K. Jaouen, R. Cornut, D. Ausserré, S. Campidelli, and V. Derycke, Ideal optical contrast for 2D material observation using bi-layer antireflection absorbing substrates, Nanoscale, vol.11, issue.13, pp.6129-6135, 2019.

K. Jaouen, F. Lebon, B. Jousselme, S. Campidelli, R. Cornut et al., Optical monitoring of diazonium electrografting on gold and graphene oxide using Backside Absorbing Layer Microscopy

S. Campidelli, R. Abou-khachfe, K. Jaouen, J. Monteiller, C. Amra et al., Backside absorbing layer microscopy: Watching graphene chemistry, Science Advances, vol.3, issue.5, 2017.
URL : https://hal.archives-ouvertes.fr/cea-02341727

K. Jaouen, O. Henrotte, S. Campidelli, B. Jousselme, V. Derycke et al., Localized electrochemistry for the investigation and the modification of 2D materials, Applied Materialstoday, vol.8, pp.116-124, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01546754

O. Henrotte, T. Bottein, H. Casademont, K. Jaouen, T. Bourgeteau et al., Electronic Transport of MoS 2 Monolayered Flakes Investigated by Scanning Electrochemical Microscopy, vol.18, pp.2777-2781, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01573215

A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials, vol.6, issue.3, pp.183-191, 2007.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk et al., Synthesis, Properties, and Applications, vol.22, pp.3906-3924, 2010.

K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Neto, 2D materials and van der Waals heterostructures, vol.353, 2016.

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta et al., Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene, vol.7, pp.2898-2926, 2013.

X. Huang, Z. Zeng, and H. Zhang, Metal dichalcogenide nanosheets: preparation, properties and applications, Chemical Society Reviews, vol.42, issue.5, pp.1934-1946, 2013.

G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha et al., Recent Advances in Two-Dimensional Materials beyond Graphene, vol.9, pp.11509-11539, 2015.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, issue.5696, pp.666-669, 2004.

H. Zhang, J. Huang, Y. Wang, R. Liu, X. Huai et al., Atomic force microscopy for two-dimensional materials: A tutorial review, Optics Communications, vol.406, pp.3-17, 2018.

I. Jung, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich et al., Simple Approach for High-Contrast Optical Imaging and Characterization of Graphene-Based Sheets, Nano Letters, vol.7, issue.12, pp.3569-3575, 2007.

P. Braeuninger-weimer, S. Funke, R. Wang, P. Thiesen, D. Tasche et al., Atomic Layer Resolved Imaging of Two-Dimensional Materials by Ellipsometric Contrast Micrography, Acs Nano, vol.12, issue.8, pp.8555-8563, 2018.

A. T. Tan, J. Kim, J. Huang, L. Li, and J. Huang, Seeing Two-Dimensional Sheets on Arbitrary Substrates by Fluorescence Quenching Microscopy, Small, vol.9, issue.19, pp.3253-3258, 2013.

P. Blake, E. W. Hill, A. H. Castro-neto, K. S. Novoselov, D. Jiang et al., Making graphene visible, Applied Physics Letters, vol.91, issue.6, p.63124, 2007.

D. S. Abergel, A. Russell, and V. I. , Fal'ko, Visibility of graphene flakes on a dielectric substrate, Applied Physics Letters, vol.91, issue.6, p.63125, 2007.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically Thin MoS 2 : A New Direct-Gap Semiconductor, Physical Review Letters, vol.105, issue.13, p.136805, 2010.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors, Nature Nanotechnology, vol.9, issue.5, pp.372-377, 2014.

D. J. Late, B. Liu, H. S. Matte, C. N. Rao, and V. P. Dravid, Rapid Characterization of Ultrathin Layers of Chalcogenides on SiO 2 /Si Substrates, Advanced Functional Materials, vol.22, issue.9, pp.1894-1905, 2012.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin et al., Characterization of thermally reduced graphene oxide by imaging ellipsometry, Journal of Physical Chemistry C, vol.112, issue.23, pp.8499-8506, 2008.

O. Albrektsen, R. L. Eriksen, S. M. Novikov, D. Schall, M. Karl et al., High resolution imaging of few-layer graphene, Journal of Applied Physics, vol.111, issue.6, p.64305, 2012.

J. Kim, F. Kim, and J. Huang, Seeing graphene-based sheets, Materials Today, vol.13, issue.3, pp.70031-70037, 2010.

E. Treossi, M. Melucci, A. Liscio, M. Gazzano, P. Samorì et al., High-Contrast Visualization of Graphene Oxide on Dye-Sensitized Glass, Quartz, and Silicon by Fluorescence Quenching, Journal of the American Chemical Society, vol.131, issue.43, pp.15576-15577, 2009.

J. R. Kyle, A. Guvenc, W. Wang, M. Ghazinejad, J. Lin et al., Centimeter-Scale High-Resolution Metrology of Entire CVD-Grown Graphene Sheets, Small, vol.7, issue.18, pp.2599-2606, 2011.

J. R. Kyle, C. S. Ozkan, and M. Ozkan, Industrial graphene metrology, Nanoscale, vol.4, issue.13, pp.3807-3819, 2012.

R. J. Stöhr, R. Kolesov, K. Xia, R. Reuter, J. Meijer et al., Super-resolution Fluorescence Quenching Microscopy of Graphene, ACS Nano, vol.6, issue.10, pp.9175-9181, 2012.

R. Li, P. Georgiades, H. Cox, S. Phanphak, I. S. Roberts et al., Quenched Stochastic Optical Reconstruction Microscopy (qSTORM) with Graphene Oxide, Scientific Reports, vol.8, 2018.

D. Bing, Y. Wang, J. Bai, R. Du, G. Wu et al., Optical contrast for identifying the thickness of two-dimensional materials, Optics Communications, vol.406, pp.128-138, 2018.

X. Lin, Z. Si, W. Fu, J. Yang, S. Guo et al., Intelligent identification of two-dimensional nanostructures by machine-learning optical microscopy, Nano Research, vol.11, issue.12, pp.6316-6324, 2018.

Y. Liu, C. Yu, K. Lin, E. Wang, T. Yang et al., Nondestructive Characterization of the Structural Quality and Thickness of Large-Area Graphene on Various Substrates, Analytical Chemistry, vol.86, issue.15, pp.7192-7199, 2014.

H. Arjmandi-tash, L. Jiang, and G. F. Schneider, Rupture index: A quantitative measure of sub-micrometer cracks in graphene, Carbon, vol.118, pp.556-560, 2017.

X. H. Kong, H. X. Ji, R. D. Piner, H. F. Li, C. W. Magnuson et al., Non-destructive and rapid evaluation of chemical vapor deposition graphene by dark field optical microscopy, Applied Physics Letters, vol.103, issue.4, p.43119, 2013.

X. Wu, G. Zhong, and J. Robertson, Nondestructive optical visualisation of graphene domains and boundaries, Nanoscale, vol.8, issue.36, pp.16427-16434, 2016.

D. Ding, H. Hibino, and H. Ago, Grain Boundaries and Gas Barrier Property of Graphene Revealed by Dark-Field Optical Microscopy, The Journal of Physical Chemistry C, vol.122, issue.1, pp.902-910, 2018.

W. Li, S. Moon, M. Wojcik, and K. Xu, Direct Optical Visualization of Graphene and Its Nanoscale Defects on Transparent Substrates, Nano Letters, vol.16, issue.8, pp.5027-5031, 2016.

D. Akinwande, C. J. Brennan, J. S. Bunch, P. Egberts, J. R. Felts et al., A review on mechanics and mechanical properties of 2D materials-Graphene and beyond, Extreme Mechanics Letters, vol.13, pp.42-77, 2017.

K. Liu and J. Wu, Mechanical properties of two-dimensional materials and heterostructures, Journal of Materials Research, vol.31, issue.7, pp.832-844, 2016.

J. H. Kim, J. H. Jeong, N. Kim, R. Joshi, and G. Lee, Mechanical properties of two-dimensional materials and their applications, Journal of Physics D: Applied Physics, vol.52, issue.8, p.83001, 2018.

X. Li, M. Sun, C. Shan, Q. Chen, and X. Wei, Mechanical Properties of 2D Materials Studied by In Situ Microscopy Techniques, vol.5, p.1701246, 2018.

K. Elibol, B. C. Bayer, S. Hummel, J. Kotakoski, G. Argentero et al., Visualising the strain distribution in suspended two-dimensional materials under local deformation, Scientific Reports, vol.6, 2016.

A. I. Altan and J. Chen, In situ chemical probing of hole defects and cracks in graphene at room temperature, Nanoscale, vol.10, issue.23, pp.11052-11063, 2018.

D. Tang, D. G. Kvashnin, S. Najmaei, Y. Bando, K. Kimoto et al., Nanomechanical cleavage of molybdenum disulphide atomic layers, Nature Communications, vol.5, 2014.

D. L. Duong, G. H. Han, S. M. Lee, F. Gunes, E. S. Kim et al., Probing graphene grain boundaries with optical microscopy, Nature, vol.490, issue.7419, pp.235-239, 2012.

J. Wang, X. Xu, R. Qiao, J. Liang, C. Liu et al., Visualizing grain boundaries in monolayer MoSe 2 using mild H 2 O vapor etching, Nano Research, vol.11, issue.8, pp.4082-4089, 2018.

X. Fan, S. Wagner, P. Schädlich, F. Speck, S. Kataria et al., Direct observation of grain boundaries in graphene through vapor hydrofluoric acid (VHF) exposure, Science Advances, vol.4, issue.5, 2018.

T. H. Ly, D. L. Duong, Q. H. Ta, F. Yao, Q. A. Vu et al., Nondestructive Characterization of Graphene Defects, Advanced Functional Materials, vol.23, issue.41, pp.5183-5189, 2013.

