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Abstract 
The objectives of this PhD thesis were to develop 3D ultrafast ultrasound imaging of the human 
heart toward the characterization of cardiac tissues. In order to do so, a customized, 
programmable, ultrafast scanner built in our group was used. In the first part of this thesis, a 
real-time imaging sequence was developed to facilitate in-vivo imaging using this scanner, as well 
as dedicated 3D and 4D visualization tools.  

Then, we developed 3D Backscatter Tensor Imaging (BTI), a technique to visualize the muscular 
fibres orientation within the heart wall non-invasively during the cardiac cycle. Applications on 
a healthy volunteer before and after cardiac contraction were shown. Moreover, the undesired 
effects of axial motion on BTI were studied, and a methodology to estimate motion velocity and 
reduce the undesired effects was introduced and applied on a healthy volunteer. This technique 
may become an interesting tool for the diagnosis and quantification of fibres disarrays in 
hypertrophic cardiomyopathies. 

Moreover, 3D ultrafast ultrasound was used to image the propagation of naturally generated 
elastic waves in the heart walls, and an algorithm to determine their speed was developed. The 
technique was validated in silico and the in vivo feasibility was shown on two healthy volunteers, 
during cardiac contraction and relaxation. As the velocity of elastic waves is directly related to 
the rigidity of the heart, this technique could be a way to assess the ability of the ventricle to 
contract and relax, which is an important parameter for cardiac function evaluation.  

Finally, the transient myocardial contraction was imaged in 3D on isolated rat hearts at high 
framerate in order to analyse the activation sequence. Mechanical activation delays were 
successfully quantified during natural rhythm, pacing and hypothermia. Then, the feasibility of 
the technique in 2D non-invasively on human hearts was investigated. Applications on foetuses 
and adults hearts were shown. This imaging technique may help the characterization of cardiac 
arrhythmias, and thus improve their treatment. 

In conclusion, we have introduced in this work three novel 3D ultrafast imaging modalities for 
the quantification of structural and functional myocardial properties. 3D ultrafast imaging may 
become an important non-ionizing, transportable diagnostic tool that may improve the patient 
care at the bed side.  

Keywords: ultrafast ultrasound imaging, echocardiography, cardiac imaging, 3D imaging, 
myocardium characterization 
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Résumé 
L’objectif de cette thèse de doctorat était de développer l’échographie ultrarapide 3D du cœur,  
plus particulièrement dans le but de caractériser le muscle cardiaque. A cet effet, un échographe 
ultrarapide assemblé dans notre laboratoire a été utilisé. Dans la première partie de cette thèse, 
un mode d’imagerie temps-réel a été développé pour faciliter l’imagerie in-vivo en utilisant ce 
scanner, ainsi que des outils de visualisation 3D et 4D. 

Par la suite, l’imagerie 3D du tenseur de rétrodiffusion a été développée pour analyser 
l’orientation des fibres musculaires du cœur de manière non-invasive et au cours du cycle 
cardiaque. Des résultats ont été obtenus sur un volontaire avant et après la contraction cardiaque. 
De plus, les effets indésirables du mouvement axial ont été étudiés, et une méthode d’estimation 
de la vitesse axiale et de correction des aberrations induites a été proposée et appliquée sur 
l’homme. Cette technique pourrait devenir un outil intéressant de diagnostic et quantification de 
la désorganisation des fibres musculaires dans le cadre de cardiomyopathies hypertrophiques.  

De plus, l’échographie ultrarapide 3D a été utilisée pour visualiser la propagation dans les parois 
du cœur d’ondes élastiques générées naturellement au cours du cycle cardiaque, et un algorithme 
pour déterminer leurs vitesses a été développé. Cette technique a été validée grâce à des 
simulations numériques puis appliquée sur deux volontaires sains, pendant les phases de 
contraction et relaxation du myocarde. Etant donné que la vitesse des ondes de cisaillement est 
directement reliée à la rigidité du cœur, cette méthode pourrait permettre d’estimer la capacité 
du cœur à se contracter et à se relâcher, qui sont des paramètres important pour son 
fonctionnement. 

Enfin, l’activation de la contraction cardiaque de cœurs de rats isolés a été imagée à haute 
cadence et en 3D dans le but d’analyser la synchronisation de la contraction. Les délais 
d’activation mécanique ont pu correctement être quantifiés lors du rythme naturel du cœur, de 
stimulations électriques extérieures ainsi qu’en hypothermie. Ensuite, la faisabilité de la technique 
en 2D sur des cœurs humains de manière non-invasive a été étudiée et appliquée sur des fœtus 
et des adultes. Cette technique d’imagerie pourrait aider la caractérisation d’arythmies et 
améliorer leur traitement. 

En conclusion, nous avons introduit dans ces travaux de thèse trois nouvelles modalités 
d’imagerie ultrarapide 3D permettant de quantifier des propriétés structurelles et fonctionnelles 
du myocarde, qui jusqu’ici ne pouvaient pas être imagée en échocardiographie. L’imagerie 3D 
ultrarapide est une modalité très prometteuse, non ionisante, transportable et qui pourrait dans 
le futur améliorer fortement le diagnostic et la prise en charge des patients.  

Mots-clés: imagerie ultrarapide par ultrasons, échocardiographie, imagerie cardiaque, imagerie 
3D, caractérisation du myocarde 
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Résumé détaillé 
Chapitre 1 : Introduction 

Cher lecteur, il y a une chance sur trois que vous mourriez d’une maladie cardiovasculaire. Telles 
sont les statistiques de l’Organisation Mondiale de la Santé : les maladies cardiovasculaires sont 
la principale cause de mortalité mondiale, responsables d’environ un tiers des décès, et sans 
surprises, leur détection précoce est un élément clé pour mieux les guérir. Dans ce contexte, un 
important travail de recherche est fait mondialement pour améliorer les techniques d’imagerie 
cardiaque, et cette thèse espère apporter sa petite pierre à l’édifice. 

Dans le premier chapitre, une description rapide des techniques d’imagerie actuelles sera donnée, 
avec un accent particulier sur l’échographie. Parmi ses plus récents développements, nous 
porterons notre intérêt sur l’échographie ultrarapide, car cette technique sera fondamentale dans 
la suite. Dans le second chapitre, nous présenterons l’échographie ultrarapide 3D, qui sera utilisée 
tout au long de ces travaux, ainsi que les outils dédiés développés pour visualiser des données 3D 
et 4D (3D+temps). Le troisième chapitre sera consacré à l’imagerie 3D de l’orientation des fibres 
musculaires composant le cœur. Des applications sur l’homme seront montrées, ainsi qu’une étude 
visant à estimer les artefacts créés par le mouvement sur les résultats, puis un algorithme pour 
les corriger. Par la suite, le quatrième chapitre montrera comment mesurer de manière passive, 
en 3D et à différents instants du cycle cardiaque la rigidité du cœur. Enfin, dans le cinquième 
chapitre, l’échographie ultrarapide 3D sera utilisée pour imager la séquence d’activation de la 
contraction cardiaque. 

Les cardiologues possèdent aujourd’hui un vaste panel d’outils pour étudier le fonctionnement 
du cœur. L’ECG est probablement le plus connu d’entre eux : il permet d’obtenir une trace de 
l’activité électrique du cœur mesurée sur le torse des patients. Cependant, il ne permet pas 
d’imager à proprement parler d’où viennent les signaux électriques. D’autres techniques sont 
donc nécessaires pour obtenir une image : IRM, rayons X, traceurs radioactifs, ultrasons, etc.. 
Chacune d’entre elles a des avantages et des inconvénients, et en particulier, l’échographie a 
l’atout d’être non-invasive, non-ionisante, moins chère et donc plus accessible. Différents modes 
d’imagerie existent : il est ainsi possible de visualiser l’anatomie (B-Mode), les flux sanguins 
(modes Doppler), ou encore la contraction musculaire (strain imaging). Cependant, les ultrasons 
ont aussi un certain nombre d’inconvénients, et parmi eux, nous retiendrons particulièrement la 
limitation à des images 2D qui compliquent la visualisation de structures ou phénomènes 
complexes intrinsèquement 3D. Ces dernières années ont vu l’apparition d’échographe 3D, mais 
la cadence d’imagerie accessible (de l’ordre d’une dizaine de frames par seconde), n’est pas 
suffisante pour imager les phénomènes cardiaque rapides. 

Les récentes recherches en échographie ont permis de lever ces limites : ainsi, l’échographie 
ultrarapide a permis d’accéder à des cadences jusqu’à 10 000 images/secondes, aussi bien en 2D 
qu’en 3D. A l’heure actuelle, les applications de l’échographie 3D ultrarapide sont encore en 
pleine phase de recherche. Les objectifs de cette thèse étaient donc de développer l’échographie 
cardiaque 3D ultrarapide et plus particulièrement de l’appliquer à l’étude du myocarde. 
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Chapitre 2 : l’échographie ultrarapide 3D 

L’échographie ultrarapide, qu’elle soit 2D ou 3D, repose sur la capacité de contrôler 
simultanément tous les éléments des sondes échographiques (une centaine de voies en 2D, et 
jusqu’à un millier pour la 3D), et a donc été un challenge technologique, qui n’a été relevé qu’à 
l’aube des années 2000 pour les images 2D et 2010 pour la 3D. Ainsi, ces travaux de thèse ont 
été effectués à l’aide d’un prototype d’échographe 3D ultrarapide développé au sein du 
laboratoire, et qui à l’origine, ne permettait pas d’obtenir des images en temps-réel. Nous avons 
donc créé une modalité d’imagerie temps-réel en utilisant cet échographe et les sondes matricielles 
associées, une fonctionnalité essentielle pour pouvoir étudier le vivant. Une technique d’émission 
focalisant les ultrasons dans le plan d’imagerie a été conçue pour fournir une image 2D temps-
réel de qualité, permettant au clinicien d’obtenir le champ de vue souhaité avant de déclencher 
une acquisition 3D ultrarapide.  

Une fois les images 3D obtenues, se pose la question de leur visualisation. De nombreux outils 
dédiés existent déjà mais cependant, nous souhaitions pouvoir explorer les données rapidement, 
de manière automatisée et dans l’environnement MATLAB. Dans ce but, plusieurs fonctions 3D 
ont été développées : l’une dédiée à la visualisation de l’orientation des fibres musculaires, l’autre 
à la visualisation des parois du cœur. Enfin, une fonctionnalité additionnelle permettant de 
contrôler le temps tout en utilisant une fonction de visualisation a été créée. 

Chapitre 3 : Imagerie 3D du tenseur de rétrodiffusion 

La première partie de ce chapitre est dédiée à l’imagerie de l’anisotropie des tissus biologiques 
par imagerie du tenseur de rétrodiffusion (en anglais, Backscatter Tensor Imaging, abrégé BTI). 
Les fibres musculaires sont structurées de manière hélicoïdale à travers la paroi cardiaque, de 
manière à ce que leurs contractions entrainent l’éjection du sang dans un mouvement de torsion 
et de contraction des ventricules. Ainsi, l’agencement des fibres influe directement la capacité 
d’éjection du sang du cœur, et est mise à défaut dans des pathologies comme l’hypertrophie 
myocardique. L’imagerie de l’orientation des fibres cardiaques pourrait donc être intéressante 
pour la détection précoce et le suivi de ces pathologies. 

Définissons l’axe Z comme étant la profondeur des tissus imagés : dans ce cas, si ces derniers sont 
anisotropes dans le plan XY, le théorème de Van Cittert Zernike stipule que la cohérence des 
échos rétrodiffusés dans un plan XY parallèle sera également anisotrope. Ainsi dans le cas d’un 
milieu fibreux, la cohérence sera plus forte dans la direction des fibres que dans la direction 
perpendiculaire à celles-ci. L’utilisation d’une sonde échographique matricielle permet de calculer 
directement la cohérence des échos mesurés dans un tel plan. De plus, en utilisant l’échographie 
ultrarapide, cette mesure peut être obtenue dans tous les points du volume avec une bonne 
cadence d’imagerie (de l’ordre de 90 volumes/seconde), ce qui permet d’imager l’orientation des 
fibres au cours du temps en un unique battement cardiaque. 

Ainsi, la première partie de ce chapitre démontre comment a été créée une séquence d’émissions 
d’ultrasons pour le BTI, la mise en place des calculs de cohérence pour chaque voxel et de 
l’analyse des fonctions de cohérence 2D obtenues pour en déduire leurs éventuelles anisotropies 
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et leurs directions, puis une démonstration du BTI pour imager l’orientation des fibres 
musculaires de la paroi antéro-septale du cœur d’un volontaire sain est présentée. 

Ensuite, l’impact du mouvement sur les calculs de fonction de cohérence a été étudié. En effet, 
le BTI 3D repose sur la focalisation synthétique par onde planes, technique sous-jacente de 
l’échographie ultrarapide, qui suppose que les mouvements des tissus imagés sont négligeables. 
Hors, ce n’est pas vrai dans le cas du cœur : dans la deuxième partie de ce chapitre, nous avons 
mis en évidence les artefacts créés par les mouvements axiaux sur les fonctions de cohérence lors 
de l’imagerie d’un fantôme isotrope, puis une méthode pour estimer la vitesse axiale et pour 
corriger les artefacts a été introduite. La technique a été appliquée avec succès sur un fantôme 
isotrope et à l’imagerie de l’orientation des fibres cardiaques du septum interventriculaire d’un 
volontaire sain. 

Chapitre 4 : Elastographie 3D passive du ventricule gauche 

Pour éjecter le sang vers l’organisme, le cœur se contracte (systole), puis il se relâche afin de se 
remplir à nouveau (diastole). Les qualités de la contraction et du relâchement sont fondamentales 
pour le bon fonctionnement du cœur : la contraction définit l’efficacité de l’éjection, tandis que 
la relaxation permet le remplissage optimal du cœur. Des défauts de l’une ou l’autre de ces phases 
sont présents dans un certain nombre de pathologies cardiaques, et il est donc intéressant de 
chercher à mesurer ces états. Par exemple, l’élastographie est une technique cherchant à imager 
la rigidité des tissus. Dans ce chapitre, nous avons développé une méthode d’élastographie passive 
basée sur l’imagerie 3D de la propagation d’ondes élastiques générées naturellement par le cœur 
lors du cycle cardiaque, à la fois pendant la systole et la diastole.  

Dans un premier temps, des simulations numériques ont été faites à l’aide du programme k-Wave 
pour reconstituer la propagation d’ondes élastiques dans un modèle ellipsoïdal de ventricule dont 
les propriétés élastiques sont choisies. Ensuite, une étude a été faite sur deux volontaires sains. 
Dans le cas in-vivo, des ondes de cisaillement se propageant dans le ventricule gauche sont créées 
par la fermeture de la valve aortique à la fin de la systole, tandis qu’en diastole, elles sont reliées 
à l’éjection du sang depuis les oreillettes vers les ventricules (phénomène connu sous le nom de 
« kick atrial »). Une fois la propagation des ondes de cisaillement imagée, un algorithme en deux 
parties a été développé pour estimer leurs vitesses. La première étape de calcul est basée sur la 
corrélation des vitesses tissulaires instantanées de chaque point du ventricule gauche, ce qui 
permet de retrouver les temps de vol des ondes. Ensuite, la position de la source des ondes est 
estimée, puis un second algorithme de descente de gradient calcule la distance parcourue par 
l’onde le long de la paroi cardiaque. En combinant les résultats de temps de vol et de distance, 
une estimation de la vitesse des ondes de cisaillement est obtenue. 

L’algorithme développé a été appliqué à la fois à des simulations numériques pour validation, 
puis in-vivo sur deux volontaires sains, en diastole et en systole, et a donné des résultats 
encourageants. Les futurs développements de ce travail seront d’utiliser l’information de la vitesse 
pour estimer la rigidité du myocarde, pour finalement différencier les cœurs sains et malades. 
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Chapitre 5 : Imagerie 3D de l’activation de la contraction du myocarde 

Ce chapitre est consacré à l’étude de la séquence d’activation de la contraction du myocarde. La 
contraction cardiaque est déclenchée par le passage d’une onde électrique dont le chemin et la 
vitesse de propagation sont bien définis, et qui ont une influence fondamentale sur l’efficacité de 
l’éjection du sang. Dans ce chapitre, nous proposons une méthodologie pour suivre le 
déclenchement de l’activation mécanique à travers le cœur, dans un premier temps en 3D sur des 
cœurs de rats isolés, puis en 2D pour se rapprocher d’un contexte clinique. 

La technique développée est basée sur l’analyse de la vitesse axiale de déplacement du myocarde 
lors de la contraction. En premier lieu, une méthode dédiée à l’imagerie 3D de cœurs de rats 
isolés a été mise au point : les cartes 3D de temps d’activation de la contraction sont obtenues 
en corrélant l’évolution temporelle de la vitesse tissulaire de chaque point des parois du cœur. 
Cette première étude a permis de comparer l’algorithme à des temps d’activation électriques 
mesurés sur l’épicarde, d’étudier l’impact d’une stimulation électrique extérieure sur les cartes 
d’activation 3D, ainsi que les effets de l’hypothermie.  

En second lieu, nous avons étudié la faisabilité de la technique dans un contexte clinique en 
utilisant des échographes ultrarapides 2D. Deux cas d’études ont été retenus : d’une part, les 
cœurs de fœtus, et d’autre part les cœurs d’adultes. Nous avons montré que l’imagerie de 
l’activation de la contraction dans ces cas était plus délicate, pour les raisons décrites ci-après. 
D’une part, la fermeture des valves auriculo-ventriculaires génère des ondes élastiques se 
propageant dans le myocarde, et celles-ci peuvent masquer la trace mécanique de l’activation de 
la contraction. D’autre part, l’imagerie en 2D limite la possibilité de suivre et de comprendre la 
propagation de l’activation mécanique, qui est un phénomène 3D complexe. Néanmoins, nous 
avons montré qu’il était possible de retrouver les temps d’activation de la contraction 
manuellement en quelques points du myocarde. 

Chapitre 6 : Conclusion 

Ces travaux de thèse ont permis de développer les applications de l’échographie ultrarapide 3D 
à l’étude du myocarde. Dans un premier temps, une modalité d’imagerie temps réel a été créée 
pour le prototype d’échographe 3D ultrarapide utilisé dans ces travaux, ainsi que des outils dédiés 
à la visualisation des données 3D et 4D obtenues. Ensuite, nous avons développé le BTI, une 
technique dédiée à l’imagerie de l’orientation des fibres musculaires, que nous avons utilisé pour 
visualiser l’agencement des fibres au travers de la paroi du cœur d’un volontaire sain, et ce au 
cours d’un unique cycle cardiaque. Nous avons évalué l’impact du mouvement sur cette technique 
d’imagerie et proposé une méthode pour corriger les éventuels artefacts. Dans le troisième 
chapitre de cette thèse, nous avons développé un algorithme pour mesurer la vitesse de 
propagation d’ondes de cisaillement générées naturellement par le cœur au cours du cycle 
cardiaque, dans le but d’estimer la rigidité des parois dans les phases de contraction et de 
relaxation. Enfin, dans le dernier chapitre, l’activation de la contraction du myocarde de cœur 
de rats isolés a été imagée en 3D. Puis, la portabilité de la technique dans un contexte clinique 
a été étudiée en imageant en 2D l’activation de cœurs de fœtus et d’adultes sains.  
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Notons que les ondes élastiques et l’activation de la contraction se propagent plus rapidement le 
long des fibres cardiaques que perpendiculairement. Ainsi, il serait intéressant de combiner les 
trois modalités d’imagerie développées lors de cette thèse et de comparer l’orientation des fibres, 
les vitesses de propagation des ondes élastiques naturelles et les temps d’activation de la 
contraction, le tout étant accessible depuis une unique acquisition 3D ultrarapide.  

