine sampling conditions (see methods section).
Blue triangle, orange square, grey circle and green diamond markers represent beta value,
uncorrected, corrected using ICC estimate, corrected using lower and upper confidence
limits, respectively; with error bars for 95% CI.
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5.1 French summary

Introduction
Les phénols et les phtalates sont des composés très largement présents dans notre envi-
ronnement. De nombreuses études chez l’animal, notamment chez le rongeur, rappor-
tent des effets délétères de l’exposition à certains phénols et phtalates sur la santé, par-
ticulièrement lorsque l’exposition a lieu au cours du développement périnatal. Cepen-
dant, comme le montre la première étude de cette thèse, la confirmation de ces effets
chez l’Homme est limitée, ce qui pourrait être dû à l’estimation de l’exposition. Les
phénols et les phtalates sont des composés non-persistants, i.e., rapidement métabolisés
par l’organisme et éliminés principalement dans les urines après quelques heures. De
ce fait, l’estimation de l’exposition au cours de la grossesse via la mesure des concen-
trations des biomarqueurs dans un échantillon unique d’urine est probablement limitée.
La variabilité de ces composés chez la femme enceinte est principalement caractérisée
par des études reposant sur des échantillons uniques collectés à deux ou trois moments
de la grossesse, ce qui ne permet pas d’explorer la variabilité intra-individuelle intra-
jour ou inter-jour. Avant cette thèse, une seule étude s’est intéressée à la variabilité
intra-jour pendant la grossesse. Reposant sur toutes les urines d’un jour, cette étude
a exploré une quinzaine de phtalates et le bisphénol A, mais, à notre connaissance les
autres phénols n’ont jamais été étudiés dans le contexte de la grossesse.

Objectif
L’objectif de cette étude est de caractériser la variabilité intra-individuelle intra-jour,
inter-jour et inter-semaine de plusieurs phénols au cours de la grossesse.

Méthodes
Trente femmes enceintes ont recueilli toutes leurs urines pendant une semaine à trois
occasions au cours de la grossesse (moyenne±écart-type, 15±2, 24±2, and 32±1 se-
maines de grossesse), dans le cadre de l’étude de faisabilité de SEPAGES. Nous avons
sélectionné les huit femmes enceintes avec le moins d’échantillons manquants (60 échan-
tillons collectés en moyenne par femme et par semaine). Parmi les huit femmes en-
ceintes, deux ont fait un recueil exhaustif de leurs urines. Pour chaque participante,
les aliquotes sont poolés par jour, et les pools "jour" par semaine. Les concentrations
des biomarqueurs urinaires de 10 phénols sont mesurées dans ces pools. Par ailleurs,
pour les deux femmes ayant collecté toutes leurs urines, les concentrations sont aussi
mesurées dans tous les échantillons individuels de la première semaine de collection.
Des coefficients de corrélation intra-classe (CCI) sont calculés pour caractériser la va-
riabilité intra-jour avec les échantillons individuels, la variabilité inter-jour avec les
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pools "jour", et la variabilité inter-semaine avec les pools "semaine".

Résultats
Pour la plupart des phénols, la variabilité intra-jour est forte, avec des CCI entre 0.03
et 0.5. La variabilité entre les jours d’une même semaine est plus faible, avec des
CCI supérieurs à 0.6 sauf pour le bisphénol S (CCI, 0.14, intervalle de confiance à
95% 0.00-0.39). La variabilité entre les semaines de collection varie selon les phénols
étudiés. La variabilité est la plus faible pour le 2,5-dichlorophénol (CCI supérieur à
0.9) ; et la plus forte pour le triclosan et le bisphénol S (CCI inférieur à 0.3).

Conclusion
Pendant la grossesse, les phénols ont une variabilité intra-individuelle très marquée
au cours de la journée, alors que la variabilité des moyennes journalières entre les
différents jours d’une même semaine est beaucoup plus faible. Mesurer la concentration
des biomarqueurs urinaires des phénols dans un seul échantillon est insuffisant pour
estimer correctement l’exposition. Collecter plusieurs échantillons d’une même semaine
pourrait être une approche suffisante pour représenter correctement l’exposition sur
toute la grossesse pour certains phénols, par exemple, le 2,5-dichlorophénol, mais pas
pour tous.
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5.2 Abstract

Background
Toxicology studies have shown adverse effects of developmental exposure to industrial
phenols. Evaluation in humans is challenged by potentially marked within-subject va-
riability of phenol biomarkers in pregnant women, which is poorly characterized.

Objectives
To characterize within-day, between-day and between-week variability of phenol uri-
nary biomarker concentrations during pregnancy.

Methods
In eight French pregnant women, we collected all urine voids over one week (average,
60 samples per week per woman) at three occasions (mean±standard deviation, 15±2,
24±2, and 32±1 gestational weeks) in 2012-2013. Aliquots of each day and of the
whole week were pooled within-subject. We assayed concentrations of ten phenols in
these pools, and, for two women, in all spot (unpooled) samples collected during one
week. We characterized variability using intraclass correlation coefficients (ICCs) with
spot samples (within-day variability), daily pools (between-day variability) and weekly
pools (between-week variability).

Results
For most biomarkers, the within-day variability was high (ICCs between 0.03 and
0.50). The between-day variability, based on samples pooled within each day, was
much lower, with ICCs above 0.60 except for bisphenol S (ICC, 0.14, 95% confidence
interval, 0.00-0.39). The between-week variability differed between compounds, tri-
closan and bisphenol S having the lowest ICCs (below 0.3) and 2,5-dichlorophenol the
highest (ICC above 0.9).

Conclusion
During pregnancy, phenol biomarkers showed a strong within-day variability, while
the variability between days of a given week was more limited. One biospecimen is
not enough to efficiently characterize exposure; collecting biospecimens during a single
week may be enough to represent well the whole pregnancy exposure for some but not
all phenols.
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5.3 Introduction

Phenols include high-production-volume chemicals with widespread uses in daily
life products. For example, bisphenols are employed in the manufacture of epoxy
resins and certain polymer plastics used in food and beverage containers, and in other
consumer products.9,15,24 Parabens are used as preservatives in cosmetics, food, bever-
ages and pharmaceuticals; benzophenone-3, an ultraviolet-filter, is used in plastics and
cosmetics; triclosan is used for its antibacterial properties in personal care products,
clothing or kitchenware;11,19,23 2,4-dichlorophenol is used in the production of certain
pesticides and 2,5-dichlorophenol is a major metabolite of 1,4-dichlorobenzene, which
is used in moth balls and room deodorizers.8,22

Concern exists regarding the health effects of phenols, which are potential endocrine
disruptors, particularly following exposure during foetal life.6 In terms of study design,
most biomarker-based studies in humans relied on biomarker concentrations assessed
in very few (one to three) spot biospecimens per pregnant woman. For chemicals with
strong within-subject temporal variations, relying on a small number of biospecimens
is expected to imperfectly characterize the average exposure (e.g. over a day, a week
or more), to lead to exposure misclassification, and consequently bias dose-response
functions.26,7 The biological half-life of phenols in pregnant women is not known, and
could strongly differ from that of non-pregnant women, as is the case for e.g. urinary
biomarkers of tobacco smoke exposure such as cotinine, which has been found to have
about twice as fast elimination half-life during pregnancy compared to postpartum.12

Studies based on non-pregnant adults reported a short (less than 12 hours) half-life for
some phenols.16,29,32 Consequently, the relevance of relying on one spot biospecimen to
provide a proxy of exposure for time windows of one day or longer is probably limited.
This issue is of importance given the expected impact of exposure misclassification on
bias in dose-response functions relating biomarker levels to health parameters.26

Several studies evaluated the reproducibility of urinary phenol concentrations dur-
ing pregnancy.2,4,5,14,17,21,28,31 These studies relied on generally two or three spot bio-
specimens collected from each pregnant woman several weeks or months apart. Such
a design did not allow characterizing the within-day or the within-week variability
in biomarkers concentrations. Based on complete urine collections throughout sev-
eral days in eight non-pregnant participants, two studies reported high within-subject
and between-day variability for bisphenol A,18,34 while this variability was relatively
small for some parabens, triclosan and benzophenone-3.18 High within-day variability
of bisphenol A concentrations was also reported in 66 pregnant women with complete
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urine collection during one or two days.13 In the context of pregnancy, estimations of
the within-subject variability of phenols other than bisphenol A are lacking.

Accurate description of the variability of phenol urinary concentrations during preg-
nancy is crucial for adopting biospecimens sampling strategies that limits exposure
misclassification in etiological studies. Our aim was consequently to characterize the
within-day, between-day (within a week) and between-week variability of urinary con-
centrations of ten phenols in pregnant women.
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5.4 Methods

5.4.1 Study participants

This study relied on a subgroup of the feasibility study conducted between July
2012 and July 2013 in the planning of the SEPAGES cohort (Suivi de l’Exposition
à la Pollution Atmosphérique durant la Grossesse et Effets sur la Santé; Assessment
of air pollution exposure during pregnancy and effects on health). In this feasibility
study, 40 women with a singleton pregnancy and living in the Grenoble urban area
(France) were recruited from private obstetrical practices, before 17 gestational weeks
(calculated from the date of the last menstrual period). The exclusion criteria included
inability to write or speak French, being under 18 years of age, planning to give birth
outside of one of the four maternity hospitals of the Grenoble urban area, and not
being enrolled in the French social security system. All participating women and their
partners provided written informed consent for themselves and their offspring for bio-
logical measurements and data collection.25 SEPAGES-feasibility cohort was approved
by the appropriate ethical committees (CPP, Comité de Protection des Personnes Sud-
Est; CNIL, Commission Nationale de l’Informatique et des Libertés; CCTIRS, Comité
Consultatif sur le Traitement de l’Information en matière de Recherche dans le domaine
de la Santé; ANSM, Agence Nationale de Sécurité du Médicament et des produits de
santé). The involvement of the Centers for Disease Control and Prevention (CDC)
laboratory did not constitute engagement in human subject research.

5.4.2 Study design and urine collection

The urine collection protocol is described in Figure 5.1. Urine collection took place
during seven consecutive days at three periods of pregnancy (1st collection week, me-
dian: 13 gestational weeks, min–max: 10-18 gestational weeks; 2nd collection week,
median: 23, min–max: 21-26; and 3rd collection week, median: 32, min–max: 29-33,
Table 5.1). Thirty out of the 40 women participating in SEPAGES-feasibility study
were asked to collect about 60 mL of each urine void, and to report in daily diaries mic-
turition time for collected and missing voids. The remaining 10 participating women
were asked to collect about 60 mL of only three urine voids per day, and were therefore
not considered in the present study. Women collected urine in polypropylene contain-
ers and stored it in a refrigerator (4°C) in their home. When they were not at home,
collected urine was stored in a cooler with ice packs. Specimens were retrieved two or
three times a week by the study staff and brought in coolers to Inserm research centre
(Institute for Advanced Biosciences, Grenoble, France). Each sample was aliquoted
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into 2 mL polypropylene cryovials (up to five vials per sample) and frozen at -80°C
until pooling procedure or shipping for analysis. Because of costs constraints, we only
quantified phenol biomarkers in the subgroup of eight women with the smallest rate of
missed voids. Among these women, two had managed to collect a sample of each of
their urine voids (no missing void, subgroup 1), while the other six women collected
more than 95% of their weekly urine voids (subgroup 2).

5.4.3 Pooling procedure

We thawed at 4oC and vortexed aliquots in polypropylene containers and pooled
them according to the protocol detailed in Figure 5.1. For each woman and each study
day, we took equal volumes of urine from all samples of the day and combined them
within woman, leading to seven within-subject daily pools for a 1-week period (days 1
to 7). For each subject, we then prepared three weekly pools by combining an equal
volume of the seven daily pools from each collection week (weeks 1, 2 and 3).

Immediately after preparation, pooled samples were placed in 2-mL polypropylene
cryovials and frozen at -80oC. The pools and all aliquots from spot samples to be
analysed were kept frozen until shipment on dry ice to the CDC laboratory in Atlanta
(Georgia, USA). At the CDC laboratory, all urine samples were stored at or below
-70oC until analysis.

5.4.4 Phenols, creatinine and specific gravity measurements

The total urinary concentrations of 2,4- and 2,5-dichlorophenols, benzophenone-
3, bisphenol A, bisphenol S, triclosan, and butyl, methyl, ethyl, and propylparabens
were quantified at the CDC using a modification of an online solid-phase extraction
high-performance liquid chromatography-isotope dilution-tandem mass spectrometry
method.35 Limits of detection (LODs) are listed in Table 5.2. The coefficients of vari-
ation of quality control measurements ranged, according to compounds and concen-
tration ranges, between 3.4 and 14.7%. It was higher for methylparaben, bisphenol
A, benzophenone-3 and triclosan, for which the range was 5.8-14.7% and lower for the
other compounds (3.4 to 6.4%). Moreover, the team in charge of urine collection added
eight replicates to the samples assayed for phenols, in a way that was blinded to the lab.
Correlation coefficients between biomarker concentrations in samples and their repli-
cates ranged from 0.95 (bisphenols A and S) to 1.00 (2,4-dichlorophenol, ethyl, propyl
and butylparabens and triclosan). Two urine dilution markers were also quantified in
the same samples: urinary creatinine measured at the CDC using a Roche/Hitachi
MODULAR ANALYTICS Urine Work Area (SWA) P (photometric analysis) module
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(Roche Diagnostics, Indianapolis, IN, USA); and urinary specific gravity, measured at
room temperature using a handheld Atago PAL 10-S refractometer (Atago, Bellevue,
WA, USA) at Inserm Grenoble laboratory.

We analysed a total of 216 samples (136 spot samples, 8×7=56 daily pools, 8×3=24
weekly pools, see Figure 5.1) for phenol biomarkers, creatinine and specific gravity. For
all women, we analysed the seven daily pools of the first study week (56 daily pools) and
the three weekly pools (24 weekly pools). Additionally, for the 2 women in subgroup 1,
we also analysed all spot samples of week 1 (total, 114 samples) and two spot samples
randomly selected among those from the two other collection weeks (one random spot
sample in each collection week). Finally for each of the six participants in subgroup
2, we analysed three spot samples randomly selected among all the samples from the
three collection weeks (one in each week of collection, Figure 5.1), so that, for all 8
women, we could assay one random spot sample for each of the three collection weeks.

5.4.5 Statistical analyses

Concentrations below the LOD were replaced by instrumental readings, or by the
compound-specific lowest non-zero instrumental reading divided by the square root of
two when the instrumental reading was zero. We log10-transformed the urinary concen-
trations of phenol biomarkers to achieve approximate normality in the distributions.
Correlations of biomarker concentrations between types of sample (unpooled samples,
daily and weekly pools) for a given biomarker and between biomarker concentrations
for a given type of sample were calculated using Spearman correlation coefficients.

Our assessment of variability relied on intraclass correlation coefficients (ICCs) esti-
mated using one-way random-effect ANOVA models. The approach was identical for all
ICCs estimations. ICCs close to zero indicate poor reproducibility of a concentration
within the considered period while values close to one indicate high reproducibility. In
the case of negative ICC estimate (which can happen with ANOVA models),33 we con-
sidered the ICC not to be computable and only reported the 95% Confidence Interval
(CI), truncating its lower bound to zero.

To characterize the within-day variability, we defined ICC as the ratio of the
between-day variance to the total variance (sum of within- and between-day variances).
We relied on women of subgroup 1 (a total of 114 samples, collected during the first
collection week for the two women). The woman- and compound-specific weekly mean
was subtracted from the spot concentrations to correct for the between-subject varia-
bility before estimating ICCs representing the within-day variability.



102 CHAPTER 5. VARIABILITY OF PHENOLS DURING PREGNANCY

We assessed the within-week (between-day) and between-week variability with ICCs
calculated as the ratio of the between-subject variance to the total variance (sum of
within- and between-subject variance). For the between-day variability, we ran models
based on all 56 daily pools of the study week 1 (eight women, each with seven daily
pools). For the between-week variability, we used all 24 weekly pools (eight women,
each with three weekly pools).

To allow comparisons with previous studies that relied on two to three spot samples
collected during pregnancy, we additionally estimated ICCs based on the three random
spot samples collected during pregnancy (each sample being randomly selected in each
collection week for the eight women).

To assess the robustness of the findings to the statistical methods, we also computed
ICCs using random intercept linear mixed models (maximum likelihood estimates)
instead of ANOVA models. To assess the potential impact of urinary dilution on
variance estimates for phenol biomarkers, the ANOVA analyses were repeated using
phenol biomarker concentrations corrected for creatinine (ratio of the phenol biomarker
concentrations to the creatinine concentration in the same sample) and for specific
gravity using a formula previously described,28 or by including creatinine concentration
or specific gravity as a covariate in the random intercept linear mixed models.

Data were analyzed using STATA 12.1 (Stata Corp, College Station, Texas).
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5.5 Results

5.5.1 Study population and samples

Table 5.1 – Characteristics of the population (40 pregnant women from SEPAGES
feasibility study, out of which 8 participated in the current study).

Included (n = 8) Excluded (n = 32)
Characteristic N (%) or mean ± SD N (%) or mean ± SD P-value*

Maternal age at enrolment (years) 29.6 ± 3.8 30.7 ± 3.6 0.34
Civil status

Married 5 (63) 12 (37) 0.25
Cohabitating 3 (37) 20 (63)

Maternal education
High school or less 0 2 (6) 1.00
Up to 3 years of college 4 (50) 14 (44)
> 3 years of college 4 (50) 16 (50)

Smoking history during pregnancy
Yes 1 (12) 6 (19) 1.00
No 7 (88) 21 (66)
Missing 0 5 (15)

Parity
Primiparous 5 (63) 19 (59) 1.00
Multiparous 3 (37) 13 (41)

Gestational age (weeks)
Week 1 of urine collection 15.0 ± 1.9 12.9 ± 1.5 0.01
Week 2 of urine collection 24.0 ± 1.6 23.3 ± 1.4 0.21
Week 3 of urine collection 32.3 ± 0.7 31.8 ± 0.9 0.16

Time between two weeks of urine
collection (weeks)

Week 1 – Week 2 9.0 ± 1.9 10.5 ± 1.8 0.06
Week 2 – Week 3 8.3 ± 1.2 8.5 ± 1.7 0.88

SD: standard deviation
* p-values of chi-square or Mann-Whitney U-tests comparing the characteristics of included and non-included women.

At enrolment, women were 29.6 years old on average (standard deviation, SD: 3.8);
most of them were primiparous (63%), did not smoke during pregnancy (88%) and
all of them had college education (Table 5.1). Women collected from three to 15
urine samples per day (total from 132 to 240 samples per woman). Detection frequen-
cies were generally between 79% (triclosan) and 100% (methyl and propylparabens),
except for benzophenone-3, which was only detected in 35% of the samples. The
highest (between-compound) coefficients of correlation were observed between struc-
turally similar compounds (e.g., between the two dichlorophenols and between the four
parabens), and between creatinine and specific gravity (see Table 5.6), regardless of the
type of sample (unpooled, daily or weekly pools). Correlation between creatinine and
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urinary concentrations of phenol biomarkers ranged from -0.06 (with propylparaben)
to 0.83 (2,4-dichlorophenol) in spot samples of subgroup 1, from -0.28 (triclosan) to
0.61 (bisphenol A) in daily pools of all studied women, and from -0.15 (triclosan) to
0.56 (2,4-dichlorophenol) in weekly pools.

5.5.2 Within-day variability

Table 5.2 – Within-day variability - Descriptive statistics of the non-transformed bio-
marker concentrations (µg/L) for the unpooled spot samples from subgroup 1 (2
women, n=114 spot samples collected over the first week of collection) and ICCs based
on log10-transformed phenol biomarker concentrations, creatinine concentration and
specific gravity. Values were not standardized for creatinine or specific gravity.

Percentiles

Biomarker LOD
(µg/L)

Results above
the LOD,
N (%)

5th 25th 50th 75th 95th Within-day
ICC (95% CI)b

Phenols (µg/L)a

2,4-dichlorophenol 0.1 113 (99) 0.1 0.2 0.3 0.3 0.5 0.12 (0.00, 0.28)
2,5-dichlorophenol 0.1 111 (97) 0.1 0.2 0.4 0.7 1.2 0.11 (0.00, 0.27)
Butyl paraben 0.1 113 (99) 0.1 1.1 4.2 21.7 92.7 0.10 (0.00, 0.25)
Ethyl paraben 1.0 105 (92) <LOD 2.4 10.7 43.1 126.2 0.03 (0.00, 0.15)
Methyl paraben 1.0 114 (100) 37 90.4 217.3 1329.4 5000.0 0.27 (0.05, 0.49)
Propyl paraben 0.1 114 (100) 0.8 4.8 36.7 139.0 895.1 0.28 (0.05, 0.50)
Benzophenone-3 0.2 31 (27) <LOD <LOD <LOD 1.4 10.7 0.26 (0.04, 0.48)
Bisphenol A 0.1 113 (99) 0.3 0.9 1.6 2.4 7.5 0.21 (0.01, 0.41)
Bisphenol S 0.1 112 (98) 0.1 0.2 0.3 0.5 1.3 0.50 (0.26, 0.73)
Triclosan 1.0 90 (79) <LOD 1.0 2.1 3.3 4.8 0.30 (0.08, 0.53)

Urine dilution markers
Creatinine (mg/dL)NA 114 (100) 37.2 72.5 102.5 139.2 223.1 0.10 (0.00, 0.26)
Specific gravity NA 114 (100) 1.009 1.014 1.018 1.021 1.027 0.03 (0.00, 0.15)

ICC: intraclass correlation coefficient; LOD: limit of detection; NA: not applicable.
a Concentrations below the LOD were replaced by instrumental reading values. For each phenol biomarker, instrumental
reading values equal to 0 were replaced by the lowest non-zero instrumental reading value divided by the square root of
2.
b ICCs were estimated from ANOVA with a random effect on day (14 days) and within-woman mean-centering of the
log-transformed phenols concentrations.

For the spot samples, urinary concentrations of most phenols and of creatinine
varied within woman by several orders of magnitude throughout the first collection
week and within a day (Figure 5.2). For all biomarkers including creatinine and specific
gravity, ICCs were low to moderate (Table 5.2 and Figure 5.5), with the highest ICC
observed for bisphenol S (0.50; 95% CI: 0.26, 0.73), and the lowest for ethylparaben
(0.03; 95% CI: 0.00, 0.15) and specific gravity (0.03; 95% CI: 0.00, 0.15). Creatinine or
specific gravity standardisation, respectively, slightly increased (by 0.02 to 0.07) ICCs
for five and nine compounds out of 10 (Table 5.7). Using linear mixed models instead
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of ANOVA methods to estimate ICCs (Tables 5.8 and 5.9) led to similar results.
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Figure 5.2 – Within-day and within-week variability - Urinary concentrations of 10
phenols (µg/L), creatinine concentration (mg/dL) and specific gravity in log10-scale in
the unpooled spot samples from subgroup 1 (2 women, n=114 spot samples collected
over the first week of collection). Note that to facilitate visualisation, each biomarker
is displayed on a specific scale.
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5.5.3 Between-day (within a week) variability

Table 5.3 – Between-day variability - Descriptive statistics of the non-transformed bio-
marker concentrations (µg/L) for the within woman daily-pooled samples from sub-
group 1 and subgroup 2 (8 women, n=56 daily pools, one daily pool for each day of the
first week of collection) and ICCs based on log10-transformed phenol biomarker concen-
trations, creatinine concentration and specific gravity. Values were not standardized
for creatinine or specific gravity.

Percentiles

Biomarker LOD
(µg/L)

Results above
the LOD,
N (%)

5th 25th 50th 75th 95th Between-day
ICC (95% CI)b

Phenols (µg/L)a

2,4-dichlorophenol 0.1 56 (100) 0.1 0.2 0.3 0.4 6.0 0.91 (0.82, 1.00)
2,5-dichlorophenol 0.1 56 (100) 0.2 0.3 0.8 3.6 269.6 0.98 (0.95, 1.00)
Butyl paraben 0.1 45 (80) 0.1 0.1 0.2 1.1 35.2 0.80 (0.61, 0.99)
Ethyl paraben 1.0 39 (70) <LOD <LOD 2.8 12.9 45.5 0.85 (0.70, 1.00)
Methyl paraben 1.0 56 (100) 2.4 9.2 33.0 89.7 1350.8 0.84 (0.69, 1.00)
Propyl paraben 0.1 56 (100) 0.1 0.4 2.2 39.9 161.8 0.90 (0.80, 1.00)
Benzophenone-3 0.2 28 (50) <LOD <LOD 0.5 3.1 33.8 0.73 (0.50, 0.96)
Bisphenol A 0.1 56 (100) 0.4 1.0 1.9 3.5 8.2 0.60 (0.30, 0.89)
Bisphenol S 0.1 56 (100) 0.1 0.2 0.2 0.4 2.8 0.14 (0.00, 0.39)
Triclosan 1.0 45 (80) <LOD 1.1 2.1 3.0 63.7 0.89 (0.78, 1.00)

Urine dilution markers
Creatinine (mg/dL)NA 56 (100) 30.6 60.4 77.9 102.2 146.8 0.60 (0.30, 0.89)
Specific gravity NA 56 (100) 1.009 1.013 1.016 1.02 1.029 0.61 (0.32, 0.90)

ICC: intraclass correlation coefficient; LOD: limit of detection; NA: not applicable.
a Concentrations below the LOD were replaced by instrumental reading values. For each phenol biomarker, instrumental
reading values equal to 0 were replaced by the lowest non-zero instrumental reading value divided by the square root of
2.
b ICCs were estimated from ANOVA with a random effect on woman.

