Skip to Main content Skip to Navigation
Theses

Derived Invariance of the Tamarkin-Tsygan Calculus of an Associative Algebra

Abstract : In this thesis we prove that the Tamarkin-Tsygan calculus of a finite dimensional associative algebra over a field is a derived invariant. In other words, the mainresult of this work goes as follows: a derived equivalence between two finite dimensional associative algebras over a field induces an isomorphism between Hochschild homology and Hochschild cohomology that respects simultaneously the cup product, the cap product, the Gerstenhaber bracket and the Connes differential.
Document type :
Theses
Complete list of metadatas

Cited literature [72 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02380595
Contributor : Abes Star :  Contact
Submitted on : Tuesday, November 26, 2019 - 12:18:08 PM
Last modification on : Tuesday, September 8, 2020 - 5:38:03 AM

File

ARMENTA_ARMENTA_2019_archivage...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02380595, version 1

Citation

Marco Armenta Armenta. Derived Invariance of the Tamarkin-Tsygan Calculus of an Associative Algebra. General Mathematics [math.GM]. Université Montpellier; Centro de Investigación en Matemáticas, A.C., 2019. English. ⟨NNT : 2019MONTS037⟩. ⟨tel-02380595⟩

Share

Metrics

Record views

97

Files downloads

54