F. Ahmad and B. J. Goldstein, Alterations in specific protein-tyrosine phosphatases accompany insulin resistance of streptozotocin diabetes, The American journal of physiology, vol.268, pp.932-940, 1995.

H. An, W. Zhao, J. Hou, Y. Zhang, Y. Xie et al.,

, SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production, Immunity, vol.25, pp.919-928

T. Araki, G. Chan, S. Newbigging, L. Morikawa, R. T. Bronson et al., Noonan syndrome cardiac defects are caused by PTPN11 acting in endocardium to enhance endocardial-mesenchymal transformation, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.4736-4741, 2009.

T. Araki, M. G. Mohi, F. A. Ismat, R. T. Bronson, I. R. Williams et al., Mouse model of Noonan syndrome reveals cell typeand gene dosage-dependent effects of Ptpn11 mutation, Nature medicine, vol.10, pp.849-857, 2004.

G. Bahtiyar, J. J. Shin, A. Aytaman, J. R. Sowers, and S. I. Mcfarlane, Association of diabetes and hepatitis C infection: epidemiologic evidence and pathophysiologic insights, Current diabetes reports, vol.4, pp.194-198, 2004.

R. Banno, D. Zimmer, B. C. De-jonghe, M. Atienza, K. Rak et al., PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice, J. Clin. Invest, vol.120, pp.720-734, 2010.

S. Beliard, W. Le-goff, F. Saint-charles, L. Poupel, V. Deswaerte et al., Modulation of Gr1(low) monocyte subset impacts insulin sensitivity and weight gain upon high-fat diet in female mice, International journal of obesity, vol.41, pp.1805-1814, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01580410

A. Bettaieb, K. Matsuo, I. Matsuo, N. Nagata, S. Chahed et al., , 2011.

, Adipose-specific deletion of Src homology phosphatase 2 does not significantly alter systemic glucose homeostasis, Metabolism: clinical and experimental, vol.286, pp.9225-9235

J. A. Bonini, J. Colca, and C. Hofmann, Altered expression of insulin signaling components in streptozotocin-treated rats, Biochemical and biophysical research communications, vol.212, pp.933-938, 1995.

C. Cessans, V. Ehlinger, C. Arnaud, A. Yart, Y. Capri et al., Growth patterns of patients with Noonan syndrome: correlation with age and genotype, European Federation of Endocrine Societies, vol.174, pp.641-650, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01662610

G. Chan, D. Kalaitzidis, T. Usenko, J. L. Kutok, W. Yang et al., , 2009.

, Leukemogenic Ptpn11 causes fatal myeloproliferative disorder via cell-autonomous effects on multiple stages of hematopoiesis, Blood, vol.113, pp.4414-4424

C. Chen, F. Liang, B. Chen, Z. Sun, T. Xue et al., Identification of demethylincisterol A3 as a selective inhibitor of protein tyrosine phosphatase Shp2, European journal of pharmacology, vol.795, pp.124-133, 2017.

Y. N. Chen, M. J. Lamarche, H. M. Chan, P. Fekkes, J. Garcia-fortanet et al., Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases, Nature, vol.535, pp.148-152, 2016.

L. Dardaei, H. Q. Wang, M. Singh, P. Fordjour, K. X. Shaw et al., SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors, Nature medicine, 2018.

A. De-rocca-serra-nedelec, T. Edouard, K. Treguer, M. Tajan, T. Araki et al., Noonan syndrome-causing SHP2 mutants inhibit insulin-like growth factor 1 release via growth hormone-induced ERK hyperactivation, which contributes to short stature, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.4257-4262, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00756494

J. M. Do-carmo, A. A. Da-silva, S. E. Ebaady, P. O. Sessums, R. S. Abraham et al., Shp2 signaling in POMC neurons is important for leptin's actions on blood pressure, energy balance, and glucose regulation, Am J Physiol Regul Integr Comp Physiol, vol.307, pp.1438-1447, 2014.

C. Dray, C. Knauf, D. Daviaud, A. Waget, J. Boucher et al., Apelin stimulates glucose utilization in normal and obese insulin-resistant mice, Cell metabolism, vol.8, pp.437-445, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00408948

W. Du, C. Wong, Y. Song, H. Shen, D. Mori et al., Age-associated vascular inflammation promotes monocytosis during atherogenesis, Aging cell, vol.15, pp.766-777, 2016.

G. Fortanet, J. Chen, C. H. Chen, Y. N. Chen, Z. Deng et al., Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor, Journal of medicinal chemistry, vol.59, pp.7773-7782, 2016.

W. Guo, W. Liu, Z. Chen, Y. Gu, S. Peng et al., Tyrosine phosphatase SHP2 negatively regulates NLRP3 inflammasome activation via ANT1-dependent mitochondrial homeostasis, Nature communications, vol.8, p.2168, 2017.

A. Y. Hsu, T. Gurol, T. J. Sobreira, S. Zhang, N. Moore et al., Development and Characterization of an Endotoxemia Model in Zebra Fish, Frontiers in immunology, vol.9, p.607, 2018.

S. Joyce, K. Gordon, G. Brice, P. Ostergaard, R. Nagaraja et al., The lymphatic phenotype in Noonan and Cardiofaciocutaneous syndrome, European journal of human genetics : EJHG, vol.24, pp.690-696, 2016.

S. Kamohara, R. Burcelin, J. L. Halaas, J. M. Friedman, and M. J. Charron, Acute stimulation of glucose metabolism in mice by leptin treatment, Nature, vol.389, pp.374-377, 1997.

E. Kostallari, P. Hirsova, A. Prasnicka, V. K. Verma, U. Yaqoob et al., Hepatic stellate cell-derived PDGFRalpha-enriched extracellular vesicles promote liver fibrosis in mice through SHP2, Hepatology, p.132, 2018.

A. T. Kraja, D. I. Chasman, K. E. North, A. P. Reiner, L. R. Yanek et al., Pleiotropic genes for metabolic syndrome and inflammation, Molecular genetics and metabolism, vol.112, pp.317-338, 2014.

M. Krajewska, S. Banares, E. E. Zhang, X. Huang, M. Scadeng et al., Development of diabesity in mice with neuronal deletion of Shp2 tyrosine phosphatase, Am J Pathol, vol.172, pp.1312-1324, 2008.

Y. S. Lee, D. Ehninger, M. Zhou, J. Y. Oh, M. Kang et al., Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome, Nature neuroscience, vol.17, pp.1736-1743, 2014.

X. J. Li, C. B. Goodwin, S. C. Nabinger, B. M. Richine, Z. Yang et al., Protein-tyrosine phosphatase Shp2 positively regulates macrophage oxidative burst, The Journal of biological chemistry, vol.290, pp.3894-3909, 2015.

M. H. Lima, M. Ueno, A. C. Thirone, E. M. Rocha, C. R. Carvalho et al., Regulation of IRS-1/SHP2 interaction and AKT phosphorylation in animal models of insulin resistance, Endocrine, vol.18, pp.1-12, 2002.

H. Maegawa, M. Hasegawa, S. Sugai, T. Obata, S. Ugi et al., Expression of a dominant negative SHP-2 in transgenic mice induces insulin resistance, The Journal of biological chemistry, vol.274, pp.30236-30243, 1999.

K. Matsuo, M. Delibegovic, I. Matsuo, N. Nagata, S. Liu et al., Altered glucose homeostasis in mice with liver-specific deletion of Src homology phosphatase 2, J. Biol. Chem, vol.285, pp.39750-39758, 2010.

A. Morandi, A. Bonnefond, S. Lobbens, L. Yengo, E. Miraglia-del-giudice et al., Associations Between Type 2 Diabetes-Related Genetic Scores and Metabolic Traits, in Obese and Normal-Weight Youths, The Journal of clinical endocrinology and metabolism, vol.101, pp.4244-4250, 2016.

M. G. Myers, . Jr, R. Mendez, P. Shi, J. H. Pierce et al., The COOH-terminal tyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively regulate insulin signaling, The Journal of biological chemistry, vol.273, pp.26908-26914, 1998.

P. R. Nagareddy, M. Kraakman, S. L. Masters, R. A. Stirzaker, D. J. Gorman et al., Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity, Cell metabolism, vol.19, pp.821-835, 2014.

P. R. Nagareddy, A. J. Murphy, R. A. Stirzaker, Y. Hu, S. Yu et al., Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis, Cell metabolism, vol.17, pp.695-708, 2013.

N. Nagata, K. Matsuo, A. Bettaieb, J. Bakke, I. Matsuo et al., Hepatic SRC homology phosphatase 2 regulates energy balance in mice, Endocrinology, vol.153, pp.3158-3169, 2012.

T. Nakamura, M. Colbert, M. Krenz, J. D. Molkentin, H. S. Hahn et al., Mediating ERK 1/2 signaling rescues congenital heart defects in a mouse model of Noonan syndrome, J. Clin. Invest, vol.117, pp.2123-2132, 2007.

T. Nakamura, J. Gulick, R. Pratt, and J. Robbins, Noonan syndrome is associated with enhanced pERK activity, the repression of which can prevent craniofacial malformations, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.15436-15441, 2009.

J. H. Park, R. Ko, and S. Y. Lee, Reciprocal regulation of TLR2-mediated IFN-beta production by SHP2 and Gsk3beta, Scientific reports, vol.7, p.6807, 2017.

F. Princen, E. Bard, F. Sheikh, S. S. Zhang, J. Wang et al., Deletion of Shp2 Tyrosine Phosphatase in Muscle Leads to Dilated Cardiomyopathy, Insulin Resistance and Premature Death, Mol. Cell. Biol, vol.29, pp.378-388, 2009.

M. F. Rolland-cachera, T. J. Cole, M. Sempe, J. Tichet, C. Rossignol et al., , 1991.

, Body Mass Index variations: centiles from birth to 87 years, European journal of clinical nutrition, vol.45, pp.13-21

X. Sun, Y. Ren, S. Gunawan, P. Teng, Z. Chen et al., Selective inhibition of leukemia-associated SHP2(E69K) mutant by the allosteric SHP2 inhibitor SHP099, Leukemia, 2018.

M. Tajan, A. Batut, T. Cadoudal, S. Deleruyelle, S. Le-gonidec et al., LEOPARD syndromeassociated SHP2 mutation confers leanness and protection from diet-induced obesity, 2014.

, Proceedings of the National Academy of Sciences of the United States of America, vol.111, pp.4494-4503

M. Tajan, A. De-rocca-serra, P. Valet, T. Edouard, Y. et al., SHP2 sails from physiology to pathology, European journal of medical genetics, vol.58, pp.509-525, 2015.

M. Tajan, R. Paccoud, S. Branka, T. Edouard, Y. et al., The Rasopathy family: Consequences of germline activation of the RAS/MAPK pathway, Endocrine reviews, 2018.

C. Tang, Y. Liu, W. Yang, C. Storey, T. S. Mcmillen et al., Hematopoietic ABCA1 deletion promotes monocytosis and worsens dietinduced insulin resistance in mice, Journal of lipid research, vol.57, pp.100-108, 2016.

B. Tao, W. Jin, J. Xu, Z. Liang, J. Yao et al., Myeloid-specific disruption of tyrosine phosphatase Shp2 promotes alternative activation of macrophages and predisposes mice to pulmonary fibrosis, J Immunol, vol.193, pp.2801-2811, 2014.

I. M. Van-der-sluis, M. A. De-ridder, A. M. Boot, E. P. Krenning, and S. M. De-muinck-keizer-schrama, Reference data for bone density and body composition measured with dual, 2002.

J. Wang, M. Mizui, L. F. Zeng, R. Bronson, M. Finnell et al., Inhibition of SHP2 ameliorates the pathogenesis of systemic lupus erythematosus, The Journal of clinical investigation, vol.126, pp.2077-2092, 2016.

K. E. Wellen and G. S. Hotamisligil, Inflammation, stress, and diabetes, The Journal of clinical investigation, vol.115, pp.1111-1119, 2005.

X. Wu, J. Simpson, J. H. Hong, K. H. Kim, N. K. Thavarajah et al., MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1(L613V) mutation, J. Clin. Invest, vol.121, pp.1009-1025, 2011.

D. Xu, S. Wang, W. M. Yu, G. Chan, T. Araki et al., A germline gain-of-function mutation in Ptpn11 (Shp-2) phosphatase induces myeloproliferative disease by aberrant activation of hematopoietic stem cells, Blood, vol.116, pp.3611-3621, 2010.

J. Xu, B. Tao, X. Guo, S. Zhou, Y. Li et al., , 2017.

, Macrophage-Restricted Shp2 Tyrosine Phosphatase Acts as a Rheostat for MMP12 through TGF-beta Activation in the Prevention of Age-Related Emphysema in Mice, J Immunol, vol.199, pp.2323-2332

E. E. Zhang, E. Chapeau, K. Hagihara, and G. S. Feng, Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.16064-16069, 2004.

S. Q. Zhang, W. G. Tsiaras, T. Araki, G. Wen, L. Minichiello et al., , 2002.

, Receptor-specific regulation of phosphatidylinositol 3'-kinase activation by the protein tyrosine phosphatase Shp2, Mol. Cell. Biol, vol.22, pp.4062-4072

S. S. Zhang, E. Hao, J. Yu, W. Liu, J. Wang et al., Coordinated regulation by Shp2 tyrosine phosphatase of signaling events controlling insulin biosynthesis in pancreatic beta-cells, Proceedings of the National Academy of Sciences of the United States of America, vol.106, pp.7531-7536, 2009.

