]. .. , 3 (a) The basic mechanical components of the conventional servo system (b) Exploded view of microactuator/slider assembly [71], vol.10

, As the coupling warms, it creates a reliable metal-to-metal seal

. .. , Magnetostrictive materials working principle [72], vol.13

, Schematic representation of direct and inverse piezoelectric effect [8]

, Direct piezoelectricity effect ay molcular level

]. .. , 15 2.9 Schematic of Atomic Force Microscope (AFM) working flow [154], p.20

, Example of Hysteresis in piezoelectric cantilever, p.21

, Varying the voltage input to correct for hysteresis. courtesy, DoITPoMS, University of Cambridge, p.22

, Compensation of creep and hysteresis effects at 1 Hz scanning. Parallel white lines are markers for comparison between plots [73]

. .. Feedforward-control-scheme, , p.26

, 2 Classification of some feedforward control schemes, p.27

, An inversion-based feedforward method to compensate for dynamics G, creep C and hysteresis H in piezoactuators, p.28

. .. , Feedforward controller for perfect tracking, p.30

, Feedforward controller for zero phase error tracking, p.31

. .. Time-delay-feedforward-controller, , p.33

, Multiple Time-Delay feedforward controller equivalent series, vol.34

M. .. Time-delay-feedforward-controller, , vol.34, p.122

, Block diagram of a feedforward control of oscillation by an input shaping technique

]. .. , , p.38

, Scheme of constructing robust CSVS commands, p.39

. .. Tis-sensitivity-curves--simulation, , vol.46

. .. , Positive TS shaper region [106], p.48

. .. , 49 4.4 Sensitivity curves for extra insensitive method shapers, zero vibrations, ?. ? .? extra insensitive, .... two-hump extra insensitive, ? ? ?? three-hump extra insensitive, EI shapers sensitivity curves -Simulation, p.50

, Sensitivity curves of the ZVDD and two-hump EI shapers (b) Sensitivity curves of the ZVDDD and three-hump EI shapers [108]

, 6 (a) Frequency sampling to suppress a range of frequencies (b) Three-dimensional sensitivity curve of an SI shaper designed to suppress a range of Frequencies and damping ratios

, Constraint generation for exact SI shaper when H=2 and V tol = 5% [144]

, Convolution process of two shapers: (a) arbitrary two shapers, (b) two identical MIS ZV shapers, (c) two different MIS ZV shapers [103]

. .. Mis-zv-shapers-sensitivity-curves--simulation, 11 (a) Input-Shaping Process to Generate Time-Optimal Commands, (b) Input Shaping Process to Generate Fuel-Efficient On/Off Commands, vol.4

M. Tis and . Sensitivity, 13 (a) Specified insensitivity shapers flexibility (b) Input shaper robustness vs. shaper duration, vol.59

, Feedforward control of badly damped vibrations. (a) control of MISO (multiple-input single-output) systems, vol.116

, (b) generalized control for MIMO (multiple-input multipleoutput) systems

]. .. , Multiple actuators flexible system [116, p.64

. .. , Shapers impulse amplitudes versus T for a system with three inputs and four impulses per shaper, p.67

]. .. ,

, 6 (a) 5-DOF piezoelectric positioner CAD model (b) Structure deformations [149]

. .. , 76 6.1 (a) The experimental setup diagram (b) The 2-DOF piezocantilever

, Low frequency and low-rate characteristics of the 2-DOF piezoactuator

, Step responses observed during a very short duration time, vol.87

, The cantilever system model

, Top view, showing four external electrodes and an internal ground electrode, separated by piezoelectric material; (b) A perspective view of the piezoelectric tube; (c) deflection along X axis; (d) deflection along Y axis, and (e) elongation along Z axis, Piezoelectric tube structure and operation:(a), p.90

. .. The, , p.90

, Hysteresis characterization with input sinusoidal signals of amplitude 200V and of frequency 0.1Hz

. .. , Creep characterization over a period of 600s, p.93

. .. , 11 (a) The setup CAD drawing (b) The actual piezoelectric tube setup, Dynamics characterization observed during 20ms, vol.94