T. H. Ly, M. Chiu, M. Li, J. Zhao, D. J. Perello et al., Observing Grain Boundaries in CVD-Grown Monolayer Transition Metal Dichalcogenides, ACS Nano, vol.8, issue.11, pp.11401-11408, 2014.

Y. Rong, K. He, M. Pacios, A. W. Robertson, H. Bhaskaran et al., Controlled Preferential Oxidation of Grain Boundaries in Monolayer Tungsten Disulfide for Direct Optical Imaging, ACS Nano, vol.9, issue.4, pp.3695-3703, 2015.

D. Shin, D. Sung, J. S. Hong, M. Kim, S. S. Yoon et al., Observation of graphene grain boundaries through selective adsorption of rhodamine B using fluorescence microscopy, Carbon, vol.108, pp.72-78, 2016.

S. U. Yu, B. Park, Y. Cho, S. Hyun, J. K. Kim et al., Simultaneous Visualization of Graphene Grain Boundaries and Wrinkles with Structural Information by Gold Deposition, ACS Nano, vol.8, issue.8, pp.8662-8668, 2014.

H. Goncalves, M. Belsley, C. Moura, T. Stauber, and P. Schellenberg, Enhancing visibility of graphene on arbitrary substrates by microdroplet condensation, Applied Physics Letters, vol.97, issue.23, p.231905, 2010.

D. W. Kim, Y. H. Kim, H. S. Jeong, and H. Jung, Direct visualization of large-area graphene domains and boundaries by optical birefringency, Nature Nanotechnology, vol.7, issue.1, pp.29-34, 2012.

J. Son, S. Baeck, M. Park, J. Lee, C. Yang et al., Detection of graphene domains and defects using liquid crystals, Nature Communications, vol.5, 2014.

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee et al., Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal, Nano Letters, vol.17, issue.3, pp.1474-1481, 2017.

D. W. Kim, J. M. Ok, W. Jung, J. Kim, S. J. Kim et al., Direct Observation of Molybdenum Disulfide, MoS 2 , Domains by Using a Liquid Crystalline Texture Method, Nano Letters, vol.15, issue.1, pp.229-234, 2015.

G. Yang and J. Kim, Probing patterned defects on graphene using differential interference contrast observation, Applied Physics Letters, vol.106, issue.8, p.81901, 2015.

H. Ago, S. Fukamachi, H. Endo, P. Solís-fernández, R. M. Yunus et al., Visualization of Grain Structure and Boundaries of Polycrystalline Graphene and Two-Dimensional Materials by Epitaxial Growth of Transition Metal Dichalcogenides, ACS Nano, vol.10, issue.3, pp.3233-3240, 2016.

X. Liu, B. Qiu, Q. Chen, Z. Ni, Y. Jiang et al., Characterization of graphene layers using super resolution polarization parameter indirect microscopic imaging, Optics Express, vol.22, issue.17, pp.20446-20456, 2014.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich et al., Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences, vol.102, issue.30, pp.10451-10453, 2005.

M. H. Gass, U. Bangert, A. L. Bleloch, P. Wang, R. R. Nair et al., Free-standing graphene at atomic resolution, Nature Nanotechnology, vol.3, issue.11, pp.676-681, 2008.

S. H. Dave, C. Gong, A. W. Robertson, J. H. Warner, and J. C. Grossman, Chemistry and Structure of Graphene Oxide via Direct Imaging, vol.10, pp.7515-7522, 2016.

A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima, Direct evidence for atomic defects in graphene layers, Nature, vol.430, issue.7002, 2004.

J. Kotakoski, A. V. Krasheninnikov, U. Kaiser, and J. C. Meyer, From Point Defects in Graphene to Two-Dimensional Amorphous Carbon, Physical Review Letters, vol.106, issue.10, p.105505, 2011.

H. Wang, K. Li, Y. Cheng, Q. Wang, Y. Yao et al., Interaction between single gold atom and the graphene edge: A study via aberration-corrected transmission electron microscopy, Nanoscale, vol.4, issue.9, pp.2920-2925, 2012.

X. Zhang, Z. Jin, L. Wang, J. A. Hachtel, E. Villarreal et al., Low Contact Barrier in 2H/1T' MoTe 2 In-Plane Heterostructure Synthesized by Chemical Vapor Deposition, ACS Applied Materials & Interfaces, vol.11, issue.13, pp.12777-12785, 2019.

L. Brown, R. Hovden, P. Huang, M. Wojcik, D. A. Muller et al., Twinning and Twisting of Tri-and Bilayer Graphene, Nano Letters, vol.12, issue.3, pp.1609-1615, 2012.

Y. Lin, D. O. Dumcenco, H. Komsa, Y. Niimi, A. V. Krasheninnikov et al., Properties of Individual Dopant Atoms in Single-Layer MoS 2 : Atomic Structure, Migration, and Enhanced Reactivity, vol.26, pp.2857-2861, 2014.

R. G. Mendes, J. Pang, A. Bachmatiuk, H. Q. Ta, L. Zhao et al., Electron-Driven In Situ Transmission Electron Microscopy of 2D Transition Metal Dichalcogenides and Their 2D Heterostructures, vol.13, pp.978-995, 2019.

C. Luo, C. Wang, X. Wu, J. Zhang, and J. Chu, Situ Transmission Electron Microscopy Characterization and Manipulation of Two-Dimensional Layered Materials beyond Graphene, vol.13, p.1604259, 2017.

D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen et al., Spatially resolved raman spectroscopy of single-and few-layer graphene, Nano Letters, vol.7, issue.2, pp.238-242, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00283156

R. W. Havener, S. Ju, L. Brown, Z. Wang, M. Wojcik et al., High-Throughput Graphene Imaging on Arbitrary Substrates with Widefield Raman Spectroscopy, ACS Nano, vol.6, issue.1, pp.373-380, 2012.

F. Schedin, E. Lidorikis, A. Lombardo, V. G. Kravets, A. K. Geim et al., Surface-Enhanced Raman Spectroscopy of Graphene, ACS Nano, vol.4, issue.10, pp.5617-5626, 2010.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang et al., Can Graphene be used as a Substrate for Raman Enhancement?, Nano Letters, vol.10, issue.2, pp.553-561, 2010.

N. Zhang, L. Tong, and J. Zhang, Graphene-Based Enhanced Raman Scattering toward Analytical Applications, Chemistry of Materials, vol.28, issue.18, pp.6426-6435, 2016.

B. Soundiraraju and B. K. George, Two-Dimensional Titanium Nitride (Ti 2 N) MXene: Synthesis, Characterization, and Potential Application as Surface-Enhanced Raman Scattering Substrate, ACS Nano, vol.11, issue.9, pp.8892-8900, 2017.

Y. Saito, P. Verma, K. Masui, Y. Inouye, and S. Kawata, Nano-scale analysis of graphene layers by tip-enhanced near-field Raman spectroscopy, Journal of Raman Spectroscopy, vol.40, issue.10, pp.1434-1440, 2009.

S. Mignuzzi, N. Kumar, B. Brennan, I. S. Gilmore, D. Richards et al., Probing individual point defects in graphene via near-field Raman scattering, Nanoscale, vol.7, issue.46, pp.19413-19418, 2015.

J. Stadler, T. Schmid, and R. Zenobi, Nanoscale Chemical Imaging of Single-Layer Graphene, ACS Nano, vol.5, issue.10, pp.8442-8448, 2011.

M. Richard-lacroix, Y. Zhang, Z. Dong, and V. Deckert, Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception, Chemical Society Reviews, vol.46, issue.13, pp.3922-3944, 2017.

M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer et al., The Journal of Physical Chemistry C, vol.116, issue.1, pp.478-483, 2012.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth et al., Fine structure constant defines visual transparency of graphene, Science, vol.320, issue.5881, pp.1308-1308, 2008.

K. P. Dhakal, D. L. Duong, J. Lee, H. Nam, M. Kim et al., Confocal absorption spectral imaging of MoS 2 : optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS 2, Nanoscale, vol.6, issue.21, pp.13028-13035, 2014.

A. Castellanos-gomez, J. Quereda, H. P. Meulen, N. Agraït, and G. Rubio-bollinger, Spatially resolved optical absorption spectroscopy of single-and few-layer MoS 2 by hyperspectral imaging, Nanotechnology, vol.27, issue.11, p.115705, 2016.

R. Frisenda, Y. Niu, P. Gant, A. J. Molina-mendoza, R. Schmidt et al., Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials, Journal of Physics D: Applied Physics, vol.50, issue.7, p.74002, 2017.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu et al., Graphene Thickness Determination Using Reflection and Contrast Spectroscopy, vol.7, pp.2758-2763, 2007.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova et al., Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption, Physical Review B, vol.81, issue.15, p.155413, 2010.

H. Yang, H. Hu, Y. Wang, and T. Yu, Rapid and non-destructive identification of graphene oxide thickness using white light contrast spectroscopy, Carbon, vol.52, pp.528-534, 2013.

M. Bruna and S. Borini, Optical constants of graphene layers in the visible range, Applied Physics Letters, vol.94, issue.3, p.31901, 2009.

Y. Chang, C. Liu, C. Liu, Z. Zhong, and T. B. Norris, Extracting the complex optical conductivity of mono-and bilayer graphene by ellipsometry, Applied Physics Letters, vol.104, issue.26, 2014.

S. Funke, B. Miller, E. Parzinger, P. Thiesen, A. W. Holleitner et al., Imaging spectroscopic ellipsometry of MoS 2, Journal of Physics: Condensed Matter, vol.28, issue.38, 2016.