L. Zhao, J. Xia, T. Li, H. Zhou, W. Ouyang et al., Shp2 Deficiency Impairs the Inflammatory Response Against Haemophilus influenzae by Regulating Macrophage Polarization, The Journal of infectious diseases, vol.214, pp.625-633, 2016.

Y. Zheng, S. H. Ley, and F. B. Hu, Global aetiology and epidemiology of type 2 diabetes mellitus and its complications, Nature reviews, vol.14, pp.88-98, 2018.

Y. M. Bibliographie-agazie and M. J. Hayman, Molecular Mechanism for a Role of SHP2 in Epidermal Growth Factor Receptor Signaling, Molecular and Cellular Biology, vol.23, pp.7875-7886, 2003.

Y. M. Agazie and M. J. Hayman, Molecular Mechanism for a Role of SHP2 in Epidermal Growth Factor Receptor Signaling, Molecular and Cellular Biology, vol.23, pp.7875-7886, 2003.

V. Aguirre, T. Uchida, L. Yenush, D. R. White, and M. F. , The c-Jun NH 2 -terminal Kinase Promotes Insulin Resistance during Association with Insulin Receptor Substrate-1 and Phosphorylation of Ser 307, Journal of Biological Chemistry, vol.275, pp.9047-9054, 2000.

U. Ahlgren, J. Jonsson, L. Jonsson, K. Simu, and H. Edlund, B-Cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the b-cell phenotype and maturity onset diabetes, Genes & Development, vol.12, pp.1763-1768, 1998.

K. Alberti, P. Zimmet, and J. Shaw, Metabolic syndrome-a new world-wide definition. A Consensus Statement from the International Diabetes Federation, Diabetic Medicine, vol.23, pp.469-480, 2006.

D. R. Alessi, S. R. James, P. C. Downes, A. B. Holmes, and P. Gaffney, Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B?, Current Biology, vol.7, pp.261-269, 1997.

J. N. Andersen, O. H. Mortensen, G. H. Peters, P. G. Drake, and L. F. Iversen, Structural and Evolutionary Relationships among Protein Tyrosine Phosphatase Domains, Molecular and Cellular Biology, vol.21, pp.7117-7136, 2001.

Y. Aoki, T. Niihori, T. Banjo, N. Okamoto, and S. Mizuno, Gain-of-Function Mutations in RIT1, 2013.

, Cause Noonan Syndrome, a RAS/MAPK Pathway Syndrome, The American Journal of Human Genetics, vol.93, pp.173-180

T. Araki, G. Chan, S. Newbigging, L. Morikawa, and R. T. Bronson, Noonan syndrome cardiac defects are caused by PTPN11 acting in endocardium to enhance endocardial-mesenchymal transformation, Proceedings of the National Academy of Sciences, vol.106, pp.4736-4741, 2009.

T. Araki, M. G. Mohi, F. A. Ismat, R. T. Bronson, and I. R. Williams, Mouse model of Noonan syndrome reveals cell type-and gene dosage-dependent effects of Ptpn11 mutation, Nature Medicine, vol.10, pp.849-857, 2004.

T. Araki, H. Nawa, and B. G. Neel, Tyrosyl Phosphorylation of Shp2 Is Required for Normal ERK Activation in Response to Some, but Not All, Growth Factors, Journal of Biological Chemistry, vol.278, pp.41677-41684, 2003.

M. C. Arkan, A. L. Hevener, F. R. Greten, S. Maeda, and Z. Li, IKK-? links inflammation to obesityinduced insulin resistance, Nature Medicine, vol.11, pp.191-198, 2005.

R. L. Austin, A. Rune, K. Bouzakri, J. R. Zierath, and A. Krook, siRNA-Mediated Reduction of Inhibitor of Nuclear Factor-B Kinase Prevents Tumor Necrosis Factor--Induced Insulin Resistance in Human Skeletal Muscle, Diabetes, vol.57, pp.2066-2073, 2008.

A. S. Banks, F. E. Mcallister, J. Camporez, P. Zushin, and M. J. Jurczak, An ERK/Cdk5 axis controls the diabetogenic actions of PPAR?, Nature, vol.517, pp.391-395, 2015.

R. Banno, D. Zimmer, B. C. De-jonghe, M. Atienza, and K. Rak, and SHP2 in POMC neurons reciprocally regulate energy balance in mice, Journal of Clinical Investigation, vol.120, pp.720-734, 2010.

E. A. Bard-chapeau, S. Li, J. Ding, S. S. Zhang, and H. H. Zhu, Ptpn11/Shp2 Acts as a Tumor Suppressor in Hepatocellular Carcinogenesis, Cancer Cell, vol.19, pp.629-639, 2011.

E. A. Bard-chapeau, J. Yuan, N. Droin, S. Long, and E. E. Zhang, Concerted Functions of Gab1 and Shp2 in Liver Regeneration and Hepatoprotection, Molecular and Cellular Biology, vol.26, pp.4664-4674, 2006.

D. Barford and B. G. Neel, Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2, Structure, vol.6, pp.249-254, 1998.

T. J. Bauler, N. Kamiya, P. E. Lapinski, E. Langewisch, and Y. Mishina, Development of severe skeletal defects in induced SHP-2-deficient adult mice: a model of skeletal malformation in humans with SHP-2 mutations, Disease Models & Mechanisms, vol.4, pp.228-239, 2011.

A. M. Bennett, T. L. Tang, S. Sugimoto, C. T. Walsh, and B. G. Neel, Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor B to Ras, vol.91, pp.7335-7339, 1994.

M. Bentires-alj, J. G. Paez, F. S. David, H. Keilhack, and B. Halmos, Activating Mutations of the Noonan Syndrome-Associated Gene in Human Solid Tumors and Adult Acute Myelogenous Leukemia, Cancer Research, vol.64, pp.8816-8820, 2004.

J. L. Bento, N. D. Palmer, J. C. Mychaleckyj, L. A. Lange, and C. D. Langefeld, Association of Protein Tyrosine Phosphatase 1B Gene Polymorphisms With Type 2 Diabetes, Diabetes, vol.53, pp.3007-3012, 2004.

A. Bettaieb, K. Matsuo, I. Matsuo, N. Nagata, and S. Chahed, Adipose-specific deletion of Src homology phosphatase 2 does not significantly alter systemic glucose homeostasis, Metabolism, vol.60, pp.1193-1201, 2011.

A. Bettaieb, K. Matsuo, I. Matsuo, S. Wang, and R. Melhem, Protein Tyrosine Phosphatase 1B Deficiency Potentiates PERK/eIF2a Signaling in Brown Adipocytes, PLoS ONE, vol.7, p.10, 2012.

E. O. Billington, A. Grey, and M. J. Bolland, The effect of thiazolidinediones on bone mineral density and bone turnover: systematic review and meta-analysis, Diabetologia, vol.58, pp.2238-2246, 2015.

G. Binder, S. Grathwol, K. Von-loeper, G. Blumenstock, and R. Kaulitz, Health and Quality of Life in Adults with Noonan Syndrome, The Journal of Pediatrics, vol.161, pp.501-505, 2012.

G. Boden, P. Cheung, T. P. Stein, K. Kresge, and M. Mozzoli, FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis, American Journal of Physiology-Endocrinology and Metabolism, vol.283, pp.12-19, 2002.

M. Bonetti, J. Paardekooper-overman, F. Tessadori, E. Noël, and J. Bakkers, Noonan and LEOPARD syndrome Shp2 variants induce heart displacement defects in zebrafish, 2014.

, Development, vol.141, 1961.

M. R. Boon, L. Bakker, M. C. Haks, E. Quinten, and G. Schaart, Short-term high-fat diet increases macrophage markers in skeletal muscle accompanied by impaired insulin signalling in healthy male subjects, Clinical Science, vol.128, pp.143-151, 2015.

J. Boucher, A. Kleinridders, and C. R. Kahn, Insulin Receptor Signaling in Normal and Insulin-Resistant States, Cold Spring Harbor Perspectives in Biology, vol.6, p.9191, 2014.

K. Bouzakri, M. Roques, P. Gual, S. Espinosa, and F. Guebre-egziabher, Reduced Activation of Phosphatidylinositol-3 Kinase and Increased Serine 636 Phosphorylation of Insulin Receptor Substrate-1 in Primary Culture of Skeletal Muscle Cells From Patients With Type 2 Diabetes, Diabetes, vol.52, pp.1319-1325, 2003.

M. E. Bowen, U. M. Ayturk, K. C. Kurek, Y. W. Warman, and M. L. , SHP2 Regulates Chondrocyte Terminal Differentiation, Growth Plate Architecture and Skeletal Cell Fates AOM Wilkie, PLoS Genetics, vol.10, p.1004364, 2014.

M. E. Bowen, E. D. Boyden, I. A. Holm, B. Campos-xavier, and L. Bonafé, Loss-of-Function Mutations in PTPN11 Cause Metachondromatosis, but Not Ollier Disease or Maffucci Syndrome AOM Wilkie, PLoS Genetics, vol.7, p.1002050, 2011.

L. Braiman, Insulin Induces Specific Interaction between Insulin Receptor and Protein Kinase C in Primary Cultured Skeletal Muscle, Molecular Endocrinology, vol.15, pp.565-574, 2001.

P. A. Bromann, H. Korkaya, and S. A. Courtneidge, The interplay between Src family kinases and receptor tyrosine kinases, Oncogene, vol.23, pp.7957-7968, 2004.

S. Bunda, K. Burrell, P. Heir, L. Zeng, and A. Alamsahebpour, Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis, Nature Communications, p.6, 2015.

J. M. Do-carmo, A. A. Da-silva, S. E. Ebaady, P. O. Sessums, and R. S. Abraham, Shp2 signaling in POMC neurons is important for leptin's actions on blood pressure, energy balance, and glucose regulation, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.307, pp.1438-1447, 2014.

R. D. Case, E. Piccione, G. Wolf, A. M. Benett, and B. G. Neel, SH-PTP2Byp SH2 DomainBinding SpecificityIs Defined by Direct Interactions with Platelet-derived Growth Factor P-Receptor, Epidermal GrowthFactor Receptor, and Insulin Receptor Substrate-1-derived Phosphopeptides, The Journal of Biological Chemistry, vol.269, pp.10467-10474, 1994.

H. Cederberg, T. Saukkonen, M. Laakso, J. Jokelainen, and P. Harkonen, Postchallenge Glucose, A1C, and Fasting Glucose as Predictors of Type 2 Diabetes and Cardiovascular Disease: A 10-year prospective cohort study, Diabetes Care, vol.33, pp.2077-2083, 2010.

G. Chan, L. S. Cheung, W. Yang, M. Milyavsky, and A. D. Sanders, Essential role for Ptpn11 in survival of hematopoietic stem and progenitor cells, Blood, vol.117, pp.4253-4261, 2011.

G. Chan, D. Kalaitzidis, T. Usenko, J. L. Kutok, and Y. W. , Leukemogenic Ptpn11 causes fatal myeloproliferative disorder via cell-autonomous effects on multiple stages of hematopoiesis, Blood, vol.113, pp.4414-4424, 2009.

R. J. Chan, Human somatic PTPN11 mutations induce hematopoietic-cell hypersensitivity to granulocyte-macrophage colony-stimulating factor, Blood, vol.105, pp.3737-3742, 2005.

R. J. Chan, Y. Li, M. N. Hass, A. Walter, and C. S. Voorhorst, Shp-2 heterozygous hematopoietic stem cells have deficient repopulating ability due to diminished self-renewal, Experimental Hematology, vol.34, pp.1229-1238, 2006.

G. Charrière, B. Cousin, E. Arnaud, M. André, and F. Bacou, Preadipocyte Conversion to Macrophage: EVIDENCE OF PLASTICITY, Journal of Biological Chemistry, vol.278, pp.9850-9855, 2003.

Y. Chen, R. Wen, S. Yang, J. Schuman, and E. E. Zhang, Identification of Shp-2 as a Stat5A Phosphatase, Journal of Biological Chemistry, vol.278, pp.16520-16527, 2003.

Y. Chen, M. J. Lamarche, H. M. Chan, P. Fekkes, and J. Garcia-fortanet, Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases, Nature, vol.535, pp.148-152, 2016.

H. Choi, P. Shin, J. Lee, W. Choi, and M. Kang, Anti-inflammatory effect of lovastatin is mediated via the modulation of NF-?B and inhibition of HDAC1 and the PI3K/Akt/mTOR pathway in RAW264.7 macrophages, International Journal of Molecular Medecine, vol.41, pp.1103-1109, 2017.

W. Choi, J. Yoo, K. Park, and K. Kim, LEOPARD Syndrome with a New Association of Congenital Corneal Tumor, Choristoma. Pediatric Dermatology, vol.20, pp.158-160, 2003.

D. Choukair, U. Hügel, A. Sander, L. Uhlmann, and B. Tönshoff, Inhibition of IGF-I-related intracellular signaling pathways by proinflammatory cytokines in growth plate chondrocytes, Pediatric Research, vol.76, pp.245-251, 2014.

N. Chughtai, S. Schimchowitsch, J. Lebrun, and A. S. , Prolactin Induces SHP-2 Association with Stat5, Nuclear Translocation, and Binding to the ?-Casein Gene Promoter in Mammary Cells, Journal of Biological Chemistry, vol.277, pp.31107-31114, 2002.

V. Cleghon, P. Feldmann, C. Ghiglione, T. D. Copeland, and N. Perrimon, Opposing Actions of CSW and RasGAP Modulate the Strength of Torso RTK Signaling in the Drosophila Terminal Pathway, Molecular Cell, vol.2, pp.719-727, 1998.