, All the components used in the experimental setup, p.96

, Schematic of the experimental setup working flow, p.97

X. X. Uncompensated and . Xy, YY responses at 4 different temperatures (Experimental)

X. Y. Xx, YY modelled at 4 different temperatures, p.99

, Exciting one input and showing the cross coupling effect simulation

, Exciting one input and showing the cross coupling effect experimental results

. .. , Exciting both inputs and showing both outputs, compensated and non-compensated -simulation, p.101

, Exciting both inputs and showing both outputs, compensated and non-compensated experimental

, Compensated (green) and un-compensated (blue) system frequency responses

, 104 6.22 Shapers impulse amplitudes versus T for 3-impulses and 4-impulses, Shapers impulse amplitudes versus T for (a) 3-impulses and (b) 4-impulses

, 105 6.24 Step responses for the uncompensated and 4-impulse compensated responses experimental

, 26 XX and YY responses with controller derived at 35 C (Simulation)

Y. Y. Xx, Compensated responses at different temperatures (Simulation)

X. Y. Xx and ;. .. , YY responses at different temperatures with controller designed at 25 C (Experimental), p.110

X. Y. Xx and ;. .. , YY responses at different temperatures with controller designed at 30 C (Experimental), p.110

X. Y. Xx and ;. .. , YY responses at different temperatures with controller designed at 35 C (Experimental), p.111

X. Y. Xx and ;. .. , YY responses at different temperatures with controller designed at 40 C (Experimental), p.111

X. Y. Xx and ;. .. , YY responses at 25 C with controller designed at different temperatures (Experimental), p.112

X. Y. Xx and ;. .. , YY responses at 30 C with controller designed at different temperatures (Experimental), p.112

X. Y. Xx and ;. .. , 35 (a) The system with the vibrations compensator (shaper). (b) the detailed shaper. (c) simulation results, vol.113, p.114

. .. , 37 (a) Introduction of a DOB to remove the input disturbance b(s). (b) an output feedback control scheme, vol.115

. .. , 118 List of Tables 6.1 ? n , ? and Poles at four temperatures, Zoom of the different step responses, vol.109

P. Bristeau, The navigation and control technology inside the ar. drone micro uav, IFAC Proceedings Volumes, vol.44, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00646496

A. Ferreira, J. Agnus, N. Chaillet, and J. M. Breguet, A smart microrobot on chip: design, identification, and control, IEEE/ASME Transactions on Mechatronics, vol.9, issue.3, pp.508-519, 2004.

B. Aerotech, Small Step Size Is Key to Big Science, Aerotech InMotion Blog. N.p, 2012.

, Piezoelectric Devices Market by Material, Product and Application -Global Forecast to 2022, 2017.

J. Heidemann, Research challenges and applications for underwater sensor networking, Wireless Communications and Networking Conference, vol.1, 2006.

T. R. Shrout, High performance, high temperature perovskite piezoelectrics, 14th IEEE International Symposium on, 2004.

R. Guo, Origin of the high piezoelectric response in PbZr 1 x Ti x O 3, Physical Review Letters, vol.84, p.5423, 2000.

S. O. Moheimani, A. J. Reza, and . Fleming, Piezoelectric transducers for vibration control and damping, 2006.

M. Rakotondrabe and M. Janaideh, Smart materials-based actuators at the micro/nano-scale, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00866899

D. Habineza, M. Rakotondrabe, and Y. L. Gorrec, Characterization, Modeling and H-inf Control of n-DOF Piezoelectric Actuators: Application to a 3-DOF Precise Positioner, Asian Journal of Control, vol.18, issue.5, pp.1-20, 2016.

M. Rakotondrabe, Y. Haddab, and P. Lutz, Plurilinear modeling and discrete -synthesis control of a hysteretic and creeped unimorph piezoelectric cantilever, IEEE International Conference on Automation, Robotics, Control and Vision, pp.57-64, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00334255

M. Rakotondrabe, Y. Haddab, and P. Lutz, Quadrilateral modelling and robust control of a nonlinear piezoelectric cantilever, IEEE Transactions on Control Systems Technology, vol.17, issue.3, pp.528-539, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00400364

M. Janaideh, M. Rakotondrabe, and O. A. Janaideh, Further Results on Hysteresis Compensation of Smart Micro-Positioning Systems with the Inverse Prandtl-Ishlinskii Compensator, IEEE Transactions on Control Systems Technology, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01303492

I. D. Mayergoyz, Handbook of giant magnetostrictive materials, Gran Engdahl, 1999.

K. Otsuka and C. M. Wayman, Shape memory materials, 1999.

T. W. Duerig, K. N. Melton, and D. Stckel, Engineering aspects of shape memory alloys, 2013.

M. H. Wu and L. M. Schetky, Industrial applications for shape memory alloys, Proceedings of the international conference on shape memory and superelastic technologies, 2000.