A. Matkovi?, A. Beltaos, M. Mili?evi?, U. Ralevi?, B. Vasi? et al., Spectroscopic imaging ellipsometry and Fano resonance modeling of graphene, Journal of Applied Physics, vol.112, issue.12, p.123523, 2012.

Y. V. Morozov and M. Kuno, Optical constants and dynamic conductivities of single layer MoS 2 , MoSe 2 , and WSe 2, Applied Physics Letters, vol.107, issue.8, p.83103, 2015.

M. Vaupel, A. Dutschke, U. Wurstbauer, F. Hitzel, and A. Pasupathy, Topography, complex refractive index, and conductivity of graphene layers measured by correlation of optical interference contrast, atomic force, and back scattered electron microscopy, Journal of Applied Physics, vol.114, issue.18, p.183107, 2013.

U. Wurstbauer, C. Röling, U. Wurstbauer, W. Wegscheider, M. Vaupel et al., Imaging ellipsometry of graphene, Applied Physics Letters, vol.97, issue.23, p.231901, 2010.

H. Liu, C. Shen, S. Su, C. Hsu, M. Li et al., Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry, Applied Physics Letters, vol.105, issue.20, 2014.

S. Khadir, P. Bon, D. Vignaud, E. Galopin, N. Mcevoy et al., Optical Imaging and Characterization of Graphene and Other 2D Materials Using Quantitative Phase Microscopy, ACS Photonics, vol.4, issue.12, pp.3130-3139, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01671179

X. Wang, Y. P. Chen, and D. D. Nolte, Strong anomalous optical dispersion of graphene: complex refractive index measured by Picometrology, Optics Express, vol.16, issue.26, pp.22105-22112, 2008.

W. Jie, Z. Yang, G. Bai, and J. Hao, Luminescence in 2D Materials and van der Waals Heterostructures, vol.6, p.1701296, 2018.

A. M. Van-der-zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide, Nature Materials, vol.12, issue.6, pp.554-561, 2013.

V. Carozo, Y. Wang, K. Fujisawa, B. R. Carvalho, A. Mccreary et al., Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide, Science Advances, vol.3, issue.4, 2017.

L. Tao, K. Chen, Z. Chen, W. Chen, X. Gui et al., Centimeter-Scale CVD Growth of Highly Crystalline Single-Layer MoS 2 Film with Spatial Homogeneity and the Visualization of Grain Boundaries, ACS Applied Materials & Interfaces, vol.9, issue.13, pp.12073-12081, 2017.

H. R. Gutiérrez, N. Perea-lópez, A. L. Elías, A. Berkdemir, B. Wang et al., Extraordinary Room-Temperature Photoluminescence in Triangular WS 2 Monolayers, Nano Letters, vol.13, issue.8, pp.3447-3454, 2013.

Y. Sheng, X. Wang, K. Fujisawa, S. Ying, A. L. Elias et al., Photoluminescence Segmentation within Individual Hexagonal Monolayer Tungsten Disulfide Domains Grown by Chemical Vapor Deposition, ACS Applied Materials & Interfaces, vol.9, issue.17, pp.15005-15014, 2017.

S. Park, M. S. Kim, H. Kim, J. Lee, G. H. Han et al., Spectroscopic Visualization of Grain Boundaries of Monolayer Molybdenum Disulfide by Stacking Bilayers, ACS Nano, vol.9, issue.11, pp.11042-11048, 2015.

L. Karvonen, A. Säynätjoki, M. J. Huttunen, A. Autere, B. Amirsolaimani et al., Rapid visualization of grain boundaries in monolayer MoS 2 by multiphoton microscopy, Nature Communications, 2017.

D. F. Ogletree, P. J. Schuck, A. F. Weber-bargioni, N. J. Borys, S. Aloni et al., Revealing Optical Properties of Reduced-Dimensionality Materials at Relevant Length Scales, Advanced Materials, vol.27, issue.38, pp.5693-5719, 2015.

W. Bao, N. J. Borys, C. Ko, J. Suh, W. Fan et al., Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide, Nature Communications, vol.6, 2015.

C. Kastl, R. J. Koch, C. T. Chen, J. Eichhorn, S. Ulstrup et al., Effects of Defects on Band Structure and Excitons in WS 2 Revealed by Nanoscale Photoemission Spectroscopy, ACS Nano, vol.13, issue.2, pp.1284-1291, 2019.

Y. Lee, S. Park, H. Kim, G. H. Han, Y. H. Lee et al., Characterization of the structural defects in CVD-grown monolayered MoS 2 using near-field photoluminescence imaging, Nanoscale, vol.7, issue.28, pp.11909-11914, 2015.

Y. Okuno, O. Lancry, A. Tempez, C. Cairone, M. Bosi et al., Probing the nanoscale light emission properties of a CVD-grown MoS 2 monolayer by tip-enhanced photoluminescence, Nanoscale, vol.10, issue.29, pp.14055-14059, 2018.

W. Su, N. Kumar, S. Mignuzzi, J. Crain, and D. Roy, Nanoscale mapping of excitonic processes in single-layer MoS 2 using tip-enhanced photoluminescence microscopy, Nanoscale, vol.8, issue.20, pp.10564-10569, 2016.

N. Mao, J. Tang, L. Xie, J. Wu, B. Han et al., Optical Anisotropy of Black Phosphorus in the Visible Regime, Journal of the American Chemical Society, vol.138, issue.1, pp.300-305, 2016.

A. T. Hoang, S. M. Shinde, A. K. Katiyar, K. P. Dhakal, X. Chen et al., Orientationdependent optical characterization of atomically thin transition metal ditellurides, Nanoscale, vol.10, issue.46, pp.21978-21984, 2018.

H. Zeng, G. Liu, J. Dai, Y. Yan, B. Zhu et al., Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides, Scientific Reports, vol.3, 1608.

X. Yin, Z. Ye, D. A. Chenet, Y. Ye, K. O'brien et al., Edge Nonlinear Optics on a MoS 2 Atomic Monolayer, Science, vol.344, issue.6183, pp.488-490, 2014.

J. Cheng, T. Jiang, Q. Ji, Y. Zhang, Z. Li et al., Kinetic Nature of Grain Boundary Formation in As-Grown MoS 2 Monolayers, Advanced Materials, vol.27, issue.27, pp.4069-4074, 2015.

S. Mo, Angle-resolved photoemission spectroscopy for the study of two-dimensional materials, Nano Convergence, vol.4, issue.1, 2017.

M. Cattelan and N. A. Fox, A Perspective on the Application of Spatially Resolved ARPES for 2D Materials, Nanomaterials, vol.8, 2018.

C. Zhang, A. Johnson, C. Hsu, L. Li, and C. Shih, Direct Imaging of Band Profile in Single Layer MoS 2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending, vol.14, pp.2443-2447, 2014.

S. M. Hus and A. Li, Spatially-resolved studies on the role of defects and boundaries in electronic behavior of 2D materials, Progress in Surface Science, vol.92, issue.3, pp.176-201, 2017.

S. Hussain, K. Xu, S. Ye, L. Lei, X. Liu et al., Local electrical characterization of two-dimensional materials with functional atomic force microscopy, Frontiers of Physics, vol.14, issue.3, 2019.

D. Wu, X. Li, L. Luan, X. Wu, W. Li et al., Uncovering edge states and electrical inhomogeneity in MoS 2 field-effect transistors, Proceedings of the National Academy of Sciences, vol.113, issue.31, pp.8583-8588, 2016.

Y. Almadori, N. Bendiab, and B. Grévin, Multimodal Kelvin Probe Force Microscopy Investigations of a Photovoltaic WSe 2 /MoS 2 Type-II Interface, ACS Applied Materials & Interfaces, vol.10, issue.1, pp.1363-1373, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02019155

Y. Vaknin, R. Dagan, and Y. Rosenwaks, Pinch-Off Formation in Monolayer and Multilayers MoS 2 Field-Effect Transistors, Nanomaterials, vol.9, issue.6, 2019.

H. Zhong, Z. Liu, J. Wang, A. Pan, G. Xu et al., Measuring the local mobility of graphene on semiconductors, Physical Review Materials, vol.2, issue.4, p.43801, 2018.

R. Kumar, D. Varandani, and B. R. Mehta, Nanoscale interface formation and charge transfer in graphene/silicon Schottky junctions; KPFM and CAFM studies, Carbon, vol.98, pp.41-49, 2016.

J. Tetienne, N. Dontschuk, D. A. Broadway, A. Stacey, D. A. Simpson et al., Quantum imaging of current flow in graphene, Science Advances, vol.3, issue.4, 2017.

P. Bøggild, D. M. Mackenzie, P. R. Whelan, D. H. Petersen, J. D. Buron et al., Mapping the electrical properties of large-area graphene, 2D Materials, vol.4, issue.4, p.42003, 2017.

J. Azevedo, C. Bourdillon, V. Derycke, S. Campidelli, C. Lefrou et al., Contactless Surface Conductivity Mapping of Graphene Oxide Thin Films Deposited on Glass with Scanning Electrochemical Microscopy, vol.85, pp.1812-1818, 2013.

T. Bourgeteau, S. L. Vot, M. Bertucchi, V. Derycke, B. Jousselme et al., New Insights into the Electronic Transport of Reduced Graphene Oxide Using Scanning Electrochemical Microscopy, The Journal of Physical Chemistry Letters, vol.5, issue.23, pp.4162-4166, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01156580

A. Bellunato, H. Tash, Y. Cesa, and G. F. Schneider, Chemistry at the Edge of Graphene, ChemPhysChem, vol.17, issue.6, pp.785-801, 2016.