S. Clément, U. Krause, F. Desmedt, J. Tanti, and J. Behrends, The lipid phosphatase SHIP2 controls insulin sensitivity, Nature, vol.409, pp.92-97, 2001.

B. A. Cooperberg and P. E. Cryer, Insulin Reciprocally Regulates Glucagon Secretion in Humans, Diabetes, vol.59, pp.2936-2940, 2010.

K. D. Copps and M. F. White, Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2, Diabetologia, vol.55, pp.2565-2582, 2012.

M. Dance, A. Montagner, J. Salles, A. Yart, and P. Raynal, The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway, Cellular Signalling, vol.20, pp.453-459, 2008.

L. Dardaei, H. Q. Wang, M. Singh, P. Fordjour, and K. X. Shaw, SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors, Nature Medicine, vol.24, pp.512-517, 2018.

E. Darian, O. Guvench, B. Yu, C. Qu, and A. D. Mackerell, Structural mechanism associated with domain opening in gain-of-function mutations in SHP2 phosphatase, Proteins: Structure, Function, and Bioinformatics, vol.79, pp.1573-1588, 2011.

D. Benedetti, F. Alonzi, T. Moretta, A. Lazzaro, D. Costa et al., Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation, Journal of Clinical Investigation, vol.99, pp.643-650, 1997.

K. De-fea and R. A. Roth, Modulation of Insulin Receptor Substrate-1 Tyrosine Phosphorylation and Function by Mitogen-activated Protein Kinase, Journal of Biological Chemistry, vol.272, pp.31400-31406, 1997.

T. B. Deb, L. Wong, D. S. Salomon, G. Zhou, and J. E. Dixon, A Common Requirement for the Catalytic Activity and Both SH2 Domains of SHP-2 in Mitogen-activated Protein (MAP) Kinase Activation by the ErbB Family of Receptors, Journal of Biological Chemistry, vol.273, pp.16643-16646, 1998.

R. A. Defronzo, The Triumvirate: p-Cell, Muscle, Liver. A Collusion Responsible for NIDDM. Diabetes, p.37, 1988.

R. A. Defronzo, From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus, Diabetes, vol.58, pp.773-795, 2009.

R. A. Defronzo, E. Ferrannini, L. Groop, R. R. Henry, and W. H. Herman, Type 2 diabetes mellitus, Nature Reviews Disease Primers, p.15019, 2015.

Z. Deng, S. Ma, H. Zhou, A. Zang, and Y. Fang, Tyrosine phosphatase SHP-2 mediates C-type lectin receptor-induced activation of the kinase Syk and anti-fungal TH17 responses, Nature Immunology, vol.16, pp.642-652, 2015.

J. M. Denu and J. E. Dixon, Protein tyrosine phosphatases: mechanisms of catalysis and regulation, Current Biology, pp.633-641, 1998.

J. Diamond, The double puzzle of diabetes, Nature, vol.423, pp.599-602, 2003.

M. C. Digilio, E. Conti, A. Sarkozy, R. Mingarelli, and T. Dottorini, Grouping of Multiple-Lentigines/LEOPARD and Noonan Syndromes on the PTPN11 Gene, The American Journal of Human Genetics, vol.71, pp.389-394, 2002.

S. Ding, M. M. Chi, B. P. Scull, R. Rigby, and N. Schwerbrock, High-Fat Diet: Bacteria Interactions Promote Intestinal Inflammation Which Precedes and Correlates with Obesity and Insulin Resistance in Mouse S Gaetani, PLoS ONE, vol.5, p.12191, 2010.

G. Dixon, A comparative study of amino acid consumption by rat islet cells and the clonal betacell line BRIN-BD11 -the functional significance of L-alanine, Journal of Endocrinology, vol.179, pp.447-454, 2003.

H. Dominguez, H. Storgaard, C. Rask-madsen, S. Hermann, T. Ihlemann et al., Metabolic and Vascular Effects of Tumor Necrosis Factor-? Blockade with Etanercept in Obese Patients with Type 2 Diabetes, Journal of Vascular Research, vol.42, pp.517-525, 2005.

M. Y. Donath, M. Böni-schnetzler, H. Ellingsgaard, and J. A. Ehses, Islet Inflammation Impairs the Pancreatic ?-Cell in Type 2 Diabetes, Physiology, vol.24, pp.325-331, 2009.

L. Dong, W. Yu, H. Zheng, M. L. Loh, and S. T. Bunting, Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment, Nature, vol.539, pp.304-308, 2016.

X. C. Dong, K. D. Copps, S. Guo, Y. Li, and R. Kollipara, Inactivation of Hepatic Foxo1 by Insulin Signaling Is Required for Adaptive Nutrient Homeostasis and Endocrine Growth Regulation, Cell Metabolism, vol.8, pp.65-76, 2008.

A. Dresner, D. Laurent, M. Marcucci, M. E. Griffin, and S. Dufour, Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity, Journal of Clinical Investigation, vol.103, pp.253-259, 1999.

A. Duarte, C. Poderoso, M. Cooke, G. Soria, C. Maciel et al., Mitochondrial Fusion Is Essential for Steroid Biosynthesis J-M Vanacker, vol.7, p.45829, 2012.

E. Dubois, M. Jacoby, M. Blockmans, E. Pernot, and S. N. Schiffmann, Developmental defects and rescue from glucose intolerance of a catalytically-inactive novel Ship2 mutant mouse, Cellular Signalling, vol.24, pp.1971-1980, 2012.

T. Edouard, J. P. Combier, A. Nedelec, S. Bel-vialar, and M. Metrich, Functional Effects of PTPN11 (SHP2) Mutations Causing LEOPARD Syndrome on Epidermal Growth Factor-Induced Phosphoinositide 3-Kinase/AKT/Glycogen Synthase Kinase 3 Signaling, Molecular and Cellular Biology, vol.30, pp.2498-2507, 2010.

K. Eguchi, I. Manabe, Y. Oishi-tanaka, M. Ohsugi, and N. Kono, Saturated Fatty Acid and TLR Signaling Link ? Cell Dysfunction and Islet Inflammation, Cell Metabolism, vol.15, pp.518-533, 2012.

A. B. Eisenstein and I. Strack, Amino Acid Stimulation of Glucagon Secretion by Perifused Islets of High-protein-fed Rats, Diabetes, vol.27, pp.370-376, 1978.

M. Elchebly, Increased Insulin Sensitivity and Obesity Resistance in Mice Lacking the Protein Tyrosine Phosphatase-1B Gene, Science, vol.283, pp.1544-1548, 1999.

B. Emanuelli, P. Peraldi, C. Filloux, D. Sawka-verhelle, and D. Hilton, SOCS-3 Is an Insulin-induced Negative Regulator of Insulin Signaling, Journal of Biological Chemistry, vol.275, pp.15985-15991, 2000.

S. Eminaga and A. M. Bennett, Noonan Syndrome-associated SHP-2/ Ptpn11 Mutants Enhance SIRP? and PZR Tyrosyl Phosphorylation and Promote Adhesion-mediated ERK Activation, Journal of Biological Chemistry, vol.283, pp.15328-15338, 2008.

H. Eto, H. Ishimine, K. Kinoshita, K. Watanabe-susaki, and H. Kato, Characterization of Human Adipose Tissue-Resident Hematopoietic Cell Populations Reveals a Novel Macrophage Subpopulation with CD34 Expression and Mesenchymal Multipotency, Stem Cells and Development, vol.22, pp.985-997, 2013.

I. S. Farooqi, G. Yeo, J. M. Keogh, S. Aminian, and S. A. Jebb, Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency, Journal of Clinical Investigation, vol.106, pp.271-279, 2000.

G. Favrais, Y. Van-de-looij, B. Fleiss, N. Ramanantsoa, and P. Bonnin, Systemic inflammation disrupts the developmental program of white matter, Annals of Neurology, vol.70, pp.550-565, 2011.

C. Fedele, H. Ran, B. Diskin, W. Wei, and J. J. , SHP2 Inhibition Abrogates MEK inhibitor Resistance in Multiple Cancer Models, 2018.

G. Feng, Shp2 as a therapeutic target for leptin resistance and obesity, Expert Opinion on Therapeutic Targets, vol.10, pp.135-142, 2006.

L. N. Fink, S. R. Costford, Y. S. Lee, T. E. Jensen, and P. J. Bilan, Pro-Inflammatory macrophages increase in skeletal muscle of high fat-Fed mice and correlate with metabolic risk markers in humans: Muscle Macrophages in Obesity and Diabetes, Obesity, vol.22, pp.747-757, 2014.

T. J. Fisher, N. Williams, L. Morris, and P. J. Cundy, Metachondromatosis: more than just multiple osteochondromas, Journal of Children's Orthopaedics, vol.7, pp.455-464, 2013.

H. Florez, J. Luo, S. Castillo-florez, G. Mitsi, and J. Hanna, Impact of Metformin-Induced Gastrointestinal Symptoms on Quality of Life and Adherence in Patients with Type, 2010.

, Diabetes. Postgraduate Medicine, vol.122, pp.112-120

A. Fragale, M. Tartaglia, J. Wu, and B. D. Gelb, Noonan syndrome-associated SHP2/PTPN11 mutants cause EGF-dependent prolonged GAB1 binding and sustained ERK2/MAPK1 activation, Human Mutation, vol.23, pp.267-277, 2004.

Z. Fu, E. R. Gilbert, and D. Liu, Regulation of Insulin Synthesis and Secretion and Pancreatic Beta-Cell Dysfunction in Diabetes, Current Diabetes Reviews, vol.9, pp.25-53, 2013.

A. Gastaldelli, E. Ferrannini, Y. Miyazaki, M. Matsuda, and M. A. , Thiazolidinediones improve ?cell function in type 2 diabetic patients, American Journal of Physiology-Endocrinology and Metabolism, vol.292, pp.871-883, 2007.

A. Girousse, G. Tavernier, C. Valle, C. Moro, and N. Mejhert, Partial Inhibition of Adipose Tissue Lipolysis Improves Glucose Metabolism and Insulin Sensitivity Without Alteration of Fat Mass S O'Rahilly, PLoS Biology, p.1001485, 2013.

E. Gomez-perdiguero, K. Klapproth, C. Schulz, K. Busch, and E. Azzoni, Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors, Nature, vol.518, pp.547-551, 2015.

A. Goriely, G. Mcvean, M. Röjmyr, B. Ingemarsson, and A. Wilkie, Evidence for Selective Advantage of Pathogenic FGFR2 Mutations in the Male Germ Line, Science, New Series, vol.301, pp.643-646, 2003.

Y. Gosmain, N. Dif, V. Berbe, E. Loizon, and J. Rieusset, Regulation of SREBP-1 expression and transcriptional action on HKII and FAS genes during fasting and refeeding in rat tissues, Journal of Lipid Research, vol.46, pp.697-705, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02048999

T. Gouveia, F. A. Scorza, M. Silva, A. Bandeira-t-de, and S. R. Perosa, Lovastatin decreases the synthesis of inflammatory mediators in the hippocampus and blocks the hyperthermia of rats submitted to long-lasting status epilepticus, Epilepsy & Behavior, vol.20, pp.1-5, 2011.

H. F. Green and Y. M. Nolan, Inflammation and the developing brain: Consequences for hippocampal neurogenesis and behavior, Neuroscience & Biobehavioral Reviews, vol.40, pp.20-34, 2014.

M. F. Gregor and G. S. Hotamisligil, Inflammatory Mechanisms in Obesity, Annual Review of Immunology, vol.29, pp.415-445, 2011.

J. Gromada, F. I. Wollheim, and C. B. , ) ?-Cells of the Endocrine Pancreas: 35 Years of Research but the Enigma Remains, Endocrine Reviews, vol.28, pp.84-116, 2007.

P. Gual, L. Marchand-brustel, Y. Tanti, and J. , Positive and negative regulation of insulin signaling through IRS-1 phosphorylation, Biochimie, vol.87, pp.99-109, 2005.

G. Guglielmo, P. G. Drake, P. C. Baass, F. Authier, and B. I. Posner, Insulin receptor internalization and signalling, Insulin Action, pp.59-63, 1998.

D. P. Guh, W. Zhang, N. Bansback, Z. Amarsi, and C. L. Birmingham, The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis, p.9, 2009.

H. P. Guler, C. Schmid, J. Zapf, and E. R. Froesch, Effects of recombinant insulin-like growth factor I on insulin secretion and renal function in normal human subjects, Proceedings of the National Academy of Sciences, vol.86, pp.2868-2872, 1989.

S. Guo, Insulin signaling, resistance, and metabolic syndrome: insights from mouse models into disease mechanisms, Journal of Endocrinology, vol.220, pp.1-23, 2014.

W. Guo, W. Liu, Z. Chen, Y. Gu, and S. Peng, Tyrosine phosphatase SHP2 negatively regulates NLRP3 inflammasome activation via ANT1-dependent mitochondrial homeostasis, Nature Communications, vol.8, 2017.

M. J. Gutch, A. J. Flint, J. Keller, N. K. Tonks, and M. O. Hengartner, The Caenorhabditis elegans SH2 domain-containing protein tyrosine phosphatase PTP-2 participates in signal transduction during oogenesis and vulval development, Genes & Development, vol.12, pp.571-585, 1998.

A. Hahn, J. Lauriol, J. Thul, K. Behnke-hall, and T. Logeswaran, Rapidly progressive hypertrophic cardiomyopathy in an infant with Noonan syndrome with multiple lentigines: Palliative treatment with a rapamycin analog, American Journal of Medical Genetics Part A, vol.167, pp.744-751, 2015.