The remaining analyses are based on the whole group of 8 women. Detection fre-
quencies were quite similar in daily pools (median over all compounds, 100%) compared
to unpooled spot samples (median, 99%) for most of the compounds, except for butyl-
paraben (80% detection in daily pools, compared to 99% in spot samples), ethylparaben
(70% versus 92%) and benzophenone-3 (50% versus 27%, Table 5.3). ICCs based on
daily pools were high for most compounds (above 0.80), except benzophenone-3 (ICC,
0.73; 95% CI, 0.50 to 0.96), bisphenol A (0.60; 95% CI: 0.30, 0.89) and bisphenol S
(0.14; 95% CI: 0.00, 0.39; Table 5.3 and Figures 5.3 and 5.5). The highest ICCs were
observed for 2,4-dichlorophenol (ICC: 0.91; 95% CI: 0.82, 1.00) and 2,5-dichlorophenol
(0.98; 95% CI: 0.95, 1.00). ICCs for creatinine and specific gravity were greater in
daily pools (0.60 and 0.61, respectively) compared to spot samples (0.10 and 0.03, re-
spectively). For five compounds, correction for creatinine slightly increased (by 0.01
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Figure 5.3 – Between-day (within a week) variability of pooled daily samples - Urinary
concentrations of 10 phenols (µg/L), creatinine concentration (mg/dL) and specific
gravity in log10-scale in the within woman daily-pooled samples from subgroup 1 and
subgroup 2 (8 women, n=56 daily pools, one daily pool for each day of the first week
of collection). Note that to facilitate visualisation, each biomarker is displayed on a
specific scale.
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to 0.05) ICCs, which stayed within ranges of the uncorrected confidence intervals (Ta-
ble 5.10). We observed similar results using linear mixed model instead of ANOVA
methods to estimate ICCs (Tables 5.8 and 5.11).

5.5.4 Between-week variability based on weekly pools

Table 5.4 – Between-week variability - Descriptive statistics of the non-transformed
biomarker concentrations (µg/L) for the within woman weekly-pooled samples from
subgroup 1 and subgroup 2 (8 women, n=24 weekly pools, one weekly pool for each of
the 3 weeks of collection) and ICCs based on log10-transformed phenol biomarker con-
centrations, creatinine concentration and specific gravity. Values were not standardized
for creatinine or specific gravity.

Percentiles

Biomarker LOD
(µg/L)

Results above
the LOD,
N (%)

5th 25th 50th 75th 95th Between-week
ICC (95% CI)b

Phenols (µg/L)a

2,4-dichlorophenol 0.1 24 (100) 0.1 0.2 0.3 0.6 2.2 0.65 (0.32, 0.99)
2,5-dichlorophenol 0.1 24 (100) 0.3 0.4 0.6 2.2 73.0 0.93 (0.86, 1.00)
Butyl paraben 0.1 21 (88) 0.1 0.1 0.3 0.7 24.0 0.84 (0.67, 1.00)
Ethyl paraben 1.0 19 (79) <LOD 1.1 11.4 19.5 56.5 0.33 (0.00, 0.79)
Methyl paraben 1.0 24 (100) 3.9 23.7 44.4 99.5 1673.7 0.81 (0.60, 1.00)
Propyl paraben 0.1 24 (100) 0.2 0.4 4.8 44.4 173.6 0.86 (0.70, 1.00)
Benzophenone-3 0.2 9 (38) <LOD <LOD <LOD 4.3 28.5 0.60 (0.23, 0.97)
Bisphenol A 0.1 24 (100) 0.5 1.3 1.9 3.3 5.7 0.59 (0.22, 0.97)
Bisphenol S 0.1 24 (100) 0.1 0.2 0.3 0.7 14.4 0.26 (0.00, 0.73)
Triclosan 1.0 19 (79) <LOD 1.3 2.5 7.1 83.7 (0.00, 0.44)

Urine dilution markers
Creatinine (mg/dL)NA 24 (100) 49.6 66.0 84.1 111.8 142.3 0.83 (0.64, 1.00)
Specific gravity NA 24 (100) 1.009 1.012 1.016 1.021 1.023 0.49 (0.07, 0.91)

ICC: intraclass correlation coefficient; LOD: limit of detection; NA: not applicable.
a Concentrations below the LOD were replaced by instrumental reading values. For each phenol biomarker, instrumental
reading values equal to 0 were replaced by the lowest non-zero instrumental reading value divided by the square root of
2.
b ICCs were estimated from ANOVA with a random effect on woman. For triclosan, we give only the confidence interval
truncated to zero due to negative estimate of ICC.

On average 9.0 weeks (SD: 1.9) elapsed between collection weeks 1 and 2, and 8.3
weeks (SD: 1.2) between collection weeks 2 and 3 (range, 5.6 to 12.0 weeks). For
seven of the 10 phenol biomarkers, detection frequencies in weekly pools were similar
to those in daily pools (above 79%, Table 5.4), while they were somewhat higher in
weekly pools for butyl and ethylparabens (88 and 79%, compared to 80% and 70%,
respectively, in daily pools), and lower for benzophenone-3 (38% versus 50% in daily
pools). Between two study weeks, concentrations of almost all phenols varied by several
orders of magnitude for some women (Figure 5.4). ICCs for 2,5-dichlorophenol, butyl,



CHAPTER 5. VARIABILITY OF PHENOLS DURING PREGNANCY 109

0.
1

0.
5

2.
0

5.
0

●
●

●

●

●

●

Week 1 Week 2 Week 3

2,4−dichlorophenol

0.
2

1.
0

5.
0

50
.0

●
● ●

●

●

●

Week 1 Week 2 Week 3

2,5−dichlorophenol

0.
1

0.
5

5.
0

50
.0

●

●
●

●
●

●

Week 1 Week 2 Week 3

Butyl−paraben

0.
5

2.
0

10
.0

50
.0 ●

●
●

● ●

●

Week 1 Week 2 Week 3

Ethyl−paraben

5
20

20
0

20
00

●

●

●

● ●

●

Week 1 Week 2 Week 3

Methyl−paraben

0.
1

1.
0

10
.0

50
0.

0

●

●

●

● ●
●

Week 1 Week 2 Week 3

Propyl−paraben

0.
2

2.
0

20
.0

●

●

●

●
●

●

Week 1 Week 2 Week 3

Benzophenone−3

0.
5

1.
0

2.
0

5.
0

●

●

●

●

●

●

Week 1 Week 2 Week 3

Bisphenol A

0.
1

0.
5

2.
0

10
.0

●

●

●

●

● ●

Week 1 Week 2 Week 3

Bisphenol S

1e
−

01
1e

+
01

1e
+

03

●
●

●●

●

●

Week 1 Week 2 Week 3

Triclosan

60
80

12
0

●

●

●

● ●

●

Week 1 Week 2 Week 3

Creatinine (mg/dL)

1.
01

0
1.

02
5

●

●
●

●
● ●

Week 1 Week 2 Week 3

Specific gravity (no unit)

C
on

ce
nt

ra
tio

n 
in

 µ
g/

L 
(lo

g−
sc

al
e)

Collection time

● ●Woman 1 Woman 2 Woman 3 Woman 4 Woman 5 Woman 6 Woman 7 Woman 8

Figure 5.4 – Between-week variability of weekly samples - Urinary concentrations of 10
phenols (µg/L), creatinine concentration (mg/dL) and specific gravity in log10-scale in
the within woman weekly-pooled samples from subgroup 1 and subgroup 2 (8 women,
n=24 weekly pools, one weekly pool for each of the 3 weeks of collection). Note that
to facilitate visualisation, each biomarker is displayed on a specific scale.
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methyl, propylparabens and creatinine were above 0.8, while they were below 0.6 for
the other biomarkers (Table 5.4, Figure 5.5), and lowest for bisphenol S (0.26; 95% CI:
0.00, 0.73). ICC for triclosan could not be computed, but was probably in the low range
(95% CI, 0.00 to 0.44). ICCs slightly decreased (by 0.01 to 0.2) for most compounds
when using creatinine or specific gravity corrected concentrations, but stayed within
ranges of the uncorrected confidence intervals (Table 5.10). Adjusting for creatinine or
specific gravity did not change the results (Tables 5.8 and 5.11).

5.5.5 Between-week variability based on three random spot
samples

Table 5.5 – Alternative estimate of between-week variability based on 3 random
spot samples - Descriptive statistics of the non-transformed biomarker concentrations
(µg/L) for the random spot samples from subgroup 1 and subgroup 2 (8 women, n=24
random spot samples, one sample in each of the 3 weeks of collection) and ICCs based
on log10-transformed phenol biomarker concentrations, creatinine concentration and
specific gravity. Values were not standardized for creatinine or specific gravity.

Percentiles

Biomarker LOD
(µg/L)

Results above
the LOD,
N (%)

5th 25th 50th 75th 95th Between-week
ICC (95% CI)b

Phenols (µg/L)a

2,4-dichlorophenol 0.1 24 (100) 0.1 0.2 0.4 0.5 2.2 0.50 (0.08, 0.92)
2,5-dichlorophenol 0.1 23 (96) 0.1 0.3 0.8 1.4 70.3 0.85 (0.69, 1.00)
Butyl paraben 0.1 19 (79) 0.1 0.1 0.1 3.8 8.0 0.42 (0.00, 0.87)
Ethyl paraben 1.0 16 (67) <LOD <LOD 2.4 10.5 21.1 0.40 (0.00, 0.85)
Methyl paraben 1.0 24 (100) 2.3 5.0 15.4 106.3 276.7 0.85 (0.68, 1.00)
Propyl paraben 0.1 24 (100) 0.1 0.5 4.2 34.5 99.3 0.70 (0.40, 1.00)
Benzophenone-3 0.2 13 (54) <LOD <LOD 0.8 4.5 47.4 0.28 (0.00, 0.75)
Bisphenol A 0.1 23 (96) 0.1 0.4 1.1 2.6 8.0 0.38 (0.00, 0.83)
Bisphenol S 0.1 22 (92) 0.1 0.1 0.2 0.4 12.3 0.33 (0.00, 0.80)
Triclosan 1.0 13 (54) <LOD <LOD 1.1 2.4 29.9 0.11 (0.00, 0.58)

Urine dilution markers
Creatinine (mg/dL)NA 24 (100) 13.90 28.65 67.43 125.94 156.25 0.54 (0.14, 0.94)
Specific gravity NA 24 (100) 1.005 1.007 1.016 1.021 1.029 0.69 (0.39, 1.00)

ICC: intraclass correlation coefficient; LOD: limit of detection; NA: not applicable.
a Concentrations below the LOD were replaced by instrumental reading values. For each phenol biomarker, instrumental
reading values equal to 0 were replaced by the lowest non-zero instrumental reading value divided by the square root of
2.
b ICCs were estimated from AOVA with a random effect on woman. For triclosan analysis, one sample with extreme
value excluded (n=23 samples).
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Detection frequencies of biomarker concentrations in the three random spot samples
collected in each woman were above 79%, except for ethylparaben (70%) and triclosan
(54%). ICCs computed using these random spots samples were lower than 0.6, except
for 2,5-dichlorophenol (ICC, 0.85; 95% CI, 0.69 to 1.00), methylparaben (0.85; 95%
CI: 0.68, 1.00) and propylparaben (0.70; 0.40, 1.00, Table 5.5). As for weekly pools,
ICCs slightly decreased (by 0.01 to 0.19) when using creatinine- or specific gravity-
corrected concentrations (Table 5.10). Adjustment for creatinine or specific gravity
did not change the results (Tables 5.8 and 5.11).
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Figure 5.5 – Intraclass correlation coefficients (error bars for 95% confidence intervals)
for the within-day variability using the unpooled spot samples from subgroup 1 (2
women, n=114 spot samples collected over the first week of collection, triangle mark-
ers), the between-day variability using the within woman daily-pooled samples from
subgroup 1 and subgroup 2 (8 women, n=56 daily pools, one daily pool for each day of
the first week of collection, square markers) and the between-week variability in the wi-
thin woman weekly-pooled samples from subgroup 1 and subgroup 2 (8 women, n=24
weekly pools, one weekly pool for each of the 3 weeks of collection, circle markers).
For triclosan, we give only the confidence interval truncated to zero due to negative
estimate of between-week ICC.
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5.6 Discussion

To our knowledge, this study is the first to evaluate the within-day, between-day
and between-week variability of ten phenol biomarkers as well as of creatinine and
specific gravity in pregnant women. Most compounds showed very high variability
over the course of a day (ICCs generally below 0.3), while the between-day variability
of the daily averages over the course of a week was much lower. This pattern was
opposite for bisphenol S, which had a stronger between-day than within-day variability.
The variability of the weekly averages considered several weeks apart exhibited more
contrasted patterns across compounds, with low between-week variability for some
compounds (2,5-dichlorophenol, butylparaben, propylparaben, methylparaben) and a
high variability for others (ethylparaben, bisphenol S, triclosan). Urinary dilution or
creatinine levels did not explain much of the observed within-subject variability in
phenol biomarkers.

5.6.1 Strengths and limitations

A key strength of our study is the reliance on pregnant women who agreed to col-
lect samples from each micturition over three weeks. This study considered a large
number of phenols, including bisphenol S and others for which the literature is rather
sparse. Also, contrary to previous studies, our design allowed characterization of the
temporal variability of phenol biomarkers over several time-windows during pregnancy,
and in particular within the day and between the days of a week. From eight blinded
samples analysed in duplicate, we observed very high (above 0.95) correlation between
two analyses of the same urine sample for all biomarkers, making it very unlikely that
the reported ICCs were strongly influenced by analytical error. A limitation relates
to the fact that our estimate of the within-day variability relied on samples collected
by only two women, contrary to the estimates of the between-day and between-week
variability, which relied on 8 women. Volumes of urine voids were not collected, pre-
venting us to calculate excretion rate. Caution is required in interpreting estimates
for benzophenone-3, which was the compound with the lowest detection frequency in
all samples (27 to 54%), and in interpreting the results related to the analyses of the
weekly pools, given the large confidence intervals. Even though we restricted our study
population to women with only a few missed voids (below 5%), pools were created using
all available urine samples and these missing voids may be a source of error. Given that
the present study was restricted to a specific population and specific chemicals, gener-
alization of our results to other populations or other compounds should be considered
with great caution.
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5.6.2 Study population

Our study relied on a small population of women who agreed to collect repeated
urine samples for several weeks. It was not meant to be representative of the general
population or of all pregnant women from France or even the Grenoble area. Among
those approached to participate, women with a high education level or interest in
environmental or health issues were more likely to participate. Consequently, the
behaviours (use of personal care products, diet, etc.) of our population are unlikely
to represent those of all pregnant women. One might anticipate that this possibly
led to an underestimation of the between-woman variability in urinary concentrations
for some of the considered compounds, although over-representing women using few
personal care products (as may be the case for some highly educated women aware
of the health concerns regarding the use of healthcare products during pregnancy) or
with a diet low in industrial phenols may also have led to underestimating the within-
subject variability. Other factors such as physical activity, which might influence the
toxicokinetics of xenobiotics,27 may also have differed in our population. Most phenol
urinary concentrations were lower than those reported in previous cohorts of pregnant
women14,21,28,30 and in 1,230 US non-pregnant women in 2011-2012.8 In addition to
differences in behaviours, composition of consumers’ products, regulation of chemicals
in each country, and analytical methods across laboratories performing the assays may
also have differed across studies.

5.6.3 Variability over the course of pregnancy

Our analyses based on three random spot samples were meant to describe the ability
of a simple sampling approach to capture the whole pregnancy exposure, and to allow
comparison with previous studies, which relied on up to three spot samples per parti-
cipant to assess biomarker concentration variability during pregnancy.4,14,17,21,28,30,31,5,2

None of these studies investigated bisphenol S. The moderate ICCs (between 0.4 and
0.5) observed for 2,4-dichlorophenol, butyl and ethylparaben urinary concentrations
were consistent with previous reports,14,28,21,30 while we observed greater ICCs for 2,5-
dichlorophenol and methylparaben (above 0.8 compared to 0.4-0.5 in these previous
studies). Also, considering their rather large confidence intervals, ICCs for bisphenol A
(0.4; 95% CI: 0.0, 0.8) and propylparaben (0.7; 95% CI: 0.4, 1.0) were within the range
of previous studies (around 0.3 for bisphenol A and from 0.3-0.6 for propylparaben),
although at the upper end of the range. In contrast, ICCs for benzophenone-3 (ICC,
0.3; 95% CI, 0.0 to 0.8) and triclosan (ICC, 0.1, 95% CI, 0.0 to 0.6) were at the lower
end of the range of previously reported results, which were between 0.3 and 0.6.2,21,28,31

Detection rates in our population were low (below 55%) for these two compounds, that
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might have decreased ICCs compared to studies with higher detection rates, due to
more homogeneity between women, and hence, a proportionally larger within-subject
variability.

Our study is, to the best of our knowledge, the first to rely on within-subject weekly
pools instead of random spot samples to describe the variability of select phenols during
pregnancy. Compared to the results based on random spot samples from our study,
ICCs based on weekly pools tended to be higher but the overall conclusion was similar to
that with the three-sample approach: variability was contrasted between compounds;
it was low for seven of the 10 phenols (ICCs above 0.59), and high (ICCs below 0.4),
for the other compounds (ethylparaben, bisphenol S and triclosan).

5.6.4 Between-day (within-week) variability

For most biomarkers, the between-day variability of the urinary concentrations over
a week was low (ICCs above 0.7 for eight of the 10 phenols, and ICC of 0.6 for bisphenol
A). For bisphenol S, between-day variability was high (ICC, 0.14; 95% CI, 0.0 to 0.39).
To the best of our knowledge, no study had relied on within-subject daily pools to in-
vestigate the variability of phenol urinary concentrations over several consecutive days.
Two previous studies had relied on 24-hour simulated urine concentrations (volume-
weighted averages of all daily urine voids) in a non-pregnant population of eight males
and females (who collected all their complete urine voids and recorded urine volumes)
to characterize the between-day variability of bisphenol A over a week34 and of sev-
eral phenols over four consecutive days.18 We observed a somewhat lower variability
of bisphenol A urinary concentration in daily pools (ICC, 0.6; 95% CI, 0.3 to 0.89)
compared to these previous studies in non-pregnant subjects (ICCs between 0.12 and
0.28), while for ethyl, methyl and propylparabens, triclosan and benzophenone-3, ICCs
(0.73 – 0.98) were in close agreement with those reported by Koch et al.18 (between 0.71
and 0.99). These findings suggest a good reproducibility of daily averages of urinary
concentrations over a week for most target phenols but the bisphenols.

5.6.5 Within-day variability

Within-day variability was high for all phenol biomarkers (ICCs ≤ 0.50), showing
that a random spot sample collected within a day does not accurately represent the
daily average. For bisphenol A (ICC: 0.21, 95% CI: 0.01, 0.41), this result is in line
with findings from Ye et al.34 who measured urinary bisphenol A concentration in all
spot urine samples collected in one week from eight non-pregnant participants (ICCs,
0.12 – 0.21 for the within-day variability). This is also in agreement with a reported
low reproducibility of bisphenol A concentrations in urine samples from one day (ICC,
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0.31 – 0.33) in a study in pregnant women who provided all their urine voids during
one or two days (66 women) as well as spot samples at different time points during and
after pregnancy.13 The high within-day variations in phenol urinary concentrations are
probably related to the (expectedly) very low half-life of phenols in pregnant women,
as can be deduced from studies in human adults,16,29,32 and to exposure being episodic,
with the main suspected exposure sources being diet (for bisphenols in food containers,
for parabens used as preservatives in some industrial food preparation) and personal
care products (for parabens, triclosan, benzophenone-3). The fact that the within-day
variability was higher than the between-day variability for most compounds could be
due to the behaviours driving exposure tending to be similar from one day to another.

5.6.6 Urine dilution and within-subject pooling

Creatinine and specific gravity are commonly used to adjust for urine dilution in
studies relying on urinary biomarkers.1,3 The two markers were strongly correlated
(coefficient of correlation, 0.86 - 0.92) in spot samples, daily and weekly pools. As
previously reported for creatinine, creatinine concentration and specific gravity had
high within-subject variations throughout one week.3 In our study, correcting phenol
concentrations by either creatinine or specific gravity did not greatly improve ICCs,
suggesting that these parameters do not explain much of the biomarkers’ variability.
Because the total urine volumes were unknown, we created within-subject daily pools
using an equal volume of each spot sample collected each day and results might have dif-
fered if pooling volumes had been based on specific gravity or creatinine concentration.
Creatinine is a body waste product primarily excreted by glomerular filtration.1,3,10

Excretion profiles of phenols are not well characterized in humans and specifically in
pregnant women. However, the low correlation between creatinine or specific gravity
and most of our exposure biomarkers may reflect that urinary excretion processes for
creatinine and these phenols might differ, and that the dilution of urine samples may
not affect substantially biomarker concentrations. Also, in some areas of research, as
a replacement for creatinine standardization, correction for urine dilution relies on pa-
rameters other than creatinine or specific gravity. For example, the Integral Quotient
Normalization approach in metabolomics relies on adjustment by the median value of
all biomarkers.20

5.6.7 Implications for sampling strategies in etiological stu-
dies

We confirmed that studies aiming at characterizing the health effects of pregnancy
exposure to compounds with a high within-subject variability such as most of those
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considered here should generally collect several biospecimens per subject to reduce ex-
posure misclassification.26 More importantly, we report for the first time period-specific
ICCs for select phenols, which can be used to refine the urine sampling scheme in epi-
demiologic studies aiming at characterizing the health effects of such exposures. As
shown in Table 5.4, for some compounds (e.g. 2,5-dichlorophenol, several parabens),
if a good estimate of the exposure averaged over a specific pregnancy week is avail-
able (e.g., through collection of a sample of all urine voids over this week), then this
can conveniently be used as an estimate of the average exposure over all pregnancy
weeks. For triclosan and bisphenol S, for which the between-week ICCs are below 0.3,
assessing exposure during a small number of weeks is unlikely to provide a reasonable
estimate of the whole pregnancy exposure average. For these compounds, focusing on
a few specific weeks of pregnancy may be inefficient, and one may rather consider col-
lecting random samples during pregnancy to estimate the pregnancy average. Relying
on the simulation by Perrier et al.26 and on the ICCs estimated in the current study,
for compounds such as triclosan and bisphenol S, two to three dozen urine samples
would be required, while for compounds such as 2,4-dichlorophenol, with an ICC close
to 0.6 for the pregnancy window, pooling approximately five urine samples would allow
to strongly limit bias in the dose-response function. Relying on a spot urine sample,
is, under the assumption of classical-type error, likely to induce an attenuation bias by
30% (for propylparaben) to 50% or more in the dose-response function if a single spot
sample is used in etiological studies.26 It is only for 2,5-dichlorophenol and methyl-
paraben, for which ICCs based on three random spot samples during pregnancy (Table
5.5) were equal to 0.85, that using one or two spot urine samples collected randomly
during pregnancy may provide a reasonable estimate of the whole pregnancy exposure
average. If one is interested in an exposure window of a length of a week (for example
the week when a specific foetal organ starts developing or at the end of which some
biological parameter is assessed in the mother), then for dichlorophenols, triclosan and
parabens, assessing exposure during a single day of the week should do the job, while
for benzophenone-3, bisphenols A and S, it is safer to assess exposure during several
days of the week. If one is now interested in assessing exposures over a specific day,
collecting one spot sample is likely not enough for all of the studied phenols, since the
within-day ICCs were all below 0.5.

For biomonitoring (and not etiological studies), there is no issue related to bias
in dose-response functions, and collecting a spot biospecimen might be a good option
if the population is large enough; collecting a random sample rather than the first
morning void is likely to provide a much better estimate of the population average.
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5.7 Conclusion

Biospecimens sampling strategy for accurate exposure assessment is a key issue
in epidemiological studies based on short half-lived chemicals such as phenols. Our
findings confirm that exposure misclassification may be high when collecting a small
number of random spot samples. Future etiological studies should adopt a carefully-
thought design for the biospecimen sampling instead of using the default option of
a single biospecimen per subject. Our results suggest that collecting more than one
biospecimen per day for preferably several days during pregnancy is likely to allow
reduction in exposure misclassification.
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Table 5.7 – Creatinine and specific gravity corrected ICCs – Within-day variability
(ICC1).

Note that ICC1 is based on log10-transformed creatinine-corrected (ICCcreat) and spe-
cific gravity-corrected (ICCSG) phenol biomarker concentrations in the unpooled spot
samples from subgroup 1 (2 women, n=114 spot samples collected over the first week of
collection). Uncorrected ICCs were also reported in bold font to allow for comparison.

4 

 

Table S2. Creatinine and specific gravity corrected ICCs – Within-day variability (ICC1). 

Note that ICC1 is based on log10-transformed creatinine-corrected (ICCcreat) and specific gravity-

corrected (ICCSG) phenol biomarker concentrations in the unpooled spot samples from subgroup 1 (2 

women, n=114 spot samples collected over the first week of collection). Uncorrected ICCs were also 

reported in bold font to allow for comparison. 

 
 Within-day variability, ICC1 

(based on unpooled spot samples) 

Biomarker  ICCuncorrected  ICCcreat (95% CI)b ICCSG (95% CI)c 

Phenolsa      

    2,4-dichlorophenol  0.12 (0.00, 0.28)  0.05 (0.00, 0.18) 0.12 (0.00, 0.28) 

    2,5-dichlorophenol  0.11 (0.00, 0.27)  0.04 (0.00, 0.16) 0.15 (0.00, 0.33) 

    Butyl paraben  0.10 (0.00, 0.25)  0.08 (0.00, 0.23) 0.11 (0.00, 0.27) 

    Ethyl paraben  0.03 (0.00, 0.15)  0.05 (0.00, 0.18) 0.06 (0.00, 0.20) 

    Methyl paraben  0.27 (0.05, 0.49)  0.31 (0.08, 0.53) 0.31 (0.08, 0.54) 

    Propyl paraben  0.28 (0.05, 0.50)  0.26 (0.04, 0.48) 0.27 (0.05, 0.49) 

    Benzophenone-3  0.26 (0.04, 0.48)  0.31 (0.08, 0.54) 0.27 (0.05, 0.49) 

    Bisphenol A  0.21 (0.01, 0.41)  0.26 (0.04, 0.47) 0.25 (0.03, 0.46) 

    Bisphenol S  0.50 (0.26, 0.73)  0.49 (0.26, 0.73) 0.55 (0.32, 0.78) 

    Triclosan  0.30 (0.08, 0.53)  0.37 (0.14, 0.61) 0.36 (0.12, 0.59) 

ICC: intraclass correlation coefficient 
a Concentrations <LOD were replaced by instrumental reading values. Instrumental reading values equal to 0 replaced by the non-

zero lowest machine value divided by square root of 2. 
b ICCs were estimated from ANOVA model with a random effect on day (14 days), adjusted for creatinine and within-woman mean-

centering of the data. 
c ICCs were estimated from ANOVA model with a random effect on day (14 days), adjusted for specific gravity and within-woman 

mean-centering of the data. 
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Table 5.9 – Random intercept linear mixed models analyses adjusted for creatinine
(ICCcreat) or specific gravity (ICCSG) – Within-day variability (ICC1).