, The Top Uses of Piezoelectricity in Everyday Applications, APC International Ltd. APC, 2015.

K. J. Held and J. D. Barry, Precision pointing and tracking between satellite-borne optical systems, Optical Engineering, vol.27, pp.274325-274325, 1988.

V. Giurgiutiu, Review of smart-materials actuation solutions for aeroelastic and vibration control, Journal of Intelligent Material Systems and Structures, vol.11, pp.525-544, 2000.

. Binnig, C. F. Gerd, C. Quate, and . Gerber, Atomic force microscope, Physical review letters, vol.56, p.930, 1986.

G. Binnig and H. Rohrer, Scanning tunneling microscopy, Surface science, vol.126, issue.1-3, pp.236-244, 1983.

J. A. Stroscio and W. J. Kaiser, Scanning tunneling microscopy, vol.27, 1993.

L. A. Bottomley, Scanning probe microscopy, Analytical chemistry, vol.70, pp.425-476, 1998.

S. Kamila, Introduction, classification and applications of smart materials: an overview, American Journal of Applied Sciences, vol.10, p.876, 2013.

. Cao, H. H. Wenwu, R. Cudney, and . Waser, Smart materials and structures, Proceedings of the National Academy of Sciences, vol.96, pp.8330-8331, 1999.

A. Lander, An electrochemical investigation of solid cadmium-gold alloys, Journal of the American Chemical Society, vol.54, pp.3819-3833, 1932.

T. Tadaki, K. Otsuka, and K. Shimizu, Shape memory alloys, Annual Review of Materials Science, vol.18, pp.25-45, 1988.

C. Mavroidis, C. Pfeiffer, and M. Mosley, Automation, miniature robotics, and sensors for nondestructive testing and evaluation, vol.4, p.189, 2000.

V. Humbeeck and J. , Non-medical applications of shape memory alloys, Materials Science and Engineering: A, vol.273, pp.134-148, 1999.

L. Schlumberger, Shape memory alloy technology. cameron.slb, 2017.

L. Schetky and . Mcdonald, Kirk-Othmer Encyclopedia of Chemical Technology, 1982.

B. Kundys, Photostrictive materials, Applied Physics Reviews, vol.2, issue.1, p.11301, 2015.

E. F. Crawley and J. D. Luis, Use of piezoelectric actuators as elements of intelligent structures, AIAA journal, vol.25, pp.1373-1385, 1987.

K. Uchino, Piezoelectric ultrasonic motors: overview, Smart materials and structures, vol.7, p.273, 1998.

Q. Yao, J. Dong, and P. M. Ferreira, Design, analysis, fabrication and testing of a parallel-kinematic micropositioning XY stage, International Journal of Machine Tools and Manufacture, vol.47, pp.946-961, 2007.

S. Leleu, H. Abou-kandil, and Y. Bonnassieux, Piezoelectric actuators and sensors location for active control of flexible structures, Proceedings of the 17th IEEE, vol.2, 2000.

M. Grossard, Flexible building blocks method for the optimal design of compliant mechanisms using piezoelectric material, 12th IFToMM World Congress, 2007.

Z. Chu and J. Cui, Experiment on vibration control of a two-link flexible manipulator using an input shaper and adaptive positive position feedback, Advances in Mechanical Engineering, vol.7, p.1687814015610466, 2015.

Y. Tian, B. Shirinzadeh, and D. Zhang, A flexure-based mechanism and control methodology for ultra-precision turning operation, Precision Engineering, vol.33, pp.160-166, 2009.

