K. V. Ballman, Biomarker: Predictive or Prognostic?, Journal of Clinical Oncology, vol.33, pp.3968-3971, 2015.

P. Blanche, J. F. Dartigues, and H. Jacqmin-gadda, Review and comparison of ROC curve estimators for a time-dependent outcome with marker-dependent censoring, Biometrical Journal, vol.55, pp.687-704, 2013.

Y. Blangero, M. Rabilloud, R. Ecochard, and F. Subtil, A Bayesian method to estimate the optimal threshold of a marker used to select patients' treatment, Statistical Methods in Medical Research, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01974173

D. P. Byar, Assessing apparent treatment-covariate interactions in randomized clinical trials, Statistics in Medicine, vol.4, pp.255-263, 1985.

E. R. Delong, D. M. Delong, and D. L. Clarke-pearson, Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach, Biometrics, vol.44, pp.837-845, 1988.

W. De-roock, H. Piessevaux, J. De-schutter, M. Janssens, G. De-hertogh et al., KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab, Annals of Oncolofy, vol.19, pp.508-515, 2008.

D. Fiore, F. Blanchard, F. Charbonnier, F. Le-pessot, F. Lamy et al., Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy, British Journal of Cancer, vol.96, pp.1166-1169, 2007.

Y. Blangero, The area between ROC curves

A. Dmitrienko, G. Molenberghs, C. Chuang-stein, and W. Offen, Analysis of clinical trials using SAS: A practical guide, SAS Institute, 2005.

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari et al., Bayesian Data Analysis, 2013.

J. A. Hanley and B. J. Mcneil, The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology, vol.143, pp.29-36, 1982.

P. J. Heagerty, T. Lumley, and M. S. Pepe, Time-dependent ROC curves for censored survival data and a diagnostic marker, Biometrics, vol.56, pp.337-344, 2000.

W. Hoeffding, A class of statistics with asymptotically normal distribution, The Annals of Mathematical Statistics, vol.19, pp.293-325, 1948.

Y. Huang, P. B. Gilbert, and H. Janes, Assessing treatment-selection markers using a potential outcomes framework, Biometrics, vol.68, pp.687-696, 2012.

A. Italiano, Prognostic or Predictive? It's time to get back to definitions, Journal of Clinical Oncology, vol.29, p.4718, 2011.

H. Janes, M. D. Brown, Y. Huang, and M. S. Pepe, An approach to evaluating and comparing biomarkers for patient treatment selection, The International Journal of Biostatistics, vol.10, pp.99-121, 2014.

H. Janes, M. D. Brown, and M. S. Pepe, Designing a study to evaluate the benefit of a biomarker for selecting patient treatment, Statistics in Medicine, vol.34, pp.3503-3515, 2015.

H. Janes, M. S. Pepe, P. M. Bossuyt, and W. E. Barlow, Measuring the performance of markers for guiding treatment decisions, Annals of Internal Medicine, vol.154, pp.253-259, 2011.

H. Janes, M. S. Pepe, and Y. Huang, A framework for evaluating markers used to select patient treatment, Medical Decision Making, vol.34, pp.159-167, 2014.

H. Janes, M. S. Pepe, L. M. Mcshane, D. J. Sargent, and P. J. Heagerty, The fundamental difficulty with evaluating the accuracy of biomarkers for guiding treatment, Journal of the National Cancer Institute, vol.107, 2015.

J. Jund, M. Rabilloud, M. Wallon, and R. Ecochard, Methods to estimate the optimal threshold for normally or log-normally distributed biological tests, Medical Decision Making, vol.25, pp.406-415, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00427842

L. Li, T. Greene, and B. Hu, A simple method to estimate the time-dependent receiver operating characteristic curve and the area under the curve with right censored data, Statistical Methods in Medical Research, vol.27, pp.2264-2278, 2018.

A. Lièvre, J. B. Bachet, V. Boige, A. Cayre, D. Le-corre et al., KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab, Journal of Clinical Oncology, vol.26, pp.374-379, 2008.

D. K. Mcclish, Analyzing a portion of the ROC curve, Medical Decision Making, vol.9, pp.190-195, 1989.

C. E. Metz and X. Pan, Proper" binormal ROC curves: Theory and maximum-likelihood estimation, Journal of Mathematical Psychology, vol.43, pp.1-33, 1999.

