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Abstract

Large eddy simulation is becoming an important numerical tool in industry re-

cently. Resolving large scale turbulent motions directly, LES is capable to com-

pute the aeroacoustic noise generated by the airfoil or to precisely capture the

corner separation in a linear compressor cascade. The main challenge to perform

a LES calculation is to prescribe a realistic unsteady inflow field. For hybrid

RANS/LES approaches, inflow conditions for downstream LES region must be

generated from the upstream RANS solutions.

There exist several methods to generate inflow conditions for LES. They can

mainly be divided into two categories: 1) Precursor simulation; 2) Synthetic

turbulence methods. Precursor simulation requires to run a separate calculation

to generate a turbulent flow or a database to feed the main computation. This

kind of methods can generate high quality turbulence, however it requires heavy

extra computing load. Synthetic turbulence methods consist in generating a

fluctuating velocity field, and within a short “adaptation distance”, the field get

fully developed. So main goal of synthetic turbulence methods is to decrease the

required adaptation distance.

The vortex method which is a synthetic turbulence method is presented and

improved here. Parameters of the improved vortex method are optimized system-

atically with a series of calculations in this thesis. Applications on channel and

flat-plate flows show that the improved vortex method is effective in generating

the LES inflow conditions. The adaptation distance required for turbulence re-

covery is about 6 times the half channel height for channel flow, and 21 times the

boundary-layer thickness (at the inlet of vortex) for flat-plate flow. The velocity-

derivative skewness is used to qualify the generated turbulence, and is introduced

as a new criterion of LES calculation.

Key words: vortex method, LES, RANS, hybrid RANS/LES, inflow condi-

tion, channel flow, boundary layer, skewness.
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Résumé

La simulation des grandes échelles (SGE ou LES pour large eddy simulation)

commence à être très utilisée dans l’industrie. Par résolution directe des struc-

tures turbulents de grande tailles, le calcul LES est capable de calculer le bruit

générée par la voilure ou de prédire avec précision le décollement de coin dans

une configuration très simplifiée du compresseur. L’un des problèmes les plus

importants pour effectuer un calcul LES est de fournir des conditions d’entrée

avec des champs turbulents.

Pour une approche hybride RANS/LES (RANS pour Reynolds Averaged

Navier-Stokes), les conditions d’entrée turbulentes pour un calcul LES sont générées

à l’aide des solutions fournies par le calcul RANS en amont. Il existe plusieurs

méthodes pour générer les conditions d’entrée pour LES. Elles peuvent princi-

palement être classées en deux catégories : 1) simulation avec pré-calcul ; 2)

la méthode de turbulence synthétique. La simulation avec pré-calcul consiste

à effectuer un calcul LES indépendant pour générer un champ turbulent comme

conditions d’entrée pour alimenter le calcul principal. Cette méthode peut obtenir

des turbulences de haute qualité, mais elle augmente considérablement le temps

de calcul et le stockage des données. Le champ turbulent généré par la méthode

de turbulence synthétique exige une “distance de adaptation”, pendante laque-

lle le champ turbulent devient pleinement développée. L’objectif principal pour

améliorer ce genre de méthodes est donc de diminuer cette distance nécessaire.

Dans cette thèse, la méthode de vortex, qui est une approche de turbulence

synthétique, est présentée et améliorée . A travers des expérience numériques, les

paramètres de la méthode de vortex améliorée sont systématiquement optimisées.

L’application à l’écoulement en canal plan et à couche limite en plaque plane,

montrent que la méthode de vortex améliorée génère de manière efficace pour

fournir des conditions d’entrée pour LES. Dans le cas de l’écoulement en canal

plan, la distance d’adaptation nécessaire pour la rétablissement de la turbulence

est de environ 6 fois la demi-hauteur du canal. Pour le cas de l’écoulement en

plaque plane, cette distance est environ 21 fois l’épaisseur de la couche limite.

Enfin, dans le but de qualifier la turbulence obtenue par des calculs LES, nous
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utilisons les coefficients de dissymétrie des dérivées des fluctuations de vitesse, et,

nous les introduisons comme un nouveau critère pour la qualité de LES.

Mots clés: méthode de vortex, LES, RANS, hybride RANS/LES, condition

d’entrée, canal plan, couche limite, dissymétrie.
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cf friction coefficient

DLLL the third-order longitudinal velocity structure function

DLL the second-order longitudinal velocity structure function

E(κ) Energy spectrum
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k turbulent kinetic energy, k = 1
2
〈u′2i 〉

xi
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ε

ld dissipation scale
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P static pressure
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η Kolmogorov scale

Γ circulation of vortex

γ heat capacity ratio
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κc cutoff wavenumber
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λ0 step length of random walk (E. Sergent)

µ dynamic viscosity

νt turbulent or eddy viscosity

ν kinematic viscosity

ω specific dissipation rate, ω = ε
Cµk
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π constant, ratio of a circle’s circumference to its diameter, π ' 3.14

ρ density

σ radius of vortex

τ lifetime of vortex

xiii



Nomenclature

θ momentum thickness, θ(x) ≡
∫∞

0
〈U〉
U∞

(1− 〈U〉
U∞

)dy

ξ spatial distribution of vortex

Superscripts

q filtered quantity

q′′ fluctuating quantity after filter-operation

q
′

fluctuating quantity after ensemble average

q+ quantity in wall unit

Subscripts

q∞ free-stream quantity

qrms root-mean-square of a quantity

Other Symbols

〈q〉 ensemble averaged quantity

〈u′iu′j〉 Reynolds stress
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3D Three-Dimensional
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CFL Courant–Friedrichs–Lewy (condition)

CLPP Couche Limite Plaque Plane [Fr] (boundary layer flat-plate)

CLVM Couche Limite [Fr] Vortex Method
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DNS Direct Numerical Simulation
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Introduction

Turbulence, being one of the most fascinating, difficult and important problems

in classical physics, is frighteningly hard to understand. It is related not only

to industrial use but also to our everyday life. In fact, most external and in-

ternal fluid flows we meet are turbulent. For example, flows in blood vessels or

flows around vehicles, aeroplanes and buildings. Also, the flows in compressors,

combustion chambers and gas turbines are highly turbulent. Hence, the research

of turbulence is of great importance in meteorology, aeronautics, medicine and

other industrial domains. There is no yet an exact definition of turbulence, but

it has several well known characteristics:

1. irregular, chaotic, may seem to be random.

2. three-dimensional, rotational and unsteady.

3. has a large range of length and time scales.

4. diffusive.

5. dissipative. Turbulent kinetic energy transfers from large-scale eddies to

small-scale eddies and finally dissipates at the smallest scale eddies.

The problem of turbulence attracts our attentions from very early days, with

sketches of wild water flows made by Leonardo da Vinci [Gelb, 2009] and starry

night drawn by Vincent van Gogh, as shown in Fig. 1. Early attempts to study

the turbulence [Tennekes and Lumley, 1972][Lumley et al., 2007] are through

experimental (e.g., experiments of Reynolds [1883]) and theoretical ways (e.g.,

Kolmogorov theory [Kraichnan, 1964]), which begins from the 19th century, but

1



Introduction

Figure 1: A visualization of a hidden regularity of turbulence through Vincent
van Gogh’s Starry Night

until now, the problem of turbulence is not yet totally understood. The Navier-

Stokes equations are the governing equations of fluid flows no matter they are

laminar or turbulent. They can properly describe the behaviour of fluids and the

turbulent phenomena. However, the analytical solutions of Navier-Stokes equa-

tions are limited to flows with very simple geometry and low Reynolds number.

Numerical simulations are more practicable and effective than experiments

from some points of view [Rogallo and Moin, 1984]. They provide rich informa-

tion of the turbulent flow field. Thanks to the great development of computer

techniques in the 1970s and 1980s, it became realistic to investigate turbulence

by numerically resolving the Navier-Stokes equations [Johnson et al., 2005]. But

again the numerical solutions are limited to low Reynolds number turbulent flows

as it demands significant computer power. To make a compromise, turbulence

modelling is introduced to study turbulent flows at high Reynolds numbers and

with more complex geometries.

There are three main approaches for resolving the Navier-Stokes equations:

Direct Numerical Simulation (DNS), Large-Eddy Simulation (LES) and Reynolds-

Averaged Navier-Stokes (RANS) method. DNS [Moin and Mahesh, 1998] aims

2



Introduction

Figure 2: Energy cascade of Kolmogorov spectrum

at resolving the Navier-Stokes equations directly. From a view of energy cascade,

as shown in Fig. 2, it directly simulates turbulent motions from the largest scales

(energy-containing scale L, based on flow domain geometry) to the smallest scales

(dissipation scale ld or Kolmogorov scale η). Thus the computational costs are

immense. It is proportional to Re
9/4
L , where ReL is the characteristic Reynolds

number. This prevents from using DNS for complex flows. To satisfy industrial

needs, RANS methods [Spalart, 2000][Alfonsi, 2009] have been developed. They

consist in resolving averaged Navier-Stokes equations which are closed by related

turbulence model. The disadvantage is that RANS does not provide unsteady

information about the flow field. An alternative is large-eddy simulation [Sagaut,

2006]. Different from DNS, turbulent motions from the largest scales until the

scales of inertial subrange are directly resolved by LES [Piomelli and Chasnov,

1996]. The effect of small scale (dissipation range and part of inertial range) mo-

tions, which have a universal character according to Kolmogorov’s theory [Kol-

mogorov, 1941], is modelled by subgrid-scale (SGS) model. Comparisons of these

three different CFD methods, as can be seen in Fig. 3, are summarized as follows:

1. DNS does not need any modelling. It directly resolves all scales of turbulent

motions and demands very fine spatial and temporal resolution. This results

3
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Figure 3: Comparison of DNS, LES and RANS

in huge computational costs (∝ Re
9/4
L ).

2. RANS solves the averaged Navier-Stokes equations. The Reynolds stresses

are modelled. It is much cheaper but cannot capture unsteady turbulent

characteristics.

3. LES directly resolves large-scale turbulent motions. Small-scale motions are

modelled. In this way, industrial needs could be satisfied and computational

costs are reduced.

This thesis focus on large-eddy simulation and hybrid RANS-LES [Sagaut

et al., 2013][Hamba, 2003]. Main work consists in studying LES inflow genera-

tion [Sagaut et al., 2003][Tabor and Baba-Ahmadi, 2010][Keating et al., 2004].

In a hybrid RANS-LES case [Mathey, 2008], one open issue is generating time

dependent fluctuations from an upstream RANS solution for downstream LES. In

LES, large turbulent scales are directly resolved. The scales are at least compa-

rable to the grid scales, and subgrid scale motions are filtered out and modelled.

Turbulent motions are always stochastic, spatially and temporally correlated.

The unsteady turbulent motions cannot be obtained by simply imposing some

kind of random fluctuations at inlet. When they are not well prescribed, LES is

4
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known to result in dramatic errors: turbulence is badly predicted, and may lead

to significant errors in the mean field. Therefore reasonable inflow conditions are

of great importance for LES. Usually, requirements of LES inflow conditions are

as follows:

1. Being qualified by fully developed flow database (mean velocity, Reynolds

stress, skewness, spectrum, etc).

2. Turbulent fluctuations must be spatially and temporally correlated.

3. Inflow generation methods should be easy to implement and cost-effective.

There exists several methods to generate the inflow conditions for LES. They

can be divided into two categories:

1. Precursor simulation. This kind of methods requires a separate calculation

to generate a turbulent flow field or a database to feed the main computation

at the inlet.

2. Synthetic turbulence methods. This kind of methods aims at synthesiz-

ing turbulent fluctuations according to some constraints, such as a given

turbulent kinetic energy spectrum, or mean profiles of kinetic energy and

dissipation rate.

Precursor simulation [Liu and Pletcher, 2006][Morgan et al., 2011] can generate

high quality turbulence, but they require heavy extra computing loads. Syn-

thetic methods [Mathey et al., 2006][Jarrin et al., 2009][Benhamadouche et al.,

2006][Pamies et al., 2009] aim at obtaining a well-behaved turbulence within a

short “adaptation distance”. Usually, synthetic turbulence is not exact the tur-

bulence observed in fully developed flows. It lacks spatial or temporal coherent

characteristics, thus it requires an adaptation distance to become fully developed.

Among all the synthetic methods, the simplest one is to introduce white-

noise type fluctuations and superpose them on a mean velocity profile [Lund

et al., 1998]. But this kind of fluctuations are neither spatially nor temporally

correlated, and they are not compatible with the Navier-Stokes equations, thus

cannot sustain. A second sort of synthetic method is based on the spectrum

5



Introduction

of fully developed turbulence. By using Fourier technique [Batten et al., 2004]

or other decomposition approaches, turbulent fluctuations are reconstructed by a

series of modes. Another method is the synthetic eddy method proposed by Jarrin

et al. [2009]. This method decomposes a turbulent flow field into a finite amount

of eddies. Velocity fluctuations are generated by those eddies. In addition, all

input parameters can either extracted from a precursor LES or an upstream

RANS calculation. This method generates stochastic fluctuations based on mean

velocity and Reynolds stress profiles. Recently, [Laraufie et al., 2011] developed

an interesting method for the initialization of a RANS/LES type calculation

when the resolution of the near wall turbulence is turned on RANS mode using

a combination of three main ingredients: a Zonal Detached Eddy Simulation

(ZDES) type resolution method [Deck et al., 2011], a Synthetic Eddy Method

(SEM) [Pamies et al., 2009] and a dynamic forcing approach.

The synthetic method involved in this thesis is the vortex method [Sergent,

2002]. Earliest applications of vortex method are mostly for 2D problems, e.g.,

simulation of a vortex sheet or flow passing bluff bodies [Rosenhead, 1931][Maull,

1980][Leonard, 1980]. Later, Sergent [2002] used vortex method to generate LES

inflow conditions, i.e., a number of vortices are injected in the inlet flow plane

(normal to the streamwise direction) to generate 2D velocity fluctuations (e.g.,

wall-normal and spanwise components on channel flows). Fluctuation on the

streamwise direction is generated by using a Langevin equation.

Following the idea of Sergent [2002], Mathey et al. [2006] repeats the simula-

tions on channel flow, and tests the method for hill flow. With this method, 2D

and 3D tests on channel and pipe flows are carried out by Benhamadouche et al.

[2006]. During his study, the vortex method is also applied on a backstep flow

with and without heat transfer. Main idea to use the vortex method for generat-

ing LES inflow condition, as proposed by Sergent [2002], consist in using vortex

field to generate velocity fluctuations. Based on averaged quantities (mean ve-

locity profile, mean turbulent kinetic energy and dissipation rate profiles), which

can be obtained by a RANS calculation or directly extracted from DNS or LES

data, a turbulent fluctuating velocity field is reconstructed and superposed on

the mean field, thus forming an inflow field for LES.
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Compared with the original vortex method proposed by Sergent [2002], the

present study will modify basic vortex parameters, especially vortex radius, which

will be reformulated. Besides, more parameters will be introduced and studied

by considering inhomogeneous turbulence characteristics. Meanwhile, to decrease

the demanding adaptation distance, some patterns are used to control the move-

ment of vortex on the inlet plane, in companion with vortex inversion. The com-

parison with fully developed turbulence obtained by LES with recycling method

(e.g., periodic boundary condition in channel flow) [Montorfano et al., 2013][Stolz

and Adams, 2003] shows that the improved vortex method (IVM) is more effective

and practicable in different cases. The velocity-derivative skewness [Batchelor,

1953] is introduced to qualify the results. This quantity is considered as a new

criterion for LES results.

Chapter 1 reviews numerical methods of fluid mechanics pertinent to present

study. Different kinds of RANS and LES models are introduced. Especially the

RANS k-ω, LES SISM and LES WALE models, which are involved in thesis, are

given in details.

In Chapter 2, inflow conditions for LES will be presented, including the con-

cepts and different inflow generation approaches. We will present the original

vortex method of Sergent [2002] and the improved vortex method of ours. The

velocity-derivative skewness will be introduced as a new LES quality criterion.

The validation of the improved vortex method on channel flows will be pre-

sented in Chapter 3. The improved vortex method’s parameters will be opti-

mized systematically. Application to a channel flow with higher Reynolds number

Reτ = 590 will be presented.

In Chapter 4, we apply the improved vortex method on flat-plate boundary

layer.

Conclusions and perspectives will be drawn at the end of the thesis.
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Chapter 1

Numerical methods

The numerical methods, including DNS, LES and RANS as well as associated

turbulence models are introduced in this chapter.

1.1 Direct Numerical Simulation

Direct numerical simulation solves the Navier-Stokes equations directly. The

incompressible Navier-stokes equations consist of the continuity and momentum

equations.
∂ui
∂xi

= 0 (1.1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(1.2)

Since there are 4 equations and 4 unknowns, no closure problem need to be

treated. With initial and boundary conditions given, DNS can directly resolve

all the scales of turbulent motions. The earliest DNS of homogeneous turbu-

lence [Orszag and Patterson Jr, 1972] at Reλ = 35 had only 323 grid nodes,

λ being the Taylor microscale. Thanks to the rapid development of comput-

ers, modern DNS can simulate homogeneous turbulence at Reynolds number

Reλ ∼ O(103) with a mesh of about 40963 points. This helps partly confirm the

Kolmogorov’s hypothesis.

DNS can help get the information which is difficult to measure in experiments,

such as pressure fluctuations or vorticities deep inside the flow. For example,
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Chapter 1. Numerical methods

DNS has been used to extract Lagrange statistics [Yeung and Pope, 1989], and

statistics of pressure fluctuations [Spalart, 1988], which are almost impossible to

obtain by experiments. In that case, DNS is a reliable tool for academic use.

Also, the results of DNS can be used as a reference to validate other numerical

approaches.

For homogeneous turbulence, pseudo-spectral methods ([Orszag and Patter-

son Jr, 1972] and [Rogallo, 1981]) are proved accurate and applicable. Considering

a cube with length l. The velocity field u(x, t) can be represented with a finite

Fourier series

u(x, t) =
∑
κ

eiκ·xû(κ, t) (1.3)

If N modes are presented in each direction, then in total N3 wave numbers are

obtained

κ = κ0n = κ0(e1n1 + e2n2 + e3n3) (1.4)

κ0 =
2π

l
(1.5)

κmax =
1

2
Nκ0 =

πN

l
(1.6)

This spectral representation is equivalent to u(x, t) in physical space on N3 num-

ber of grids with a uniform spatial spacing

∆x =
l

N
=

π

κmax
(1.7)

The discrete Fourier transform gives a one to one mapping between the Fourier

coefficient û(κ, t) and the velocity u(x, t) on every grid node. In practical com-

putation, fast Fourier transform can be used to transform between wavenumber

space and physical space.