De manière générale, ces travaux de thèse espèrent participer au repoussement des limites 
actuelles de l’échocardiographie, et peut-être ainsi améliorer la détection et le suivie des maladies 
cardiaques. A l’heure actuelle, les échographes 3D ultrarapides restent des outils de recherche 
chers et encombrants, mais les récents développements technologiques des sondes vont vers une 
miniaturisation des systèmes. Ainsi, il est raisonnable d’espérer que les échographes 3D 
ultrarapides pourraient devenir un outil d’imagerie standard dans quelques décennies. 

Mots-clés: imagerie ultrarapide par ultrasons, échocardiographie, imagerie cardiaque, imagerie 
3D, caractérisation du myocarde 
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  Introduction Chapter 

1.1. Introduction 
Dear reader, there is about one chance over three that you will die of a cardiovascular disease. 
Such are the current statistics of the World Health Organisation: cardiovascular diseases (CVD) 
are the main cause of mortality, responsible for about one third of deaths worldwide and without 
surprise, early detection is key to improving their outcomes (Mendis et al., 2011). In this context, 
an extensive amount of researches is made to enhance the cardiac imaging techniques, and this 
PhD hopes to do its little bit. 

In this introduction chapter, a brief description of the heart anatomy and the current imaging 
tools used in the clinics will be given, with a particular highlight on echocardiography and its 
newest developments. Among them, ultrafast ultrasound scanners and their particular 
applications will be introduced, as they are the foundations of this PhD thesis. The second 
chapter will present the 3D ultrafast ultrasound imaging material used during this PhD, and the 
tools developed to perform real time imaging and to visualize 3D images. The third chapter of 
this manuscript will present a methodology to image the cardiac muscle fibres orientation within 
the heart wall non-invasively. Then, the fourth chapter will be dedicated to the passive 
measurement of the cardiac rigidity using natural elastic waves generated during the cardiac 
cycle. Finally, in the fifth chapter, 3D imaging of the cardiac contraction will be performed at 
several thousands of frames per second for the quantification of myocardial activation delays.  

1.2. Anatomy of the human heart 
Through this PhD, we will often refer to the anatomy of the heart. Thus, this paragraph will 
give a quick introduction on cardiac structures (Figure 1.1). Mammalians heart is composed of 4 
cavities (4-chamber heart) to insure blood circulation in the body. Let’s set the entry point of 
the heart in the right atrium (RA), in which deoxygenated blood coming from the organism is 
entering continuously. The blood passes into the right ventricle (RV) through the tricuspid valve. 
When the heart is contracting, the right ventricle ejects blood through the pulmonary valve 
toward the lungs. Re-oxygenated blood comes back and fill the left atrium (LA). When the 
atrium is contracting, the blood passes through the mitral valve and fills the left ventricle (LV). 
The contraction of the left ventricle ejects oxygenated blood into the organism through the aortic 
valve. The blood circulates within the organism before returning to the right atrium to complete 
the loop. For further referencing, note that the most inferior portion of the heart (i.e. the tip) is 
referred as the apex, and the superior part of the ventricles is referred as the basal part. 

Moreover, the “right heart” (i.e. right atrium and ventricle) pushes blood to the lungs whereas 
the “left heart” pushes the blood to the rest of the body: the left side has a more important 
contraction to provide and is thus more developed that the right side. As constrains of pressure 
and contractility are higher, the left ventricle is the most subject to disabilities. In consequence, 
most of studies in the literature focus on it. 
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Figure 1.1 Anatomy of the 4-chamber heart. Image credit: Wapcaplet [CC BY-SA 3.0] 

1.3. Clinical tools for cardiologists 

1.3.1. Electrocardiogram 
The heartbeat is triggered by an electrical pulse propagating in the heart, which path and timing 
are essential to the effectiveness of the heart function. The electrocardiogram (ECG) is a 
technique measuring the electrical activity related to the heart on the patient’s skin. In general, 
3 electrodes are placed on the torso and record the well-known ECG shape (3-lead ECG). 
Although it may seem simple, the ECG provides many information on the heart conduction and 
rhythm (Figure 1.2), for a negligible cost and ease of use. Therefore, 3-lead ECG is systematically 
used by cardiologist as a basis for their diagnosis. For more accurate analysis, 10 electrodes may 
be placed on the torso: the electrical potentials can then be measured from 12 different angles 
(12-leads ECG), providing more spatial information. Nevertheless, despite its good temporal 
resolution, the spatial resolution remains limited. Moreover, the interpretation of the ECG is 
difficult, as pathological hearts may have a normal ECG, and abnormal ECG may be benign. 
Hence, for a complete diagnosis, complementary tools are used by clinicians. 

1.3.2. Magnetic Resonance Imaging 
Magnetic Resonance Imaging (MRI) is based on the detection of water molecules within the 
body. In order to do so, a strong magnetic field is exciting the hydrogen atoms of the water 
molecules, which in return generate radio-frequency signals. A MRI scanner is composed of a 
strong magnet (usually made of superconductive materials) for excitation, and coil antennas to 
receive radio-frequency signals, and allows the imaging of a wide range of organs of the body in 
3D with a good spatial resolution. 
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Figure 1.2 Origins of the main ECG segments. The ECG shape is closely related to the path and 
timing of the electrical pulse activating the heart contraction. Figure from (Malmivuo and Plonsey, 

1995) 

Moreover, MRI is not limited by bones nor lungs as it is the case for ultrasound, and is not 
ionizing as PET or CT scans, making it a tool of choice for the analysis of cardiac structure 
(Figure 1.3) and function. However, the temporal resolution is limited: hence for cardiac 
applications, MRI sequences are triggered and repeated on several cardiac cycles using ECG, 
which implies long acquisition times and patient breath-holding. This limits the possibility of 
MRI scans on children, patients with breathing difficulties, or claustrophobic population. 
Moreover, imaging non-regular heart beats occurring in arrhythmias is challenging, although 
cardiac MRI is an extremely active research field and real-time MRI is being developed. Finally, 
the important cost of an MRI scanner restricts its availability. 

 

 

Figure 1.3 Examples of images obtained with cardiac MRI. From left to right: 2-chamber long axis 
view, 4-chamber long axis view, short axis view. Image credits: Doregan, [CC BY-SA 4.0]. 
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1.3.3. X-rays 
A few X-rays based techniques are also available to image the heart both in 2D and 3D. 
Angiography is a 2D X-ray technique used to image the coronary circulation (i.e. arteries and 
veins inside the cardiac muscle). In a nutshell, a contrast agent is injected in the coronary arteries 
by a catheter and a movie of X-rays images through the patient’s chest is recorded (Figure 1.4).  

 

Figure 1.4 Coronary angiography procedure. Image credits: BruceBlaus, CC BY-SA 4.0 

Computed Tomography (CT) scanners use multiple 2D X-rays images performed with different 
angles around the patient’s head-feet axis to reconstruct the X-ray absorption in each point of 
the body region scanned (Figure 1.5). Whereas in 2D the resulting image is a projection of the 
X-Ray absorption through the body, CT scans allow the reconstruction of 3D volumes or virtual 
2D slices at desired locations. The image quality is therefore enhanced. However, the temporal 
resolution is relatively low, which implies the same limitations as MRI (ECG gating, long 
acquisition times, patient breath-holding, etc.), there is no real-time imaging (yet) and it is 
ionizing. 

 

Figure 1.5 CT imaging. Scanner principle (left) and typical CT angiography 3D rendering (top right) 
and 2D rendering (bottom right). Images adapted from (Herman, 2009; Machida et al., 2015) 
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1.3.4. Nuclear medicine 
Nuclear medicine is sometimes referred as “radiology done inside out” because it records 
radiations emitting directly from the body rather than generated externally, such as X-rays. In 
order to do so, a radioactive tracer is injected in the organism and its radiations are captured by 
an external detector. Radiotracers are radioactive molecules bounded to carrier molecules, which 
can be chosen according to the purpose of the scan (tracking glucose, a particular protein, etc.). 
Thus, it allows the functional imaging of the organs rather than their anatomy: hence, nuclear 
imaging is often coupled with MRI or CT scans to obtain the anatomy of the organs. 

As X-ray based techniques, 2D or 3D scanning are available, with similar pros and cons. 
Scintigraphy is a 2D method: it is simple and has a relatively low operative cost, but the contrast 
of the image is limited as the radioactivity signal is integrated through the width of the body. 
Two 3D methods based on tomographic reconstruction exist: single-photon emission computed 
tomography (SPECT) or positron emission tomography (PET). In SPECT, radiations are 
captured by a gamma camera rotating around the patients to acquire multiple 2D images at 
different angles. Then, a tomographic reconstruction allows for the generation of 3D volumes or 
virtual 2D slices. The contrast and resolution of SPECT are therefore better than scintigraphy.  
In PET, the radiotracer used emits positron within the body, which will annihilate with free 
electrons and emit two gamma photons in opposite directions. The synchronous detection of 
these gamma rays is performed by cameras placed on a 360°-ring around the patient. PET is 
known to have a better sensitivity and resolution than SPECT and is therefore considered as a 
gold standard in nuclear medicine, but the operating cost is more important. 

Nuclear imaging techniques are mostly used to assess the perfusion of the cardiac muscle and 
therefore find its applications on ischemia, coronary artery diseases screening, etc.. The use of 
nuclear medicine is thought limited in the clinical setting by the radioactive and ionizing 
exposure, and the high operating cost. 

 

Figure 1.6 Nuclear cardiac imaging. (a) Scintigraphy. (b) SPECT. (c) PET. Taken from (Zaidi, 2005) 

1.3.5. Ultrasounds 
Echocardiography is routinely used in the diagnosis and follow-up of cardiovascular diseases. It 
can provide anatomical and functional information of the heart, such as its size, shape, cardiac 
output, ejection fraction, diastolic function, etc. and thus, can help the detection and evaluation 
of cardiomyopathies. Moreover, it is relatively affordable, non-invasive, non-ionizing, and 
portable. In the remainder of this chapter, the principles of echocardiography and its diverse 
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modalities will be reviewed. Then, an introduction to the cutting-edge ultrasound technologies 
will be presented. 

1.3.5.1. The different cardiac views 
One fundamental aspect of echography is that it does not allow to image the body behind bones 
nor air: thus to image the heart it is necessary to avoid the ribs and the lungs, which limits the 
possible angles of views. Two main approaches exists: transthoracic and transesophageal 
echocardiography (TTE and TEE, respectively). As the names suggest, TTE images the heart 
through the chest of patients, whereas TEE images from the oesophagus. The main advantage 
of TEE is that the ultrasound beams are less attenuated and distorted before reaching the heart, 
hence it gives better images. However, inserting a probe through the oesophagus has important 
drawbacks: the patient needs to avoid eating/drinking during a few hours before the procedure, 
the procedure itself is time and personal consuming, and uncomfortable for the patient. For these 
reasons, TTE is often preferred, and TEE is used only when a better imaging quality is required. 

 

Figure 1.7 Transthoracic echocardiography. (a) Three of the acoustic windows used to image the 
heart. 1: parasternal, 2: apical, and 3: subcostal. (b) 4-chamber view obtained from the apical 

window. (c) Long-axis view and (d) short-axis view obtained from the parasternal window. To switch 
between (c) and (d), the probe is rotated by 90°. RA: Right Atrium, RV: Right Ventricle, LA: Left 
Atrium, LV: Left ventricle, TV: tricuspid valve, AV: aortic valve, MV: mitral valve, RVOT: right 
ventricle outflow track, LVOT: left ventricle outflow track. Images credit: By Patrick J. Lynch and 

C. Carl Jaffe [CC BY 2.5] via Wikimedia Commons and web.stanford.edu 
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In TTE, once the probe is positioned on an acoustic window (i.e. not behind bones or lungs), 
different views of the heart may be accessible by tilting, rotating or slightly translating the probe 
(Figure 1.7). For example, the apical window gives access to four different views: 2-chambers, 3-
chambers, 4-chambers (Figure 1.7b) and 5-chambers views, depending on the number of 
structures visible. In this PhD, only transthoracic echocardiography through the apical and 
parasternal windows (Figure 1.7c and d) will be performed. 

1.3.5.2. Brightness-Mode 
To image the human body using ultrasound, a probe consisting of several channels able to emit 
and receive in the MHz range is used. To form an image, the tissues are scanned line-by-line by 
a focused ultrasonic pulse (typically a few periods of the central frequency of the probe). Along 
the beam, echoes are backscattered by local variations of acoustic impedance, and received by 
all the elements of the probe. By applying simple delay laws, the echoes are focalized in reception 
and the echogenicity of the medium along the scanning line can be retrieved. This process is then 
repeated about a hundred times to scan laterally the medium to obtain a complete image (Figure 
1.8). The Brightness-Mode imaging (B-Mode) consists of displaying the intensity of the received 
echoes from each pixels via a black-to-white scale, the brightest points representing the most 
echogenic tissues (see examples of Figure 1.7). 

A wide variety of probes can be found depending on the clinical applications. In particular, so-
called phased-array probes are dedicated to cardiac imaging and are characterized by:  

 a low central frequency to ensure a good penetration depth (in the range 1-3MHz to 

reach ~15cm), 

 small channels width relative to the wavelength of the ultrasonic pulse (typically 𝜆
2) 

to allow the emission of diverging waves and therefore widen the angle of view of the 

probe1, 

 a limited number of channels (e.g. 64) to be able to place the probe in-between ribs. 

1.3.5.3. Continuous Wave and Pulsed Wave Doppler 
A number of methods allow for the estimation of movements, which we will briefly review bellow. 

 Continuous wave Doppler (CW) 

The first method developed was based on the Doppler effect, the same that distorts the sound of 
rapidly passing cars in the street. The probe is made of two transducers slightly angulated, one 
of them emitting continuously a focalized ultrasound wave, whereas the other is recording 
continuously the echoes. 

                                         
1 Considering a 1.5MHz probe and a speed of sound in biological tissues of 1540m/s, the typical lateral 
size of the elements is 𝜆 2 ≈ 513µ𝑚 
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Figure 1.8 Conventional echography technique. Ultrasound image formation using (a) a linear probe 
and (b) a cardiac probe. Image taken from (Correia, 2016) 

 

If scatterers are moving axially within the zone covered by the two focalized transducers, the 
frequency of the ultrasound beam received if shifted by a frequency 𝑓  compared to the emitted 
frequency 𝑓 . 𝑓  is the Doppler frequency and is given by: 

𝑓 =
2𝑣 𝑐𝑜𝑠𝜃

𝑐
𝑓  (1) 

  
where 𝑣  is the axial velocity of scatterers, 𝜃/2 the angulation of the transducers compared to 
the z-axis (see Figure 1.9) and 𝑐 the speed of sound in biological tissues. Fortuitously, the Doppler 
frequency 𝑓  obtained by measuring blood flow circulation is the audible frequency range (~kHz). 
Thus, at the beginning of echocardiography, very simple and effective ultrasound scanners could 
calculate analogously the Doppler frequency and play the resulting signal through speakers. Up-
to-date, this typical sound is still used by clinicians (along with other tools, fortunately). CW 
can measure high blood velocities (up to 1.5m/s) and is therefore still used nowadays to analyse 
the velocity of blood ejected from the heart through the aorta. In modern systems, CW can be 
performed on imaging probes by using subapertures: half of the channels of the probe are used 
as transmitters and the other half as receivers. 

 

 

Figure 1.9 Illustration of the continuous Doppler principle. The blue zone represents the field of view 
in which the movement can be estimated. Note that the angle θ has been exaggerated for illustration 

purposes. In practice, the recovering ultrasonic beam is narrow and has a large depth. 
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 Pulsed wave Doppler 

Pulsed Wave Doppler (so-called pulsed Doppler) relies on different physics: as its name suggests, 
it is based on pulse-echo measurements. Focalized ultrasonic pulses are send to the medium and 
the echo are correlated to estimate the motion of scatterers along the beam (Baker, 1975). This 
method can be used with a unique transducer to provide a 1D image of movement along the 
beam (1D pulsed Doppler), or a linear array and thus a 2D image can be reconstructed in a 
similar manner as a 2D B-Mode images are made. Fortuitously, the frequency of the oscillations 
of the beamformed signals is related to the medium’s velocity by the same equation (1), although 
the mechanisms implied are different. Finally, in pulsed Doppler, a fundamental parameter is the 
pulse repetition frequency (PRF), as it defines the limit of velocity estimable without aliasing, 
according to the sampling theory: 𝑃𝑅𝐹 ≥ 2𝑓 . To work around this limitation, pulsed Doppler 
modes are firing several times the same scan lines of the image before sweeping to the next ones, 
allowing a high PRF but with a limited number of samples for each scan line. The number of 
transmits for each scan lines depends on the mode used, whether precise estimation in a small 
area or qualitative imaging in a larger area is desired. The different modes will be discussed in 
the following paragraphs.  

Moreover, the pulsed Doppler technique described here may be applied to blood flows (Figure 
1.10) or tissues motion (Figure 1.11). The latter is notably useful in echocardiography, where the 
estimation of motion of cardiac wall and mitral valve annulus has been investigated since the 
development of Doppler techniques (Isaaz et al., 1989). 

To summarize, CW has the advantages of being able to measure high velocities but lacks spatial 
information, whereas pulsed Doppler is limited by the PRF but allows localization in space.  

1.3.5.4. Visualisation of Doppler Modes 
Until now, we described how to estimate motion without discussing how to visualise it. Data 
visualisation is crucial for the effectiveness of a technique, and depends on the information to be 
extracted from the data, and from the nature of the data itself. 

 Quantitative analysis: Spectral representation 

The first method to visualize motion was used on CW and pulsed Doppler and consisted of 
displaying a spectrogram of the Doppler signal received (Figure 1.10a). In the case of pulsed 
Doppler, measurements of motion are made in a few pixels wide region of interest (ROI) manually 
selected on the B-Mode image by the operator, and the spectrogram is calculated in these pixels. 
The small size of the ROI allows to repeat a high number of focalized transmissions along its 
scan line, improving the sampling of the Doppler signal and thus the quality of the spectrogram, 
but is preventing to form an image of motion. The spectrogram is the method of choice to 
measure blood flow velocities, as well as cardiac synchronisation (e.g. delay between peak 
velocities across the different valves). Note that this technique is often referred as “pulsed-
Doppler” itself; to avoid this ambiguity, we will refer to it as “spectral” Doppler in this document. 
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 Visual analysis: Colour Doppler and Power Doppler 

Colour Doppler and Power Doppler aim to image motion in 2D (or 3D). Therefore, pulsed 
Doppler measurements are repeated along several scan lines which implies a limitation: the bigger 
the region of interest selected, the less focalised transmission can be repeated for each scan lines, 
to maintain a sufficient PRF. Hence, the measurements cannot be as precise as in the case of 
spectral Doppler. Moreover, as the PRF is lower, so is the maximum velocity measurable. Each 
pixel in the specified region of interest has a specific colour-assigned value overlaid onto B-Mode 
images depending on Doppler data.  

In the case of colour Doppler, the central frequency of the Doppler signal of each pixel is 
calculated and color-coded on the image. By convention, the colour axis goes from blue to red to 
represent motion away and toward the probe, respectively (Figure 1.10b). The estimation of 
velocity and axial direction is of great interest to understand the blood circulation organisation 
(for example in the brain), the displacement of tissues (free walls of the heart) or turbulences 
associated to high speed flows (carotid arteries, cardiac valves …). 

Power Doppler is another methodology to visualize motion which associates at each pixel the 
energy of its Doppler signal. By doing so, both directional and quantitative information about 
flow velocity are lost, however the sensitivity of the resulting image is enhanced. Therefore this 
mode is appreciated to visualize vessels architecture. Power Doppler is usually encoded in a red 
to white colour axis (Figure 1.10c). 

Thus, depending on the information investigated by the operator, CW and spectral 
representation, or pulsed Doppler and one of its visualisation method may be used: to measure 
precisely velocities, CW or pulsed Doppler spectral representation would be preferred, colour 
Doppler would be chosen to investigate motion directions and flow turbulences, and finally power 
Doppler to image the architecture of the vessels. The main pros and cons of each modality are 
summarized-up in Table 1-1. 

