, Emotional metrics as measurement plans refinement indicators

S. Abrahão, F. Bourdeleau, B. Cheng, S. Kokaly, R. Paige et al., , 2017.

, User experience for model-driven engineering: challenges and future directions, Model driven engineering languages and systems, p.92

A. Agarwal and A. Meyer, Beyond usability: evaluating emotional response as an integral part of the user experience, Proceedings of the 27th international conference, 2009.

W. Albert and T. Tullis, Measuring the user experience: collecting, analyzing, and presenting usability metrics, p.98, 2013.

E. Alpaydin, Introduction to machine learning, 2009.

H. Alves, B. Fonseca, and N. Antunes, Experimenting machine learning techniques to predict vulnerabilities, The seventh latin-american symposium on dependable computing (ladc) (Pages, p.17, 2016.

A. K. Bardsiri and S. M. Hashemi, Machine learning methods with feature selection approach to estimate software services development effort, International Journal of Services Sciences, vol.6, issue.1, p.16, 2017.

A. Betancourt, P. Morerio, L. Marcenaro, M. Rauterberg, and C. Regazzoni, Filtering svm frame-by-frame binary classification in a detection framework, 2015 ieee international conference on image processing (icip) (Pages, p.57, 2015.

A. Buczak and E. Guven, A survey of data mining and machine learning methods for cyber security intrusion detection, IEEE Communications Surveys & Tutorials, vol.18, p.15, 2015.

J. P. Carvallo and X. Franch, Extending the iso/iec 9126-1 quality model with non-technical factors for cots components selection, Proceedings of the 2006 international workshop on software quality, p.23, 2006.

G. Christou, A comparison between experienced and inexperienced video game players' perceptions. Human-centric computing and information sciences, vol.3, p.18, 2013.

A. De-los, M. Martin, and L. Olsina, Towards an ontology for software metrics and indicators as the foundation for a cataloging web system, Proceedings of the ieee/leos 3rd international conference on numerical simulation of semiconductor optoelectronic devices, p.13, 2003.

N. Deng, Y. Tian, and C. Zhang, Support vector machines: optimization based theory, algorithms, and extensions, p.60, 2012.

B. Draper, Image-based feedback for learning object recognition strategies. (Pages 55-56), p.15, 2000.

R. Dumke and A. Abran, Software measurement: current trends in research and practice, 2013.

Y. Feng and G. Hamerly, Pg-means: learning the number of clusters in data, Advances in neural information processing systems, pp.393-400, 2007.

N. E. Fenton and M. Neil, Software metrics: roadmap, Proceedings of the conference on the future of software engineering, p.76, 2000.

N. Fenton and J. Bieman, Software metrics: a rigorous and practical approach, 2014.

A. Finkel, L'analyse cognitive, la psychologie numérique et la formation des enseignants à l'université, Préparer la nouvelle génération de psychologues : objectifs, méthodes et ressources dans l'enseignement de la psychologie, vol.23, p.93, 2017.

A. S. Fox, R. C. Lapate, A. J. Shackman, and R. J. Davidson, The nature of emotion: fundamental questions, p.93, 2018.

K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, Choosing software metrics for defect prediction: an investigation on feature selection techniques. Software: Practice and Experience, vol.41, p.16, 2011.

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, p.81, 2016.

O. M. Group, Structured metrics metamodel (smm). (October), 1-110. (Cited on pages 10, vol.13, p.27, 2018.

E. Guerra, J. De-lara, and P. Díaz, Visual specification of measurements and redesigns for domain specific visual languages, Journal of Visual Languages & Computing, vol.19, issue.3, p.13, 2008.

R. Hartson and P. S. Pyla, The ux book: process and guidelines for ensuring a quality user experience, vol.94, p.92, 2012.

M. Hashemi and J. Herbert, UIXSim: A user interface experience analysis framework, Proceedings -International Conference on Intelligent Systems, Modelling and Simulation, ISMS, 2015-Septe, p.18, 2015.