J. Han, Y. J. Koh, H. R. Moon, H. G. Ryoo, and C. Cho, Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells, Blood, vol.115, pp.957-964, 2010.

H. Hanafusa, S. Torii, T. Yasunaga, K. Matsumoto, and E. Nishida, Shp2, an SH2-containing Proteintyrosine Phosphatase, Positively Regulates Receptor Tyrosine Kinase Signaling by Dephosphorylating and Inactivating the Inhibitor Sprouty, Journal of Biological Chemistry, vol.279, pp.22992-22995, 2004.

H. Hanafusa, S. Torii, T. Yasunaga, and E. Nishida, Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway, Nature Cell Biology, vol.4, pp.850-858, 2002.

N. Hanna, A. Montagner, W. H. Lee, M. Miteva, and M. Vidal, Reduced phosphatase activity of SHP-2 in LEOPARD syndrome: Consequences for PI3K binding on Gab1, FEBS Letters, vol.580, pp.2477-2482, 2006.

Z. He, S. S. Zhang, Q. Meng, S. Li, and H. H. Zhu, Shp2 Controls Female Body Weight and Energy Balance by Integrating Leptin and Estrogen Signals, Molecular and Cellular Biology, vol.32, pp.1867-1878, 2012.

Z. He, H. H. Zhu, T. J. Bauler, J. Wang, and T. Ciaraldi, Nonreceptor tyrosine phosphatase Shp2 promotes adipogenesis through inhibition of p38 MAP kinase, Proceedings of the National Academy of Sciences, vol.110, pp.79-88, 2013.

A. V. Hernandez, A. Usmani, A. Rajamanickam, and A. Moheet, Thiazolidinediones and Risk of Heart Failure in Patients with or at High Risk of Type 2 Diabetes Mellitus, American Journal of Cardiovascular Drugs, vol.11, pp.115-128, 2011.

S. Herzig, F. Long, U. S. Jhala, S. Hedrick, and R. Quinn, CREB regulates hepatic gluconeogenesis through the coactivator PGC-1, Nature, vol.413, pp.179-183, 2001.

J. Heuberger, F. Kosel, J. Qi, K. S. Grossmann, and K. Rajewsky, Shp2/MAPK signaling controls goblet/paneth cell fate decisions in the intestine, Proceedings of the National Academy of Sciences, vol.111, pp.3472-3477, 2014.

M. Higa, Y. Zhou, M. Ravazzola, D. Baetens, and L. Orci, Troglitazone prevents mitochondrial alterations, cell destruction, and diabetes in obese prediabetic rats, Proc. Natl. Acad. Sci, 1999.

P. Hof, S. Pluskey, S. Dhe-paganon, M. J. Eck, and S. E. Shoelson, Crystal Structure of the Tyrosine Phosphatase SHP-2, Cell, vol.92, pp.441-450, 1998.

J. Hong, P. B. Jeppesen, I. Nordentoft, and K. Hermansen, Fatty acid-induced effect on glucagon secretion is mediated via fatty acid oxidation, Diabetes/Metabolism Research and Reviews, vol.23, pp.202-210, 2007.

B. D. Hopkins, C. Pauli, X. Du, D. G. Wang, and X. Li, Suppression of insulin feedback enhances the efficacy of PI3K inhibitors, Nature, vol.560, pp.499-503, 2018.

G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, Adipose Expression of Tumor Necrosis Factor-x: Direct Role in Obesity-Linked Insulin Resistance, Science, vol.259, pp.87-91, 1993.

A. Y. Hsu, T. Gurol, T. Sobreira, S. Zhang, and N. Moore, Development and Characterization of an Endotoxemia Model in Zebra Fish, Frontiers in Immunology, p.9, 2018.

F. B. Hu, J. E. Manson, M. J. Stampfer, G. Colditz, and S. Liu, Diet, Lifestyle, and the Risk of Type 2 Diabetes Mellitus in Women, The New England Journal of Medicine, vol.345, pp.790-797, 2001.

Z. Hu, I. H. Lee, X. Wang, H. Sheng, and L. Zhang, PTEN Expression Contributes to the Regulation of Muscle Protein Degradation in Diabetes, Diabetes, vol.56, pp.2449-2456, 2007.

L. Hugues, H. Cavé, P. N. Pereira, S. Fenaux, and P. , Mutations of PTPN11 are rare in adult myeloid malignancies, Haematologica, vol.90, pp.853-854, 2005.

H. Ishida, S. Kogaki, J. Narita, H. Ichimori, and N. Nawa, LEOPARD-type SHP2 mutant Gln510Glu attenuates cardiomyocyte differentiation and promotes cardiac hypertrophy via dysregulation of Akt/GSK-3 / -catenin signaling, American Journal of Physiology-Heart and Circulatory Physiology, vol.301, pp.1531-1539, 2011.

B. Isomaa, P. Almgren, T. Tuomi, B. Forsen, and K. Lahti, Cardiovascular Morbidity and Mortality Associated With the Metabolic Syndrome, Diabetes Care, vol.24, pp.683-689, 2001.

H. Ito, H. Ishida, Y. Takeuchi, S. Antoku, and M. Abe, Long-term effect of metformin on blood glucose control in non-obese patients with type 2 diabetes mellitus, Nutrition & Metabolism, vol.7, p.83, 2010.

A. Ivanovs, S. Rybtsov, E. S. Ng, E. G. Stanley, and A. G. Elefanty, Human haematopoietic stem cell development: from the embryo to the dish, Development, vol.144, pp.2323-2337, 2017.

J. De-jager, A. Kooy, P. Lehert, M. G. Wulffele, and J. Van-der-kolk, Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: randomised placebo controlled trial, BMJ, vol.340, pp.2181-2181, 2010.

S. Jakob, P. Schroeder, M. Lukosz, N. Büchner, and I. Spyridopoulos, Nuclear Protein Tyrosine Phosphatase Shp-2 Is One Important Negative Regulator of Nuclear Export of Telomerase Reverse Transcriptase, Journal of Biological Chemistry, vol.283, pp.33155-33161, 2008.

R. C. Jamieson, I. Van-der-burgt, A. F. Brady, M. Van-reen, and M. M. Elsawi, Mapping a gene for Noonan syndrome to the long arm of chromosome 12, Nature Genetics, vol.8, pp.357-360, 1994.

Y. Jamshidi, S. B. Gooljar, H. Snieder, X. Wang, and D. Ge, SHP-2 and PI3-kinase genes PTPN11 and PIK3R1 may influence serum apoB and LDL cholesterol levels in normal women, 2007.

, Atherosclerosis, vol.194, pp.26-33

J. Y. Jang, J. H. Min, Y. H. Chae, J. Y. Baek, and S. B. Wang, Reactive Oxygen Species Play a Critical Role in Collagen-Induced Platelet Activation SHP-2 Oxidation, Antioxidants & Redox Signaling, vol.20, pp.2528-2540, 2014.

Z. Jia, X. Cao, D. Cao, F. Kong, and P. Kharbuja, Polymorphisms of PTPN11 gene could influence serum lipid levels in a sex-specific pattern, Lipids in Health and Disease, vol.12, p.72, 2013.

G. Jiang and B. B. Zhang, Glucagon and regulation of glucose metabolism, American Journal of Physiology-Endocrinology and Metabolism, vol.284, pp.671-678, 2003.

C. Jopling and D. Van-geemen, Shp2 Knockdown and Noonan/LEOPARD Mutant Shp2-Induced Gastrulation Defects, PLoS Genetics, vol.3, p.9, 2007.

S. Kagawa, T. Sasaoka, S. Yaguchi, H. Ishihara, and H. Tsuneki, Impact of Src Homology 2-Containing Inositol 5?-Phosphatase 2 Gene Polymorphisms Detected in a Japanese Population on Insulin Signaling, The Journal of Clinical Endocrinology & Metabolism, vol.90, pp.2911-2919, 2005.

P. J. Kaisaki, M. Delepine, P. Y. Woon, L. Sebag-montefiore, and S. P. Wilder, Polymorphisms in Type II SH2 Domain-Containing Inositol 5-Phosphatase (INPPL1, SHIP2) Are Associated With Physiological Abnormalities of the Metabolic Syndrome, Diabetes, vol.53, pp.1900-1904, 2004.

C. Kan, Y. F. , and W. S. , SHP2-Mediated Signal Networks in Stem Cell Homeostasis and Dysfunction, Stem Cells International, pp.1-10, 2018.

H. J. Kang, D. Chung, S. Co, S. H. Yoo, and Y. E. , SHP2 is induced by the HBx-NF-κB pathway and contributes to fibrosis during human early hepatocellular carcinoma development, Oncotarget, vol.8, 2017.

S. Karmali, B. Brar, X. Shi, A. M. Sharma, and C. De-gara, Weight Recidivism Post-Bariatric Surgery: A Systematic Review, Obesity Surgery, vol.23, pp.1922-1933, 2013.

A. Katz, S. S. Nambi, K. Mather, A. D. Baron, and D. A. Follmann, Quantitative Insulin Sensitivity Check Index: A Simple, Accurate Method for Assessing Insulin Sensitivity In Humans, The Journal of Clinical Endocrinology & Metabolism, vol.85, p.9, 2000.

K. Kazankov, F. Barrera, H. J. Møller, B. M. Bibby, and H. Vilstrup, Soluble CD163, a macrophage activation marker, is independently associated with fibrosis in patients with chronic viral hepatitis B and C, Hepatology, vol.60, pp.521-530, 2014.

Y. Ke, E. E. Zhang, K. Hagihara, D. Wu, and Y. Pang, Deletion of Shp2 in the Brain Leads to Defective Proliferation and Differentiation in Neural Stem Cells and Early Postnatal Lethality, Molecular and Cellular Biology, vol.27, pp.6706-6717, 2007.

H. Keilhack, F. S. David, M. Mcgregor, L. C. Cantley, and B. G. Neel, Diverse Biochemical Properties of Shp2 Mutants: IMPLICATIONS FOR DISEASE PHENOTYPES, Journal of Biological Chemistry, vol.280, pp.30984-30993, 2005.

B. Keren, PTPN11 mutations in patients with LEOPARD syndrome: a French multicentric experience, Journal of Medical Genetics, vol.41, pp.117-117, 2004.

I. M. Khan, X. Perrard, G. Brunner, H. Lui, and L. M. Sparks, Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance, International Journal of Obesity, vol.39, pp.1607-1618, 2015.

H. K. Kim, G. Feng, C. D. King, P. D. Kamiya, and N. , Targeted Disruption of Shp2 in Chondrocytes Leads to Metachondromatosis With Multiple Cartilaginous Protrusions: A NOVEL METACHONDROMATOSIS MOUSE MODEL, Journal of Bone and Mineral Research, vol.29, pp.761-769, 2014.

J. K. Kim, O. Gavrilova, Y. Chen, M. L. Reitman, and G. I. Shulman, Mechanism of Insulin Resistance in A-ZIP/F-1 Fatless Mice, Journal of Biological Chemistry, vol.275, pp.8456-8460, 2000.

L. C. Kim, L. Song, and E. B. Haura, Src kinases as therapeutic targets for cancer, Nature Reviews Clinical Oncology, vol.6, pp.587-595, 2009.

T. Kitamura, J. Nakae, Y. Kitamura, Y. Kido, and W. Biggs, The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic b cell growth, The Journal of Clinical Investigation, vol.110, pp.1839-1847, 2002.

L. L. Kjems, J. J. Holst, A. Volund, and S. Madsbad, The Influence of GLP-1 on Glucose-Stimulated Insulin Secretion: Effects on -Cell Sensitivity in Type 2 and Nondiabetic Subjects, Diabetes, vol.52, pp.380-386, 2003.

L. D. Klaman, O. Boss, O. D. Peroni, J. K. Kim, and J. L. Martino, Increased Energy Expenditure, Decreased Adiposity, and Tissue-Specific Insulin Sensitivity in Protein-Tyrosine Phosphatase 1B-Deficient Mice, Molecular and Cellular Biology, vol.20, pp.5479-5489, 2000.

W. C. Knowler, E. Barrett-connor, S. E. Fowler, R. F. Hamman, and J. M. Lachin, Reduction In The Incidence Of Type 2 Diabetes With Lifestyle Intervention Or Metformin, New England Journal of Medicine, vol.346, pp.393-403, 2002.

M. I. Kontaridis, K. D. Swanson, F. S. David, D. Barford, and B. G. Neel, (Shp2) Mutations in LEOPARD Syndrome Have Dominant Negative, Not Activating, Effects, Journal of Biological Chemistry, vol.281, pp.6785-6792, 2006.

S. Koo, L. Flechner, L. Qi, X. Zhang, and R. A. Screaton, The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism, Nature, vol.437, pp.1109-1114, 2005.

K. Kotani, O. D. Peroni, Y. Minokoshi, O. Boss, and B. B. Kahn, GLUT4 glucose transporter deficiency increases hepatic lipid production and peripheral lipid utilization, Journal of Clinical Investigation, vol.114, pp.1666-1675, 2004.

M. Koudova, E. Seemanova, and M. Zenker, Novel BRAF mutation in a patient with LEOPARD syndrome and normal intelligence, European Journal of Medical Genetics, vol.52, pp.337-340, 2009.

A. T. Kraja, D. I. Chasman, K. E. North, A. P. Reiner, and L. R. Yanek, Pleiotropic genes for metabolic syndrome and inflammation, Molecular Genetics and Metabolism, vol.112, pp.317-338, 2014.