M. S. Pepe, The Statistical Evaluation of Medical Tests for Classification and Prediction, 2003.

K. Skougaard, D. Nielsen, B. V. Jensen, P. Pfeiffer, and H. W. Hendel, Early (18)F-FDG-PET/CT as a predictive marker for treatment response and survival in patients with metastatic colorectal cancer treated with irinotecan and cetuximab, Acta Oncology, vol.55, pp.1175-1182, 2016.

X. Song and M. S. Pepe, Evaluating markers for selecting a patient's treatment, Biometrics, vol.60, pp.874-883, 2004.

F. Subtil and M. Rabilloud, An enhancement of ROC curves made them clinically relevant for diagnostic-test comparison and optimal-threshold determination, Journal of Clinical Epidemiology, vol.68, pp.752-759, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02018972

J. Taieb, J. Tabernero, E. Mini, F. Subtil, G. Folprecht et al., Oxaliplatin, fluorouracil, and leucovorin with or without cetuximab in patients with resected stage III colon cancer (PETACC-8): an open-label, The Lancet Oncology, vol.15, pp.862-873, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02045524

V. Viallon and A. Latouche, Discrimination measures for survival outcomes: Connection between the AUC and the predictiveness curve, Biometrical Journal, vol.53, pp.217-236, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00547205

A. J. Vickers, M. W. Kattan, and D. Sargent, Method for evaluating prediction models that apply the results of randomized trials to individual patients, Trials, vol.8, p.14, 2007.

J. B. Weidhaas, J. Harris, D. Schaue, A. M. Chen, R. Chin et al., The KRAS-Variant and Cetuximab Response in Head and Neck Squamous Cell Cancer: A Secondary Analysis of a Randomized Clinical Trial, JAMA Oncology, vol.3, pp.483-491, 2016.

Z. Zhang, L. Nie, G. Soon, and A. Liu, The Use of Covariates and Random Effects in Evaluating Predictive Biomarkers Under a Potential Outcome Framework, Annals of Applied Statistics, vol.8, pp.2336-2355, 2014.

Z. Zhang, S. Ma, L. Nie, and G. Soon, A quantitative concordance measure for comparing and combining treatment selection markers, The International Journal of Biostatistics, vol.13, 2017.

K. Ballman, Biomarker: predictive or prognostic, J Clin Oncol, vol.33, pp.3968-3971, 2015.

A. Italiano, Prognostic or predictive? It's time to get back to definitions!, J Clin Oncol, vol.29, p.4718, 2011.

A. Lie`vre, J. Bachet, and V. Boige, KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab, J Clin Oncol, vol.26, pp.374-379, 2008.

D. Byar, Assessing apparent treatment-covariate interactions in randomized clinical trials, Stat Med, vol.4, pp.255-263, 1985.

A. Vickers, M. Kattan, and D. Sargent, Method for evaluating prediction models that apply the results of randomized trials to individual patients, Trials, vol.8, p.14, 2007.

H. Janes, M. Pepe, and P. Bossuyt, Measuring the performance of markers for guiding treatment decisions, Ann Intern Med, vol.154, pp.253-259, 2011.

H. Janes, M. Brown, and Y. Huang, An approach to evaluating and comparing biomarkers for patient treatment selection, Int J Biostat, vol.10, pp.99-121, 2014.

Y. Huang, G. P. Janes, and H. , Assessing treatment-selection markers using a potential outcomes framework, Biometrics, vol.68, pp.687-696, 2012.

Z. Zhang, L. Nie, and G. Soon, The use of covariates and random effects in evaluating predictive biomarkers under a potential outcome framework, Ann Appl Stat, vol.8, pp.2336-2355, 2014.

H. Sox, H. M. Owens, and D. , Medical decision making, 2013.

H. Janes, P. M. Huang, and Y. , A framework for evaluating markers used to select patient treatment, Med Decis Making, vol.34, pp.159-167, 2014.

G. Collins and K. Moons, Comparing risk prediction models, BMJ, vol.344, p.3186, 2012.

B. Van-calster and A. Vickers, Calibration of risk prediction models: impact on decision-analytic performance, Med Decis Making, vol.35, pp.162-169, 2015.

A. Cullen and H. Frey, Probabilistic techniques in exposure assessment, 1999.

C. Forbes, M. Evans, and N. Hastings, Statistical distributions, 2000.

M. L. Delignette-muller and C. Dutang, fitdistrplus: an R package for fitting distributions, J Stat Softw, vol.64, pp.1-34, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02044954

A. J. Vickers and E. B. Elkin, Decision curve analysis: a novel method for evaluating prediction models, Med Decis Making, vol.26, pp.565-74, 2006.