P. Eaton, AFM Artifacts-Scanner Artifacts -Effects due to the peculiarities of the piezoelectric scanner, 2007.

Y. K. Yong, Multivariable Control Designs for Piezoelectric tubes, IFAC Proceedings Volumes, vol.44, pp.2030-2035, 2011.

Q. Xu, Intelligent Hysteresis Modeling and Control of Piezoelectric Actuators, pp.171-185, 2013.

P. Ge and M. Jouaneh, Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators, Precision engineering, vol.20, pp.99-111, 1997.

C. Su, Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis, IEEE Transactions on automatic control, vol.50, pp.2069-2074, 2005.

A. Janaideh and . Mohammad, Generalized Prandtl-Ishlinskii hysteresis model: Hysteresis modeling and its inverse for compensation in smart actuators, CDC 2008. 47th IEEE Conference on, 2008.

D. Croft, G. Shedd, and S. Devasia, Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application, Proceedings of the 2000, vol.3, 2000.

B. Mokaberi, A. G. Aristides, and . Requicha, Compensation of scanner creep and hysteresis for AFM nanomanipulation, IEEE Transactions on Automation Science and Engineering, vol.5, pp.197-206, 2008.

, Hysteresis and Aging-SPM Training Guide, 2017.

S. Devasia, E. Eleftheriou, . So-reza, and . Moheimani, A survey of control issues in nanopositioning, IEEE Transactions on Control Systems Technology, vol.15, pp.802-823, 2007.

N. Tamer and M. Dahleh, Feedback control of piezoelectric tube scanners, Proceedings of the 33rd IEEE Conference on, vol.2, 1994.

Z. Chu and J. Cui, Experiment on vibration control of a two-link flexible manipulator using an input shaper and adaptive positive position feedback, Advances in Mechanical Engineering, vol.7, p.1687814015610466, 2015.

T. Tuma, Smart Materials-Based Actuators at the Micro/Nano-Scale, pp.89-120, 2013.

S. Bashash and N. Jalili, Robust adaptive control of coupled parallel piezo-flexural nanopositioning stages, IEEE/ASME Transactions on mechatronics, vol.14, pp.11-20, 2009.

J. Zhong and B. Yao, Adaptive robust precision motion control of a piezoelectric positioning stage, IEEE Transactions on Control Systems Technology, vol.16, pp.1039-1046, 2008.

J. Vaughan, A. Yano, and W. Singhose, Comparison of robust input shapers, Journal of Sound and Vibration, vol.315, pp.797-815, 2008.

L. Jos and . Pons, Emerging actuator technologies : a micromechatronic approach, 2005.

M. Rakotondrabe, A. Ivan, S. Khadraoui, P. Lutz, and N. Chaillet, Simultaneous displacement and force selfsensing in piezoelectric actuators and applications to robust control of the displacement, IEEE/ASME -Transactions on Mechatronics (Tmech), vol.20, pp.519-531, 2015.

O. Ioan-alexandru-ivan, J. Aljanaideh, P. Agnus, M. Lutz, and . Rakotondrabe, Quasi-static displacement self-sensing measurement for a 2-DOF piezoelectric cantilevered actuator, IEEE -Transactions on Industrial Electronics (TIE), 2017.

J. A. Fairweather, Designing with Active Materials: An Impedance Based Approach, 1998.

C. Livermore, course materials for 6.777J / 2.372J Design and Fabrication of Microelectromechanical Devices, MIT Open-CourseWare, 2007.

L. Que, J. S. Park, and Y. B. Gianchandani, Bent-beam electrothermal actuators for high force applications, IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291), pp.31-36, 1999.

J. Park, L. L. Chu, A. D. Oliver, and Y. B. Gianchandani, Bent-beam electrothermal actuators-Part II: Linear and rotary microengines, Journal of Microelectromechanical Systems, vol.10, issue.2, pp.255-262, 2001.

U. Izhar, A. B. Izhar, and S. Tatic-lucic, A multi-axis electrothermal micromirror for a miniaturized OCT system, Sensors and Actuators A: Physical, vol.167, pp.152-161, 2011.

H. Sehr, Time constant and lateral resonances of thermal vertical bimorph actuators, Journal of Micromechanics and Microengineering, vol.12, p.410, 2002.

H. Guo and H. Zhang, A novel electro-thermal actuated micro position lock, Proceedings. 7th International Conference on, vol.3, 2004.