Note that ICC1 is based on log10-transformed phenol biomarker concentrations in the
unpooled spot samples from subgroup 1 (2 women, n=114 spot samples collected over the
first week of collection). Models adjusted for creatinine (ICCcreat) or specific gravity (ICCSG,
maximum likelihood estimates).

6 

 

Table S4. Random intercept linear mixed models analyses adjusted for creatinine (ICCcreat) or 

specific gravity (ICCSG) – Within-day variability (ICC1). 

Note that ICC1 is based on log10-transformed phenol biomarker concentrations in the unpooled spot 

samples from subgroup 1 (2 women, n=114 spot samples collected over the first week of collection). 

Models adjusted for creatinine (ICCcreat) or specific gravity (ICCSG, maximum likelihood estimates). 

 

 
 Within-day variability, ICC1 

(based on unpooled spot samples) 

Biomarker  ICCcreat (95% CI)b  ICCSG (95% CI)c 

Phenolsa     

    2,4-dichlorophenol  0.03 (0.00, 0.81)  0.16 (0.05, 0.42) 

    2,5-dichlorophenol  0.11 (0.03, 0.37)  0.20 (0.07, 0.45) 

    Butyl paraben  0.06 (0.00, 0.50)  0.08 (0.01, 0.43) 

    Ethyl paraben  NAd  0.03 (0.00, 0.89) 

    Methyl paraben  0.24 (0.10, 0.47)  0.25 (0.11, 0.48) 

    Propyl paraben  0.27 (0.11, 0.52)  0.26 (0.11, 0.52) 

    Benzophenone-3  0.28 (0.12, 0.52)  0.25 (0.10, 0.49) 

    Bisphenol A  0.24 (0.09, 0.50)  0.23 (0.09, 0.49) 

    Bisphenol S  0.59 (0.38, 0.78)  0.59 (0.37, 0.78) 

    Triclosan  0.34 (0.16, 0.58)  0.34 (0.16, 0.57) 

ICC: intraclass correlation coefficient 
a Concentrations <LOD were replaced by instrumental reading values. Instrumental reading values equal to 0 replaced 

by the lowest non-zero machine value divided by square root of 2. 
b ICCs were estimated from random intercept linear mixed model with a random effect on day (14 days), adjusted for 

creatinine and within-woman mean-centering of the data. 
c ICCs were estimated from random intercept linear mixed model with a random effect on day (14 days), adjusted for 

specific gravity and within-woman mean-centering of the data. 
d No estimate and confidence interval given by the model due to estimates equal to zero. 
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Figure 5.6 – Box plots of the distribution of urinary concentrations of 10 phenols (µg/L,
log10-scale), creatinine concentration (mg/dL) and specific gravity in the within woman
daily-pooled samples from subgroup 1 and subgroup 2 (8 women, n=56 daily pools,
one daily pool for each day of the first week of collection). Boxes extend from the
25th to the 75th percentile, horizontal bars represent the median, whiskers extend 1.5
times the length of the interquartile range (IQR) above and below the 75th and 25th
percentiles, respectively, and outliers are represented as points.
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Figure 5.7 – Box plots of the distribution of urinary concentrations of 10 phenols (µg/L,
log10-scale), creatinine concentration (mg/dL) and specific gravity in within woman
weekly-pooled samples from subgroup 1 and subgroup 2 (8 women, n=24 weekly pools,
one weekly pool for each of the 3 weeks of collection). Boxes extend from the 25th to
the 75th percentile, horizontal bars represent the median, whiskers extend 1.5 times the
length of the interquartile range (IQR) above and below the 75th and 25th percentiles,
respectively, and outliers are represented as points.
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6.1 French summary

Contexte
Dans l’étude précédente, nous avons observé une forte variabilité journalière des phénols
au cours de la grossesse ce qui limite l’efficacité d’une mesure des concentrations des
biomarqueurs dans un échantillon unique pour estimer l’exposition. Par ailleurs, un
travail de Perrier et al.26 démontre théoriquement que le pooling intra-sujet de biospéci-
mens peut réduire le biais dans les études explorant les relations doses-réponses, lorsque
l’erreur de mesure est de type classique. L’erreur de type classique correspond à une
situation où la concentration du biomarqueur dans un échantillon varie aléatoirement
autour de l’exposition réelle, non mesurée. Ainsi, cette exposition réelle peut être ap-
proximée par la moyenne des concentrations mesurées dans de nombreux échantillons.
La validité d’une telle approche n’a jamais été validée empiriquement, et le recueil jour-
nalier de nombreux biospécimens est très fastidieux pour les participants d’une étude
de cohorte.

Objectif
L’objectif principal de cette étude est de valider empiriquement l’intérêt du pooling de
biospécimens intra-sujet, 1) en proposant d’évaluer l’efficacité d’une méthode de pool-
ing intra-sujet allégée (uniquement 3 biospécimens par jour) par rapport à l’approche
"idéale", qui consiste à prendre tous les biospécimens pour estimer l’exposition moyenne
d’un jour, d’une semaine ou de la grossesse; et 2) en estimant le biais retrouvé dans les
estimations des relations doses-réponses, lorsque l’exposition est estimée en recueillant
un ou plusieurs biospécimens.

Méthodes
Notre étude se base sur les échantillons d’urine de 16 femmes enceintes de l’étude de
faisabilité de la cohorte SEPAGES, qui ont recueilli toutes leurs urines pendant plu-
sieurs semaines. Dans cette étude, nous comparons les concentrations de biomarqueurs
urinaires de 10 phénols mesurées dans les pools "jour", "semaine", et "grossesse", réal-
isés en mélangeant, chez chaque participante, soit 1) tous les échantillons d’urine de
la journée, soit 2) seulement 3 échantillons.

Nous avons ensuite réalisé une étude de simulation basée sur des données réelles
d’exposition chez les mêmes femmes. Cette simulation repose sur les données d’exposition
de deux phénols : le méthylparabène avec une variabilité intra-individuelle plutôt faible,
et le bisphénol A, avec une variabilité intra-individuelle forte. Le biais dans les relations
doses-réponses est estimé pour une mesure d’exposition qui repose sur la concentration
du biomarqueur mesurée dans un et jusqu’à 20 biospécimens.
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Résultats
Les estimations d’exposition moyenne de la journée, de la semaine et de la grossesse,
obtenues par la méthode pooling intra-sujet allégée ou la méthode de pooling intra-
sujet idéale sont très corrélées (coefficient de corrélation de Pearson supérieurs à 0.8),
excepté pour l’estimation des moyennes d’exposition journalières de benzophénone-3 et
triclosan.

L’utilisation d’un biospécimen unique pour estimer l’exposition au méthylparabène
entraine un biais d’atténuation de 30% dans les estimations des relations doses-réponses.
Ce biais est encore plus important pour le bisphénol A (68%). L’utilisation d’au moins
quatre et 18 biospécimens, respectivement pour le méthylparabène et le bisphénol A, est
nécessaire pour passer ce biais sous le seuil de 10%.

Conclusion
En prenant l’exemple des phénols, nous observons que, pour des composés non-persistants,
le recueil et le pooling de seulement 3 échantillons par jour chez chaque participant est
efficace pour estimer l’exposition au cours de fenêtres de temps allant de la journée à la
grossesse. Le recueil de plusieurs dizaines de biospécimens est parfois nécessaire pour
limiter de manière suffisante le biais d’atténuation pour les composés les plus variables
(par exemple le bisphénol A), ce qui démontre un peu plus l’utilité d’une telle approche.
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6.2 Abstract

Background
Within-subject biospecimens pooling was shown to be theoretically efficient in reducing
bias in dose-response functions in presence of classical-type error. Its validity was never
tested empirically, and collecting all daily urine samples is cumbersome. We evaluated
the validity of a within-subject pooling approach relying on the collection of a small
number of voids every day.

Methods
In 16 pregnant women who collected their urines over several weeks, we compared
biomarker concentrations of 10 phenols in daily, weekly and pregnancy within-subject
pools obtained using either three or every daily urine samples. Then, a simulation study
using real data from the same women allowed us to estimate the bias in dose-response
functions when relying on one to 20 urine samples per subject to assess exposures to
methylparaben (moderate within-subject variability) and bisphenol A (high variabi-
lity).

Results
Regarding the estimation of daily, weekly and pregnancy exposures, correlations be-
tween pools of all or only three urine voids were above 0.8, except for benzophenone-3
and triclosan (daily time-window). Using one biospecimen resulted in an attenuation
bias in the dose-response functions of 30% (methylparaben) and 68% (bisphenol A);
four and 18 samples, respectively, were required to reduce bias under a 10% threshold.

Conclusion
For short half-lived compounds, collecting and pooling three instead of all daily voids
allows efficient estimation of exposures over time windows of a week or more. Collecting
a few dozen urine samples allows to strongly limit attenuation bias for highly temporally
variable chemicals such as bisphenol A. This provides further (empirical) validation of
the within-subject pooling approach.
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6.3 Introduction

Phenols (phenolic chemicals) are used in consumer products, such as epoxy resins
and polymer plastics for food and beverage containers (bisphenols); cosmetics and per-
sonal care products (triclosan and parabens); ultraviolet filters (benzophenone-3); pes-
ticides (2,4-dichlorophenol) and room deodorizers (2,5-dichlorophenol).14,12,11,22,16,19,23,24

This leads to widespread exposure in the general population of industrialized countries.
Toxicological studies suggest harmful effects of compounds from this family on a va-
riety of pathways and biological or clinical endpoints.6,37 Investigating the impact of
these compounds on human health requires an accurate estimation of exposure over
the relevant time-window.8,28 For chemicals with a high (within-subject) temporal va-
riability, in the case of classical-type error, relying on few biospecimens leads to at-
tenuation bias in the dose-response relationships.28,7 Classical type measurement error
corresponds to a situation in which spot biomarker concentrations vary around the
unmeasured true value, which can be approximated by the mean of many measure-
ments repeated throughout the time window of interest for an individual.10 Within
the additive classical-type error framework, simulation studies described a relationship
between the variability of a given chemical (characterized through its intraclass coef-
ficient of correlation, ICC) and the bias in the dose-response functions.26,28,1 However,
the measurement error structure may in practice not correspond to additive classical-
type error, so that it is important to confirm the magnitude of the bias induced by
actually observed within-subject variation structures in biomarker levels, in particular
in sensitive populations such as pregnant women.

While increasing the size of the study population is not expected to cure such bias,
improving the exposure assessment by increasing the number of biospecimens collected
in each subject decreases the bias in the dose-response function.26,28 One can assay
biomarkers levels in each biospecimen and use measurement error models to efficiently
limit bias,13,33,10 but this approach increases analytical costs. An alternative consists in
pooling biospecimens within subject before assaying chemicals. This approach benefits
from the information contained in each subject, but without increasing analytical costs
since only samples pooled within-subject are assayed. This so-called within-subject
biospecimens pooling approach has been validated theoretically,26 but an empirical
validation is lacking.

The within-subject biospecimens pooling approach also raises practical issues. In-
deed, such a sampling frame is inconvenient for large-scale epidemiological studies, in
particular for long exposure windows such as the entire pregnancy. In designing future
epidemiological studies, it would be valuable to test if less cumbersome approaches for
participants and the survey team could be efficient in estimating exposures.
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In this study, our aim was two-fold:

1. to compare a sampling design relying on collection of three urine samples per day
with a richer but more cumbersome design consisting in collecting all urine voids
in their efficiency to approximate the true exposure to short half-lived chemicals
(here, phenols) over daily, weekly and whole pregnancy exposure windows;

2. to empirically investigate the effect of within-subject temporal variability in phe-
nols biomarkers levels observed in actual populations on bias in dose-response
functions.
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6.4 Methods

6.4.1 Overview

Both aims relied on a population of pregnant women, recruited as part of SEPAGES
(Suivi de l’Exposition à la Pollution Atmosphérique durant la Grossesse et Effets sur
la Santé ; Assessment of air pollution exposure during pregnancy and effects on health)
cohort feasibility study,25 in which all urine samples have been collected for three
weeks during the pregnancy. Phenols levels were assayed in these urine samples with
or without pooling (Figure 6.1). From this unique dataset of phenols assays, urine
samples have been pooled in different ways (Figure 6.1), which allowed us to assess
the correlation between two daily, weekly and pregnancy exposure estimates: the first
relying on pools made up from all daily urine samples, and the second on degraded
pools made up from fewer samples collected for each subject (aim 1). From the same
exposure data, we generated a fictitious study, paralleling a previous simulation study
in which exposure levels were not based on real data.26 We assumed phenols impacted
a health outcome, and characterized the impact of relying on an increasing number of
urine samples to assess exposure (aim 2).

6.4.2 Study population

This study relied on urinary biospecimens assayed for phenol biomarkers in the
feasibility study of the SEPAGES cohort conducted between July 2012 and July 2013.35

The cohort was approved by the appropriate ethical committees (CPP, Comité de
Protection des Personnes Sud-Est; CNIL, Commission Nationale de l’Informatique
et des Libertés; CCTIRS, Comité Consultatif sur le Traitement de l’Information en
matière de Recherche dans le domaine de la Santé; ANSM, Agence Nationale de sécurité
du Médicament et des produits de santé). All participants provided written informed
consent for biological measurements and data collection.

6.4.3 Urine collection

The urine collection protocol has previously been detailed.35 During three non-
consecutive weeks in pregnancy (in median at 13, 23, and 32 gestational weeks), 30
women living in the Grenoble urban area (France) collected a spot sample of each
urine void in polypropylene containers. Samples were kept in the participants’ re-
frigerators before study staff retrieval (every two days). Each sample was aliquoted
into polypropylene cryovials and frozen at -80oC at Inserm research center (Institute
for Advanced Biosciences, Grenoble, France). Women were asked to record any missed
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void on a paper questionnaire they carried with them (at all times). Phenol biomarkers
were quantified in a subgroup of 16 women with the smallest missed voids rate. Among
these women, two had collected a sample of each of their urine voids (no missing void,
group A1 ), six collected more than 95% of their voids (group A2 ) and another eight
between 80 and 95% of their voids (group B).

6.4.4 Phenol biomarkers

The total (free plus conjugated forms) urinary concentrations of 2,4-dichlorophenol,
2,5-dichlorophenol, benzophenone-3, bisphenol A, bisphenol S, triclosan, butylparaben,
methylparaben, ethylparaben, and propylparaben were quantified at the CDC using a
modified online solid-phase extraction high-performance liquid chromatography-isotope
dilution-tandem mass spectrometry method.38 Limits of detection (LODs) are listed in
Table 6.1.

6.4.5 Aim 1: Assessing the efficiency of a degraded within-
subject pooling protocol

We compared the efficiency (in terms of exposure assessment) of an approach using
three daily urine samples, a degraded pooling approach, with that of an ideal pooling
approach using all the daily samples to provide an estimate of exposure to ten phe-
nols over windows of days, weeks and the whole pregnancy. We additionally compared
exposure estimates based on one to eight random spot samples (other degraded ap-
proaches), randomly selected from all the available spot samples collected during the
three measurement weeks for each woman, to that of the ideal approach. This section
relied on eight to 16 pregnant women, depending on the considered exposure window.

6.4.5.1 Urine pools

We pooled individual samples to average concentrations over specific time windows,
as detailed in Figure 6.1. From equal volume urine samples from each subject, we
prepared (i) within-subject daily pools (seven days per subject and per week), obtained
from all urine voids of a given day (there were on average eight voids per day); (ii)
within-subject weekly pools, obtained by pooling all daily pools of a given week (three
weeks per subject); and (iii) within-subject pregnancy pools, obtained by pooling all
weekly pools. The ideal approach corresponded to Protocol 1.

In the degraded pooling approach, Protocol 2, the daily pools were prepared using
three samples from each subject, instead of all daily individual samples. The weekly
and pregnancy pools were prepared from these simpler daily pools. The three samples
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were obtained by randomly selecting one sample in the morning (after midnight–1159
hours), one in the afternoon (1200–1800 hours) and one in the evening (1801–2359
hours).

Pools and spot samples were kept frozen at -80°C in 2-mL polypropylene cryovials
until shipment on dry ice to the CDC laboratory in Atlanta (Georgia, USA), where all
biospecimens were stored at or below -70°C until analysis.

6.4.5.2 Statistical analysis

All biomarker concentrations were ln-transformed. Concentrations were replaced by
instrumental readings when below LODs, and, when the instrumental reading equaled
zero, by the compound-specific non-null lowest instrumental reading divided by

√
2.

Three additional degraded approaches were compared to Protocol 1:
— Protocol 3 relied on one random spot sample;
— Protocol 4 averaged biomarker concentrations over three random spot samples;
— Protocol 5 averaged biomarker concentrations over eight random spot samples.

These protocols were meant to provide an estimate of the pregnancy exposure average,
while Protocols 1 and 2 provided estimates of concentrations during daily, weekly and
pregnancy time window.

Phenols were not assayed in all samples due to cost constraints (see Figure 6.1 for
a summary of samples assayed for phenols). Comparison of Protocols 1 and 2, relied
on:

— all daily pools of the first collection week in the two women in group A1, and
one random daily pool from the first collection week in the six women of group
A2 (n = 20 daily pools);

— all weekly pools for the eight women in groups A1 and A2 (n = 24 weekly pools);
— the pregnancy pools for the 16 women (groups A1, A2 and B, n = 16 pregnancy

pools).
The pregnancy average biomarker concentrations from Protocols 3 to 5 were additio-
nally compared to that of Protocol 1 for each of the eight women in groups A1 and
A2.

For each daily, weekly and whole pregnancy time window, we compared averages of
phenol concentrations from Protocol 1 and the others, using Pearson (r) and Spearman
(ρ) correlation coefficients, paired t-tests, and we assessed the concordance between
exposure estimates categorized in tertiles through Cohen’s Kappa coefficients (K).
Scatter plots and Bland-Altman plots2,3 were used for visual comparison.
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6.4.6 Aim 2: Impact of the within-subject biomarker variabi-
lity on dose-response functions

We relied on phenol urinary concentrations assayed in eight random spot samples
collected throughout pregnancy (randomly selected from individual biospecimens of
the three measurement weeks) in eight women of the SEPAGES-feasibility study (n =
64 samples).

A bootstrap approach was used to generate populations of 3,000 subjects with, for
exposure assessment, one to 20 biospecimens each. We quantified bias and statisti-
cal power of epidemiological studies aiming at relating exposure to two error-prone
phenol biomarkers to a continuous health outcome (child weight at age 3 years). We
chose two phenols, methylparaben and bisphenol A, because of their contrasted ICCs;
methylparaben having a rather low, and bisphenol A a high within-subject variabi-
lity in the studied population of eight women (pregnancy-specific ICC was 0.85 for
methylparaben and 0.38 for bisphenol A).35 Exposure was assumed to be assessed
from biomarker concentration in one random spot sample or within-subject pools of
an increasing number of biospecimens, as in the theoretical study from Perrier et al.26.
Methods were adapted from this previous simulation study and are detailed in the
Appendix 1 of the Supplemental material (Section 6.9).

Bias was estimated as the difference in percent between the mean effect estimate (β)
over 1,000 studies for the surrogates of exposure and the true effect (βtrue) divided by
true effect. Negative values of bias correspond to a situation where β is lower in absolute
value than the true effect βtrue (attenuation), and positive values to a situation where
β is greater in absolute value than the true effect. Statistical power was calculated as
the fraction of the 1,000 studies with a p-value for the association below 0.05.

We additionally reported a posteriori disattenuated effect estimates.26,28 These esti-
mates were obtained by dividing the estimated regression coefficients by the compound-
specific ICC. We used two possible values of the pregnancy-specific ICC: ICC1, corre-
sponding to the value estimated in our study population of eight women35 and ICC2,
corresponding to the average from previously published studies in pregnant women
(ICC2 was 0.45 and 0.20 for methylparaben and bisphenol A, respectively).4,5,18,21,27,34

ICC1 was assumed to correspond to the ideal value, but we also tested ICC2 since
without repeated assays, one cannot estimate ICCs specific to the study population.

Data were analyzed using STATA 12.1 (Stata Corp, College Station, Texas).
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6.5 Results

6.5.1 Population

Women collected between three and 15 urine specimens per day (median, 7, 25th-
75th centiles, 6-10), resulting in a total of 111 to 240 (median, 160, 25th-75th centiles,
136-188) samples per woman over the three collection weeks. Women from group B
(with the highest rate of missed voids) tended to collect fewer samples per day than
women from groups A1 and A2. The median interval between successive collection
weeks was 8.9 weeks (25th-75th centiles, 8.1-10.2). Additional characteristics of the 16
pregnant women are presented in Table 6.6.

6.5.2 Assessing the efficiency of degraded within-subject sam-
pling protocols

Daily exposure window
Daily pools (Protocol 1) were based on 8 urine samples per woman on average. Detec-
tion frequencies were above 75% for the daily pools for all phenols except benzophenone-
3, for which detection frequency was 45%. With only three urine voids per day (Pro-
tocol 2) detection rates were fairly similar, except for triclosan (50%) and, to a lesser
extent, benzophenone-3 (30%, Table 6.1). Distributions in biomarker concentrations
were coherent between daily pools from Protocols 1 and 2 for almost all the com-
pounds, except for triclosan (mean±SD ln-transformed concentration, 0.70±1.48 and
-0.51±1.98 in Protocols 1 and 2 daily pools, respectively, p<0.001) and bisphenol S
(-1.11±0.69 and -0.90±0.75 in Protocols 1 and 2 daily pools, respectively, p<0.001).
Pearson correlations between the ln-transformed biomarker concentrations from Pro-
tocols 1 and 2 were above 0.80 (p<0.001), except for benzophenone-3 (r=0.57) and
triclosan (r=0.68), the highest being observed for the four parabens (r≥0.96, Table
6.1 and Figure 6.2). The Bland-Altman plots suggested a rather good agreement be-
tween the two protocols, although it was less obvious for triclosan, for which there was
a tendency to underestimate the daily averages for the Protocol 2 daily pools compared
to Protocol 1 daily pools (Figure 6.6).

Weekly exposure window
For the weekly exposure window, detection frequencies in weekly pools tended to be
similar to those observed with the daily pools, except for butylparaben (for which detec-
tion rate was lower in the weekly pools, Table 6.2). Weekly averages using pools of three
samples per day (Protocol 2) were coherent with those based on all urine voids (Proto-
col 1), except for 2,5-dichlorophenol (p=0.04), propylparaben (p=0.01) and bisphenol
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Figure 6.2 – Daily exposure window – Scatter plots of exposure estimates from Protocol
2 (equal volumes of three urines voids were within-subject pooled) against those from
Protocol 1 (equal volumes of all urine voids were within-subject pooled) (mean-centered
ln-transformed biomarker concentrations, n = 8 women, N = 20 samples). The filled red
line represents the regression line and the filled black line the identity line. Horizontal
and vertical dotted lines indicate the compound-specific limit of detection.
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A (p=0.02). Ln-transformed weekly biomarker concentrations were highly correlated
between Protocols 1 and 2 (all r coefficients above 0.8, p<0.001), the lowest being ob-
served for benzophenone-3 (r=0.81) and the highest (r≥0.98) for three parabens and
2,5-dichlorophenol (Table 6.2 and Figure 6.3). Bland-Altman plots (Figure 6.7) showed
a good agreement between the two protocols but a slightly tendency for Protocol 2 to
overestimate weekly propylparaben averages.

Pregnancy exposure
For pregnancy pools, detection frequencies were very similar between Protocols 1 (me-
dian, 97%, 25th-75th centiles, 83-100) and 2 (median, 97%, 25th-75th centiles, 90-100).
They were lower in general for Protocol 3, which relied on one random spot sample
for pregnancy exposure assessment, (median, 69%, 25th-75th centiles, 50-88), except
for benzophenone-3, for which detection rate was 63% with Protocol 3 compared to
31% in Protocols 1 and 2 (Table 6.3). For all compounds, pregnancy averages (n =
16 women) were in close agreement between Protocols 1 and 2 (r≥0.86, p<0.001),
while Protocols 3 to 5 differed from Protocol 1 for most compounds (comparison based
on eight women). The larger the number of spot samples used to assess pregnancy
exposure, the higher the correlation with Protocol 1 pregnancy averages (r=−0.67 to
0.74, r=0.60 to 0.92 and r=0.68 to 0.98, respectively for Protocols 3, 4, and 5, see
Table 6.3 and Figure 6.4). The scatter plots and Bland-Altman plots mainly suggested
underestimation of pregnancy exposure when using one or few random spot samples
(Protocols 3-5) to estimate mean pregnancy exposure, compared to Protocol 1. The
agreement was good between the two pooling approaches (see Figures 6.8-6.9).
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Figure 6.3 – Weekly exposure window – Scatter plots of exposure estimates from Pro-
tocol 2 (equal volumes of three urine voids were within-subject pooled for daily pools)
against those from Protocol 1 (equal volumes of all urine voids were within-subject
pooled) (mean-centered ln-transformed biomarker concentrations, n = 8 women, N =
24 samples). The filled red line represents the regression line and the filled black line
the identity line. Horizontal and vertical dotted lines indicate the compound-specific
limit of detection.