 

Figure 1.10 Visualisation of Doppler information of the carotid artery. (a) Spectrogram of the carotid 
blood flow through a small ROI. (b) Colour Doppler and (c) Power Doppler of the radial view of the 

same carotid. 
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Figure 1.11 Tissue Doppler imaging of the heart in the apical 4-chamber view. (a) Colour Coded 
images of tissue Doppler and visualisation of tissue velocity versus time of selected points of the wall. 
(b) Spectral Doppler of one point of the image, near the aortic valve. Image adapted from (from Yu 

et al., 2007). 

Spectral Doppler Colour Doppler Power Doppler 
Examines flow at one site 
Good temporal resolution 
Allows calculations of velocity 
 

Overall view of flow in a region 
Poor temporal resolution     
Approx. velocity information 
Direction information 
Turbulent flows 
 

Overall view of flow in a region 
Poor temporal resolution 
No quantitative velocity 
No directional information 
Sensitive to slow flows 
 

Table 1-1 Summary of main proprieties of pulsed Doppler modes. 

1.3.5.5. Strain imaging 
Based on the tissue motion estimates, one can calculate its deformation (strain), which is of great 
interest in the case of the heart, as both important motion and deformation occurs during the 
cardiac cycle and are fundamental for its function. The underlying principle is fairly simple: the 
aim is to compare the motion of close points in the tissues: if two points get closer with time, the 
tissues slims, if they get further, the tissue thickens. Several techniques can be used to estimate 
strain (or strain rate) using ultrasound. The first one is directly derived from pulsed Doppler as 
it is based on the analysis of the phase-shift of the received echoes from the regions of interest 
(Kanai et al., 1997). It has the advantages of being simply implementable and has a great axial 
sensitivity, but is restrained to axial estimation. The second method is inspired from particle 
image velocimetry, which was developed in optics: it consists of tracking local scatterers in the 
beamformed image to compute their movement and thus the local strain (Meunier et al., 1989). 
As the local aspect and “granularity” of ultrasound images is called speckle, this technique has 
been named speckle tracking. The advantages of speckle tracking is that it can estimate motion 
in all dimensions of the image, and so it can compute longitudinal and shear strain. For a 2D 
image, 4 strain components can be derived, and up to 9 components for 3D volumes, allowing 
for the complete description of the tissues deformation. Up-to-date, 2D strain has been shown to 
be a good tool to assess cardiomyopathies (Nesbitt et al., 2009) and is more and more used in 
the clinics. An illustration of strain imaging of the heart is presented Figure 1.12. 
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Figure 1.12 Illustration of strain and strain rate imaging of the heart of a healthy volunteer. Left: 
strain rate image overlaid onto B-Mode in the apical 4-chamber view. Time profiles of strain rate 

(middle) and strain (right) at 3 different positions along the interventricular septum during a 
complete cardiac cycle. AVC: aortic valve closure. MVO: Mitral valve Opening. (D’hooge, 2000)  

 

1.3.5.6. 3D imaging 
One of the limits of ultrasound imaging compared to its best competitors (MRI, CT, etc.) is that 
most of the scanners currently in use are limited to 2D imaging. However, 3D imaging is possible 
and desirable. The major reason for the need of 3D ultrasound is to overcome the limits of viewing 
in 2D the 3D anatomy. Indeed, with 2D imaging the operator needs to integrate multiple 2D 
images in his/her mind to reconstruct the 3D anatomy, which is inefficient and may lead to 
variability and incorrect diagnoses, especially for echocardiography where a limited number of 
views are available. 

The main advantages of 3D include: 

 Volume rendering and segmentation 

 Arbitrary 2D slices of the volume may be visualized (not only in the plane defined by the 

probe, which is the case in 2D). Moreover, 2D slices can be recomputed and visualized a 

posteriori. 

 Visualization of complex geometry (e.g. tumours vascularisation) 

 Precise measurements of metrics (length, radius, volumes, …) with reduced inter-operator 

dependence 
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Up-to-date, two main techniques exist to perform 3D ultrasound imaging: moving a 2D 
transducer to obtain multiple 2D images, or using a dedicated 3D matrix probe. The former case 
can again be divided into subcategories, depending on the way the 2D images through the volume 
are obtained: one possibility is to scan freely move the probe on the patient’s skin and recombine 
the images using correlation algorithms (Downey and Fenster, 1995). In this case, some systems 
may integrate a tracking device to register the movement of the probe (Mercier et al., 2005). The 
other subcategory consists of building a “virtual” 3D probe consisting of a linear array that can 
be either translated, rotated or tilted by a motor to scan the volume. Finally, in the second main 
technique a dedicated 3D probe composed of a 2D matrix of ultrasonic transducers is used, 
allowing to directly image the volume below the probe. In a similar manner than with phased-
array probes, diverging waves can be emitted to extend the field of view to a pyramidal shape. 
This solution implies a high number of transducers: to be used with standard ultrasound scanners, 
electronics are integrated within the probe to pre-process the signals and reduced the number of 
channels to be sampled. Once 3D volumes acquired, the 2D techniques detailed above can be 
directly applied to obtain volumetric Doppler, strain imaging, etc.. 

Studies have shown the potential of 3D ultrasound imaging for cardiac applications on foetuses 
and adults hearts, but it is however still limited by the low framerate (Lang et al., 2012; Yagel 
et al., 2007). 

1.3.6. Current limits of clinical tools 
Although the large number of tools available to clinicians to examine the heart, each of them has 
drawbacks and limitations. An ideal imaging tool would be: cheap, non-ionizing nor invasive, 3D 
and with a good temporal resolution. 

1.4. Ultrafast ultrasound imaging 

1.4.1. Plane waves, diverging waves and coherent 

compounding 
In the following paragraphs, we will present ultrafast ultrasound imaging, to be opposed to 
conventional ultrasound. In the latter, we saw that an image is formed line by line, so the 
maximum framerate is limited by the necessary time to form one line (i.e., the depth of the 
image) multiplied by number of desired lines. Ultrafast imaging relies on the insonification of the 
whole region to be scanned in one ultrasound transmission. Therefore, the time to form an image 
is only limited by the time-of-flight necessary for the wave to travel back and forth the depth of 
the image. If the desired image has N=100 lines, ultrafast imaging allows to multiply the 
framerate by a factor N=100, allowing to reach up to 10.000 frames/seconds. For linear array 
probes, a plane wave is transmitted to scan the medium directly below the probe, whereas 
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diverging waves can be sent by phased-array probes to image a wider sector2 (Figure 1.13). To 
form the image, the echoes are processed by a conventional delay-and-sum beamformer. The 
drawback of ultrafast imaging is that as the transmitted beam is not focalized, the contrast and 
the resolution of the resulting image is lower than what is obtained with conventional ultrasound 
imaging. 

 

Figure 1.13 Principle of ultrafast ultrasound imaging. The whole medium is insonified by only one 
ultrasound pulse. The wave sent by the transducer can be plane for linear probes (a) or diverging for 

phased-array probes (b). Figure from (Correia, 2016). 

To overcome these limits, Montaldo et al., suggested the transmission of multiple tilted plane 
waves. Their coherent compounding in post-processing is equivalent to synthetic focusing in 
emission, as illustrated on Figure 1.14 (under the assumption that there is no significant 
movement in between their transmissions, as we will discussed later in chapter 3). By doing so, 
both contrast and resolution can be enhanced and compared to conventional ultrasound imaging, 
while the framerate is still significantly higher (Montaldo et al., 2009). As always, a trade-off has 
to be made: the higher the number of plane waves used, the better the synthetic focusing and 
hence the resulting image, but the lower the framerate. Thus, the choice of the number of plane 
waves is made according to the experimental requirements: typically, about 40 plane waves are 
sufficient to retrieve a quality equivalent to conventional ultrasound. 

That being said, one could legitimately wonder the point of generating real time images at 
thousands of frames per seconds. Thus in the following paragraphs, we will introduce some 
applications made possible by ultrafast ultrasound imaging. 

                                         
2 Note that for the sake of simplicity, we will refer to plane waves to further describe this technology in 
this manuscript, but all the developments can be applied on diverging waves too. 
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Figure 1.14 Coherent compounding for ultrafast imaging. (a) A series of plane (or diverging) waves 
are emitted, and echoes are recorded for each transmission. In post-processing, plane waves can be 
synthetically focused in any pixel of the image (b), (c), (d). Image from (Montaldo et al., 2009). 

1.4.2. Elastography 
Elastography is a technique consisting of measuring the stiffness of tissues. One of the primary 
application of ultrafast ultrasound was the imaging of the propagation of shear waves within the 
body (Shear Wave Elastography, SWE). Indeed, the shear wave speed is a good way to assess 
the rigidity of the tissues in which they travel, which is a relevant marker to detect pathologies. 
In the human body, shear waves travel at speeds in the range 1 to 10m/s: thus they propagate 
through the field of view of ultrasound within a few milliseconds. Hence, ultrafast framerate 
(>1000frames/second) are required to correctly image their motion and estimate their speed in 
a 2D region of interest. The proof of concept of imaging shear waves propagation (Sandrin et al., 
1999), local shear modulus calculation (Sandrin et al., 2002), and medical application on breast 
cancer detection (Bercoff et al., 2003) were developed in our group in parallel to the emergence 
of 2D ultrafast ultrasound imaging. For a more detailed introduction to elastography, please refer 
to the chapter 4 of this thesis. 

1.4.3. Ultrafast Doppler 
A few years after the developments of elastography, ultrafast ultrasound was also applied to 
Doppler imaging (Bercoff et al., 2011). Indeed, we saw that pulsed Doppler modes were limited 
by the size of the region of interest in which Doppler measurements are made. Ultrafast imaging 
allows to overcome this limit as it provides a continuous sampling at a high PRF for each pixel 
of the image, which makes possible the computing of all Doppler modalities in each point: 
spectral, colour and power Doppler (Figure 1.15). Therefore, although it may seem surprising at 
the first time, the high framerate brought by ultrafast ultrasound improves the imaging of slow 
motions as well. Applied to brain imaging, it led to high sensitivity mapping of cerebral blood 
volume and functional ultrasound (Macé et al., 2011; Mace et al., 2013; Demené et al., 2014). 
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Figure 1.15 Conventional versus ultrafast ultrasound Doppler measurements. (a) Conventional colour 
Doppler allowing for the 2D imaging of blood flows. A limited number of samples of each scan line 

are available for Doppler calculations. (b) Conventional spectral Doppler, allowing for velocity 
quantification. Only one scan line is sampled for Doppler. (c) Ultrafast Doppler, allowing for both 

imaging and quantification of a large number of pixels, as the sampling of all scan lines is performed. 
Figure from (Errico, 2016) 

1.4.4. Imaging the propagation of natural waves  
Ultrafast ultrasound also allows for the imaging of shear waves propagating naturally in the 
body. For instance, the propagation of the pulse wave in the blood vessels has been successfully 
imaged (Figure 1.16) and linked to the biomechanical properties of the arterial wall (Fujikura et 
al., 2007; Couade et al., 2010; Konofagou et al., 2011). The electromechanical wave in the heart 
has also been imaged, and showed to be a promising tool for the detection of arrhythmias (Provost 
et al., 2011). This topic will be further discussed in chapter 5. 

1.4.5. 3D ultrafast ultrasound imaging 
The developments of the technologies brought by 2D ultrafast imaging can be extended to 3D 
and significantly broaden their scope of application. For instance, both natural and shear waves 
propagation occur in 3D, but their quantitative assessment is based on 2D observations at the 
cost of simplifying assumptions. This is of crucial importance to detect mechanical anisotropy 
(Lee et al., 2012) or analysing cardiac contraction activation (Provost et al., 2013). Furthermore, 
extending ultrafast Doppler to 3D would allow for the complete and qualitative angiography of 
complex networks of blood vessels, such as brain or tumours. 

Unfortunately, as discussed previously, 3D conventional imaging is limited by its low framerate. 
3D ultrafast ultrasound was recently developed based on the use of 2D matrix arrays (Jensen et 
al., 2013; Provost et al., 2014) and promising applications have been investigated. For instance, 
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the 3D ultrafast ultrasound scanner developed in our group was used to perform 3D ultrafast 
Doppler imaging of the carotid bifurcation (Figure 1.17), 3D shear wave imaging, and 3D vector 
flow imaging (Provost et al., 2014; Correia et al., 2016, 2018). These studies used heavy 
equipment, as the matrix array had 1024 channels to be sampled. Thus, promising researches are 
made to reduce the number of channels of 3D probes, either by using sparsely populated (Roux 
et al., 2017) or row-column arrays (Rasmussen et al., 2015; Flesch et al., 2017). 

 

Figure 1.16 Ultrafast imaging of the pulse wave in the human abdominal aorta. The wave front 
(arrow) is travelling from right to left. Figure from (Konofagou et al., 2011). 

 

 

Figure 1.17 3D ultrafast Doppler imaging of the carotid bifurcation of a healthy volunteer. B-Mode is 
obtained via a dedicated sequence using 81 plane waves. Power Doppler, Tissue Doppler and 

quantitative spectral analysis were derived from the same acquisition (1 plane wave sent at a PRF of 
3000 volumes/second during 1 second). Image from (Provost et al., 2014). 
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1.5. Thesis objectives 
In this context, the objectives of this PhD thesis are to pursue the development of 3D ultrafast 
ultrasound for cardiac application, and especially toward the characterisation of the cardiac 
muscle. This manuscript is articulated around four main topics: 

The first chapter will present the 3D ultrafast scanner used during this PhD, and the 
technological developments brought to it in order to perform real-time imaging. Then, we will 
introduce tools created to visualize the 3D (or 4D) data produced during this PhD thesis. 

The second chapter will be dedicated to the mapping of cardiac muscle fibres orientation. 3D 
fibres maps will be shown on a healthy volunteer, both before and after cardiac contraction. 
Moreover, the effects of movements on the results will be studied, and a methodology to reduce 
the undesired artefacts will be presented. 

The third chapter will investigate the feasibility of imaging the propagation of natural elastic 
waves propagating in the heart, before and after its contraction. The difference of propagation 
speeds depending on the stiffness of the heart will be shown on two healthy volunteers. 

The fourth chapter will introduce a novel methodology to track the activation of the cardiac 
contraction and measure the corresponding activation delays on rat hearts. Results obtained 
during natural rhythm, pacing and hypothermia will be shown. Then, the clinical feasibility of 
the technique will be investigated in 2D: applications on foetuses and adults hearts will be 
discussed. 
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  3D Ultrafast Ultrasound Imaging 

2.1. Introduction 
3D ultrasound imaging is of great interest as it would overcome the 2D-limitations of echography, 
but yet conventional ultrasound methodology does not allow to perform 3D imaging with 
sufficient frame rates for cardiac applications (Yagel et al., 2007; Lang et al., 2012). However, 
over the last few years, 2D ultrasound imaging has undergone important developments with the 
introduction of ultrafast imaging techniques achieving up to 10.000 frames/s, as opposed to 50 
to 200 frames/s in traditional clinical systems. Several methods exists to reach ultrafast frame 
rates in large fields of view: multiline transmissions (Mallart and Fink, 1992; Tong et al., 2013, 
2014), plane waves transmission (Sandrin et al., 1999; Tanter et al., 2002), diverging waves 
(Couade et al., 2009; Honjo et al., 2010; Provost et al., 2011b; Papadacci et al., 2014), or 
retrospective gating techniques (Pernot et al., 2007; Shougang Wang et al., 2008; Provost et al., 
2010). 

Ultrafast frame rates proved their potential for the 2D study of rapid phenomena such as the 
propagation of artificially-induced shear waves (Sandrin et al., 2002; Bercoff et al., 2004), natural 
waves propagating in the tissues, e.g. the pulse wave in the blood vessels (Pernot et al., 2007; 
Fujikura et al., 2007; Konofagou et al., 2011) or the electromechanical wave in the heart (Provost 
et al., 2011a). Furthermore, high frame rates improve temporal resolution, which in turn improve 
the quality of tissue motion and blood flow mapping. For example, ultrasensitive Doppler imaging 
(Macé et al., 2011; Demené et al., 2014) allows the quantitative characterization of tumours 
(Tanter et al., 2008), and functional imaging of the brain (Macé et al., 2011; Osmanski et al., 
2014). 

The extension of these ultrafast imaging techniques to 3D would significantly broaden their scope 
of application. For instance, the propagation of both natural waves and artificially-induced elastic 
waves are 3D phenomena, yet their quantitative assessment in 2D can only be done at the cost 
of simplifying assumptions., which is especially important when imaging the electromechanical 
wave to detect cardiac arrhythmias (Provost et al., 2013). 

Through this PhD, 3D ultrafast imaging using plane or diverging waves transmission has been 
used, with the objective of developing cardiac applications. The hardware used relies on 2D 
matrix array probes, the only possibility to image volumes using a unique ultrasonic pulse, which 
allows to reach ultrafast framerate (up to 10.000 volumes/seconds). The development of 3D 
ultrafast imaging has brought several challenges to the team: how to process the important 
amount of raw data to reconstruct a volume, how to perform real-time imaging, and how to 
visualize 3D/4D data. In this chapter, we will present the hardware used, and the developments 
made in order to perform real-time imaging, a fundamental functionality for in-vivo applications. 
Then, the tools created for 3D and 4D data visualization will be presented. 
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2.2. Presentation of the 3D ultrafast ultrasound 

scanners and probes 
The scanner used in this work was built-in in our group to drive 2D matrix array probes up to 
1024 channels (Figure 2.1). Three different probes were used in this PhD: 

 3MHz, 32*32=1024 elements, 0.3mm pitch (Vermon, France) 

 8Hz, 32*32=1024 elements, 0.3mm pitch (Vermon, France) 

 10MHz, 16*16=256 elements, 0.3mm pitch (Imasonic, France) 

 

The scanner is made of 4 ultrafast ultrasound scanner combined (Aixplorer, Supersonic Imaging, 
France) remotely controlled by a computer. Each Aixplorer has 256 channels in reception and 
128 channels in emission, and controls one fourth of the elements of the 1024 probes. Thus, to 
record all 1024 channels, each emission were repeated twice and combined in post-processing. All 
the computing is made with Matlab and CUDA languages. 

As we saw in the introduction chapter, ultrafast imaging is based on the emission of tilted planes 
or diverging waves. To emit waves, all channels of the probe send an ultrasonic pulse (usually 
one or two wavelength) which delays are chosen to control the wavefront accordingly. Each wave 
is defined as being emitted by a virtual source located behind the probe (Figure 2.2). The position 
of the virtual source defines directly the wavefront: the angulations are changed by translating 
the source on a plane parallel to the probe, and the plane or diverging shape depend on the 
distance from the virtual source to the transducers: if the source is close (a few centimetres), the 
wavefront is diverging, whereas if it is far (a few meters), the wavefront is planar. In practice, 
for each individual source, the user defines the x,y,z position of the virtual source, and the delays 
are computed accordingly by the driving algorithm.  

After the reception and sampling of the echoes, the volume is reconstructed by a conventional 
delay-and-sum beamformer and demodulated to IQ data. These steps are implemented on GPUs, 
an absolute requirement to achieve reasonable computation times. For instance, in the case of 
plane wave imaging, the formation of a volume of 10*10*100mm with voxel size of 
0.3*0.3*0.25mm takes approximately 80ms. In the case of diverging waves the beamforming 
calculations are based on a spherical coordinate system, thus an additional calculation step is 
necessary to obtain Cartesian coordinates and volumes. Because of the memory available on 
GPUs is limited, this conversion is computed by the CPU. 
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Figure 2.1 Ultrasound scanner and probes used in this PhD. Left: 1024 channels ultrafast ultrasound 
scanner. Top right: 32*32 probe. Both 3MHz and 8MHz have the same design (Vermon France). 