An example of a homogeneous isotropic turbulence DNS is given here. Con-

sidering that the energy-containing lengthscale is L and Kolmogorov scale equals

to η. To accurately describe turbulent motions of the largest scales. The cube

size l should be greater enough than L. On the other hand, to accurately pre-

dict the smallest scales of motions, the grid spacing ∆x must be uniform in all

the directions and small enough to correctly capture the smallest turbulent scale,
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1.1. Direct Numerical Simulation

i.e., the Kolmogorov scale η . The number of grid nodes on one direction should

satisfy

Nx = l/∆x > L/η (1.8)

Giving the Kolmogorov scale η = (ν3/ε)1/4, and ε ∼ urms
3/L(where urms is RMS

of velocity fluctuations), then

L/η = Re3/4 (1.9)

Where Re = urmsL
ν

, and

Nx > Re3/4 (1.10)

Considering a uniform spatial spacing in all directions, the total number of

grids is N3
x , therefore the grid number is proportional to Re9/4:

N3
x > Re9/4 (1.11)

For a turbulent flow with a Reynolds number Re = 104, the total number of mesh

required is about 109.

In order to make sure the stability of the numerical calculation, the time step

should satisfy the CFL condition, the number of CFL should admit

CFL =
u′∆t

∆x
< CFLmax (1.12)

Taking the CFLmax = 1, thus

∆t <
∆x

u′
(1.13)

To capture the development of turbulence, considering that the integral timescale

is about several characteristic time scales of largest vortex L/u′, then the total

physical time steps required should be at least L/∆x ∼ Re3/4.

To conclude, DNS can provide accurate description of turbulent motions at all

the scales, but it demands huge computing power. Thus, for practical problems,

DNS is almost impossible. And to tackle the engineering problems, the Reynolds-
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Chapter 1. Numerical methods

Averaged Navier-Stokes approach has been developed.

1.2 Reynolds-Averaged Navier-Stokes Approach

The conception of RANS approach is to solve the statistically average N-S equa-

tions. Using Reynolds decomposition, any quantity can be decomposed into its

mean part and the fluctuation. For example, the velocity u(x, t) can be expressed

as

u(x, t) = 〈u(x, t)〉+ u′(x, t) (1.14)

Where 〈〉 denotes ensemble averaging, superscript ′ denotes fluctuations. Then

the mean continuity equation writes:

∂〈ui〉
∂xi

= 0 (1.15)

And the mean momentum equation is expressed as:

∂〈ui〉
∂t

+ 〈uj〉
∂〈ui〉
∂xj

= −1

ρ

∂〈p〉
∂xi

+ ν
∂2〈ui〉
∂xj∂xj

−
∂〈u′iu′j〉
∂xj

(1.16)

1.2.1 Boussinesq eddy viscosity assumption and simple

RANS models

As appeared in Eq. (1.16), the Reynolds stress terms 〈u′iu′j〉 make the equations

unclosed. In order to solve the RANS equations, the Reynolds stresses need to be

modeled. The main idea is to model the Reynolds stresses based on mean velocity

field. Following this idea, the Boussinesq eddy viscosity assumption [Schmitt,

2007] is proposed: the Reynolds stresses (anisotropic part) are proportional to

the mean rate of strain sij
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

−〈u′iu′j〉+
2

3
kδij = νt(

∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

) (1.17)

Where νt is turbulent or eddy viscosity. Giving this coefficient, together with

Eq. (1.16), Eq. (1.15) and Eq. (1.17), the RANS equations can be closed.
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1.2. Reynolds-Averaged Navier-Stokes Approach

Then several RANS turbulence models are introduced based on the Boussinesq

assumption.

1.2.2 Uniform turbulent viscosity model

As for the uniform turbulent viscosity model, the turbulent viscosity is expressed

as

νt(x) =
u0(x)δ(x)

ReT
(1.18)

Where u0(x) and δ(x) are the characteristic velocity scale and length scale of the

mean flow, ReT is a flow-dependent constant which can be seen as a turbulent

Reynolds number. The turbulent viscosity varies in the mean-flow direction. Us-

ing this model, it is necessary to define the direction of the flow, the characteristic

velocity u0(x) and length δ(x). Also, the turbulent Reynolds number ReT need

to be specified. So it is extremely limited to very simple flows, such as the free

shear flow. But since the turbulent viscosity varies significantly across the flow,

the predicted mean velocity field is not accurate. Despite its incompleteness and

limited range of applicability, this model could still provide some basic description

about RANS model construction [Pope, 2001].

1.2.3 Mixing length model

The mixing length model is based on the mean free path of molecule. The mixing

length lm can be considered as diffusing particles’ the mean free path. The concept

of the mixing length is introduced by L. Prandtl [Bradshaw, 1974] and later is

used for turbulence modeling. The velocity fluctuation u′ is the product of the

mixing length and the mean velocity gradient in the streamwise direction

u′ = lm|
∂〈u〉
∂y
| (1.19)

The turbulent viscosity is the product of the velocity fluctuation and the mixing

length:

νt = u′lm = l2m|
∂〈u〉
∂y
| (1.20)
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Chapter 1. Numerical methods

In order to allow this model Eq. (1.20) to be applied to all flow types, sev-

eral generalized forms have been proposed. Based on the mean rate of strain

〈sij〉, Smagorinsky [1963] proposed

νt = l2m(2〈sij〉〈sij〉)1/2 (1.21)

Another form based on the mean rate of rotation 〈Ωij〉, Baldwin and Lomax

[1978] proposed

νt = l2m(2〈Ωij〉〈Ωij〉)1/2 (1.22)

Even though the mixing-length model can be applicable to all turbulent flows

with its generalized form, this model is not complete. The mixing length lm has

to be specified according to the geometry. For a complex flow, the specification of

lm requires a large amount of work. In order to improve the capability of the zero-

equation models, several two-equation turbulence models have been proposed.

1.2.4 The k-ε model

Based on the Boussinesq eddy viscosity assumption, many more models are de-

veloped. Among them, The k-ε model [Chien, 1982][Nisizima and Yoshizawa,

1987] is one of the most popular models for RANS approach. It is a two-equation

model. In this model, the Reynolds stresses are modeled by two turbulent quan-

tities, the turbulent kinetic energy k and the dissipation rate ε. From these two

quantities, the turbulent viscosity can be formed as

νt = Cµ
k2

ε
(1.23)

Where Cµ is a constant. The turbulent viscosity should be related to the charac-

teristic velocity and characteristic length of the flow

νt ∼ u′L (1.24)
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1.2. Reynolds-Averaged Navier-Stokes Approach

Here, the characteristic velocity is the root mean square of the velocity fluctua-

tions, or the characteristic velocity of the energy-containing eddies

u′ ∼
√
k (1.25)

Since the energy transfer rate from the energy-containing eddies to the smallest

eddies equals to ε, the characteristic length for the energy-containing eddies is

L =
k3/2

ε
(1.26)

Combining Eq. (1.25), Eq. (1.26) and Eq. (1.24), the Eq. (1.23) is obtained. In

the k-ε model, k and ε are calculated with their own transport equations.

∂k

∂t
+ 〈uj〉

∂k

∂xj
= −〈u′iu′j〉

∂〈ui〉
∂xj

− ∂

∂xj
(
〈p′u′j〉
ρ

+ 〈u′iu′iu′j〉 − ν
∂k

∂xj
)− ν〈∂u

′
i

∂xj

∂u′i
∂xj
〉

(1.27)

∂ε

∂t
+ 〈uk〉

∂ε

∂xk
= −2ν

∂〈ui〉
∂xk
〈∂u

′
i

∂xj

∂u′k
∂xj
〉 − 2ν

∂〈ui〉
∂xk
〈
∂u′j
∂xi

∂u′j
∂xk
〉

− 2ν
∂2〈ui〉
∂xk∂xj

〈u′k
∂u′i
∂xj
〉 − 2ν〈 ∂u

′
i

∂xk

∂u′i
∂xj

∂u′k
∂xj
〉 − ν ∂

∂xk
〈u′k

∂u′i
∂xj

∂u′i
∂xj
〉

− 2ν
∂

∂xk
〈 ∂p

′

∂xj

∂u′k
∂xj
〉 − 2ν2〈 ∂2u′i

∂xk∂xj

∂2u′i
∂xk∂xj

〉 − ν ∂2ε

∂xi∂xi
(1.28)

In the transport equation for k. Using Eq. (1.17), the production term is modeled

as

P = −〈u′iu′j〉
∂〈ui〉
∂xj

= 2νt〈Sij〉
∂〈ui〉
∂xj

(1.29)

Following the gradient-diffusion hypothesis, with an eddy diffusivity defined as

νt/σk, the diffusion term (second term on the right side of Eq. (1.27)) is modeled

as

T ′ = − ∂

∂xj
(
〈p′u′j〉
ρ

+ 〈u′iu′iu′j〉 − ν
∂k

∂xj
) =

νt
σk

k

xk
(1.30)

Where σk is the turbulent Prandle number, usually taken as a order of unit.

Last term of Eq. (1.27) is dissipation rate, its governing equation is the trans-

port equation Eq. (1.28). The mechanism behind the dissipation of turbulent
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Chapter 1. Numerical methods

energy is very complex. Usually, the modeling of dissipation rate follows a simi-

lar way as the modeling of transport equation of the turbulent kinematic energy.

A transport equation for dissipation rate is built with a production term, a dif-

fusion term and a dissipation term. In total, the closure equations for the k-ε

model are

∂k

∂t
+ 〈uj〉

∂k

∂xj
= 2νt〈Sij〉

∂〈ui〉
∂xj

− ∂

∂xj
[(ν +

νt
σk

)
∂k

∂xj
]− ε (1.31)

∂ε

∂t
+ 〈uj〉

∂ε

∂xj
= Cε1

ε

k
[2νt〈Sij〉

∂〈ui〉
∂xj

]− ∂

∂xj
[(ν +

νt
σε

)
∂ε

∂xj
]− Cε2

ε2

k
(1.32)

The standard values for all the constants, according to Launder and Spalding

[1974], are

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3 (1.33)

The determination of those parameters comes from the study of different turbu-

lent flows, such as the homogeneous shear flow, decaying turbulence and near-wall

flows. More details can be found in [Wilcox et al., 1998].

1.2.5 The k-ω model

The k-ω model developed by Wilcox [1988] is introduced here. This is the model

used during this thesis. Differing from the k-ε model, the second turbulent

variable is specific dissipation rate ω, thus the two transport equations for k-

ω model [Wilcox, 1988] are

∂k

∂t
+ 〈uj〉

∂k

∂xj
= 〈τij〉

∂〈ui〉
∂xj

− β∗kω +
∂

∂xj
[(ν + σ∗νt)

∂k

∂xj
] (1.34)

∂ω

∂t
+ 〈uj〉

∂ω

∂xj
= α

ω

k
〈τij〉

∂〈ui〉
∂xj

− βω2 +
∂

∂xj
[(ν + σνt)

∂ω

∂xj
] (1.35)

Where all the constants are given as

α =
5

9
, β =

3

40
, β∗ = 0.09, σ = 0.5, σ∗ = 0.5 (1.36)
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1.3. Large Eddy Simulation

And related to the k-ε model, β∗ = Cµ. The main difference from the k-ε model

is that, as described by Wilcox et al. [1998], for boundary-layer flows, the k-ω

model is superior both in its treatment of the viscous near-wall region, and in

its accounting for the effects of streamwise pressure gradients. There exists still

a problem, when dealing with non-turbulent free-stream boundaries, a non-zero

boundary condition of ω is required. This is non-physical, and the calculated flow

is sensitive to the value specified [Wilcox, 2008].

1.3 Large Eddy Simulation

Large-eddy simulation is an intermediate approach between DNS and RANS

method. It requires less computing power than DNS and provides better ac-

curacy and more turbulent information than RANS. In large-eddy simulation,

the large turbulent motions which contribute mainly to the momentum and en-

ergy transfer are computed directly. While effects of the small turbulent motions

are modeled. Since the characteristics of small scales are considered being ho-

mogeneous, and less affected by the boundary conditions, so their effects may be

represented by simple models.

Early work on LES was motivated by meteorology applications [Smagorinsky,

1963][Deardorff, 1974]. Later, LES was developed for the study on isotropic tur-

bulence [Kraichnan, 1976][Chasnov, 1991] and on fully developed turbulent chan-

nel flow [Deardorff, 1970][Schumann, 1975][Moin and Kim, 1982][Piomelli et al.,

1988]. Further work has been done by Akselvoll and Moin [1996] and Haworth

and Jansen [2000] to apply LES to flows in complex geometries in engineering

applications. An overview of the development of LES and its applications can be

seen in [Galperin, 1993]. Until now. as more accurate models were developed and

also owing to the progress of computational resources, LES is applied not only

to well documented test cases, but also to more complex flows in industry [Gao

et al., 2015].
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1.3.1 Filtered N-S equations

To decompose the large scale motions from the small scale motions, a filtering

operation is applied in LES. Filtered variables represent the large scale turbulent

motions. A filtered velocity is defined by

u(x, t) =

∫
D

G(x, r; ∆)u(x− r, t)dr (1.37)

Where D is the entire flow domain, G is the filter function and ∆ is the filter

size (usually taken as the grid size in numerical simulation). The filter function

satisfies the normalization condition∫
G(x, r; ∆)dr = 1 (1.38)

The velocity field is decomposed into two parts

u(x, t) = u(x, t) + u′′(x, t) (1.39)

Where u′′(x, t) represents the small scale motions or sub-grid scale motions. The

effects of the filtering process are more clearly shown in wavenumber space. Tak-

ing the example of the filtering in one dimension, the Fourier transform of the

filtered velocity is

û(κ) ≡ F{u(x)} = Ĝ(κ)û(κ) (1.40)

Where the transfer function Ĝ(κ) is the Fourier transform of the filter func-

tion(multiplied by 2π)

Ĝ(κ) ≡
∫ +∞

−∞
G(r)e−iκrdr = 2πF{G(r)} (1.41)

Various filters and their transfer functions are given in Tab. 1.1. Taking the

example of the sharp spectral filter, Where H is the Heaviside step function and

κc denotes the cutoff wavenumber

κc ≡
π

∆
(1.42)
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1.3. Large Eddy Simulation

Filter Name Filter function Transfer function

General G(r) Ĝ(κ) ≡
∫ +∞
−∞ G(r)e−iκrdr = 2πF{G(r)}

Box 1
∆H(1

2∆− |r|) sin( 1
2
κ∆)

1
2
κ∆

Gaussian ( 6
π∆2 )1/2exp(−6r2

∆2 ) exp(−κ2∆2

24 )

Sharp spectral sin(πr/∆)
πr H(κc − |κ|)

Table 1.1: Filter function and transfer function for one dimension filters

Fourier modes beyond the cutoff wavenumber κc are annihilated.

By applying the filtering operation to the governing equations of incompress-

ible flow, one can obtain the filtered N-S equations

∂ui
∂xi

= 0 (1.43)

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(1.44)

Where the term uiuj can be decomposed into

uiuj = uiuj + (uiuj − uiuj) (1.45)

Thus Eq. (1.44) can be expressed as

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− ∂(τ ij
∂xj

(1.46)

Where τ ij are the subgrid scale (SGS) stresses:

τ ij = uiuj − uiuj (1.47)

The SGS stresses are to be modeled by SGS models
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1.3.2 Subgrid-scale models

Many SGS models have been developed by researchers, such as the Smagorinsky

model [Smagorinsky, 1963], the mixed model [Bardina et al., 1980] and the dy-

namic model [Lilly, 1992][Meneveau et al., 1996]. To be succinct, only the SISM

model developed in LMFA [Lévêque et al., 2007]and the WALE model [Nicoud

and Ducros, 1999] which are involved in this thesis will be introduced.

1.3.2.1 The SISM model

The Shear-Improved Smagorinsky Model (SISM) proposed by Lévêque et al.

[2007] is used in this thesis. This model is developed based on scale-by-scale

energy budget in turbulent shear flows. The Smagorinsky eddy-viscosity νt is

modeled as:

νt = (Cs∆)2(|S|−|〈S〉|) (1.48)

Here, Cs = 0.18 is the standard Smagorinsky constant, ∆ is the local grid spacing,

|S| is the magnitude of the instantaneous resolved rate-of-strain tensor and |〈S〉|
is the magnitude of the mean shear.

Two types of interactions representing two basic mechanisms [Shao et al.,

1998][Shao et al., 1999] are encompassed in this model. First, the interactions

between the mean velocity gradient and the resolved fluctuating velocity which

is the rapid part of the SGS dissipation; second, the interactions between the

resolved fluctuating velocities which is the slow part of the SGS dissipation. The

SISM model is physically sound and can achieve calculation for complex non-

homogeneous turbulent flows [Cahuzac et al., 2011][Gao, 2014].

1.3.2.2 The WALE model

The Wall-Adapting Local Eddy-viscosity (WALE) model is proposed by Nicoud

and Ducros [1999]. This model is based on the square of the velocity gradient

tensor, it takes account of the effects of both the strain and rotation rate of the

smallest resolved turbulent fluctuations.
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1.3. Large Eddy Simulation

In the WALE model, the Smagorinsky eddy viscosity is modeled as

νt = (Cw∆)
|Ga

ij|6/2

(SijSij)5/2 + |Ga
ij|5/2

(1.49)

Where Cw ∼ 0.5, ∆ is the grid spacing based on the cube root of the control

volume, and Ga
ij is the traceless part of Gij = 1/2(gikgkj + gjkgki) and gij =

∂ui/∂xj.

Like the SISM model, a proper y3 near-wall scaling can be achieved by this

model without requiring dynamic procedure, as well as to handle transition for

more complex turbulent flows.

1.3.3 Numerical scheme

All numerical simulations performed in this thesis have been carried out with an

in-house solver Turb′Flow which is developed in LMFA. This solver is aimed at

computing complex flows, especially flows in turbomachine. A vertex-centered

finite-volume discretization on structured multi-block grids is used. The inviscid

fluxes are interpolated with a 4-point centered scheme and the viscous fluxes are

interpolated with a 2-point centered scheme. A 4th order artificial viscosity is

used, as inspired by [Jameson, 1982], to avoid spurious grid-to-grid oscillation in

computing compressible flows.

The present thesis computes two basic flows, i.e., channel flow with two dif-

ferent Reynolds numbers, and a flat-plate flow. The computation conditions are

given below.

For channel flow at Reτ = 395, a three-step Runge-Kutta scheme is used for

time marching, with a global constant time step of 1 × 10−7s. Considering the

minimum grid size of 1.3× 10−5m, the reference velocity of 0.59m/s, this yields

a maximum CFL number less then 1.

For channel flow at Reτ = 590, the global constant time step is 5 × 10−8.

Considering the minimum grid size of 8.5 × 10−6m, the reference velocity of

0.59m/s, this yields a maximum CFL number less then 1.