148 CHAPTER 6. VALIDATION OF WITHIN-SUBJECT POOLING

Ta
bl
e
6.
2
–
W
ee
kl
y
ex
po

su
re

w
in
do

w
–
D
es
cr
ip
tiv

e
st
at
ist

ic
so

ft
he

bi
om

ar
ke
rc

on
ce
nt
ra
tio

ns
fo
rt

he
24

we
ek
ly

po
ol
sa

nd
ag
re
em

en
tb

et
we

en
es
tim

at
es

fro
m

Pr
ot
oc
ol
s
1
(p
oo

lin
g
of

al
l
ur
in
e
sa
m
pl
es
/d

ay
)
an

d
2
(p
oo

lin
g
of

3
ur
in
e
sa
m
pl
es
/d

ay
).

Bi
om

ar
ke
r
co
nc
en
tr
at
io
ns

we
re

ln
-t
ra
ns
fo
rm

ed
.

W
ee
kl
y
po

ol
s
(P

ro
to
co
l1

)a
(n
=
8
w
om

en
,n

=
24

sa
m
pl
es
)

W
ee
kl
y
po

ol
s
(P

ro
to
co
l2

)b
(n
=
8
w
om

en
,n

=
24

sa
m
pl
es
)

A
gr
ee
m
en
t
be

tw
ee
n

Pr
ot
oc
ol
s
1
an

d
2

Pe
rc
en
til
es

(µ
g/
L)

Pe
rc
en
til
es

(m
g/
L)

Pe
ar
so
n
Sp

ea
rm

an
K
ap

pa

Ph
en

ol
ic

co
m
po

un
d

LO
D

(µ
g/
L)

%
>

LO
D

5t
h

50
th

95
th

%
>

LO
D

5t
h

50
th

95
th

(r
)

(ρ
)

(K
)

p-
va
lu
ec

2,
4-
di
ch
lo
ro
ph

en
ol

0.
1

92
<
LO

D
0.
30

2.
20

10
0

0.
20

0.
30

2.
10

0.
91

0.
80

0.
50

0.
49

2,
5-
di
ch
lo
ro
ph

en
ol

0.
1

10
0

0.
30

0.
60

73
.0
0

10
0

0.
30

0.
75

72
.4
0

0.
99

0.
97

0.
94

0.
04

B
ut
yl

pa
ra
be

n
0.
1

58
<
LO

D
0.
25

24
.0
0

63
<
LO

D
0.
40

32
.0
0

0.
95

0.
88

0.
81

0.
15

Et
hy

lp
ar
ab

en
1.
0

79
<
LO

D
11
.4
0

56
.5
0

88
<
LO

D
9.
20

56
.8
0

0.
98

0.
96

0.
88

0.
48

M
et
hy

lp
ar
ab

en
1.
0

10
0

3.
90

44
.4
0

16
73
.7
0

10
0

8.
00

51
.0
5

11
17
.9
0

0.
98

0.
95

0.
75

0.
11

Pr
op

yl
pa

ra
be

n
0.
1

96
0.
20

4.
80

17
3.
60

10
0

0.
30

6.
05

12
2.
50

0.
98

0.
95

1.
00

0.
01

B
en

zo
ph

en
on

e-
3

0.
2

38
<
LO

D
<
LO

D
28
.5
0

42
<
LO

D
<
LO

D
36
.7
0

0.
91

0.
89

0.
76

0.
37

B
isp

he
no

lA
0.
1

10
0

0.
50

1.
90

5.
70

10
0

0.
80

2.
00

6.
30

0.
95

0.
95

0.
75

0.
02

B
isp

he
no

lS
0.
1

92
<
LO

D
0.
30

14
.4
0

96
0.
20

0.
40

18
.0
0

0.
97

0.
93

0.
63

0.
07

Tr
ic
lo
sa
n

1.
0

79
<
LO

D
2.
50

83
.7
0

88
<
LO

D
2.
35

96
.1
0

0.
81

0.
83

0.
44

0.
93

LO
D
,l
im

it
of

de
te
ct
io
n.

ri
nd

ic
at
es

Pe
ar
so
n
co
rr
el
at
io
n
co
effi

ci
en
t,
ρ
in
di
ca
te
sS

pe
ar
m
an

co
rr
el
at
io
n
co
effi

ci
en
t,
K

in
di
ca
te
sK

ap
pa

co
effi

ci
en
t(

ba
se
d
on

bi
om

ar
ke
rc

on
ce
nt
ra
tio

n
ca
te
go
riz

ed
in
to

te
rt
ile

s)
.

a
A
ll
in
di
vi
du

al
ur
in
e
sp
ec
im

en
s
of

a
da

y
w
er
e
w
ith

in
-s
ub

je
ct

po
ol
ed

in
eq
ua

lv
ol
um

es
fo
r
da

ily
po

ol
s.

D
ai
ly

po
ol
s
w
er
e
w
ith

in
-s
ub

je
ct

po
ol
ed

in
eq
ua

l
vo
lu
m
es

to
cr
ea
te

w
ee
kl
y
po

ol
s.

b
3
in
di
vi
du

al
ur
in
e
sp
ec
im

en
s
of

a
da

y
w
er
e
w
ith

in
-s
ub

je
ct

po
ol
ed

in
eq
ua

lv
ol
um

es
fo
r
da

ily
po

ol
s.

D
ai
ly

po
ol
s
w
er
e
w
ith

in
-s
ub

je
ct

po
ol
ed

in
eq
ua

l
vo
lu
m
es

to
cr
ea
te

w
ee
kl
y
po

ol
s.

c
p-
va
lu
e
of

St
ud

en
t’s

t-
te
st

co
m
pa

rin
g
bi
om

ar
ke
r
ln
-t
ra
ns
fo
rm

ed
co
nc

en
tr
at
io
ns

fr
om

Pr
ot
oc
ol

1
an

d
Pr

ot
oc
ol

2
w
ee
kl
y
po

ol
s.



C
H

A
PT

ER
6.

VA
LID

AT
IO

N
O

F
W

IT
H

IN
-SU

B
JEC

T
PO

O
LIN

G
149

Table 6.3 – Pregnancy exposure window – Descriptive statistics of the biomarker concentrations for the entire pregnancy exposure window
estimated by various exposure models considered and agreement between estimates from Protocol 1 (pooling of all urine samples/day) and
Protocols 2 (pooling of 3 urine samples/day), 3 (one random spot sample), 4 (mean of 3 random spot samples) and 5 (mean of 8 random
spot samples). Biomarker concentrations were ln-transformed.

Percentiles (µg/L)
Agreement between estimates from

Protocol 1 and from the other
protocols

Pearson Spearman Kappa

Phenolic compound Protocol N LOD
(µg/L) %>LOD 5th 50th 95th (r) (ρ) (K) p-valuec

2,4-dichlorophenol
Pregnancy pool, Protocol 1a 16 0.1 88 0.20 0.30 2.70 ref
Pregnancy pool, Protocol 2b 16 94 <LOD 0.30 2.40 0.86 0.88 0.89 0.43
Average of 8 random spot samples, Protocol 5 8 NA 0.15 0.36 1.80 0.92 0.86 0.43 0.44
Average of 3 random spot samples, Protocol 4 8 NA <LOD 0.35 1.82 0.85 0.80 0.24 0.32
Single random spot sample, Protocol 3 8 75 <LOD 0.40 0.50 0.17 0.15 -0.14 0.31

2,5-dichlorophenol
Pregnancy pool, Protocol 1a 16 0.1 100 0.40 0.55 117.00 ref
Pregnancy pool, Protocol 2b 16 100 0.30 1.00 103.20 0.99 0.97 1.00 0.52
Average of 8 random spot samples, Protocol 5 8 NA 0.20 0.65 65.47 0.98 0.88 0.62 0.09
Average of 3 random spot samples, Protocol 4 8 NA <LOD 1.05 67.76 0.92 0.88 0.62 0.23
Single random spot sample, Protocol 3 8 88 <LOD 0.70 13.60 0.75 0.39 0.05 0.19

Butyl paraben
Pregnancy pool, Protocol 1a 16 0.1 75 <LOD 0.50 25.80 ref
Pregnancy pool, Protocol 2b 16 75 <LOD 0.50 32.00 1.00 0.99 0.81 0.75
Average of 8 random spot samples, Protocol 5 8 NA <LOD 0.20 23.43 0.95 0.92 1.00 0.04
Average of 3 random spot samples, Protocol 4 8 NA <LOD 0.30 17.56 0.91 0.86 0.62 0.52
Single random spot sample, Protocol 3 8 38 <LOD <LOD 40.50 0.73 0.44 0.24 0.42

Ethyl paraben
Pregnancy pool, Protocol 1a 16 1.0 81 <LOD 9.35 55.20 ref
Pregnancy pool, Protocol 2b 16 88 <LOD 9.35 124.40 0.99 0.97 1.00 0.81
Average of 8 random spot samples, Protocol 5 8 NA <LOD 1.79 55.08 0.80 0.57 0.43 0.00
Average of 3 random spot samples, Protocol 4 8 NA <LOD 1.94 40.12 0.84 0.57 0.43 0.00

Continued on Next Page. . .
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Table 6.3 – Continued

. . .Continued from Previous Page

Percentiles (µg/L)
Agreement between estimates from

Protocol 1 and from the other
protocols

Pearson Spearman Kappa

Phenolic compound Protocol N LOD
(µg/L) %>LOD 5th 50th 95th (r) (ρ) (K) p-valuec

Single random spot sample, Protocol 3 8 50 <LOD <LOD 154.10 0.54 0.40 0.05 0.03
Methyl paraben

Pregnancy pool, Protocol 1a 16 1.0 100 5.20 56.05 2595.00 ref
Pregnancy pool, Protocol 2b 16 100 12.30 55.35 2949.20 0.98 0.99 0.81 0.08
Average of 8 random spot samples, Protocol 5 8 NA 3.82 18.16 763.76 0.95 0.98 1.00 0.01
Average of 3 random spot samples, Protocol 4 8 NA 2.57 11.36 330.76 0.86 1.00 1.00 0.03
Single random spot sample, Protocol 3 8 88 <LOD 12.65 7850.00 0.84 0.79 0.24 0.17

Propyl paraben
Pregnancy pool, Protocol 1a 16 0.1 100 0.20 7.30 288.70 ref
Pregnancy pool, Protocol 2b 16 100 0.30 9.45 324.00 0.99 0.98 0.62 0.01
Average of 8 random spot samples, Protocol 5 8 NA 0.18 2.66 98.72 0.93 0.92 0.62 0.05
Average of 3 random spot samples, Protocol 4 8 NA 0.13 5.37 51.39 0.90 0.90 0.62 0.21
Single random spot sample, Protocol 3 8 50 <LOD 0.70 1176.10 0.71 0.65 0.62 0.10

Benzophenone-3
Pregnancy pool, Protocol 1a 16 0.2 31 <LOD <LOD 98.80 ref
Pregnancy pool, Protocol 2b 16 31 <LOD <LOD 172.90 1.00 1.00 1.00 0.29
Average of 8 random spot samples, Protocol 5 8 NA 0.22 0.31 15.07 0.96 0.85 0.62 1.00
Average of 3 random spot samples, Protocol 4 8 NA <LOD 0.56 11.79 0.89 0.85 0.62 0.95
Single random spot sample, Protocol 3 8 63 <LOD 1.50 9.00 0.71 0.70 0.43 0.85

Bisphenol A
Pregnancy pool, Protocol 1a 16 0.1 100 0.70 2.45 4.50 ref
Pregnancy pool, Protocol 2b 16 100 0.80 3.05 6.10 0.88 0.85 0.62 0.10
Average of 8 random spot samples, Protocol 5 8 NA 0.56 1.71 2.57 0.85 0.79 0.62 0.01
Average of 3 random spot samples, Protocol 4 8 NA 0.11 1.27 3.05 0.74 0.52 0.43 0.02
Single random spot sample, Protocol 3 8 88 <LOD 1.20 10.70 -0.67 -0.49 -0.33 0.41

Continued on Next Page. . .
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Table 6.3 – Continued

. . .Continued from Previous Page

Percentiles (µg/L)
Agreement between estimates from

Protocol 1 and from the other
protocols

Pearson Spearman Kappa

Phenolic compound Protocol N LOD
(µg/L) %>LOD 5th 50th 95th (r) (ρ) (K) p-valuec

Bisphenol S
Pregnancy pool, Protocol 1a 16 0.1 94 0.20 0.45 7.30 ref
Pregnancy pool, Protocol 2b 16 94 <LOD 0.45 8.60 0.99 0.91 0.61 0.19
Average of 8 random spot samples, Protocol 5 8 NA 0.16 0.31 4.72 0.68 0.62 0.24 0.10
Average of 3 random spot samples, Protocol 4 8 NA <LOD 0.27 3.28 0.60 0.59 0.24 0.09
Single random spot sample, Protocol 3 8 50 <LOD 0.15 0.90 0.17 0.10 0.05 0.05

Triclosan
Pregnancy pool, Protocol 1a 16 1.0 100 1.70 5.00 248.00 ref
Pregnancy pool, Protocol 2b 16 100 <LOD 4.50 258.80 0.97 0.86 0.62 0.56
Average of 8 random spot samples, Protocol 5 8 NA <LOD 1.62 10.42 0.75 0.60 0.24 0.00
Average of 3 random spot samples, Protocol 4 8 NA <LOD 1.51 4.91 0.65 0.48 0.24 0.00
Single random spot sample, Protocol 3 8 75 <LOD 1.20 2.00 -0.08 -0.19 -0.17 0.01

LOD, limit of detection; NA, not applicable.
r indicates Pearson correlation coefficient, ρ indicates Spearman correlation coefficient, K indicates Kappa coefficient (based on biomarker concentration categorized
into tertiles).
a All individual urine specimens of a day were within-subject pooled in equal volumes for daily pools. Daily pools were within-subject pooled in equal volumes to
create weekly pools and within-subject pregnancy pool was created by pooling equal volumes of weekly pools.
b 3 individual urine specimens of a day were within-subject pooled in equal volumes for daily pools. Daily pools were within-subject pooled in equal volumes to
create weekly pools and within-subject pregnancy pool was created by pooling equal volumes of weekly pools.
c p-value of Student’s t-test comparing biomarker ln-transformed concentrations from Protocol 1 and the other protocols considered.
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6.5.3 Impact of the within-subject biomarker variability on
dose-response functions

Relying on one biospecimen for exposure assessment
Our simulation study, assuming that the (unmeasured) real exposure variable was
associated with a 100g decrease in the health outcome, showed that, when using one
random spot urine sample per subject to assess exposure, the average of the effect
estimate for methylparaben was -71g (95% confidence interval [CI]: -101, -40) which,
compared to the true effect (beta = -100g), corresponds to an attenuation bias of 29%
(Table 6.4). The statistical power of a study of 3,000 subjects was 99%.

For bisphenol A, relying on a single spot sample led to an average effect estimate
of -31g (95% CI: -76, 16), corresponding to an attenuation bias of 69%. The statistical
power was 27% (Table 6.5).

A posteriori disattenuation (i.e., dividing the effect estimate by the compound-
specific ICC) did not improve power, as expected, but reduced the attenuation bias to
16% and 19% respectively for methylparaben and bisphenol A (Tables 6.4 and 6.5).
The improvement of the bias was milder when ICCs based on external literature (as
opposed to the study-specific ICCs) were used. Actually, disattenuation applied with
an average value of the biomarker-specific ICC (ICC2, 0.45 and 0.20 for methylparaben
and bisphenol A, respectively) from external studies,4,5,18,21,27,34 overcorrected the effect
estimate for both chemicals (see Tables 6.4 and 6.5).

For both compounds, type I error rate was not increased (5%) when no effect of
the true exposure was assumed (i.e. beta = 0g; data not shown).

Increasing the number of urine specimens
Bias in the effect estimate was reduced when the number of biospecimens averaged to
assess exposure increased (Figure 6.5, Tables 6.4 and 6.5). Four (for methylparaben)
and 18 urine samples (for bisphenol A), were required to limit bias to 10% or less. If
disattenuation was applied, the number of samples required was two for methylparaben
and three for bisphenol A (Tables 6.4 and 6.5).
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Figure 6.5 – Bias in the health effect estimate (in %) depending on the number
of biospecimens pooled per subject to assess exposure (1,000 simulation runs with
3,000 subjects each; continuous health outcome, true effect βtrue = -100g), (A),
Methylparaben (ICC1 of 0.85 and ICC2 of 0.45). (B), Bisphenol A (ICC1 of 0.38 and
ICC2 of 0.2).

Disattenuation relied either on study-specific ICCs (ICC1) or on ICCs based on pre-
viously published studies (ICC2).4,5,18,21,27,34
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6.6 Discussion

Degraded within-subject pooling of three repeated samples per day was an efficient
strategy to assess exposures over short to long time periods for chemicals with short
biological half-lives such as phenols, expect for benzophenone-3 and triclosan for daily
averages of exposure. For the entire pregnancy exposure average, this approach had
better statistical performances than an approach relying on few (typically one to three)
biospecimens.

We provided an empirical estimation of the amplitude of the attenuation bias exis-
ting in epidemiological studies relying on a few spot biospecimens to estimate exposure
to chemicals with strong temporal variations during the exposure window of interest.
Bias was strong for bisphenol A, which is a compound with a high within-subject va-
riability compared to methylparaben, which displays a lower within-subject variability.
Increasing the number of biospecimen reduced the attenuation bias and increased the
statistical power to detect associations. Applying the ICC-based a posteriori disatten-
uation method26 was able to correct part of the attenuation bias, when relied on ICCs
derived from our study population. However, applying the same approach using ICCs
derived from the literature increased the bias instead of attenuating it, showing the
sensitivity of this method to the validity of the ICCs used for the study population.

6.6.1 Study assumptions and limitations

Our comparative analyses relied on a small number of samples (between eight and
24), which might result in a loss of precision in the parameters characterizing agreement
(e.g. correlation or kappa coefficients, t-test p-values). However, if we exclude the role
of random fluctuations, this loss of precision is not expected to increase agreement
between the two approaches. Also, by comparing several daily or weekly exposure
averages among the same women (n = 8), we may have reduced the variability of
the results, possibly increasing measured correlations. However, an adequate optimal
average exposure was required for accurate comparison. This could only be achieved
in the reduced number of women with very few missed voids. Missed voids may have
artificially increased correlations between the two within-subject pooling approaches,
by lowering the number of specimens in the ideal pooling approach. We limited such an
issue by selecting women with the lowest rate of missed voids (less than 5%, except for
the eight additional women included in the pregnancy exposure window comparison,
which had between 5 and 15% of missed voids). We created equal-volume ideal and
degraded pools, i.e., volumes of urinary biospecimens to be pooled were not weighted by
taking into account total volumes of voids (unknown in our study), nor urine dilution.
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Since both pooling approaches are similarly affected, this is not expected to improve
or reduce agreement between the two pooling protocols.

We artificially enlarged the study population with a bootstrap method using a li-
mited dataset of true biomarker measurements (eight women, each with eight samples)
to characterize bias and power in exposure-response epidemiological studies that could
limit the between-subject variance. Consequently, we chose to draw the true exposure
averages from a normal distribution. We addressed issues related to exposure misclas-
sification but, in doing so, ignored other issues, such as confounding and selection bias,
which may well occur in practice and can complexify the a posteriori disattenuation
correction.10 We assumed that measurement error was classical, which is reasonable
when biomarkers are used to assess exposure to chemicals.10,15 We also assumed that
the biomarker was a good exposure proxy, but from pharmacokinetic studies, phenols
have short biological half-lives, and hence are briefly and almost entirely excreted in
the urine after exposure.17,29,36

6.6.2 Assessing exposure over time windows of various lengths

For an exposure window of several weeks (typically the whole pregnancy), bio-
marker concentrations from a single random spot sample (Protocol 3) were in poor
agreement (Table 6.3) with pregnancy exposure averages in Protocol 1 (based on the
within-subject pooling of all daily biospecimens), showing that relying on a single ran-
dom spot sample does not accurately represent the pregnancy average. This is in line
with our results from the simulation section (Section 6.5.3) and from Perrier et al.26.
Increasing the number of biospecimens improved the agreement for all of the studied
chemicals, with fair agreement with Protocol 1 pregnancy exposure averages when re-
lying on three to eight random biospecimens (Protocols 4 and 5, Table 6.3, r above
0.8), except for triclosan and bisphenols with correlation below 0.7 between Protocol
1 and 4 concentrations. This suggests that relying on half a dozen biospecimens may
lead to a reasonable estimate of pregnancy exposure average for some compounds,
such as dichlorophenols, benzophenone-3 and parabens but ethylparaben. However,
although the exposure ranking was preserved (correlation coefficients), the pregnancy
average concentration was not perfectly estimated (p-value for t-test with Protocol 1
pregnancy average below 0.05). For compounds such as ethylparaben, triclosan and
bisphenols, which were phenols with a high within-subject variability observed in a pre-
vious study on the same population,35 relying on eight random spot samples to assess
pregnancy exposure may not be enough (r below 0.85 with Protocol 1 pregnancy expo-
sure averages). This is consistent with the simulation section (Section 6.5.3), in which
we empirically showed that the chemicals with a stronger variability required a larger
number of biospecimens to correctly estimate dose-response functions. In contrast to
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protocols relying on random spot sample, agreement with the ideal approach was much
higher when collecting three repeated daily samples, i.e. the degraded within-subject
pooling approach (r=0.86 and 0.89, for 2,4-dichlorophenol and bisphenol A, respec-
tively, and above 0.97 for the other compounds), which confirmed that this approach is
efficient to assess exposure over quite long exposure windows, even for highly variable
chemicals.

For exposure assessment over a shorter time window, collecting three daily bio-
specimens was also efficient to characterize the average exposure over a week (linear
correlations between the ideal and degraded approaches were above 0.9, except for
triclosan, r=0.81, Table 6.2). When it comes to characterizing exposure over a day
(Table 6.1), the approach was still efficient, but in a limited manner for benzophenone-3
and triclosan (correlations in the 0.5-0.7 range). However, we suggest caution in in-
terpreting those results, as these compounds had the lowest detection rates. For a few
compounds (e.g, bisphenol A and triclosan for the daily window and 2,5-dichlorophenol,
propylparaben and benzophenone-3 for the weekly window), the exposure averages dif-
fered between Protocol 1 and 2 (p-value for t-test below 0.05), but exposure rankings
were preserved for all but triclosan in the daily window. Results for triclosan are quite
consistent across the exposure windows; be it for exposure ranking or dose-response
functions, collecting half a dozen of biospecimens in the exposure window of interest
may not be sufficient to assess exposure.

6.6.3 Empirical characterization of bias and power

Attenuation in regression analyses is a well-known issue in the context of classical-
type error.10,15,26 Using real data, the present study provided an estimate of the at-
tenuation bias occurring when a single error-prone biomarker measurement is used as
surrogate of the true underlying exposure to investigate exposure-response relation-
ships. Attenuation bias was strong for bisphenol A (almost 70%), compound with a
high variability in our initial population of eight women (ICC = 0.38). This attenuation
bias still existed for a compound with low variability (ICC = 0.85), but was moderate
(29%). This result confirms the findings from Perrier et al.26. With simulated exposure
data, they previously reported an attenuation bias of 80% for high variable compounds
such as bisphenol A (ICC = 0.2), and of 40% for less variable compounds such as
parabens (ICC = 0.6). Increasing the number of specimens used to estimate the ave-
rage exposure during toxicologically relevant time window reduced bias and increased
statistical power. Without a posteriori disattenuation, four samples were required for
methylparaben (i.e. the compound with limited within-subject variations) and 18 for
bisphenol A (compound highly variable within-subject) to limit bias to 10% or less,
compared to six and 35 samples in Perrier et al.26. Hence, we observed an attenua-
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tion bias of lower magnitude and a smaller number of biospecimens required to reduce
efficiently bias. This may likely be due to higher ICCs values we had in our SEPA-
GES-feasibility study population.28 However, our empirical results are quite consistent
with theoretical results from Perrier et al.26, by showing that a few biospecimens are
required to have a reasonable estimation of exposure over a specific time window for
compounds with a low within-subject variability, while for highly variable compounds,
a few dozen or more are needed.

A posteriori disattenuation using ICCs observed in our population35 only partly
reduced the attenuation bias, which differed from the perfect correction in Perrier et
al.26. This might be explained by data, simulated using a predefined ICC in Perrier
et al.26, while we calculated ICCs from a small sample size (n = 8 women) that may
have reduced the precision of the ICCs values. Using ICCs extracted from the liter-
ature (i.e., external studies)4,5,18,21,27,34 did not efficiently correct for the attenuation
bias. Discrepancies in the temporality of urine collection between studies may partly
explain the non-validity of external ICCs, since ICCs depend of the considered time
window.35 This underlines the relevance of trying to estimate variability internally,
e.g. by collecting and assaying repeated biospecimens from a subsample of the study
population so as to correct bias using a posteriori disattenuation. When ICCs are not
available in the study population, the transfer of ICCs between populations to correct
estimates should be cautious.9

6.6.4 Within-subject pooling approach

This degraded within-subject pooling approach allows the investigation of short
(days, weeks) or long (trimesters of pregnancy) exposure windows for all investigated
short half-lived phenols, despite limited efficiency for benzophenone-3 and triclosan
in the shortest time windows (day/week). Such an approach permits to combine the
information of many samples without increasing assay costs, since a single pooled sam-
ple is assayed per woman for a given exposure window.26,31 We assumed that pooling
samples did not entail any error. Pooling error may however exist due to technical
process (e.g. technician variability, precision of instruments); physical conditions (e.g.
ambient temperature, thawing duration, reaction between compounds from different
samples);32 or an equal-volume pooling strategy which does not take urinary dilution
into account. However, in our study, a single technician mainly pooled samples, lim-
iting error due to biospecimens manipulation. Additional studies would be needed to
further explore these aspects.