X. S. Chu, A. Yousaf, D. O. Li, A. A. Tang, A. Debnath et al., Direct Covalent Chemical Functionalization of Unmodified Two-Dimensional Molybdenum Disulfide, Chemistry of Materials, vol.30, issue.6, pp.2112-2128, 2018.

D. O. Li, X. S. Chu, and Q. H. Wang, Reaction Kinetics for the Covalent Functionalization of Two-Dimensional MoS 2 by Aryl Diazonium Salts, Langmuir, vol.35, issue.17, pp.5693-5701, 2019.

Q. H. Wang, C. Shih, G. L. Paulus, and M. S. Strano, Evolution of Physical and Electronic Structures of Bilayer Graphene upon Chemical Functionalization, Journal of the American Chemical Society, vol.135, issue.50, pp.18866-18875, 2013.

A. Jacobsen, F. M. Koehler, W. J. Stark, and K. Ensslin, Towards electron transport measurements in chemically modified graphene: effect of a solvent, New Journal of Physics, vol.12, issue.12, p.125007, 2010.

R. Sharma, J. H. Baik, C. J. Perera, and M. S. Strano, Anomalously Large Reactivity of Single Graphene Layers and Edges toward Electron Transfer Chemistries, Nano Letters, vol.10, issue.2, pp.398-405, 2010.

X. Wang, J. Zhang, X. Zhang, and Y. Zhu, Characterization, uniformity and photo-catalytic properties of graphene/TiO 2 nanocomposites via Raman mapping, Optics Express, vol.25, issue.18, pp.21496-21508, 2017.

S. Wang, R. Wang, X. Liu, X. Wang, D. Zhang et al., Optical Spectroscopy Investigation of the Structural and Electrical Evolution of Controllably Oxidized Graphene by a Solution Method, The Journal of Physical Chemistry C, vol.116, issue.19, pp.10702-10707, 2012.

J. M. Englert, P. Vecera, K. C. Knirsch, R. A. Schäfer, F. Hauke et al., Scanning-Raman-Microscopy for the Statistical Analysis of Covalently Functionalized Graphene, ACS Nano, vol.7, issue.6, pp.5472-5482, 2013.

F. M. Koehler, A. Jacobsen, K. Ensslin, C. Stampfer, and W. J. Stark, Selective Chemical Modification of Graphene Surfaces: Distinction Between Single-and Bilayer Graphene, Small, vol.6, issue.10, pp.1125-1130, 2010.

S. Niyogi, E. Bekyarova, M. E. Itkis, H. Zhang, K. Shepperd et al., Spectroscopy of Covalently Functionalized Graphene, vol.10, pp.4061-4066, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01002908

H. Lim, J. S. Lee, H. Shin, H. S. Shin, and H. C. Choi, Spatially Resolved Spontaneous Reactivity of Diazonium Salt on Edge and Basal Plane of Graphene without Surfactant and Its Doping Effect, Langmuir, vol.26, issue.14, pp.12278-12284, 2010.

M. P. Mcdonald, A. Eltom, F. Vietmeyer, J. Thapa, Y. V. Morozov et al., Direct Observation of Spatially Heterogeneous Single-Layer Graphene Oxide Reduction Kinetics, Nano Letters, vol.13, issue.12, pp.5777-5784, 2013.

D. A. Sokolov, Y. V. Morozov, M. P. Mcdonald, F. Vietmeyer, J. H. Hodak et al., Direct Observation of Single Layer Graphene Oxide Reduction through Spatially Resolved, Single Sheet Absorption/Emission Microscopy, Nano Letters, vol.14, issue.6, pp.3172-3179, 2014.

B. J. Tyler, B. Brennan, H. Stec, T. Patel, L. Hao et al., Removal of Organic Contamination from Graphene with a Controllable Mass-Selected Argon Gas Cluster Ion Beam, The Journal of Physical Chemistry C, vol.119, issue.31, pp.17836-17841, 2015.

P. Kova?í?ek, V. Vrkoslav, J. Pl?ek, Z. Bastl, M. Fridrichová et al., Extended characterization methods for covalent functionalization of graphene on copper, Carbon, vol.118, 2017.

J. S. Wallace, A. Quinn, J. A. Gardella, J. Hu, E. S. et al., Time-of-flight secondary ion mass spectrometry as a tool for evaluating the plasma-induced hydrogenation of graphene, Journal of Vacuum Science & Technology B, vol.34, issue.3, 2016.

E. A. Muller, B. Pollard, and M. B. Raschke, Infrared Chemical Nano-Imaging: Accessing Structure, Coupling, and Dynamics on Molecular Length Scales, The Journal of Physical Chemistry Letters, vol.6, issue.7, pp.1275-1284, 2015.

P. Patoka, G. Ulrich, A. E. Nguyen, L. Bartels, P. A. Dowben et al., Nanoscale plasmonic phenomena in CVD-grown MoS 2 monolayer revealed by ultra-broadband synchrotron radiation based nano-FTIR spectroscopy and near-field microscopy, Optics Express, vol.24, issue.2, pp.1154-1164, 2016.

B. Warner, T. G. Gill, V. Caciuc, N. Atodiresei, A. Fleurence et al., Guided Molecular Assembly on a Locally Reactive 2D Material, vol.29, p.1703929, 2017.

M. Z. Hossain, M. A. Walsh, and M. C. Hersam, Scanning Tunneling Microscopy, Spectroscopy, and Nanolithography of Epitaxial Graphene Chemically Modified with Aryl Moieties, Journal of the American Chemical Society, vol.132, issue.43, pp.15399-15403, 2010.

X. Wang, X. Shen, Z. Wang, R. Yu, and L. Chen, Atomic-Scale Clarification of Structural Transition of MoS 2 upon Sodium Intercalation, ACS Nano, vol.8, issue.11, pp.11394-11400, 2014.

P. Gao, L. Wang, Y. Zhang, Y. Huang, and K. Liu, Atomic-Scale Probing of the Dynamics of Sodium Transport and Intercalation-Induced Phase Transformations in MoS 2, ACS Nano, vol.9, issue.11, pp.11296-11301, 2015.

M. Kan, J. Y. Wang, X. W. Li, S. H. Zhang, Y. W. Li et al., Structures and Phase Transition of a MoS 2 Monolayer, The Journal of Physical Chemistry C, vol.118, issue.3, pp.1515-1522, 2014.

S. Chen, L. Wang, R. Shao, J. Zou, R. Cai et al., Atomic structure and migration dynamics of MoS 2 /LixMoS 2 interface, Nano Energy, vol.48, pp.560-568, 2018.

Q. Huang, L. Wang, Z. Xu, W. Wang, and X. Bai, In-situ TEM investigation of MoS 2 upon alkali metal intercalation, Science China Chemistry, vol.61, issue.2, pp.222-227, 2018.

P. Gao, Y. Zhang, L. Wang, S. Chen, Y. Huang et al., In situ atomic-scale observation of reversible sodium ions migration in layered metal dichalcogenide SnS 2 nanostructures, Nano Energy, vol.32, pp.302-309, 2017.

F. R. Bagsican, A. Winchester, S. Ghosh, X. Zhang, L. Ma et al., Adsorption energy of oxygen molecules on graphene and two-dimensional tungsten disulfide, Scientific Reports, vol.7, issue.1, p.1774, 2017.

Y. Sun, Q. Wu, and G. Shi, Graphene based new energy materials, vol.4, pp.1113-1132, 2011.

L. Dai, Functionalization of Graphene for Efficient Energy Conversion and Storage, Accounts of Chemical Research, vol.46, issue.1, pp.31-42, 2013.

J. Hou, Y. Shao, M. W. Ellis, R. B. Moore, and B. Yi, Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries, Physical Chemistry Chemical Physics, vol.13, issue.34, pp.15384-15402, 2011.

N. G. Sahoo, Y. Pan, L. Li, and S. H. Chan, Graphene-Based Materials for Energy Conversion, Advanced Materials, vol.24, issue.30, pp.4203-4210, 2012.

M. Arai, S. Masubuchi, K. Nose, Y. Mitsuda, and T. Machida, Fabrication of 10-nm-scale nanoconstrictions in graphene using atomic force microscopy-based local anodic oxidation lithography, Japanese Journal of Applied Physics, vol.54, pp.4-06, 2015.

M. Ahmad, Y. Seo, and Y. J. Choi, Nanographene device fabrication using atomic force microscope, IET Micro Nano Letters, vol.8, issue.8, pp.422-425, 2013.

L. Weng, L. Zhang, Y. P. Chen, and L. P. Rokhinson, Atomic force microscope local oxidation nanolithography of graphene, Applied Physics Letters, vol.93, issue.9, p.93107, 2008.

J. M. Mativetsky, E. Treossi, E. Orgiu, M. Melucci, G. P. Veronese et al., Local Current Mapping and Patterning of Reduced Graphene Oxide, Journal of the American Chemical Society, vol.132, issue.40, pp.14130-14136, 2010.

J. Azevedo, L. Fillaud, C. Bourdillon, J. Noel, F. Kanoufi et al., Localized Reduction of Graphene Oxide by Electrogenerated Naphthalene Radical Anions and Subsequent Diazonium Electrografting, Journal of the American Chemical Society, vol.136, issue.13, pp.4833-4836, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01156578

K. Torbensen, M. Kongsfelt, K. Shimizu, E. B. Pedersen, T. Skrydstrup et al., Patterned Carboxylation of Graphene Using Scanning Electrochemical Microscopy, Langmuir, issue.15, pp.4443-4452, 2015.

X. Chia and M. Pumera, Characteristics and performance of two-dimensional materials for electrocatalysis, Nature Catalysis, vol.1, issue.12, 2018.

C. L. Bentley, J. Edmondson, G. N. Meloni, D. Perry, V. Shkirskiy et al., Nanoscale Electrochemical Mapping, vol.91, issue.1, pp.84-108, 2019.