Bottom right: 16*16, 10MHz probe (Imasonic, France).  

 

 

Figure 2.2 Definition of planes or diverging waves emitted by the 2D probes. (a) Transmitted waves 
are defined as spherical waves emitted by virtual sources located behind the probes’ transducers 

arrays. (b) For each individual sources, transmission delays and subapertures are defined. (c) When 
virtual sources are relatively close to the probe (a few centimetres), small subapertures are chosen 
and diverging waves are emitted. (d) When sources are located far (several meters), full aperture is 

used and plane waves are sent to the medium. Illustration from (Provost et al., 2014) 

Element under copyright, diffusion not authorized  

Elément sous droit, diffusion non autorisée 
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2.3. Development of specific tools 

2.3.1. Real-time imaging 
Originally, the 3D ultrafast scanner presented had no real-time modality: the delay between the 
triggering of an image acquisition and its display was a few seconds. In-vivo imaging was therefore 
a challenge, as it was difficult to scan the tissues to choose an optimal field of view. Thus, a real-
time imaging modality was developed to facilitate the positioning of the probe. The framework 
was based on two findings: 1) to choose a desired field of view, clinicians do not need a 3D volume 
visualization, in practice a 2D image is sufficient to position the probe. 2) all the 4 Aixplorers 
scanners put together in the system have integrated computers, which are not capitalized on 
calculations. Both of these points were solved as discussed below. 

2.3.1.1. Saddle imaging: 2D imaging with a 3D probe     
The first point is that the clinicians needs only 2D images to position correctly the probe. Thus, 
there is no need to beamform a full 3D volume but rather just one 2D slice. Moreover, once the 
probe correctly positioned, there is no further real-time imaging during the ultrafast acquisition. 
Hence, the acquisition protocol has been defined as 1) 2D real-time imaging until 2) the ultrafast 
3D acquisition is launched.  

To enhance the quality of the 2D-real-time images, a specific ultrasound sequence was designed 
to mimic a regular 2D imaging probe. Let’s define the imaging plane as the YZ slice at X=0mm, 
i.e. the centre of the probe (Figure 2.4). Then the transmitted beam is:  

 focalized at X=0mm in the XZ plane, to maximize the energy sent in the imaging plane 

 plane or diverging in the YZ plane, to perform ultrafast imaging. 

By doing so, all the elements of the probe contribute to insonify the imaged area, and tilted plane 
or diverging waves can be combined to enhance the image. An illustration of the delays laws 
used to transmit the ultrasonic beam is presented Figure 2.3: as the representation looks like a 
saddle, this technique has been named “Saddle Imaging”. Moreover, a simulation of the pressure 
field obtained is visible on Figure 2.4. Finally, a comparison of the images obtained on a phantom 
using 3D imaging and the 2D saddle imaging using 40 diverging waves in each case is presented 
on Figure 2.5. Both contrast and resolution are enhanced when using saddle imaging, for the 
following reasons. Firstly, energy is focused in the imaging plane, rather than being spread in the 
whole volume. Secondly, as the transmitted beam is already focused along one dimension (here, 
X), all the plane/diverging waves sent are used for coherent compounding along the other 
dimension (Y), which improves the quality of the synthetic focusing in each pixel of the 2D 
image. 
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Figure 2.3 Illustration of the 2D delays law used for real-time imaging. The X and Y axis represents 
the elements of the 2D probe, and the Z-axis the delays applied before their ultrasonic pulse 

transmission. The thick red line symbolises the imaging plane. In this case, the image was defined by 
the YZ plane at the centre of probe. Thus, the ultrasonic beam is focused along the XZ plane and 

diverging (or planar) in the YZ plane. 

 

 

Figure 2.4 Real-time imaging: maximum pressure field of the beam transmitted to enhance the 
quality of the 2D image. Two slices of the 3D pressure field emitted are presented: YZ plane at 

X=0mm (left) and XZ plane at Y=0mm (right). In this example, the wave emitted is diverging on 
the YZ plane (with no tilt angle) and focalized on the XZ plane. Simulation made with k-wave 

Toolbox (Treeby et al., 2014). 
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Figure 2.5 Comparison of 2D and 3D images quality on a phantom for real-time imaging. (a) Field of 
view of the phantom (CIRS Model 054GS). (b) Image obtained using the dedicated 2D imaging 

sequence. (c) Slice of the volume obtained using 3D imaging. Both acquisitions were performed using 
40 diverging waves in transmission.  

2.3.1.2. Parallel processing 
Once the echoes recorded, the 2D image must be beamformed, which means processing the RF 
signals of 1024 channels. Transferring the raw data and beamforming on the main computer is 
not desired for two reasons. First of all, the main computer would have to process the whole 1024 
channels at once, whereas each Aixplorer could process the 256 channels they control in parallel. 
Secondly and most importantly, the amount of raw data to transfer would be important. Indeed, 
the size of the sampled, raw signals is: 

𝑟𝑎𝑤 = 𝑛 ∗ 𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ∗ 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞 ∗ 𝑛   ∗ 𝑛    

And the size of the beamformed image by each Aixplorer is: 

𝐼𝑄𝑖𝑚𝑎𝑔𝑒 =  𝑁 ∗ 𝑁 ∗ 𝑛    

For example, let’s consider a typical setting: a 10*30mm image scanned at an ultrasound 
frequency of 9MHz and 13 plane waves: the size of the raw data is ≈13Mo versus ≈0.6Mo after 
beamforming by each Aixplorer: the amount of data to transfer is divided by 22. Therefore, it is 
more efficient to beamform locally on each of the Aixplorers the images “seen” by the parts of 
the probe they control and send their contribution to the main computer, where the 4 images 
are coherently compounded and displayed. 

With this method, real-time imaging can be achieved with a sufficient framerate to position the 
probe (10 to 30 images/seconds). The real-time workflow developed is illustrated Figure 2.6. 
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Figure 2.6 Illustration of the real-time architecture. The probe is connected to 4 Aixplorers systems 
(256 channels each). Each Aixplorer is locally beamforming the image “seen” by the part of probe it 
controls. Then, the 4 temporary images are transferred to the main computer, coherently recombined 

and displayed. The width of the arrows symbolises the amount of data to be transferred. The 
Aixplorers are controlled from the main computer using Linux tools and the processing is made with 

Matlab and CUDA programming languages.  

2.3.1.3. Triggering acquisitions 
Within this 3D ultrafast machine, 4 independent ultrasound scanners need to be synchronized, 
at two different levels. First, at a high speed level to ensure that they emit ultrasonic pulses 
perfectly synchronized. In order to do so, the four systems share the same high-frequency, 
180MHz clock. Furthermore, at a lower speed, the triggering of acquisitions on each system is 
managed via the main computer using an Arduino board connected to IN and OUT triggers. A 
small routine in the Arduino is controlling the synchronisation of the Aixplorers both for real-
time imaging and ultrafast acquisition. Moreover, an additional trigger allows to synchronize 
ultrafast acquisitions on an external source (e.g. an ECG). 

2.3.2. Visualisation tools 
Once a 3D ultrafast acquisition has been made comes the question of how to visualize 3D (or 
4D) data sets. A primary and fast solution is to display a selection of 2D slices that can be 
embedded into for loops to account for time. This solution is handy but it becomes quickly 
difficult to understand complex geometric structures or data. For a more comprehensive analysis, 
specific tools are required. For example, Amira software is designed to visualize 3D and 4D data 
sets using an intuitive graphic user interface (GUI) and offers great renderings. However, data 
must be preliminary saved on the computer, loaded in Amira and then, the operator can create 
the rendering using the GUI. In consequence, Amira is not intended to be used for pre-
visualization of the results but rather to generate “publications-ready” figures. Moreover, it 
requires buying an additional license. Thus, through this PhD, specific tools to visualize 3D and 
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4D data within the Matlab environment were created, with the requirements of being useable 
with the command line to perform automatic imaging. 

2.3.2.1. Fibres 
In the chapter 3 of this PhD, the fibres orientation within cardiac muscle will be imaged and 
visualized. Thus, a tool was developed in order to do so. The main inputs of the function are 1) 
fibres direction in the XY plane for each voxel, 2) the degree of anisotropy of each voxel. Then, 
based on the streamslice Matlab function, fibres are created in the 3D space and visualized. 
The direction and colour of the fibres depend on their direction and their transparency is set 
according the fractional anisotropy of the voxels. An illustration obtained during this PhD is 
visible Figure 2.7. 

2.3.2.2. Heart walls 
The second function written aims to visualize the heart walls in 3D and will be used in the 
chapters 4 and 5 of the manuscript. Its main inputs are 1) the transparency of each voxel and 2) 
the colour of each voxel. In the case of B-Mode representation, both inputs are identical. The 
used of the second input comes in handy to associate B-Mode and another data, such as Tissue 
Doppler velocity, the delay before beginning of contraction of the heart, etc. (Figure 2.8). 

2.3.2.3. The 4th dimension 
Finally, to visualize the evolution of 3D data with time, an interactive for loop function has 
been written and can be used in combination with any visualization function.  The advantages 
of doing so is that for each time, the 3D volume can be explored. However, the delay to 
generate a 3D figure for each time step limits the fluidity of the visualisation. Hence, if a fast 
framerate is preferred over the freedom of 3D exploration, creating a video and visualizing it 
offline is a better solution. 

2.4. Conclusion 
In this chapter, the 3D ultrafast ultrasound scanner used in this PhD has been presented, as the 
well as the associated matrix array probes. Then, a workflow has been created in order to perform 
real-time 2D imaging, a necessity to do 3D ultrafast imaging in-vivo. Finally, Matlab tools have 
been developed to quickly visualize the 3D or 4D data generated, without the need of an external 
dedicated software. In the following chapters, applications of 3D ultrafast cardiac imaging using 
these tools will be presented.  
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Figure 2.7 Rendering of the visualization tool developed for fibres orientation imaging. The colour 
codes the directions of the fibres in the XY plane, and the transparency along the lines represents 

the degree of local anisotropy. Fibres are supposed parallels to the XY plane. Here, the orientation of 
cardiac muscle fibres of a healthy volunteer is shown. 

 

 

 
Figure 2.8. Illustrations of the results obtained with the tool developed to visualize the heart walls. 
In this example, a rat heart is shown. To facilitate further the visualization, the 3D volumes were 

cropped by the plane delimited in red. (a) B-Mode volume. (b) Activation delays of the contraction 
of the heart (see chapter 5 for more information). The transparency of the voxels depends on the B-

Mode intensity, and their colour on the activation delay. 
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  3D Backscatter Tensor Imaging 

3.1. Introduction 
In this chapter, we will develop 3D Backscatter Tensor Imaging (3D BTI), a technique to image 
the orientation of myocardial fibres using a 4D ultrafast ultrasound scanner. This work is the 
direct continuation of Clement Papadacci’s PhD thesis (Papadacci, 2014), in which he showed 
the feasibility of using 3D BTI to image the orientation of cardiac fibres in open-chest pigs. In 
this chapter, we will firstly show the application of 3D-BTI transthoracically on healthy 
volunteers, which we published as the two co-first authors (Papadacci et al., 2017). Then, a 
methodology to reduce movement artefacts will be introduced.  

3.1.1. Motivations   
The myocardial fibres architecture plays a major role in the cardiac function. Fibres orientations 
vary continuously and smoothly through myocardial walls (Streeter and Bassett, 1966) and this 
complex organization is closely linked to the mechanical and electrical myocardial function (Arts 
et al., 2001; Costa et al., 1999; Waldman et al., 1988). For instance, the helicoidal fibres 
distribution in the left ventricular walls contributes to the torsional motion of the heart during 
the ejection phase, which is believed to improve the heart’s pumping efficiency (Hansen et al., 
1991; Taber et al., 1996). The fibres of the heart are also related to its electromechanical 
properties (Hooks et al., 2007; Kadish et al., 1988; Roberts et al., 1979; Taccardi et al., 1994): 
indeed, the electrical activation propagates preferentially in the direction of myocardial fibres 
and results in their synchronous contraction. Myocardial fibre disarray is thought to appear in 
the early stage of many pathologies such as in cardiomyopathies or fibrosis (Tseng et al., 2006). 
The mapping of the fibre architecture, on the one hand, could increase our knowledge of the 
cardiac function (Savadjiev et al., 2012), and on the other hand, could potentially enable early 
diagnosis of cardiomyopathies. Yet, no method to map the fibre architecture is currently used on 
a regular basis for clinical purposes. 

3.1.2. State of the art 

3.1.2.1. The fibres architecture of the heart 
The heart muscle, the myocardium, is a complex three dimensional structure forming a thick 
middle layer between the outer layer of the heart wall (the epicardium) and the inner layer (the 
endocardium). It is composed of individual heart muscle cells (cardiomyocytes, often simply 
called myocytes) and collagen cells. The myocytes are roughly rectangular cells measuring 100–
150µm by 30–40µm, and are linked together by intercalated discs to form continuous fibres. The 
fibres are regrouped together in layers 3 to 4 myocytes thick called sheets (Bers, 2001), themselves 
stacked between collagen fibres (see figure 3.1). 
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Figure 3.1 Architecture of the cardiac muscle. A transmural block cut from the ventricular wall 
shows the orientation of fibres through the wall. (b) The muscle fibres are shown forming a sheet 
three to four cells thick. Collagen connects adjacent cells within a sheet, as well as adjacent sheet. 

Figure modified from (Legrice et al., 2001). 

The orientation of the fibers varies through the wall, forming an helix with an angle between the 
epicardium and endocardium of the order of 120° (Streeter and Bassett, 1966) (see figure 3.2). 
To eject blood, the myocytes contract and shorten, leading to a twisting of the left ventricle. The 
orientation of the myocytes is thus fundamental to ensure the efficiency of the blood ejection. 
Moreover, the fibers of the heart are also related to its activation sequence (Hooks et al., 2007; 
Kadish et al., 1988; Roberts et al., 1979; Taccardi et al., 1994) as the electrical activation 
propagates faster along the direction of myocytes rather than perpendicularly. 

 

Figure 3.2 Schematic representation of the fibers orientation through the left ventricle wall. The 
fibres angles varies from –α at the epicardium (epi) to +α at the endocardium (endo). The order of 
magnitude of α is ≈60°. By convention, the circumferential fibres of the midwall have an angle of 

α=0°. Adapted from (Nguyen et al., 2018). 
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3.1.2.2. Imaging the fibres architecture 

a) Magnetic Resonance Diffusion Tensor Imaging (MR-DTI) 

Magnetic Resonance Diffusion Tensor Imaging (MR-DTI) is a technique based on the tracking 
of the water diffusion in soft tissues using an MR scanner. In fibrous tissues, the diffusion of 
water is more important along the fibres than perpendicularly. To estimate fibres orientation, 
MR-DTI computes the eigenvectors and eigenvalues of the water diffusion tensor in each voxel 
of the volume imaged (Hsu et al., 1998; Scollan et al., 1998). To represent the diffusion tensor, 
ellipsoids are often used: the direction of their axis are linked to the eigenvectors, and the radii 
to the eigenvalues (see figure 3.3a). However, to visualize the anisotropy and its direction in 
volumes containing a large number of voxels, the ellipsoidal representation is not convenient. In 
such cases, a solution is to encode the fibres orientation in colours (figure 3.3b). Finally, another 
possibility commonly used is the fibre-tracking representation, or tractography. In this case, 
coherent patterns of anisotropy orientation are followed voxel-wise and represented by fibres, 
which are also colour coded (figure 3.3c). Moreover, the degree of anisotropy of the tissues is 
often represented by the fractional anisotropy (FA) coefficient (Tseng et al., 1999), which is 
computed from the eigenvalues of the diffusion tensor. The FA is a normalized value ranging 
from 0 for isotropic tissues to 1 “perfectly anisotropic” tissues, i.e. the water diffusion occurring 
only in one direction. 

 

Figure 3.3 Diffusion Tensor Imaging. (a) Schematic ellipsoidal representation of the anisotropy of 
fibres. (b). color-coded representation of a left ventricle. (c) Fiber tracking representation. Figure 

adapter from (Tseng et al., 2006). 

DTI is widely used for mapping the structural connectivity of the human brain. However, its 
application to the heart, while feasible in animals (Reese et al., 1995) and humans (Wu et al., 
2006), remains challenging in vivo due to limited frame rates, long acquisition times and limited 
robustness of the MR-DTI signals to tissue motion (Reese et al., 1995; Tseng et al., 2006; Wu et 
al., 2006).  
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b) Magnetic Resonance Elastography (MRE) 

Magnetic Resonance Elastography can also be used to assess the anisotropy of soft tissues by the 
evaluation of the elastic tensor (Sinkus et al., 2005, 2000) (for further details about MRE 
technology, please refer to chapter 4). Moreover, studies have shown the possibility of combining 
MRE and DTI to evaluate both the elastic and diffusion anisotropy of soft tissues (Green et al., 
2013; Qin et al., 2013). However, the application on cardiac imaging remains challenging, mostly 
due to the heart movements. 

 

Figure 3.4 Magnetic Resonance Elastography: application on a breast tumour. (a) MR-magnitude 
image of the breast: the tumour is located inside the red rectangle. (b) Corresponding images of the 

shear modulus. (c) Anisotropy. Adapted from (Sinkus et al., 2005) 

c) Optical methods 

Optical Coherence Tomography (OCT) is a modality similar to ultrasound, except that it is 
based on light: it uses low-coherence interferometry to produce images by measuring the 
amplitude and delay of backscattered light from tissues. OCT can be performed non-invasively 
and in real time (Huang et al., 1991), and is used to perform optical biopsies and histology 
(Fujimoto et al., 2000). As illustrated by figure 3.5, the fibers architecture is also accessible (Fan 
and Yao, 2013; Fleming et al., 2008; Wang and Yao, 2013). The main limitation of OCT is the 
poor penetration of light in biological tissues. Thus, as of today, cardiac applications are limited 
to ex-vivo applications, and small regions of interest. 
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Figure 3.5 Optical imaging techniques. (a) OCT 3D structure image of a bovine heart muscle and (b) 
fiber representations at 3 different depths. (c) 2D view of a cardiac muscle using two-photon 

microscopy. The orientation of individual myocytes is clearly visible. Adapted from (Fan and Yao, 
2013; Huang et al., 2009) 

Another optical technology, two-photon microscopy, has shown to be able to image the local 
fiber orientation (Huang et al., 2009). In a few words, two-photon microscopy is a fluorescence 
technique based on the excitation of the tissues to be imaged via two-photons, and the recording 
of the resulting fluorescence. As OCT, in-vivo and cardiac applications are restricted by the low 
penetration depth of light in biological tissues (Svoboda and Yasuda, 2006). 

d) Ultrasound 

In ultrasound imaging, several methods have been proposed to quantify the anisotropy of various 
physical parameters linked to the fiber orientation, including the ultrasonic attenuation (Baldwin 
et al., 2006; J G Mottley, 1990), the integrated backscattered intensity (Baldwin et al., 2006; J 
G Mottley, 1990; Madaras et al., 1988; Wickline et al., 1991). Recently, the use of myocardial 
stiffness using Elastic Tensor Imaging (ETI) has been introduced (Lee et al., 2012): it consists of 
retrieving the myocardial fibres orientation by measuring the elasticity of the tissues in several 
directions. Lee et al. showed that the rigidity is higher when measured in an imaging plane 
parallel to the fibers rather than perpendicular. By rotating the probe and repeating elasticity 
measurements, it was then possible to find the fibres orientation on ex-vivo myocardial samples 
of porcine and ovine hearts (see Figure 3.6a-c). During her PhD thesis in our team, Mafalda 
Correia implemented ETI on a 4D ultrafast ultrasound scanner, which gives the possibility of 
assessing the elasticity anisotropy with a single acquisition, thus leading the technology toward 
clinical feasibility (Correia et al., 2018). Preliminary results on a phantom are shown figure 3.6d. 
3D ETI has shown to have a great potential to estimate the fibers orientations of anisotropic soft 
tissues, however, it suffers several limitations, one of them being the important energy transferred 
to the tissues by the successive push beams. As of today, myocardial elastography remains limited 
to research applications.  
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3.1.2.3. Spatial coherence of ultrasonic backscattered 

echoes 
Another way to assess the anisotropy of tissues is to analyse the spatial coherence of 
backscattered echoes received on the probe. Indeed, as we will show in this chapter, the spatial 
coherence of echoes contains information about the microstructure of scatterers in the focal zone. 
This concept relies greatly on the Van Cittert-Zernike (VCZ) theorem, which was introduced in 
optics to describe the propagation of the spatial coherence of a wave field produced by an 
incoherent source, and extended to ultrasounds by Mallart and Fink (Mallart and Fink, 1991). 
The principle is the following: if a coherent, focused ultrasound wave is emitted by a probe in a 
medium and echoes are backscattered, then from another point a view, one can interpret the 
focal zone as an incoherent ultrasound source. The statistical properties of this virtual source 
depends directly on those of the scattering medium: if the distribution of scatterers is random in 
the medium, the source is incoherent. Thus, in anisotropic tissues, the spatial coherence of 
backscattered echoes will be anisotropic too.  