Collecting and pooling three daily urine specimens over toxicologically relevant ex-
posure windows has the advantage of being less cumbersome than a design requiring
all urine voids. When using degraded within-subject pooling compared to collecting a
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spot biospecimen in each subject, the logistic burden and the overall costs of the study
are increased, which may limit the sample size and induce selection bias due to high
withdrawal or low participation rates. However, there is no reason to exclude subjects
with a single biospecimen, as unbalanced designs were found to give acceptable esti-
mates of dose-response functions, despite a slightly higher bias in effect estimates.26

Overall, the degraded within-subject pooling allows estimation of exposure averages
at lower analytical costs in predefined short and long time windows for most of the
studied compounds, as well as the estimation of dose-response functions by reducing
attenuation bias in effect estimates. Pooled samples may also limit issue related to
limit of detection.31 However, within-subject pooling must be used jointly with re-
peated unpooled samples (hybrid pooled-unpooled designs) for estimating ICC and
distributional parameters of exposure biomarkers.20,30

6.7 Conclusion

A degraded sampling approach relying on the repeated within-subject pooling of
three daily samples appeared to be an efficient strategy to increase the number of sam-
ples and resulted in accurate exposure average estimates over time windows of various
length (days, weeks, the whole pregnancy), without increasing assay costs and being
excessively cumbersome. We provided an empirical confirmation that large within-
subject variability in a biomarker of exposure (e.g. for bisphenol A) can strongly bias
the exposure-effect association and reduce statistical power in epidemiological studies,
mostly when relying on a few biospecimens. Bias was also observed for chemicals with
low to moderate variability (methylparaben). Increasing the number of biospecimens
collected within-subject reduced bias in dose-response function and improved statistical
power.
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6.9.1 Appendix 1

6.9.1.1 Impact of the within-subject biomarker variability on dose-response
functions: Supplemental methods

We chose two phenols, methylparaben and bisphenol A, because of their contrasted
ICCs, with respectively low and high within-subject variability in the studied popula-
tion of eight women (pregnancy-specific ICC was 0.85 for methylparaben and 0.38 for
bisphenol A).10

Simulation of exposures
We simulated a population of 3,000 subjects with one to 20 spot urine samples using a
bootstrap method based on the eight women from SEPAGES-feasibility study with the
lowest rate of missed urine voids (groups A1 and A2). Each of these women had eight
random spot samples assayed for phenol biomarkers among all spot samples collected
at three occasions of pregnancy (see Figure 6.1).

We assigned for each subject i (i = 1, ..., 3, 000) one pregnant woman out of the
eight from the SEPAGES-feasibility study, with, for each biomarker j (j = 1, 2) the
average (namely Cijmean) of biomarker ln-concentrations in the eight random spot sam-
ples. To obtain unclustered subjects (clusters corresponding to the eight pregnant
women), for each participant i (i = 1, ..., 3, 000), and each biomarker j (j = 1, 2), we
generated Xij, the true but unobserved (ln-transformed) exposure from a normal dis-
tribution, using a mean (standard deviation, SD) concentration of 4.64 (1.59) µg/L for
ln(methylparaben), and 0.91 (0.75) µg/L for ln(bisphenol A). Concentrations values
(means and SD) were extracted from the EDEN French mother-child cohort with ap-
proximately log-normal distributions,11 and not from the SEPAGES cohort, as phenol
biomarker were not yet assessed in the SEPAGES cohort biospecimens when this study
was conducted.

Then, for each subject i, we generated k (k = 1, . . . , 20) biospecimens with a boot-
strap method, by randomly assigning one out of the eight real random spot samples
available (for each subject) to each biospecimen k.

For each biospecimen k, the biomarker-specific ln-concentration Cijk was centered
around Xij using the formula Wijk = Cijk + Xij − Cijmean , where Wijk corresponded
to the resulting Xij-centered biospecimen and biomarker-specific concentration. We
presented examples of Xij, and Wijk distributions in Figures 6.10 and 6.11.

Simulation of health outcomes
For each subject i and each biomarker j, a continuous outcome Yij was simulated as
Yij = β1Xij + α+ εij, with β1 the true effect assumed to be -100g by one-unit increase
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in Xij and εij the independent normally distributed random error with mean zero.
The values for the parameters α (14,900g) and εij (SD, 1,650g) were selected so as
to match the distribution of the offspring weight at age 3 years in the French EDEN
mother-child cohort,6 to reproduce what was previously done by Perrier et al.5; and
because SEPAGES-feasibility stopped at birth and therefore data on offspring weight
at 3 years of age were not collected.

We additionally simulated Yij considering a null effect of the biomarker (i.e, β1=0)
to explore how the risk of type I error was affected.

Bias and power characterization
For each chemical j, we fitted a linear regression model in the population of 3,000 sub-
jects between the simulated continuous health outcome and a biomarker measurement
in one random spot sample (Wijk) and within-subject pools of an increasing number of
biospecimens, represented by the average (Wij) of ln-transformed biomarker concen-
trations from two to 20 randomly collected biospecimens, as in the previous theoretical
study from Perrier et al.5.

Bias was estimated in percent as the difference between the mean effect estimate
(β) over 1,000 studies for the surrogates of exposure (Wijk and Wij) and the true effect
(βtrue) divided by βtrue. Negative values of bias correspond to a situation where β is
lower in absolute value than the true effect βtrue (i.e. attenuation) and positive values
to a situation where β is greater in absolute value than the true effect βtrue.

Power was calculated as the fraction of the 1,000 studies with a p-value for the
association below 0.05.

A posteriori disattenuation
We additionally reported a posteriori disattenuated effect estimates.5,8 These estimates
were obtained by dividing the estimated regression coefficients by the compound-
specific ICC. We used two possible values of the pregnancy-specific ICC: ICC1, corre-
sponding to the value estimated in our study population of eight women (ICC1 was 0.85
and 0.38 for methylparaben and bisphenol A, respectively);10 and ICC2, corresponding
to the averaged ICC from previously published studies in pregnant women (0.45 and
0.20 for methylparaben and bisphenol A, respectively).1,2,3,4,7,9 ICC1 was assumed to
correspond to the ideal value, but we also used ICC2 because without repeated assays
one cannot estimate ICCs internal to the study population.
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Table 6.6 – Characteristics of the 16 pregnant women from the SEPAGES-feasibility
cohort included in the current study.

44 

 

eTable 1. Characteristics of the 16 pregnant women from the SEPAGES feasibility study 

included in the current study. 

 

 Groups A1 and A2 (n = 8)  Group B (n = 8) 

Characteristic No. (%)   No. (%)  

Civil status 

       Married 

       Cohabitating 

 

5 (62.5) 

3 (37.5) 

 

 

3 (37.5) 

5 (62.5) 

Maternal education 

       High school or less 

       Up to 3 years of college 

       > 3 years of college 

       Missing 

 

0 

4 (50) 

4 (50) 

 

 

 

0  

6 (75) 

1 (12.5) 

1 (12.5) 

Smoking history during pregnancy 

        Yes 

        No 

 

1 (12.5) 

7 (87.5) 

 

 

3 (37.5) 

5 (62.5) 

Parity 

       0 

       1 

       ≥ 2 

 

5 (62.5) 

2 (25) 

1 (12.5) 

 

 

4 (50) 

3 (37.5) 

1 (12.5) 

 Median (25th, 75th)  Median (25th, 75th) 

Maternal age at enrolment (years) 28.5 (27.0, 31.5)  30.0 (27.5, 33.0) 

Gestational age (weeks) 

       Week 1 of urine collection 

       Week 2 of urine collection 

       Week 3 of urine collection 

 

14.9 (13.6, 16.2) 

23.9 (22.9, 25.2) 

32.4 (31.7, 32.9) 

 

 

13.1 (11.6, 14.9) 

22.5 (21.6, 23.4) 

31.9 (31.7, 32.6) 

Time between two successive 

weeks of urine collection (weeks) 

       Week 1 – Week 2 

       Week 2 – Week 3 

 

 

8.9 (8.1, 10.0) 

8.4 (7.1, 9.3) 

 

 

 

9.9 (8.6, 10.8) 

9.4 (7.4, 11.1) 

Number of collected urine voids 

per day 

8 (7, 10) 

 
 

6 (5, 8) 

 

 



170 CHAPTER 6. VALIDATION OF WITHIN-SUBJECT POOLING

−2 −1 0 1−
2

−
1

0
1

2,4−dichlorophenol

−2 0 2 4−
2

−
1

0
1

2

2,5−dichlorophenol

−2 −1 0 1 2 3 4

−
2

−
1

0
1

2

Butyl−paraben

0 1 2 3 4

−
1.

5
−

0.
5

0.
5

1.
5

Ethyl−paraben

2 3 4 5 6 7

−
1

0
1

2

Methyl−paraben

−1 0 1 2 3 4 5

−
2

−
1

0
1

2

Propyl−paraben

−2 −1 0 1 2 3

−
2

0
2

4

Benzophenone−3

−0.5 0.0 0.5 1.0 1.5 2.0

−
2

−
1

0
1

Bisphenol A

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

0.
5

0.
5

1.
5 Bisphenol S

−2 0 2 4

−
2

0
2

4

Triclosan

Daily exposure window − Mean (Protocol 1+Protocol 2) / 2 ln−transformed concentrations 
  

D
ai

ly
 e

xp
os

ur
e 

w
in

do
w

 −
 D

iff
er

en
ce

 (
P

ro
to

co
l 1

−P
ro

to
co

l 2
) 

ln
−t

ra
ns

fo
rm

ed
 c

on
ce

nt
ra

tio
ns

 o
f p

he
no

ls

Figure 6.6 – Daily exposure window – Bland-Altman plots for Protocols 1 (equal volu-
mes of all urine voids were within-subject pooled) and 2 (equal volumes of three urine
voids were within-subject pooled) daily averages of ln-transformed biomarkers.
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urine voids were within-subject pooled) weekly averages of ln-transformed biomarkers.
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Figure 6.8 – Pregnancy exposure window – Scatter plots of exposure estimates from
Protocols 2-5 against Protocol 1 (pooling of all urine samples/day).

Protocol 2 corresponds to within-subject pooling of 3 urine samples/day over three
weeks, Protocol 3 to pregnancy exposure relying on one random spot sample, Protocol 4 on
the average of three random spot samples, and Protocol 5 on the average of eight random
spot samples. Each point corresponds to pregnancy exposure estimate after mean-centering
(ln-transformed concentrations, n = 16 women, N = 16 samples for comparison between
Protocols 1 and 2; n = 8 women, N = 8 samples for comparison between Protocol 1 and
Protocols 3-5). The filled red line represents the regression line and the filled black line the
identity line. Horizontal and vertical dotted lines showed the compound-specific limit of
detection.
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Figure 6.8 – Continued
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Figure 6.9 – Pregnancy exposure window – Bland-Altman plots for Protocols 3 (A), 4
(B), 5 (C) and 2 (D) against Protocol 1 (pooling of all urine samples/day) pregnancy
averages of ln-transformed biomarkers.

Protocol 2 corresponds to within-subject pooling of 3 urine samples/day over three
weeks, Protocol 3 to pregnancy exposure relying on one random spot sample, Protocol 4 on
the average of three random spot samples, and Protocol 5 on the average of eight random
spot samples.
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Figure 6.9 – Continued
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Figure 6.10 – Distribution of the simulated exposures in one of our simulated studies
for methylparaben (A, ICC = 0.85) and for bisphenol A (B, ICC = 0.38).

X is the true unobserved average exposure and W is the surrogate exposure measured with
error (using one spot sample).
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48 

 

eFigure 2. Examples of urinary concentrations of methylparaben (A) and bisphenol A (B) 

measured with error, for three subjects in one of our simulation runs. 

 

 
A) Methylparaben (ICC = 0.85) B) Bisphenol A (ICC = 0.38) 

 

 

The dashed lines display the true unobserved exposure average of urinary ln-concentrations of the 

corresponding chemical over a toxicologically relevant exposure window. 
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Figure 6.11 – Examples of urinary concentrations of methylparaben (A) and bisphenol
A (B) measured with error, for three subjects in one of our simulation runs.

The dashed lines display the true unobserved exposure average of urinary ln-concentrations
of the corresponding chemical over a toxicologically relevant exposure window.
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Chapter 7
General discussion

In Chapters 4 to 6, results are discussed compared to previous studies, and for each
study, strengths and limitations are addressed. This chapter presents a summary of
our contributions to epidemiological research on effects of prenatal exposure to phenols
and phthalates (Section 7.2). Then, general methodological limitations of our research
are discussed (Section 7.3). Finally, multiple avenues for research are proposed for the
development of relevant epidemiological studies in the last chapter (Chapter 8).
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7.1 French summary

L’objectif de cette thèse est d’étudier l’exposition aux phénols et aux phtalates, sa
variabilité chez la femme enceinte et son impact sur la santé respiratoire. Nous ob-
servons peu d’associations entre l’exposition prénatale aux phénols et aux phtalates et
des effets délétères sur la fonction pulmonaire ou l’apparition de symptômes ou mal-
adies respiratoires chez le garçon dans les cinq premières années de vie. Néanmoins,
pour certains composés comme l’éthylparabène et le bisphénol A, être exposé in utero
a tendance à être associé à l’apparition de plusieurs symptômes ou maladies respira-
toires ou à une diminution de la fonction pulmonaire. Contrairement à notre hypothèse
initiale, nous avons aussi observé des associations bénéfiques entre certains composés,
notamment le méthylparabène, propylparabène et la benzophénone-3, et les symptômes
ou maladies respiratoires. Notre étude étant la première à avoir étudié ces phénols avec
un design longitudinal, nos résultats doivent être répliqués dans de futures études. Une
des limitations principales de notre étude est probablement l’estimation de l’exposition.

Nos travaux de recherche sur la variabilité intra-individuelle de l’exposition et de son
impact sur le biais et la puissance statistique dans les études épidémiologiques reposent
sur un nombre restreint de sujets, ce qui limite probablement la généralisabité et la
précision de nos résultats. Cependant ils illustrent que la plupart des études explorant
les effets des phénols et des phtalates sur la santé humaine, y compris notre étude
sur la santé respiratoire, sont limitées par une estimation imparfaite de l’exposition
reposant sur des concentrations de biomarqueurs mesurées dans un faible nombre de
biospécimens (généralement entre un et trois biospécimens). Ce biais est principalement
de l’atténuation sous une hypothèse d’erreur de mesure de type classique. Notre étude
sur la variabilité intra-individuelle montre que la variabilité est forte à l’intérieur des
jours mais la variabilité des concentrations moyennes journalières est faible entre les
jours d’une même semaine. Sur la grossesse entière, la variabilité entre les semaines est
importante pour certains composés comme les bisphénols, et assez faible pour d’autres
(2,5-dichlorophénol ou parabènes).

Cette variabilité intra-individuelle peut amener, en faisant l’hypothèse d’un type
d’erreur de mesure classique, à une mauvaise estimation des niveaux d’exposition sur
une fenêtre de temps d’intérêt si le nombre de biospecimens n’est pas suffisant, et ainsi
entraîner un biais d’atténuation dans les estimations d’association et un manque de
puissance, comme montré dans notre chapitre 6 avec des données réelles. Le pooling
intra-sujet d’un petit nombre de biospécimens par jour, répété sur plusieurs semaines,
semble une approche efficace et réalisable pour estimer les niveaux moyens d’exposition
à des composés non-persistants pour des fenêtres d’exposition courtes (jours) ou as-
sez longues (semaines, grossesse entière). Il pourrait permettre de réduire le risque de



CHAPTER 7. GENERAL DISCUSSION 181

misclassification sans augmenter le coût des analyses car les concentrations de biomar-
queurs d’exposition ne sont mesurées que dans les échantillons poolés.

Cette thèse confirme la nécessité de poursuivre la recherche sur les effets possibles
des phénols et des phtalates sur la santé humaine, et notamment sur la santé respi-
ratoire, car le niveau actuel de preuve est limité. Trouver le bon compromis entre la
taille de l’échantillon et le niveau d’information par sujet est complexe. Cependant,
utiliser des designs d’étude adaptés à l’estimation de l’exposition à des composés non-
persistants pour limiter le biais et la perte de puissance dans les études est probablement
nécessaire (voir la Figure 8.1 basée sur les résultats de cette thèse pour quelques exem-
ples de designs efficaces). Nous montrons ainsi que la voie est ouverte pour les cohortes
mères-enfants dites de "troisième génération".285
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7.2 Summary of the main findings

Associations with respiratory endpoints
In Chapter 4, we investigated the associations between maternal exposure to 11 phtha-
lates and nine phenols during pregnancy assessed via one random spot maternal urine
sample on the one side, and several respiratory health endpoints in childhood: asthma
diagnosis, wheezing, bronchiolitis/bronchitis, and FEV1 on the other side. No phenol
or phthalate metabolite exhibited clear deleterious associations simultaneously with
several respiratory outcomes, but neither is there toxicological evidence for any com-
pound impacting several outcomes simultaneously. For phenols, increased levels of
ethyl-paraben, bisphenol A, 2,5-dichlorophenol, tended to be associated with respec-
tively increased asthma rate and reduced FEV1; increased asthma and bronchioli-
tis/bronchitis rates; and increased wheezing rate. Only did ethyl-paraben and bisphe-
nol A exhibit some consistency across respiratory outcomes. Contrary to our a priori
hypothesis, increased exposure to methylparaben, propylparaben and benzophenone-3
were associated with reduced rates of bronchiolitis/bronchitis and wheezing. Regarding
phthalates, we observed a trend for an adverse association between MCNP, a metabo-
lite of DIDP, and wheezing, while MCPP, a metabolite of DNOP, DnBP and several
HMW phthalates, tended to reduce the rate of bronchiolitis/bronchitis. Conclusions
were unchanged when applying a posteriori disattenuation to correct estimates for
measurement error in exposure relying on a unique random spot biospecimen.

Exposure assessment to nonpersistent EDs during pregnancy
When characterizing the effect of phenols and phthalates pregnancy exposure to health
endpoints, the efficiency of relying on a single measure of biomarker concentrations for
exposure assessment depends upon the within-subject temporal variability of these
concentrations in pregnant women. Time-window specific variability is poorly charac-
terized.

In Chapter 5, we aimed at evaluating the within-subject variability of phenols across
several time windows of pregnancy. Most compounds showed a very high variability
over the course of a day, while daily averages were more stable over the same week (ICCs
above 0.6). This pattern was opposite for bisphenol S. The within-subject variability
of the weekly averages considered several weeks apart was low for some compounds
(2,5-dichlorophenol, butylparaben, methylparaben) and high for others (ethylparaben,
bisphenol S, triclosan). Correcting for urinary dilution via the use of creatinine levels
or specific gravity did not greatly impact the observed within-subject variability in
phenol biomarkers (Chapter 5).

We chose to focus our work on the phenolic compounds, for which data on uri-
nary biomarker concentration variability during pregnancy for compounds other than
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bisphenol A was sparse and more limited compared to phthalates. Moreover, we
were supposed to have samples assayed for triclocarban and several bisphenols be-
sides bisphenol A, for which no data on variability was published. Unfortunately,
the laboratory could not measure these compounds, except bisphenol S. Having mea-
surements for phthalates would have been valuable, as within-subject variability is
compound-specific, but we could not afford the assays for both families of chemicals
in the SEPAGES-feasibility study because of budgetary constraint. It is nevertheless
interesting to note that a high variability across pregnancy was reported for phthalates
in a study by Fisher et al.103, which sought to characterize the variability of about
twenty phthalate metabolites within a day and across several time points of pregnancy
(see Table 2.3). They also reported a high within-day variability for some metabo-
lites (MCPP several DEHP metabolites), which was more moderate for others (e.g.,
MBP,MiBP, MEP, MBzP, and other DEHP metabolites).

These results suggest that relying on a unique biological sample to assess pregnancy
exposure to most phenols or other nonpersistent compounds leads to exposure misclas-
sification. In this context, alternative sampling designs are needed in order to limit
this exposure misclassification. Consequently, Chapter 6 dealt with our evaluation of
the efficiency of four degraded sampling approaches in estimating average exposure to
phenols – based on urinary biomarker concentrations – over several time windows (day,
week, whole pregnancy), compared to the ideal approach using all urine voids collected
over the same time windows. The first degraded approach relied on a within-subject
pooling of three daily samples, while the others, more common, respectively relied on
one, three and eight biospecimens drawn at random over the whole pregnancy. For long
exposure windows such as the entire pregnancy, the degraded within-subject pooling
approach gave more reliable average exposure estimates than the three approaches re-
lying on a few biospecimens. However, for many phenols but triclosan and bisphenols
A and S, relying on three samples to assess pregnancy exposure preserved exposure
ranking although exposure averages could differ from those of the ideal approach. For
shorter exposure windows, the degraded within-subject pooling approach also resulted
in accurate weekly and daily average estimations of exposure to phenols, but was less
suitable for the estimation of benzophenone-3 and triclosan daily exposures, compounds
with low detection frequencies in the degraded pools. Assuming a classical-type error
structure, we illustrated empirically that the exposure misclassification resulted in at-
tenuation bias in dose-response function estimates when using a single biospecimen to
assess exposure over a long-time window, i.e., the whole pregnancy. Bias was strong
for bisphenol A (attenuation of 70%), which is a compound with a high within-subject
variability over pregnancy (ICC of 0.38 using three random spot samples) compared to
methylparaben (around 30%), which displays a lower within-subject variability (ICC
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of 0.85 using three random spot samples). This may suggest that the higher the
within-subject variability, the stronger the bias. Furthermore, increasing the number
of biospecimens used to average the exposure over the time window of interest reduced
the bias for both methylparaben and bisphenol A and increased the statistical power
to detect associations. We also provided an estimate of a reasonable number of biospe-
cimens required to limit the attenuation bias to 10% or less. Four and 18 samples were
needed for methylparaben and bisphenol A, respectively. These results are consistent
with those from a theoretical study by Perrier et al.242, in which 6 and 35 samples
were required to reduce bias below the threshold of 10%. The slightly higher ICCs
observed in our study (0.38, 0.85) compared to their study (0.2 and 0.6) could explain
the somewhat lower number of required samples. This is also in line with results from
our comparison of several sampling designs, where an exposure assessment relying on
three to eight samples was reasonable for compounds with the highest ICCs (above
0.6 based on between-week ICCs), while the within-subject degraded pooling approach
was more suitable for compounds with higher between-week variability. In case where
ICCs were internally estimated from a subpart of the population, an a posteriori dis-
attenuation method using the ICC values corrected part of the bias in effect estimates
for both compounds. On the contrary, using ICCs from external studies increased the
bias.

7.3 Methodological considerations

The accuracy of results from our studies depends on both the validity of the results,
i.e. to which extent the conclusions inferred from the results are correct for the source
population (internal validity) and for a target population (external validity); and the
precision, i.e. how closely repeated studies or measurements lead to similar results. On
the one hand, validity is influenced by systematic errors also called biases (information,
confounding, and selection biases); and on the other hand, precision is affected by
random errors.264,301 In this section, our findings from Chapters 4, 5 and 6 are discussed
according to possible sources of, firstly, systematic error; secondly, random error; and
finally to study designs and statistical methods.

7.3.1 Systematic error

7.3.1.1 Information bias

Information bias, also called misclassification, arises from measurement errors, e.g.
in the exposure, the disease status, or the covariates.264 In this subsection, we will focus
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on misclassification related to exposures and outcomes, which is presumably one of the
main sources of bias in this thesis.

Information bias on outcomes
With questionnaire-based respiratory outcomes, occurrence of respiratory events may
be over- or underestimated due to recall bias.297 Also, the longer the recall time, the
higher the risk of misreporting.231,195,140 In the EDEN cohort, questionnaires were sent
and retrieved each year limiting the risk of incorrect recall. It has been shown that
when parents fill ISAAC questionnaires for their children, recall of wheezing and asthma
symptoms over a 12-month period is not impacted by the season of responding despite
seasonal variations in symptoms,297 while on the contrary, reports of rhinitis symptoms
are more prone to recall bias in favor of recent months. This suggests that recall bias
related to wheezing and asthma is probably limited when using ISAAC questionnaires
about symptoms in the last 12 months, and smaller than for allergic diseases. Res-
piratory questionnaires were reported to have a limited sensitivity regarding asthma
definition (the ability to adequately identify subjects with asthma disease), but an ex-
cellent specificity (the ability to adequately identify subjects without the disease).349,192

Therefore, cumulative incidences may have been overestimated, which is in line with
the high incidence of asthma we observed in our study. However, contrary to studies
aiming at estimating prevalence and incidence, and for which this can be an issue and
high sensitivity is worth, a high specificity is preferable for studies evaluating the im-
pact of exposures on asthma development.240 Additionally, using a question referring
to doctor-diagnosed asthma increases the specificity of the asthma definition,349 while
its sensitivity does not increase because of a difficulty to diagnose the disease.1,295,133

ISAAC questionnaire is validated in different languages, including French.19,255 Al-
though there is a limitation because it is only validated for school-aged children, at the
time of the EDEN cohort follow-up (recruitment occurred in 2003-2006), there was no
standardized questionnaire specifically developed for pre-school children.

For the spirometric test, the mean value of FEV1 in our population was lower than
the predicted value for boys of this age. This could be first related to discrepancies
between our population and the population of reference. Indeed, percent predicted
values are calculated as the departure from reference values, i.e. values that a normal
healthy child with the same age, height, sex, and ethnic group, would have had for
the spirometric parameters.251 Hence, if children in our study were too different from
those on which were calculated reference values, using predicted values may bring
some error. Our population is mostly Caucasian and since this is the most represented
ethnic group in the study providing the equations and reference values,251 this error
is likely limited. The second hypothesis for the low predicted lung function is the
difficulty for children around 5 years of age to maintain sufficient pressure during
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the test,38 and for at least one second, which was the time threshold for acceptable
measures in our study. As we retained only measures satisfying acceptability criteria,
children who are trained to perform a spirometric test (i.e., those with a respiratory
disease, which should have a lower pulmonary function in general than those without a
respiratory disease) were more likely to perform well compared to more healthy children
who performed a spirometric test for the first time. By reducing the variability of
the outcomes between subgroups of population (those with and without respiratory
diseases), these two points could introduce bias in the effect estimates and yield to
an underestimation of the potential effect of phenols and phthalates. This hypothesis
is supported by exploratory analyses excluding boys diagnosed with asthma, and in
which most trends of deleterious associations with FEV1 were stronger, especially for
MiBP, MCOP, and DEHP metabolites. The measure of spirometric parameters may
be prone to random error from the technical instruments used, but, to unknown extent.