M. Velický, P. S. Toth, C. R. Woods, K. S. Novoselov, and R. A. Dryfe, Electrochemistry of the Basal Plane versus Edge Plane of Graphite Revisited, The Journal of Physical Chemistry C, vol.123, issue.18, pp.11677-11685, 2019.

G. Zhang, S. Tan, A. N. Patel, and P. R. Unwin, Electrochemistry of Fe 3+ / 2+ at highly oriented pyrolytic graphite (HOPG) electrodes: kinetics, identification of major electroactive sites and time effects on the response, Physical Chemistry Chemical Physics, vol.18, issue.47, pp.32387-32395, 2016.

N. L. Ritzert, V. A. Szalai, and T. P. Moffat, Mapping Electron Transfer at MoS 2 Using Scanning Electrochemical Microscopy, Langmuir, vol.34, issue.46, pp.13864-13870, 2018.

T. Sun, H. Zhang, X. Wang, J. Liu, C. Xiao et al., Nanoscale mapping of hydrogen evolution on metallic and semiconducting MoS 2 nanosheets, Nanoscale Horizons, vol.4, issue.3, pp.619-624, 2019.

C. L. Bentley, M. Kang, F. M. Maddar, F. Li, M. Walker et al., Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS 2 ): basal vs. edge plane activity, Chemical Science, vol.8, issue.9, pp.6583-6593, 2017.

A. Kumatani, C. Miura, H. Kuramochi, T. Ohto, M. Wakisaka et al., Chemical Dopants on Edge of Holey Graphene Accelerate Electrochemical Hydrogen Evolution Reaction, Advanced Science, vol.6, issue.10, 2019.

D. Liu, B. Tao, H. Ruan, C. L. Bentley, and P. R. Unwin, Metal support effects in electrocatalysis at hexagonal boron nitride, Chemical Communications, vol.55, issue.5, pp.628-631, 2019.

J. Hui, S. Pakhira, R. Bhargava, Z. J. Barton, X. Zhou et al., Modulating Electrocatalysis on Graphene Heterostructures: Physically Impermeable Yet Electronically Transparent Electrodes, vol.12, pp.2980-2990, 2018.

S. Kolagatla, P. Subramanian, and A. Schechter, Nanoscale mapping of catalytic hotspots on Fe, N-modified HOPG by scanning electrochemical microscopy-atomic force microscopy, Nanoscale, vol.10, issue.15, pp.6962-6970, 2018.

J. Zhang, J. Wu, X. Zou, K. Hackenberg, W. Zhou et al., Discovering superior basal plane active two-dimensional catalysts for hydrogen evolution, Materials Today, vol.25, pp.28-34, 2019.

J. Zhang, J. Wu, H. Guo, W. Chen, J. Yuan et al., Unveiling Active Sites for the Hydrogen Evolution Reaction on Monolayer MoS 2, Advanced Materials, vol.29, issue.42, p.1701955, 2017.

J. Zhang, A. Yang, X. Wu, J. Groep, P. Tang et al.,

S. Wu, M. L. Zhang, J. Brongersma, Y. Li, and . Cui, Reversible and selective ion intercalation through the top surface of few-layer MoS 2, Nature Communications, vol.9, issue.1, 2018.

N. B. Schorr, A. G. Jiang, and J. Rodríguez-lópez, Probing Graphene Interfacial Reactivity via Simultaneous and Colocalized Raman-Scanning Electrochemical Microscopy Imaging and Interrogation, Analytical Chemistry, vol.90, issue.13, pp.7848-7854, 2018.

A. Kumar, A. Sebastian, S. Das, and E. Ringe, Situ Optical Tracking of Electroablation in Two-Dimensional Transition-Metal Dichalcogenides, vol.10, pp.40773-40780, 2018.

W. Li, M. Wojcik, and K. Xu, Optical Microscopy Unveils Rapid, Reversible Electrochemical Oxidation and Reduction of Graphene, Nano Letters, vol.19, issue.2, pp.983-989, 2019.

T. Chen, Y. Zhang, and W. Xu, Observing the Heterogeneous Electro-redox of Individual Single-Layer Graphene Sheets, ACS Nano, vol.10, issue.9, pp.8434-8442, 2016.

H. Li, Z. Ying, B. Lyu, A. Deng, L. Wang et al., Electrode-Free Anodic Oxidation Nanolithography of Low-Dimensional Materials, Nano Letters, vol.18, issue.12, pp.8011-8015, 2018.

A. I. Dago, S. Sangiao, R. Fernández-pacheco, J. M. De-teresa, and R. Garcia, Chemical and structural analysis of sub-20 nm graphene patterns generated by scanning probe lithography, Carbon, vol.129, pp.281-285, 2018.

C. Rubio-verdú, G. Sáenz-arce, J. Martinez-asencio, D. C. Milan, M. Moaied et al., Graphene flakes obtained by local electro-exfoliation of graphite with a STM tip, Physical Chemistry Chemical Physics, vol.19, issue.11, pp.8061-8068, 2017.

E. Pinilla-cienfuegos, S. Mañas-valero, E. Navarro-moratalla, S. Tatay, A. Forment-aliaga et al., Local Oxidation Nanolithography on Metallic Transition Metal Dichalcogenides Surfaces, Applied Sciences, vol.6, issue.9, 2016.

C. J. Shearer, A. D. Slattery, A. J. Stapleton, J. G. Shapter, and C. T. Gibson, Accurate thickness measurement of graphene, Nanotechnology, vol.27, issue.12, 2016.

G. Kang, M. Yang, M. S. Mattei, G. C. Schatz, and R. P. Van-duyne, Situ Nanoscale Redox Mapping Using Tip-Enhanced Raman Spectroscopy, vol.19, pp.2106-2113, 2019.

Y. Yuan, M. Li, Z. Bai, G. Jiang, B. Liu et al., The Absence and Importance of Operando Techniques for Metal-Free Catalysts, Advanced Materials, vol.1805609, issue.13, p.31, 2019.

Y. Wu and N. Liu, Visualizing Battery Reactions and Processes by Using In Situ and In Operando Microscopies, Chem, vol.4, pp.438-465, 2018.

S. M. Tan and M. Pumera, Two-Dimensional Materials on the Rocks: Positive and Negative Role of Dopants and Impurities in Electrochemistry, vol.13, pp.2681-2728, 2019.

E. and A. , Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Archiv für mikroskopische Anatomie, vol.9, issue.1, pp.413-418, 1873.

A. A. Michelson, Studies in Optics, 1927.

A. , Mémoire sur la loi des modifications que la réflextion imprime à la lumière, 1823

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 2013.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen et al., Anti-reflecting and photonic nanostructures, Materials Science and Engineering: R: Reports, vol.69, issue.1, pp.1-35, 2010.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, Anti-reflective coatings: A critical, in-depth review, Energy & Environmental Science, vol.4, issue.10, pp.3779-3804, 2011.

M. K. Hedayati and M. Elbahri, Antireflective Coatings: Conventional Stacking Layers and Ultrathin Plasmonic Metasurfaces, A Mini-Review, Materials, 9, vol.497, 2016.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, Nanometre optical coatings based on strong interference effects in highly absorbing media, Nature Materials, vol.12, issue.1, pp.20-24, 2013.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, Metallic nanostructures for light trapping in energy-harvesting devices, Light-Science & Applications, 3, e161, 2014.

T. Oyama, H. Ohsaki, Y. Tachibana, Y. Hayashi, Y. Ono et al., A new layer system of anti-reflective coating for cathode ray tubes, vol.351, pp.235-240, 1999.

F. F. Schlich and R. Spolenak, Strong interference in ultrathin semiconducting layers on a wide variety of substrate materials, Applied Physics Letters, vol.103, issue.21, p.213112, 2013.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard et al., Ultra-thin perfect absorber employing a tunable phase change material, Applied Physics Letters, vol.101, issue.22, p.221101, 2012.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross et al., Resonant light trapping in ultrathin films for water splitting, Nature Materials, vol.12, issue.2, pp.158-164, 2013.

J. Park, J. Kang, A. P. Vasudev, D. T. Schoen, H. Kim et al., Omnidirectional Near-Unity Absorption in an Ultrathin Planar Semiconductor Layer on a Metal Substrate, Acs Photonics, vol.1, issue.9, pp.812-821, 2014.

R. M. Azzam and N. M. Bashara, Ellipsometry and polarized light, 1977.

S. G. Moiseev and S. V. Vinogradov, Design of antireflection composite coating based on metal nanoparticles, Physics of Wave Phenomena, vol.19, issue.1, pp.47-51, 2011.

D. Ausserre, R. Abou-khachfe, L. Roussille, G. Brotons, L. Vonna et al., Anti-Reflecting Absorbing Layers for Electrochemical and Biophotonic Applications, vol.5, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01524064

J. Lemineur, J. Noël, D. Ausserré, C. Combellas, and F. Kanoufi, Combining electrodeposition and optical microscopy for probing size-dependent single nanoparticle electrochemistry, Angewandte Chemie International Edition, vol.57, issue.37, pp.11998-12002, 2018.

J. Lemineur, J. Noël, C. Combellas, D. Ausserré, and F. Kanoufi, The promise of antireflective gold electrodes for optically monitoring the electro-deposition of single silver nanoparticles, Faraday Discussions, vol.210, pp.381-395, 2018.

G. Bepete, N. Izard, F. Torres-canas, A. Derré, A. Sbardelotto et al., Hydroxide Ions Stabilize Open Carbon Nanotubes in Degassed Water, ACS Nano, vol.12, issue.8, pp.8606-8615, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01925245

D. Ausserré, L. Roussille, M. Zerrad, F. Lemarchand, and C. Amra, Procédés optiques pour l'observation d'échantillons et pour la détection ou le dosage d'espèces chimiques ou biologiques, 2014.