Y. Huang, E. Laber, and H. Janes, Characterizing expected benefits of biomarkers in treatment selection, Biostatistics, vol.16, pp.383-399, 2015.

S. G. Baker, N. R. Cook, and A. Vickers, Using relative utility curves to evaluate risk prediction, J R Stat Soc Ser A Stat Soc, vol.172, pp.729-748, 2009.

B. Efron and R. Tibshirani, Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy, Stat Sci, vol.1, pp.54-75, 1986.

E. Schisterman and N. Perkins, Confidence intervals of the Youden index and corresponding optimal cut-point, Commun Stat Simul Comput, vol.36, pp.549-563, 2007.

F. Subtil and M. Rabilloud, A Bayesian method to estimate the optimal threshold of a longitudinal biomarker, Biom J, vol.52, pp.333-347, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00539245

F. Subtil and M. Rabilloud, Estimating the optimal threshold for a diagnostic biomarker in case of complex biomarker distributions, BMC Med Inform Decis Making, vol.14, p.53, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02045525

A. Gelman, J. Carlin, and H. Stern, Bayesian data analysis, 2014.

. R-core-team, R: a language and environment for statistical computing, R Foundation for Statistical Computing, 2017.

J. Taieb, J. Tabernero, and E. Mini, Oxaliplatin, fluorouracil, and leucovorin with or without cetuximab in patients with resected stage III colon cancer (PETACC-8): an open-label, randomised phase 3 trial, Lancet Oncol, vol.15, pp.862-873, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02045524

A. Dmitrienko, G. Molenberghs, and C. Chuang-stein, Analysis of clinical trials using SAS: a practical guide. Cary: SAS Institute, 2005.

H. Janes, M. Brown, and M. Pepe, Designing a study to evaluate the benefit of a biomarker for selecting patient treatment, Stat Med, vol.34, pp.3503-3515, 2015.

M. Escobar, Estimating normal means with a Dirichlet process prior, J Am Stat Assoc, vol.89, pp.268-277, 1994.

D. Ohlssen, L. Sharples, and D. Spiegelhalter, Flexible random-effects models using Bayesian semi-parametric models: applications to institutional comparisons, Stat Med, vol.26, pp.2088-2112, 2007.

P. Blanche, J. F. Dartigues, J. , and H. , Review and comparison of ROC curve estimators for a time-dependent outcome with marker-dependent censoring, Biom J, vol.55, pp.687-704, 2013.

, Une fois que le processus est terminé, il est possible d'afficher un résumé des informations

, Ce résumé rappelle la règle de décision qui a été utilisée dans l'optimisation de la fonction d'utilité et présente plusieurs indicateurs statistiques : ? Le risque médian dans chaque bras de traitement ainsi que son intervalle de crédibilité ? Les statistiques descriptives de base du marqueur

. ?-l', estimation ponctuelle du seuil optimale (médiane de la chaîne MCMC)

, ? Les intervalles de crédibilité du seuil optimal (par la méthode des percentiles et la méthode « Highest Posterior Density

. Matsouaka, 2014) ; cela signifie que sur l'échelle du marqueur il peut ne pas y avoir un seuil unique et que la règle de décision optimale ne peut plus être exprimée sous la forme de h * (X) = 1(X ? c * ), de monotonicité de ? (X) en fonction de X n'est pas vérifiée

. Janes, La méthode d'estimation de la fonction d'utilité repose sur l'ajustement de distributions théoriques de marqueurs pour quatre groupes de patients : ceux qui ont développé l'évènement d'intérêt ou non dans chacun des bras de traitement. Il s'agit là de la principale difficulté dans l'application de cette méthode, cependant l'alternative à cette approche serait de modéliser le risque de survenue d'évènement dans chaque bras, conditionnellement aux valeurs du marqueur comme proposé par Vickers et al, Cependant ces approches reposent sur des modèles de prédiction complexes qui, s'ils ne sont pas corrects, peuvent amener à des solutions sous-optimales, 2007.

T. André, C. Boni, M. Navarro, J. Tabernero, T. Hickish et al., Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial, Journal of Clinical Oncology, vol.27, issue.19, pp.3109-3116, 2009.