Thus, while minimized by the design of our study, information bias related to out-
come misclassification may still occur from both the measure of spirometric parameters
and questionnaires-based respiratory endpoints.

Information error on exposures
Relying on one spot sample to estimate exposure to nonpersistent chemicals over long
time windows such as the whole pregnancy is likely to lead to misclassification error
(Chapters 5 and 6). When spot biomarker concentrations vary around the true value –
which could be approximated by the mean of many measurements repeated throughout
the exposure window of interest – the error corresponds to what is called classical type
error.18,67 Additionally, as suggested by a theoretical approach by Perrier et al.242 and
confirmed in Chapter 6 using real data, the bias was stronger for chemicals with the
highest within-subject variability. Classical type error always biases the dose-response
estimates towards the null (attenuation bias) when the exposure is considered contin-
uous (or binary) in the statistical analyses. However, when the exposure variable is
categorical, the bias may be in either direction,264,18,104 which limits the relevance of
exposure categorization into tertiles (Chapter 4). If one assumes a simple form of clas-
sical type error, i.e. an additive classical error, a posteriori disattenuation is a simple
method that uses the compound-specific ICC to correct the dose-response estimates
without improving statistical power.242,256 In Section 4.9 (Chapter 4), disattenuated
estimates were greater in absolute value, especially for chemicals with the lowest ICCs
(e.g., bisphenol A, MCNP, MCOP and DEHP metabolites). This was expected from
the equation, since the lower the ICC, the higher the attenuation bias. This approach
works for simple regression models (no adjustment factors),242 but may be too sim-
plifying for adjusted models, when a more complex attenuation factor may be used.67

Additionally, as no ICCs were available in our study, the corrected findings should be
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interpreted cautiously. Indeed, as shown in Chapter 6, using ICCs from external studies
may lead to estimates biased away from the null, possibly more than when no correc-
tion is applied. This is an important result of this thesis, with practical implications
for study designs.

In Chapter 4, using a standardization method previously developed in our team,214

we aimed to reduce the between-subject variability in biomarkers levels arising from
biospecimens collection conditions and year of biomarker measurement that could differ
between subjects. This undesirable variability was probably limited since correlations
between raw and standardized concentrations were high. This was also supported by
analyses using raw biomarker concentrations with findings which were close to those
obtained after standardization. However, in the absence of repeated exposure data
within subject, as was the case in Chapter 5, the ability to standardize measurement
conditions may be limited. Moreover, this approach assumes that all subjects have the
same daily patterns, which is likely not true. Although going in the right direction,
this approach is limited in practice if no information is available on subject’s behaviors.

In Chapters 5 and 6, exposure assessment relied on a complete collection of urine
voids in participants over the different time windows, limiting misclassification. How-
ever, random measurement error could still occur due to analytical error (instrument
imprecision, technician error), and individual’s pharmacokinetic factors. For an identi-
cal exposure, inter-subject pharmacokinetic differences can result in different internal
exposure levels assessed through surrogates such as biomarkers.307,320,144,53

There is no consensus on how to best handle values below the LOD. We relied
on the machine readings, but other methods exist such as likelihood-based estimation
and multiple imputation.302,75,191,26 Using multiple imputation could enlarge confidence
intervals by adding uncertainty to values below the LOD, and hence, may reduce the
precision of the estimates for chemicals with the highest rate of values below the LOD
in the three studies of this thesis.

Total actual volume of urine voids was unknown, and we chose the most conserva-
tive approach, which was to take equal volumes of all urine voids to generate the pooled
samples. While pools can also be weighted on creatinine, this option was not available
at the time of the pooling process, since creatinine concentrations were measured by the
CDC laboratory. Currently, the consequences of either approach on bias and efficiency
are unknown, and it would be interesting to test this second approach (creatinine-
weighted pools) in light of our results. Additionally, standardization for creatinine or
specific gravity is likely irrelevant in pooled samples as the mean of concentrations
measured in individual samples before pooling and corrected for these factors (i.e., di-
vided by creatinine level or specific gravity) will differ from the concentration measured
in the pooled sample and corrected for creatinine or specific gravity from this unique
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sample.242 Indeed, mathematically, the sum of ratios is in general not equal to the ratio
of sums. This was a reason why results presented in Chapters 5 and 6 relied on un-
corrected concentrations. The results based on creatinine- or specific gravity-corrected
concentrations were not too different to those relying on the uncorrected concentra-
tions. This may suggest that, even if it may be incorrect to use creatinine or specific
gravity for pooled samples, this does not strongly affect the results and yields to the
same conclusions.

Finally, the concentration in pools has been assumed to perfectly represent the
mean of concentrations from all spot samples. That is, we assumed no additional
error due to the pooling process. Such an error could arise from chemical reactions in
mixed urine, and from instrumental imprecision and technician manipulation during
the pooling process.272,274,271 The actual data on phenols could be used to empirically
improve knowledge on pooling error, e.g. by comparing the mean of concentrations
in unpooled samples and the concentration in the related pooled sample taking into
account other sources of error such as the analytical (assay) error. However, this
corresponds to another large analysis, which was not done during this thesis. This is
an area which requires further investigation.

7.3.1.2 Confounding

Confounding can limit inferences drawn from our study in Chapter 4. Confounding
can occur when an extraneous factor – the confounder – modifies the association be-
tween the exposure and outcome considered.264 The confounder is not an intermediate
factor, i.e., it does not mediate the effect of the exposure on the outcome.264

In Chapter 4, efforts were made to limit this bias. In EDEN cohort, a lot of
information on potential confounding factors were collected, which limits the risk of
unmeasured confounding factors. Potential confounding factors and predictor variables
were identified based on the a priori knowledge. Some of these covariates were not re-
tained in the final model. This was justified by the fact that the number of covariates
(and associated categories) was much higher than the number of events divided by
10 in the case of the survival models or higher than the population size divided by
10 for the linear regression models, which is a "safe" limit for the number of terms to
include in regression models.125 However, when added in the model, these covariates
did not influence the estimated measure of association by more than 5%. This sug-
gests that they had no strong confounding effect. Some confounding factors such as
a pregestational diabetes were removed thanks to the study design by restricting the
EDEN eligible population to non-diabetic subjects. Diabetes is an endocrine disorder,
and hence a potential confounder, as it could influence both the maternal exposure to
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phenols and phthalates during pregnancy (proxy of fetal exposure in our study), for
example via metabolic modifications;257,62,313 and the respiratory health outcomes, for
instance by increasing, in the offspring, the risk of neonatal complications, and the
morbidity in general, including an increased pulmonary morbidity and a higher risk
of health impairments.333,277,89,30 Socioeconomic status (SES) is a complex factor and
residual confounding may still occur in spite of adjustment using the highest parental
educational level as proxy, as we do not know to which degree the use of this factor
can address the confounding. However, most women were highly-educated, nonsmok-
ing, and Caucasian, which limits the influence of potential unmeasured SES-related
confounding factors or unmeasured co-exposures.

Maternal pre-pregnancy body mass index (BMI) and gestational duration were not
controlled for in our analyses. This was done to limit the risk of overadjustment bias,270

as these factors may be on the biological pathway between phenols and phthalates expo-
sure during pregnancy and respiratory health in the offspring. Indeed, in a few studies,
the exposure to several phenols and phthalates has been associated with changes in lipid
metabolism, BMI, and with gestational duration.258,305,182,343,180,247,39,196,184 Results re-
mained unchanged despite any additional adjustment for maternal pre-pregnancy BMI,
gestational duration (several codings tested), or exclusion of preterm births. This sug-
gests that the risk of overadjustment would have been limited if we had chosen to
control for these factors in the analyses.

In the FEV1% analysis, we chose to adjust for height and age of boys in the final
linear regression models because there was a risk of residual confounding, although that
information was taken into account in the equations to calculate the percent predicted
values.251 First, our study population might differ from the reference population used
for estimating the reference values and the GLI equations, and adjusting for age and
height would avoid any residual effect of these variables in the percent predicted values.
Second, the use of FEV1% values does not mean that all age- or height-related effects
are removed. For example, a younger (or smaller) child is more likely to have difficulties
to maintain flow during the test and has smaller absolute lung volumes.38

Potential residual confounding may also exist through the multicenter nature of
EDEN cohort, particularly due to variables that vary spatially, such as socioeconomic
factors, smoking, diet, childcare access, and sources of aeroallergens. Levels of sev-
eral phenols and phthalates (bisphenol A, triclosan, ethylparaben, MiBP and MBP)
differed statistically between our two centers, as well as the asthma rate, which was
higher in Poitiers than in Nancy. However, in exploratory analyses, there was no effect
modification driven by differences between the two centers: the estimates from strati-
fied analyses had the same direction, and there was no statistical evidence that phenols
and phthalate associations differed between Nancy and Poitiers (p for interaction above
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0.3, analyses not detailed in Chapter 4). In order to limit the potential for residual
confounding from (measured or unmeasured) spatially-varying factors, in addition to
center, we controlled for the type of area of living (rural/urban/city-center) in our
models. In the EDEN population, this additional adjustment has been shown to limit
residual confounding when the unmeasured confounding factors were correlated with
the type of residential area, and not to bias the results, even without correlation.239

We cannot exclude confounding from an unmeasured factor. For instance, we did
not have data on maternal or fetal metabolism. However, metabolic disorders, which
can result in excessive variations in metabolism, were likely limited in our study; e.g.
known diabetes before pregnancy was one of the exclusion criteria at the cohort enroll-
ment. Also, the proportions of included women with gestational diabetes, gestational
hypertension and preeclampsia were low, and exploratory analyses excluding these
women did not modify the effect estimates.

7.3.1.3 Selection bias

Selection bias is a distortion of the measured association due to the effect of expo-
sures on outcomes that differs between the studied population – selected subjects – and
the source population – eligible subjects –.264,130 For Hernán et al.130, selection bias re-
sults from conditioning on common effects, contrary to confounding bias resulting from
common causes of exposure and outcome. This means that exposure and outcome of
interest can be conditionally associated because of a common effect on a third factor,
which is used for the selection of the population. This bias can arise from selection
criteria (e.g., population selected within strata of the common effect), or from loss to
follow up, if the exposure, the health outcome and/or any factor influencing them have
an impact on either the selection of subjects, the risk of being lost to follow up, or the
risk of having missing data.264,130

Phenols, phthalates and respiratory endpoints (Chapter 4)
Our study is nested in EDEN cohort, which has a prospective design. Therefore,
factors influencing the enrollment in the cohort are not expected to introduce selection
bias, contrary to a retrospective setting.264 Phenols and phthalates were assayed in
maternal urine of boys if the offspring had a complete follow-up until age three.244

Mothers of offspring included in our study differed from excluded women on several
characteristics: for instance, included women were more likely to be from Poitiers,
to have a high-school diploma or more, not to smoke during pregnancy. This may
introduce bias if factors influencing the selection affect the exposure or the outcome
as well. For example, if exposure levels are more strongly associated with respiratory
outcomes in excluded women, we are likely to underestimate the associations in our
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study sample. A follow-up until 5 years of age and at least an acceptable spirometric
test were required for inclusion in the spirometry analysis. Selection bias may occur
due to a possible overrepresentation of children well-trained for spirometric tests i.e.,
those with respiratory disorders. This may attenuate the associations estimated in our
study, except if the selected children are more sensitive to endocrine disruptors.

The proportion of missing data was relatively high, with 277 out of 587 included
boys (47%) who had at least one missing value in a covariate. Analyses of complete
cases would have strongly reduced the sample size causing a substantial loss of statis-
tical power and precision, with enlarged standard errors and confidence intervals.188

Also, bias may arise because of the selection of a very specific respondent population
in complete cases analyses, which can differ from the nonrespondents.188 This is the
reason why we imputed missing values.117,335 We used a multiple imputation method
(chained equations) that allows inclusion of auxiliary variables in the imputation model
that are not in the final analyses, and which imputes missing data with actual values.337

Multiple imputation methods rely on the missing at random (MAR) assumption. The
missing-data mechanism is considered MAR when the probability of missingness is
not completely random, and may depend on the observed data, but not on the un-
observed data.188,155,117 Compared with missing completely at random (MCAR), the
MAR assumption is more realistic as some patterns of missingness were observed in
our data, with the missingness related to some observed variables. Also we maximized
the chance that this assumption holds by adding auxiliary variables, used as predictors
of missingness for the multiple imputation. We cannot exclude that some data were
not missing at random (NMAR), which may limit the validity of the multiple imputa-
tion approach. However, we chose simpler (binary) coding for most variables, such as
postnatal smoking. In this case, this may limit the risk of nonresponse by the heaviest
smokers (NMAR mechanism), as smoking and the number of smoked cigarettes were
two distinct questions. Additionally, we chose to use the educational level instead of
household income as a more reasonable proxy of the SES status, since income is ex-
pected not to be missing at random if subjects with high income are less likely to give
information on their income.335 Using simple imputation yielded to very similar results
but slightly narrower confidence intervals. The simple imputation method considered
imputed values as real observed values, hence, artificially more precise estimates were
expected. This suggests also that results would likely have been very close if we had
used other existing methods for multiple imputation.

Focusing on one sex was a way to avoid any issue related to bias (selection or con-
founding biases), at the cost of a loss of information regarding effects in the other sex.
Phenols and phthalates assays and analyses of the associations with respiratory out-
comes in girls are planned in EDEN projects led by the team of Isabella Annesi-Maesano
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(Inserm, UMR-S 1136, Epidemiology of allergic and respiratory diseases Department,
Paris, France). Additionally, effects of prenatal exposure to phenols and phthalates on
respiratory health in the offspring will be studied in other populations such as those of
SEPAGES cohort and the Human Early-Life Exposome (HELIX) project.327

Within-subject variability of urinary phenols during pregnancy and em-
pirical validation of a within-subject pooling approach (Chapters 5 and 6)
In these studies, the representativeness of the overall French population was not sought
(also the case of the EDEN cohort), and is unlikely to be achieved. Little is known
on the exposure levels in pregnant women assessed through multiple biospecimens, but
having a limited number of included women has the advantage to limit the variability
due to inter-subject metabolic differences.

Most included women shared similar sociodemographic characteristics, e.g., a high
educational level (undergraduate college degree or above), no smoking during preg-
nancy, primiparity. This might have reduced between-subject variance in exposure
levels if these factors are associated with exposure levels, compared to analyses on a
more heterogeneous population. Thus, it is safer to assume that the ICCs and varia-
bility patterns that we observed were culture- and population-specific.

7.3.1.4 External validity (generalizability)

External validity relates to how research findings can be generalized to source pop-
ulations or to other target populations, with other characteristics of studied subjects,
or from another time period.264,263

The study population in Chapter 4 is likely to be more educated and included
more nonsmoking mothers than the source population of the EDEN cohort (Table
4.2). This suggests cautious generalizability of our findings to the source population.
Additionally, the EDEN population, relying on two recruitment centers (Poitiers and
Nancy) was not meant to represent the entire French population, and was more edu-
cated than the national population of pregnant women,131 which may lead to concerns
about the generalizability to all French pregnant women. However, this relates to
the statistical inference and it does not mean that our results are not generalizable
in terms of scientific inference or biological relationships.263 Representativeness is not
needed to estimate an effect of an exposure on an outcome. On the contrary, having
a more homogeneous population can enhance the validity of the study, even though
an overall effect estimated on a representative population sample may not apply to
every subgroup.263 Naturally, generalizing our results beyond the first five years of life
would be unwarranted, since respiratory symptoms can progress differently across the
lifecourse of individuals, with major changes during childhood and adolescence likely
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due to genetic and environmental factors.5,133,114 For example, childhood wheezing and
asthma can persist, aggravate later in life, or in other cases, are only transient with
a spontaneous regression during childhood or adolescence, but can also reappear later
in adulthood. Since nonmonotonic dose-responses are expected with EDs,315 findings
may also depend on exposure levels, which could result in possibly stronger, weaker,
or even inverse associations with other ranges of exposure levels. Our focus on male
offspring impeded drawing inferences about female offspring. However, in the context
of endocrine disruption, there are a priori biological reasons to consider boys and girls
separately.136

Regarding our studies from Chapters 5 and 6, our population was probably not
representative of all pregnant women. As pregnancy is a particular physiological stage,
our findings are not generalizable to non-pregnant populations, but our aim was pre-
cisely to study exposure assessment in this specific population. As seen in Chapter
6, having this population-specific information should be highly valuable for further
analyses on SEPAGES cohort.

7.3.2 Sources of random error

One major source of random error influencing the precision of the estimates is
sample size.264

Our population from the SEPAGES-feasibility study, in Chapters 5 and 6, is limited
to a small number of women who collected a sample of all their urine voids (n=30)
during three weeks, a study design which was very cumbersome. Indeed, almost half of
the population did not give information for all (missed and collected) urine voids. We
drew the protocol of analyses so as to answer several key research questions related to
exposure assessment to phenols in the most efficient manner. Budget constraints con-
stituted an hindrance for increasing the number of biospecimens; women; or compounds
(e.g., including phthalate measurements) in our analyses (we only had the budget to
analyze around 330 samples for one family of compounds). Restricting our analyses
to one single aim would have improved precision of the estimates by increasing the
number of relevant samples per woman or by included additional women. For exam-
ple, Fisher et al.103 examined the within-day variability of bisphenol A and phthalate
metabolites, by relying on a larger number of women (n=66) who collected a sample
of all their urine voids over one single day. This approach is more adapted than ours
in terms of precision of ICCs for characterizing the within-day variability of biomarker
concentrations, but it does not allow characterizing the temporal variability over one
week. On the contrary, our approach was intended to characterize this between-day
variability. Including additional women in our study population would have introduced
bias since the not-included-women had a higher rate of missing voids. Moreover, 30
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women is not a small sample size when thinking in terms of repeated biospecimens,
nor are our included populations of eight and 16 women in Chapter 5 and 6. Indeed
there were approximately 1,500 and 3,000 collected biospecimens which were used for
pools before phenol assays for the eight and 16 women, respectively.

For the study on respiratory health (see Chapter 4), the sample size was limi-
ted, first, by the number of pregnant women recruited in 2003-2006; and second, by
the number of mother-child pairs included in three previous studies,245,244,79 since the
maternal urine sample was assayed for phenols in this preselected population only
(n=604). Despite inevitable losses to follow up or withdrawals, we included a high rate
of eligible subjects in our study (n=587, 96% of this population), which is the second
largest study in terms of sample size, behind Smit et al.286 on this research question.
In their study, Smit et al.286 did not investigate the effects of phenols and relied on
a single maternal blood sample for exposure assessment, which may be highly sub-
ject to measurement error64,165 due to very short elimination half-lives from the blood
compartment.237,164,160,303,147,148 The sample size was strongly reduced for the FEV1%
analyses, as having spirometric measures depended on the participation in a clinical
examination at 5 years of age; and on a spirometric test matching the acceptability
criteria defined by the European Respiratory Society (ERS), including an expiration
time longer than one second.38

In Chapter 4, we chose to report all results without formally testing statistical
significance or correcting for multiple comparisons, increasing the risk of chance find-
ings (type I error).33,135,132,34 However, for certain epidemiologists, strict significance
testing and correction for multiple tests should not always be done in the context of
epidemiological research.262,241,261,310,118 For example, for Rothman262, reporting results
corrected for multiple comparisons can be seen as considering that data are only random
numbers, implying that no associations are expected to be real. This does not take into
account a priori (biologic) knowledge, behind the scientific hypothesis. Using a multi-
ple correction method increases also type II error, i.e., the risk of having nonsignificant
test results when associations are real.262,241,261 As a result, publication bias, i.e. when
studies with statistically significant or clinically positive results are more likely to be
published than others,283,152 may be increased because of a reduced representativeness
if only significant results are published after multiple-testing correction.118 In addition,
relying on significance tests rises the issue of providing a dichotomous response to a
research question (e.g., the estimation of a dose-response relationship) which may be
better answered in quantitative terms (estimation of the effect size and measurement
precision) using confidence intervals.262,241 Hence, our findings should be considered
with caution, as those of an exploratory approach aiming to estimate the effects of in
utero phenols and phthalates exposure on child’s respiratory health in general.
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7.3.3 Study design and statistical methods

Phenols, phthalates and respiratory endpoints (Chapter 4)
Contrary to a cross-sectional design, our prospective design respects the temporality,
which is relevant in attempting to make valid inferences.

For associations between prenatal exposure to phenols and phthalates and question-
naire-based respiratory outcomes, we chose to use a survival model and not binomial
regression. Binomial regression models ignore temporal variations in outcome risk and
potential confounders (time-varying covariates), and do not efficiently accommodate
subjects lost to follow up in the context of a prospective cohort study. Conversely, sur-
vival models are more appropriate to take into account the entire information available
in a cohort study, including time-varying covariates and censoring. More specifically,
our survival model allows incorporation of time-varying adjustment factors. For exam-
ple, postnatal passive smoking cannot have an effect on the risk of respiratory disease
before the age when it starts, just like exposure to furry pets before the age of pet
arrival in the home (the latter variable was not included in the final model but its
effect has been tested). Moreover, 136 subjects (for the analysis of wheezing outcome)
were lost to follow up before the end of the five years of follow-up. With binomial
regression, when one considers a cohort with a long-term follow-up, the information on
missing questionnaires (used for the definition of the outcome) or dropout cannot effi-
ciently be taken into account, implying to exclude subjects lost to follow up, resulting
in possible reduced statistical power and possible selection bias. Survival models and,
in particular, discrete-time models in the case of an interval-censored follow-up, are
designed to properly handle censoring, and allow to take all the available information
into account without reducing the size of the studied population.154 In addition to their
theoretical superiority, survival models were theoretically and empirically shown to be
more efficient with long observation times or when the probability of the event changes
over time,15,116,177 even with identical censored times.

Compared to the other approaches, one issue for our survival model could arise
from the complexity of asthma diagnosis in early life that can hide the true onset of
the disease.133 Asthma being an heterogeneous disease, its diagnosis is based on the
history of poorly specific and sensitive clinical symptoms, as well as a possible physical
examination. This can create a lag between the first occurrence of symptoms and the
diagnosis, and thus limit the reliability of regression estimates for the asthma outcome.
Although it was investigated in adults and the extent of generalizability to children is
unknown, the year of asthma diagnosis (onset) was found to be fairly accurate when
reported by subjects in questionnaires, which may limit this issue.311

For a follow-up of five years, findings using our survival approach and binomial
regression (i.e., logistic regression) tended to be similar, although p-values sometimes
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differed. Also, using modified Poisson regressions (log-link), suggested as a more suit-
able approach than logistic regressions to estimate relative risks in longitudinal studies
for outcomes with a high prevalence,360 led to results which were very close to both
those from our survival approach and from a logistic regression model.

One strong assumption in our discrete-time survival model, just like for the Cox
model,82 is the proportionality of hazards, i.e., the hazard functions remain propor-
tional over time.158 To assess the validity of our model, we checked the proportional
hazards assumption by including predictor (i.e. independent variable) by time inter-
action effects for each predictor in the model, and we tested the statistical significance
for difference between hazard ratios within each interval.158 There was no evidence of
nonproportional hazards, suggesting that proportionality holds over time for all vari-
ables.

Finally, our survival analysis may be more sensitive to confounding than binomial
regression. Indeed, a covariate X associated with the outcome only at a given time t
may become a confounding factor at time t+ 1 because of a selection phenomena over
time, changing the association between X and the exposure. Subjects with a higher
risk of developing the outcome are less likely to be in the population at risk at time
t+ 1, and hence there may be an association between the factor X and the exposure
in the remaining population, turning X into confounder.

E D

X

A) At time t

E D

X

B) At time t+1

At time t, X is only associated with D

in the population at risk P.

X does not confound the association

between E and D.

At t+1, X is now associated with E

and D in the new population at risk,

P1, due to specific values of X in

subjects no longer included in the

population at risk, i.e. those with a

higher risk of disease and who

developed the disease before t+1.

Thus, X is now confounder for the

association between E and D.

Figure 7.1 – Survival analysis and confounding

Within-subject variability of phenols (Chapter 5)
To estimate the within-day variability of phenols, our analysis relied on the limited
number of two subjects. Therefore, while they would have allowed to take into ac-
count the subject-specific variability, hierarchical models (including a random effect
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for both the subject and day variables) could not be used due to convergence issues
and variance components estimates equal to zero. However, we centered phenol con-
centrations around the woman-specific weekly mean before analysis, which probably
limits the subject-specific residual variability. Both one-way random-effect ANOVA
and mixed models with a random intercept (maximum likelihood estimations) can be
used to calculate ICCs.253 In the supplementary material (Chapter 5, Tables 5.8-5.9,
and 5.11), we showed that estimates using the maximum likelihood models were very
close to those from the ANOVA model. Additionally, when a large portion of the
measured concentrations was below the LOD (e.g., for benzophenone-3 and triclosan),
models were more susceptible to extreme values that would have artificially reduced
the ICCs, due to more homogeneity between women, and hence, a proportionally larger
within-subject variability. Thus, we are very cautious when interpreting our findings
for these two compounds.