 

 

Figure 3.6 Elastic Tensor Imaging. (a),(b),(c): results of ETI using multiple 2D imaging places on a 
porcine sample of the left ventricle myocardium. Fibres orientation through the wall measured by (a) 

ETI and (b) DTI. (c) Comparisons of angles measured by ETI and DTI. (d) 3D ETI: 3D 
representations of fibers orientation in a phantom. Figure adapted from (Correia, 2016; Lee et al., 

2012) 
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In medical ultrasound, the spatial coherence of backscattered echoes has found diverse 
applications, such as aberration correction (Hollman et al., 1999; Mallart and Fink, 1994; Walker 
and Trahey, 1997), sound velocity estimation (Imbault et al., 2017; Pai-Chi Li and Meng-Lin Li, 
2003) or image formation (Dahl et al., 2012; Lediju et al., 2011). In particular, Derode and Fink 
suggested the use of spatial coherence to characterize the distribution of scatterers in fibrous 
composite materials (Derode and Fink, 1993). In their study, they showed that the spatial 
coherence of echoes received by the elements of the ultrasonic probe decreased faster with the 
distance between elements when the probe is perpendicular to the fibers rather than parallel (see 
figure 3.7). 

Later in our group, Clement Papadacci continued this work and applied it to the estimation of 
fibres orientation in biological tissues, and in particular to ex-vivo porcine and bovine 
myocardium (Papadacci et al., 2014a). In an analogy to DTI and ETI, this technique was named 
BTI, standing for Backscatter Tensor Imaging. The main limitation of this work was the use of 
a linear transducer, implying the need to rotate the array to perform an acquisition, making 
difficult its use in a clinical setting. In order to overcome this limit, BTI was implemented on a 
2D matrix transducer to be able to retrieve the spatial coherence in all directions parallel to the 
transducer’s plane within a single acquisition (3D-BTI). At the end of his PhD in 2014, Papadacci 
had proven the accuracy of BTI against histological measurements on ex-vivo porcine hearts 
(figure 3.8) and shown the feasibility of using 3D-BTI to estimate the fibres orientation in the 
mid-anterior region of the LV of open-chest ovine and during the cardiac cycle (figure 3.9). 

 

 

Figure 3.7 Derode and Fink study on fibrous composite materials. (a) Experimental setup. The linear 
ultrasonic array is rotated to repeat pule-echo measurements for different probe/fibres angles. (b) 
Evolutions of inter-elements spatial coherence depending on the distance between the elements and 

on the orientation of the probe with respect to the fibres of the material. The spatial coherence 
decreased faster when the probe is perpendicular to the fibers. Figure adapted from (Derode and 

Fink, 1993). 
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Figure 3.8 Validation of 3D-BTI against histology. (a) Histological and associated BTI slices 
(10mm*10mm) of a left ventricle myocardial sample. The transmural angle variation of the fibers is 
clearly visible. (b) Variations of fibres angles through the LV wall. Comparisons of values found with 
BTI and histology (in the latter case, angles were estimated using the Hough transform). (c) Bland-

Altman plot of angles found with BTI and histology. 

 

 

Figure 3.9 3D-BTI: 3D representation of fibers orientation in the left ventricle of an open-chest sheep 
at four different moments of the cardiac cycle. (a) Late Diastole, (b) Early Systole, (c) Late Systole, 

(d) Early Diastole 
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3.1.3. Objectives 
In this chapter, our objectives were to continue this work and develop 3D-BTI toward its 
application on healthy volunteers transthoracically. Then, the undesired effect of motion on 
coherence computations will be discussed, and a methodology to reduce motion artefacts will be 
introduced. Applications on healthy volunteers will be shown. 

 

3.2. 3D Mapping of cardiac fibres orientation 

3.2.1. Material and methods 

3.2.1.1. Spatial coherence on a matrix array 

transducer 
Ultrasonic spatial coherence was assessed experimentally by focusing an ultrasound wave in a 
medium and receiving the backscattered echoes on a 2D matrix array transducer (Figure 3.10a 
and b). A 2D spatial coherence function 𝑅(∆𝑥, ∆𝑦) was obtained by computing the auto-
correlation of the signals received by pairs of elements i and j distant by ∆𝑥 and ∆𝑦, along the 
main two coordinate axis of the matrix array: 

𝑅(∆𝑥, ∆𝑦, 𝑧) =
1

𝑁  − |∆𝑥|

1

𝑁  − |∆𝑦|

∑ 𝐼𝑄 (𝑥 , 𝑦 , 𝑧) 𝐼𝑄 𝑥 , 𝑦 , 𝑧 ′

∑ 𝐼𝑄 (𝑥 , 𝑦 , z)  IQ (𝑥 , 𝑦 , z)

 (2) 

Where 𝐼𝑄 (𝑥 , 𝑦 , z) is the IQ demodulation of the signal received on the element k of the matrix 
transducer with coordinates 𝑥 , 𝑦 , and ∆𝑥 and ∆𝑦 are the distances between and element i and 
element j: 

∆𝑥 = 𝑥 − 𝑥  ;   ∆𝑦 = 𝑦 − 𝑦  (3) 

The sum ∑   represents the averaging axial window. 

In random media, i.e. ultrasound scatterers are randomly distributed (figure 3.10a), the coherence 
function is predicted by the Van Cittert-Zernike theorem (Mallart and Fink, 1991), stating that 
the coherence function is given by the spatial Fourier transform of the intensity distribution at 
the focal spot. For a square matrix array, the pressure distribution at the focal spot is a 2D sinc 
function, so the coherence function appears as the Fourier Transform of a squared 2D sinc 
function. The pyramidal shape coherence function of a 𝑁  × 𝑁   2D matrix array transducer is 
displayed on figure 3.10c. 
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Figure 3.10 Principle of 3D-BTI: spatial coherence estimation on a 2D matrix array probe. (a) An 
ultrasound wave is focused in a random media by applying delays in emission. (b) The backscattered 

echoes are recorded individually for each element of the 2D array. (c) Representation of the 
theoretical coherence function for a focused emission in a random media that one would obtain with 

a matrix probe of Nx × Ny elements. 

3.2.1.2. Coherent compounding of plane waves for 

3D-BTI 
In order to focus the ultrasonic wave at specific locations in the medium, conventional ultrasound 
imaging relies on applying time delays to the transmitted wave (figure 3.10). A large number of 
transmitted waves focused at different locations of the medium are therefore required to obtain 
one single image of the medium. In volumetric imaging, the number of transmitted waves can 
reach several thousands of iterations, which results in very low volume rates. To overcome this 
issue, we used ultrafast plane wave imaging with coherent compounding (Provost et al., 2014a, 
figure 3.11A). Coherent compounding can generate, at any location of the region of interest, 
synthetic focal zones using only a few tens of emissions. Therefore, with this approach, large 
volumes can be imaged at very high volume rate (between 50 and 5000 volumes/s).  

In this work, a total of 49 tilted 2D plane waves were emitted to reconstruct one volume. 
Individual plane waves were defined by two angles ranging from -6° to 6° by steps of 2°, and 
were emitted from a 2D matrix array probe with 32 by 32 elements (3MHz, 0.3 mm pitch, 50% 
bandwidth at -3dB, Vermon) connected to the customized, programmable, 1024 channel 
ultrasound system described earlier in this manuscript. The 3D images were computed off-line 
using a dynamic receive focusing beamforming algorithm followed by coherent compounding 
(figure 3.11.B). The resulting volume had a lateral size of 9.6x9.6 mm and a 3 cm to 6 cm depth. 
The sampling of the volume was 0.3 mm laterally (32x32 lines) and 0.05 mm axially. 2D coherence 
functions were computed at each voxel (Figure 3.11.C) using equation (2). The axial averaging 
was set to 𝑛 = 5 (i.e. five periods at 3 MHz).  
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Figure 3.11 3D-BTI associated with coherent compounding. (A) Tilted plane waves are emitted and 
associated backscattered echoes are recorded. (B) Coherent compounding is applied in post-

processing to synthetically focus in each voxel location. (C) The 2D spatial coherence function is 
calculated for each voxel. (D) Analysis of the 2D coherence functions to retrieve the direction of 

anisotropy. (E) 3D vector representation of the fibres orientation. 

3.2.1.3. Analysis of the 2D coherence function using 

the Radon transform 
To interpret 2D coherence functions in a robust manner, an algorithm based on the Radon 
transform was developed. The Radon transform is a widely used algorithm in image processing 
and in biomedical engineering, for instance to reconstruct images from PET scans. In this work, 
the integral of the 2D coherence functions along straight lines passing through the centre 
Δx=Δy=0 with an angle α to the Δx axis within the range [0°-180°[ were calculated. The polar 
representation of the integral value in function of α can be approximated as a half-ellipsoid (figure 
3.12a to c): the angle for which the integral is maximal is analogous to the major axis of the 
ellipsoid and gives the preferred direction of the 2D coherence function, hence the direction of 
the fibres. Once the major axis is found, the fractional anisotropy (FA) may be calculated. In 
order to do so, the minor axis is defined as the integral value at the angle orthogonal to the 
major axis. Then, the FA is calculated as follow (Özarslan et al., 2005; Tseng et al., 1999): 

𝐴𝐹 =  2
(𝐿 − 𝑙)̅ + (𝑙 − 𝑙)̅

𝐿 + 𝑙
 (4) 

where 𝐿, 𝑙 and 𝑙 ̅are respectively the long axis length, minor axis length, and mean axis length. 
Thus, if AF=0, the 2D coherence function is isotropic, if AF=1 the 2D coherence function is non-
zeros along only one dimension (see illustration on figure 3.12c). 

Once the 2D coherence functions associated with each voxels were analysed (figure 3.11D), a 
fibre tracking algorithm was used to visualize the fibres directions in 3D using the Amira software 
(figure 3.11.E). 
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Figure 3.12 Illustration of the analysis of the 2D coherence function using the Radon transform. 
Schematically circular (a) and ellipsoidal (b) 2D coherence functions. (c) Coherence function in the 
case of a perfectly isotropic medium and a square probe. The integral of the 2D coherence function 
along lines passing through the centre of the 2D coherence function with angles α to x-axis ranging 

from [0-180°[ are calculated. (d) Polar representation of the normalized values of the integrals. In the 
case of the ellipsoidal 2D coherence function, the orientation, semi-major and semi-minor axis of the 

ellipsoid are highlighted. The fractional anisotropy found in the cases (a) and (c) were FA=5.10-4 
whereas in the case (b), FA=0.65. 

3.2.1.4. Experimental Setup 
Human experiments were performed by a trained cardiologist. The volunteer was positioned on 
the left lateral decubitus position. The probe was placed in the parasternal view and 2D real-
time imaging was performed to position the probe and image the antero-septal wall. The 3D-BTI 
acquisition was then launched to acquire 1s of data at a rate of 90 volumes/s. The study was 
carried out in accordance with the Declaration of Helsinki and was approved by the French 
ethical committee (CPP Paris Ile de France VI, N° 15-15). Informed consent was signed by the 
volunteer. 

3.2.2. Results 
A sketch of the imaged region of the heart is presented in Figure 3.13, as well as the B-Modes 
images obtained with conventional ultrasound and the 3D ultrafast ultrasound scanner. To 
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illustrate intermediate results, the 2D coherence function obtained for one voxel at a depth of 
25mm and underneath the centre of the probe is illustrated on Figure 3.14. 

Figure 3.15 shows the helical fibre distribution obtained in the left ventricle anterior wall at mid-
level, both in systole and in diastole. The variation of fibres orientation across the wall is 
highlighted in Figure 3.16. Fibre orientation was found to vary gradually through the ventricular 
wall with an absolute difference of 99° from the epicardium to the endocardium, which is 
consistent with the literature (Streeter et al., 1969; Greenbaum et al., 1981; Rohmer et al., 2007; 
Papadacci et al., 2014b). 

 

 

Figure 3.13 Region imaged for 3D BTI. (a) Illustration of the anterior wall imaged (Image credit: 
Patrick J. Lynch, CC-BY-2.5). (b) Preliminary screening using a conventional ultrasound scanner. 

(c) Slice of one volume extracted from the 3D ultrafast ultrasound acquisition. 

 

 

Figure 3.14: 2D coherence function of the voxel located 25mm underneath the middle of the probe. 
(Fractional anisotropy = 0.49) 
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Figure 3.15 Transthoracic imaging of myocardial fibre orientation in the human heart. (a) Angle 
definition with respect to LV: circumferential fibres have a 0° angle. Figure adapted from (Streeter et 
al., 1969). The orientations of the antero-septal LV wall fibres are shown in end-diastole (b) and end-

systole (c). 

 

 

Figure 3.16 3D-BTI: Variations of angle across the cardiac wall thickness, in systole and diastole. To 
facilitate the comparison, the thickness of the wall in expressed in percentages. 
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3.2.3. Discussion 
In the first part of this chapter, we pursued the development of 3D-BTI and showed the feasibility 
of imaging the fibres orientations in the human transthoracically during both systole and diastole. 
The transmural fibres variation was found to be 99° in systole and changed moderately during 
the diastolic phase despite the increase of wall thickness, which is in good agreement with 
literature (Streeter et al., 1969; Greenbaum et al., 1981; Rohmer et al., 2007; Papadacci et al., 
2014b). 

3D-BTI has the potential to become a clinical tool for the early detection of fibre disorders linked 
to cardiac diseases. For instance, myocardial fibres disarray is a symptom of hypertrophic 
cardiomyopathy or post-infract remodelling of the left ventricle. Moreover, the fractional 
anisotropy calculated can be used to map the anisotropy of soft tissues, which could be of interest 
to quantify collagen infiltration and fibrosis content. 

The advantages of 3D-BTI are that it can be performed in-vivo non-invasively. Contrary to shear 
wave based techniques using radiation pressure, it does not implies an important transmission of 
energy to the cardiac tissues, and can thus be performed continuously during the whole cardiac 
cycle at a high frame rate. Moreover, the use of 2D diverging waves would give access to larger 
fields of view, allowing to use 3D-BTI on the whole heart within a single acquisition (Papadacci 
et al., 2014b; Provost et al., 2014). However, using diverging waves would result in a non-uniform 
spatial resolution: this limitation should be further evaluated in future studies. In a general 
manner, BTI may be affected by low signal to noise ratio at large depths, although the coherence 
calculations may reduce the impact of incoherent noise such as clutter and thermal noise. In the 
case of the incoherent noise becomes higher than coherent signals, the 3D-BTI robustness may 
drop. This question should be further investigated. Moreover, the segmentation of the anterior 
wall using ultrafast B-Modes images remained challenging, and was performed manually by a 
trained cardiologist. This step could be eased by a dedicated high quality imaging sequence, such 
as harmonic imaging. 

Currently, 3D-BTI does not allow to map the z-component of the fibres orientation. This 
limitation is avoided if of the fibres are parallel to the 2D matrix probe, which is the case for the 
anterior cardiac wall imaged through the parasternal window and skeletal muscle. The use of 
subapertures in reception could overcome this limitation (Tanter et al., 2002), which is the object 
of on-going work in our group.  

3.3. Correction of aberrations due to movement 
In the following, we will discuss the undesired effect of motion on 3D-BTI. As we saw previously, 
it relies on coherent compounding in order to focus synthetically the emitted plane waves in a 
large number of voxels. Yet, the undesired effect of motion on coherent compounding are well 
known and have been widely studied in the literature (Denarie et al., 2013; Poree et al., 2016): 
as the medium moves between successive plane waves emissions, the synthetic focusing is not 
accurate anymore (figure 3.17). The effect of motion is usually very small in ultrafast imaging 
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when using a limited number of plane wave emissions (typically less than 5). BTI, however, 
requires many emissions (on the order of 25) in order to provide a full coherence function. 
Therefore, motion could induce important artefacts in fiber orientation estimation with BTI. 

The objective of the second part of this chapter is therefore to analyse the undesired effect of 
motion on 3D-BTI, and to develop a method to correct it. Applications on phantoms and 
transthoracic imaging of a healthy volunteer will be shown.  

 

Figure 3.17 Effect of motion on coherent compounding. The Point Spread Function is worsened due 
to motion. Image adapted from (Denarie et al., 2013) 

3.3.1. Material and methods 

3.3.1.1. Motion estimation and correction 
In the following paragraphs, we will describe how to estimate and correct the probe/tissue axial 
motion occurring during the emission of the successive plane waves combined to form one frame. 
For each plane wave transmission, RF data were demodulated to IQ signals and beamformed 
using a delay-and-sum algorithm without applying coherent compounding, meaning that one 
volume was fully reconstructed for each plane wave transmitted (figure 3.19:1-2).   

Then, axial motion between the emission of pairs of angulated plane waves αi and αj were 
estimated using the Kasai algorithm (Kasai et al., 1985, figure 3.19:3). This technique is based 
on the correlation of two IQ volumes to estimate the displacement of the scatterers: in practice, 
the phase-shift ∆   between each voxel of the two volumes is computed, and may be converted 
to displacements by a proportionality factor depending on the PRF and the wavelength 𝜆  of the 
transmitted ultrasonic pulse as follow: 

𝑠𝑝𝑒𝑒𝑑 =  ∆ ∗
𝑃𝑅𝐹

∆
∗

𝜆

4𝜋
 (5) 

where PRF is the firing rate between each plane waves and ∆  the number of emissions 
separating the two PW used for motion estimation. In practice, Δrad has absolute lower and 
upper limits: if the phase-shift to be estimated is too small, then the SNR of the estimation will 
be low and the estimation will be imprecise. If the phase-shift is |Δrad|>𝜋, aliasing occurs and 
the estimation is false3. Therefore in practice, the best solution is to choose ΔPW as high as 

                                         
3 De-aliasing solutions are studied in the literature, and could be applied to this work. 
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possible but avoiding aliasing. To facilitate this choice, the maximum speed measurable without 
aliasing for a given ΔPW may be calculated from (5) by setting Δrad=𝜋: 

𝑠𝑝𝑒𝑒𝑑 =
𝑃𝑅𝐹

∆
∗

𝜆

4
 (6) 

Moreover, using the phase shift between IQ volumes to estimate motion implies the underlying 
assumption that the correlation coefficient of each voxel is close to 1. Thus, the spatial coherence 
of the two plane wave must be high enough, i.e. the angles of the two plane waves must be close 
enough. The figure 3.18 illustrates this parameter: the pair (1,2) may be used to estimate the 
motion of the tissues between their emissions, as they are both close spatially (their angles are 
similar) and temporally (they are emitted one after the other). In a similar manner, the pair 
(10,19) may be used, assuming that there is no aliasing. However, the pair (1,9) or may not be 
used, as the angles are too different to reasonability estimate motion using the phase correlation 
of IQ signals. 