R. R. Syms, Multistate latching MEMS variable optical attenuator, IEEE Photonics Technology Letters, vol.16, pp.191-193, 2004.

B. Bollee, Electrostatic motors(Synchronous and asynchronous electrostatic motors based on action of electric fields charges, discussing design and construction), vol.6, pp.178-194, 1969.

D. A. Horsley, R. Horowitz, and A. P. Pisano, Microfabricated electrostatic actuators for hard disk drives, IEEE/ASME transactions on mechatronics, vol.3, pp.175-183, 1998.

, Kinetic Energy Harvesting by Magnetostrictive Materials, 2017.

D. Croft, G. Shed, and S. Devasia, Creep hysteresis and vibration compensation for piezoactuators: Atomic force microscopy application, ASME J. Dyn. Syst. Control, vol.123, issue.1, pp.35-43, 2001.

I. D. Mayergoyz, Mathematical Models of Hysteresis, 1991.

M. A. Krasnoselskii and A. V. Pokrovskii, Systems with hysteresis, 1989.
URL : https://hal.archives-ouvertes.fr/inria-00074001

R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy, 1994.

S. M. Salapaka and M. V. Salapaka, Scanning probe microscopy, IEEE Control Systems Magazine, vol.28, issue.2, pp.65-83, 2008.

D. Croft and S. Devasia, Vibration compensation for high speed scanning tunneling microscopy, Rev. Sci. Instr, vol.70, issue.12, p.46004605, 1999.

X. Tan, J. S. Baras, and ;. E. Bayo, A fi-nite-element approach to control the end-point motion of a single-link flexible robot, IEEE Trans. Automat. Contr, vol.50, issue.6, p.6375, 1987.

D. Kwon and W. J. Book, An inverse dynamic method yielding flexible manipulator state trajectories, ASME J. Dyna. Syst., Meas., Control, vol.116, issue.2, p.193200, 1990.

S. Devasia, D. Chen, and B. Paden, Nonlinear inversion-based output tracking, IEEE Trans. Automat. Contr, vol.41, p.930943, 1996.

L. R. Hunt, G. Meyer, and R. Su, Noncausal inverses for linear systems, IEEE Trans. Automat. Contr, vol.41, p.608611, 1996.

L. R. Hunt, V. Ramakrishna, L. R. Hunt, and G. Meyer, Stable inversion and parame-ter variations, Syst. Control Lett, vol.34, p.203207, 1998.

V. Ramakrishna, L. R. Hunt, and G. Meyer, Parameter variations, relative degree, and stable inversion, vol.37, p.871880, 2001.

M. Tomizuka, Zero Phase Error Tracking Algorithm for Digital Control, ASME Journal of Dynamic Systems, Measurement, and Control, vol.109, pp.65-68, 1987.

. Bibliographic-references,

H. S. Park, P. H. Chang, and D. Y. Lee, Continuous zero phase error tracking controller with gain error compensation, Proc. of the American Control Conference, vol.5, pp.3554-3558

T. Singh and S. R. Vadali, Robust Time-Delay Control, ASME J. of Dynamic Systems, Measurement, and Control, vol.115, pp.303-306, 1993.

O. J. Smith, Posicast Control of Damped Oscillatory Systems, Proceedings of the IRE, pp.1249-1255, 1957.

T. Singh and W. Singhose, Input shaping/time delay control of maneuvering flexible structures, Proceedings of the 2002 American Control Conference, vol.3, pp.1717-1731, 2002.

M. J. Robertson and W. E. Singhose, Closed-Form Deflection-Limiting Commands, pp.2104-2109, 2005.

N. C. Singer and W. P. Seering, Preshaping Command Inputs to Reduce System Vibration, Journal of Dynamic Systems, Measurement and Control, vol.112, pp.76-82, 1990.

W. Singhose, E. Crain, and W. Seering, Convolved and Simultaneous Two-Mode Input Shapers, IEE Proc. Control Theory Appl, vol.144, issue.6, pp.515-520, 1997.

W. Singhose and N. Singer, Effects of Input Shaping on Two-Dimensional Trajectory Following, IEEE Trans. on Robotics and Automation, vol.12, issue.6, pp.881-887, 1996.