M. Krajewska, S. Banares, E. E. Zhang, X. Huang, and M. Scadeng, Development of Diabesity in Mice with Neuronal Deletion of Shp2 Tyrosine Phosphatase, The American Journal of Pathology, vol.172, pp.1312-1324, 2008.

C. P. Kratz, L. Franke, H. Peters, N. Kohlschmidt, and B. Kazmierczak, Cancer spectrum and frequency among children with Noonan, Costello and cardio-facio-cutaneous syndromes, 2015.

, British Journal of Cancer, vol.112, pp.1392-1397

M. Krenz, Noonan Syndrome Mutation Q79R in Shp2 Increases Proliferation of Valve Primordia Mesenchymal Cells via Extracellular Signal-Regulated Kinase 1/2 Signaling, Circulation Research, vol.97, pp.813-820, 2005.

M. Krenz, J. Gulick, H. E. Osinska, M. C. Colbert, and J. D. Molkentin, Role of ERK1/2 signaling in congenital valve malformations in Noonan syndrome, Proceedings of the National Academy of Sciences, vol.105, pp.18930-18935, 2008.

N. Kumashiro, D. M. Erion, D. Zhang, M. Kahn, and S. A. Beddow, Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease, Proceedings of the National Academy of Sciences, vol.108, pp.16381-16385, 2011.

C. Kurlawalla-martinez, B. Stiles, Y. Wang, S. U. Devaskar, and B. B. Kahn, Insulin Hypersensitivity and Resistance to Streptozotocin-Induced Diabetes in Mice Lacking PTEN in Adipose Tissue, Molecular and Cellular Biology, vol.25, pp.2498-2510, 2005.

J. Kurokawa, H. Nagano, O. Ohara, N. Kubota, and T. Kadowaki, Apoptosis inhibitor of macrophage (AIM) is required for obesity-associated recruitment of inflammatory macrophages into adipose tissue, Proceedings of the National Academy of Sciences, vol.108, pp.12072-12077, 2011.

D. E. Lackey and J. M. Olefsky, Regulation of metabolism by the innate immune system, Nature Reviews Endocrinology, vol.12, pp.15-28, 2016.

Y. Y. Lam, C. Ha, C. R. Campbell, A. J. Mitchell, and A. Dinudom, Increased Gut Permeability and Microbiota Change Associate with Mesenteric Fat Inflammation and Metabolic Dysfunction in Diet-Induced Obese Mice RR Zhang, PLoS ONE, vol.7, p.34233, 2012.

J. Lauriol and M. I. Kontaridis, PTPN11-Associated Mutations in the Heart: Has LEOPARD Changed Its RASpots?, Trends in Cardiovascular Medicine, vol.21, pp.97-104, 2011.

J. Lauriol, F. Jaffré, and M. I. Kontaridis, The role of the protein tyrosine phosphatase SHP2 in cardiac development and disease, Seminars in Cell & Developmental Biology, vol.37, pp.73-81, 2015.

D. Laux, C. Kratz, and A. Sauerbrey, Common Acute Lymphoblastic Leukemia in a Girl With Genetically Confirmed LEOPARD Syndrome, Journal of Pediatric Hematology/Oncology, vol.30, pp.602-604, 2008.

L. Marchand, S. J. Piston, and D. W. , Glucose Suppression of Glucagon Secretion: METABOLIC AND CALCIUM RESPONSES FROM ?-CELLS IN INTACT MOUSE PANCREATIC ISLETS, Journal of Biological Chemistry, vol.285, pp.14389-14398, 2010.

R. J. Lechleider, S. Sugimoto, A. M. Bennett, A. S. Kashishian, and J. A. Cooper, Activation of the SH2-containing Phosphotyrosine Phosphatase SH-PTP2 by Its Binding Site, Phosphotyrosine 1009, on the Human Platelet-derived Growth Factor Receptor B*, Journal of Biological Chemistry, vol.268, pp.21478-21481, 1993.

I. Lee, A. Pecinova, P. Pecina, B. G. Neel, and T. Araki, A suggested role for mitochondria in Noonan syndrome, Biochimica et Biophysica Acta, vol.1802, pp.275-283, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00562941

Y. Lee, D. Ehninger, M. Zhou, J. Oh, and M. Kang, Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome, Nature Neuroscience, vol.17, pp.1736-1743, 2014.

E. Legius, PTPN11 mutations in LEOPARD syndrome, Journal of Medical Genetics, vol.39, pp.571-574, 2002.

C. Leoni, R. Onesimo, V. Giorgio, A. Diamanti, and D. Giorgio, Understanding Growth Failure in Costello Syndrome: Increased Resting Energy Expenditure, The Journal of Pediatrics, vol.170, pp.322-324, 2016.

D. Leto and A. R. Saltiel, Regulation of glucose transport by insulin: traffic control of GLUT4, Nature Reviews Molecular Cell Biology, vol.13, pp.383-396, 2012.

J. Li, C. Yen, D. Liaw, K. Podsypanina, and S. Bose, PTEN, a Putative Protein Tyrosine Phosphatase Gene Mutated in Human Brain, Breast, and Prostate Cancer. Science, New Series, vol.275, pp.1943-1947, 1997.

P. Li, W. Fan, J. Xu, M. Lu, and H. Yamamoto, Adipocyte NCoR Knockout Decreases PPAR? Phosphorylation and Enhances PPAR? Activity and Insulin Sensitivity, Cell, vol.147, pp.815-826, 2011.

P. Li, S. Liu, M. Lu, G. Bandyopadhyay, and D. Oh, Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance, Cell, vol.167, pp.973-984, 2016.

P. Li, D. Y. Oh, G. Bandyopadhyay, W. S. Lagakos, and S. Talukdar, LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes, Nature Medicine, vol.21, pp.239-247, 2015.

P. E. Light, M. Fox, J. E. Riedel, M. J. Wheeler, and M. B. , Glucagon-Like Peptide-1 Inhibits Pancreatic ATP-Sensitive Potassium Channels via a Protein Kinase A-and ADP-Dependent Mechanism, Molecular Endocrinology, vol.16, pp.2135-2144, 2002.

M. Lima, M. Ueno, A. Thirone, E. M. Rocha, and C. Carvalho, Regulation of IRS-1/SHP2 Interaction and AKT Phosphorylation in Animal Models of Insulin Resistance, Endocrine, vol.18, pp.1-12, 2002.

G. Limongelli, G. Pacileo, B. Marino, M. C. Digilio, and A. Sarkozy, Prevalence and Clinical Significance of Cardiovascular Abnormalities in Patients With the LEOPARD Syndrome, The American Journal of Cardiology, vol.100, pp.736-741, 2007.

G. Limongelli, A. Sarkozy, G. Pacileo, P. Calabrò, and M. C. Digilio, Genotype-phenotype analysis and natural history of left ventricular hypertrophy in LEOPARD syndrome, American Journal of Medical Genetics Part A, vol.146, pp.620-628, 2008.

M. L. Loh, Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis, Blood, vol.103, pp.2325-2331, 2004.

M. L. Loh, S. Martinelli, V. Cordeddu, M. G. Reynolds, and S. Vattikuti, Acquired PTPN11 mutations occur rarely in adult patients with myelodysplastic syndromes and chronic myelomonocytic leukemia, Leukemia Research, vol.29, pp.459-462, 2005.

E. Lopez-guadamillas, M. Muñoz-martin, S. Martinez, J. Pastor, and P. J. Fernandez-marcos, PI3K? inhibition reduces obesity in mice, Aging, vol.8, pp.2747-2753, 2016.

C. Lorenzo, L. E. Wagenknecht, A. Hanley, M. J. Rewers, and A. J. Karter, A1C Between 5.7 and 6.4% as a Marker for Identifying Pre-Diabetes, Insulin Sensitivity and Secretion, and Cardiovascular Risk Factors: The Insulin Resistance Atherosclerosis Study (IRAS), Diabetes Care, vol.33, pp.2104-2109, 2010.

W. Lu, D. Gong, D. Bar-sagi, and P. A. Cole, Site-Specific Incorporation of a Phosphotyrosine Mimetic Reveals a Role for Tyrosine Phosphorylation of SHP-2 in Cell Signaling, Molecular Cell, vol.8, pp.759-769, 2001.

Y. Lu, M. Dollé, S. Imholz, R. Van-'t-slot, and W. Verschuren, Multiple genetic variants along candidate pathways influence plasma high-density lipoprotein cholesterol concentrations, Journal of Lipid Research, vol.49, pp.2582-2589, 2008.

E. Luche, C. Sengenès, E. Arnaud, P. Laharrague, and L. Casteilla, Differential Hematopoietic Activity in White Adipose Tissue Depending on its Localization: SITE-SPECIFIC HEMATOPOIETIC ACTIVITY IN WAT, vol.230, pp.3076-3083, 2015.

C. N. Lumeng, J. L. Bodzin, and A. R. Saltiel, Obesity induces a phenotypic switch in adipose tissue macrophage polarization, Journal of Clinical Investigation, vol.117, pp.175-184, 2007.

X. Luo, R. Liao, K. L. Hanley, H. H. Zhu, and K. N. Malo, Dual Shp2 and Pten Deficiencies Promote Non-alcoholic Steatohepatitis and Genesis of Liver Tumor-Initiating Cells, Cell Reports, vol.17, pp.2979-2993, 2016.

K. Ma, S. M. Cheung, A. J. Marshall, and V. Duronio, PI(3,4,5)P3 and PI(3,4)P2 levels correlate with PKB/akt phosphorylation at Thr308 and Ser473, respectively; PI(3,4)P2 levels determine PKB activity, Cellular Signalling, vol.20, pp.684-694, 2008.

K. Maedler, P. Sergeev, F. Ris, J. Oberholzer, and J. Hi, Glucose-induced ? cell production of IL-1? contributes to glucotoxicity in human pancreatic islets, The Journal of Clinical Investigation, vol.110, p.11, 2002.

F. Magkos, X. Su, D. Bradley, E. Fabbrini, and C. Conte, Intrahepatic Diacylglycerol Content Is Associated With Hepatic Insulin Resistance in Obese Subjects, Gastroenterology, vol.142, pp.1444-1446, 2012.

G. J. Maher, S. J. Mcgowan, E. Giannoulatou, C. Verrill, and A. Goriely, Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes, Proceedings of the National Academy of Sciences, vol.113, pp.2454-2459, 2016.

W. J. Malaisse, J. C. Hutton, A. R. Carpinelli, and A. Sener, The Stimulus-secretion Coupling of Amino Acid-induced Insulin Release, Diabetes, vol.29, p.7, 1980.

A. C. Malaquias, A. S. Brasil, A. C. Pereira, I. Arnhold, and B. B. Mendonca, Growth standards of patients with Noonan and Noonan-like syndromes with mutations in the RAS/MAPK pathway, American Journal of Medical Genetics Part A, vol.158, pp.2700-2706, 2012.

T. M. Marin, K. Keith, B. Davies, D. A. Conner, and P. Guha, Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation, Journal of Clinical Investigation, vol.121, pp.1026-1043, 2011.

C. R. Maroun, M. A. Naujokas, M. Holgado-madruga, A. J. Wong, and M. Park, The Tyrosine Phosphatase SHP-2 Is Required for Sustained Activation of Extracellular Signal-Regulated Kinase, p.223, 2000.

, Epithelial Morphogenesis Downstream from the Met Receptor Tyrosine Kinase, Molecular and Cellular Biology, vol.20, pp.8513-8525

S. Martinelli, A. P. Nardozza, D. Vigne, S. Sabetta, G. Torreri et al., Counteracting Effects Operating on Src Homology 2 Domain-containing Protein-tyrosine Phosphatase, vol.2, 2012.

, Function Drive Selection of the Recurrent Y62D and Y63C Substitutions in Noonan Syndrome, Journal of Biological Chemistry, vol.287, pp.27066-27077

S. Martinelli, P. Torreri, M. Tinti, L. Stella, and G. Bocchinfuso, Diverse driving forces underlie the invariant occurrence of the T42A, E139D, I282V and T468M SHP2 amino acid substitutions causing Noonan and LEOPARD syndromes, Human Molecular Genetics, vol.17, pp.2018-2029, 2008.

E. Martínez-quintana and F. Rodríguez-gonzález, LEOPARD Syndrome: Clinical Features and Gene Mutations, Molecular Syndromology, 2012.

S. Masoumi-moghaddam, A. Amini, and D. L. Morris, The developing story of Sprouty and cancer, Cancer and Metastasis Reviews, vol.33, pp.695-720, 2014.

K. Matsuo, M. Delibegovic, I. Matsuo, N. Nagata, and S. Liu, Altered Glucose Homeostasis in Mice with Liver-specific Deletion of Src Homology Phosphatase 2, Journal of Biological Chemistry, vol.285, pp.39750-39758, 2010.

D. R. Matthews, J. P. Hosker, A. S. Rudenski, B. A. Naylor, and D. F. Treacher, Homeostasis model assessment: insulin resistance and fl-cell function from fasting plasma glucose and insulin concentrations in man, Diabetologia, pp.412-419, 1985.

F. Mauvais-jarvis, K. Ueki, D. A. Fruman, M. F. Hirshman, and K. Sakamoto, Reduced expression of the murine p85? subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes, Journal of Clinical Investigation, vol.109, pp.141-149, 2002.

T. Mclaughlin, S. E. Ackerman, L. Shen, and E. Engleman, Role of innate and adaptive immunity in obesity-associated metabolic disease, Journal of Clinical Investigation, vol.127, pp.5-13, 2017.