Empirical validation of a within-subject pooling approach (Chapter 6)
By a log-transformation, we attempted to approximate a normal distribution of the
biomarker concentrations. Unfortunately, the normality of the distribution was likely
limited by the small number of samples in each comparison analyses. Therefore, the
agreement parameters (correlation coefficients, Kappa coefficients, and t-tests) should
be considered with caution. In the empirical replication of the study from Perrier
et al.242, we proposed to limit the effect of data clustering (the study relied on 8
women) by drawing a normal distribution using the EDEN compound-specific means
and standard deviations. This might not represent the real distribution of repeated
samples if our population had been larger, and the normal distribution does not take
into account the absence of concentration information below the LOD. However, the
goal was to empirically replicate the study from Perrier et al.242, which assumed a
normal distribution of the concentrations for their two chemicals. Additionally, the
number of biospecimens required to reduce the attenuation bias to 10% or below was
estimated using the mean of 8 biospecimens as pregnancy average exposure. These
numbers are likely to be underestimated, since the pregnancy average exposure should
rely on many more urine biospecimens. The underestimation might be stronger for
low ICCs, which could explain the great consistency between our results and those
from Perrier et al.242 about methylparaben (four and six biospecimens were required to
reduce bias below the 10% threshold in this thesis and in Perrier et al.242, respectively),
in spite of a mild difference in ICC values (0.85 and 0.6, respectively); whereas results
were less consistent for bisphenol A (18 required biospecimens in this work versus 35 in
the theoretical study of Perrier et al.242) for nearly the same difference between ICCs
(0.38, versus 0.20 in Perrier et al.242).
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To conclude, in Chapter 4, our attempts to limit the impact of confounding, selec-
tion of subjects and information biases, gave rather confidence in our findings. However,
one essential source of error, which we have largely highlighted in Chapters 5 and 6,
arises from the exposure assessment. In the case when the hypothesis of classical type
error holds, the high within-subject variability of nonpersistent chemicals, may have
largely biased the estimates towards the null, for a continuous exposure variable.

The analyses carried out in Chapters 5 and 6 would benefit greatly from a greater
sample size. Our population being highly selected, the generalizability is most likely
limited, but it does not impact the internal validity.

In the next chapter, we conclude this thesis and we suggest perspectives for future
research.
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Chapter 8
Conclusion and perspectives

8.1 Conclusions

In this thesis, we were interested in the exposure during pregnancy to two families of
nonpersistent EDs, their temporal variability and their effects on childhood respiratory
health. Chapter 4 is one of the few prospective studies on this topic with a relatively
large sample size compared to previous studies. It is also the first study investigating
effects of phenols other than bisphenol A in a longitudinal setting. We provided limited
evidence of adverse effects of prenatal exposure to certain phenols and phthalates on
respiratory health until 5 years of age in our population of boys. Prenatal exposure to
some other phenols and phthalates tended to reduce the risk of respiratory symptoms or
illnesses. One of the major limitations of this study was probably exposure assessment,
as shown in the other studies of the thesis. This is also a major concern for almost
all the entire published research on the topic, since the studies relied on one to three
biospecimens. We have confirmed that attenuation bias is likely a consequence of this
reliance on a small number of biospecimens (Chapter 6).

Our study, aiming at characterizing the within-subject variability of phenol urinary
biomarkers during pregnancy (Chapter 5), had the significant advantage of relying
on a comprehensive collection of urine voids over several weeks in pregnant women,
while previous studies on variability generally relied on two to three random spot
samples.37,50,51,119,153,204,246,294 To the best of our knowledge, no previous published
study had such detailed data. The temporal variability of phenols within a given
day was shown to be very high for all studied phenols while the daily average expo-
sures within a week were much less variable. Variability of weekly average exposures
was found to depend on the considered chemical. Hence, this variability is expected to
result in measurement error that may bias estimates in epidemiological studies on the
effects of such chemicals on human health. Therefore, the common approach, which
is relying on the collection of few random spot biospecimens over the pregnancy, is
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probably inefficient. It is imperative to consider new sampling designs to estimate the
average exposure to such chemicals over time windows of interest.

Chapter 6 aimed at evaluating the efficiency of a sampling design relying on the
within-subject pooling of a small number of repeated samples. The degraded within-
subject pooling of three instead of all daily biospecimens was efficient to estimate
exposure to nonpersistent chemicals over time windows of weeks or more and to a lesser
extent of days, with very few exceptions. Additionally, when assuming a classical-type
error, at least a few dozen of biospecimens were needed to strongly limit the attenuation
bias for chemicals with very high temporal variability, confirming the validity of such
an approach. Also, using external estimates of ICCs may lead to inefficient correction
for measurement error with the a posteriori disattenuation method. This suggests that
having an internal estimate of the ICC, even from only a subgroup of the population
should be preferred.

This thesis provides knowledge on exposure assessment to nonpersistent chemicals,
and attempts to propose an achievable solution to disentangle the exposure assessment
from measurement error due to within-subject variability. We propose in Figure 8.1
a few sampling designs, which, based on the results of this thesis, may be efficient
strategies for exposure assessment to nonpersistent chemicals in future studies, over
long (e.g., the whole pregnancy, trimesters of pregnancy) and short (e.g., specific weeks
and days of pregnancy) time windows of interest. Based on ICCs and our results from
the simulations, sampling designs highlighted in blue may be strategic choices leading
to the best result with the minimal number of biospecimens, as they cover a wide range
of situations (chemicals and/or exposure windows of interest). Contrary to compounds
with high ICCs and for which relying on a reduced number of samples (collected in
a short time window) may be enough to have a reasonable exposure assessment, if
chemicals have low ICCs, the more information we have, i.e. the more biospecimens
are collected, the better the design.

8.2 Perspectives

In this section, avenues for future research are proposed to address the limitations
encountered in this thesis, and to make attempts for filling the gaps in this research
field.

From a statistical point of view, a prospective design with cohort recruitment at the
earliest stage of (or before) pregnancy and long-term follow-up of the offspring is likely
the most relevant design to investigate the effects of prenatal exposure to phenols and
phthalates and draw valid inferences. It allows the prospective collection of data on
various exposures, outcomes, and on numerous potential confounding factors to limit
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confounding bias, with respect of the temporality between exposures and outcomes.57

Studies with very early recruitment, at the beginning or even before pregnancy are par-
ticularly relevant to investigate the effects of periconceptional environmental exposures
on human reproduction and development. Examples include, e.g., the Longitudinal In-
vestigation of Fertility and the Environment (LIFE) Study55,56 and the Environment
and Reproductive Health (EARTH) Study.208,128 Web-based periconceptional prospec-
tive studies such as the Boston University Pregnancy Study Online (PRESTO) 1 are
also particularly relevant in this context.

The accuracy of future studies on the effects of prenatal exposure to nonpersis-
tent EDs on respiratory health may be optimized by improving the exposure assess-
ment. The need is to collect the right number of samples at the right time, i.e.,
the toxicologically-relevant window of susceptibility. Increasing the number of bio-
specimens to be assayed for chemicals is a way to improve exposure assessment. For
compounds with low temporal variability (e.g., methylparaben), we showed in our last
study that collecting at least 4 samples during pregnancy, which is easily achievable,
significantly limits the attenuation bias, when a classical measurement error is assumed
(see Figure 8.1 for a summary of potential relevant designs for biospecimen collection).
However, if one is interested in evaluating the effects of much more variable chemicals
(e.g., bisphenol A), a few dozen biospecimens are needed, which is obviously more
cumbersome for participants and is likely to increase overall costs of the study and
participants’ dropout. One interesting approach to reduce assays costs is the within-
subject pooling of biospecimens. Even within-subject pooling of a small number (e.g.,
three daily biospecimens) of repeated biospecimens allowed a reasonably good estimate
of the average exposure to nonpersistent chemicals with low and high temporal vari-
ations (Chapter 6), and studies could benefit from this relatively light design without
increasing analytical costs. Such a design is achievable, and currently used for exposure
assessment in SEPAGES cohort including 484 parent-child trios 2. It would be interest-
ing that further research evaluates the existence and the impact of pooling error which
could add valuable knowledge to this recent development, since studies on this topic are
based on simulations.272,274 Further studies should also consider assaying chemicals in
some individual repeated biospecimens in a sample of the participants to evaluate the
variance of biomarkers in individual samples and to calculate ICCs. Hybrid (unpooled
and pooled) designs can combine the advantages of both designs.272 Other approaches
such as regression calibration or SIMEX methods could also be considered in epidemi-
ological studies on the health effects of phenols and phthalates to correct for measure-
ment error when several biospecimens are assessed for exposure biomarkers.109,29,67,108

1. http://sites.bu.edu/presto/
2. http://sepages.inserm.fr/en/home/

http://sites.bu.edu/presto/
http://sepages.inserm.fr/en/home/
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A large sample is required for the evaluation of multiple outcomes with low expected
relative risks. Since statistical power will not necessarily increase monotonously with
improved exposure assessment, the optimal trade-off between sample size and precision
per subject is difficult to define, which is why further variability studies using multiple
and not only three biospecimens, with characterization of the impact on dose-response
relationships are warranted.

To investigate the effect on lung function, further studies could benefit from spiro-
metric tests later in life (e.g., around 8 years of age), when most children are able to
have acceptable flow-volume curves and therefore measures less prone to error. Char-
acterizing the effects of prenatal exposure on the evolution of the lung function over
the lifecourse is also highly relevant. If one is interested in lung function in preschool
children, using more suitable parameters (e.g., FEV0.5 or FEV0.75) should provide more
usable information.38,243,230 Lung functions tests in neonatal period using tidal breath
analysis could be considered to explore the effects of phenols and phthalates in very
early life, as currently done in SEPAGES cohort. Ongoing (e.g., MeDALL,16,47 HE-
LIX,327 EXPOsOMICS,322 or new international collaborations/projects could be rele-
vant options to greatly increase sample size (and thus the statistical power), and better
characterize the impact of environmental chemicals such as phenols and phthalates.

From a scientific point of view, characterizing the effects of prenatal exposure to en-
vironmental pollutants on respiratory health is relevant. Longitudinal studies in human
population could provide information on possible pathways that remain to be clarified,
e.g., inflammation process, immunomodulation, oxidative stress, epigenetic changes, or
gene-environment interactions.284,325,322,327 This would allow the identification of im-
mune or inflammatory markers and gene polymorphisms that could modify or mediate
the associations.248 Additionally, such studies could provide information needed to iden-
tify possible susceptible populations, and critical windows of sensitivity (possible links
with the different stages of lung development).207 Such information would be helpful
to define more accurately the health effects to be expected in the offspring. Additional
studies, investigating metabolic mechanisms (including experimental or animal studies)
are needed to understand more deeply the behavior of these nonpersistent chemicals in
the human body, and to characterize possible specific (gestational or pre-gestational)
conditions that could influence their metabolism during pregnancy. Additionally, bio-
markers in non-invasive fetal biological matrices, such as the meconium or neonates’
hair are interesting to get close to the fetal exposure.312,187,141,340,246

The endocrine system controls physiological functions by hormonal peaks and vari-
ations, and feedback mechanisms. Therefore, further studies may also explore, instead
of average exposure, the impact of acute exposures, as well as the impact of variations
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in exposure levels, showing the relevance of repeated sampling and assays in order to
provide some answers to this research question.

Collecting exposure data in the offspring in prospective cohorts would be helpful to
disentangle the effects of pre- and postnatal exposure on health in childhood.

Also, more development to identify asthma biomarkers would be highly valuable to
improve sensitivity and specificity of the outcome definition in epidemiological studies
and physicians could benefit from this progress for diagnosis and management of the
disease.

Long-term follow-up cohort studies, i.e. with repetition of outcomes assessment –
lifecourse epidemiology – should provide information on the progression of symptoms.174

Puberty and adolescence are accompanied by many physiological (hormonal), physical
and behavioral changes, which may modify the natural history of respiratory symptoms
and diseases,107,236 and may modify the effect of environmental exposures (e.g., EDs)
on respiratory health. Consequently, a follow-up until this key period, and later, until
adulthood, would be of great interest.

Longitudinal studies should also include exposure assessment to emerging chemicals
(e.g., bisphenols F, AF used as substitutes for bisphenol A, di(isononyl)cyclohexane-
1,2-dicarboxylate (DINCH®) used as phthalate alternative), with hundreds of them
being potential EDs.

Contrary to toxicological studies, for which environment and exposures are con-
trolled, in an observational setting, such that of most epidemiological studies, humans
are exposed to many environmental agents, which can interact with each other, and
with identical or different targets in human organisms. Therefore, understanding the
effects of mixtures of pollutants is also warranted, especially in the case of EDs. In-
deed, the population is concurrently exposed to compounds that are both agonists and
antagonists of same receptors. This may result in complex dose-response relationships
(e.g., non-monotonic) for EDs or mixture of pollutants.315 Advanced statistical methods
can be used to take into account multiple exposure, including environment-wide as-
sociation studies (EWAS) selection methods, multivariate regression–based statistical
methods, sparse partial least squares, and elastic net (reviewed in Agier et al.6). Fur-
ther developments are requested for correlated exposures. In this context, tackling the
challenge of assessing multiple exposures simultaneously (the concept of exposome) and
examining their impact on human health is particularly relevant.325 Several projects
have been launched to that purpose. For example, the HELIX project,327 the EX-
POsOMICS project,322 the HEALS 3 and HERCULES 4 projects aim to develop and
provide a better understanding of the effect on the exposome on health.

3. http://www.heals-eu.eu/
4. https://emoryhercules.com/

http://www.heals-eu.eu/
https://emoryhercules.com/
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Finally, from a public health point of view, quantification of exposure levels and
identification of the different exposure sources in various susceptible populations (e.g.,
pregnant women, infants, children) are required for risk assessment and regulatory de-
cisions. The SEPAGES feasibility study design is particularly dedicated to identify
main exposure sources in pregnant women, as it relies on the comprehensive collection
of urine voids in participants as well as an intensive data collection on the exposure
sources (e.g., use of personal care products, dietary lifestyle and food intake, pharma-
ceuticals) for each study day. A study about subject’s behaviors and the associations
with biomarker concentrations in urines is currently under way in our group. Re-
producing such studies in other populations (e.g., non French pregnant women, men
and children) may improve knowledge on exposure levels and sources in the different
populations.221,49

From such studies and animal pharmacokinetic research, physiological based phar-
macokinetic (PBPK) modeling, which integrates the physical and biological character-
istics of a chemical with the body physiological functions to predict internal dose (or
exposure through reverse dosimetry) in target tissues/organs,217 could be developed
and adapted in the context of pregnancy.2 Some models already exist for a few phe-
nols or phthalates (e.g., bisphenol A, parabens, DEHP),278,3 however they are poorly
used in the epidemiological setting. Some PBPK models have been adapted to the
context of pregnancy200 and this approach is planned to be used in the HELIX project
for some compounds (e.g. DEHP)327 but PBPK models are lacking for many phenols
and phthalates in the context of pregnancy. Further research in this area could help
to fill the gaps, which pose a challenge for regulatory decision making, as (i) most
decisions are based on tolerable daily intakes (TDIs), minimal risk levels estimated
from uncertainty-corrected (interspecies extrapolation) no observed adverse effect lev-
els (NOAELs) or lowest observed adverse effect levels (LOAELs) and because (ii) low
dose effects and non-monotonic dose responses are expected for EDs.193,315

To conclude, we have contributed to show that the road for human cohorts of a new
type (so called third generation birth cohorts285), with strongly improved assessment is
now open.
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Appendix A
Sources of phenols and phthalates

Their uses in the manufacture of daily-life products is widespread.

A.1 Phenols
Bisphenol A (2,2-bis(4-hydroxyphenyl)propane) is a high production volume chem-

ical employed in polymer plastics (polycarbonate) and epoxy resins. The main uses
of bisphenol A include food and beverage containers (plastic packaging, can coating),
printed thermal papers, CDs and DVDs, toys, medical equipment, water pipes coating,
and dental resins and sealants.113,11,54,104,20,41

Bisphenols F, S and AF are other bisphenols with uses mainly similar to those
of bisphenol A. Bisphenol F is used in epoxy resins and thermal printer paper, while
bisphenol S is produced for polycarbonate and polyesthersulphone materials, as well
as for epoxy and polyester resins.17,42,82

Phenolic compounds include also benzophenone, parabens, triclosan and dichloro-
phenols. Parabens are esters of p-hydroxybenzoic acid which are antifungal and an-
timicrobial preservatives. They are present for these properties in cosmetics, personal
care products, pharmaceuticals and food.66,12,18,13

Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is another phenolic compound
used as an antimicrobial agent in personal care products, including consumer antiseptic
wash products (antibacterial soaps, body and mouth washes), toothpastes, deodorants,
as well as in household cleaners, clothing, kitchenware and toys.64,78,9,110

Benzophenones include several derivatives (e.g., benzophenone-2, and oxybenzone,
also called benzophenone-3) of benzophenone, a high production chemical. They are
used as flavor additive for diet in beverages, soft candy, and in industrialized baked
goods.43 They are also used for other products such as plastics, coating, insecticides,
agricultural chemicals and pharmaceuticals. In addition, benzophenones are present
as ultraviolet (UV)-blockers in clear plastic or glass packaging, sunglasses, and in
sunscreeens.64 They can be found in inks, paints, varnishes and personal care prod-
ucts (e.g. soaps, nail polishes, lotions, fragrances) or household and laundry cleaners
to prevent damaging of colors and scents.81,77

Dichlorophenols are intermediates in the industrialized synthesis of chlorinated
chemicals, such as pesticides and herbicides. Hence, dichlorophenols can be present in
the environment (drinking water, ambient air) as byproducts of the chlorinated disinfec-
tion, and as degradation products of some pesticides. Additionally, 2,4-dichlorophenol
can be formed from triclosan transformation in the environment or the organism. 2,5-
dichlorophenol is also a derived compound of paradichlorobenzene employed in moth
balls (banned from this use in European Union) and room deodorizers.77,125
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A.2 Phthalates

Phthalates, also known as esters of phthalic acid (see Table A.1), include many
industrial chemicals produced in high volume. These compounds are mainly used as
plasticizers, i.e. used to soften plastics, to increase their transparency, their flexibility
and durability. These plastics have a wide range of usages, which include polyvinyl
chloride (PVC) for consumer products such as shoes, clothing, toys, packagings; for
household and car building materials (e.g., wire and cable, floor and wall coverings,
synthetic leathers and fabrics), and in medical devices. Additionally, non-plastic uses
exist, with some phthalates being components of solvents (for inks and paints), adhe-
sives, personal care products (e.g. soap, nail polish, lotion, fragrances) and excipients
in pharmaceuticals.63,26,122

They can be classified on the basis of their molecular weight, as high and low molecu-
lar weight phthalates (HMW and LMW phthalates). Some of the most common HMW
phthalates (ester side-chain lengths of five or more carbons) include di-2-ethylhexyl
phthalate (DEHP), di-isodecyl phthalate (DIDP) and di-isononyl phthalate (DINP);
and LMW phthalates (one to four carbon atoms on the ester side-chain) include diethyl
phthalate (DEP), dibutyl phthalate (DBP), and di-isobutyl phthalate (DiBP).79
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Table A.1 – Main phthalates studied in this thesis, with their chemical formula and
uncomprehensive list of exposure sources.

 

Phthalate (abbreviation) Molecular formula 2D Structure Main uses and products 

Diethyl phthalate (DEP) C12H14O4 

 

- Plasticizer for food packaging, automobile 
products, toys, artificial turf, toothbrushes, 
rubber 
- Solvent for fragrances and colors in 
personal care products, adhesives, 
detergents, sealants, and pharmaceuticals. 

Di-n-butyl phthalate (DnBP)  
 
 
 
 
Di-isobutyl phthalate (DiBP) 
 
 
 

C16H22O4  
 
 
 
 
C16H22O4 

 
 

 

-Plasticizers for PVC products, shoes, rain 
coats, shower curtains, coating 
manufacturing, toys, nail polishes, 
fingernail elongators 
-Solvents for adhesives, paints, printing 
inks, sealants, binding agents, personal 
care products, pharmaceuticals and food 
supplements. 

Di-n-octyl phthalate (DNOP) C24H38O4 

 

- Plasticizer for soft and flexible plastics: 
medical devices, wire, cables, floor tiles, 
art supply 
- Solvent for personal care products, 
laundry detergent, baking soda, pesticides 

Butyl-benzyl phthalate (BBzP) C19H20O4 

 

- Plasticizer for PVC floor and wall 
covering, food conveyor belts, automobile 
products 
- Solvent for paint binders, glues and 
adhesives, mouldable sealants, art supply 

Di-2-ethylhexyl phthalate (DEHP) 
or 
Dioctyl phthalate (DOP) 

C24H38O4 

 

- Plasticizer for soft and flexible PVC floor 
and wall covering, toys, electronics, 
plumbing, shoes, plastic packaging 
material, medical devices, automobile 
products, art supply 
- Solvent for paints, inks, lacquers, 
adhesives, sealants, paper 

Di-isodecyl phthalate (DIDP) C28H46O4 

 

- Plasticizer for soft and flexible PVC for 
polymer-related uses: and non-PVC uses 
(e.g., rubbers, toys, plastic packaging 
material (including food packaging), and 
other material as substitute for DEHP 
- Solvent for paints, inks, lacquers, 
adhesives, sealants 

Di-isononyl phthalate (DINP) C26H42O4 

 

- Plasticizer for soft and flexible PVC for 
polymer-related uses: and non-PVC uses 
(e.g., rubbers, toys, plastic packaging 
material (including food packaging), and 
other material as substitute for DEHP 
- Solvent for paints, inks, lacquers, 
adhesives, sealants 
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Appendix B
Toxicokinetics

B.1 Phthalates

B.1.1 HMW phthalates

In human toxicological studies, following oral and dermal exposure, DEHP, DnBP
DEP are rapidly absorbed and their metabolites reportedly appear in blood within
0.5-1 h. Major metabolites are primary metabolites (simple monoesters) with peak
concentrations around 2 h post exposure, except for the monoester of DBP, mono-
butyl phthalate (MBP) which reaches its maximum level in blood 4 h after dermal
exposure.87,60,61,58,1,56,48,46 Plasma elimination half-lives of simple monoesters are very
short (below or around 2 h) in most studies.87,60,61,56 Secondary metabolites tend to
reach their maximum levels later, with a longer elimination half-life from plasma.61
Metabolites are mainly in their unconjugated form.60,56

Primary and secondary metabolites are excreted rapidly in the urines, mostly wi-
thin 24 hours post exposure. For DEHP, around 50% of the administered dose is
excreted in urine within 24-48 h via its monoester MEHP and up to four secondary
metabolites, with 90% of the metabolites excreted within 24 h.87,96,60,61,56,3,4,73 In all
studies, compared to secondary metabolites, MEHP only represents a small fraction
of the excreted dose (6-7%), with a shorter terminal elimination half-life (4-6 h). Eli-
mination half-lives for secondary metabolites tends to be longer, between 6 and 24 h
depending of the metabolites, the longest being for carboxy-metabolites.60,61,56,4,65 Ma-
jority of metabolites are in their conjugated forms, predominantly the glucuronidated
conjugate.87,4,65,73 This is expected since the phase II conjugation facilitates urinary
excretion of the metabolites by increasing water solubility. Carboxy secondary metabo-
lites are the least conjugated species with almost 50% in the free form.73

Regarding other HMW phthalates, DINP roughly follows similar metabolic behav-
ior than DEHP. The monoester MINP is the fastest to appear in urine with a peak
concentration around 2 h post dose;4,59,65 has an excretion half-life between 3-8 h; and
only represents up to 3% of the excreted dose. On the contrary, secondary metabolites
are in majority in the urine, with excretion half-lives probably longer since there are still
detected after 24h (not the monoester), especially the carboxy metabolites. Around
32.9-43.6% of the administered amount is excreted within 48 h.4,59,65 Glucuronide con-
jugates is the major form for metabolites.4,65
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B.1.2 LMW phthalates

For LMW phthalates, the elimination is quite different. Due to their shorter
alkylchains, their monoester are more hydrophilic and require less metabolic biotrans-
formations before being excreted in urines. Thus, after oral or dermal administra-
tion of DBP, DEP, DnBP and DiBP in human volunteers, the excretion of metabo-
lites is faster than for HMW phthalates and, simple monoesters are the predominant
forms.3,48,46,97,58,73 Additionally, MEP, with a shorter side-chain, is mostly excreted in
its free form while MBP needs to be conjugated and its excretion is slower.48,46,73 Ex-
cretion half-lives for monoesters are between 1.9 and 6 h, and between 2.9 and 6.9 h for
the secondary metabolites.97,58,73 The longest half-life is for the carboxy-metabolites
similarly to HMW phthalates.73 While almost all an oral dose is excreted via urines
within 24 h after the exposure, only a small fraction of a topic application is excreted
in urine within 24 h (6-13%).58,73,46

Difference observed in excreted fractions of total administered amount between
compounds and routes of exposure (oral / dermal) might be due to discrepancies in me-
tabolism and elimination. The lipophilicity of phthalates is varying with the alkylchain
length. High lipophilic compounds such as DINP might undergo more complex oxida-
tion pathways with the addition of several functional groups, generating metabolites
not measured in the reported studies.62,99,98 Also, distribution in other compartments
needs to be further studied in humans since it can exist. For example, some phtha-
late metabolites, MEHP MEP and MiBP have been found in sweat samples of several
humans. The excretion may have occur through sweat pathway from the systemic
circulation, or the presence is sweat may indicate a release of these phthalates from
storage sites such as adipose tissue.29 Excretion via feces might also be non-negligible
for some phthalates.23,71

B.2 Phenols

B.2.1 Parabens

Following oral or topical administration, parabens are readily absorbed through
skin and the gastrointestinal tract to undergo first-pass metabolism in the liver, in the
skin or in subcutaneous fat tissue.111,123 Parabens are hydrolyzed via esterases, to their
main but nonspecific metabolite, p-hydroxybenzoic acid (PHBA). Another fraction
can be absorbed without hydrolysis (parent parabens) and will be mostly conjugated
to glycine, glucuronide and sulfate to be excreted in urines.111,123,19 The nonspecific
metabolites also undergo conjugation, with glucuronide, sulfate and predominantly
with glycine (p-hydroxyhippuric acid, PHHA). Parent parabens can additionally un-
dergo additional oxidation reactions, which generate oxidized new metabolites, as for
phthalates.119,74 Minor excretion can also occur via bile and feces.111 Additionally, it has
been reported that the metabolic profile of parabens may depend upon the exposure
route.103,123

For dermal exposure, the absorption is partial, and skin penetration decreases with
increased ester chain length of parabens.48,111 Additionally, permeation of the skin
and therefore absorption of parabens is influenced by the formulation of personal
care products,70,57,88 the repetition of dermal applications45,19 or a damaged skin.86
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Based on in vitro and in vivo studies, between 30 and 50% of the administered dose
is absorbed.6,88,5,80 However, real life behaviors such as repeating topical application,
increasing the time of contact, have been shown to increase permeation.22 Also human
skin properties differs from rat skin (slower hydrolysis).34,86 Very few human studies
investigated the toxicokinetics of parabens in humans. In 26 male Caucasians, dermally
applied butylparaben readily penetrated the skin and was detectable in blood within
1 h, reached a peak concentration at 3 h post dose and decreased thereafter but did
not reach baseline level after 24 h.48 Urine metabolites were detected within 8-12 h,
mostly as the glucuronidated conjugate and 1.5-2.1% as the free parent butylparaben.
Only 0.9% of the administered dose was recovered in urines but nonspecific PHBA and
PHHA, nor the sulfate conjugate were measured in the study, that could explain the
low excreted fraction.46

After oral exposure, it is slightly different with quick and almost complete absorp-
tion and excretion (> 80% of the dose, predominantly in the first 24 h) in humans74
as in animals.5,111 Methylparaben, iso-butylparaben, and n-butylparaben metabolites,
appear with a peak concentrations within 2 h post dose.74 PHHA represents 60% of the
metabolites, and PHBA only 3-7% for all parabens. Metabolic profiles differ between
methylparaben and the two butylparabens, presumably due to difference in the ester
chain length as for phthalates.48,46,13,58 Parent methylparaben, more hydrophilic than
butylparaben, requires less biotransformation to be excreted, and represents 17.4% of
the administered dose (7.1% of free methylaparaben). On the contrary, parent iso-
butylparaben and n-butylparaben, more lipophilic, represent less than 7% (below 1%
for the free form). Additionally, unhydrolyzed methylparaben preferentially under-
goes sulfate conjugation (64%), contrary to glucuronide conjugation for iso- and n-
butylparabens (almost 90%). Finally, unlike for methylparaben, oxidized metabolites
are non-negligible for the two butylparabens with a more complex ester side chain,
as suggested for some phthalates.58 Terminal elimination half-lives are brief, between
2.5 and 6.9 h for methylparaben, with the longest for the parent compound. For the
other parabens, half-lives are relatively similar between the parent compound and the
metabolites (3.6-3.7 h for iso- and n-butylparabens). Similar fractions of glucuronide
and sulfate conjugates have been reported in biomonitoring studies,123 suggesting that
saturation or inhibition of the enzymes responsible of the conjugation may not occur
at environmental exposure levels.47

Regarding other parabens the human literature is lacking. Based on the experi-
mental evidence ethyl and propylparabens are also rapidly absorbed and excreted in
urines, mainly as their nonspecific metabolites conjugated with glycine. Their ester
chain length are between those from methyl and butylparabens.