M. Hassenzahl, The thing and i: understanding the relationship between user and product, Funology, vol.92, p.10, 2003.

M. Hassenzahl, User experience (ux): towards an experiential perspective on product quality, Ihm, vol.8, pp.11-15, 2008.

J. Hentschel, A. Schmietendorf, and R. R. Dumke, Big data benefits for the software measurement community, 2016 joint conference of the international workshop on software measurement and the international conference on software process and product measurement (iwsm-mensura) (Pages, pp.108-114, 2016.

T. Hovorushchenko and O. Pomorova, Evaluation of mutual influences of software quality characteristics based iso 25010, p.79, 2011.

I. Iso, Iec 25000 software and system engineering-software product quality requirements and evaluation (square)-guide to square. International Organization for Standarization, 2005.

I. Iso, Iec 25020 software and system engineering-software product quality requirements and evaluation (square)-measurement reference model and guide. International Organization for Standarization, 2019.

. Iso/iec, Iso/iec 25010 system and software quality models. ISO/IEC, 2010.

. Iso/iec, ISO/IEC 25010 -Systems and software engineering -Systems and software Quality Requirements and Evaluation (SQuaRE) -System and software quality models. ISO/IEC, 2010.

, Iso/iec/ieee international standard -systems and software engineering-measurement process, 2017.

. Iso/iec/ieee, , p.13

C. Jin and J. Liu, Applications of support vector mathine and unsupervised learning for predicting maintainability using object-oriented metrics, Multimedia and information technology (mmit), 2010 second international conference on, vol.1, p.17, 2010.

T. Joachims, Text categorization with support vector machines: learning with many relevant features, Machine learning: ecml-98, pp.137-142, 1998.

H. Berlin, , p.15

M. Jordan and T. Mitchell, Machine learning: trends, perspectives, and prospects, Science, vol.349, pp.255-60, 2015.

S. Khalid, T. Khalil, and S. Nasreen, A survey of feature selection and feature extraction techniques in machine learning, Science and information conference (sai), p.61, 2014.

J. Kim, J. W. Ryu, H. Shin, and J. Song, Machine learning frameworks for automated software testing tools: a study, International Journal of Contents, issue.1, p.16, 2017.

S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, Supervised machine learning: a review of classification techniques. Emerging artificial intelligence applications in computer engineering, vol.160, p.55, 2007.

A. Kumar, Measuring software reusability using svm based classifier approach, International Journal of Information Technology and Knowledge Management, vol.5, issue.1, p.17, 2012.

I. H. Laradji, M. Alshayeb, and L. Ghouti, Software defect prediction using ensemble learning on selected features, Information & Software Technology, vol.58, pp.16-17, 2015.

I. H. Laradji, M. Alshayeb, and L. Ghouti, Software defect prediction using ensemble learning on selected features. Information and Software Technology, vol.58, p.17, 2015.

Q. Li, R. Salman, E. Test, R. Strack, and V. Kecman, Parallel multitask cross validation for support vector machine using gpu, Journal of Parallel and Distributed Computing, vol.73, p.58, 2013.

R. Macdonald, Software defect prediction from code quality measurements via machine learning, Advances in artificial intelligence: 31st canadian conference on artificial intelligence, pp.331-334, 2018.

. Springer, , p.16

U. X. Mind and U. E. Blog, Evaluer les émotions, p.99, 2015.

B. Mora, M. Piattini, F. Ruiz, and F. Garcia, Smml: software measurement modeling language, Proceedings of the 8th workshop on domain-specific modeling (dsm'2008), p.13, 2008.

L. E. Nacke, M. N. Grimshaw, and C. A. Lindley, More than a feeling: measurement of sonic user experience and psychophysiology in a first-person shooter game, Interacting with computers, vol.22, issue.5, p.18, 2010.