A local time step is used for the RANS calculations carried on channel flow

which yields a maximum CLF number of 1.
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Chapter 1. Numerical methods

For flat-boundary flow calculations, a three-step Runge-Kutta scheme with

a global constant time step of 4 × 10−8s is used for temporal discretization.

Considering the minimum grid size of 9×10−6m, the reference velocity of 70m/s,

this results a maximum CFL number less then 1.
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Chapter 2

LES inflow conditions and vortex

method

Fig. 2.1 illustrates a LES of corner separation in a linear compressor cascade [Gao

et al., 2015]. This simulation consists of two parts: the main calculation domain

is the compressor cascade channel; the upstream domain is used to generate

a fully developed turbulent boundary layer to feed the main calculation. This

feeding scheme can provide a good turbulent boundary layer as inlet condition

for the compressor cascade computation. However, a flat-plate simulation must

conduct simultaneously with the compressor cascade simulation. The flat-plate

computation must start from a uniform inlet to accommodate the entire turbulent

transition and development processes. This takes almost 1/3 of the total com-

puting power. Therefore, an effective approach to generate LES inflow conditions

Figure 2.1: A LES case of studying corner separation in a cascade
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Chapter 2. LES inflow conditions and vortex method

is desired to reduce the computing power.

In this chapter, a brief literature review of the existing methods for LES in-

flow generation will be presented. Then the improved vortex method for LES

inflow generation developed during this thesis will be introduced in detail. Fi-

nally the velocity-derivative skewness [Batchelor, 1953][Tavoularis et al., 1978] is

reviewed. This quantity is for the first time, as believed by the author of this

thesis, considered as a new criterion for qualifying LES results.

2.1 Inflow conditions for LES

Available LES inflow generation approaches are reviewed by Tabor and Baba-

Ahmadi [2010]. In general, the methods for generating unsteady turbulent inflow

conditions for LES can be classified into two groups: the precursor simulation

methods [Keating et al., 2004] and the synthetic turbulence methods [Laraufie

et al., 2011].

The precursor simulation methods require a precursor calculation of a needed

type flow to generate turbulent fluctuations to feed the main computation at its

inlet. The advantage of this kind of method is that inflow conditions for the main

computation are taken from a fully developed turbulent flow. Thus they possess

almost all the required turbulence characteristics, especially temporal and spatial

correlated structures. The energy cascade is well established. This kind of fully

developed turbulent flow can be obtained in many ways, for example using a

periodic cube of turbulence, a cyclic channel flow or a long flat-plate to generate

a fully developed turbulent boundary layer. Although the precursor simulation

methods can give high quality turbulent flow fields, but the computational costs

are extremely high, especially for cases at high Reynolds numbers.

The drawback of the precursor simulation methods motivates the synthetic

turbulence methods. The strategy is to superimpose fluctuations on a given mean

velocity profile. The simplest synthetic method is to add white-noise random com-

ponents to the mean velocity [Lund et al., 1998], with an amplitude determined by

the turbulence intensity level. But the white noise components has few character-

istics of turbulence, they are totally uncorrelated in time and in space. Advanced

techniques have been developed then. The Fourier type techniques [Lee et al.,
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2.2. Vortex method

1992][Batten et al., 2004] consider rebuilding the turbulent fluctuations by linear

sine and cosine functions, with coefficients representing the energy contained in

each mode. Jarrin et al. [2009] developed a synthetic eddy method to generate

fluctuations with artificial eddies. This approach superposes a large amount of

random eddies, with their statistical properties being controlled. It can provide a

flow field with demanded Reynolds stresses and other required turbulent charac-

teristics. In this thesis, another synthetic method, the vertex method of [Sergent,

2002] will be improved and investigated.

2.2 Vortex method

Earliest attempt to simulate a flow with vortex method is carried out by Rosen-

head [1931], who simulates the motion of a 2D vortex sheet by following the

movement of a system of point vortices. Later this kind of method is developed

by Maull [1980] and Leonard [1980]. Their applications are usually for 2D prob-

lems, especially the roll-up of a vortex sheet and flow passing bluff bodies. Until

recently, The vortex method is used by Sergent [2002] to generate inflow condi-

tions for LES. As a synthetic turbulence method, the main idea of the vortex

method is to generate velocity fluctuations with artificial eddies based on mean

statistic profiles. The mean statistics can be easily obtained by a RANS calcula-

tion or directly extracted from LES or DNS database. Then, the velocity fluctua-

tions are added to the mean velocity profile. This approach can be easily applied

to rather complex geometries [Mathey, 2008]. Following Sergent [2002], the gener-

ated velocity fluctuations possess some spatial and temporal correlations, since it

continuously supplied by a injected vortex field. With this method, the anisotropy

of the near wall flow can be taken into account if vortex parameters, e.g. radius,

are given according to local turbulence quantities [Mathey et al., 2006]. The

adaptation distance to establish realistic statistics can be short, 12 times half

channel height for reestablishment according to results of [Benhamadouche et al.,

2006]. So, the vortex method can be potentially a relative cost-effective way to

generate a turbulent inflow condition for LES, which interests this thesis to study

and improve this method.

Secondly, this method is a hybrid RANS/LES method [Labourasse and Sagaut,
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Chapter 2. LES inflow conditions and vortex method

Figure 2.2: A case of hybrid RANS/LES to study the noise at the trailing-edge
of an airfoil

2002][Mathey, 2008]. In a multi-domain RANS/LES shown in Fig. 2.2, the region

of interest is calculated with LES while the rest part is calculated with RANS.

Averaging technique can be used at the interface where the flows pass into the

RANS zone from LES zone. But unsteady inflow conditions need to be specified

at the interface from RANS to LES. This is exactly what vortex method can do:

the upstream RANS provides mean statistics, such as 〈U〉, u′rms, ε, where 〈U〉
is the mean velocity, u′rms is the RMS of the fluctuating velocity and ε is the

mean dissipation rate. The vortex method can generate appropriate fluctuating

velocity field based on the given mean profiles. Then the fluctuations are added

to the mean field to form inflow conditions for the downstream LES calculation.

2.2.1 Methodology

According to Sergent [2002]Benhamadouche et al. [2006], the vortex method uses

vortices to generate velocity fluctuations. Theoretically, it is based on the La-

grangian form of the 2D vorticity equation:

∂ω

∂t
+ (u · ∇)ω = ν∇2ω (2.1)

with

u = ∇×ψ +∇φ (2.2)
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2.2. Vortex method

Where ψ is the 2D stream function and φ is the velocity potential. Taking the

curl of Eq. (2.2), one obtains:

ω = −∇2ψ (2.3)

With Eq. (2.2) and Eq. (2.3), Using the Biot-Savart law, the relation between the

vorticity and the velocity generated is obtained:

u(x) = − 1

2π

∫∫
R2

(x− x′)× ω(x′) · z
|x− x′|2

dx′ (2.4)

Where z is the direction of the vorticity vector.

In practice, the entire vorticity field is represented with a number of vortices.

Each vortice has its own circulation Γi and spatial distribution ξi. Given the

number of the vortices N and the area of the inlet section S, the amount of

vorticity at a position x is expressed as

ω(x, t) =
i=N∑
i=1

Γi(xi(t))ξi(x− xi(t)) (2.5)

Where xi(t) is the location of vortex center and it can be changed by displacement.

ξ is the modified gaussian shape spatial distribution:

ξ(x) =
1

2πσ2
e−
|x|2

2σ2 (2e−
|x|2

2σ2 − 1) (2.6)

Where σ is the radius of vortex.

Using Eq. (2.5) and Eq. (2.6) in Eq. (2.4), for a 2D vorticity field with their

axes being along the streamwise direction (here, noted as z), the generated ve-

locity fluctuation is given by:

u(x) =
1

2π

N∑
i=1

Γi
(xi − x)× z
|xi − x|2

(1− e
− |xi−x|2

2σ2
i )e

− |xi−x|2

2σ2
i (2.7)

Considering an example of 1 vortice, the module of u(x) is
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Figure 2.3: Function f(y) = 1
y
(1− e− y

2

2 )e−
y2

2

(2.8)
|u(x)|= | 1

2π
Γ1

(x1 − x)× z
|x1 − x|2

(1− e
− |x1−x|2

2σ21 )e
− |x1−x|2

2σ21 |

=
1

2π

Γ1

|x1 − x|
|(1− e

− |x1−x|2

2σ21 )e
− |x1−x|2

2σ21 |= Γ1

2πσ1

|f(y)|

Where y = |x1−x|
σ1

gives the ratio between the distance to the center of vortex

and the vortex radius, while f(y) , shown in Fig. 2.3, is defined as

f(y) =
1

y
(1− e−

y2

2 )e−
y2

2 (2.9)

The peak value of f(y) is about 0.25 at y = 0.82. So for very small vortex (e.g.,

σ = 0.0001), exceed fluctuations can be generated where near the center of vortex

(e.g., f(0.82) = 0.25). The resulted fluctuation is Γ1

8πσ1
∼ O(103) if Γi ∼ O(1) .

Noticing that Γ is independent of σ.
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2.2. Vortex method

The root mean square velocity fluctuations induced by one vortex is

u′i
2

=
1

S

∫ ∫
R2

u2(x)ds (2.10)

For a 2D-vorticity field formed by N vortices, the integration in Eq. (2.10) gives

u′i
2

=
NΓ2(2 ln 3− 3 ln 2)

4πS
(2.11)

Based on isotropic hypothesis u′2 = v′2 = w′2 = 2
3
k, and only two components

are within this 2D plane, thus we have

u′i
2

=
4k

3
(2.12)

Then the circulation can be obtained

Γ = 4

√
πSk

3N(2 ln 3− 3 ln 2)
(2.13)

The procedure for applying vortex method of Sergent [2002] in a numerical

simulation is illustrated in Fig. 2.4. First, the vortex positions are initialized

randomly on a 2D plane. Values of vortex radii and circulations are then specified

for each vortex. After initialization, for every time step, every vortex “walks”

randomly on the 2D plane and for each period τ , vortices inverse randomly.

When a vortex inverses, it is considered as a new one, thus τ is also named the

lifetime of vortex. Next, since vortex locations and rotation senses (correspond

with the sign of Γ [Sergent, 2002]) change, we need to compute the new values of

radii and circulations and then the generated velocity fluctuations. At last, the

fluctuations generated by those vortices are added to the mean velocity profile

and involve in the LES computation.

Regarding wall flows, ghost vortices will be used in order to let the velocity

be zero on the wall and grow gradually. Details about the use of ghost vortices

are explained in [Sergent, 2002][Benhamadouche et al., 2006]. So the velocity

fluctuations are calculated with both the real and the ghost vortices.

The idea of original vortex method of Sergent [2002] consists in constructing
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Chapter 2. LES inflow conditions and vortex method

Figure 2.4: Flowchart of vortex method ([Sergent, 2002])

a fluctuating velocity field which correspond well with the RMS profiles of fully

developed flows at the inlet plane. Vortices with axe along the streamwise di-

rection are used to generate a 2D velocity fluctuations, while fluctuations along

the streamwise direction are generated by the Langevin equation. In order to

obtain an appropriate unsteady flow field, several parameters have been studied

by Sergent [2002]:

i. Vortex radius σ

ii. Number of vortices N

iii. Random displacement’s velocity Ud

iv. Vortex lifetime τ , vortice may inverse for each τ

v. Circulation type based on rate of dissipation or velocity fluctuations

Through a series test cases and comparison of the generated fluctuations RMS

profiles with the DNS data, Sergent [2002] suggests that the most important pa-

rameters are the vortex radius σ and the velocity magnitude of vortex’s random
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2.2. Vortex method

displacement Ud. However, no quantitative criteria have been given. In this origi-

nal vortex method, the vortex radius is defined as either a constant or by a adhoc

linear function of wall distance. The displacement velocity of vortex is also pre-

scribed as a constant. Little work has been conducted to investigate the influences

of those parameters on the development of turbulence through the streamwise di-

rection. With this original vortex method, a long adaptation distance is required

along streamwise direction to reestablish high quality turbulence downstream.

An example of channel flow test case indicated that 5 times the half channel

height was far from enough [Sergent, 2002]. Following Sergent’s method, Ben-

hamadouche et al. [2006] perform a test on channel flow with Reτ = 395 where

Reτ = uτh
ν

and h is the half channel height. Results of RMS profiles show that

the turbulence tends to establish from around x/h = 12.

2.2.2 Improvement of the vortex method

For synthetic turbulence methods, the adaptation distance is always necessary.

The fluctuating velocity field generated by synthetic turbulence methods is not

spatially or temporally correlated as real turbulence. It requires an adaptation

distance to develop into or nearly to a fully developed turbulent field. This

demands additional computational costs. So, reducing the adaptation distance is

of great significance. This motivates the work involved in this thesis.

The original vortex method of Sergent [2002] uses random vortices (vortex axes

are along the streamwise direction) to generate 2D (spanwise and wall-normal)

fluctuations, while the streamwise direction fluctuations are forced by a separate

equation, thereby being uncorrelated with other components. Different from the

original vortex method which aims at prescribing a fluctuating velocity field, of

which the RMS profiles are expected to match the DNS data (fully developed flow

field), the improved vortex method focuses on the development of downstream

turbulence rather than paying too much attention to the fluctuations generated

on the inlet plane. Although the velocity field downstream depends a lot on the

inlet synthetic turbulent field, the development of turbulence can be accelerated

with some techniques. Based on the original vortex method of [Sergent, 2002],

several parameters are introduced to accelerate the establishment of turbulence,
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Chapter 2. LES inflow conditions and vortex method

Figure 2.5: Illustration of the improved vortex method

expecting to achieve a shorter adaptation distance.

In the improved vortex method, the basic parameters keep the same. In

order to make the vortex method more generally applicable and take into account

of anisotropy of the near wall flow, local parameters are considered. Vortex

parameters are determined according to local mean turbulent kinetic energy and

mean dissipation rate which can come from RANS calculation.

From a point of view of physic, the vortices can be seen as the source of

perturbations on the mean velocity field. The fluctuations generated and their

reactions with the mean velocity field determine the development of turbulence

downstream. Thus the displacement and inverse of vortices are of great impor-

tance during this process. A grid turbulence generator [Comte-Bellot and Corrsin,

1966][Sumer et al., 2003] is compared here to understand this principle. Every

vortex can be considered as generated by an active grid which can move and

rotate in either clockwise or anticlockwise direction. Besides, inspired by forcing

turbulence of [Eswaran and Pope, 1988] and [Alvelius, 1999], resulted turbulence

is strongly influenced by the forcing methods. The forcing scheme can be com-

pared with the displacement of vortex. Here, some patterns are introduced to
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2.2. Vortex method

Figure 2.6: Flowchart of the improved vortex method (bxie)

control the displacement of vortices on the inlet plane. A local turbulent time

scale τ is taken for the lifetime. The illustration of the improved vortex method

is shown in Fig. 2.5. Flowchart of applying the improved vortex method is a little

different from the original one, as shown in Fig. 2.6. We use either enhanced

random walk (ERW) or stochastic walk (SW) to displace vortices. When vortices

move to new positions, we do not re-compute vortex radii and circulations. Vor-

tices with different sizes radii can present different features of displacement thus

influence the generated fluctuations and this will be explained in detail in 2.2.2.4.

The parameters of the improved vortex method are

i. Radius σ.

ii. Circulation Γ.

iii. Lifetime τ .

iv. Displacement, pattern of which can either be ERW or SW.
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Figure 2.7: 2D instantaneous velocity field obtained with σ = 0.1, case of channel
flow with Reτ = 395

2.2.2.1 Radius σ

Vortex radius σ in Eq. (2.7) corresponds to the size of the vortex. Sergent [2002]

has studied the sensitivity of the method to different values of σ. A series of

adhoc values of σ is studied (i.e., all vortices share the same adhoc value of σ

while this value vary from different tests or follow a adhoc linear function of wall

distance). Results show that the size of vortex has a non-negligible influence on

the position of the peak of the generated fluctuations. The bigger the radius, the

further away from the wall the peak locates.

Following Sergent’s setup for the value of σ, [Benhamadouche et al., 2006]

perform some 2D and 3D tests with channel and pipe flows and apply the vortex

method on a backstep flow. The value imposed for σ is 0.1, resulting instan-

taneous velocity fluctuations at inlet plan on channel flow is given by Fig. 2.7

In order to make the vortex method generally applicable, Mathey et al. [2006]

proposed a local vortex size which is specified through a turbulent mixing length

hypothesis. σ is calculated from a known profile of the mean turbulent kinetic
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2.2. Vortex method

energy and mean dissipation rate at the inlet:

σ =
C0.75
µ

2

k3/2

ε
(2.14)

Where Cµ = 0.09. In order to ensure that the vortex always belongs to resolved

scales, the minimum value of σ is bounded by the local grid size ∆, i.e., σ > ∆.

The formulation of vortex radius given by Mathey et al. [2006] is based on a

energy-containing lengthscale L (L = k3/2

ε
) which can characterize large eddies.

Since radius size is specified locally, i.e., it is determined by local turbulent ki-

netic energy and dissipation rate, anisotropic characteristics could be taken into

account. While the treatment of small size vortex (bounded by the local grid

scale) is quite adhoc.

Inspired by Mathey et al. [2006], the radius size σ should be comparable to

a lengthscale L = k3/2

ε
, e.g., energy-containing scale or integral scale, which can

characterize large eddies:

σ ∼ k3/2

ε
(2.15)

From a view of energy cascade, eddies of these sizes are responsible for en-

ergy containing and transferring. The form of Eq. (2.14) is tested in this thesis.

First test is without any adhoc treatment of the small size vortices. Following

Eq. (2.14), very small size vortices (σ may be inferior then local grid size) can

be injected. Test shows that when treating inhomogeneous turbulence near wall,

numerical stability problem appears. This is due to the very small size vortices

created near wall. When σ is very small, according to Eq. (2.7), exceed fluctua-

tions can be generated on some grid points which are very close to vortex center,

as shown in Fig. 2.8. In consequence, the calculation stops after some time due

to the numerical instability cause by these exceed velocities.

Although Mathey et al. [2006] has provided an adhoc way to bound the size

of vortices. But this kind of adhoc treatment is not adopted by this thesis, thus

a new formulation of vortex radius is introduced here.

Considering homogeneous isotropic turbulence, the ratios of the smallest eddy

scales (i.e., Kolmogorov scale η ≡ (ν3/ε)1/4) to large eddy scales (i.e., energy-

containing scale L ≡ k3/2

ε
) can be determined from the definition of the Kol-
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Figure 2.8: 2D instantaneous velocity field obtained with σ =
C0.75
µ

2
k3/2

ε
, case of

channel flow with Reτ = 395

mogorov scales and from the scaling

ε ∼ u3
L/L (2.16)

Where uL is the velocity characterizing large eddy scales.