D. Ausserré, C. Amra, M. Zerrad, and R. Abou-khachfe, Supports amplificateurs de contraste pour l'observation d'un échantillon, leur procédés de fabrication et leurs utilisations, 2015.

D. Ausserré, C. Amra, M. Zerrad, and R. Abou-khachfe, Procédé de fabrication de supports amplificateurs de contraste, 2015.

D. Ausserré, R. Abou-khachfe, and G. Brotons, Dispositif et appareil électrochimique et procédés mettant en oeuvre un tel appareil, 2015.

S. Campidelli, R. Cornut, V. Derycke, D. Ausserré, and M. Ausserré, Supports amplificateurs de contraste utilisant un matériau bidimensionnel, 2017.

S. Campidelli, R. Cornut, V. Derycke, D. Ausserré, and M. Ausserré, Procédé et appareil de positionnement d'un micro-ou nano-objet sous contrôle visuel, 2017.

J. Azevedo, S. Campidelli, D. He, R. Cornut, M. Bertucchi et al., Versatile Wafer-Scale Technique for the Formation of Ultrasmooth and Thickness-Controlled Graphene Oxide Films Based on Very Large Flakes, Acs Applied Materials & Interfaces, vol.7, issue.38, pp.21270-21277, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01228510

S. Pei and H. Cheng, The reduction of graphene oxide, Carbon, vol.50, issue.9, pp.3210-3228, 2012.

X. Gao, J. Jang, and S. Nagase, Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design, Journal of Physical Chemistry C, vol.114, issue.2, pp.832-842, 2010.

S. Rasul, A. Alazmi, K. Jaouen, M. N. Hedhili, and P. M. Costa, Rational design of reduced graphene oxide for superior performance of supercapacitor electrodes, Carbon, vol.111, pp.774-781, 2017.

P. Benjamin and C. Weaver, Adhesion of metal films to glass, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol.254, pp.177-183, 1277.

R. C. Williams and R. C. Backus, The Electron-Micrographic Structure of Shadow-Cast Films and Surfaces, Journal of Applied Physics, vol.20, issue.1, pp.98-106, 1949.

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Properties of Sapphire, Sapphire: Material, Manufacturing, Applications, Micro-and Opto-Electronic Materials, Structures, and Systems, 2009.

L. Gao, F. Lemarchand, and M. Lequime, Comparison of different dispersion models for single layer optical thin film index determination, Thin Solid Films, vol.520, issue.1, pp.501-509, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00945919

H. Zhang, Y. Ma, Y. Wan, X. Rong, Z. Xie et al., Measuring the Refractive Index of Highly Crystalline Monolayer MoS 2 with High Confidence, Scientific Reports, vol.5, 2015.

W. Lee, E. Malmberg, and J. Calvert, Photodecomposition of diazonium salt solutions, Journal of the American Chemical Society, vol.83, issue.8, 1928.

L. D. Burke, D. T. Buckley, and J. A. Morrissey, Novel view of the electrochemistry of gold, Analyst, vol.119, issue.5, pp.841-845, 1994.

L. D. Burke and P. F. Nugent, The electrochemistry of gold: I the redox behaviour of the metal in aqueous media, Gold Bulletin, vol.30, issue.2, pp.43-53, 1997.

L. D. Burke and P. F. Nugent, The electrochemistry of gold: II the electrocatalytic behaviour of the metal in aqueous media, Gold Bulletin, vol.31, issue.2, pp.39-50, 1998.

T. Smith, The hydrophilic nature of a clean gold surface, Journal of Colloid and Interface Science, vol.75, issue.1, pp.51-55, 1980.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, vol.105, pp.1103-1170, 2005.

X. Lin, Y. Cui, Y. Xu, B. Ren, and Z. Tian, Surface-enhanced Raman spectroscopy: substrate-related issues, Analytical and Bioanalytical Chemistry, vol.394, issue.7, pp.1729-1745, 2009.

L. M. Fischer, M. Tenje, A. R. Heiskanen, N. Masuda, J. Castillo et al., Gold cleaning methods for electrochemical detection applications, Microelectronic Engineering, vol.86, pp.1282-1285, 2009.

D. E. King, Oxidation of gold by ultraviolet light and ozone at 25 ? C, Journal of Vacuum Science & Technology A, vol.13, issue.3, pp.1247-1253, 1995.

H. Tsai, E. Hu, K. Perng, M. Chen, J. Wu et al., Surface Science, vol.537, issue.1, pp.447-450, 2003.

D. Berman and J. Krim, Impact of oxygen and argon plasma exposure on the roughness of gold film surfaces, Thin Solid Films, vol.520, issue.19, pp.6201-6206, 2012.

E. Tokunaga, Y. Nosaka, M. Hirabayashi, and T. Kobayashi, Pockels effect of water in the electric double layer at the interface between water and transparent electrode, Surface Science, vol.601, issue.3, pp.735-741, 2007.

Y. Nosaka, M. Hirabayashi, T. Kobayashi, and E. Tokunaga, Gigantic optical Pockels effect in water within the electric double layer at the electrode-solution interface, Physical Review B, vol.77, issue.24, p.241401, 2008.

H. Kanemaru, Y. Nosaka, A. Hirako, K. Ohkawa, T. Kobayashi et al., Electrooptic effect of water in electric double layer at interface of GaN electrode, Optical Review, vol.17, issue.3, pp.352-356, 2010.

H. Kanemaru, S. Yukita, H. Namiki, Y. Nosaka, T. Kobayashi et al., Giant Pockels effect of polar organic solvents and water in the electric double layer on a transparent electrode, vol.7, pp.45682-45690, 2017.

Y. Suzuki, K. Osawa, S. Yukita, T. Kobayashi, and E. Tokunaga, Anomalously large electro-optic Pockels effect at the airwater interface with an electric field applied parallel to the interface, Applied Physics Letters, vol.108, issue.19, 2016.

S. Yukita, Y. Suzuki, N. Shiokawa, T. Kobayashi, and E. Tokunaga, Mechanisms of the anomalous Pockels effect in bulk water, Optical Review, vol.25, issue.2, pp.205-214, 2018.

S. Yukita, N. Shiokawa, H. Kanemaru, H. Namiki, T. Kobayashi et al., Deflection switching of a laser beam by the Pockels effect of water, Applied Physics Letters, vol.100, issue.17, p.171108, 2012.

I. Z. Kozma, P. Krok, and E. Riedle, Direct measurement of the group-velocity mismatch and derivation of the refractiveindex dispersion for a variety of solvents in the ultraviolet, JOSA B, vol.22, issue.7, pp.1479-1485, 2005.

C. E. Shannon, Communication in the Presence of Noise, Proceedings of the IRE, vol.37, pp.10-21, 1949.

A. D. Poulpiquet, B. Goudeau, P. Garrigue, N. Sojic, S. Arbault et al., A snapshot of the electrochemical reaction layer by using 3 dimensionally resolved fluorescence mapping, Chemical Science, vol.9, issue.32, pp.6622-6628, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02353317

F. Miomandre, E. Lépicier, S. Munteanu, O. Galangau, J. F. Audibert et al., Electrochemical Monitoring of the Fluorescence Emission of Tetrazine and Bodipy Dyes Using Total Internal Reflection Fluorescence Microscopy Coupled to Electrochemistry, ACS Applied Materials & Interfaces, vol.3, issue.3, pp.690-696, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00576859

S. Mao, H. Pu, and J. Chen, Graphene oxide and its reduction: modeling and experimental progress, RSC Advances, vol.2, pp.2643-2662, 2012.

T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials, Nanoscale, vol.5, issue.1, pp.52-71, 2012.

C. K. Chua and M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint, Chemical Society Reviews, vol.43, issue.1, pp.291-312, 2014.

R. K. Singh, R. Kumar, and D. P. Singh, Graphene oxide: strategies for synthesis, reduction and frontier applications, vol.6, pp.64993-65011, 2016.

A. Viinikanoja, Z. Wang, J. Kauppila, and C. Kvarnström, Electrochemical reduction of graphene oxide and its in situ spectroelectrochemical characterization, Physical Chemistry Chemical Physics, vol.14, issue.40, pp.14003-14009, 2012.

J. Zhao, S. Pei, W. Ren, L. Gao, and H. Cheng, Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films, ACS Nano, vol.4, issue.9, pp.5245-5252, 2010.

Y. Shao, J. Wang, M. Engelhard, C. Wang, and Y. Lin, Facile and controllable electrochemical reduction of graphene oxide and its applications, Journal of Materials Chemistry, vol.20, issue.4, pp.743-748, 2010.

D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller et al., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon, vol.47, issue.1, pp.145-152, 2009.

D. Belanger and J. Pinson, Electrografting: a powerful method for surface modification, Chemical Society Reviews, vol.40, issue.7, pp.3995-4048, 2011.

R. L. Mccreery, Molecular Electronic Junctions, Chemistry of Materials, vol.16, issue.23, pp.4477-4496, 2004.

V. Stockhausen, J. Ghilane, P. Martin, G. Trippé-allard, H. Randriamahazaka et al., Grafting Oligothiophenes on Surfaces by Diazonium Electroreduction: A Step toward Ultrathin Junction with Well-Defined Metal/Oligomer Interface, Journal of the American Chemical Society, vol.131, issue.41, pp.14920-14927, 2009.