, Biomarkers and surrogate endpoints : Preferred definitions and conceptual framework, Biomarker Definitions Working Group, vol.69, pp.89-95, 2001.

P. Blanche, J. F. Dartigues, and H. Jacqmin-gadda, Estimating and comparing timedependent areas under receiver operating characteristic curves for censored event times with competing risks, Statistics in Medicine, vol.32, issue.30, pp.5381-5397, 2013.

P. Blanche, J. F. Dartigues, and H. Jacqmin-gadda, Review and comparison of roc curve estimators for a time-dependent outcome with marker-dependent censoring, Biometrical Journal, vol.55, issue.5, pp.687-704, 2013.

Y. Blangero, M. Rabilloud, R. Ecochard, and F. Subtil, A bayesian method to estimate the optimal threshold of a marker used to select patients' treatment, Statistical Methods in Medical Research, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01974173

C. Bokemeyer, I. Bondarenko, J. T. Hartmann, F. De-braud, G. Schuch et al., Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer : the OPUS study, Annals of Oncology, vol.22, issue.7, pp.2535-2546, 2011.

S. Brooks, A. Gelman, G. Jones, and X. Meng, Handbook of Markov Chain Monte Carlo, 2011.

D. P. Byar, Assessing apparent treatment-covariate interactions in randomized clinical trials, Statistics in Medicine, vol.4, issue.3, pp.255-263, 1985.

N. Carlomagno, P. Incollingo, V. Tammaro, G. Peluso, N. Rupealta et al., Diagnostic, predictive, prognostic, and therapeutic molecular biomarkers in third millenium : a breakthrough in gastric cancer, 2017.

M. Cohen, G. Williams, J. Johnson, J. Duan, J. Gobburu et al., , 2002.

, Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia, Clinical Cancer Research, vol.8, issue.5, pp.935-942

E. Dantan, Y. Foucher, M. Lorent, M. Giral, and P. Tessier, Optimal threshold estimator of a prognostic marker by maximizing a time-dependent expected utility function for a patient-centered stratified medicine, Statistical Methods in Medical Research, vol.27, issue.6, pp.1847-1859, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02149057

A. Davison and D. Hinkley, Bootstrap methods and their application, 1997.

W. De-roock, H. Piessevaux, J. De-schutter, M. Janssens, G. De-hertog et al., KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab, Annals of Oncology, vol.19, issue.3, pp.508-515, 2008.

G. Defossez, S. Le-guyader-peyroud, Z. Uhry, P. Grosclaude, L. Remontet et al., Estimation nationale de l'incidence et de la mortalité par cancer en France métropolitaine entre, 1990.

E. Delong, D. Delong, and D. Clarke-pearson, Comparing the areas under two or more correlated receiver operating characteristic curves : A nonparametric approach, Biometrics, vol.44, issue.3, pp.837-845, 1988.

D. Fiore, F. Blanchard, F. Charbonnier, F. Le-pessot, F. Lamy et al., Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by cetuximab plus chemotherapy, British Journal of Cancer, vol.96, issue.8, pp.1166-1169, 2007.

L. Dodd and M. S. Pepe, Semiparametric regression for the area under the receiver operating characteristic curve, Journal of the American Statistical Association, vol.98, issue.462, pp.409-417, 2003.

J. Douillard, A. Rong, and R. Sidhu, RAS mutations in colorectal cancer, New England Journal of Medicine, vol.369, issue.22, pp.2159-2160, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02109307

J. Douillard, S. Siena, J. Cassidy, J. Tabernero, R. Burkes et al., Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer : the PRIME study, Journal of Clinical Oncology, vol.28, issue.31, pp.4697-4705, 2010.

B. Efron and R. Tibshirani, An introduction to the bootstrap, 1993.

A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari et al., Bayesian Data Analysis, 2013.

R. Gerszten and T. Wang, The search of new cardiovascular biomarkers, Nature, vol.451, issue.7181, pp.949-952, 2008.

S. Gill, C. L. Loprinzi, D. J. Sargent, S. D. Thomé, S. R. Alberts et al., Pooled analysis of fluorouracil-based adjuvant therapy for stage II and III colon cancer : Who benefits and by how much, Journal of Clinical Oncology, vol.22, issue.10, pp.1797-1806, 2004.

J. Hanley and B. Mcneil, The meaning and use of the area under a receiver operating characteristic (roc) curve, Radiology, vol.143, issue.1, pp.29-36, 1982.