K. Chang, E. Godbole, and . Hou, Optimal Input Shaper Design for High-Speed Robotic Workcells, J. Vibration and Control, vol.9, p.13591376, 2003.

W. Singhose and L. Pao, A comparison of input shaping and time-optimal flexible-body control, Control Engineering Practice, vol.5, pp.459-467, 1997.

C. F. Cutforth and L. Y. Pao, Control Using Equal Length Shaped Commands to Reduce Vibration, IEEE Trans. on Control Sys. Tech, vol.11, issue.1, pp.62-72, 2003.

M. D. Baumgart and L. Y. Pao, Cooperative multi-input shaping for arbitrary inputs, vol.1, 2001.

T. D. Tuttle and W. P. Seering, A zero-placement technique for designing shaped inputs to suppress multiplemode vibration, Proceedings of the American Control Conference, p.25332537, 1994.

W. Singhose, N. Singer, and W. Seering, Design and implementation of time-optimal negative input shapers, Intl. Mechanical Engineering Congress and Exposition, pp.151-158, 1994.

W. Singhose, N. Singer, and W. Seering, Comparison of command shaping methods for reducing residual vibration, Third European Control Conf, pp.1126-1131, 1995.

W. E. Singhose and I. W. Mills, Command generation using specified-negative amplitude input shapers, Proceedings of the American Control Conference, p.6165, 1999.

I. J. Park, J. W. Lee, I. D. Lim, and Y. G. Sung, Design and sensitivity analysis of an input shaping filter in the z-plane, Journal of Sound and Vibration, vol.243, p.157171, 2001.

J. Shan, H. Liu, and D. Sun, Modified input shaping for a rotating single-link flexible manipulator, Journal of Sound and Vibration, vol.285, issue.12, p.187207, 2005.

S. S. Grleyk, Optimal Unity-Magnitude Input Shaper Duration Analysis, Archive of Applied Mechanics, vol.77, issue.1, pp.63-71, 2007.

S. S. Grleyk, R. Hacolu, and . Ve-cinal, Three-Step Input Shaper for Damping Tubular Step Motor Vibrations, J. of Mechanical Engineering Science, vol.221, issue.1, pp.1-9, 2007.

S. Grleyk and . Sunay, Improved three-step input shaping control of crane system, constraints, vol.6, p.10, 2008.

W. Singhose, W. Seering, and N. Singer, Residual vibration reduction using vector diagrams to generate shaped inputs, Journal of Mechanical Design, vol.116, issue.2, p.654659, 1994.

W. E. Singhose, L. J. Porter, T. D. Tuttle, and N. C. Singer, Vibration reduction using multi-hump input shapers, ASME Journal of Dynamic Systems Measurement and Control, vol.119, issue.2, p.320326, 1997.

M. Kenison and W. Singhose, Concurrent Design of Input Shaping and Feedback Control for Insensitivity to Parameter Variations, Sixth Int. Workshop on Advanced Motion Control, 2000.

M. Kenison and W. Singhose, Concurrent Design of Input Shaping and Proportional Plus Derivative Feedback Control, Accepted to the ASME, J. of Dynamic Systems, Measurement, and Control. BIBLIOGRAPHIC REFERENCES

S. P. Bhat and D. K. Miu, Solutions to Point-to-Point Control Problems Using Laplace Transform Technique, ASME J. Dyn. Syst. Meas. Control, vol.113, p.425431, 1991.

J. M. Hyde and W. P. Seering, Using Input Command Pre-Shaping to Suppress Multiple Mode Vibration, Proceedings of the IEEE Robotics and Automation Conference, p.26042609, 1991.

B. W. Rappole, N. C. Singer, and W. P. Seering, Multiple-Mode Input Shaping Sequences for Reducing Residual Vibrations, Proceedings of the 23rd Biennial Mechanisms Conference, p.1114

. Sep-tember, , p.1116, 1994.

T. Singh and S. R. Vadali, Robust Time-Optimal Control: A Frequency Domain Approach, Proc. AZAA Guid. Navig. Control Conf, 1994.

D. Liu, Y. Daming, and Z. Weiping, On optimal control strategy of maneuver of satellites with flexible appendages, Proc. PISSTA, p.530539, 1987.