H. Casademont, L. Fillaud, X. Lefèvre, B. Jousselme, and V. Derycke, Electrografted Fluorinated Organic Ultrathin Film as Efficient Gate Dielectric in MoS 2 Transistors, The Journal of Physical Chemistry C, vol.120, issue.17, pp.9506-9510, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01332017

A. Chaussé, M. M. Chehimi, N. Karsi, J. Pinson, F. Podvorica et al., The Electrochemical Reduction of Diazonium Salts on Iron Electrodes. The Formation of Covalently Bonded Organic Layers and Their Effect on Corrosion, Chemistry of Materials, vol.14, issue.1, pp.392-400, 2002.

C. Cao, Y. Zhang, C. Jiang, M. Qi, and G. Liu, Advances on Aryldiazonium Salt Chemistry Based Interfacial Fabrication for Sensing Applications, ACS Applied Materials & Interfaces, vol.9, issue.6, pp.5031-5049, 2017.

B. D. Assresahegn, T. Brousse, and D. Bélanger, Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems, Carbon, vol.92, pp.362-381, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01725485

F. Alloin, L. Crepel, L. Cointeaux, J. Leprêtre, F. Fusalba et al., The Interest of Diazonium Chemistry for Aqueous Lithium-Ion Battery, Journal of The Electrochemical Society, vol.160, issue.5, pp.3171-3178, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01884285

J. Pinson and F. Podvorica, Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts, Chemical Society Reviews, vol.34, issue.5, pp.429-439, 2005.

T. Menanteau, M. Dias, E. Levillain, A. J. Downard, and T. Breton, Electrografting via Diazonium Chemistry: The Key Role of the Aryl Substituent in the Layer Growth Mechanism, The Journal of Physical Chemistry C, vol.120, issue.8, pp.4423-4429, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01330327

M. C. González, P. Carro, L. Vázquez, and A. H. Creus, Mapping nanometric electronic property changes induced by an aryl diazonium sub-monolayer on HOPG, Physical Chemistry Chemical Physics, vol.18, issue.42, pp.29218-29225, 2016.

T. Menanteau, E. Levillain, A. J. Downard, and T. Breton, Evidence of monolayer formation via diazonium grafting with a radical scavenger: electrochemical, AFM and XPS monitoring, Physical Chemistry Chemical Physics, vol.17, issue.19, pp.13137-13142, 2015.

D. R. Jayasundara, R. J. Cullen, L. Soldi, and P. E. Colavita, Situ Studies of the Adsorption Kinetics of 4-Nitrobenzenediazonium Salt on Gold, vol.27, pp.13029-13036, 2011.

T. J. Neubert, F. Rösicke, G. Sun, S. Janietz, M. A. Gluba et al., Functionalization of gold and graphene electrodes by p-maleimido-phenyl towards thiol-sensing systems investigated by EQCM and IR ellipsometric spectroscopy, Applied Surface Science, vol.421, pp.755-760, 2017.

S. Chernyy, A. Bousquet, K. Torbensen, J. Iruthayaraj, M. Ceccato et al., Elucidation of the Mechanism of Redox Grafting of Diazotated Anthraquinone, Langmuir, vol.28, issue.25, pp.9573-9582, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01557303

A. Laforgue, T. Addou, and D. Bélanger, Characterization of the Deposition of Organic Molecules at the Surface of Gold by the Electrochemical Reduction of Aryldiazonium Cations, Langmuir, vol.21, issue.15, pp.6855-6865, 2005.

X. Shan, U. Patel, S. Wang, R. Iglesias, and N. Tao, Imaging Local Electrochemical Current via Surface Plasmon Resonance, Science, vol.327, issue.5971, pp.1363-1366, 2010.

O. Andersson, C. Ulrich, F. Björefors, and B. Liedberg, Imaging SPR for detection of local electrochemical processes on patterned surfaces, Sensors and Actuators B: Chemical, vol.134, issue.2, pp.545-550, 2008.

C. A. Mandon, L. J. Blum, and C. A. Marquette, Aryl Diazonium for Biomolecules Immobilization onto SPRi Chips, ChemPhysChem, vol.10, issue.18, pp.3273-3277, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00590339

B. P. Corgier, S. Bellon, M. Anger-leroy, L. J. Blum, and C. A. Marquette, Protein-Diazonium Adduct Direct Electrografting onto SPRi-Biochip, vol.25, pp.9619-9623, 2009.

X. Shan, I. Díez-pérez, L. Wang, P. Wiktor, Y. Gu et al., Imaging the electrocatalytic activity of single nanoparticles, Nature Nanotechnology, vol.7, issue.10, pp.668-672, 2012.

A. Cumurcu, X. Feng, L. D. Ramos, M. A. Hempenius, P. Schön et al., Sub-nanometer expansions of redox responsive polymer films monitored by imaging ellipsometry, Nanoscale, vol.6, issue.20, pp.12089-12095, 2014.

Y. Yu and G. Jin, Influence of electrostatic interaction on fibrinogen adsorption on gold studied by imaging ellipsometry combined with electrochemical methods, Journal of Colloid and Interface Science, vol.283, issue.2, pp.477-481, 2005.

S. Munteanu, N. Garraud, J. P. Roger, F. Amiot, J. Shi et al., Situ, Real Time Monitoring of Surface Transformation: Ellipsometric Microscopy Imaging of Electrografting at Microstructured Gold Surfaces, vol.85, 1965.
URL : https://hal.archives-ouvertes.fr/hal-00835953

S. Munteanu, J. Roger, Y. Fedala, F. Amiot, C. Combellas et al., Mapping fluxes of radicals from the combination of electrochemical activation and optical microscopy, Faraday Discussions, vol.164, issue.0, pp.241-258, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02300154

M. Ceccato, L. T. Nielsen, J. Iruthayaraj, M. Hinge, S. U. Pedersen et al., Nitrophenyl Groups in Diazonium-Generated Multilayered Films: Which are Electrochemically Responsive?, Langmuir, vol.26, issue.13, pp.10812-10821, 2010.

T. Menanteau, E. Levillain, and T. Breton, Electrografting via Diazonium Chemistry: From Multilayer to Monolayer Using Radical Scavenger, Chemistry of Materials, vol.25, issue.14, pp.2905-2909, 2013.

A. Ghorbal, F. Grisotto, M. Laudé, J. Charlier, and S. Palacin, The in situ characterization and structuring of electrografted polyphenylene films on silicon surfaces. An AFM and XPS study, Journal of Colloid and Interface Science, vol.328, issue.2, pp.308-313, 2008.
URL : https://hal.archives-ouvertes.fr/cea-01056536

A. Benedetto, M. Balog, P. Viel, F. L. Derf, M. Sallé et al., Electro-reduction of diazonium salts on gold: Why do we observe multi-peaks?, Electrochimica Acta, vol.53, issue.24, pp.7117-7122, 2008.
URL : https://hal.archives-ouvertes.fr/cea-01056555

S. Bouden, J. Pinson, and C. Vautrin-ul, Electrografting of diazonium salts: A kinetics study, Electrochemistry Communications, vol.81, pp.120-123, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01649484

Y. Lin, C. H. Bennett, T. Cabaret, D. Vodenicarevic, D. Chabi et al., Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses, Scientific Reports, vol.6, p.31932, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01361933

F. Lebon, R. Cornut, V. Derycke, and B. Jousselme, Fine growth control of electrografted homogeneous thin films on patterned gold electrodes, Electrochimica Acta, vol.318, pp.754-761, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02295172

M. Quintana, E. Vazquez, and M. Prato, Organic Functionalization of Graphene in Dispersions, Accounts of Chemical Research, vol.46, issue.1, pp.138-148, 2013.

X. Chen and A. R. Mcdonald, Functionalization of Two-Dimensional Transition-Metal Dichalcogenides, Advanced Materials, vol.28, issue.27, pp.5738-5746, 2016.

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chemical Society Reviews, vol.39, issue.1, pp.228-240, 2009.

P. Huang, L. Jing, H. Zhu, and X. Gao, Diazonium Functionalized Graphene: Microstructure, Electric, and Magnetic Properties, Accounts of Chemical Research, vol.46, issue.1, pp.43-52, 2013.

G. L. Paulus, Q. H. Wang, and M. S. Strano, Covalent Electron Transfer Chemistry of Graphene with Diazonium Salts, Accounts of Chemical Research, vol.46, issue.1, pp.160-170, 2013.

J. Greenwood, T. H. Phan, Y. Fujita, Z. Li, O. Ivasenko et al., Covalent Modification of Graphene and Graphite Using Diazonium Chemistry: Tunable Grafting and Nanomanipulation, ACS Nano, vol.9, issue.5, pp.5520-5535, 2015.

K. C. Knirsch, N. C. Berner, H. C. Nerl, C. S. Cucinotta, Z. Gholamvand et al., Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts, vol.9, pp.6018-6030, 2015.

W. Gao, M. Majumder, L. B. Alemany, T. N. Narayanan, M. A. Ibarra et al., Engineered Graphite Oxide Materials for Application in Water Purification, ACS Applied Materials & Interfaces, vol.3, issue.6, pp.1821-1826, 2011.

A. G. Güell, N. Ebejer, M. E. Snowden, J. V. Macpherson, and P. R. Unwin, Structural Correlations in Heterogeneous Electron Transfer at Monolayer and Multilayer Graphene Electrodes, Journal of the American Chemical Society, vol.134, issue.17, pp.7258-7261, 2012.

M. Velický, D. F. Bradley, A. J. Cooper, E. W. Hill, I. A. Kinloch et al., Electron Transfer Kinetics on Mono-and Multilayer Graphene, vol.8, issue.10, pp.10089-10100, 2014.

A. T. Valota, P. S. Toth, Y. Kim, B. H. Hong, I. A. Kinloch et al., Electrochemical investigation of chemical vapour deposition monolayer and bilayer graphene on the microscale, Electrochimica Acta, vol.110, pp.9-15, 2013.