Once the phase-shifts estimated, a histogram of all values was computed and fit by a spline curve 
to extract its maximum (figure 3.19:5-6). A subtle but non-negligible parameter is the width of 
the histogram’s bins: in this study, 128 bins were defined ranging from -𝜋 to 𝜋: (bin width BW 
≈ 0.0493rad). As one can see in equation (5), the conversion from radians to mm/s is proportional 
to 1/ΔPW. Thus for this 2nd reason, a high ΔPW will lead to a more precise motion estimation. 

After the tissue-velocity estimation, the corresponding phase-shift value was taken into account 
within the coherent compounding. Finally, the 2D coherence functions of 3D-BTI were computed 
as described in the first part of this chapter (figure 3.19). 

 

Figure 3.18 Spatio-temporal distribution of the plane waves emitted to reconstruct one volume. The 
x- and y-axis represents the respective angles of the plane waves, and the numbers the emission of 

order. For example, the first plane wave emitted had angles of 8°;8°. 3 pairs of plane waves are 
highlighted, and their spatial and temporal similitude described. 
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Figure 3.19 Motion correction for 3D-BTI: workflow. (1) Emission of tilted plane waves (PW). (2) 
Beamforming of individual PW. (3) Voxel-wise estimation of displacement through phase shift 

calculation between the nth and and mth PW. (4) Repetition of step 3 for several pair of PW. (5) 
Histogram representation of the accumulated phase shifts. (6) Extraction of the value for which the 
histogram is maximum. (7) Shift correction of individual PW, synthetic focusing and 2D coherence 

functions calculation. 

 

3.3.1.2. Phantom study: experimental setup 
To understand the effects of motion, a preliminary study using a phantom was made. An isotropic 
phantom was imaged using a 16*16 matrix array (10MHz, 0.3mm pitch, Imasonic, France) 
mounted on a translational motor (Figure 3.20) and driven by a programmable, 256 channels 
ultrasound scanner. The motor speed could be set up to 12mm/s. NPW=81 plane waves were 
emitted to reconstruct each volume of size 45*45*17mm3. 

 

 

Figure 3.20 Experimental setup to study the effect of motion on 3D-BTI. An isotropic phantom is 
imaged using a matrix probe mounted on a vertical linear motor. 
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3.3.1.3. In-vivo application: experimental setup 
In the in-vivo case, we chose to image the septum of a healthy volunteer through the parasternal 
window. Indeed, in this configuration, the movement of translation of the septum during the 
cardiac cycle would be a good study-case for 3D-BTI motion correction. A 3MHz matrix array 
probe (previously used in the first part of this chapter) was connected to our 1024-channel 
ultrasound system. The acquisition lasted 1.5s at a rate of 43 volumes/seconds, using 81 plane 
waves. The reconstructed volume had a size of 9.3*10.2*70mm3. 

 

 

Figure 3.21 Schematic representation of the in-vivo acquisition to study the effect of motion on 3D-
BTI. The probe is placed on the parasternal imaging window. In that view, during the cardiac cycle, 
the septum will have an important motion along the z-axis of the probe due to the contraction of the 

ventricles. 

3.3.2. Results 

3.3.2.1. Phantom study 

a) Effect of motion 

The phantom study allowed to characterize the effects of motion on 2D coherence functions 
(figure 3.23, first column). 2D coherence functions were computed for the voxels x=y=0mm 
(centre of the probe) and averaged along the depth of the isotropic phantom (8.6mm). Without 
motion, the coherence had the expected pyramidal shape. However, in the presence of motion, it 
became progressively anisotropic. This deformation is linked to the relative angulations of the 
successively emitted plane waves: in this acquisition, the planes wave angles were distributed 
within a squared shape (Figure 3.18). Between successive emissions, the angulation along the y-
axis was systematically incremented by steps of 2° (looping in the range [-8°,8°]), whereas the 
angles along the x-axis were modified every 8 transmits: in other words, the angles of the PW 
are more often updated along the y-axis than the x-axis. Therefore, the synthetic focusing was 
less impacted by motion along the y-axis than the x-axis. Yet, the VCZ theorem states that the 
2D coherence function is the spatial Fourier transform of the intensity field at the focal spot: 
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thus, since the focalization was better along the y-axis, the intensity field at the focal spot was 
narrower, and the 2D coherence function was broader. 

b) Motion estimation 

As we discussed earlier, the estimation of motion depends strongly on the pairs of PW used for 
phase shift calculation. In this paragraph, three cases will be studied: ΔPW=1; 8 and 9; where 
ΔPW corresponds to the numbers of emissions between the two PW used for phase shift 
estimation. ΔPW =1 and ΔPW =9 corresponds to cases where the PW used had similar angulations, 
and ΔPW =8 is an illustration of using PW with strongly different angles (figure 3.18). To 
underline the effects of angulation, the pairs not having one equal angle (either along x-axis or 
y-axis) were discarded of the calculations. 

Let’s firstly consider the cases ΔPW =1 and 9. The differences of angles between the pairs can be 
considered similar: for example, the pairs (1,2) had angles (8°,8° ; 8°,6°) and the pair (1,10) had 
angles (8°,8° ; 6°,8°). Thus, from a geometrical point of view only, the correlations intra-pairs 
may be considered similar. The impact of ΔPW on the resulting parameters are summarized in 
Table 3-1 in the experimental case 𝑠𝑝𝑒𝑒𝑑 = 12𝑚𝑚. 𝑠 , 𝑓 = 9𝑀𝐻𝑧, 𝑃𝑅𝐹 = 4673𝐻𝑧 (where 𝑓  is 
the central frequency of ultrasonic pulses). As expected, the velocity estimation was better using 
ΔPW=9 rather than ΔPW=1: as the angle differences were similar, the extended delay improves 
the results. When comparing the choices ΔPW=8 and ΔPW=9, it appears that despite their 
similitude concerning the time delays between PW emissions, ΔPW=8 gives the worst speed 
estimation: the angle differences between its pairs of PW is too high to correctly calculate phase-
shifts using the correlation approximation. Thus, the angular similitude is an important criterion. 
 

ΔPW Δrad 
Fraction of 

λ (%) 
Max speed 

(mm/s) 

½ bin 
width 

(mm/s) 

Estimated 
speed 

(mm/s) 

Relative 
error (%) 

1 0.189 3.00 200 1.57 13.81 15.09 
8 1.51 24.01 25 0.20 14.67 22.22 
9 1.70 27.02 22 0.17 11.99 -0.08 

Table 3-1 Effect of the pairs of PW used for phase shift estimation on some key-parameters. Motion 
speed=12mm.s-1, emission frequency f0=9MHz, PRF=4673Hz. The planes waves PWn and PWn+ΔPW 
were used for phase shift estimation, with PWn∈[1 ; NPW-ΔPW]. Δrad: theoretical phase-shift between 
the two PW emissions. Fraction of λ: fraction of the wavelength corresponding to Δrad. Max speed: 

maximum speed estimable without aliasing (i.e. |Δrad|<𝝅). ½ bin width: ½ bin width of the 
histograms converted in mm/s, considering that it is ranging from – 𝝅 to 𝝅 and contains 128 bins 

(bin width = 0.0493rad). 

The effect of ΔPW can also be studied by looking at the evolution of the speed estimated with 
the number of accumulated pairs of PW (figure 3.22). As we mentioned before for each pairs at 
least one angle had to be equal: thus, there were less pairs usable for ΔPW=8 (n=9) than for the 
other cases (n=72). Despite that fact, for the same numbers of pairs accumulated (e.g. n=9), the 
best estimation was found using ΔPW=9. It appears clearly that the bin width of ΔPW=1 was too 
large to provide an accurate estimation. Moreover, ΔPW=8 did not seemed to converge toward 



78 
 

the real speed, although the limited number of available angles made it difficult to interpret 
furthermore the behaviour of the curve. Thus in the following, the motion will be estimated using 
ΔPW=9. 

 

Figure 3.22 Motion estimation: evolution of estimated speed in function of ΔPW and the number of 
pairs of PW used. The highlighted areas represents the bin widths of the histograms converted in 

mm/s.  

The estimations for four different speeds (0; 4; 8 and 12mm/s) are summarized in Table 3-2. 
Without surprise, the fastest the motion, the better the estimation, as it is raising the phase shift 
Δrad to be estimated by the pairs of PW. 

Real speed (mm/s) 0 4 8 12 
Estimated speed (mm/s) -0.21 3.28 7.46 11.99 
Relative error (%) ∞ 18.1 6.75 0.08 

Table 3-2 Estimated motion speed for four different settings of the translational motor. 

c) Motion correction 

Once the motion estimated, it was taken into account in the delay-and-sum beamformer to 
correct the delays used for coherent compounding. The resulting 2D coherence functions are 
presented figure 3.23 (2nd column) as well as the results using the “perfect” speed set in the 
translational motor (3rd column). The corrected coherence functions retrieved pyramidal-like 
shapes. To quantify the effectiveness of the correction, the fractional anisotropy was calculated 
systematically. The reference FA is the one obtained in the absence of motion nor correction 
(FA=0.04). After motion correction, the retrieved FA were found to be 0.07, 0.08, 0.04, 0.15 for 
the speeds 0, 4, 8 and 12mm/s, respectively. Several conclusions can be drawn from these results: 
first of all, in the absence of motion, a wrongly estimated motion leads to a deterioration of the 
resulting FA. Secondly, at 12mm/s the effects of motion on coherent compounding were too 
important to retrieve such a low FA. Finally, the results obtained with the estimated speed and 
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the “real” speed were similar, indicating that the motion estimation was sufficiently precise to 
retrieve an isotropic coherence function. However, all the 2D coherence functions with motion 
correction were less spread than the reference image (i.e. no movement nor correction), which 
means according to the VCZ theorem that the intensity field at the focal spot was broader, so 
the synthetic focusing was degraded. Artefacts may be due to the approximation underlying the 
motion estimation using IQ phase-shifts and in that case, using RF correlations may improve the 
results. Despite this, in the context of fibre tracking, the FA was sufficiently lowered to consider 
the coherence functions (and thus the phantom) isotropic even in the presence of motion. 

3.3.2.2. In-vivo study 
In this section, an in-vivo application of motion estimation and correction will be shown. A 
transthoracic ultrasound acquisition of the septum of a healthy volunteer was made through the 
parasternal window, and motion correction was applied on one frame during systole, when motion 
was substantial (27mm/s), but without aliasing. A posterori calculation of the equivalent phase 
shift using equation (5) gives Δrad=0.760rad, corresponding to 12.1% of the wavelength of the 
central ultrasound frequency. Thus, referring to the Table 3-1 in the phantom study section, we 
can suppose that the speed estimation error is below 15%. 

To estimate the benefits of motion correction on 3D-BTI, the 2D coherence functions were 
calculated for each voxel in a region of interest of 4.4*4.8*9.0mm3, and a fibre tracking algorithm 
was then used to visualize the fibres orientations. Given the relatively small size of the 
reconstructed volumes, the fibres orientation were expected to be homogeneous at a given depth. 
It appeared that without correction, boundaries artefacts were present at the interfaces 
septum/blood (Figure 3.24). The angles distribution were more consistent with correction than 
without. This is better visualized when looking at the variation of angles over depth shown in 
figure 3.24c, where the average angles and the standard deviations at each depth of the 3D 
volumes are represented. With correction, the standard deviation was lower than without, 
indicating more homogeneous slices.  

3.3.3. Discussion 
In the second part of this chapter, the effect of motion on 3D-BTI was studied. We proposed a 
methodology to estimate the axial motion, and correct its adverse effect on synthetic focusing, a 
fundamental step of 3D-BTI calculations. We saw that movement can deform 2D coherence 
functions: in the case of an isotropic medium, the distortion may lead to a misinterpretation of 
the degree of anisotropy of the region scanned. However, the velocity of tissues displacements 
may be estimated and accounted for within a frame with a limited number of PW, and we 
demonstrated that it was possible to retrieve isotropic 2D coherence functions in post-processing 
at a low computational cost. Yet, the deformations of coherence functions are directly related to 
the spatiotemporal distributions of tilted plane waves used for synthetic focusing. Therefore, a 
solution to reduce the motions artefacts would be to change the sequence of tilted plane waves 
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emitted during the acquisition. For example, one could consider randomizing the order of 
emission, or alternating the modifications of x- and y-angles, etc. 

 

Figure 3.23 Motion effect and correction on 2D coherence functions obtained in the case of an 
isotropic phantom. The each rows represents a different probe/phantom motion velocity. First 

column: 2D coherence functions without motion correction, 2nd column: correction with estimated 
speed, 3rd column: correction with real speed. 
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Figure 3.24 Motion correction on BTI of the septum wall of a healthy volunteer at end systole. The 
estimated speed was 27mm/s. (a) Angle orientation definition. An angle of 0° represents 

circumferential fibres, and ±90° long-axis oriented fibres. Sketch adapted from (Streeter et al., 1969). 
(b) ECG during the acquisition and moment chosen to perform 3D-BTI. (c) Fibres tracking 

representation without motion correction and (d) with motion correction. (e) Evolution of the mean 
angle for each depth. Error bars represent standard deviation. 

Moreover, as stated by the VCZ theorem, the spread of the 2D coherence functions proved to be 
an interesting indicator of the quality of the synthetic focusing, and could be used as such during 
BTI calculations. Finally, the application of motion correction on 3D-BTI of the septum wall of 
a healthy volunteer was presented. We saw that boundary artefacts were reduced, and that fibres 
alignment was more homogeneous after motion correction. 

To develop further this work, it would be interesting to do a phantom study using an anisotropic 
material, to investigate more precisely the effects of motion on anisotropic coherence functions. 
Furthermore, optimizing the plane wave spatiotemporal distribution would be a promising 
development to greatly reduce motion artefacts without the need of additional post-processing. 
Studies about coherent compounding for 2D ultrafast imaging can be found in the literature 
(Denarie et al., 2013; Poree et al., 2016) and may be extended to 3D imaging. Finally, to evaluate 



82 
 

the impact of motion for in-vivo applications, a study comparing results of 3D-BTI with and 
without motion correction and a ground truth (e.g. obtained by DTI or histology) would be 
interesting. 

3.4. Conclusion 
In this chapter, we pursued the development of 3D-BTI toward a clinical setting. Applications 
on imaging the local fibres architecture of the antero-septal wall of the left ventricle of a healthy 
volunteer have been demonstrated at both end-systole and end-diastole. Despite the thickening 
of the heart during its contraction, no significant changes in angle variations through the wall 
has been noticed. Then, the undesired effects of motion on 3D-BTI have been studied: although 
important deformations of 2D coherence functions occurred, we saw that it was possible to 
estimate the velocity of axial motion and correct its adverse effects. Futures perspectives of this 
work will be the development of transmit sequences limiting motion artefact without the need of 
additional post-processing, which would allow to image the evolution of fibres orientation through 
the cardiac cycle with a sufficiently high SNR. Then, applications on cardiomyopathies would be 
interesting for the better understanding of the underlying mechanisms, the better follow-up of 
patients, and the early detection of cardiac abnormalities. 
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  3D passive elastography of the left 

ventricle 

4.1. Introduction 

4.1.1. Motivations: why myocardial stiffness is 

interesting 
The myocardium rigidity changes drastically during its contractions and relaxations, allowing for 
the effectiveness of blood circulation. Both systolic and diastolic stiffnesses are important 
parameters: the former is related to the strength of the heart, whereas the latter is linked the 
ability of cardiac chambers to refill before the next contraction. Abnormalities of myocardial 
stiffness are one of the key pathophysiological mechanisms of heart failure with preserved ejection 
fraction (Zile et al., 2004), play a major role in cardiomyopathies such as hypertrophic (Hoskins 
et al., 2010) or restrictive (Elliott et al., 2008; Kushwaha et al., 1997) cardiomyopathies, and are 
a good indicator to qualify ischemia (Pernot et al., 2016; Pislaru, 2004). 

Today, however, non-invasive estimation of myocardial stiffness is challenging and the only 
validated tool to assess the ventricular stiffness in patients is pressure-volume loop measured by 
invasive cardiac catheterization. In this chapter, we will aim to develop a tool to measure the 
stiffness of the left ventricle during the cardiac cycle using a 4D ultrafast ultrasound scanner. 

4.1.2. State of the art: how to measure (myocardial) 

stiffness 

4.1.2.1. Premises of elastography 

 Palpations 

Elastography could be translated as “elasticity imaging”. In physics, elasticity is the ability of a 
solid to resist a distortion influenced by an external force or stress, and to return to its original 
shape once the external stimuli stops. Therefore, elastography consists of analysing the 
mechanical response of a medium to a mechanical stimuli. 

The ancestor of elastography is the palpation, which has been known to be a relevant diagnosis 
tool since at least 1500BC. Palpations are still used today on a daily basis to assess the stiffness 
of bowels, breasts, wounds, tumours, etc. The development of imaging technologies improved the 
palpation by showing the strain induced by tissues: the clinicians may judge the stiffness of the 
tissues by more than a simple feeling underneath their hands and fingers. This technique has, 
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however, obvious restrictions: it is limited to accessible tissues, it is qualitative but not 
quantitative, and therefore operator dependent. 

 Quasi-static elastography 

One of the first ultrasound elastography technique, quasi-static ultrasound elastography, was the 
straightforward evolution of manual palpation. Indeed, it is based on the comparison of the RF 
signals or B-Mode images obtained by pressing more or less the probe on the patients’ skin. 
Quasi-static elastography is still an active research field: developments of speckle-tracking 
benefits directly to this methodology, and clinical applications are being translated into 
commercial ultrasound systems (Varghese, 2009). The main limitations of this technique are the 
control of the stress applied, and the absence of quantification. In addition, it is limited to 
superficial organs, mainly the breast or the thyroid. 

 Assessing cardiac stiffness 

When it comes to cardiac elasticity evaluation in the clinical setting, the most used technique is 
however the catheterization (Bonnet et al., 2017). It consists of the insertion of a device to 
measure both pressure and volume inside the left ventricle during the cardiac cycle. The plot of 
pressure against volume, commonly called PV loop, is full of information. In particular, the slopes 
𝜕𝑃 𝜕𝑉⁄  at the end-systole and end-diastole points depict the responses of the volume to a sudden 
change of pressure, and has been linked to the elasticity of the myocardium (Burkhoff et al., 
2005). Therefore, both systolic and diastolic elasticity can be evaluated. However, this technique 
has limitations: it gives a global estimation but not an image of elasticity: therefore, it may call 
for further analysis to localize the defective tissues. Furthermore, as any cardiac catheterization, 
it is highly invasive, risky, and time and money consuming. Therefore, non-invasive imaging 
techniques are expected to overcome PV loops limits in the future. 

4.1.2.2. Active Shear Wave Elastography 
Non-invasive cardiac stiffness evaluation cannot rely on the mechanical stress applied on tissues 
because it is unknown in the myocardium. Therefore, it is not possible to directly deduce the 
elasticity of the myocardium by its displacement, strain, or other derived values. The solution 
came from the shear waves. Indeed, it is well known that the speed of such waves depends of the 
elastic properties of the medium in which they propagate. Using the knowledge of their speed is 
therefore an indirect way of sensing the rigidity of the propagation medium, which is a very 
convenient solution when the medium is hardly accessible, deformable, etc. For instance, 
seismology is widely based on the analysis of shear wave propagation. This technique has been 
translated to the analysis of shear waves travelling in the human body, and elastography is often 
referred as “human body seismology”. Shear Wave elastography (SWE), also called Shear Wave 
Imaging (SWI), that will be discussed below thus relies on the measurement of shear wave 
propagation speed to assess tissues elasticity.  
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a) MRI 

MRI elastography uses vibrations typically below 500Hz generated by an external device, trigged 
and synchronized with the MR sequence. The excitation source may be a coil using the magnetic 
field of the MRI scanner, piezoelectric materials, or the coupling of a coil and a magnet in a 
similar way of acoustic speakers system. In the latter case, the device has to be put away from 
the main coil of the MRI scanner, and thus requires an additional component to transfer the 
vibrations induced to the tissues. The propagation of the shear waves is imaged using phase 
contrast MRI, and the elasticity properties of the tissues are obtained by inversions algorithms 
based on equations of motion. MRI elastography can be applied successfully to the liver, spleen, 
breast, skeletal muscle, brain, and heart. Cardiac PV loops and myocardial stiffness could 
successfully be retrieved on healthy volunteers (Elgeti et al., 2012; Robert et al., 2009; Wassenaar 
et al., 2016), and promising results have been shown on patients with diastolic function (Elgeti 
et al., 2014). However, cardiac MR elastography is not yet spread into the clinics, limited by the 
high cost and low availability of MR devices. 

b) Ultrasound 

Ultrasound echography can estimate tissue motion either in the axial dimension with a very good 
accuracy, or in all dimensions of the image using speckle-tracking algorithm, making it a tool of 
choice for elastography.   