Thus, we have

η/L ∼ Re
−3/4
L (2.17)

Where ReL = uLL
ν

is the characteristic Reynolds number.

So we propose another formulation for the radius σ which is related to the

Kolmogorov scale η by introducing a local Reynolds number Re
3/4
local which is

determined by flow itself.

σ = C1Re
3/4
local(ν

3/ε)1/4 (2.18)

Where C1 is a coefficient which needs to be optimized.

The dimensionless form (practical for programming and result analysing) in

wall unit is

σ+ = C1(ν+/ε+)1/4 (2.19)

Where ν+ is unit if the characteristic viscosity for normalization is chosen as the
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Figure 2.9: Comparison between σ+ and L+, case of channel flow with Reτ = 395

viscosity of flow itself.

A problem appears when using Eq. (2.18) to specify vortex radius σ, as we

have to determine coefficient C1 in Eq. (2.18). In this thesis, a practical way is

proposed to determine this coefficient. Taking an example of channel flow with

Relocal = Reτ = 395. The radius σ is specified as

σ = C1Re
3/4
τ (ν3/ε)1/4 (2.20)

With given mean turbulent kinetic energy and dissipation rate (e.g., from a

RANS calculation), curve of L+ = k+
3/2

ε+
can be drawn. Then curves of Eq. (2.19)

with different values of C1 can be drawn as well, as shown in Fig. 2.9.

Considering the range of interest between y+ = 10 and y+ = 100, curve with

C1 = 1/4 agrees best with the one of L+. C1 is then preliminarily valued around

1/4. In advance, radius with different C1 in a suitable range will be tested with

a series calculations. Further details and results can be seen in section 3.1.3.3. It

should be noticed that the Eq. (2.18) is flow depending. In practical, the value

of C1 could be determined by the method introduced here.
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Figure 2.10: 2D instantaneous velocity field obtained with σ+ = C1(ν+/ε+)1/4,
case of channel flow with Reτ = 395

There are several advantages to use Eq. (2.18) to specify vortex radius σ. First,

this formulation can be applied to different type of flows, as a local Reynolds num-

ber which depends on flow itself is involved, making the method more generally

applicable. According to the turbulent energy cascade, when the dissipation rate

is large, the vortices are considered to be small. Eq. (2.18) is in accord with this

idea. Second, no adhoc treatments need to be done when using Eq. (2.18) to

specify σ (applications on channel flows are shown in Chapter 3 and flat-plate

flows in Chapter 4). Considering the displacement of vortex introduced later in

subsection 2.2.2.4, vortex displacement is directly related to its radius size, so

vortices with large and small sizes are all of great interest.

2.2.2.2 Circulation Γ

The circulation is directly linked to the intensity of the generated fluctuations.

The formulation follows Sergent [2002] with the isotropic hypothesis

Γ0 = 4

√
πSk

3N(2 ln 3− 3 ln 2)
(2.21)
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Here, in order to control the intensity of the fluctuations generated, a coefficient

C2 is introduced and needs to be calibrated with test cases.

Γ = C2Γ0 = 4C2

√
πSk

3N(2 ln 3− 3 ln 2)
(2.22)

The intensity of generated fluctuations should be compatible with the mean

turbulent kinetic energy which comes from the RANS calculation, otherwise sta-

bility problem may occur during the numerical simulation. Results can be seen

in subsection 3.1.3.3.

v′rms ' w′rms ∼
√
k (2.23)

2.2.2.3 Lifetime τ

For every period τ , a vortex changes randomly its rotating sense. When a vortex

inverses, its lifetime is over and the vortex with an inverse sense is considered as

new spawn one. Thus, this time interval τ is also named the lifetime of a vortex.

Through Eq. (2.7), it can be seen that inverse of a vortex equals to changing

the sign of its circulation. In original vortex method, the lifetime of vortex is

specified with some adhoc value. In the improved vortex method, τ is based on

a local turbulent timescale

τ = C3
k

ε
(2.24)

Here, a coefficient C3 is introduced and needs to be adjusted with test cases.

Details about tests can be seen in subsection 3.1.3.3.

2.2.2.4 Vortex displacement

Two patterns for vortex displacement are introduced and studied here

a.) Enhanced random walk.

b.) Stochastic walk controlled by Langevin equation.

In the original vortex method, the vortices “walk” at each time step to mimic

the Brownian motion. But it is observed that most vortices just oscillate around
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their initial positions with very small amplitudes. The amplitudes can be eval-

uated by their displacement velocities on the inlet plane and the time interval

during which they hold the displacement direction. This can be explained by

Fig. 2.11. According to the set by Sergent [2002], the displacement velocity scale

on the inlet plane equals the magnitude of the bulk velocity U , and the time

interval is the time step dt of the calculation, thus the step length λ0 of this kind

of random walk is

λ0 ∼ Udt (2.25)

However, with this kind of random displacement, vortices are not active

enough to perturb the mean velocity field. In addition, to insure the efficiency

of the method, the number of vortices is limited. Therefore, in order to make

these vortices active enough, some new patterns are introduced here to control

the displacement of vortices.

Enhanced random walk

The first pattern for the displacement of vortices is the enhanced random walk

(ERW). The enhanced random walk forces the vortices to walk on the inlet plane

with a typical step length λ. For every distance λ walked, the vortices change

randomly their directions, and walks for another distance λ, as shown in Fig. 2.11.

When vortices reach a wall or other boundaries, it will bounce back. The step

length λ is based on the vortex radius (' 0.1λ according to tests results of Chapter

3), and much larger than that of Sergent’s random walk λ0:

λ ∼ 0.1σ � λ0 (2.26)

The characteristic velocity scale for displacement equals to the magnitude of

local bulk velocity at inlet. With the pattern of ERW, vortices can move anywhere

on the inlet plane. The active level of a vortex is represented by the step length

λ. Noticing that vortices with larger radii correspond with larger step lengths as

well, which are more active. This is compatible with the dynamic characteristic of

fluid. The radius specified by Eq. (2.18) and with no adhoc treatment make sense

here. To study the influence of the step length on the development of turbulence

along the streamwise direction, a coefficient C4 is introduced and to be tuned
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Figure 2.11: Schematic of enhanced random walk

with test cases. Results of tests can be seen in subsection 3.1.3.3.

λ = C4σ (2.27)

Stochastic walk

The generated fluctuating velocity field are usually lack of temporal correlation.

Temporal correlation of generated fluctuations may be forced by displacement

of vortices. This motivates the use of Langevin equation. This kind of vortex

displacement is also named the stochastic walk (SW). With random walk, the

vortices move along a random direction with a specific velocity scale. While in

stochastic walk, the velocity vector of displacement is governed by the Langevin

equation [Pope, 2001]

~U(t+ ∆t) = ~U(t)− ∆t

TL
~U(t) +

2γ2∆t

TL

1/2

Ξ(t) (2.28)
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While the velocity variance γ is given by

γ2 =
2

3
k (2.29)

The integral timescale TL of the process is given by

T−1
L =

C5ε

2γ2
=

3

4
C5
ε

k
(2.30)

And Ξ(t) is a standardized Gaussian random variable which is independent of

itself at different times. With the coefficients expressed in forms above, the

Langevin equation becomes

~U(t+ ∆t) = (1− 3

4
C5
ε

k
∆t)~U(t) + (C5ε∆t)

1/2Ξ(t) (2.31)

The velocity vector for vortex displacement consists of two parts: a totally random

part and a determined part (velocity vector at the last time step). The initial

values in Eq. (2.31) are considered having less influence on the velocity vector

after enough long time. Then the displacement will be only determined by the

coefficient C5 which needs to be calibrated by test cases. Results about tests can

be seen in subsection 3.1.3.3.

All the parameters of the improved vortex method are summarized in Tab. 2.1.

Further systematic parameter optimization study will be carried out with com-

putations on channel flows (Reτ = 395) in Chapter 3.

2.3 The LES quality and the velocity-derivative

skewness

No matter using the precursor methods or synthetic turbulence methods to gener-

ate inflow conditions for LES, the obtained flow field needs to be qualified before

being introduced as inflow of the main computation. So the next question comes

out, what are the appropriate criteria to qualify the turbulent flow field obtained

by these methods? In general, there are two ways for examining: a priori way

and a posteriori way. Several statistic quantities are used to examine LES results,
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Parameter Formula Description

Radius σ σ = C1Re
3/4
local(ν

3/ε)1/4 Based on energy-
containing scale, related
to local dissipation rate

Circulation Γ Γ = C2Γ0 Γ0 ([Sergent, 2002]),
isotropic hypothesis

lifetime τ τ = C3
k
ε

Local turbulent
timescale

Displacement Pattern 1 λ = C4σ Enhanced random walk

Displacement Pattern 2 The model coefficient C5 Stochastic walk

Table 2.1: Parameters of the improved vortex method
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Chapter 2. LES inflow conditions and vortex method

and they will be reviewed shortly here. Those quantities can describe the fea-

tures of turbulence from different views. As is described by the energy cascade,

the energy transferred from the large scale turbulent motions to the small ones

successively. When the turbulence is fully developed, the energy transferred to

the small scales motions is balanced with the dissipation. Related to the LES,

it is equals to the dissipation presented by the SGS stress model. The key point

of LES is whether the SGS stress model can accurately quantify the dissipation

effect of unresolved scales motions or not. To describe this equilibrium between

the energy transferred from large scales and dissipation of the resolved scales, the

velocity-derivative skewness is introduced. Because in the framework of isotropic

homogeneous turbulence, this quantity is related to the energy transfer between

different scales. Results of experiments and DNS showing that this quantity can

be potentially used to as a criterion to qualify LES.

2.3.1 General examinations of the LES performance

An a priori test uses experimental or DNS data to measure directly the accu-

racy of a modeling assumption. While in an a posteriori test, the model is used

to perform a calculation for a well known turbulent flow. Then some statistic

quantities(e.g. 〈ui〉 and 〈u′iu′j〉) are calculated and are compared with reference

data which usually come from a DNS. Vremen et al. [1997] proposed that several

quantities can be considered as criteria to quantify the quality of LES: the evolu-

tion of total kinetic energy, turbulent and molecular dissipation, backscatter and

energy spectra, etc. These parameters are summarized in Tab. 2.2.

The decay of the total kinetic energy is caused mainly by the SGS dissipation,

as is modeled by SGS stress model. A small part is due to the molecular dissipa-

tion which is not comparable to the SGS dissipation. Non eddy viscosity models

can have mechanisms to produce backscatter of energy from subgrid to resolved

scales, thus the backscatter need to be calculated [Bertoglio, 1985]. The vorticity

can be used to visualize the large scale roller structure of the flows. As with

mixing layer, the positive spanwise vorticity is related to the transition to turbu-

lence. The turbulent stress tensor accounts for the transfer of kinetic energy from

resolved scale to subgrid scales. The momentum thickness is an important quan-
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Quantity Formula

Total kinetic energy k
∫
uiuidx

Dissipation due to SGS stress εSGS
∫
−ρτ ijSijdx

Backscatter
∫
min(−ρτ ijSij , 0)dx

Energy spectrum E(κ)

Vorticity ωi

Momentum thickness -

Averaged statistics 〈ui〉, 〈u′iu′j〉, etc

Table 2.2: Quantities for qualifying LES result

tity for the boundary layer. It can be used to quantify the spreading of the mean

velocity profile. Statistic quantities like 〈u′iu′j〉 are related to the fluctuations.

2.3.2 Energy transfer in LES

An important issue in LES is to correctly simulate the transfer of kinetic energy

between the filtered or the resolved motions and the residual or the unresolved

motions. The filtered kinetic energy E is obtained by filtering the kinetic energy

filed as

E ≡ 1

2
u · u (2.32)

This quantity can be decomposed as

E = Ef + Er (2.33)

Where Ef is the kinetic energy of the filtered velocity field, and Er is the residual

kinetic energy

Ef =
1

2
u · u (2.34)
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Chapter 2. LES inflow conditions and vortex method

The conservation equation for Ef is

∂Ef
∂t

+ ui
Ef
∂xi
− ∂

∂xi
[uj(2νSij − τ rij −

p

ρ
δij)] = −εf − Pr (2.35)

Where τ rij is the anisotropic part of the SGS stress tensor, and εf , Pr are

defined as

εf = 2νSijSij (2.36)

Pr = −τ rijSij (2.37)

The terms on the left side of Eq. (2.35) represent transport, and the sink

terms on the right side are of most interest. The sink −εf represents the viscous

dissipation due to the filtered velocity field. This term is relatively small for a

high Reynolds number flow with a fine enough (much larger than the Kolmogorov

scale∼ 2η) filter width. The term Pr is the rate of production of the residual

kinetic energy. This term appears as a sink (−Pr) in the equation for Ef and as

a source (+Pr) in the equation for Er. It represents the rate of transfer of energy

from the filtered motions to the residual motions. At high Reynolds number,

with the filter in the inertial subrange, the filtered velocity field equals nearly all

of the kinetic energy

〈Ef〉 ' 〈E〉 (2.38)

The dominant sink in the equation of for 〈Ef〉 is 〈Pr〉, since 〈−εf〉 is negligible

comparable with 〈Pr〉, thus, the sink term 〈Pf〉 equals nearly to the dissipation

of kinetic energy ε

〈Pf〉 ' ε (2.39)

Even though, locally there can be backscatter, when transfer of energy is from

the residual motions the the filtered velocity field. But globally, the transfer of

energy is mostly from the large scales to the small scales. This is the main aim

of any eddy viscosity type SGS model.
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2.3. The LES quality and the velocity-derivative skewness

2.3.3 Introduction of the velocity-derivative skewness in

isotropic homogeneous turbulence

2.3.3.1 The velocity-derivative skewness and the Karman-Howarth

equation

For incompressible flow, the time derivative of two-point correlation Rij(r, t) can

be derived from N-S equations of velocity fluctuations.

∂Rij(r, t)

∂t
= Tij(r, t) + Pij(r, t) + 2ν

∂2Rij(r, t)

∂rk∂rk
(2.40)

With,

Tij(r, t) =
∂

∂rk
(〈ui(x, t)uk(x, t)uj(x+ r, t)〉 − 〈ui(x, t)uk(x+ r, t)uj(x+ r, t)〉)

(2.41)

Pij(r, t) =
1

ρ
(
∂〈p(x, t)uj(x+ r, t)〉

∂ri
− ∂〈p(x+ r, t)ui(x, t)〉

∂rj
) (2.42)

For isotropic turbulence, the pressure-gradient term in the equation for time

derivative of Rij(r, t) is zero. The convective term Tij(r, t) involves two-point

triple velocity correlations, such as

Sijk(r, t) = ui(x, t)uj(x, t)uk(x+ r, t) (2.43)

In isotropic turbulence Sijk(r, t) is uniquely determined by its longitudinal cor-

relation

k(r, t) = S111(e1r, t)/u
3 = 〈u1(x, t)2u1(x+ e1r, t)〉/u3 (2.44)

Since k(r, t) is an odd function of r, and because of continuity equation,k′(0, t) =

0, so its series expansion

k(r, t) = k′′′(0, t)r3/3! +kV (0, t)r5/5! + · · · (2.45)

The quantity k′′′(0, t), who determines k(r, t) to leading order can be re-expressed

as

u3k′′′(0, t) = 〈(∂u1

∂x1

)3〉 = S(
ε

15ν
) (2.46)
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Where

S ≡ 〈(∂u1

∂x1

)3〉/〈(∂u1

∂x1

)2〉3/2 (2.47)

S is the velocity-derivative skewness. Thus, there is a connection among this

skewness and the transfer of energy between different scales which is involved in

the energy cascade. In homogeneous isotropic turbulence, the skewness represents

the rate of production of vorticity through vortex stretching, and the non-zero

value arises from the non-linearity of the Navier-Stokes equations.

2.3.3.2 Further interpretation between velocity-derivative skewness

and inter-scale energy transfer

Following Batchelor [1953]Lumley et al. [2007]Tavoularis et al. [1978] and Bos

et al. [2012], the relation among velocity-derivative skewness and transfer of en-

ergy between different scales can be derived, details are presented in the 5.

Another form for the velocity-derivative skewness is

lim
r→0

S(r) =
〈(∂u/∂x)3〉
〈(∂u/∂x)2〉3/2

(2.48)

Using Eq.(20),Eq.(21) and Eq.(22), we have

lim
r→0

S(r) =
〈(∂u/∂x)3〉
〈(∂u/∂x)2〉3/2

= − 153/2

35
√

2

∫
κ2T (κ)dκ

[
∫
κ2E(κ)dκ]3

(2.49)

The Eq. (2.49) shows that the velocity-derivative skewness is directly related

to the inter-scale energy transfer and dissipation mechanism. Considering the

situation when energy transfer and dissipation is balanced, we have∫
κ2T (κ)dκ '

∫
2νκ4E(κ)dκ (2.50)

So that

lim
r→0

S(r) ' −153/2
√

2ν

35

∫
κ4E(κ)dκ

[
∫
κ2E(κ)dκ]3/2

(2.51)

Since E(κ) depends on Reynolds number, thus, the velocity-derivative skewness

becomes a function of the Reynolds number. For a turbulence flow at a certain
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2.3. The LES quality and the velocity-derivative skewness

Figure 2.12: The velocity-derivative Skewness. + is from [Sreenivasan and Anto-
nia, 1997]; Series 1 and 2 are from [Ishihara et al., 2007]; (4.2) comes from [Hill,
2002] and (4.3) comes from [Gylfason et al., 2004]

Reynolds number, when the process of energy cascade is established or when

turbulence is fully developed, the transfer of energy from large scale to small

scale is balanced to the dissipation rate at the smallest scale (Kolmogorov scale

η), the velocity-derivative skewness should be non-zero, negative at certain level.

Thus it may be seen as a criterion for determining if turbulence is fully developed.

2.3.4 The DNS and experimental data about the skewness

Experiment of Comte-Bellot and Craya [1965] gives a value of Su (velocity-

derivative skewness along streamwise direction) between -0.3 to -0.4 throughout

the channel, except of -0.8 near the wall.

Measurements of the velocity-derivative skewness in homogeneous isotropic

turbulence by Burattini et al. [2008] show that skewness is constant with the

Reynolds number.