L. Y. Pao, Multiple Input-Shaping Design for Vibration Reduction, Automatica, vol.35, p.8189, 1999.

A. Hamidi, Y. Rakotondrabe, and M. , Multi-Mode Vibration Suppression in 2-DOF Piezoelectric Systems Using Zero Placement Input Shaping Technique, Proc. SPIE, p.9494, 2015.

D. Santosh, E. Evangelos, and S. O. Moheimani, A Survey of Control Issues in Nanopositioning, IEEE Trans. Con-trol Syst. Technol, vol.15, p.802823, 2007.

C. F. Cutforth and L. Y. Pa0, A Modified Method for Multiple Actuator Input Shaping, Proc. of the American Control Conf, pp.66-70, 1999.

K. K. Leang, Q. Zou, and S. Devasia, Feedforward control of piezoactuators in atomic force microscope systems, IEEE Control Systems, vol.29, pp.70-82, 2009.

K. J. Astrom, P. Hagander, and J. Sternby, Zeros of Sampled Systems, Autornatica, vol.20, issue.1, pp.31-38, 1984.

B. P. Rigney, L. Y. Pao, and D. A. Lawrence, Nonminimum phase dynamic inversion for settle time applications, IEEE Trans. Ctrl. Sys. Tech, 2008.

J. A. Butterworth, L. Y. Pao, and D. Y. Abramovitch, The effect of nonminimum-phase zero locations on the performance of feedforward model-inverse control techniques in discrete-time systems, pp.2696-2702, 2008.

D. Magee and W. Book, The Application of Input Shaping to a System with Varying Parameters, Japan/USA Symposium on Flexible Automation, 1992.

G. Singh, P. T. Kabamba, and N. H. Mcclamroch, Planar, Time-Optimal, Rest-to-Rest Slewing Maneuvers of Flexible Spacecraft, J. of Guidance, Control, and Dynamics, vol.12, issue.1, pp.71-81, 1989.

J. Ben-asher, J. A. Burns, and E. M. Cliff, Time-Optimal Slewing of Flexible Spacecraft, J. of Guidance, Control, and Dynamics, vol.15, issue.2, pp.360-367, 1992.

Q. Liu and B. Wie, Robust Time-Optimal Control of Uncertain Flexible Spacecraft, J. of Guidance, Control, and Dynamics, vol.15, issue.3, pp.597-604, 1992.

R. Hartmann and T. Singh, Fuel/Time Optimal Control of Flexible Structures: A Frequency Domain Approach, Journal of Vibration and Control, vol.5, issue.5, pp.795-817, 1999.

W. Singhose, Command shaping for flexible systems: A review of the first 50 years, International Journal of Precision Engineering and Manufacturing, vol.10, pp.153-168, 2009.

W. Singhose, K. Bohlke, and W. Seering, Fuel-Efficient Pulse Command Profiles for Flexible Spacecraft, J. of Guidance, Control, and Dynamics, vol.19, pp.954-960, 1996.

T. Singh, Fuel/Time Optimal Control of the Benchmark Problem, J. of Guidance, Control, and Dynamics, vol.18, pp.1225-1231, 1995.

B. Wie, R. Sinha, J. Sunkel, and K. Cox, Robust Fuel-and Time-Optimal Control of Uncertain Flexible Space Structures, Proc. Guidance, Navigation, and Control Conference, pp.939-948, 1993.

W. Singhose, T. Singh, and W. Seering, On-Off Control with Specified Fuel Usage, Journal Dynamic Systems, Measurement, and Control, vol.121, pp.206-212, 1999.

W. Singhose, A. Banerjee, and W. Seering, Slewing Flexible Spacecraft with Deflection-Limiting Input Shaping, J. of Guidance, Control, and Dynamics, vol.20, pp.291-298, 1997.

A. P. Tzes and S. Yurkovich, Adaptive Precompensators for Flexible-Link Manipulator Control, 28th IEEE Conference on Decision and Control, vol.3, pp.2083-2088, 1989.

A. Tzes and S. Yurkovich, An Adaptive Input Shaping Control Scheme for Vibration Suppression in Slewing Flexible Structures, IEEE Transactions on Control Systems Technology, vol.1, pp.114-121, 1993.