D. Melloul, Y. Ben-neriah, and C. E. , Glucose modulates the binding of an islet-specific factor to a conserved sequence within the rat I and the human insulin promoters, Proceedings of the National Academy of Sciences, vol.90, pp.3865-3869, 1993.

M. M. Mihaylova, D. S. Vasquez, K. Ravnskjaer, P. Denechaud, and R. T. Yu, Class IIa Histone Deacetylases Are Hormone-Activated Regulators of FOXO and Mammalian Glucose Homeostasis, Cell, vol.145, pp.607-621, 2011.

D. Miyamoto, M. Miyamoto, A. Takahashi, Y. Yomogita, and H. Higashi, Isolation of a distinct class of gain-of-function SHP-2 mutants with oncogenic RAS-like transforming activity from solid tumors, Oncogene, vol.27, pp.3508-3515, 2008.

Y. Miyazaki, A. Mahankali, M. Matsuda, S. Mahankali, and J. Hardies, Effect of Pioglitazone on Abdominal Fat Distribution and Insulin Sensitivity in Type 2 Diabetic Patients, The Journal of Clinical Endocrinology & Metabolism, vol.87, pp.2784-2791, 2002.

M. G. Mohi, I. R. Williams, C. R. Dearolf, G. Chan, and J. L. Kutok, Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations, Cancer Cell, vol.7, pp.179-191, 2005.

A. Montagner, A. Yart, M. Dance, B. Perret, and J. Salles, A Novel Role for Gab1 and SHP2 in Epidermal Growth Factor-induced Ras Activation, Journal of Biological Chemistry, vol.280, pp.5350-5360, 2005.

H. Morinaga, R. Mayoral, J. Heinrichsdorff, O. Osborn, and N. Franck, Characterization of Distinct Subpopulations of Hepatic Macrophages in HFD/Obese Mice, Diabetes, vol.64, pp.1120-1130, 2015.

S. Motegi, Y. Yokoyama, S. Ogino, K. Yamada, and A. Uchiyama, Pathogenesis of Multiple Lentigines in LEOPARD Syndrome with PTPN11 Gene Mutation, Acta Dermato Venereologica, vol.95, pp.978-984, 2015.

S. Mulero-navarro, A. Sevilla, A. C. Roman, D. Lee, D. Souza et al., Myeloid Dysregulation in a Human Induced Pluripotent Stem Cell Model of PTPN11 -Associated Juvenile Myelomonocytic Leukemia, Cell Reports, vol.13, pp.504-515, 2015.

P. J. Murray, J. E. Allen, S. K. Biswas, E. A. Fisher, and D. W. Gilroy, Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines, Immunity, vol.41, pp.14-20, 2014.

M. G. Myers, R. Mendez, P. Shi, J. H. Pierce, and R. Rhoads, The COOH-terminal Tyrosine Phosphorylation Sites on IRS-1 Bind SHP-2 and Negatively Regulate Insulin Signaling, Journal of Biological Chemistry, vol.273, pp.26908-26914, 1998.

N. Nagata, K. Matsuo, A. Bettaieb, J. Bakke, and I. Matsuo, Hepatic Src Homology Phosphatase 2 Regulates Energy Balance in Mice, Endocrinology, vol.153, pp.3158-3169, 2012.

T. Nakamura, M. Colbert, M. Krenz, J. D. Molkentin, and H. S. Hahn, Mediating ERK1/2 signaling rescues congenital heart defects in a mouse model of Noonan syndrome, Journal of Clinical Investigation, vol.117, pp.2123-2132, 2007.

T. Nakamura, J. Gulick, R. Pratt, and J. Robbins, Noonan syndrome is associated with enhanced pERK activity, the repression of which can prevent craniofacial malformations, Proceedings of the National Academy of Sciences, vol.106, pp.15436-15441, 2009.

M. J. Nanjan, M. Mohammed, P. Kumar-br, and M. Chandrasekar, Thiazolidinediones as antidiabetic agents: A critical review, Bioorganic Chemistry, vol.77, pp.548-567, 2018.

M. A. Nauck, E. Homberger, E. G. Siegel, R. C. Allen, and R. P. Eaton, Incretin Effects of Increasing Glucose Loads in Man Calculated from Venous Insulin and C-Peptide Responses*, The Journal of Clinical Endocrinology & Metabolism, vol.63, pp.492-498, 1986.

, Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4?4 million participants, The Lancet, vol.387, pp.1513-1530, 2016.

B. G. Neel, Structure and function of SH2-domain containing tyrosine phosphatases, Cell Biology, vol.4, pp.419-432, 1993.

B. G. Neel, H. Gu, and L. Pao, The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling, Trends in Biochemical Sciences, vol.28, pp.284-293, 2003.

N. Neznanov, L. Neznanova, R. V. Kondratov, D. M. O'rourke, and A. Ullrich, The Ability of Protein Tyrosine Phosphatase SHP-1 to Suppress NFkB Can Be Inhibited by Dominant Negative Mutant of SIRPa, DNA and Cell Biology, vol.23, pp.175-182, 2004.

T. V. Nguyen, Y. Ke, E. E. Zhang, and G. Feng, Conditional Deletion of Shp2 Tyrosine Phosphatase in Thymocytes Suppresses Both Pre-TCR and TCR Signals, The Journal of Immunology, vol.177, pp.5990-5996, 2006.

T. Niihori, Y. Aoki, H. Ohashi, K. Kurosawa, and T. Kondoh, Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood leukemia, Journal of Human Genetics, vol.50, pp.192-202, 2005.

H. Nishi, A. Shaytan, and A. R. Panchenko, Physicochemical mechanisms of protein regulation by phosphorylation, Frontiers in Genetics, vol.5, 2014.

T. Nishikido, J. Oyama, A. Shiraki, H. Komoda, and K. Node, Deletion of Apoptosis Inhibitor of Macrophage (AIM)/CD5L Attenuates the Inflammatory Response and Infarct Size in Acute Myocardial Infarction, Journal of the American Heart Association, vol.5, p.2863, 2016.

T. Noguchi, T. Matozaki, K. Horita, Y. Fujioka, and M. Kasuga, Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation, Molecular and Cellular Biology, vol.14, pp.6674-6682, 1994.

C. J. Nolan, M. Madiraju, V. Delghingaro-augusto, M. Peyot, and M. Prentki, Fatty Acid Signaling in the -Cell and Insulin Secretion, Diabetes, vol.55, pp.16-23, 2006.

J. A. Noonan, Hypertelorism with Turner Phenotype: A new Syndrome with Associated Congenital Heart Disease, American Journal of Disease of Children, vol.116, pp.373-380, 1968.

T. M. Nordmann, E. Dror, F. Schulze, S. Traub, and E. Berishvili, The Role of Inflammation in ?-cell Dedifferentiation, Scientific Reports, p.7, 2017.

T. Ogihara and R. G. Mirmira, An islet in distress: ? cell failure in type 2 diabetes, Journal of Diabetes Investigation, 2010.

K. Oishi, K. Gaengel, S. Krishnamoorthy, K. Kamiya, and I. Kim, Transgenic Drosophila models of Noonan syndrome causing PTPN11 gain-of-function mutations, Human Molecular Genetics, vol.15, pp.543-553, 2006.

K. Oishi, H. Zhang, W. J. Gault, C. J. Wang, and C. C. Tan, Phosphatase-defective LEOPARD syndrome mutations in PTPN11 gene have gain-of-function effects during Drosophila development, Human Molecular Genetics, vol.18, pp.193-201, 2009.

M. Olbrot, J. Rud, L. G. Moss, and A. Sharma, Identification of -cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA, Proceedings of the National Academy of Sciences, vol.99, pp.6737-6742, 2002.

S. O'neill and L. O'driscoll, Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies: Metabolic syndrome, Obesity Reviews, vol.16, pp.1-12, 2015.

A. Ortega-molina, E. Lopez-guadamillas, J. A. Mattison, S. J. Mitchell, and M. Muñoz-martin, Pharmacological Inhibition of PI3K Reduces Adiposity and Metabolic Syndrome in Obese Mice and Rhesus Monkeys, Cell Metabolism, vol.21, pp.558-570, 2015.

D. M. Ouwens, D. S. Gomes-de-mesquita, J. Dekker, and J. A. Maassen, Hyperosmotic stress activates the insulin receptor in CHO cells, Biochimica et Biophysica Acta (BBA) -Molecular Cell Research, vol.1540, pp.97-106, 2001.

K. Ozaki, M. Awazu, M. Tamiya, Y. Iwasaki, and A. Harada, Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes, American Journal of Physiology-Endocrinology and Metabolism, vol.310, pp.643-651, 2016.

R. Paccoud, M. Tajan, S. Branka, E. T. Yart, and A. , The Rasopathy family: Consequences of germline activation of the RAS/MAPK pathway, Endocrine Reviews, 2018.

M. R. Pagani, K. Oishi, B. D. Gelb, and Y. Zhong, The Phosphatase SHP2 Regulates the Spacing Effect for Long-Term Memory Induction, Cell, vol.139, pp.186-198, 2009.

A. Pal, T. M. Barber, M. Van-de-bunt, S. A. Rudge, and Q. Zhang, Mutations as a Cause of Constitutive Insulin Sensitivity and Obesity, New England Journal of Medicine, vol.367, pp.1002-1011, 2012.

B. Pandit, A. Sarkozy, L. A. Pennacchio, C. Carta, and K. Oishi, Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy, Nature Genetics, vol.39, pp.1007-1012, 2007.

E. Panzhinskiy, J. Ren, and S. Nair, Protein Tyrosine Phosphatase 1B and Insulin Resistance: Role of Endoplasmic Reticulum Stress/Reactive Oxygen Species/Nuclear Factor Kappa B Axis M Ushio-Fukai, Ed. PLoS ONE, vol.8, p.77228, 2013.

K. S. Park, T. P. Ciaraldi, L. Abrams-carter, S. Mudaliar, and S. E. Nikoulina, Troglitazone Regulation of Glucose Metabolism in Human Skeletal Muscle Cultures from Obese Type II Diabetic Subjects, Journal of Clinical Endocrinology and Metabolism, vol.83, pp.1636-1643, 1998.

D. Patsouris, J. G. Neels, W. Fan, P. Li, and M. Nguyen, Glucocorticoids and Thiazolidinediones Interfere with Adipocyte-mediated Macrophage Chemotaxis and Recruitment, Journal of Biological Chemistry, vol.284, pp.31223-31235, 2009.

L. Peng, L. Xu, and W. Ouyang, Role of Peripheral Inflammatory Markers in Postoperative Cognitive Dysfunction (POCD): A Meta-Analysis K Hashimoto, PLoS ONE, vol.8, p.79624, 2013.

P. Peraldi, Z. Zhao, C. Filloux, E. H. Fischer, and E. Van-obberghen, Protein-tyrosine-phosphatase 2C is phosphorylated and inhibited by 44-kDa mitogen-activated protein kinase, Proceedings of the National Academy of Sciences, vol.91, pp.5002-5006, 1994.

L. A. Perkins, I. Larsen, and N. Perrimon, corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso, Cell, vol.70, pp.225-236, 1992.

J. J. Peschon, P. J. Morrissey, K. H. Grabstein, F. J. Ramsdell, and E. Maraskovsky, Early Lymphocyte Expansion Is Severely Impaired in Interleukin 7 Receptor-deficient Mice, Journal of Experimental Medecine, vol.180, pp.1955-1960, 1994.

P. Pettinelli, T. Del-pozo, J. Araya, R. Rodrigo, and A. V. Araya, Enhancement in liver SREBP-1c/PPAR-? ratio and steatosis in obese patients: Correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion, Biochimica et Biophysica Acta, vol.1792, pp.1080-1086, 2009.

M. K. Piya, A. A. Tahrani, and A. H. Barnett, Emerging treatment options for type 2 diabetes: Emerging therapies for type 2 diabetes, British Journal of Clinical Pharmacology, vol.70, pp.631-644, 2010.

P. D. Van-poelje, S. C. Potter, and M. D. Erion, Fructose-1, 6-Bisphosphatase Inhibitors for Reducing Excessive Endogenous Glucose Production in Type 2 Diabetes, Diabetes -Perspectives in Drug Therapy, M Schwanstecher, pp.279-301, 2011.

V. Poitout, D. Hagman, R. Stein, I. Artner, and R. P. Robertson, Regulation of the Insulin Gene by Glucose and Fatty Acids, The Journal of Nutrition, vol.136, pp.873-876, 2006.

P. O. Prada, P. Quaresma, A. M. Caricilli, A. C. Santos, and D. Guadagnini, Tub Has a Key Role in Insulin and Leptin Signaling and Action In Vivo in Hypothalamic Nuclei, Diabetes, vol.62, pp.137-148, 2013.

T. W. Prendiville, K. Gauvreau, E. Tworog-dube, L. Patkin, and R. S. Kucherlapati, Cardiovascular disease in Noonan syndrome, Archives of Disease in Childhood, vol.99, pp.629-634, 2014.

F. Princen, E. Bard, F. Sheikh, S. S. Zhang, and J. Wang, Deletion of Shp2 Tyrosine Phosphatase in Muscle Leads to Dilated Cardiomyopathy, Insulin Resistance, and Premature Death, Molecular and Cellular Biology, vol.29, pp.378-388, 2009.

B. Prunet-marcassus, B. Cousin, D. Caton, M. André, and L. Pénicaud, From heterogeneity to plasticity in adipose tissues: Site-specific differences, Experimental Cell Research, vol.312, pp.727-736, 2006.

B. Puissant, C. Barreau, P. Bourin, C. Clavel, and J. Corre, Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells, British Journal of Haematology, vol.129, pp.118-129, 2005.