M. Omran, A. Engelbrecht, and A. Salman, An overview of clustering methods, Intell. Data Anal, vol.11, p.83, 2007.

M. C. Paulk, C. V. Weber, and M. B. Chrissis, The capability maturity model for software, 2005.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al.,

E. Duchesnay, Scikit-learn: machine learning in Python, Journal of Machine Learning Research, vol.12, p.64, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

D. Pelleg and A. Moore, X-means: extending k-means with efficient estimation of the number of clusters, Machine Learning, p, vol.84, p.76, 2002.

M. C. Prasad, L. Florence, and A. Arya, A study on software metrics based software defect prediction using data mining and machine learning techniques, International Journal of Database Theory and Application, vol.8, issue.3, p.17, 2015.

K. Rodden, H. Hutchinson, and X. Fu, Measuring the user experience on a large scale: usercentered metrics for web applications, Proceedings of the sigchi conference on human factors in computing systems, p.18, 2010.

M. Schrepp, M. P. Cota, R. Gonçalves, A. Hinderks, and J. Thomaschewski, Adaption of user experience questionnaires for different user groups, Universal Access in the Information Society, vol.16, issue.3, p.92, 2017.

M. J. Shepperd, D. Bowes, and T. Hall, Researcher bias: the use of machine learning in software defect prediction, IEEE Trans. Software Eng, vol.40, issue.6, pp.16-17, 2014.

M. Shepperd, D. Bowes, and T. Hall, Researcher bias: the use of machine learning in software defect prediction, IEEE Transactions on Software Engineering, vol.40, issue.6, p.17, 2014.

Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, Evaluating complexity, code churn, and developer activity metrics as indicators of software vulnerabilities, IEEE Transactions on Software Engineering, vol.37, issue.6, p.17, 2011.

Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, Evaluating Complexity , Code Churn , and Developer Activity Metrics as Indicators of Software Vulnerabilities, vol.37, pp.772-787, 2011.

T. and K. W. , Popular lectures and addresses, 1891.

E. Toch, B. Lerner, E. Ben-zion, and I. Ben-gal, Analyzing large-scale human mobility data: a survey of machine learning methods and applications, Knowledge and Information Systems, vol.58, issue.3, p.15, 2019.

O. Uml and I. Mof, The unified modeling language uml, p.26, 2018.

H. Vangheluwe, J. De-lara, and P. Mosterman, An introduction to multi-paradigm modelling and simulation, Proceedings of the ais'2002 conference (ai, simulation and planning in high autonomy systems), pp.9-20, 2002.

V. N. Vapnik and V. Vapnik, Statistical learning theory, vol.58, p.57, 1998.

A. Vogelsang, A. Fehnker, R. Huuck, and W. Reif, Software metrics in static program analysis, p.11, 2010.

H. Wang, T. M. Khoshgoftaar, and A. Napolitano, An empirical study of software metrics selection using support vector machine, The 23rd international conference on software engineering and knowledge engineering (seke) (Pages, p.16, 2011.

Y. Wang and X. Che, How to keep people playing mobile games: an experience requirements testing approach, Ubiquitous intelligence & computing, advanced and trusted computing, scalable computing and communications, cloud and big data computing, internet of people, and smart world congress, vol.105, p.18, 2016.

C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell et al., Experimentation in software engineering, 2012.

M. Yang, W. Li, H. Zhang, and H. Wang, Parameters optimization improvement of svm on load forecasting, 8th international conference on intelligent human-machine systems and cybernetics (ihmsc), vol.2, p.58, 2016.

S. Zhong, T. Khoshgoftaar, and N. Seliya, Analyzing software measurement data with clustering techniques, IEEE Intelligent Systems, vol.19, issue.2, p.17, 2004.

S. Zhong, T. M. Khoshgoftaar, and N. Seliya, Unsupervised learning for expert-based software quality estimation, Citeseer, p.17, 2004.