M. Hernan and J. Robins, Estimating causal effects from epidemiological data, Journal of Epidemiology and Community Health, vol.60, issue.7, pp.578-586, 2006.

A. Hochhaus, R. Larson, F. Guilhot, J. Radich, S. Branford et al., Long-term outcomes of imatinib treatment for chronic myeloid leukemia, and IRIS Investigators, vol.376, pp.917-927, 2017.

W. Hoeffding, A class of statistics with asymptotically normal distribution, The Annals of Mathematical Statistics, vol.19, issue.3, pp.293-325, 1948.

P. Holland, Statistics and causal inference, Journal of the American Statistical Association, vol.81, issue.396, pp.945-960, 1986.

Y. Huang, P. B. Gilbert, and H. Janes, Assessing treatment-selection markers using a potential outcomes framework, Biometrics, vol.68, issue.3, pp.687-696, 2012.

Y. Huang, E. Laber, and H. Janes, Characterizing expected benefits of biomarkers in treatment selection, Biostatistics, vol.16, issue.2, pp.383-399, 2015.

H. Hung and C. Chiang, Estimation methods for time-dependent AUC models with survival data, The Canadian Journal of Statistics, vol.38, issue.1, pp.8-26, 2010.

H. Janes, M. Brown, P. , and M. , Designing a study to evaluate the benefit of a biomarker for selecting patient treatment, Statistics in Medicine, vol.34, issue.27, pp.3503-3515, 2015.

H. Janes, M. D. Brown, M. S. Pepe, and Y. Huang, An approach to evaluating and comparing biomarkers for patient treatment selection, International Journal of Biostatistics, vol.10, issue.1, pp.99-121, 2014.

H. Janes, M. Pepe, L. Mcshane, D. Sargent, and P. Heagerty, The fundamental difficulty with evaluating the accuracy of biomarkers for guiding treatment, Journal of the National Cancer Institute, issue.8, p.107, 2015.

H. Janes, M. S. Pepe, P. M. Bossuyt, and W. E. Barlow, Measuring the performance of markers for guiding treatment decisions, Annals of Internal Medicine, vol.154, issue.4, pp.253-259, 2011.

H. Janes, M. S. Pepe, and Y. Huang, A framework for evaluating markers used to select patient treatment, Medical Decision Making, vol.34, issue.2, pp.159-167, 2014.

J. Jund, M. Rabilloud, M. Wallon, and R. Ecochard, Methods to estimate the optimal threshold for normally or log-normally distributed biological tests, Medical Decision Making, vol.25, issue.4, pp.406-415, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00427842

J. P. Kuebler, H. S. Wieand, M. J. O'connell, R. E. Smith, L. H. Colangelo et al., Oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer : Results from NSABP C-07, Journal of Clinical Oncology, vol.25, issue.16, pp.2198-2204, 2007.

L. Li, T. Greene, and B. Hu, A simple method to estimate the time-dependent receiver operating characteristic curve and the area under the curve with right censored data, 2018.

, Statistical Methods in Medical Research, vol.27, issue.8, pp.2264-2278

A. Lièvre, J. B. Bachet, V. Boige, A. Cayre, D. Le-corre et al., KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab, Journal of Clinical Oncology, vol.26, issue.3, pp.374-379, 2008.

E. Mamounas, S. Wieand, N. Wolmark, H. D. Bear, J. N. Atkins et al., Comparative efficacy of adjuvant chemotherapy in patients with Dukes' B versus Dukes' C colon cancer : Results from four national surgical adjuvant breast and bowel project adjuvant studies (C-01, C-02, C-03, and C-04), Journal of Clinical Oncology, vol.17, issue.5, pp.1349-1355, 1999.

R. Matsouaka, J. Li, and T. Cai, Evaluating marker-guided treatment selection strategies, Biometrics, vol.70, issue.3, pp.489-499, 2014.

D. Mcclish, Analyzing a portion of the roc curve, Medical Decision Making, vol.9, issue.3, pp.190-195, 1989.

J. Nedelman, P. Heagerty, L. , and C. , Quantitative pcr : Procedures and precisions, Bulletin of Mathematical Biology, vol.54, issue.4, pp.477-502, 1992.

J. A. Nelder and R. Mead, A simplex algorithm for function minimization, The Computer Journal, vol.7, issue.4, pp.308-313, 1965.