N. H. Purcell, G. Tang, C. Yu, F. Mercurio, and J. A. Didonato, Activation of NF-B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes, Proceedings of the National Academy of Sciences, vol.98, pp.6668-6673, 2001.

W. Qiu, X. Wang, V. Romanov, A. Hutchinson, and A. Lin, Structural insights into Noonan/LEOPARD syndrome-related mutants of protein-tyrosine phosphatase SHP2 (PTPN11), BMC Structural Biology, vol.14, p.10, 2014.

C. K. Qu, Z. Q. Shi, R. Shen, F. Y. Tsai, and S. H. Orkin, A deletion mutation in the SH2-N domain of Shp-2 severely suppresses hematopoietic cell development, Molecular and Cellular Biology, vol.17, pp.5499-5507, 1997.

C. Qu, Y. Azzarelli, B. Cooper, S. Broxmeyer, and H. E. , , 1998.

, Mutant Cells. Molecular and Cellular Biology, vol.18, pp.6075-6082

C. Quaio, J. F. Carvalho, C. A. Da-silva, C. Bueno, and A. S. Brasil, Autoimmune disease and multiple autoantibodies in 42 patients with RASopathies, American Journal of Medical Genetics Part A, vol.158, pp.1077-1082, 2012.

Y. Ren, S. Meng, L. Mei, Z. J. Zhao, and R. Jove, Roles of Gab1 and SHP2 in Paxillin Tyrosine Dephosphorylation and Src Activation in Response to Epidermal Growth Factor, Journal of Biological Chemistry, vol.279, pp.8497-8505, 2004.

A. K. Rines, K. Sharabi, C. Tavares, and P. Puigserver, Targeting hepatic glucose metabolism in the treatment of type 2 diabetes, Nature Reviews Drug Discovery, vol.15, pp.786-804, 2016.

A. K. Rines, K. Sharabi, C. Tavares, and P. Puigserver, Targeting hepatic glucose metabolism in the treatment of type 2 diabetes, Nature Reviews Drug Discovery, vol.15, pp.786-804, 2016.

C. V. Rizos, A. Kei, and M. S. Elisaf, The current role of thiazolidinediones in diabetes management, Archives of Toxicology, vol.90, pp.1861-1881, 2016.

A. E. Roberts, J. E. Allanson, M. Tartaglia, and B. D. Gelb, Noonan syndrome. The Lancet, vol.381, pp.333-342, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00562941

S. Rocchi, S. Tartare-deckert, D. Sawka-verhelle, A. Gamha, and E. Van-obberghen, Interaction of SH2-Containing Protein Tyrosine Phosphatase 2 with the Insulin Receptor and the Insulin-Like Growth Factor-I Receptor: Studies of the Domains Involved Using the Yeast Two-Hybrid System, Endocrinology, vol.137, pp.4944-4952, 1996.

R. Roduit, C. Nolan, C. Alarcon, P. Moore, and A. Barbeau, A Role for the Malonyl-CoA/Long-Chain Acyl-CoA Pathway of Lipid Signaling in the Regulation of Insulin Secretion in Response to Both Fuel and Nonfuel Stimuli, Diabetes, vol.53, pp.1007-1019, 2004.

Y. Rouillé, G. Westermark, S. K. Martin, and D. F. Steiner, Proglucagon is processed to glucagon by prohormone convertase PC2 in aTC1-6 cells, vol.91, pp.3242-3246, 1994.

L. Rui, M. Yuan, D. Frantz, S. Shoelson, and M. F. White, SOCS-1 and SOCS-3 Block Insulin Signaling by Ubiquitin-mediated Degradation of IRS1 and IRS2, Journal of Biological Chemistry, vol.277, pp.42394-42398, 2002.

R. J. Salmond, G. Huyer, A. Kotsoni, L. Clements, and D. R. Alexander, The src Homology 2 Domain-Containing Tyrosine Phosphatase 2 Regulates Primary T-Dependent Immune Responses and Th Cell Differentiation, The Journal of Immunology, vol.175, pp.6498-6508, 2005.

M. Salvi and A. Toninello, Effects of polyamines on mitochondrial Ca2+ transport, Biochimica et Biophysica Acta (BBA) -Biomembranes, pp.113-124, 1661.

V. T. Samuel, Z. Liu, X. Qu, B. D. Elder, and S. Bilz, Mechanism of Hepatic Insulin Resistance in Non-alcoholic Fatty Liver Disease, Journal of Biological Chemistry, vol.279, pp.32345-32353, 2004.

V. T. Samuel, Z. Liu, A. Wang, S. A. Beddow, and J. G. Geisler, Inhibition of protein kinase C? prevents hepatic insulin resistance in nonalcoholic fatty liver disease, Journal of Clinical Investigation, vol.117, pp.739-745, 2007.

P. A. Sarafidis, A. N. Lasaridis, P. M. Nilsson, M. I. Pikilidou, and P. C. Stafilas, Validity and reproducibility of HOMA-IR, 1/HOMA-IR, QUICKI and McAuley's indices in patients with hypertension and type II diabetes, Journal of Human Hypertension, vol.21, pp.709-716, 2007.

D. D. Sarbassov, D. A. Guertin, A. Sm, and D. M. Sabatini, Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex, Science, vol.307, pp.1098-1101, 2005.

A. Sarkozy, Clinical and molecular analysis of 30 patients with multiple lentigines LEOPARD syndrome, Journal of Medical Genetics, vol.41, pp.68-68, 2004.

A. Sarkozy, C. Carta, S. Moretti, G. Zampino, and M. C. Digilio, Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: Molecular diversity and associated phenotypic spectrum, Human Mutation, vol.30, pp.695-702, 2009.

A. Sarkozy, M. Digilio, and B. Dallapiccola, Leopard syndrome, Orphanet Journal of Rare Diseases, vol.3, p.13, 2008.

T. M. Saxton and T. Pawson, Morphogenetic movements at gastrulation require the SH2 tyrosine phosphatase Shp2, Proceedings of the National Academy of Sciences, vol.96, pp.3790-3795, 1999.

T. M. Saxton, M. Henkemeyer, S. Gasca, R. Shen, and D. J. Rossi, Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2, The EMBO Journal, vol.16, pp.2352-2364, 1997.

C. Schramm, M. A. Edwards, and M. Krenz, New Approaches to Prevent LEOPARD Syndromeassociated Cardiac Hypertrophy by Specifically Targeting Shp2-dependent Signaling, Journal of Biological Chemistry, vol.288, pp.18335-18344, 2013.

C. Schramm, D. M. Fine, M. A. Edwards, A. N. Reeb, and M. Krenz, The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling, 2012.

, American Journal of Physiology-Heart and Circulatory Physiology, vol.302, pp.231-243

K. Schuh and A. Pahl, Inhibition of the MAP kinase ERK protects from lipopolysaccharide-induced lung injury, Biochemical Pharmacology, vol.77, pp.1827-1834, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00493505

C. L. Scott, F. Zheng, D. Baetselier, P. Martens, L. Saeys et al., Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells, Nature Communications, vol.7, p.233, 2016.

M. Seishima, Y. Mizutani, Y. Shibuya, C. Arakawa, and R. Yoshida, Malignant melanoma in a woman with LEOPARD syndrome: identification of a germline PTPN11 mutation and a somatic BRAF mutation, British Journal of Dermatology, vol.157, pp.1267-1304, 2007.

N. Seki, N. Hashimoto, M. Taira, S. Yagi, and Y. Yoshida, Regulation of Src homology 2-containing protein tyrosine phosphatase by advanced glycation end products: the role on atherosclerosis in diabetes, Metabolism, vol.56, pp.1591-1598, 2007.

J. J. Senn, P. J. Klover, I. A. Nowak, and R. A. Mooney, Interleukin-6 Induces Cellular Insulin Resistance in Hepatocytes, Diabetes, vol.51, pp.3391-3399, 2002.

A. Serra-nedelec, E. T. Treguer, K. Tajan, M. Araki, and T. , Noonan syndrome-causing SHP2 mutants inhibit insulin-like growth factor 1 release via growth hormone-induced ERK hyperactivation, which contributes to short stature, Proceedings of the National Academy of Sciences, vol.109, pp.4257-4262, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00756494

G. Sharland, Fetal cardiac screening and variation in prenatal detection rates of congenital heart disease: why bother with screening at all? Future Cardiology, vol.8, pp.189-202, 2012.

A. C. Shaw, K. Kalidas, A. H. Crosby, S. Jeffery, and M. A. Patton, The natural history of Noonan syndrome: a long-term follow-up study, Archives of Disease in Childhood, vol.92, pp.128-132, 2006.

H. Shi, B. Cave, K. Inouye, C. Bjorbaek, and J. S. Flier, Overexpression of Suppressor of Cytokine Signaling 3 in Adipose Tissue Causes Local but Not Systemic Insulin Resistance, Diabetes, vol.55, pp.699-707, 2006.

A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, Journal of Clinical Investigation, vol.122, pp.787-795, 2012.

A. Siegfried, C. Cances, M. Denuelle, N. Loukh, and M. Tauber, Noonan syndrome, PTPN11 mutations, and brain tumors. A clinical report and review of the literature, American Journal of Medical Genetics Part A, vol.173, pp.1061-1065, 2017.

M. W. Sleeman, K. E. Wortley, K. Lai, L. C. Gowen, and J. Kintner, Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity, Nature Medicine, vol.11, pp.199-205, 2005.

P. Smeets, B. Teunissen, A. Planavila, H. De-vogel-van-den-bosch, and P. Willemsen, Inflammatory Pathways Are Activated during Cardiomyocyte Hypertrophy and Attenuated by Peroxisome Proliferator-activated Receptors PPAR? and PPAR?, Journal of Biological Chemistry, vol.283, pp.29109-29118, 2008.

N. Sobreira, E. T. Cirulli, D. Avramopoulos, E. Wohler, and G. L. Oswald, Whole-Genome Sequencing of a Single Proband Together with Linkage Analysis Identifies a Mendelian Disease Gene GS Barsh, PLoS Genetics, vol.6, p.1000991, 2010.

M. P. Stern, K. Williams, C. Gonzalez-villalpando, K. J. Hunt, and S. M. Haffner, Does the Metabolic Syndrome Improve Identification of Individuals at Risk of Type 2 Diabetes and/or Cardiovascular Disease? Diabetes Care, vol.27, pp.2676-2681, 2004.

R. A. Stewart, T. Sanda, H. R. Widlund, S. Zhu, and K. D. Swanson, Phosphatase-Dependent and -Independent Functions of Shp2 in Neural Crest Cells Underlie LEOPARD Syndrome Pathogenesis, Developmental Cell, vol.18, pp.750-762, 2010.

B. Stiles, Y. Wang, A. Stahl, S. Bassilian, and W. P. Lee, Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity, vol.101, pp.2082-2087, 2004.

M. E. Street, M. A. Ziveri, C. Spaggiari, I. Viani, and C. Volta, Inflammation is a modulator of the insulin-like growth factor (IGF)/IGF-binding protein system inducing reduced bioactivity of IGFs in cystic fibrosis, European Journal of Endocrinology, vol.154, pp.47-52, 2006.

M. Strullu and H. Cavé, Juvenile myelomonocytic leukemia. Hématologie, pp.144-153, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01938513

X. Su, X. Feng, N. Terrando, Y. Yan, and A. Chawla, Dysfunction of Inflammation-Resolving Pathways Is Associated with Exaggerated Postoperative Cognitive Decline in a Rat Model of the Metabolic Syndrome, Molecular Medecine, vol.18, pp.1481-1490, 2012.

B. Sun, S. Li, L. Yang, T. Damodaran, and D. Desai, Activation of glycolysis and apoptosis in glycogen storage disease type Ia, Molecular Genetics and Metabolism, vol.97, pp.267-271, 2009.

J. Sun, S. Lu, M. Ouyang, L. Lin, and Y. Zhuo, Antagonism between binding site affinity and conformational dynamics tunes alternative cis-interactions within Shp2, Nature Communications, p.4, 2013.

J. Szendroedi, T. Yoshimura, E. Phielix, C. Koliaki, and M. Marcucci, Role of diacylglycerol activation of PKC? in lipid-induced muscle insulin resistance in humans, Proceedings of the National Academy of Sciences, vol.111, pp.9597-9602, 2014.

M. Tajan, A. Batut, T. Cadoudal, S. Deleruyelle, L. Gonidec et al., LEOPARD syndromeassociated SHP2 mutation confers leanness and protection from diet-induced obesity, Proceedings of the National Academy of Sciences, vol.111, pp.4494-4503, 2014.

M. Tajan, J. Pernin-grandjean, N. Beton, I. Gennero, and F. Capilla, Noonan syndrome-causing SHP2 mutants impair ERK-dependent chondrocyte differentiation during endochondral bone growth, Human Molecular Genetics, vol.27, pp.2276-2289, 2018.

M. Tajan, A. De-rocca-serra, P. Valet, E. T. Yart, and A. , SHP2 sails from physiology to pathology, European Journal of Medical Genetics, vol.58, pp.509-525, 2015.

T. L. Tang, R. M. Freeman, A. M. O'reilly, B. G. Neel, and S. Y. Sokol, The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early xenopus development, 1995.

, Cell, vol.80, pp.473-483

B. Tao, J. W. Xu, J. Liang, Z. Yao, and J. , Myeloid-Specific Disruption of Tyrosine Phosphatase Shp2 Promotes Alternative Activation of Macrophages and Predisposes Mice to Pulmonary Fibrosis, The Journal of Immunology, vol.193, pp.2801-2811, 2014.