B.2.2 Benzophenone-3

Toxicokinetics data are limited, especially in humans. From existing literature,
benzophenone-3 partially penetrates the skin readily after a dermal exposure, in pro-
portion of up to 10% of the applied dose, based on experimental data and human
studies.51,37,36,47,49,31,30,95 Benzophenone-3 can be found in the stratum corneum 30
minutes after a topical application, and systemic absorption occurs within 1-2 h after
exposure.47,49,95 Also, concomitant uses of an insect repellent with a benzophenone-
3 containing sunscreen can enhance the percutaneous absorption of the chemical.55
Benzophenone-3 undergoes phase I and phase II metabolic reactions in the body, as
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the other phenols and phthalates. Major phase I reactions in rats and humans are hy-
droxylation and demethylation,84,83,121,120,124,76 which generates several specific metabo-
lites such as 2,4-dihydroxylbenzophenone (namely benzophenone-1) a major metabo-
lite, 2,2’-dihydroxy-4-methoxybenzophenone (namely benzophenone-8), and 2,3,4-tri-
hydroxybenzophenone (in trace amounts).95,121,53,50 All metabolites and the unchanged
benzophenone-3 can be excreted in urine in various forms such as glucuronide and
sulphate conjugates after phase II glucuronidation or sulfation.120,124 Conjugates are
predominant.84,37,30 Urine is the main excretion route followed by feces,52,84,83 with ter-
minal excretion half-life of 15.9 hours in rats.52 Elimination half-life is unknown in
humans.

Proportion of free form has been found to be related to the exposure levels, with
the smallest fraction of the free form for the highest exposure levels.120 Additionally,
discrepancies were reported between proportions of benzophenone-3 and its derivatives
in urines of Chinese and U.S. individuals.120 Benzophenone-3 parent form was pre-
dominant in the U.S. urine samples (almost entirely as glucuronide conjugate) while
in Chinese urines, derivatives were found in majority. It might be due to population-
related differences in metabolism or to different sources and routes of exposure in the
two populations since direct sources of exposure to benzophenone-3 derivatives exist
via cosmetics or food packaging.15,2,14

B.2.3 Triclosan

Orally administered triclosan was found to be rapidly and relatively completely
absorbed in the gastrointestinal tract in humans as in other species (rodents, monkeys,
dogs), with maximum concentrations in plasma within 6 h after exposure (see Rodricks
et al.92, The 2010 Cosmetic Ingredient Review Expert Panel (CRI)110 for review). Ab-
sorption is similar whether it be by oral dose ingestion or by swallowing with use of
triclosan-containing toothpaste,33,32 but it is more limited (up to 10%) when using
mouthwash or toothpaste without swallowing.67,68 Triclosan chronic exposure (daily
use of triclosan-containing mouth hygiene products) does not seem to induce triclosan
accumulation.94,8,7,25,68 Percutaneous absorption of triclosan is more limited with only
up to 10% of the applied dose recovered in the body in plasma or urine within 24 h af-
ter application (Queckenberg et al.91, and several studies reviewed in Rodricks et al.92,
The 2010 Cosmetic Ingredient Review Expert Panel (CRI)110). Phase I metabolism is
minor for triclosan (e.g. generation of 2,4-dichlorophenol in small amount), which is
almost completely metabolized as glucuronide and sulfate conjugates trough first-pass
metabolism in the liver. Contrary to other species (dogs, mice) the glucuronide con-
jugate is predominant (77-90%) in plasma and urine in humans (reviewed in Rodricks
et al.92). Following dermal exposure, triclosan metabolism can occur in the skin.75 The
excretion of triclosan metabolites occurs mostly via the urine within 72 h (up to 87%
of the administered dose) and to a lesser extent via feces.69,106,16,112,105 The elimination
half-life in humans is of 10-20 h after oral or dermal exposure92,91 and can rise up to
1.4 days when repeating dermal application. All metabolites return to baseline lev-
els within 7 days following single or chronic exposure, suggesting no accumulation of
triclosan in humans.

It is noteworthy that the proportion of the sulfate conjugate in the plasma com-
pared to the proportion of the glucuronide conjugate tends to increase with increasing
the administrated levels of triclosan while it never occurs in urines.68,69 On the one
hand, this may suggest either saturation of the glucuronide conjugation or induction
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of sulfation; and on the other hand this may also suggest that prior excretion there is
conversion to the glucuronidated conjugate in the kidney or increased reabsorption of
the sulfate conjugate in renal tubules to get back to the initial ratio.92

B.2.4 Dichlorophenols

To our knowledge, there are very few toxicokinetics data of dichlorophenols in hu-
mans. 2,5-dichlorophenol is the major metabolite of the paradichlorobenzene3839,85
and 2,4-dichlorophenol is a minor metabolite of triclosan.92 Based on in vitro and an-
imal experimentations, dichlorophenols or their precursors are readily absorbed from
the gastrointestinal tract, the skin or the respiratory tract.44,77 Once in the body, di-
chlorophenols are rapidly metabolized by phase I and mainly phase II reactions and
are found preferentially in a conjugated form.39,102,124,125,77 In humans the glucuronide
is presumably the main metabolite, with 89% against 8% as sulfate conjugate and
only 3% in the free form in urine samples of adult volunteers.124 Other metabolites in-
clude dichloromethoxyphenols,102 and based on an in vitro study on human cytochrome
P450 metabolism, other metabolites such as 2-chloro-1,4-hydroxyquinone, 2-chloro-1,4-
benzoquinone and 1,2,4-hydroxybenzene can also be detected.72 In rats, metabolites
are rapidly distributed in tissues (within 15 minutes after dosing); mainly in liver and
kidney and also in brain, muscle, fat and spleen and blood.102,35,89 In mammals, no
accumulation was reported. Rapid decreases of concentrations in tissues are followed
by the excretion of metabolites, primarily through the urine (80-90%), and to a lesser
extent, in feces, within 24 h to several days.102,101,39

B.2.5 Bisphenols

After an oral exposure, bisphenol A is readily absorbed from the gastro-intestinal
tract, and undergoes intensive first-pass metabolism through the liver (see Figure
B.2.5), which results in almost entire conjugation of the chemical in glucuronide and
sulfate conjugates within few hours.117,116,118,108,109 In serum, parent bisphenol A and
its conjugates reach their maximum concentrations within 1-2 h following ingestion of
the dose, and all the species are shortly eliminated from blood, with serum elimination
half-lives of 4-7 h.117,108,109 Although bisphenol A may accumulate in adipose tissue28,24
and low concentrations in liver, brain, and sweat have been reported,28,29 bisphenol A
species are rapidly and primarily cleared from the blood by the kidney into the urine in
humans and non-human primates, with almost 100% of the administered dose recov-
ered in the urines within 24 h as total (free and conjugated) bisphenol A.107,93,115,108,109
Terminal elimination half-life in urine is very short (1-5 h).117,116,108,109 Only a small
fraction of the administered dose is excreted as free bisphenol A (<2%) while between
3-15% of the dose is recovered as sulfate conjugate, and the major metabolite is the
glucuronide form (85-87%). Other minor metabolites (e.g. bisphenol A-bis-sulfate) can
be found in blood and urine samples.109,108

The fraction of free bisphenol A in serum and urine, as well as its time course in the
body may be influenced by the route of exposure which can bypass, for a certain amount
of the dose, the hepatic phase II conjugations.10,90,114 In dogs, sublingual exposure
with transmucosal absorption in the oral cavity was found to lead to higher internal
levels of free bisphenol A than absorption through the gastro-intestinal tract after
gavage.27 Similarly, slow chewing of diet compared to brief swallowing appear to result
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Figure B.1 – Schematic diagram depicting the glucuronidation of bisphenol A in the
liver and the route of elimination of unconjugated bisphenol A from serum in rodents
and primates after initial absorption from the gut and transport to the liver. Extracted
from Taylor et al.107.

in more unconjugated bisphenol A in serum and urine in non-human primates93,107 and
humans.117,116,109,108 Also, dermal exposure and percutaneous absorption of bisphenol
A, e.g. from the handling of thermal receipt paper may increase unconjugated internal
bisphenol A levels in serum or urine.40,21

Toxicokinetics data on bisphenol A alternatives are scant, but an in vitro study
suggests that bisphenol A alternative, bisphenol S has a metabolism similar to that of
bisphenol A. Glucuronidation may be the primary metabolic pathway for bisphenols.100
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Appendix C
Attenuation factor in linear regression and
ICC

Effects of classical measurement error are the loss of statistical power and bias in
regression estimates.

C.1 Simple linear regression
The classical additive measurement error model states thatW = X+U , where X is

the true exposure, andW the surrogate of exposure measured with error U ∼ N (0, σ2
u),

U being independent of X.

The simple linear regression of an outcome Y (e.g., health parameter) on the true
exposure X is given by:

Y = β0 + β1X + ε, (C.1)
with the Ordinary Least Squares (OLS) estimate of β1

β1 = Cov(X, Y )
Var(X) (C.2)

When exposure is measured with error, the linear regression model is now

Y = β0 + β1
∗W + ε∗, (C.3)

with the OLS estimate
β1
∗ = Cov(W,Y )

Var(W ) = λβ1, (C.4)

where λ is the attenuation factor. Because W = X + U ,

β1
∗ = Cov(X + U, Y )

Var(X + U)

= Cov(X, Y ) + Cov(U, Y )
Var(X) + Var(U)

= Cov(X, Y )
Var(X) + Var(U)

(C.5)

when X is independent of U , and U independent of Y .



258 APPENDIX C. ATTENUATION FACTOR AND ICC

Hence the attenuation factor is,

λ = β1
∗

β1
=

Cov(X,Y )
Var(X)+Var(U)

Cov(X,Y )
Var(X)

= Var(X)
Var(X) + Var(U)

= ICC

(C.6)

C.2 Multiple linear regression
Considering the case of additional covariates Z in the model and measured without

error, the model for X is:
Y = β0 + β1X + βzZ + ε (C.7)

and the model using exposure measured with error is now:

Y = β0 + β1
∗W + βz

∗Z + ε∗ (C.8)

From Carroll et al.1, β1
∗ = λ1β1, with

λ1 =
σ2
x|z

σ2
w|z

=
σ2
x|z

σ2
x|z + σ2

u

, (C.9)

with σx|z the residual variance of the regression of X on Z, and σw|z, the residual
variance of the regression of W on Z.

λ1 = λ = ICC, only when X and Z are not correlated.

Otherwise, considering the regression of X on Z given by:

X = γ0 + γ1Z + ν (C.10)

we have the OLS estimate for the regression coefficient of one covariate Z

γ1
∗ = Cov(Z,X)

Var(Z)

= E(XZ)− E(X)E(Z)
E(Z2)− E(Z)2 ,

(C.11)

with E the expectations.
Hence,

Var(ν) = σ2
x|z = Var(X)− γ2

1Var(Z)

= Var(X)−
E(XZ)− E(X)E(Z)

E(Z2)− E(Z)2

2

Var(Z)

= E(X2)− E(X)2 −

E(XZ)− E(X)E(Z)
E(Z2)− E(Z)2

2

(E(Z2)− E(Z)2)

= [E(X2)− E(X)2][E(Z2)− E(Z)2]− [E(XZ)− E(X)E(Z)]2

E(Z2)− E(Z)2

(C.12)

and so,
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λ1 =
σ2
x|z

σ2
w|z

=
σ2
x|z

σ2
x|z + σ2

u

= [E(X2)− E(X)2][E(Z2)− E(Z)2]− [E(XZ)− E(X)E(Z)]2

[E(X2)− E(X)2 + E(U2)][E(Z2)− E(Z)2]− [E(XZ)− E(X)E(Z)]2

(C.13)

Since
ICC = Var(X)

Var(X) + Var(U)

= E(X2)− E(X)2

E(X2)− E(X)2 + E(U2)

(C.14)

the relation between ICC and λ1, in the presence of a covariate Z, is

λ1 = β1
∗

β1

= [E(X2)− E(X)2][E(Z2)− E(Z)2]− [E(XZ)− E(X)E(Z)]2
[E(X2)−E(X)2]

ICC
[E(Z2)− E(Z)2]− [E(XZ)− E(X)E(Z)]2

(C.15)

As a result, the relation between λ and ICC is more complicated when considering
multiple linear regression.

In general, the bias due to measurement error is not restricted to X regression
estimate; the regression estimate for Z is also biased, except when Z and X are
independent.1

C.3 Appendix references
[1] Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. M. Measurement

Error in Nonlinear Models: A Modern Perspective. 2 edition. Boca Raton: Chapman
and Hall/CRC, June 21, 2006. 484 pp.





APPENDIX D. PUBLICATIONS AND COMMUNICATIONS 261

Appendix D
Publications and communications

D.1 Publications and communications related to the
thesis

D.1.1 Accepted articles

Vernet C, Pin I, Giorgis-Allemand L, Philippat P, Benmerad M, Quentin J, Calafat
AM, Ye X, Annesi-Maesano I, Siroux V*, Slama R*, and the EDEN mother-child
cohort study group. In utero exposure to select phenols and phthalates and respi-
ratory health in five-year-old boys: a prospective study. Environ Health Perspect
2017;125:9. Available on: https://ehp.niehs.nih.gov/wp-content/uploads/2017/
09/EHP1015.alt_.pdf.

*Co-last authorship

Vernet C, Philippat P, Calafat AM, Ye X, Lyon-Caen S, Siroux V, Schisterman
E, Slama R. Within-day, between-day and between-week variability of urinary concen-
trations of phenol biomarkers in pregnant women. Environ Health Perspect 2018;126:3.
Available on: https://ehp.niehs.nih.gov/wp-content/uploads/2018/03/EHP1994.
alt_.pdf.

D.1.2 Article in preparation

Vernet C, Philippat P, Agier L, Calafat AM, Ye X, Lyon-Caen S, Siroux V, Schis-
terman E, Slama R. An empirical validation of the biospecimens within-subject pooling
approach. [In preparation]

D.1.3 Oral communications

Vernet C, Philippat P, Agier L, Lyon-Caen S, Siroux V, Slama R. An Empirical
Validation of the Biospecimens Within-subject Pooling Approach. 3rd Early Career
Researchers Conference on Environmental Epidemiology, Freising, Mar. 2018.

Vernet C, Pin I, Giorgis-Allemand L, Philippat P, Benmerad M, Quentin J, Calafat
AM, Ye X, Annesi-Maesano I, Siroux V*, Slama R*, and the EDENmother-child cohort
study group. Prenatal Exposure To Select Phenols And Phthalates And Pulmonary
Function In Five-Year Old Male Offspring. 2nd Paris Workshop on Endocrine Disrup-
tors Effects on Wildlife and Human Health, Paris, Jan. 2016.

https://ehp.niehs.nih.gov/wp-content/uploads/2017/09/EHP1015.alt_.pdf
https://ehp.niehs.nih.gov/wp-content/uploads/2017/09/EHP1015.alt_.pdf
https://ehp.niehs.nih.gov/wp-content/uploads/2018/03/EHP1994.alt_.pdf
https://ehp.niehs.nih.gov/wp-content/uploads/2018/03/EHP1994.alt_.pdf


262 APPENDIX D. PUBLICATIONS AND COMMUNICATIONS

Vernet C, Pin I, Giorgis-Allemand L, Philippat P, Benmerad M, Quentin J, Calafat
AM, Ye X, Annesi-Maesano I, Siroux V*, Slama R*, and the EDENmother-child cohort
study group. Prenatal Exposure To Select Phenols And Phthalates And Pulmonary
Function In Five-Year Old Male Offspring. 2nd ISEE Early Career Researchers Con-
ference on Environmental Epidemiology, Utrecht, Nov. 2015.

Vernet C, Pin I, Giorgis-Allemand L, Philippat P, Benmerad M, Quentin J, Calafat
AM, Ye X, Annesi-Maesano I, Siroux V*, Slama R*, and the EDENmother-child cohort
study group. Prenatal Exposure To Select Phenols And Phthalates And Pulmonary
Function In Five-Year Old Male Offspring. Congress of the International Society for
Environmental Epidemiology, Saõ Paulo, Aug-Sep. 2015.

D.1.4 Poster communication

Vernet C, Philippat C, Siroux V, Lyon-Caen S, Pin I, Lorimier P, Calafat AM, Ye
X, Schisterman E, Slama R. Empirical validation of a within-subject pooling approach
to improve accuracy of estimation of exposure to biomarkers with strong temporal
variations. Congress of the International Society for Environmental Epidemiology,
Rome, Sep. 2016.

D.2 Other publications
Slama R, Vernet C, Nassan FL, Hauser R, Philippat C. Characterizing the effect of

endocrine disruptors on human health: The role of epidemiological cohorts. Comptes
Rendus Biologiques 2017.

Soomro MH, Baiz N, Philippat C, Slama R, Siroux V, Vernet C, Bornehag CG,
Annesi-Maesano I, and the EDEN Mother-Child Cohort Study Group. Prenatal expo-
sure to phthalates and the development of eczema phenotypes in male children: Results
from the EDEN mother-child Cohort study. Environ Health Perspect 2018. Available
on: https://doi.org/10.1289/EHP1829.

https://doi.org/10.1289/EHP1829




Exposure to nonpersistent endocrine disruptors during pregnancy using biomarkers of
exposure: Within-subject variability and effects on respiratory health in the offspring.

ABSTRACT:
Phenols and phthalates include chemicals widely used in daily-life products, resulting in ubiquitous exposure of the
general population. There is growing concern regarding the effects on human health of these compounds, suspected to
be endocrine disruptors, particularly during early life. Epidemiological research on the health effects of phenols and
phthalates in offspring generally rely on a few biospecimens to assess exposure. These studies are limited by the possibly
strong within-subject variability, which may result in exposure misclassification. The within-subject variability in the
context of pregnancy and its possible impact on dose-response functions are poorly characterized.
The aim of this thesis was to study the exposure to several phenols and phthalates during pregnancy by: 1) investigating
the possible associations between this exposure and respiratory outcomes in childhood; 2) characterizing the temporal
within-subject variability of these compounds during pregnancy; and finally 3) studying the efficiency of a within-subject
pooling approach using a small number of daily biospecimens for exposure assessment.
Associations between exposure to phenols and phthalates and respiratory health relied on n = 587 mother-child pairs
from the French EDEN prospective cohort. Developments about the assessment of exposure during pregnancy relied on
n = 16 pregnant participants of the SEPAGES-feasibility study who had collected all their urine samples for three weeks.
This work quantified the within-subject variability of phenol and phthalate biomarker concentrations during pregnancy
over various time scales (day to months), and confirmed empirically that this variability is likely to strongly bias the dose-
response functions in human-based epidemiological studies exploring the effects of gestational exposure to these chemicals.
This thesis adds to the emerging literature on respiratory health impacts of early-life exposure to several phenols and
phthalates. However, as for most studies on the human health effects of phenol and phthalate exposure, it is potentially
challenged by this exposure assessment issue. Thus, this work emphasizes the relevance of more elaborate sampling
strategies for exposure biomarkers in future epidemiological studies. These results have relevance for studies outside
the context of pregnancy, and also for other nonpersistent compounds. New designs, such as the within-subject pooling
of biospecimens validated in this study, are needed so as to efficiently characterize the health impact of nonpersistent
chemicals.

Keywords: endocrine disruptors; phenols and phthalates; childhood respiratory health; prenatal exposure, within-subject
temporal variability; exposure measurement error.

Ph.D carried out at the Institute for Advances Biosciences: research center Inserm U 1209, CNRS UMR 5309, University
Grenoble Alpes; F-38700 La Tronche, France.

Estimation de l’exposition à des perturbateurs endocriniens non persistants pendant la
grossesse : Variabilité intra-individuelle et effets sur la santé respiratoire de l’enfant.

RESUME :
Les phénols et les phtalates incluent des composés très largement utilisés dans des produits de la vie quotidienne. Une
grande partie de la population générale y est donc largement exposée. Ces composés sont suspectés d’être des per-
turbateurs endocriniens et des effets sur la santé chez l’Homme ont été rapportés, notamment après une exposition
périnatale. Les études épidémiologiques sur les effets sur la santé humaine reposent généralement sur un faible nombre
de biospécimens pour estimer l’exposition. Cependant, la variabilité intra-individuelle des phénols et des phtalates est
potentiellement forte, ce qui peut entraîner une mauvaise classification de l’exposition dans les études sur les effets des
phénols et des phtalates et limite leurs conclusions. La variabilité intra-individuelle des phénols et des phtalates au cours
de la grossesse n’est pas très bien caractérisée à l’heure actuelle.
L’objectif de cette thèse est d’explorer l’exposition aux phénols et aux phtalates et plus précisément : 1) d’étudier les
associations entre une telle exposition pendant la grossesse et la santé respiratoire de l’enfant au cours de ses premières
années de vie ; 2) de caractériser la variabilité temporelle intra-individuelle de ces composés au cours de la grossesse ; et
3) d’évaluer l’efficacité d’une approche basée sur le pooling intra-sujet d’un nombre réduit d’échantillons journaliers pour
estimer l’exposition.
Les associations entre l’exposition aux phénols et phtalates et la santé respiratoire reposent sur n = 587 couples mères-
enfants de la cohorte prospective française EDEN. Les développements sur l’estimation de l’exposition au cours de la
grossesse s’appuient sur n = 16 femmes enceintes ayant participé à l’étude de faisabilité de la cohorte SEPAGES.
Les travaux de cette thèse quantifient la variabilité intra-individuelle des concentrations urinaires des biomarqueurs
d’exposition aux phénols et des phtalates au cours de la grossesse pour des échelles de temps variées (du jour à plusieurs
mois). Ils confirment empiriquement que cette variabilité peut biaiser fortement les fonctions doses-réponses dans les
études épidémiologiques explorant les effets de l’exposition fœtale à ces composés chez l’Homme. Les résultats de cette
thèse enrichissent la littérature émergente sur les effets des expositions précoces aux phénols et phtalates sur la santé respi-
ratoire de l’Homme. Cependant, notre étude ainsi que la plupart des recherches précédentes sont potentiellement limitées
par les problématiques liées à la mesure de l’exposition. Ce travail souligne l’importance de stratégies d’échantillonnage
des biomarqueurs d’exposition plus élaborées pour l’étude de ces composés dans de futures études épidémiologiques.
Ces résultats sont aussi pertinents en dehors du contexte de la grossesse et pour d’autres composés non-persistants. De
nouvelles approches, telles que le pooling répété pour chaque sujet d’un petit nombre de biospécimens journaliers, validé
dans cette thèse, sont nécessaires pour caractériser efficacement l’impact des composés non-persistants sur la santé de
l’Homme.

Mots-clés : perturbateurs endocriniens ; phénols et phtalates santé respiratoire de l’enfant ; exposition prénatale ;
variabilité temporelle intra-individuelle ; erreur de mesure de l’exposition.

Thèse réalisée au sein du l’Institut pour l’Avancée des Biosciences: centre de recherche Inserm U 1209, CNRS UMR 5309,
Université Grenoble Alpes; F-38700 La Tronche, France.
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