Based on the data at Reλ > 400 (Reλ is the Taylor scale Reynolds number)
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Chapter 2. LES inflow conditions and vortex method

of [Antonia et al., 1981], Hill [2002] proposed

S ∼ −0.5(Reλ/400)0.11 ' −0.26Re0.11
λ (2.52)

and according to experimental data of [Gylfason et al., 2004]

S ∼ −0.33Re0.09
λ (2.53)

The DNS results of [Ishihara et al., 2007] show

S ∼ −(0.32∓ 0.02)Re0.11±0.03
λ (2.54)

Their results are shown in Fig. 2.12
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Chapter 3

Validation on channel flow

In this chapter, the improved vortex method will be tested with a channel flow

at a Reynolds number Reτ = 395, and then validate against a channel flow with

a higher Reynolds number Reτ = 590. At first, a periodic LES calculation (with

periodic boundary conditions) is carried out to provide reference data for the spa-

tial evolving calculation with improved vortex method. Since the improved vortex

method is a hybrid RANS/LES method, a RANS calculation is also conducted on

the same channel to provide inlet mean profiles (mean velocity, mean turbulent

kinetic energy and dissipation rate). Both the LES and RANS results will be

used to optimize the parameters for the improved vortex method (Reτ = 395).

Then the improved vortex method with optimized parameters will be applied to a

channel flow with higher Reynolds number (Reτ = 590). Concerning the results,

mean velocity and Reynolds stress profiles will be presented, as well as the fric-

tion coefficient throughout the channel. The relation between the development

of turbulence and the velocity-derivative skewness along the streamwise direction

will be analysed.

3.1 Parameter optimization

3.1.1 The channel flow periodic LES at Reτ = 395

The calculation is performed in a channel of 2πh × 2h × πh using a grid of

49 × 89 × 41 points. Here, h = 0.01m is the half channel height. The mesh is
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Chapter 3. Validation on channel flow

Figure 3.1: Mesh of calculation on channel flow at Reτ = 395

uniform in the streamwise direction (x-direction) and in the spanwise direction

(z-direction), and follow a tanh form distribution in the wall-normal direction (y-

direction), as shown in Fig. 3.1. The grid resolutions in wall units are ∆x+ = 52,

∆y+ = 0.5, ∆z+ = 31 in the streamwise, wall-normal and spanwise direction,

respectively.

3.1.1.1 Initial and boundary conditions

The flow field is initialed with a Poiseuille velocity profile

ux = U0(1− (y/h)2) (3.1)

uy = uz = 0 (3.2)

with U0 = 20uτ , P = ρU2
0/(γM

2) (M = 0.2 to accelerate the calculation), ρ =

1.214kg/m3 , µ = 1.81 × 10−5kg/m/s and uτ = 0.59m/s. These correspond

to a Reynolds number Reτ = 395. According to [Moser et al., 1999], we have

U0/uτ ∼ 20 at center of channel.

Periodic conditions are used in the streamwise and spanwise directions. The

top and bottom sides of the channel are set as non-slip adiabatic walls.
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3.1. Parameter optimization

To force the transition to turbulence, random perturbations are added to the

flow field in all the three directions with an amplitude 0.02U0(1− (y/h)2).

A source term Sst is added to the momentum equation in the x-direction in

order to compensate the pressure drop caused by friction on the wall:

Sst =
ρu2

τ

h
(3.3)

3.1.1.2 Results

All results are normalized with the friction velocity uτ and the half channel height

h. The DNS results of Moin and Mahesh [1998] are compared to validate the

reference periodic LES calculation.

Quality check of LES results

The LES convergence is checked with the help of probes. Two probes are placed

at y+ = 7.7 and y+ = 38.3 to capture instantaneous velocities.

The instantaneous velocities recorded by the probe (y+ = 7.7) with WALE

model are shown in Fig. 3.2. The turbulent transition occurs around t+ = 4

(t+ = uτ t
h

), and the flow field reaches fully turbulent state at about t+ = 6. The

collection of statistics is between t+ = 6.20 and t+ = 14.75. Considering the

homogeneity in streamwise and in spanwise directions, there are in total 153600

samples collected within this time period.

Mean velocity profiles

The friction velocity uτ is computed for each LES. The results are compared with

the DNS friction velocity uτ , as listed in Tab. 3.1. The WALE model shows a

better prediction of uτ than the SISM model. It slightly overestimate uτ by 0.9%,

while a 13.2% underestimation is reported by the SISM model.

The comparison of mean velocity profiles is shown in Fig. 3.3. Results are nor-

malized by their computed friction velocities respectively. Both the LES achieve

good agreements with the DNS results. In particular, the viscous sublayer is very
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Figure 3.2: Velocity recorded by the probe at y+ = 7.7 with the WALE model
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3.1. Parameter optimization

DNS WALE SISM

0.590 m/s 0.595 m/s 0.512 m/s

Table 3.1: Friction velocity

Figure 3.3: Comparison of mean velocity profiles

well captured by both LES. Discrepancies are seen in the log-law region. The

WALE model gives a 5.5% underestimation of the mean velocity at the channel

center, while this value is overestimated by 10.3% in the SISM results. This may

be due to the underestimation of the friction velocity.

Reynolds stresses

A comparison of velocity fluctuations between the LES and DNS results is plotted

in Fig. 3.4. The DNS inner peak of 〈u′u′〉 locates at y+ = 14.7 with a peak value

of about 7.5. The WALE model predicts the inner peak of 〈u′u′〉 at almost the

same location, but with a 14.6% overestimation of the peak value. The inner peak

of 〈u′u′〉 simulated by the SISM model lies further from the wall (at y+ = 18.4)
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Figure 3.4: Comparison of Reynolds stresses

than the DNS, and its peak value is overestimated by 14.5%. Concerning the

spanwise Reynolds stress 〈w′w′〉, the DNS shows a peak value of about 1.6 at

y+ = 29.7. Both the LES overestimate the peak value. The SISM model gives

a better prediction in terms of the peak value and the peak location (18.7%

overestimation at y+ = 22.0) than the WALE model (62.5% overestimation at

y+ = 15.6). The profiles of 〈v′v′〉 and 〈u′v′〉 with the WALE model and SISM

model both agree well with the DNS results. The inner peak of 〈v′v′〉 locates at

y+ = 52.3 and the extreme value of 〈u′v′〉 lies at about y+ = 27.2. The LES

underestimates 〈v′v′〉 by less then 10%. The WALE results agrees better with

the DNS 〈u′v′〉 profile.

3.1.2 The channel flow RANS at Reτ = 395

The improved vortex method is a hybrid RANS/LES method, which requires

profiles of mean velocity, turbulent kinetic energy and dissipation rate. Although

these mean profiles can also be directly extracted from LES or DNS reference
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Figure 3.5: Mean velocity of RANS k-ω model with a reference DNS result

database, but RANS method can achieve a fast prediction. A RANS simulation

is conducted here on the same channel used for the periodic LES. The standard

Wilcox k-ω model is employed to close the RANS equations.

3.1.2.1 Results

All results are normalized in wall units (RANS uτ = 0.535m/s, h = 0.01m). The

mean velocity obtained with the RANS is shown in Fig. 3.5, in comparison with

the DNS results. The RANS results show a very good agreement with the DNS

mean velocity profile. The mean kinetic energy profile of RANS is plotted with

those of the DNS and LES, as shown in Fig. 3.6. The RANS underestimates the

mean kinetic energy, compared with the periodic LES and the DNS. The peak

value of k for RANS is about 2.6, locating at y+ = 33.5. The LES shows a peak

of 5.3 at y+ = 19.2 and the DNS shows a peak of 4.6 at y+ = 17.0. Although

significant discrepancy is observed for RANS results, it provides correct trend of

the k profile. Fig. 3.7 gives the profile of mean dissipation rate ε (normalized

form ε+ = ε
u3τ/h

). The profile shows a peak of 70 at y+ = 10.
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Figure 3.6: Mean kinetic energy of RANS k-ω model with a reference LES and
DNS result

Figure 3.7: Mean dissipation rate ε of RANS k-ω model ε = Cµkω [Wilcox, 1988]
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3.1.3 Parametric optimization of the improved vortex method

It’s necessary to optimize the parameters of the improved vortex method, since

they may vary for different flow types as vortex parameters are specified with

local turbulent quantities. This subsection will present the parameter optimizing

process of the parameters with a channel flow at a Reynolds number Reτ = 395.

3.1.3.1 Numerical methods

All the numerical tests in this subsection use the same numerical scheme, channel

mesh as the set of the previous reference periodic LES at Reτ = 395. The SGS

model used here and after is the WALE model.

Initial condition and Boundary condition

The calculation is initialized with the previous RANS results. The vortex method

is used at inlet to generate an unsteady boundary condition. The mixed non-

reflection pressure outlet condition is employed on the outlet boundary. A peri-

odic boundary condition is applied to the spanswise boundaries. The end-walls

on the top and bottom sides of the channel are set as non-slip adiabatic walls.

3.1.3.2 Parameters for the improved vortex method

A series of tests is carried out to optimize the parameters introduced in Tab. 2.1.

By tuning the parameters of the improved vortex method, different kinds of un-

steady fluctuations can be generated, this will result in different outlet flows.

The values tested for the improved vortex method’s parameters are summarized

in Tab. 3.2. The pattern for vortex displacement can either be an enhanced ran-

dom walk or a stochastic walk. The two types of vortex displacement are tested

independently. The number of vortices injected at the inlet is 800, with image

vortex to treat wall boundary condition [Sergent, 2002]. According to Sergent

[2002], sensitivity of the method converges as the number of vortices increases.

While too many vortices will slowdown the calculation. According to this thesis’

work, a number of vortices around 1000 is recommended to generate an appro-

priate fluctuating velocity field.
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Test cases
Radius σ Circulation Γ Lifetime τ Dispalcement

C1 C2 C3 ERW C4 SW C5

PO1 1 1 1 - -
PO2 1/2 1 1 - -
PO3 1/4 1 1 - -

PO3+ 1/16 1 1 - -

PO4 1/4 1.2 1 - -
PO5 1/4 1.6 1 - -

PO6 1/4 1.2 0.1 1/16 -
PO7 1/4 1.2 10 1/16 -
PO8 1/4 1.2 100 1/16 -

PO9 1/4 1.2 1 1/8 -
PO10 1/4 1.2 1 1/16 -
PO11 1/4 1.2 1 1/32 -

PO12 1/4 1.2 10 - 1
PO13 1/4 1.2 10 - 5
PO14 1/4 1.2 10 - 50

Table 3.2: Simulation list of parameter optimization

The parameter optimization is carried out as follows. The radius and the

circulation are studied first. Fixing the optimized coefficients for radius and

circulation, the next studies on the enhanced random walk and lifetime are carried

out at the same time. At last, the pattern of stochastic walk is tested with the

optimized radius, circulation and lifetime. The value chosen for C5 in test PO13

correspond to the reference value in [Pope, 2001].

3.1.3.3 Results and discussions

As a synthetic turbulence approach, the improved vortex method generates ve-

locity fluctuations based on mean profiles (〈~u〉, k, ε). The mean profiles are

obtained from the previous RANS simulation, while 2D fluctuations at the inlet

plane are generated by the present improved vortex method with 800 vortices.
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3.1. Parameter optimization

Figure 3.8: Comparison of radius σ+ of PO1, PO2, PO3 and PO3+ with energy-
containing scale L+

The optimizing process and the related results will be presented and discussed.

Radius

The test cases concerning the vortex radius are PO1, PO2, PO3 and PO3+

in Tab. 3.2. The radius coefficient C1 reduces gradually from PO1 to PO3+,

suggesting that the vortex radius decrease from PO1 to PO3+, as shown in

Fig. 3.8. Compared with the curve of energy-containing scale L+, radius of PO3

agrees better with L+ in the range of interest (y+ = 10 to y+ = 100). The inlet

mean velocity profile is the same for all cases, as plotted in Fig. 3.9, which comes

directly from the previous RANS results.

While their velocity fluctuations prescribed by the different vortex radius are

different at inlet, which are shown in Fig. 3.10 and Fig. 3.11. The improved

vortex method only generates 2D perturbations within the inlet plane, therefore

the streamwise Reynolds normal stresses 〈u′u′〉 and the shear stresses 〈u′v′〉 are

0. The profiles of the other two Reynolds normal stresses are clearly visible.
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Figure 3.9: Mean velocity profiles at inlet x/h = 0: symbol, LES with improved
vortex method (IVM); line, reference periodic LES

For PO1, only the Reynolds normal stresses 〈w′w′〉 have a visible peak with a

comparable amplitude to that of the reference periodic LES. But the peak location

is far from the reference periodic LES results. Halving the vortex radius (PO2),

the 〈w′w′〉 peak increase in amplitude and the peak location moves towards the

wall. A 〈v′v′〉 hump appears, and shows a similar extreme value with the reference

periodic LES results. By further reducing the vortex radius (PO3 and PO3+),

the 〈w′w′〉 peak location gets even closer to the reference periodic LES, while

its peak value grows to nearly twice (PO3) of the reference periodic LES one.

A similar trend is observed for the Reynolds normal stress 〈v′v′〉. This agrees

with the results of Sergent [2002] that the radius σ has a notable influence on the

position of the peak of the fluctuations; the bigger the vortices, the further away

from the wall the peak locates.

Fig. 3.12 plots the evolution of friction coefficient cf for all the three cases.

The coefficient of friction cf gives an indicator of how well-developed the mean
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Figure 3.10: Reynolds stresses at inlet x/h = 0 of PO1 (top) and PO2 (bottom):
symbol, LES with improved vortex method; line, reference periodic LES
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Figure 3.11: Reynolds stresses at inlet x/h = 0 of PO3 (top) and PO3+ (bottom):
symbol, LES with improved vortex method; line, reference periodic LES
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Figure 3.12: Evolution of friction coefficient cf of PO1, PO2, PO3 and PO3+

velocity profile is. The friction coefficient cf is defined as

cf = 2(uτ/U0)2 (3.4)

Where U0 = 11.25m/s is the centreline velocity of the reference periodic LES.

For the case PO1, the friction coefficient drops continuously from inlet to outlet,

which means that the flow relaminarize. Similar result is obtained by PO3+, of

which the radius sizes are the smallest. Therefore, too big or too small vortices

are unfavourable to generate turbulence. For the other two cases PO2 and PO3,

the friction coefficient drops till about half the channel length, and then recover

back. The case with small vortices (PO3) which corresponds better to the energy-

containing scale, achieve a better recovery of the friction coefficient at outlet.

The mean velocity profiles can be scrutinized in Fig. 3.13 and Fig. 3.14. The

best prediction is obtained by PO3. For PO1 and PO2, the bigger the vortices

are imposed at inlet, the larger the errors are observed at outlet. For PO3+,

with the smallest vortices imposed, error is more pronounced in comparison with

result of PO3.
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Figure 3.13: Mean velocity profiles at outlet x/h = 2π of PO1 (top) and PO2
(bottom): symbol, LES with improved vortex method; line, reference periodic
LES
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Figure 3.14: Mean velocity profiles at outlet x/h = 2π of PO3 (top) and PO3+
(bottom): symbol, LES with improved vortex method; line, reference periodic
LES
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Figure 3.15: Reynolds stresses at outlet x/h = 2π of PO1 (top) and PO2 (bot-
tom): symbol, LES with improved vortex method; line, reference periodic LES
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Figure 3.16: Reynolds stresses at outlet x/h = 2π of PO3 (top) and PO3+
(bottom): symbol, LES with improved vortex method; line, reference periodic
LES
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Figure 3.17: 2D instantaneous velocity field obtained at inlet with C1 = 1/40

The comparison of Reynolds stresses at outlet are drawn in Fig. 3.15 and

Fig. 3.16. Again, the case PO3 achieves the best prediction of the Reynolds

stresses than the cases with appropriate sizes of vortices, although some discrep-

ancies are observed.

One major difference between original vortex method of Sergent [2002] and

improved vortex method is that Sergent [2002] uses a separate equation to gen-

erate the streamwise direction fluctuations which are uncorrelated with other

components generated by vortex, while improved vortex method generates only

the 2D components (normal to streamwise direction) by vortices and the stream-

wise fluctuating component is induced naturally through the mechanism of N-S

equations. Thus all three fluctuating components are correlated, but the develop-

ment to real turbulence is expected to be effective which is the aim of parameters

vortex lifetime and displacement, and will be studied with test cases later.

Further tests are also carried out by further decreasing the size of vortex

radius, but very small vortex (e.g., C1 = 1/40) can hardly be resolved, resulting

in inappropriate structured fluctuations, as shown in Fig. 3.17.

To conclude, the case PO3 achieves best prediction in terms of the mean

velocity profiles and Reynolds stress at outlet. Thus, the first vortex parameter,

radius coefficient C1 is fixed at 1/4. The size of the vortices should be comparable
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to the energy-containing scale. According to our tests in channel flow Reτ = 395,

the acceptable range of C1 is about 1/8 < C1 < 1/3. But the vortices cannot

be too small, since very small vortices can hardly be resolved and may generate

exceed fluctuations.

Circulation

The test cases concerning the vortex circulation are PO3, PO4 and PO5 in

Tab. 3.2. The circulation coefficient C2 increases gradually from PO3 to PO5,

suggesting that the circulation is more and more amplified from PO3 to PO5. The

velocity fluctuations prescribed by different circulation coefficient are different at

inlet, as plotted in Fig. 3.18. 2D perturbations are clearly obtained for all these

three cases. For PO3, the 〈v′v′〉 peak location lies at y+ = 45.0, which is nearer

to the wall compared with the reference periodic LES (y+ = 84.6). Its peak value

(2.2) is about 2.4 times of the reference periodic LES result (0.9). The 〈w′w′〉
peak location lies at y+ = 35.9, which is further away from the wall compared

with the reference periodic LES (y+ = 22.4). Its peak value (4.5) is about 2.3

of the reference periodic LES result (2.0). As amplifying the circulation by 1.2

(PO4), the peak locations of 〈v′v′〉 and 〈w′w′〉 stay the same as PO3. But the

peak value of 〈v′v′〉 is 3.5, about 3.9 times of the reference periodic LES result.

The peak value of 〈w′w′〉 is 7.5, about 3.8 times of the reference periodic LES

result. More amplifying the circulation by 1.6 (PO5). The peak value of 〈v′v′〉 is

7.1, growing to 7.9 times of the reference periodic LES result, while a peak value

of 13.7 is obtained for 〈w′w′〉 (6.9 times of the reference periodic LES result).

Fig. 3.19 shows the evolution of friction coefficient for all the three cases. A

common behaviour is shared by all the three cases: the friction coefficient increase

then drops initially and recover to a value at outlet. The drop and recovery rate

of PO4 is faster then that of PO3, while is slower than that of PO5. But at

outlet, the friction coefficient of PO4 can recover back to its initial value of inlet,

while the the friction coefficient of PO5 is overestimated and underestimation is

observed for PO3, compared with each initial value at inlet.

The mean velocity profiles are shown in Fig. 3.20. The better predictions are

obtained by PO4 and PO5. For PO3, without any amplification of the circula-
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Figure 3.18: Reynolds stresses at inlet x/h = 0 of PO3 (top), PO4(mid), PO5
(bottom): symbol, LES with improved vortex method; line, reference periodic
LES
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Figure 3.19: Evolution of friction coefficient cf of PO3, PO4 and PO5

tion, larger error is predicted in the center of the channel. While PO4 slightly

overestimates the mean velocity in the center of the channel and PO5 slightly

underestimates it. The comparison of Reynolds stresses are drawn in Fig. 3.21.