S. O'brien, F. Guilhot, R. Larson, I. Gathmann, M. Baccarani et al., Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia, The New England journal of medicine, vol.48, issue.11, pp.994-1004, 2003.

M. Pepe, The Statistical Evaluation of Medical Tests for Classification and Prediction, 2003.

D. Ransohoff, Rules of evidence for cancer molecular-marker discovery and validation, Nature, vol.4, issue.4, pp.309-314, 2004.

J. Robins, A. Rotnitzky, and L. Zhao, Estimation of regression coefficients when some regressors are not always observed, Journal of the American Statistical Association, vol.89, issue.427, pp.846-866, 1994.

D. Rubin, Causal inference using potential outcomes : Design, modeling, decisions, Journal of the American Statistical Association, vol.100, issue.469, pp.322-331, 2005.

D. J. Sargent, B. A. Conley, C. Allegra, C. , and L. , Clinical trial designs for predictive marker validation in cancer treatment trials, Journal of Clinical Oncology, vol.23, issue.9, pp.2020-2027, 2005.

E. Schiffer, The 2nd anual oncology biomarkers conference, Biomarkers in Medicine, vol.3, issue.2, pp.203-209, 2009.

X. Song and M. S. Pepe, Evaluating markers for selecting a patient's treatment, Biometrics, vol.60, issue.4, pp.874-883, 2004.

X. Song and X. Zhou, Evaluating markers for treatment selection based on survival time, Statistics in Medicine, vol.30, issue.18, pp.2251-2264, 2011.

H. Sox, M. Higgins, and D. Owens, Medical Decision Making, 2013.

F. Subtil and M. Rabilloud, An enhancement of roc curves made them clinically relevant for diagnostic-test comparison and optimal threshold determination, Journal of Clinical Epidemiology, vol.68, issue.7, pp.752-759, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02018972

J. Taieb, J. Tabernero, E. Mini, F. Subtil, G. Folprecht et al., Oxaliplatin, fluorouracil, and leucovorin with or without cetuximab in patients with resected stage iii colon cancer (petacc-8) : an open-label, randomised phase 3 trial, The Lancet Oncology, vol.15, issue.8, pp.862-873, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02045524

P. Tajik, A. Zwinderman, B. Mol, and P. Bossuyt, Trial designs for personalizing cancer care : a systematic review and classification, Clinical Cancer Research, vol.19, issue.17, pp.4578-4588, 2013.

V. Viallon and A. Latouche, Discrimination measures for survival outcomes : Connection between the AUC and the predictiveness curve, Biometrical Journal, vol.53, issue.2, pp.217-236, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00547205

A. Vickers, M. Kattan, and D. Sargent, Method for evaluating prediction models that apply the results of randomized trials to individual patients, Trials, vol.8, p.14, 2007.

M. Vihola, Robust adaptive Metropolis algorithm with coerced acceptance rate. Statistics and computing, vol.22, pp.997-1008, 2012.

M. Wong and C. Pollock, Biomarkers in kidney fibrosis : are they useful ? Kidney international supplements, vol.4, pp.79-83, 2014.

G. Yothers, M. J. O'connell, C. J. Allegra, J. P. Kuebler, L. H. Colangelo et al., Oxaliplatin as adjuvant therapy for colon cancer : updated results of NSABP C-07 trial, including survival and subset analyses, Journal of Clinical Oncology, vol.29, issue.28, pp.3768-3774, 2011.

Z. Zhang, S. F. Ma, L. Nie, and G. Soon, A quantitative concordance measure for comparing and combining treatment selection markers, The International Journal of Biostatistics, vol.13, issue.1, 2017.

Z. Zhang, L. Nie, G. Soon, and A. Liu, The use of covariates and random effects in evaluating predictive biomarkers under a potential outcome framework, The Annals of Applied Statistics, vol.8, issue.4, pp.2336-2355, 2014.

A. Vickers, M. Kattan, and D. Sargent, Method for evaluating prediction models that apply the results of randomized trials to individual patients, Trials, vol.8, issue.14, 2007.

S. G. Baker, N. R. Cook, and A. Vickers, Using relative utility curves to evaluate risk prediction, Journal of the Royal Statistical Society Series A (Statistics in Society), vol.172, issue.4, pp.729-748, 2009.

Y. Huang, E. Laber, and H. Janes, Characterizing expected benefits of biomarkers in treatment selection, Biostatistics, vol.16, issue.2, pp.383-399, 2015.