D. Hernández-santos, M. B. González-garcía, and A. C. García, Metal-Nanoparticles Based Electroanalysis, Electroanalysis, vol.14, pp.1225-1235, 2002.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao et al., Biosensing with plasmonic nanosensors, Nature Materials, vol.7, issue.6, pp.442-453, 2008.

M. T. Koper, Structure sensitivity and nanoscale effects in electrocatalysis, Nanoscale, vol.3, issue.5, pp.2054-2073, 2011.

Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, Applications of magnetic nanoparticles in biomedicine, Journal of Physics D: Applied Physics, vol.36, issue.13, pp.167-181, 2003.

B. D. Chithrani, A. A. Ghazani, and W. C. Chan, Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells, Nano Letters, vol.6, issue.4, pp.662-668, 2006.

C. Bosch-navarro, J. P. Rourke, and N. R. Wilson, Controlled electrochemical and electroless deposition of noble metal nanoparticles on graphene, vol.6, pp.73790-73796, 2016.

J. Ustarroz, U. Gupta, A. Hubin, S. Bals, and H. Terryn, Electrodeposition of Ag nanoparticles onto carbon coated TEM grids: A direct approach to study early stages of nucleation, Electrochemistry Communications, vol.12, issue.12, pp.1706-1709, 2010.

H. E. Hussein, R. J. Maurer, H. Amari, J. J. Peters, L. Meng et al., Tracking Metal Electrodeposition Dynamics from Nucleation and Growth of a Single Atom to a Crystalline Nanoparticle, ACS Nano, vol.12, issue.7, pp.7388-7396, 2018.

R. Tel-vered and A. J. Bard, Generation and Detection of Single Metal Nanoparticles Using Scanning Electrochemical Microscopy Techniques, The Journal of Physical Chemistry B, vol.110, issue.50, pp.25279-25287, 2006.

J. Velmurugan, J. Noël, W. Nogala, and M. V. Mirkin, Nucleation and growth of metal on nanoelectrodes, Chemical Science, vol.3, issue.11, pp.3307-3314, 2012.

C. M. Hill and S. Pan, A Dark-Field Scattering Spectroelectrochemical Technique for Tracking the Electrodeposition of Single Silver Nanoparticles, Journal of the American Chemical Society, vol.135, issue.46, pp.17250-17253, 2013.

C. Batchelor-mcauley, A. Martinez-marrades, K. Tschulik, A. N. Patel, C. Combellas et al., Simultaneous electrochemical and 3D optical imaging of silver nanoparticle oxidation, Chemical Physics Letters, vol.597, pp.20-25, 2014.

A. N. Patel, A. Martinez-marrades, V. Brasiliense, D. Koshelev, M. Besbes et al., Deciphering the Elementary Steps of Transport-Reaction Processes at Individual Ag Nanoparticles by 3D Superlocalization Microscopy, Nano Letters, vol.15, issue.10, pp.6454-6463, 2015.

C. M. Hill, R. Bennett, C. Zhou, S. Street, J. Zheng et al., Single Ag Nanoparticle Spectroelectrochemistry via Dark-Field Scattering and Fluorescence Microscopies, vol.119, pp.6760-6768, 2015.

Y. Fang, W. Wang, X. Wo, Y. Luo, S. Yin et al., Plasmonic Imaging of Electrochemical Oxidation of Single Nanoparticles, vol.136, pp.12584-12587, 2014.

K. Wonner, M. V. Evers, and K. Tschulik, The electrochemical dissolution of single silver nanoparticles enlightened by hyperspectral dark-field microscopy, Electrochimica Acta, vol.301, pp.458-464, 2019.

V. Brasiliense, A. N. Patel, A. Martinez-marrades, J. Shi, Y. Chen et al., Correlated Electrochemical and Optical Detection Reveals the Chemical Reactivity of Individual Silver Nanoparticles, Journal of the American Chemical Society, vol.138, issue.10, pp.3478-3483, 2016.

V. Brasiliense, J. Clausmeyer, P. Berto, G. Tessier, C. Combellas et al., Monitoring Cobalt-Oxide Single Particle Electrochemistry with Subdiffraction Accuracy, Analytical Chemistry, vol.90, issue.12, pp.7341-7348, 2018.

V. Brasiliense, J. Clausmeyer, A. L. Dauphin, J. Noël, P. Berto et al., Optoelectrochemical In Situ Monitoring of the Cathodic Formation of Single Cobalt Nanoparticles, Angewandte Chemie International Edition, vol.56, issue.35, pp.10598-10601, 2017.

V. Brasiliense, P. Berto, C. Combellas, G. Tessier, and F. Kanoufi, Electrochemistry of Single Nanodomains Revealed by Three-Dimensional Holographic Microscopy, vol.49, pp.2049-2057, 2016.

D. Grujicic and B. Pesic, Electrodeposition of copper: the nucleation mechanisms, Electrochimica Acta, vol.47, issue.18, pp.161-166, 2002.

P. Hsu, Y. Chu, J. Yi, C. Wang, S. Wu et al., Dynamical growth behavior of copper clusters during electrodeposition, Applied Physics Letters, vol.97, issue.3, p.33101, 2010.

E. Gileadi and V. Tsionsky, Studies of Electroplating Using an EQCM. I. Copper and Silver on Gold, Journal of The Electrochemical Society, vol.147, issue.2, pp.567-574, 2000.

M. Nagar, A. Radisic, K. Strubbe, and P. M. Vereecken, The Effect of the Substrate Characteristics on the Electrochemical Nucleation and Growth of Copper, Journal of The Electrochemical Society, vol.163, issue.12, pp.3053-3061, 2016.

F. Qiao and A. C. West, The impact of cations on nucleus density during copper electrodeposition, Electrochimica Acta, vol.150, pp.8-14, 2014.

S. C. Lai, R. A. Lazenby, P. M. Kirkman, and P. R. Unwin, Nucleation, aggregative growth and detachment of metal nanoparticles during electrodeposition at electrode surfaces, Chemical Science, vol.6, issue.2, pp.1126-1138, 2015.

D. J. Lomax and R. A. Dryfe, Electrodeposition of Au on basal plane graphite and graphene, Journal of Electroanalytical Chemistry, vol.819, pp.374-383, 2018.

P. Lammel, B. Torun, C. Kleber, and G. Grundmeier, In-situ AFM study of the electrodeposition of copper on plasma modified carbon fibre-reinforced polymer surfaces, Surface and Coatings Technology, vol.221, pp.22-28, 2013.

Y. Su, E. Prestat, C. Hu, V. K. Puthiyapura, M. Neek-amal et al., Self-Limiting Growth of Two-Dimensional Palladium between Graphene Oxide Layers, Nano Letters, vol.19, issue.7, pp.4678-4683, 2019.

S. Wu, Z. Yin, Q. He, G. Lu, Q. Yan et al., Nucleation Mechanism of Electrochemical Deposition of Cu on Reduced Graphene Oxide Electrodes, The Journal of Physical Chemistry C, vol.115, issue.32, pp.15973-15979, 2011.

M. J. Williamson, R. M. Tromp, P. M. Vereecken, R. Hull, and F. M. Ross, Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface, Nature Materials, vol.2, issue.8, 2003.

S. Manne, P. K. Hansma, J. Massie, V. B. Elings, and A. A. Gewirth, Atomic-Resolution Electrochemistry with the Atomic Force Microscope: Copper Deposition on Gold, Science, issue.4990, pp.183-186, 1991.

S. Yang, Y. Chang, H. Wang, G. Liu, S. Chen et al., Folding/aggregation of graphene oxide and its application in Cu 2+ removal, Journal of Colloid and Interface Science, vol.351, issue.1, pp.122-127, 2010.

T. J. Stockmann, J. Lemineur, H. Liu, C. Cometto, M. Robert et al., Single LiBH 4 nanocrystal stochastic impacts at a micro water/ionic liquid interface, Electrochimica Acta, vol.299, pp.222-230, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01974517

V. Sundaresan, K. Marchuk, Y. Yu, E. J. Titus, A. J. Wilson et al., Visualizing and Calculating Tip-Substrate Distance in Nanoscale Scanning Electrochemical Microscopy Using 3-Dimensional Super-Resolution Optical Imaging, Analytical Chemistry, vol.89, issue.1, pp.922-928, 2017.

L. Bouffier and T. Doneux, Coupling electrochemistry with in situ fluorescence (confocal) microscopy, Current Opinion in Electrochemistry, vol.6, pp.31-37, 2017.

T. Yuan and W. Wang, Studying the electrochemistry of single nanoparticles with surface plasmon resonance microscopy, Current Opinion in Electrochemistry, 2017.

T. Bourgeteau, Development of hybrid photocathodes for solar hydrogen production, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01870902

N. Morimoto, T. Kubo, and Y. Nishina, Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications, Scientific Reports, vol.6, 2016.

J. Azevedo, Assemblage contrôlé de graphène et de nanotubes de carbone par transfert de films de tensioactifs pour le photovoltaïque, 2013.

H. Casademont, Semi-conducteurs 2D pour l'électronique flexible : évaluation du potentiel du MoS 2 monocouche en tant que matériau de canal, 2016.

, Résumé en français la suite, l'électro-dépôt de cuivre sur des surfaces présentant

, En combinant versatilité et fort-contraste, la technique BALM est ainsi établie comme un outil très prometteur pour l'étude des matériaux 2D et en particulier pour la caractérisation locale et in situ de leur réactivité chimique et électrochimique. De plus, l'espace disponible au-dessus d'un microscope inversé en fait une plateforme d'observation pouvant être combinée à l'avenir avec beaucoup d'autres techniques de caractérisation telles que les microscopie à sondes locales