The cases PO5 and PO4 give best prediction of the Reynolds stresses than the

case without any amplification (PO3).

In conclusion, the case PO4 achieve best prediction in terms of the friction

coefficient, the mean velocity profiles and Reynolds stress at outlet. Even though

the case PO5 seems to achieve best result, but, again, to avoid exceed fluctuations

generated, the amplification factor for circulation cannot be chosen too big. Thus,

the second vortex parameter, circulation coefficient C2 is fixed at 1.2. The energy

of generated fluctuations should be comparable to local turbulent kinetic energy.

Lifetime

The test cases concerning the vortex lifetime are PO6, PO7 and PO8 in Tab. 3.2.

The lifetime coefficient C3 increases gradually from PO6 to PO8, meaning that

lifetime of vortex is longer from PO6 to PO8. The velocity fluctuations prescribed
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Figure 3.20: Mean velocity profiles at outlet x/h = 2π of PO3 (top), PO4(mid),
PO5 (bottom): symbol, LES with improved vortex method; line, reference peri-
odic LES

74



3.1. Parameter optimization

Figure 3.21: Reynolds stresses at outlet x/h = 2π of PO3 (top), PO4(mid), PO5
(bottom): symbol, LES with improved vortex method; line, reference periodic
LES
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Figure 3.22: Reynolds stresses at inlet x/h = 0 of PO6 (top), PO7(mid), PO8
(bottom): symbol, LES with improved vortex method; line, reference periodic
LES
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Figure 3.23: Evolution of friction coefficient cf of PO6, PO7 and PO8

at inlet are shown in Fig. 3.22. A general behaviour is shared by all the three

cases, the profile of 〈v′v′〉 and the one of 〈w′w′〉 superposes with each other,

suggesting that the velocity fluctuations are 2D isotropic which is compatible

with Eq. (2.7). The peak value is about 1.6 and locates at y+ = 88.5. No big

differences are observed of the Reynolds stress profiles at inlet for all the three

cases.

Fig. 3.23 plots the evolution of friction coefficient. For the case PO6, the

friction coefficient drops continuously downstream from inlet, and the flow become

totally laminar at outlet. Therefore, too small lifetime coefficient is unfavorable

to generate turbulence. For the other two cases, the friction coefficients drop

initially and reach to a minimum value (' 3.6× 10−3) at about x/h = 1.8, then

it increase to a value which is almost the same level as the inlet ' 4.7 × 10−3,

suggesting that a development from laminar flow to turbulent flow.

The mean velocity profiles are shown in Fig. 3.24. Better predictions are

obtained by PO7 and PO8. For PO6, the lifetime coefficient is the lowest, flow

become totally laminar, leading to larger error of the mean velocity at outlet.
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Figure 3.24: Mean velocity profiles at outlet x/h = 2π of PO6 (top), PO7(mid),
PO8 (bottom): symbol, LES with improved vortex method; line, reference peri-
odic LES
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Figure 3.25: Reynolds stresses at outlet x/h = 2π of PO6 (top), PO7(mid), PO8
(bottom): symbol, LES with improved vortex method; line, reference periodic
LES
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The comparison of Reynolds stresses are drawn in Fig. 3.25. The cases PO7

and PO8 achieve better prediction of the Reynolds stresses than the cases with

shorter vortex lifetime. Even though some discrepancies are observed at center

of the channel.

In conclusion, the results of PO6 suggest that the vortex lifetime cannot be

so short. The results of PO7 and PO8 are quite satisfied. The flow field ob-

tained at outlet is almost fully developed. This is also due to the employment of

enhanced random walk for these three cases, since the lifetime and enhanced ran-

dom walk are implemented into the improved vortex method at the same time.

While the parametric optimization is separated. As for the vortex lifetime, it

is recommended to chose a value larger than the local turbulent time scale k/ε

(τ ' 10k/ε according to our tests). Here, the third vortex parameter, lifetime

coefficient is fixed at 10.

Enhanced random walk

The test cases concerning the vortex enhanced random walk are PO9, PO10 and

PO11 in Tab. 3.2. The enhanced random walk coefficient C4 decreases from PO9

to PO11, meaning that the walking step length decreases from PO9 to PO11. The

velocity fluctuations prescribed at inlet are shown in Fig. 3.26. The Reynolds

stress profiles are almost the same at inlet. Perturbations are 2D, and 〈v′v′〉
superposes with 〈w′w′〉. The peak value is about 1.4 and locates at y+ = 99.0.

The humps are smooth, similar to the 〈v′v′〉 of the reference periodic LES.

Fig. 3.27 plots the evolution of friction coefficient for all the three cases stud-

ied. For all the three cases, the friction coefficient drops first from inlet, then

increases and almost stabilize at some value at outlet. For PO9, with longer

walking step length, the initial drop is deeper and the recovery is slower. At

outlet, the friction coefficient is underestimated, compared with its inlet value.

While for PO10 and PO11, with smaller walking step length, the drop reaches to

a minimum value of about 3.15×10−3 at x/h = 2, and the recovery to the steady

value of about 4.70× 10−3 at about x/h = 6. This suggest that the flow become

fully developed before reaching the outlet.

The mean velocity profiles at outlet are shown in Fig. 3.28. Better predictions
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3.1. Parameter optimization

Figure 3.26: Reynolds stresses at inlet x/h = 0 of PO9 (top), PO10(mid), PO11
(bottom): symbol, LES with improved vortex method; line, reference periodic
LES
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Figure 3.27: Evolution of friction coefficient cf of PO9, PO10 and PO11

are obtained by PO10 and PO11. For PO9, the walking step length is longer.

Larger discrepancy of the mean velocity profile is observed in the center of the

channel, compared with the reference periodic LES mean velocity profile. While

for PO10 and PO11, shorter walking step length are imposed, the mean velocity

at outlet is only slightly overestimated in the center of the channel (less than

5%). The comparison of Reynolds stresses at outlet are drawn in Fig. 3.29.

Again, better predictions are obtained with cases PO10 and PO11. Near the

wall, the behaviour of velocity fluctuations are very well predicted, compared

with the reference periodic LES results. While in the center of the channel, small

discrepancies are observed.

To conclude, the cases PO10 and PO11 achieve better predictions in terms of

the friction coefficient, the mean and Reynolds stress profiles at outlet. Thus, the

walking step length are suggested to be set small. It is based on the vortex radius,

while the latter is comparable to a energy-containing lengthscale. Numerical

experiments performed here recommend to chose a walking step length as 1/16

of the vortex radius. Thus, the fourth vortex parameter, enhanced random walk
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Figure 3.28: Mean velocity profiles at outlet x/h = 2π of PO9 (top), PO10(mid),
PO11 (bottom): symbol, LES with improved vortex method; line, reference pe-
riodic LES
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Figure 3.29: Reynolds stresses at outlet x/h = 2π of PO9 (top), PO10(mid),
PO11 (bottom): symbol, LES with improved vortex method; line, reference pe-
riodic LES
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coefficient C4 is fixed at 1
16

.

Stochastic walk

The test cases concerning the vortex stochastic walk are PO12, PO13 and PO14

in Tab. 3.2. The model coefficient C5 increases from PO12 to PO14, meaning

that the ratio between σ2 (random part) and TL (integral timescale) increases, as

shown in Eq. (2.30). The 2D velocity fluctuations generated at inlet are shown

in Fig. 3.30. For PO12, model coefficient C5 is the smallest, the profile of 〈v′v′〉
almost superposes with the profile of 〈w′w′〉, which are still underestimated com-

pared with the reference periodic LES 〈v′v′〉. As increasing C5, the peak values of

〈w′w′〉 and 〈v′v′〉 increase, the two profiles separate with each other. This result

is more pronounced in PO14.

Fig. 3.31 plots the evolution of friction coefficient for all the three cases. A

general behaviour is observed, friction coefficient drops and increase to the fully

developed value at about x/h = 6. For PO12, the model coefficient C5 is the

smallest, the drop is the deepest, with a minimum value of about 3.1 × 10−3 at

x/h = 2.3. Until the flow get further developed, it cannot recover to its initial

value at inlet (' 4.55 × 10−3), with a value of 4.2 × 10−3 at x/h = 6. While

for PO13, the drop is faster and smaller, with a minimum value of 3.4× 10−3 at

x/h = 1.8. Until the flow become turbulent, at x/h = 6, cf reaches to its initial

value at inlet (4.55 × 10−3). While this value is overestimated by PO14, with

cf ' 4.9× 10−3 at x/h = 6.

The mean velocity profiles at outlet are shown in Fig. 3.32. Better predictions

are obtained by PO13 and PO14. For PO12, the smallest model coefficient C5 is

imposed, larger error is observed in the center of the channel. While results of

PO13 and PO14 agree well with the reference periodic LES one. The comparison

of Reynolds stresses are drawn in Fig. 3.33. In terms of 〈v′v′〉, 〈w′w′〉 and 〈u′v′〉,
PO13 and PO14 give better predictions. While 〈u′u′〉 of PO13 and PO14 is

overestimated by about 20%, compared with the reference periodic LES result.

To conclude, the test cases with larger model coefficient C5 can achieve better

results at outlet. Thus, the model coefficient C5 of stochastic walk is suggested

to be chosen large ones. Here, this fifth vortex parameter, which is independent
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Figure 3.30: Reynolds stresses at inlet x/h = 0 of PO12 (top), PO13(mid), PO14
(bottom): symbol, LES with improved vortex method; line, reference periodic
LES
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Figure 3.31: Evolution of friction coefficient cf of PO12, PO13 and PO14

of the fourth one, C5 is set to 5. This value could be modifiable in a large range.

However, it should be noticed that the value of cf is sensitive to C5, as shown

in Fig. 3.31. Compared to the ERW method, no improvement of the results is

observed. Thus we recommend to use ERW method for practical computation.

3.1.4 Analysis of velocity-derivative skewness

To measure development of the turbulence in the channel, the velocity derivative

skewness along the streamwise direction Su is used as an indicator. Su is defined

as

Su = S(
∂u

∂x
) =

〈(∂u/∂x)3〉
[〈(∂u/∂x)2〉]3/2

(3.5)

In fully developed turbulence, Su should be a negative constant, which indi-

cates that 1) Globally, the energy transfer is from large scale motions to small

scale motions; 2) energy transfer is balanced with the dissipation.

Fig. 3.34 plots the evolution of Su for selected cases PO1, PO7, PO10 and

PO13 and evolution of friction coefficient is shown in Fig. 3.35. The velocity-
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Figure 3.32: Mean velocity profiles at outlet x/h = 2π of PO12 (top), PO13(mid),
PO14 (bottom): symbol, LES with improved vortex method; line, reference pe-
riodic LES
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Figure 3.33: Reynolds stresses at outlet x/h = 2π of PO12 (top), PO13(mid),
PO14 (bottom): symbol, LES with improved vortex method; line, reference pe-
riodic LES
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Figure 3.34: Evolution of velocity-derivative skewness: y+ = 10(top), y+ =
100(mid), y+ = 200(bottom)
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derivative skewness is measured at different y+, from 10 to 200. A general behav-

ior is observed for all three cases PO7, PO10 and PO13, Su for low y+ (y+ = 10

and y+ = 100) starts from 0 at inlet, drops downstream, then increase and sta-

bilize at some value near the outlet. Results are very scattering at the beginning

(x/h = 0 to x/h = 5) and convergence is obtained from about x/h = 5.

For PO1, Su is very scattering and oscillates around 0, suggesting that the

turbulence is poorly developed. Also, Its friction coefficient drops continuously,

indicating that the flow relaminarizes.

For cases PO7 and PO10, Su with high y+ (y+ = 200) starts from about −1.5

at inlet, oscillate downstream till it finally stabilize around some value. While for

PO13, Su with high y+ (y+ = 200) cannot reach to a convergent value.

For PO7, Su at y+ = 10 converge to −0.5 at x/h ' 5, while the convergent

value is about −0.6 for y+ = 100 and −0.7 for y+ = 200. For PO10, Su converge

to a value around −0.4 at x/h = 5 for all three y+. And for PO13, Su at y+ = 10

converge to −0.4 at about x/h = 5, which is −0.6 for y+ = 100.

Results of Su suggest that the turbulence get well developed after experi-

encing a transition region (x/h = 0 to x/h = 5), which is usually observed

in fractal-generated turbulence [Hearst and Lavoie, 2015][Valente and Vassilicos,

2014]. Measurement of Hearst and Lavoie [2015] shows that after a sufficient

decay period (x/M = 20 where M is the mesh length), Su takes a near constant

value of about −0.43.

Considering the evolution of friction coefficient, as plotted in Fig. 3.35. Except

for PO1, the friction coefficient cf drops continuously from inlet to outlet, the

other three cases PO7, PO10 and PO13, their friction coefficients drop from inlet

and gradually return back to a steady value at about x/h = 6, indicating that

the turbulence transition region is between x/h = 0 and x/h = 6 and flows

get fully developed at about x/h = 6. The evolution of friction coefficient cf

is in company with the development of velocity-derivative skewness along the

streamwise direction Su.
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Figure 3.35: Evolution of friction coefficient cf of PO1, PO7, PO10 and PO13

3.1.5 Adaptation distance

In order to check these assessments, i.e., at x/h ' 6, a fully developed turbulent

flow is established. Computation (PO7+) with longer box Lx = 3πh is performed.

Flow configurations and vortex parameters of PO7+ are the same as those of PO7,

as summarized in Tab. 3.3.

Fig. 3.36 plot the evolution of the friction coefficient cf (top) and the velocity-

derivative skewness Su (bottom) for both calculations. Either the friction coef-

ficient or the velocity-derivative skewness of PO7 correspond well with those

Test Cases
Domain size Radius σ Circulation Γ Lifetime τ Dispalcement
Lx × Ly × Lz C1 C2 C3 C4 C5

PO7 2πh× 2h× πh 1/4 1.2 10 1/16 -

PO7+ 3πh× 2h× πh 1/4 1.2 10 1/16 -

Table 3.3: Parameters of PO7+
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Figure 3.36: Evolution of the friction coefficient (top) and the velocity-derivative
skewness Su (bottom): dashed line, PO7; line, PO7+
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Figure 3.37: Mean velocity profile of PO7 (at x/h = 6), PO7+ (at x/h = 6 and
x/h = 9): symbol, LES with improved vortex method; line, reference periodic
LES

of PO7+. Friction coefficient cf of PO7+ reaches to fully developed value at

x/h ' 6, and from x/h ' 6, cf stabilize around a value of about 4.9 × 10−3.

It is slightly higher than which of PO7 at x/h = 6 (∼ 4%). Similar behav-

ior is displayed with the velocity-derivative skewness Su. At both y+ = 10 and

y+ = 100, Su shows less scattering from x/h ' 6, and oscillate around a value

of about −0.5. The evolution of friction coefficient is linked to the development

of mean velocity and the evolution of skewness correspond to the development of

turbulence or the development of fluctuating velocity. Thus, results of the friction

coefficient and the velocity-derivative skewness demonstrate that the flow become

fully developed from x/h ' 6, giving an adaptation distance of about 6h.

Results of the mean velocity and Reynolds stress profiles of PO7 (at x/h = 6)

and PO7+ (at x/h = 6) are shown in Fig. 3.37, in comparison with profiles of

PO7+ (at x/h = 9) and reference periodic LES results. Mean velocity profile

of PO7 at x/h = 6 and PO7+ at x/h = 6 agrees well with the one of PO7+

at x/h = 9. Very small discrepancy is obtained between profiles at x/h = 6

and profiles at x/h = 9. Similar features are obtained with the Reynolds stress

profiles of the two calculations. Compared with data of reference periodic LES,
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Figure 3.38: Reynolds stresses of PO7 (at x/h = 6 top), PO7+(at x/h = 6
bottom), in comparison with PO7+ (at x/h = 9): symbol, LES with improved
vortex method; line, reference periodic LES
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Figure 3.39: Isosurface of Q-criterion (Q=200000) colored by the streamwise
vorticity of PO7+

results are quite satisfied. Although some discrepancies are pronounced for the

Reynolds stress profiles.

Results of the mean velocity and Reynolds stress profiles of PO7 (at x/h = 6),

PO7+ (at x/h = 6) and PO7+ (at x/h = 9) further confirm that fully developed

turbulent flow gets established from x/h ' 6. Following the original method

of Sergent [2002], Benhamadouche et al. [2006] shows that RMS profiles have

an appropriate behavior from x/h = 12. A synthetic-eddy method developed

by Jarrin et al. [2009] requires at least 10h distance in the streamwise direction to

achieve fully developed channel flows. Later, this approach is applied by Poletto

et al. [2013] and results of friction coefficient indicate that at least 10h is needed

for redevelopment.

More characteristics of the instantaneous flow filed can be presented by the

Q-criterion, as shown in Fig. 3.39. A general phenomena is observed: as flow

passes downstream, structures of turbulence tends to be smaller. From x/h ' 6,

both large and small structures are present, similar to what usually observed in

fully developed turbulent channel flow [Jeong et al., 1997].
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Test Cases
Radius σ Circulation Γ Lifetime τ Dispalcement

C1 C2 C3 ERW C4 SW C5

CPVM 1/4 1.2 10 1/16 -

PO7 1/4 1.2 10 1/16 -

Table 3.4: Parameters of CPVM

3.2 Application to channel flow at Reτ = 590

3.2.1 Numerical configuration

3.2.1.1 Mesh configuration

The calculation is performed in a channel of 2πh × 2h × πh using a grid of

73×131×61 points. Here, h = 0.01m is the half height of the channel. The mesh

is uniform in the streamwise direction (x-direction) and in the spanwise direction

(z-direction), and follow a tanh form distribution in the wall-normal direction

(y-direction). The grid resolutions in wall units are ∆x+ = 52, ∆y+ = 0.5,

∆z+ = 31 in the streamwise, wall-normal and spanwise direction, respectively.

3.2.1.2 Initial and Boundary conditions

The calculation is initialized with a RANS results (Reτ = 590). The improved

vortex method is used at inlet to generate an unsteady boundary condition. The

mixed non-reflection pressure outlet condition is employed on the outlet boundary.

A periodic boundary condition is applied to the spanswise boundaries. The end-

walls on the top and bottom sides of the channel are set as non-slip adiabatic

walls.