 Shear wave elastography (SWE) using external sources 

As discussed previously, elastography can also by performed by tracking shear waves propagating 
in the body. In the beginning of ultrasound shear wave elastography, vibrations were induced by 
an external device: for example, Catheline et al attached an actuator to a 1D ultrasound 
transducer. By sending a pulse to the actuator, a spherical shear wave was generated in the 
tissues and its axial velocity could be estimated using the ultrasound transducer (Catheline, 
1998). This simple technology proved to be able to retrieve the stiffness of the scanned tissues 
and led to the creation of the Echosens company, with is commercializing a device to quantify 
the hepatic fibrosis by elastography. Later, the actuator was mounted on a linear probe, allowing 
for 2D elastography. As shear wave propagates at several meters per seconds, a very high 
framerate (several thousand of frame per seconds) was required to image the shear wave 
propagation: ultrafast ultrasound imaging with plane waves was developed for this purpose 
(Sandrin et al., 1999). Applications on breast cancer detection was successfully shown (Bercoff 
et al., 2003).   

 Shear wave elastography using internal sources induced remotely 

A major development of ultrasound elastography was led by the possibility to create shear waves 
inside the tissues without the use of external actuators, thus simplifying greatly the device. 
Indeed, when focalizing an ultrasound beam in a medium, the matter at the focal spot is slightly 
pushed by the acoustic radiation force according to Hooke’s law. When the pushing force is 
released, the matter comes back to its original position, thus creating a shear wave propagation 
in the surrounding medium perpendicularly to the ultrasonic beam. This idea of using acoustic 
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radiation force to remotely induced shear waves was developed in the 1990s  (Sugimoto et al., 
1990; Nightingale et al., 2001; Sarvazyan et al., 1998). In the beginning of the 00s, Bercoff et al. 
introduced a methodology to generate a shear wave Mach cone by moving the focal spot of the 
pushing beam (Bercoff et al., 2002). By doing this, plane shear waves could be generated in the 
tissues and propagated in a wider area without increasing the amplitude of the shear waves 
(which could be dangerous for the tissues), nor repeating ultrasonic pushes (which would increase 
proportionally the acquisition time). This technique has allowed quantitative imaging of soft 
tissues such as the breast, the liver or the thyroid and is now widely used in the clinics for 
diagnostic (Berg et al., 2012; Sebag et al., 2010).  

 Applications to cardiac elastography 

Cardiac SWE has been successfully applied to measure the stiffness of the myocardium during 
the cardiac cycle on isolated rat hearts (Pernot et al., 2011), on healthy volunteers (Song et al., 
2013), paediatric healthy volunteer as well as in patients with hypertrophic cardiomyopathy 
(Song et al., 2016; Villemain et al., 2018a, 2018b), and proved to be able to distinguish sunned 
or infracted myocardium (Pernot et al., 2016). 

SWE presents however several technical limitations for cardiac applications. Indeed, to generate 
a shear wave the ultrasonic push has to be orthogonal to the myocardium. This can be obtained 
clinically only through the parasternal window, thus limiting the number of myocardial segments 
that can be reached. Moreover, the shear waves generated by SWE are strongly attenuated in 
the heart walls. Quantification of the entire or at least a large part of the left ventricle would 
require to generate shear waves of high amplitude which is not possible by the acoustic radiation 
force because of acoustic power safety limitations. Moreover, it requires imaging the shear wave 
propagation in 3D at high volume rate. 

4.1.2.3. Passive Shear Wave Elastography 
Unlike active elastography, passive elastography relies on the imaging of elastic waves generated 
naturally by the body. The propagation of such natural elastic waves in the myocardium at 
different time points of the cardiac cycle has been investigated extensively (Kanai, 2005; Pernot 
et al., 2007). Several elastic waves have been identified as shear or lamb waves created by valve 
closures such as the aortic valve clap which is a strong mechanical source of sound and vibration 
in the heart. Other mechanical events are linked to active contraction events in the cardiac cycle 
such as the atrial and ventricular contractions. The propagation of these elastic waves has been 
imaged with ultrafast imaging in order to quantify their velocity (Papadacci et al., 2014; Provost 
et al., 2011; Vos et al., 2017).  

Furthermore, correlation of noise-like elastic waves generated by remote organs, breathing, or 
muscle noise can also be used to retrieve stiffness properties of soft tissues without the need of a 
strong source of vibrations: applications on skeletal muscle (Sabra et al., 2007), liver (Gallot et 
al., 2011) or thyroid (Catheline et al., 2013) etc. have been showed. 
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2D ultrafast imaging remains however too limited to image the wave propagation in a 
tridimensional structure such as the ventricle. 

4.1.3. Objectives: non-invasive passive elastography  
In this chapter, we aim to image non-invasively and in 3D the velocity of natural elastic waves 
propagating along the left ventricle wall during both systole and diastole. Indeed, the closure of 
the aortic valve at the end of the systole is a strong mechanical event responsible for the 2nd 
heart sound, and generating a elastic wave propagating in the left ventricle, when it is contracted. 
Interestingly, when the atrium contracts to eject blood in the left ventricle (the atrial kick), an 
elastic wave propagating is also visible, and can be exploited to assess the diastolic stiffness of 
the LV. 

The objectives of the study are 1) to establish a methodology for 3D mapping of the left 
ventricular stiffness, 2) to validate its accuracy using finite differences simulations and 3) to show 
the in vivo feasibility on the hearts of healthy volunteer. 

4.2. Material and methods 

4.2.1. Simulation  
Synthetic elastic wave propagation data were generated to investigate the accuracy of our 
method. End-diastole and end-systole 3D ellipsoidal models of the left ventricle (LV) were defined 
from (van den Broek and van den Broek, 1980). The model consisted of two truncated ellipsoids 
defining the endocardium and the epicardium according to the equation: 

𝒙𝟐

𝒃𝟐
+

𝒚𝟐

𝒃𝟐
+

𝒛𝟐

𝒂𝟐
= 𝟏 

where a and b are the semi-long and semi-short axes of the ellipsoid, respectively. The ellipsoids 
were truncated at the intersection with the plane 𝑧 = 𝑘𝑎. The parameters 𝑎, 𝑏 and 𝑘 are defined 
in Table 4-1.  

The elastic wave propagation was then simulated using the k-Wave toolbox for Matlab (Treeby 
et al., 2014) (figure 1a). A velocity point-source (1 cycle at 50Hz with hanning apodization) was 
placed at the base of the LV to simulate the effect of a mechanical source close to the aortic 
valve or the atrium. 3D visco-elastic kwave simulations (Treeby et al., 2014) were run for different 
shear wave velocity parameter: 1-2-3m/s for the diastole geometry and 4-5-6m/s for systole 
geometry, in order to cover a wide range of speeds observable in-vivo. The main simulation 
parameters are summarized in Table 4-1. 
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 Diastole Systole 

a (endocardium/epicardium) [mm] 41.8 / 47.4 41.8 /47.4 

b (endocardium/epicardium)  [mm] 25 / 33 15 / 29 

k [mm] 0.45 0.45 

shear velocity (m/s) 1-2-3 4-5-6 

shear attenuation (dB/(MHz2 cm)) 107 108 

compression attenuation (dB/(MHz2 cm)) 0.1 0.1 

Sound speed compression (m/s) 1540 1540 

Nx*Ny*Nz 32*32*30 12*12*10 

dx*dy*dz (mm3) 2.3*2.3*2.3 6.4*6.4*7.6 

dt (us) 0.4434 1.2554 

Table 4-1: Main simulation parameters. 

4.2.2. Ultrafast Ultrasound Imaging in-vivo 
3D ultrafast acquisitions were performed using a 2D matrix array (3MHz, 32x32 elements, 0.3mm 
pitch) driven by a 1024-channel ultrasound scanner. This system provides 1024 independent 
channels for emission and 512 channels in reception. Thus, a multiplexer is used in receive and 
each transmission was repeated twice to record the echoes of all channels. 

3D volumes were acquired transthoracically with the probe placed on the apical view by a trained 
cardiologist on N=2 healthy volunteers. Diverging waves were emitted at 3660Hz during one 
complete cardiac cycle (see detailed acquisition parameters in Table 4-2). A conventional delay-
and-sum beamforming algorithm implemented in CUDA on Nvidia Titan X GPU was used to 
reconstruct the 2562 volumetric images. Transient tissue velocities were obtained from IQ-
demodulated data using a Kasai filter. Manual segmentation of the left ventricle wall was 
performed by an operator using tissue Doppler information in the following manner: the 
endocardium was delimited manually on multiple 2D slices (apical views and parasternal short-
axis views), and a 3D ellipsoid fit was performed on the selected points. Epicardium was defined 
by thickening the endocardium ellipsoid of 5mm for diastole and 15mm for systole (commonly 
accepted thickness values). 

A bandpass filter was then applied to remove global motion in the lowest frequencies and noise 
in the highest part of the spectrum. For the aortic valve closure, the frequency band of the filter 
was chosen to be 20-50Hz according to literature (Kanai, 2005; Vos et al., 2017). The cutoff 
frequencies of the filter were set to 10-50Hz to study the elastic wave due to atrial kick: indeed, 
as the myocardium is softer then, waves propagating in that time-interval have lower frequency 
component (Vos et al., 2017). 
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Eventually, the 3D data were spatially smoothed by a convolution filter (kernel size of 
3.9*3.9*3.2mm3). 

Analysis of the shear wave propagation were performed on 60ms-long windows centred on the 
maximum of amplitude of transient displacements due to each event. 

 

4.2.3. Post processing computation 
The post-processing workflow was divided into 3 main parts: 1. Localization of the source of the 
wave and computation of time-of-flight map, 2. Computation of distances from the source to the 
rest of the ventricle, 3. Combination of distances and time-of-flight maps to obtain speed map. 

 

4.2.3.1. Computation of time-of-flight: correlation 

algorithm 
First of all, the localization of the wave’s source was identified manually on 4D transient velocity 
movies by the operator (figure 4.1 a1 to a3), and N=10 reference points in the myocardium were 
randomly chosen within a 10mm radius from the source. 

Time correlations of transient velocities between the N reference points and the rest of 
myocardium were performed. The correlation coefficients as well as the corresponding time shifts 
were stored. To average these N correlations, all the time shifts were lagged so that the first 
reference points had a time shift equals to 0ms on all maps. Then, the time maps were averaged 
using weights given by the correlation coefficients. Finally, the resulting time map was shifted so 
the activation time t0 of the source point is equal to 0ms (Figure 4.1d). 

For the in-vivo situation only, the tissue Doppler energy and the mean coefficient of correlation 
over the N repetitions of calculations were used to apply thresholds. The points with an average 
correlation coefficient below 0.5 or an energy (normalized by the energy of the source) below -
10dB were discarded (Figure 4.1b and Figure 4.1c). These steps allowed to insure that the results 
integrated only the region where the shear wave actually propagated and that the signal-to-noise 
ratio of individual voxels was high enough to be relevant, respectively.  
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Parameter Value 

Tx Frequency 2.8MHz 

Nb Tx cycles 2 

Imaging depth 14cm 

PRF 3660 Hz 

Frame rate 1830Hz 

Acquisition duration 1.4s 

Reconstruction sector 80° 

dx*dy*dz 
(mm*mm*mm) 

1.4*1.4*1.1 

Table 4-2: Main parameters for in-vivo acquisitions. 

 

 

Figure 4.1 Schematic representation of the calculation of time-of-fight of the shear wave (in vivo 
experiment on a human volunteer). (a1),(a2),(a3): snapshots of the propagation of the shear wave. 
The region of the source is identified and defined as a 10mm-radius sphere. (b): Energy of tissue 

velocity integrated in time. Voxels having an energy below a threshold will be discarded to avoid low 
SNR areas. (c): Average of correlation coefficients obtained after the N repetitions of correlations. A 
threshold is also applied at this step to discard low correlations coefficients. (d): Resulting time of 

flight map. 
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4.2.3.2. Computation of distance travelled: fast 

marching algorithm 
The calculation of the distance travelled by the wave from the source through the left ventricle 
is a well-known problem in image processing and computer vision. An illustration of the problem 
is shown figure 4.2: given the binary mask of the left ventricle, we aimed to calculate the distance 
between points A and B going along the wall. In order to do so, a cost function was calculated: 
high cost outside the wall and low cost inside (figure 4.2b). The objective was to find the path 
with the lowest accumulated cost. A widely used numerical resolution of this minimization 
problem is the fast-marching algorithm (Sethian, 1999), which has recently been implemented to 
segment 3D vascular networks obtained with ultrafast ultrasound imaging (Cohen et al., 2018). 
In this work, we adapted this framework to calculate the distance from the elastic wave source 
to all the other points of the left ventricle through the mask. Typical results from the fast-
marching calculation are shown figure 4.2c.  

 

 

Figure 4.2 Schematic representation of the calculation of distances travelled by a shear wave in left 
ventricle wall. (a): Short-axis slice of the binary mask. The objective is to calculate the distance 

between A and B. (b): Cost function derived from the mask, and most effective path to join A and 
B. (c) 3D map of distances between a source point and the rest of the LV mask. 

 

4.2.3.3. Computation of speed 
Once both time-of-flight and distance maps were known, an average speed was obtained by the 
ratio of distance and time-of-flight maps. One should note that this value is not the local speed 
of the tissue but an integrated value over the propagation from the source point. This provide 
an integrated speed over the ventricle which is more robust that the local speed map. To 
synthetize 3D maps in an easily and quickly interpretable data, the histograms of speed values 
distribution were computed, and their maximum as well as their Full Width at Half Maximum 
(FWHM) extracted. 
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4.3. Results 

4.3.1. Simulations 
The integrated speed maps obtained in simulations are shown Figure 4.3. Histograms parameters 
are summarized in Table 4-3. Results showed that the wave speeds were systematically 
underestimated compared to the shear velocity of the material. A bias of 12% to 31% was found 
for all the speed maps. For each map, the values were spread in a narrow distribution around 
the histogram peak (+/-27% at FWHM). 

 

Theoretical speed (m/s) 1 2 3 4 5 6 

Maximum of histogram 
(m/s) 

0.875 1.375 2.375 3.125 4.125 5.125 

Relative error (%) -12.50 -31.25 -20.83 -21.88 -17.50 -14.58 

FWHM (m/s) 0.25 0.75 1.25 1 1.25 1.75 

FWHM (%) 28 54 53 32 30 34 

Table 4-3: Summary of simulation results 

4.3.2. In-vivo experiments 
Figure 4.4 represents snapshots of tissue Doppler movies showing natural elastic waves created 
during diastole (figure 4.4a) and systole (figure 4.4b). During both phases, waves propagated 
clearly along the myocardium, without reaching the apex. The results of the intermediate 
calculations steps in the case of the atrial kick are shown figure 4.5. The tissue Doppler energy 
(figure 4.5a) clearly highlights the fact that the elastic wave propagated along the basal walls of 
the LV. Thus, the energy threshold (-20dB) rejected the apical region of the following results. 
The correlation coefficients depicted figure 4.5b confirm that the elastic wave actually propagated 
in the basal area, as the correlation coefficients were relatively high. In that case, the threshold 
applied here helped to remove a limited amount of noisy voxels. The resulting time of flight maps 
and the corresponding speed maps are displayed figure 4.5c and figure 4.5d.  

The wave speed analysis of the two volunteers are summarized in Table 4-4. Average propagation 
velocities identified as the peak of the histogram were found to be 2.5m/s (FWHM 2.8m/s) in 
diastole and 6.5m/s (FWHM 6.8m/s) in systole. 

 

 



100 
 

 

Figure 4.3 Speed maps obtained from simulations. (a),(b),(c): shear velocities of 1, 2 and 3m/s for 
diastole geometry. (d),(e),(f): shear wave velocities of 4, 5 and 6m/s for systole geometry. 
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 Atrial kick Aortic Valve Closure 
 Volunteer a Volunteer b Volunteer a Volunteer b 

Maximum of histogram (m/s) 2.75 2.25 7.25 5.75 
FWHM (m/s) 2.5 3.0 5.0 8.5 
FWHM (%) 91 133 69 148 

% of mask covered 29 41 57 57 
Table 4-4: Summary of results for atrial kick and aortic valve closure for both volunteers. 

 

4.4. Discussion 
In this study, we proposed a workflow for mapping the speed of physiological elastic waves 
propagating in the left ventricle. We validated the method using numerical simulation of elastic 
wave propagation in a simple model of left ventricle. Finally, we evaluated the feasibility of the 
method in the heart of two volunteers. 

Numerical simulations showed that the wave speed could be reconstructed successfully over the 
full left ventricle. The results highlighted however two effects: 1) a strong overestimation of the 
elastic wave speed at the vicinity of the source and 2) a significant underestimation of the elastic 
wave speed everywhere else. The first effect is due to the near-field diffraction at a point source 
which makes difficult to estimate the elastic velocity in the region close to the source. There is 
no simple way to assess the extent of this near-field region, but it clearly depends on the stiffness 
and tends to increase with speed. It should be noted that at 50Hz, a wave propagating at 6m/s 
has a wavelength of 12cm which is almost the dimension of the entire heart. The simulation 
results showed that the speed was overestimated until only a few cm from the source, which 
represents a fraction of wavelength. The second effect is due to the thickness of the myocardial 
wall which acts a waveguide for elastic waves. As a consequence, low frequency elastic waves 
propagate as Lamb waves with a lower speed than pure shear waves. If we assume that only low 
frequency antisymmetric A0 mode is generated, the actual speed can be computed from (Couade 
et al., 2010) using the thickness ℎ, and the angular frequency 𝜔, and the theoretical velocity of 

shear wave in an infinite medium 𝑐𝑠 as: 

𝑉 ≈
𝜔ℎ𝑐

2√3
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Figure 4.4 In-vivo results: propagation of natural waves during diastole (a) and systole (b) in the 
myocardium of a healthy volunteer. To help visualization, maps were filtered spatially by a 

13*13*10mm3 Gaussian filter. 
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Figure 4.5 In-vivo results of atrial kick on a healthy volunteer. (a) Normalized energy of transient 
velocities of all voxels included in the mask, (b) Mean maximum of correlation for points having an 

energy greater than -10dB. (c) Time-of-flight of the natural wave. (d) Speed map. To help 
visualization, maps were filtered spatially by a 13*13*10mm3 Gaussian filter. Speed values outside 

the FWHM of the histogram were removed before filtering.  
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Figure 4.6 In-vivo results: speed maps for both volunteers for atrial kick (a),(b) and systole (c),(d) 
and speed histograms. To help speed map visualization, values outside FWHM boundaries were 

removed and maps were filtered spatially by a 13*13*10mm3 Gaussian filter. Speed values outside 
the FWHM of the histogram were removed before filtering. 
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The Table 4-5 sums-up the Lamb wave velocities for the six numerical simulations ran for this 
work. Interestingly, the expected Lamb waves have lower velocities than the values found 
experimentally, more particularly for the largest λ/e ratios, i.e. for thinner plates. Thus, the 
differences cannot be explained only by the propagation of Lamb waves. However as mentioned 
above, for the highest velocities the wavelength is comparable to the size of the heart: therefore 
the heart wall may not be seen as an infinite plate but rather as a complex geometric structure, 
where mode resonances can occur. A similar phenomenon was observed by Couade et al: in their 
study of elastic waves propagation within arterial walls, they reported that for certain frequencies, 
the measured velocity of elastic waves was faster within tubes rather than plates (Couade et al., 
2010). Hence, future work should take into account this phenomenon and investigate the mode 
resonances occurring for large wavelengths. 