F. Khorrami, S. Jain, and A. Tzes, Experiments of Rigid-Body Based Controllers with Input Preshaping for a Two-Link Flexible Manipulator, Proc. American Control Conf, pp.2957-2961, 1992.

F. Khorrami, S. Jain, and A. Tzes, Adaptive Nonlinear Control and Input Preshaping for Flexible-Link Manipulators, Proc. American Control Conf, pp.2705-2709, 1993.

S. Rhim and W. Book, Adaptive Time-delay Command Shaping Filter for Flexible Manipulator Control, IEEE/ASME Trans. on Mechatronics, vol.9, pp.619-626, 2004.

J. Park and S. Rhim, Extraction of Optimal Time-delay in Adaptive Command Shaping Filter for Flexible Manipulator Control, J. of Inst. of Control, Robotics and System, vol.14, pp.564-572, 2008.

S. Rhim and W. Book, Adaptive Command Shaping Using Adaptive Filter Approach in Time Domain, Proc. American Control Conference, pp.81-85, 1999.

S. Rhim and W. Book, Noise Effect on Time-domain Adaptive Command Shaping Methods for Flexible Manipulator Control, IEEE Trans. of Control Systems Technology, vol.9, pp.84-92, 2001.

N. C. Singer and W. P. Seering, An extension of command shaping methods for controlling residual vibration using frequency sampling, Proceedings 1992 IEEE International Conference on Robotics and Automation, vol.1, pp.800-805, 1992.

W. E. Singhose, P. Warren, N. C. Seering, and . Singer, Input shaping for vibration reduction with specified insensitivity to modeling errors, Japan-USA Sym. on Flexible Automation, vol.1, pp.307-320, 1996.

J. Agnus, P. De-lit, and N. Chaillet, Micromanipulateur pizolectrique notamment pour microrobotique', french Patent, FR0211934, 2002.

J. Agnus, N. Chaillet, C. Clvy, S. Dembl, M. Gauthier et al., BIBLIOGRAPHIC REFERENCES 139 'Robotic Microassembly and micromanipulation at FEMTO-ST', Journal of Micro-Bio Robotics (JMBR), vol.8, issue.2, pp.91-106, 2013.

L. Ljung, System identification toolbox 7 user's guide, The Mathworks, 2008.

M. Rakotondrabe, K. Rabenorosoa, J. Agnus, and N. Chaillet, Robust feedforward-feedback control of a nonlinear and oscillating 2-DOF piezocantilever, IEEE Transactions on Automation Science and Engineering, vol.8, issue.3, pp.506-519, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00635680

. Mohand-ousaid and . Abdenbi, Design, static modeling and simulation of a 5-DOF precise piezoelectric positioner, SPIE Commercial+ Scientific Sensing and Imaging. International Society for Optics and Photonics, 2016.

D. Lit and . Pierre, A four-degree-of-freedom microprehensile microrobot on chip, Assembly Automation, vol.24, pp.33-42, 2004.

K. H. Martin, B. D. Lindsey, J. Ma, M. Lee, S. Li et al., Dual-frequency piezoelectric transducers for contrast enhanced ultrasound imaging Sensors, vol.14, pp.20825-20842, 2014.

M. Rakotondrabe, Piezoelectric cantilevered structures: modeling control and measurement/estimation aspects

A. E. El-shaer, M. Janaideh, P. Krejci, and M. Tomizuka, Robust Performance Enhancement Using Disturbance Observers for Hysteresis Compensation Based on Generalized PrandtlIshlinskii Model, ASME Journal of Dynamic Systems, Measurement, and Control, p.135, 2013.

F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control, 2012.

M. Rakotondrabe, J. Agnus, and P. Lutz, Feedforward and IMCfeedback control of a nonlinear 2-DOF piezoactuator dedicated to automated micropositioning tasks, 2011 IEEE Conference on Automation Science and Engineering (CASE), pp.393-398, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00709779

A. Hammerstein, Nichtlineare Integralgleic hungen nebst Anwendungen, Acta Math, vol.54, pp.117-176, 1930.

N. Wiener, Nonlinear Problems in Random Theory, 1958.

S. Priya and D. J. Inman, Energy Harvesting Technologies, 2009.