The vortex method’s parameter coefficients for CPVM are shown in Tab. 3.4,

which is the same set-up as the calculation PO7. The number of vortices injected

at inlet is also 800.
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Figure 3.40: Evolution of the friction coefficient cf

3.2.2 Results

3.2.2.1 Friction coefficient evolution

The evolution of the friction coefficient is shown in Fig. 3.40. Results are similar

to PO7. The friction coefficient drops from inlet, and reaches to the minimum

value 0.0033 at x/h = 1.8. Then it increase, and from x/h = 6, cf oscillates

around a value of 0.0053. It is slightly underestimated in comparison with its

value at inlet (cf = 0.0056).

3.2.2.2 Velocity-derivative skewness

Statistical results of velocity derivative skewness Su along the streamwise direc-

tion is given in Fig. 3.41. At y+ = 18.4, Su starts around 0 near the inlet, and

drops downstream. It reaches to a minimum value at about x/h = 1.8. Going

further downstream, it increases and oscillates. From about x/h = 4.5h, the

oscillations stabilize around Su = −0.5, suggesting that the exchange of energy

between large- and small-scale motions is balanced. Considering the evolution of
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Figure 3.41: Evolutions of the velocity-derivative skewness along the streamwise
direction Su at y+ = 5.5, y+ = 18.4 and y+ = 104.3

the friction coefficient, it can conclude that real turbulence is established from

about x/h = 6h. Similar observations are found at both the position y+ = 5.5 and

y+ = 104.3. The velocity-derivative skewness of the fully developed turbulence

at y+ = 5.5 oscillates at about −0.32. This mean value is −0.67 for y+ = 104.3.

Further characteristics of the instantaneous flow filed is presented by the Q-

criterion ([Hunt et al., 1988]), as shown in Fig. 3.42. As flow passes downstream,

structures of turbulence tends to be smaller. From x/h ' 5, both large and

small structures are present, similar to what usually observed in fully developed

turbulent channel flow [Jeong et al., 1997].

3.2.2.3 Mean velocity and Reynolds stresses

The generated 2D fluctuating velocity field at inlet is illustrated in Fig. 3.43. The

vortex structure can be observed clearly, with big structure in the center of the

channel while fine structure near the wall boundary.

The Reynolds stresses at inlet x/h = 0 is shown in Fig. 3.44. Curve of 〈w′w′〉
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Figure 3.42: Isosurface of Q-criterion (Q=200000) colored by the streamwise
vorticity

Figure 3.43: 2D velocity field at inlet x/h = 0, case of channel flow with Reτ =
590
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Figure 3.44: Reynolds stress at inlet x/h = 0 of CPVM: symbol, LES with
improved vortex method; line, reference periodic LES

superpose on the one of 〈v′v′〉, suggesting that the generated fluctuations are

isotropic (2D) at inlet plane.

The profiles of the mean velocity and Reynolds stresses at x/h = 6 are shown

in Fig. 3.45 and Fig. 3.46. Results of periodic LES (Reτ = 590) are used as

reference data.

The mean velocity profile is very well predicted by the CPVM. Results of

CPVM agree well with the reference periodic LES. Both near-wall region and

log-law region are satisfactorily captured. Concerning the Reynolds stresses, the

results are acceptable. The inner peak of 〈u′u′〉 is about 9.3, locating at y+ = 13.8.

While the reference periodic LES inner peak of 〈u′u′〉 is about 8.8 at y+ = 13.3.

Profiles of 〈w′w′〉, 〈v′v′〉 and 〈u′v′〉 agree well with the reference periodic LES,

suggesting that the channel flow get fully developed at about x/h = 6.
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Figure 3.45: Mean velocity profiles at x/h = 6 of CPVM: symbol, LES with
improved vortex method; line, reference periodic LES

Figure 3.46: Reynolds stresses at x/h = 6 of CPVM: symbol, LES with improved
vortex method; line, reference periodic LES
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Chapter 4

Flat-plate boundary layer

4.1 Introduction

A flat-plate boundary layer is used to validate the improved vortex method. Gen-

erally, turbulent boundary layers are often used as inlet to feed the main calcu-

lation downstream. The main issue is how to force the turbulence transition. In

practice, in order to force the transition from laminar flow, a trip or step is usually

used in DNS or LES, thus an unsteady turbulent boundary layer can be obtained.

In this chapter, first, a LES of flat-plate turbulent boundary layer [Boudet et al.,

2015] inducing the transition process is reproduced. Then, the results are used

as reference data for the application of improved vortex method. An unsteady

fluctuating velocity field is generated by the improved vortex method on the flat-

plate and superimposes on an extracted mean velocity profile. Then the flow field

develops as real turbulence downstream.

4.2 Reference flat-plate boundary layer LES

The process of tripping the transition in LES is not just a numerical attempt,

it is based on a physical mechanism. In the experimental aerodynamic context,

transition to turbulence is often triggered by using a roughness element on the

wall. With enough distance downstream, the boundary layer can finally become

turbulent. Following the work of Boudet et al. [2015], instead of using a roughness
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Chapter 4. Flat-plate boundary layer

Test Cases Domain size Lx × Ly × Lz Trip SGS model

CLPP 0.31m× 11.7mm× 5.86mm source term WALE

Table 4.1: Main set-up of reference LES - CLPP

element to force the transition as usual way, a volume drag force term is used

here to yield the transition to turbulence. A simulation based on this approach

is carried out in this section.

4.2.1 Numerical set-up

Numerical implementation of trip and computation set-up comes from [Boudet

et al., 2015]. LES is carried out with the Turb′Flow solver. The SGS model for

LES used in this work is the WALE model.

Main set-up of the reference LES tripping case CLPP is summarized in Tab. 4.1.

The computational domain is Lx = 0.3108m long in the streamwise direction,

Ly = 11.7mm high at the outlet and Lz = 5.88mm wide in the spanwise direc-

tion. The height Ly is about 2δ(x = Lx). Here, δ is the boundary-layer thickness

defined as the value of y at which 〈U(x, y)〉 equals 99% of the free-stream velocity

U∞(x) and the value of δ is estimated from the 1/7th power-law velocity-profile

model [Schlichting and Gersten, 2003] and δ(x = Lx) = 5.88mm [Boudet et al.,

2015]. A −0.5◦ angle is imposed on the upper boundary to force an outlet bound-

ary condition. The mesh is composed by 841× 39× 43 points in the streamwise,

wall-normal and spanwise directions, respectively. This yields a wall resolution

of about ∆x+ < 80, ∆y+ < 2, ∆z+ < 30. The computational domain and mesh

configuration are shown in Fig. 4.1. The trip is achieved by adding a source term

within a subdomain on the wall in the present computation at x = 0.0659m which

will be explained later.

4.2.1.1 Flow configuration

An airflow with a free-stream velocity U∞ = 70m/s is addressed over the flat-

plate in atmospheric conditions (ρ∞ = 1.177kg/m3, T∞ = 300K, µ∞ = 1.81 ×

104



4.2. Reference flat-plate boundary layer LES

Figure 4.1: Computation domain and mesh configuration of reference LES -
CLPP
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Figure 4.2: Domain for tripping of reference LES - CLPP

10−5kg/(m · s)). The Reynolds number at the outlet is about Rex = 1.3× 106.

Fig. 4.2 shows the domain for tripping. The trip is set at x = 0.0659m [Boudet

et al., 2015] on the wall. The height of the trip, according to the work reviewed

in [Dryden, 2012], should be 0.78δ∗trip, where δ∗trip is the laminar boundary layer

displacement thickness without roughness at the position of the roughness ele-

ment. Here, the roughness element is represented by a source term. Total size of

the trip domain is lx = 1.85mm long, ly = 0.16mm high, and lz = 5.86mm wide

above the flat-plate. The corresponding source term induced in this domain is

ftrip =
1

2
ρlylzCDu

2
x (4.1)

Where CD is a drag coefficient of the order 1.

This approach to implement the trip can have a few advantages: it is more

adjustable and easy to be set up. The smooth-wall grid need not to be modified.

4.2.2 Results

The characteristic length and velocity chosen for normalization are the boundary-

layer thickness at outlet δ(x = Lx), which is estimated through the work of [Schlicht-

ing and Gersten, 2003] and the friction velocity uτ .
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4.2. Reference flat-plate boundary layer LES

Figure 4.3: Evolution of boundary layer thickness δ of reference LES - CLPP

4.2.2.1 Boundary layer evolution

The evolution of the boundary layer thickness δ, displacement thickness δ∗ and

momentum thickness θ are illustrated in Fig. 4.3, Fig. 4.4 and Fig. 4.5, respec-

tively. Displacement thickness and momentum thickness are defined as:

δ∗(x) ≡
∫ ∞

0

(1− 〈U〉
U∞

)dy (4.2)

θ(x) ≡
∫ ∞

0

〈U〉
U∞

(1− 〈U〉
U∞

)dy (4.3)

Concerning the momentum thickness θ, LES results agree with the analytic solu-

tion of Blasius in the laminar stage. But the LES underestimates the momentum

thickness by about 10% in the turbulent region, in comparison with the law of

Michel (which uses the power form derived from the hypothesis of a 1/7th power

law velocity profile [Schlichting and Gersten, 2003]). Similar behaviors are found

with the results of boundary layer thickness δ and displacement thickness δ∗.
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Figure 4.4: Evolution of displacement thickness δ∗ of reference LES - CLPP

Figure 4.5: Evolution of momentum thickness θ of reference LES - CLPP
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4.2. Reference flat-plate boundary layer LES

Figure 4.6: Evolution of friction coefficient cf of reference LES - CLPP

Fig. 4.6 plots the evolution of the friction coefficient cf defined as

cf = 2(uτ/U∞)2 (4.4)

Concerning the friction coefficient, the LES achieves good agreement with the

law of Blasius in the laminar region and gives an underestimate of about 10% in

the turbulent region.

4.2.2.2 Mean velocity profile

The mean velocity profile in the turbulent region at x = 0.232m (Reθ = 1968

according to law of Michel) is shown in Fig. 4.7. In comparison with the DNS

data, the u+ is well predicted in the wall region, while it is more pronounced

in the free stream. The overestimation is about 10% which may be due to the

underestimation of the friction velocity.
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Figure 4.7: Mean velocity profiles at x = 0.232m (Reθ = 1968): symbol, reference
LES - CLPP; line, DNS data

Figure 4.8: Reynolds Stresses at x = 0.232m (Reθ = 1968): symbol, reference
LES - CLPP; line, DNS data
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4.3. Improved Vortex method on boundary layer

4.2.2.3 Reynolds stresses

The Reynolds stress profiles at Reθ = 1968 are shown in Fig. 4.8. The DNS

inner peak of 〈u′u′〉 is located at y+ = 20, with a peak value of about 7.6. In

comparison, LES shows a higher peak value of about 11.2, with a location at

y+ = 30. The profiles of 〈w′w′〉 and 〈v′v′〉 are acceptable, and 〈u′v′〉 agrees well

with the DNS data.

4.2.2.4 Velocity-derivative skewness

The velocity-derivative skewness is an indicator of fully developed turbulence.

The evolution of velocity-derivative sknewness along the streamwise direction is

plotted in Fig. 4.9. Su is calculated at 3 different positions away from the flat

plate: y+ = 3.4, y+ = 26.7 and y+ = 140.5. A common feature is observed

for all the three positions. In the laminar flow region (0 ≤ x ≤ 0.066m). Su

oscillates around zero. Then the turbulent transition is forced by the trip around

x = 0.066m. In this zone (0.066m ≤ x ≤ 0.07m), the oscillation of Su is more

pronounced. The transition to fully developed turbulence is accomplished at

about x = 0.11m. From this position (x ≥ 0.11m), Su converges to some value.

For y+ = 3.4, convergent value of Su is about −0.5. −0.6 is for y+ = 26.7 and

−0.4 correspond to y+ = 140.5. The boundary layer get fully developed at about

x = 0.11m.

4.3 Improved Vortex method on boundary layer

In this section, the application of the improved vortex method on the boundary

layer will be presented. The results of the previous LES are used as reference

data. A mean velocity profile is extracted from the reference LES (CLPP) at

a position located in the fully turbulent region x = 0.1243m (Reθ = 988 ac-

cording to law of Michel). The improved vortex method is used to generate a

2D fluctuating velocity field with the statistically averaged turbulent kinetic en-

ergy and dissipation profiles (at x = 0.1243m) provided by the previous tripping

LES simulation. This fluctuating velocity field is then imposed on the extracted

mean velocity profile. Turbulence redevelops as the flow passes downstream. It
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Chapter 4. Flat-plate boundary layer

Figure 4.9: Evolution of velocity-derivative skewness along the streamwise direc-
tion Su of reference LES - CLPP at three wall-normal positions
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4.3. Improved Vortex method on boundary layer

is expected to recover real turbulence as soon as possible.

Since all injected vortices move on the inlet plane, and may inverse every life-

time, thus the generated velocity fluctuations are unsteady. The unsteady fluctu-

ating velocity field excites the evolution of turbulence downstream. To examine

the development of turbulence and to investigate the effect of the improved vortex

method, statistics are extracted at different streamwise positions. The evolution

of turbulence are measured by the friction coefficient, boundary layer thickness

and further by the velocity-derivative skewness along the streamwise direction.

There are 2 main points which need to be specified when applying the im-

proved vortex method on the boundary layer. First, mean velocity, mean tur-

bulent kinetic energy and mean dissipation rate profiles need to be extracted to

initialize the vortex method’s parameters. Second, the coefficients in Tab. 3.2

need to be optimized.

4.3.1 Numerical methods

LES is carried out with the Turb’Flow solver. The SGS model for LES used in

this work is the WALE model. Numerical set-up is the same as the LES reference

case 4.2.

4.3.1.1 Numerical configuration

Extracted mean profiles

Mean Profiles need to be extracted are the mean velocity, turbulent kinetic energy

and dissipation rate. The position to extract those quantities is located at x =

0.1243m (Reθ = 988), as shown in Fig. 4.10. According to the result of reference

LES, until x = 0.11, the flow become fully developed. The extracting position is

just located in the developed turbulent region. Fig. 4.11, Fig. 4.12 and Fig. 4.13

plot the extracted profiles (Reθ = 988), results agree well with the DNS data

(Reθ = 1968).
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Chapter 4. Flat-plate boundary layer

Figure 4.10: Position to extract mean profiles: x = 0.1243m (Reθ = 988)

Figure 4.11: Mean velocity profile at x = 0.1243m
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4.3. Improved Vortex method on boundary layer

Figure 4.12: Turbulent kinetic energy profile (k+ = k/u2
τ ) at x = 0.1243m

Figure 4.13: Dissipation rate profile (ε+ = ε
U3
∞/δ(x=Lx)

) at x = 0.1243m
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Chapter 4. Flat-plate boundary layer

Figure 4.14: Computational domain for LES with improved vortex method -
CLVM

Mesh configuration

The simulation domain for CLVM is also extracted from the reference LES (from

x = 0.1243 to the outlet). The computational domain is 0.1865m long in the

streamwise direction, Ly = 11.7mm high at the outlet and Lz = 5.88mm wide

in the spanwise direction. A −0.5◦ angle is imposed on the upper boundary,

as shown in Fig. 4.14. The outline region is the computational domain for the

reference LES case, while the partial domain colored by streamwise velocity is for

the calculation of the improved vortex method. To facilitate the comparison of

results, coordinate system remains the same as reference LES - CLPP.

The mesh is composed of 505× 39× 43 points in the streamwise, wall-normal

and spanwise direction, respectively. This yields a wall resolution of about ∆x+ <

80, ∆y+ < 2, ∆z+ < 30.
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4.3. Improved Vortex method on boundary layer

Initial and Boundary conditions

The calculation is initialized with an instantaneous flow field obtained by the

reference LES.

The inlet boundary condition is generated by the improved vortex method, the

vortex method’s parameter coefficients are shown in Tab. 4.2. A 2D fluctuating

velocity field is generated by 400 vortices on the inlet plane (x = 0.1243m).

Then the velocity fluctuations are imposed on the extracted mean velocity profile

(x = 0.1243m) and involve in the LES computation.

The mixed pressure outlet condition is employed on the outlet boundary.

Periodic condition is used in spanswise direction and the flat-plate wall is set as

non-slip adiabatic wall.

It should be noticed that the parameter coefficients for the calculation CLVM

is different from those of the calculation PO7 in Chapter 3. As the flow studied

is different, local Reynolds number changes, the parameter coefficients need to be

re-optimized. Among all vortex method’s parameters, the two parameters which

correspond to the vortex radius and vortex circulation are the most basic ones

and need to be specified properly. Otherwise, inappropriate fluctuations may be

generated and cause numerical instability problems.

The vortex radius coefficient C1 is set as 1/80, as shown in Fig. 4.15, so that

the radius size is comparable to the energy-containing scale L = k1.5

ε

σ = C1Re
3/4
CL(ν3/ε)1/4 ∼ L (4.5)

Where ReCL = U∞δ(x=Lx)
ν

is the characteristic Reynolds number for boundary

layer flows. Here, the characteristic length is chosen the boundary layer thickness

δ at outlet (U∞ = 70m/s and δ(x = Lx) = 5.88mm).

The vortex sizes of CLVM are much smaller than those of PO7. To make sure

that the computation will not blow up, the circulation coefficient C2 is set as 0.5

to weaken the exceed fluctuations generated with the smaller size vortex . C3 and

C4 which correspond to the lifetime and the walking step length (ERW) are the

same as for the case PO7 in Chapter 3.
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Test Cases
Radius Circulation Lifetime Displacement
C1 C2 C3 ERW C4 SW C5

CLVM 1/80 0.5 10 1/16 -

PO7 1/4 1.2 10 1/16 -

Table 4.2: Parameter comparison between CLVM and PO7

Figure 4.15: Vortex radius σ along the wall-normal direction
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4.3. Improved Vortex method on boundary layer

Figure 4.16: Boundary layer thickness δ of LES with improved vortex method -
CLVM

4.3.2 Results

4.3.2.1 Boundary layer evolution

The evolution of the boundary layer thickness δ, displacement thickness δ∗ and

momentum thickness θ are illustrated in Fig. 4.16, Fig. 4.17 and Fig. 4.18, respec-

tively. Compared with the reference LES, CLVM underestimates the momentum

thickness by about 10%. Similar behaviors are found with the results of boundary

layer thickness δ and displacement thickness δ∗.

Fig. 4.19 plots the evolution of friction coefficient cf defined as

cf = 2(uτ/U∞)2 (4.6)

The unsteady velocity fluctuations generated by improved vortex method have

a notable influence on the evolution of the friction coefficient. The friction coef-

ficient decreases to the lowest value of 2.0× 10−3 at about x = 0.14m, and then

it increases. From the location x = 0.175m, it recovers to fully developed value
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Figure 4.17: Displacement thickness δ∗ of LES with improved vortex method -
CLVM

Figure 4.18: Momentum thickness θ of LES with improved vortex method - CLVM
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4.3. Improved Vortex method on boundary layer

Figure 4.19: Friction coefficient cf of LES with improved vortex method - CLVM

which agrees well with results of reference LES. Compared with law of Michel,

CLVM underestimates the friction coefficient by about 12% in the fully developed

region between x = 0.175m and x = 0.31m.