M. Tartaglia, B. D. Gelb, and M. Zenker, Noonan syndrome and clinically related disorders, Best Practice & Research Clinical Endocrinology & Metabolism, vol.25, pp.161-179, 2011.

M. Tartaglia, S. Martinelli, I. Iavarone, G. Cazzaniga, and M. Spinelli, Somatic PTPN11 mutations in childhood acute myeloid leukaemia, British Journal of Haematology, vol.129, pp.333-339, 2005.

M. Tartaglia, S. Martinelli, L. Stella, G. Bocchinfuso, and E. Flex, Diversity and Functional Consequences of Germline and Somatic PTPN11 Mutations in Human Disease, The American Journal of Human Genetics, vol.78, pp.279-290, 2006.

M. Tartaglia, E. L. Mehler, R. Goldberg, G. Zampino, and H. G. Brunner, Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome, Nature Genetics, vol.29, pp.465-468, 2001.

M. Tartaglia, C. M. Niemeyer, A. Fragale, X. Song, and J. Buechner, Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia, Nature Genetics, vol.34, pp.148-150, 2003.

M. Tartaglia, G. Zampino, and B. D. Gelb, Noonan Syndrome: Clinical Aspects and Molecular Pathogenesis, Molecular Syndromology, vol.1, pp.2-26, 2010.

S. K. Tasian, J. A. Casas, D. Posocco, S. Gandre-babbe, and A. L. Gagne, Mutation-specific signaling profiles and kinase inhibitor sensitivities of juvenile myelomonocytic leukemia revealed by induced pluripotent stem cells, Leukemia, 2018.

C. M. Thaik, A. Calderone, N. Takahashi, and W. S. Colucci, Interleukin-1 beta modulates the growth and phenotype of neonatal rat cardiac myocytes, Journal of Clinical Investigation, vol.96, pp.1093-1099, 1995.

T. Thomou, M. A. Mori, J. M. Dreyfuss, M. Konishi, and M. Sakaguchi, Adipose-derived circulating miRNAs regulate gene expression in other tissues, Nature, vol.542, pp.450-455, 2017.

F. Tremblay, S. Brule, H. Um, S. Li, Y. Masuda et al., Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient-and obesity-induced insulin resistance, Proceedings of the National Academy of Sciences, vol.104, pp.14056-14061, 2007.

R. Tsutsumi, M. Masoudi, A. Takahashi, Y. Fujii, and T. Hayashi, YAP and TAZ, Hippo Signaling Targets, Act as a Rheostat for Nuclear SHP2 Function, Developmental Cell, vol.26, pp.658-665, 2013.

C. Uçar, Ü. Calyskan, S. Martini, and W. Heinritz, Acute Myelomonocytic Leukemia in a Boy With LEOPARD Syndrome (PTPN11 Gene Mutation Positive), Journal of Pediatric Hematology/Oncology, vol.28, pp.123-125, 2006.

K. Ueki, T. Kondo, and C. R. Kahn, Suppressor of Cytokine Signaling 1 (SOCS-1) and SOCS-3 Cause Insulin Resistance through Inhibition of Tyrosine Phosphorylation of Insulin Receptor Substrate Proteins by Discrete Mechanisms, Molecular and Cellular Biology, vol.24, pp.5434-5446, 2004.

S. Ugi, H. Maegawa, A. Kashiwagi, M. Adachi, and J. M. Olefsky, Expression of Dominant Negative Mutant SHPTP2 Attenuates Phosphatidylinositol 3?-Kinase Activity via Modulation of Phosphorylation of Insulin Receptor Substrate-1, Journal of Biological Chemistry, vol.271, pp.12595-12602, 1996.

S. H. Um, F. Frigerio, M. Watanabe, F. Picard, and J. M. , Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity, Nature, vol.431, pp.200-205, 2004.

K. T. Uysal, S. M. Wiesbrock, and M. W. Marino, Protection from obesity-induced insulin resistance in mice lacking TNF-? function, Nature, vol.389, p.5, 1997.

C. Van-schravendijk, L. Heylen, . Van-den-brande, . Jl, and D. G. Pipeleers, Direct effect of insulin and insulin-like growth factor-I on the secretory activity of rat pancreatic beta cells, Diabetologia, vol.33, pp.649-653, 1990.

A. Vijayakumar, P. Aryal, J. Wen, I. Syed, and R. P. Vazirani, Absence of Carbohydrate Response Element Binding Protein in Adipocytes Causes Systemic Insulin Resistance and Impairs Glucose Transport, Cell Reports, vol.21, pp.1021-1035, 2017.

A. Virkamaki, E. Korsheninnikova, A. Seppala-lindroos, S. Vehkavaara, and T. Goto, , 2001.

, Intramyocellular Lipid Is Associated With Resistance to In Vivo Insulin Actions on Glucose Uptake, Antilipolysis, and Early Insulin Signaling Pathways in Human Skeletal Muscle, vol.50, pp.2337-2343

W. Vogel and A. Ullrich, Multiple in Vivo Phosphorylated Tyrosine Phosphatase SHP-2 Engages Binding to Grb2 via Tyrosine 584, Cell Growth & Differentiation, vol.7, pp.1589-1597, 1996.

A. De-vries, C. M. Zwaan, and M. M. Van-den-heuvel-eibrink, Molecular basis of juvenile myelomonocytic leukemia, Haematologica, vol.95, pp.179-182, 2010.

J. Wang, M. Mizui, L. Zeng, R. Bronson, and M. Finnell, Inhibition of SHP2 ameliorates the pathogenesis of systemic lupus erythematosus, Journal of Clinical Investigation, vol.126, pp.2077-2092, 2016.

L. Wang, Y. Tian, X. Yao, Y. Zhu, and W. Cao, Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images, Field Crops Research, vol.164, pp.178-188, 2014.

T. C. Wascher, J. H. Lindeman, H. Sourij, T. Kooistra, and G. Pacini, Chronic TNF-? Neutralization Does Not Improve Insulin Resistance or Endothelial Function in "Healthy, Men with Metabolic Syndrome. Molecular Medecine, vol.17, pp.189-193, 2011.

N. Wijesekara, D. Konrad, M. Eweida, C. Jefferies, and N. Liadis, Muscle-Specific Pten Deletion Protects against Insulin Resistance and Diabetes, Molecular and Cellular Biology, vol.25, pp.1135-1145, 2005.

J. Wilding, The importance of weight management in type 2 diabetes mellitus, International Journal of Clinical Practice, vol.68, pp.682-691, 2014.

G. S. Wong, J. Zhou, J. B. Liu, Z. Wu, and X. Xu, Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition, Nature Medicine, vol.24, pp.968-977, 2018.

J. T. Wong, P. Kim, J. W. Peacock, T. Y. Yau, and A. Mui, Pten (phosphatase and tensin homologue gene) haploinsufficiency promotes insulin hypersensitivity, Diabetologia, vol.50, pp.395-403, 2007.

A. Woywodt, J. Welzel, H. Haase, A. Duerholz, and U. Wiegand, , 1998.

, Lentiginosis/LEOPARD Syndrome Presenting as Sudden Cardiac Arrest, Chest, vol.113, pp.1415-1417

D. Wu, Y. Pang, Y. Ke, J. Yu, and Z. He, A Conserved Mechanism for Control of Human and Mouse Embryonic Stem Cell Pluripotency and Differentiation by Shp2 Tyrosine Phosphatase M Capogrossi, PLoS ONE, vol.4, p.4914, 2009.

H. Wu and C. M. Ballantyne, Skeletal muscle inflammation and insulin resistance in obesity, Journal of Clinical Investigation, vol.127, pp.43-54, 2017.

T. R. Wu, Y. K. Hong, X. Wang, M. Y. Ling, and A. M. Dragoi, SHP-2 Is a Dual-specificity Phosphatase Involved in Stat1 Dephosphorylation at Both Tyrosine and Serine Residues in Nuclei, Journal of Biological Chemistry, vol.277, pp.47572-47580, 2002.

D. Xu, X. Liu, W. Yu, H. J. Meyerson, and C. Guo, Non-lineage/stage-restricted effects of a gainof-function mutation in tyrosine phosphatase Ptpn11 (Shp2) on malignant transformation of hematopoietic cells, The Journal of Experimental Medicine, vol.208, pp.1977-1988, 2011.

D. Xu, H. Zheng, W. Yu, and C. Qu, Activating Mutations in Protein Tyrosine Phosphatase Ptpn11 (Shp2) Enhance Reactive Oxygen Species Production That Contributes to Myeloproliferative Disorder KD Bunting, PLoS ONE, vol.8, p.63152, 2013.

H. Xu, G. T. Barnes, Q. Yang, G. Tan, and D. Yang, Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance, The Journal of Clinical Investigation, vol.112, pp.1821-1830, 2003.

H. Yamashita, T. Kotani, J. Park, Y. Murata, and H. Okazawa, Role of the Protein Tyrosine Phosphatase Shp2 in Homeostasis of the Intestinal Epithelium R Sugiura, PLoS ONE, vol.9, p.92904, 2014.

W. Yang, L. D. Klaman, B. Chen, T. Araki, and H. Harada, An Shp2/SFK/Ras/Erk Signaling Pathway Controls Trophoblast Stem Cell Survival, Developmental Cell, vol.10, pp.317-327, 2006.

X. Yang, C. Tang, H. Luo, H. Wang, and X. Zhou, Shp2 confers cisplatin resistance in small cell lung cancer via an AKT-mediated increase in CA916798, Oncotarget, vol.8, 2017.

Z. Yang, Y. Li, F. Yin, and R. J. Chan, Activating PTPN11 mutants promote hematopoietic progenitor cell-cycle progression and survival, Experimental Hematology, vol.36, pp.1285-1296, 2008.

H. Yki-järvinen, K. Sammalkorpi, V. A. Koivisto, and E. A. Nikkilä, Severity, Duration, and Mechanisms of Insulin Resistance during Acute Infections*, The Journal of Clinical Endocrinology & Metabolism, vol.69, pp.317-323, 1989.

J. C. Yoon, P. Puigserver, G. Chen, J. Donovan, and Z. Wu, Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1, Nature, vol.413, pp.131-138, 2001.

M. You, L. M. Flick, D. Yu, and G. Feng, Modulation of the Nuclear Factor B Pathway by, p.2, 2001.

, Tyrosine Phosphatase in Mediating the Induction of Interleukin (IL)-6 by IL-1 or Tumor Necrosis Factor, vol.9

M. You, D. Yu, and G. Feng, Shp-2 Tyrosine Phosphatase Functions as a Negative Regulator of the Interferon-Stimulated Jak/STAT Pathway, Molecular and Cellular Biology, vol.19, pp.2416-2424, 1999.

Z. Yu, J. Xu, C. D. Walls, L. Chen, and S. Zhang, Structural and Mechanistic Insights into LEOPARD Syndrome-Associated SHP2 Mutations, Journal of Biological Chemistry, vol.288, pp.10472-10482, 2013.

R. Zhang, Y. Zeng, L. Zhang, S. Bai, and Y. , SHP2 phosphatase as a novel therapeutic target for melanoma treatment, Oncotarget, p.7, 2016.

S. Q. Zhang, W. G. Tsiaras, T. Araki, G. Wen, and L. Minichiello, Receptor-Specific Regulation of Phosphatidylinositol 3'-Kinase Activation by the Protein Tyrosine Phosphatase Shp2, Molecular and Cellular Biology, vol.22, pp.4062-4072, 2002.

S. Q. Zhang, W. Yang, M. I. Kontaridis, T. G. Bivona, and G. Wen, Shp2 Regulates Src Family Kinase Activity and Ras/Erk Activation by Controlling Csk Recruitment, Molecular Cell, vol.13, pp.341-355, 2004.

W. Zhang, R. J. Chan, H. Chen, Z. Yang, and Y. He, Negative Regulation of Stat3 by Activating PTPN11 Mutants Contributes to the Pathogenesis of Noonan Syndrome and Juvenile Myelomonocytic Leukemia, Journal of Biological Chemistry, vol.284, pp.22353-22363, 2009.

J. J. Zhao, H. Cheng, S. Jia, L. Wang, and O. V. Gjoerup, The p110 isoform of PI3K is essential for proper growth factor signaling and oncogenic transformation, Proceedings of the National Academy of Sciences, vol.103, pp.16296-16300, 2006.

L. Zhao, M. Guo, T. Matsuoka, D. K. Hagman, and S. D. Parazzoli, The Islet Cell-enriched MafA Activator Is a Key Regulator of Insulin Gene Transcription, Journal of Biological Chemistry, vol.280, pp.11887-11894, 2005.

L. Zhao, J. Xia, T. Li, H. Zhou, and W. Ouyang, Shp2 Deficiency Impairs the Inflammatory Response Against Haemophilus influenzae by Regulating Macrophage Polarization, Journal of Infectious Diseases, vol.214, pp.625-633, 2016.

H. Zheng, S. Li, P. Hsu, and C. Qu, Induction of a Tumor-associated Activating Mutation in Protein Tyrosine Phosphatase Ptpn11 (Shp2) Enhances Mitochondrial Metabolism, Leading to Oxidative Stress and Senescence, Journal of Biological Chemistry, vol.288, pp.25727-25738, 2013.

H. Zheng, W. Yu, R. R. Waclaw, M. I. Kontaridis, and B. G. Neel, Gain-of-function mutations in the gene encoding the tyrosine phosphatase SHP2 induce hydrocephalus in a catalytically dependent manner, Science Signaling, p.1591, 2018.