4.3.2.2 Velocity-derivative skewness

Velocity-derivative skewness along the streamwise direction Su is given in Fig. 4.20.

At y+ = 3.4, Su initially oscillates around 0 near the inlet. Following the develop-

ment downstream, Su decreases. Then more pronounced oscillations are observed

around x = 0.14m, indicating that the synthetic turbulence is in transition to real

turbulence. Going further downstream, from about x = 0.16m, the oscillations

stabilize around Su = −0.5, suggesting that the exchange of energy between large-

and small-scale motions is balanced with the dissipation. Fully developed bound-

ary layer is established from this streamwise position (x = 0.16m). Similar be-

haviours are found at both the position y+ = 26.7 and y+ = 140.5. The velocity-

derivative skewness Su of fully developed turbulence at y+ = 26.7 oscillates

around -0.7 from the location x = 0.175m. This mean value is -0.3 for y+ = 140.5
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from x = 0.18m. The results also suggest that redevelopment to real turbulence

is slower for flow further away from the flat-plate. The adaptation distance (from

inlet x = 0.1243m to x = 0.175m,which is about 0.05m) is about 21 times the

boundary layer thickness at inlet x = 0.1243m (δ(x = 0.1243m) = 2.35mm), the

corresponding Reynolds number is Reθ = 1593.

4.3.2.3 Mean velocity and Reynolds stresses

The profiles of the mean velocity and Reynolds stresses are shown at three stream-

wise positions. They are drawn in Fig. 4.21 and Fig. 4.23 in comparison with the

reference LES results.

At inlet, the mean velocity is directly extracted from the reference at x =

0.1243m, as shown in Fig. 4.21 (top). Velocity fluctuations within the inlet plane

are shown in Fig. 4.23 (top). They are generated by improved vortex method,

with 2D components in the spanwise direction (w′rms) and the wall-normal direc-

tion (v′rms). The generated 2D fluctuating velocity field at inlet is also illustrated

in Fig. 4.22. Large vortex structures are viewed in the free stream while small

structures show near the wall.

In the region from inlet (x = 0.1243m) to x = 0.175m, turbulence evolves and

develops. At about x = 0.175m, the flow field gets fully developed. The mean

velocity profile is well predicted in the near-wall region, and is overestimated by

about 15% in the free stream.

Concerning the Reynolds stresses, the results are quite acceptable. The inner

peak of 〈u′u′〉 is about 10.8, locating at y+ = 17.1, which agree well with results

of the reference LES. Compared with the reference LES results, 〈w′w′〉 is overesti-

mated in the free stream by about 30% to 40%. The curves of 〈v′v′〉 and 〈u′v′〉 are

well predicted by CLVM. Results of mean velocity and Reynolds profiles further

confirm that the boundary layer flow get fully developed from about x = 0.175m.

Characteristics of the instantaneous flow field is illustrated by the Q-criterion,

as shown in Fig. 4.24. As flow passes downstream, structures of turbulence tends

to be smaller. From about x = 0.175m, both large and small structures are

present, similar to what usually observed in fully developed turbulent boundary

layer flows [Hall, 1982].
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4.3. Improved Vortex method on boundary layer

Figure 4.20: velocity-derivative skewness Su along the streamwise direction of
LES with improved vortex method - CLVM at three wall-normal positions
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Chapter 4. Flat-plate boundary layer

Figure 4.21: Mean velocity profile at x = 0.1243(top), x = 0.1543m(mid) and
x = 0.175m(bottom): symbol, LES with improved vortex method - CLVM; line,
reference LES - CLPP
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4.3. Improved Vortex method on boundary layer

Figure 4.22: 2D velocity field at inlet x = 0 of LES with improved vortex method
- CLVM

4.3.2.4 Conclusion

A LES of flat-plate turbulent boundary layer toward Reθ = 1968, including tran-

sition forced by a trip, has been conducted as a reference computation. Profiles

of mean velocity, turbulent kinetic energy and dissipation rate are extracted at

Reθ = 1593 from the reference LES to apply the improved vortex method. The

evolution of the friction coefficient and velocity-derivative skewness indicate a

very effective transition process (a very short adaptation distance, 21δ) from syn-

thetic turbulence to real turbulence. Especially, the velocity-derivative skewness

suggests that the exchange of energy between large- and small-scale motions are

quickly rebalanced in the fully developed zone. Good agreement with the ref-

erence data further confirms that the improved vortex method is effective for

boundary layer simulations.
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Figure 4.23: Reynolds stress at x = 0.1243(top), x = 0.1543m(mid) and
x = 0.175m(bottom): symbol, LES with improved vortex method - CLVM; line,
reference LES - CLPP
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Figure 4.24: Isosurface of Q criterion (Q=200000) colored by the streamwise
vorticity of LES with improved vortex method - CLVM
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Chapter 5

Conclusions and Perspectives

The present thesis study and improves the vortex method used in LES for gen-

erating inflow conditions which is one of the most important issues for industrial

application of LES. Tremendous numerical experiments, in channel and flat-plate

flows, have been performed. In both cases, with the aim to provide reference

data for present study, classic LES are conducted first and well compared to

DNS. Using the same flow configurations, results of spatially developing LES

with improved vortex method are then checked against these reference data. In

order to better qualify the results of LES, we also introduce a new criterion which

is based on velocity derivative skewness.

Parameter optimization and its validation on an academic channel flow Reτ =

395 has demonstrated that the improved vortex method can significantly decrease

the required adaption distance. Within a development length of about 6h (h being

the half channel height) downstream of the inlet, the friction coefficient, mean

velocity and the Reynolds stress profiles achieve excellent agreement with those of

reference computation. We recall that with the original vortex method proposed

by Sergent [2002], Benhamadouche et al. [2006] shows that RMS profiles have an

appropriate behavior from x/h = 12. In comparison, the synthetic-eddy method

developed by Jarrin et al. [2009] and used by Poletto et al. [2013], requires at

least 10h adaptation distance to correctly achieve fully developed channel flows.

The development of turbulence is further confirmed by checking the behaviour

of the velocity-derivative skewness. Similar to what usually observed in experi-

ments of grid turbulence or DNS, downstream of inlet, calculations with the inflow

129



Chapter 5. Conclusions and Perspectives

conditions generated by the improved vortex method show that the development

of turbulence is closely linked with the velocity-derivative skewness. Within the

adaptation distance, the value of derivative skewness originates from 0, then

decreases and increases to certain negative level. Finally, after the adaptation

distance, it stabilizes around a negative value about -0.5 in the fully developed

turbulence region. It indicates that the energy transfer between different scales

is balanced with the turbulent dissipation. Meanwhile, it is observed that the

friction coefficient behaves in a similar way and recovers to the expected value.

Thus we propose to use the velocity-derivative skewness as a new criterion to

qualify LES results.

In summary, the improved vortex method considers five parameters: 1) vortex

radius, 2) vortex circulation, 3) vortex lifetime, and 4) enhanced random walk or

5) stochastic walk.

Among those parameters:

1. Vortex radius is based on local energy-containing scale which is related to

local dissipation rate. Too large vortex radius sizes lead to relaminarization

of the flow, while too small vortex radius sizes can hardly be resolved.

A practical method which uses the dimensionless local dissipation rate is

proposed in this thesis to optimize the coefficient of radius.

2. Vortex circulation is modelled according to the turbulent kinetic energy. Its

magnitude can be tuned with an amplification factor. So generated turbu-

lent kinetic energy should present a level comparable to what expected.

3. Vortex lifetime is related to the period for a vortex to inverse its direction.

The vortex lifetime should be comparable with or larger than the turbulent

time scale.

4. Enhanced random walk refers to the movement type of a vortex. Its step

length is comparable with, but smaller than, the vortex radius. Present

study shows that 1/16 of the vortex radius is adequate.

5. Stochastic walk. This is an alternative of the enhanced random walk. The

displacement velocity is generated by Langevin equations. However, we
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don’t recommend this method because the enhanced random walk is simpler

and gives similar good results.

Success of the improved vortex method used in LES of both channel flow

and flat plate boundary layer flow, demonstrate that this method is able to be

applied to both internal and external flows. With the improved vortex method

imposed at inlet, both test cases show very good results in comparison with

the reference data. The establishment of turbulence is faster compared to other

existed methods. The improved vortex method has a great potential to be applied

in more complex geometries.
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A. Velocity-derivative skewness

and inter-scale energy transfer

Following Batchelor [1953]Lumley et al. [2007]Tavoularis et al. [1978] and Bos

et al. [2012], relation between the nonlinear transfer and the third-order longitu-

dinal velocity structure function DLLL will be given in this appendix. Therefore,

the relation between velocity-derivative skewness and transfer of energy between

different scales can be draw clearly.

Derivation of the Lin-equation

Starting from the velocity fluctuation N-S equations for incompressible flow,

∂ui(x)

∂t
+ uj(x)

∂ui(x)

∂xj
= −1

ρ

∂p(x)

∂xi
+ ν

∂2ui(x)

∂xj∂xj
(1)

The three-dimensional Fourrier transfer is

ui(κ) =
1

(2π)3

∫
ui(x)e−iκ·xdx (2)

In Fourrier space, the N-S equations can be written

∂ui(κ)

∂t
+ νκ2ui(κ) = − i

2
Pijm(κ)

∫ ∫
uj(p)um(q)δ(κ− p− q)dpdq (3)

Where

Pijm(κ) = κjPim(κ) + κmPij(κ) (4)

Pij(κ) = δij −
κiκj
κ2

(5)
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Appendix . A. Velocity-derivative skewness and inter-scale energy
transfer

In isotropic turbulence, the energy spectrum is

E(κ) = 2πκ2〈ui(κ)ui(−κ)〉 (6)

Then, the evolution for E(κ) can be deduced from N-S equations in Fourrier space

[
∂

∂t
+ 2νκ2]E(κ) = iπκ2Pijm(κ)[Tijm(κ)− T ∗ijm(κ)] = T (κ) (7)

where

Tijm(κ) =

∫ ∫
〈ui(κ)uj(p)um(q)〉δ(κ+ p+ q))dpdq (8)

T ∗ijm(κ) =

∫ ∫
〈ui(−κ)uj(−p)um(−q)〉δ(κ+ p+ q))dpdq (9)

For isotropic flow, T ∗ijm(κ) = −Tijm(κ).

Relation between energy spectrum and structure function

The second order longitudinal structure function is

DLL(r) = 〈δu2
L〉 (10)

where

δuL = uL − u′L =
ri
r
ui(x)− ri

r
ui(x+ r) (11)

The relation between DLL and energy spectrum E(κ) is

DLL =

∫
E(κ)f(κr)dκ (12)

Where

f(x) = 4[
1

3
− sinx− xcosx

x3
] (13)

Relation between transfer spectrum and structure function

The third order longitudinal structure function in homogeneous turbulence is

DLLL(r) = 〈δu3
L〉 = 3(〈uLu′2L〉 − 〈u′Lu2

L〉) (14)
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It is related to the transfer spectrum by

DLLL(r) = r

∫ ∞
0

T (κ)g(κr)dκ (15)

With

g(x) = 12
3(sinx− xcosx)− x2sinx

x5
(16)

Or the transfer spectrum is computed by DLLL as

T (κ) =
κ

6π

∫
sin(κr)

r

∂

∂r
[
1

r

∂

∂r
(r4DLLL(r))]dr (17)

Small scale behavior of structure function

When x→ 0, function (13) and function (16) tends to

f(x) =
2

15
x2 + O(x3) (18)

g(x) =
4

5
− 2

35
x2 + O(x4) (19)

Thus for very small r,

DLL(r) =
2

15
r2

∫
κ2E(κ)dκ =

εr2

15ν
(20)

DLLL(r) =
4

5
r

∫
T (κ)dκ− 2

35
r3

∫
κ2T (κ)dκ = − 2

35
r3

∫
κ2T (κ)dκ (21)

The velocity-derivative skewness is defined as

S(r) =
DLLL

D
3/2
LL

(22)

When at very small scales

δuL ' r
∂u

∂x
(23)

Thus, another form for the velocity-derivative skewness is

lim
r→0

S(r) =
〈(∂u/∂x)3〉
〈(∂u/∂x)2〉3/2

(24)
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Appendix . A. Velocity-derivative skewness and inter-scale energy
transfer

Using Eq. (20),Eq. (21) and Eq. (22), we have

lim
r→0

S(r) =
〈(∂u/∂x)3〉
〈(∂u/∂x)2〉3/2

= − 153/2

35
√

2

∫
κ2T (κ)dκ

[
∫
κ2E(κ)dκ]3

(25)

Considering the situation when energy transfer and dissipation is balanced, we

have ∫
κ2T (κ)dκ '

∫
2νκ4E(κ)dκ (26)

So that

lim
r→0

S(r) ' −153/2
√

2

35

∫
κ4E(κ)dκ

[
∫
κ2E(κ)dκ]3

(27)

Since E(κ) depends on Reynolds number, thus, the velocity-derivative skewness

becomes a function of the Reynolds number. For a turbulence flow at a certain

Reynolds number, when the process of energy cascade is established or when

turbulence is fully developed. The transfer of energy from large scale to small

scale is balanced to the dissipation rate at the smallest scale (Kolmogorov scale

η), the velocity-derivative skewness should be constant. Thus it may be seen as

a criterion for determining if turbulence is fully developed.
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Emmanuel Lévêque, Federico Toschi, Liang Shao, and J-P Bertoglio. Shear-

improved smagorinsky model for large-eddy simulation of wall-bounded turbu-

lent flows. Journal of Fluid Mechanics, 570:491–502, 2007. 20

141



References

Douglas K Lilly. A proposed modification of the germano subgrid-scale closure

method. Physics of Fluids A: Fluid Dynamics (1989-1993), 4(3):633–635, 1992.

20

Kunlun Liu and Richard H Pletcher. Inflow conditions for the large eddy simula-

tion of turbulent boundary layers: a dynamic recycling procedure. Journal of

Computational Physics, 219(1):1–6, 2006. 5

John Leask Lumley et al. Statistical fluid mechanics: mechanics of turbulence,

volume 1. Courier Corporation, 2007. 1, 48, 133

Thomas S Lund, Xiaohua Wu, and Kyle D Squires. Generation of turbulent

inflow data for spatially-developing boundary layer simulations. Journal of

Computational Physics, 140(2):233–258, 1998. 5, 24

Fabrice Mathey. Aerodynamic noise simulation of the flow past an airfoil trailing-

edge using a hybrid zonal rans-les. Computers & Fluids, 37(7):836–843, 2008.

4, 25, 26

Fabrice Mathey, Davor Cokljat, Jean Pierre Bertoglio, and Emmanuel Sergent.

Assessment of the vortex method for large eddy simulation inlet conditions.

Progress in Computational Fluid Dynamics, An International Journal, 6(1-3):

58–67, 2006. 5, 6, 25, 34, 35

DJ Maull. An introduction to the discrete vortex method. NASA STI/Recon

Technical Report A, 81:27614, 1980. 6, 25

Charles Meneveau, Thomas S Lund, and William H Cabot. A lagrangian dynamic

subgrid-scale model of turbulence. Journal of Fluid Mechanics, 319:353–385,

1996. 20

Parviz Moin and John Kim. Numerical investigation of turbulent channel flow.

Journal of fluid mechanics, 118:341–377, 1982. 17

Parviz Moin and Krishnan Mahesh. Direct numerical simulation: a tool in tur-

bulence research. Annual review of fluid mechanics, 30(1):539–578, 1998. 2,

53

142



References

Andrea Montorfano, Federico Piscaglia, and G Ferrari. Inlet boundary conditions

for incompressible les: A comparative study. Mathematical and Computer Mod-

elling, 57(7):1640–1647, 2013. 7

Brandon Morgan, Johan Larsson, Soshi Kawai, and Sanjiva K Lele. Improving

low-frequency characteristics of recycling/rescaling inflow turbulence genera-

tion. AIAA journal, 49(3):582–597, 2011. 5

Robert D Moser, John Kim, and Nagi N Mansour. Direct numerical simulation

of turbulent channel flow up to re= 590. Phys. Fluids, 11(4):943–945, 1999. 52

Franck Nicoud and Frédéric Ducros. Subgrid-scale stress modelling based on the

square of the velocity gradient tensor. Flow, turbulence and Combustion, 62

(3):183–200, 1999. 20

Shoiti Nisizima and Akira Yoshizawa. Turbulent channel and couette flows using

an anisotropic k-epsilon model. AIAA journal, 25(3):414–420, 1987. 14

Steven A Orszag and GS Patterson Jr. Numerical simulation of three-dimensional

homogeneous isotropic turbulence. Physical Review Letters, 28(2):76, 1972. 9,

10

Mathieu Pamies, Pierre-Elie Weiss, Eric Garnier, Sebastien Deck, and Pierre

Sagaut. Generation of synthetic turbulent inflow data for large eddy simulation

of spatially evolving wall-bounded flows. Physics of Fluids (1994-present), 21

(4):045103, 2009. 5, 6

Ugo Piomelli and Jeffrey Robert Chasnov. Large-eddy simulations: theory and

applications. In Turbulence and transition modelling, pages 269–336. Springer,

1996. 3

Ugo Piomelli, JOELH FERZIGER, and Parviz Moin. Model consistency in large

eddy simulation of turbulent channel flows. Physics of Fluids, 31(7):1884, 1988.

17

R Poletto, T Craft, and A Revell. A new divergence free synthetic eddy method

for the reproduction of inlet flow conditions for les. Flow, turbulence and

combustion, 91(3):519–539, 2013. 96, 129

143



References

Stephen B Pope. Turbulent flows, 2001. 13, 41, 60

Osborne Reynolds. An experimental investigation of the circumstances which

determine whether the motion of water shall be direct or sinuous, and of the

law of resistance in parallel channels. Proceedings of the royal society of London,

35(224-226):84–99, 1883. 1

Robert S Rogallo and Parviz Moin. Numerical simulation of turbulent flows.

Annual Review of Fluid Mechanics, 16(1):99–137, 1984. 2

Robert Sugden Rogallo. Numerical experiments in homogeneous turbulence.

Technical Report TM81315, 1981. 10

L Rosenhead. The formation of vortices from a surface of discontinuity. Pro-

ceedings of the Royal Society of London. Series A, Containing Papers of a

Mathematical and Physical Character, 134(823):170–192, 1931. 6, 25

Pierre Sagaut. Large eddy simulation for incompressible flows: an introduction.

Springer Science & Business Media, 2006. 3

Pierre Sagaut, Eric Garnier, Eric Tromeur, Lionel Larchevêque, and Emmanuel
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