 

Theoretical speed (m/s) 1 2 3 4 5 6 

λ (cm) 2 4 6 8 10 12 

λ/e 2.5 5.0 7.5 5.7 7.1 8.6 

Vlamb waves A0 (m/s) 0.85 1.20 1.48 2.25 2.52 2.76 

Measured speed (m/s) 0.875 1.375 2.375 3.125 4.125 5.125 

Table 4-5: for the different simulations ran, this table gathers the ratio wavelength of shear 
wave/thickness of the heart wall (λ/e), the associated velocity of lamb wave according to (Couade et 

al., 2010), and the measured speed in our work.  

 

Furthermore, it should be noted, that in such a complex medium, there is no direct link between 
wave speed and tissue elastic properties as it depends on many other parameters such as viscosity, 
anisotropy and geometry. Our approach was voluntarily simplistic and we choose to report only 
wave speeds as results. More complex anisotropic and visco-elastic models could be also 
integrated in the workflow for more realistic estimation of the myocardial elastic properties. For 
sake of simplicity, we used a simple inversion approach that relied on the time of flight between 
the point source and other location in the myocardium. This simple approach can only provide 
an average speed estimate and can only be used in a medium with low heterogeneities. For 
heterogeneous medium, more complex inversion approach will be required such as local inversion 
to derive a map of the local speed.  

Throughout the study, we assumed that the waves observed in the left ventricle were pure elastic 
waves propagating in tissues. Although it might be realistic for the wave generated by the closure 
of the aortic valve, it is certainly not true at the atrial contraction. Late filling of the ventricle 
may play also an important role and fluid hydrodynamic effects may drive or at least be coupled 
to the mechanical wave observed in tissues. Nevertheless, there is still a high interest to determine 
the speed of the wave during atrial contraction as it could provide an indirect measurement of 
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the ventricular stiffness in diastole. This would be similar to the pulse wave velocity which is 
neither a pure elastic wave in the arterial wall nor a pure compressional wave propagating in the 
blood flow, but is still recognized as the best measurement of arterial stiffness.   

We have shown the feasibility to derive in-vivo the wave velocity at two time of the cardiac 
cycle: at the end of systole after aortic valve closure, and at the end of diastole during atrial 
contraction. Both measurements could be of high interest for diagnostic purposes and may be 
used in different situations. On the one hand, ventricular stiffness plays a major role in diastolic 
dysfunction such as in patients with heart failure with preserved ejection fraction. The wave 
speed measured in diastole could be used as a global index of the ventricular passive stiffness. 
Currently, indexes of diastolic function measured by echocardiography remains indeed highly 
limited as they are not directly linked to the ventricular stiffness. The wave speed measured at 
the atrial contraction in this study was found in the same range than the mean shear velocity 
measured by shear wave elastography on the antero-septal wall on 60 volunteer using the remote 
generation of shear waves (Villemain et al., 2018b). This good agreement suggests that both 
techniques are measuring the same physical parameter. On the other hand, the assessment of 
elastic velocity at the aortic valve closure could be also of high interest, as systolic stiffness is 
known to be linked to the active contraction of the myocardium and has been shown correlated 
to myocardial contractility in isolated heart (Pernot et al., 2011). Therefore, this measurement 
could be a non-invasive index of ventricular contractility. 

A limitation of this approach is that the elastic waves did not reach the entire left ventricle and 
the most apical part of the left ventricle could not be mapped. Another limitation of the method 
is the dependence with the source location. In some case, the source may be diffuse and difficult 
to identify precisely which may affect the robustness of the method. A third limitation was the 
manual segmentation of the left ventricle which was challenging due to the low contrast of the 
ultrafast images. An imaging sequence with a high contrast 3D image prior to the ultrafast 
acquisition could help a lot to provide a better manual or automatic segmentation. Moreover, 
our approach did not took into account the local anisotropy of the myocardium related to the 
fibres orientation, yet it has been proven that elastic waves propagate faster along the fibres than 
perpendicularly. Therefore, future developments should include this phenomenon, and 
comparison or merging with the work developed on 3DBTI should be of great interest. 

4.5. Conclusion 
In this chapter, a framework to measure the velocity of naturally-induced elastic waves 
propagating in the left ventricle was developed. Firstly, numerical simulations were performed to 
evaluate the accuracy of our methodology and secondly, applications on elastic waves generated 
by the closing of the aortic valve and by the atrial kick were shown on two healthy volunteers. 
The elastic wave velocities of these events could be an interesting biomarker to detect and/or 
follow cardiac abnormalities in a clinical setup. Futures studies will focus on the complete 
evaluation of cardiac stiffness by the computation of the Young’s modulus of the myocardium, 
and the evaluation on larger cohorts of healthy and diseased hearts. Moreover, the link between 
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the anisotropy of the elastic wave speeds and the fibres orientation measured by BTI may be an 
interesting field of investigations. 
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  3D Ultrafast Imaging of Myocardial 

Contraction Activation 

5.1. Introduction 
The efficiency of the heart to eject blood to the body is directly linked to the sequence of 
contractions of the myocardium. Contraction of the myocytes is triggered by a change of electrical 
action potential that propagates in the heart in the millisecond scale. The synchronization of the 
resultant mechanical activation over the entire heart is important to ensure a normal and efficient 
blood ejection. Therefore, the evaluation of cardiac activation at high temporal resolution is 
crucial for clinicians, yet remains challenging in the clinical setting. 

In this chapter, we will start with a brief physiological description of the heart’s contraction 
activation, and the state-of-the-art techniques to assess it today. Then, we will develop an 
imaging technique to study the contraction sequence of isolated rat hearts in 3D. Finally, in order 
to move forward in a clinical setup, a 2D imaging method will be applied both on human fetuses 
and adults.  

5.2. State of the art, motivation, objectives 

5.2.1. Electrophysiology of the heart and 

electrocardiogram 
The heart contraction is driven by an electric impulsion originating from the sinus node, the 
natural pacemaker of the heart located in the right atrium (figure 5.1). The electrical pulse 
propagates in both atria and lead to their contraction, completing the filling of the ventricles. 
During atrial contraction, the electrical current is delayed in the atrioventricular node (AV node), 
which serves as a relay station before the contraction of the ventricles. This delay is highly 
important, as it guaranties the maximum filling of the ventricles before their contraction. The 
electrical stimulus is then conducted through left and right His bundles toward the apex of the 
heart. Finally, these bundles split into Purkinje fibers, which distribute the electrical impulse to 
the ventricles through multiple terminations. 

A variety of myocardial diseases can induce alterations in cardiac function that result in regions 
of early and/or late activation, known as asynchrony or dyssynchrony. Three types of cardiac 
asynchrony may occur: atrioventricular, interventricular and intraventricular.  
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Figure 5.1 Activation sequence of the myocardium and contribution to ECG (Malmivuo and Plonsey, 
1995). 

 

The most widely used technique to analyze the electrical activation sequence of the heart is the 
electrocardiogram (ECG). It consists of a set of electrodes placed on the skin, recording the 
electrical field generated from the heart. ECG gives a global estimation of the heart electrical 
activity. Three main electrical events are visible on an ECG: the P wave, the QRS complex and 
the T wave, corresponding to the atrial contraction, ventricular contraction, and ventricular 
repolarization, respectively (figure 5.1). Numerous diagnoses can be suggested based on the 
analysis of the shape of the ECG, making it a tool of choice for clinicians. However, it has intrinsic 
limitations: it provides only electrical conduction information, and does not permit to localize 
precisely the origin of electrical signals measured. Therefore for an accurate diagnosis, 
conventional echocardiography is systematically used along ECG. 

5.2.2. Imaging the cardiac electrophysiology 

a) Electrocardiogram Imaging (ECGI) 

In order to obtain a map of electrical activity of the myocardium, an ECG is performed with a 
large number of electrodes placed over the whole torso of patients. By coupling electrical 
measurements to CT or MRI scans, it is possible to solve the inverse-problem of the electrical 
propagation from the heart to the torso, and compute an electrical activation map (Ramanathan 
et al., 2004; Zhang et al., 2005; Ramanathan, 2006). However, this technology is costly and not 
yet spread into routine clinics (Nash and Pullan, 2005), and requires a prior CT or a MRI scan. 
Moreover, it allows only the reconstruction of the epicardial potential. 

b) Catheterization 

The most widely used solution to image the cardiac electrophysiology in the clinical setting is 
the insertion of a catheter containing an array of electrodes within the heart. The electrodes in 
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contact with the myocardium measure action potentials, a brief change of voltage that triggers 
the muscle contraction. Such electrophysiology studies allow to investigate the cause and location 
of various conduction problems, and treat them within a single procedure. Limitations of this 
technique are induced by the cardiac catheterization: it is time consuming, costly, highly invasive, 
and complications may occur during the procedure. Moreover, it allows the measurement of 
endocardial potentials only. Such a catheter can also be used to perform ablation of abnormal 
electrical pathways.  

c) Optical mapping 

Optical imaging techniques have been used to monitor cardiac action potentials since the mid-
70s. A voltage-sensitive dye binds to the myocardium and is illuminated by specific 
monochromatic light; when the cell undergoes electrical activation, the dye fluoresce. The emitted 
fluorescence is recorded by a camera (Rosenbaum et al., 1992; Salama and Morad, 1976). Voltage 
sensitive mapping can be used to image the propagation of electrical activation of various species 
including rat, mice, rabbit, pigs (Marian et al., 1999; Nygren et al., 2000, 2003; Matiukas et al., 
2007) and offers a high spatial resolution. However, because motion of the heart would create 
artefacts, it is required to inhibit the mechanical contraction of the myocardium using drugs. 
Moreover, as of today, optical mapping is performed on isolated, perfused hearts, and is not 
usable in-vivo (Herron et al., 2012).  

5.2.3. Imaging the cardiac contraction 

a. Echocardiography for the clinical evaluation of cardiac dyssynchrony  

Conventional echography provides a wide variety of modes allowing for the evaluation of cardiac 
synchronization. In particular, the evaluation of the left ventricle activation sequence is an active 
research field, as abnormalities of regional LV contraction are the principal factor associated with 
contractile impairment (Gorcsan et al., 2008). In the following paragraphs, we will therefore 
briefly review the existing techniques to assess it. 

The simplest way of measuring the left ventricle activation delay is to perform an M-Mode in 
the parasternal long-axis or short axis view: this provide a simple and effective evaluation of the 
delay between the movement of the lateral walls and septum to eject blood out of the ventricle.  

Tissue Doppler imaging allows for the evaluation of cardiac function through the radial 
movements (parasternal long and short axis views) and longitudinal movement (4-chambers, 3-
chambers and 2-chambers apical views). Both color tissue Doppler or pulsed tissue Doppler can 
be used to measure and compare the time of peak velocity of a few segments of the LV wall to 
assess if a resynchronization is needed (Notabartolo et al., 2004). Strain and strain rate imaging 
have the advantage of being able to differentiate active deformations from passive movements 
and thus can be used to identify asynchrony. Tissue Doppler-derived strain and strain rate 
imaging were introduced several years ago (D’hooge, 2000) and can be used to evaluate the 
activation sequence (Gorcsan et al., 2008). Moreover, strain and strain rates can also be 
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calculated using speckle-tracking algorithms, with the advantages of removing the Doppler-
induced limitations (sensitivity to noise, measurements of velocities along the probe axis only, 
inter-operator variability), and allows for full 2D or 3D analysis of cardiac contraction 
synchronization (Delgado et al., 2008; Geyer et al., 2010; Suffoletto, 2006). Limitations of speckle-
tracking are the need of good quality greyscale images which limits the temporal resolution, and 
the high computational cost of 3D calculations. 

b. Ultrafast imaging 

Ultrafast imaging offers the possibility to image the heart with a large field of view and a high 
frame rate which is particularly interesting to observe the dynamics of very rapid mechanical 
events such as the activation of the myocardial contraction. Following the electrical activation 
of the myocytes, the transient mechanical deformation of the myocardium can be observed at 
the millisecond scale. The mechanical activation sequence was shown to be linearly correlated to 
the electrical activation using MRI (Wyman et al., 1999; Faris et al., 2003) and ultrafast 
echocardiography (Konofagou and Provost, 2012). Electromechanical Wave Imaging (EWI) was 
introduced as a noninvasive, ultrasound-based imaging modality to map the electromechanical 
wave. EWI relies the calculation of axial displacements (Pernot and Konofagou, 2005; Pernot et 
al., 2007) or strains (Provost et al., 2010) and was used to characterize electromechanical waves 
in various studies including mice (Konofagou et al., 2010), normal and ischemic canines (Pernot 
and Konofagou, 2005; Provost et al., 2010), and humans (Konofagou and Provost, 2012). Since 
the electromechanical wave propagation in a beating heart is a complex 3D phenomenon, Provost 
et al. introduced the combination of multiple 2D standard echocardiographic views (four-
chambers, two-chamber) to a generate 3D mapping (Provost et al., 2011). Later, an algorithm 
allowing for the interpolation of a full 3D volume has been proposed (Nauleau et al., 2017). 
However, these 3D renderings require multiple 2D acquisitions over several heart beats and their 
synthetic recombination a posteriori which is challenging to perform in clinical practice. 

5.2.4. Objectives 
The objectives of this work is to develop an imaging tool that can map the sequence of cardiac 
mechanical activation using 3D ultrafast imaging, which would allow for the full analysis of 
cardiac activation sequence within a single heartbeat. As cardiac mechanics are complex in-vivo, 
we used a simple model of isolated heart to assess the feasibility of the technique. Such a model 
presents many advantages for this study because the physiological parameters are accurately 
controlled and the number of undesired mechanical events is reduced compared to in-vivo 
conditions. The objectives of this work were: 1) to develop 3D ultrafast imaging of the cardiac 
mechanical activation of isolated rat hearts 2) to validate the methods against 
electrophysiological measurements and 3) to investigate the feasibility on human patients. The 
chapter is divided into two parts: firstly, we will perform 4D ultrafast ultrasound scanner to map 
in 3D the contraction activation sequence of isolated rat heats. Secondly, we will develop a 
method to move the technique towards the clinical setting, using a standard 2D ultrafast 
ultrasound scanner. Applications on adults’ and fetus’ hearts will be shown. 
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5.3. 3D mapping 
The objective of this part is to develop a method to image in 3D the myocardial contraction 
activation of isolated rat hearts within a single heartbeat. Isolated and perfused hearts present 
the advantage of being a simplified model to study. Parameters such as pressure, volume, 
temperature, coronary flow rates, heart beat etc. are well controlled and adjustable by the 
operator. For our study, the isolated heart presents also advantages on the mechanical point of 
view with a reduced number of mechanical events. As the perfusion is retrograde (from the aorta), 
the aortic valve is always closed and there is no flow at all in the ventricular and atrial cavities. 
As valve closure and opening can be a strong source of mechanical activity in-vivo, the isolated 
heart model is a good model to remove all these effects. 

Firstly, the acquisition and analysis of contraction activation will be investigated in sinus rhythm 
and under pacing condition. The mechanical activation sequence will be quantified for different 
physiological conditions. Finally, the mechanical activation timing will be compared with 
electrophysiological measurements. 

5.3.1. Material and methods 

a) Isolated heart model, or Langendorff model (figure 5.2) 

The isolated heart model used in this work was developed by Oscar Langendorff in the late 19th 
century (Langendorff, 1895) and is still widely used today in a variety of applications (Skrzypiec-
Spring et al., 2007). The methodology described originally has not changed drastically over the 
years: the heart is perfused retrogradely by the aorta, thus forcing the aortic valve to close. The 
perfusate is entering the coronary vasculature via the aortic root and is eventually drained in the 
right atrium. Therefore, it can exit the heart without entering into the ventricles, which both 
remain mainly dry. In addition, a balloon is inserted into the left ventricle through the mitral 
valve. The balloon needs to be as compliant as possible to not interfere with the movements of 
the left ventricle, and is mounted on a tube and filled with fluid that allows for the adjusting of 
the pressure and volume of the balloon, allowing for the control of the contractility of the left 
ventricle according to Frank-Staring curves. 

The Langendorff setup is extremely helpful to study the heart’s physiology. In our case, it will 
guaranties the best ultrasound acquisitions quality, as there won’t be any surrounding tissues 
and rib cage creating possible artefacts. Moreover, as discussed previously, the cardiac valves are 
not opening nor closing: this will greatly ease the visualization of cardiac mechanical activation, 
as there won’t be undesired elastic waves created by the closure of the atrioventricular valves.  
Furthermore, this setup is helping to validate the findings of ultrasound. Indeed, the isolation of 
the heart allows to put electrodes at any location of the epicardium: either to measure local 
electrical activation, or to pace the heart and compare the position of the electrical stimulation 
and the earliest mechanical activation points found after post-processing. Finally, the 
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temperature of the perfusate being precisely controlled, it gives a straightforward opportunity to 
study the effect of hypothermia on the heart.  

b) Experimental setup 

In our study, rat hearts were perfused by a Krebs-Henseleit solution and immerged in a latex 
balloon transparent to ultrasound, filled with the excess of perfusate (see figure 5.2). 
Electrophysiological electrodes were placed in contact with the right and left ventricles 
epicardium, and a pacing electrode was freely placed on the heart. The temperature was varied 
from 27°C to 37°C to study the effect of hypothermia on the activation sequence. 

A 2D matrix array (8MHz, 32x32 elements, 0.3mm pitch) driven by a customized, programmable, 
1024-channel ultrasound scanner was used to perform 600-ms-long 2D plane-wave acquisitions at 
3000 volumes/s in the apical view. Electric signals of all electrodes were recorded during 
acquisitions.  The pacing signal was a 10ms-pulse, which frequency and voltage were in the ranges 
[250-300] beats-per-minutes and [0.1-2]V, respectively, to ensure effectiveness of pacing. 
Acquisitions were repeated over 5 rats (average weight 228g±23g) with various temperatures 
within the range 26°C-37°C and various pacing locations. 

 

Figure 5.2 Sketch of Langendorff setup, showing the inflatable balloon in the left ventricle, the 
perfusion, the electrophysiological and pacing electrodes. The position of all electrodes can be 

rearranged during the experiments. Sketch adapted from (Dick, 1998). 

c) Post processing 

IQ beamforming allowed for the segmentation of the myocardium based on B-Mode intensity. 
Inter-volumes axial displacements and accelerations were mapped in the myocardium using the 
Kasai algorithm (Kasai et al., 1985) and a smooth derivative filter (Luo et al., 2004), respectively. 
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Then, correlation calculations were applied to compute activation times maps. The algorithms 
were different in the case of sinus rhythm or pacing, as described in the following paragraphs.  

In the case of sinus rhythm, a 50ms window was manually defined to select the moment of 
propagation of the electromechanical wave. Then, N=20 reference points were randomly took in 
the myocardium, and time correlations of velocities between the reference points and the rest of 
myocardium were performed. The correlation coefficients as well as the corresponding time shifts 
were stored in 2*N*3D matrices. To average these results, all the time shifts were lagged so that 
the first reference points had a time shift equals to 0ms on all maps. Then, the results of the 
correlations were averaged using weights given by the maximums of the correlation coefficients. 
Finally, the resulting 3D map was shifted so the minimum activation time was equal to 0ms. 

In the pacing situation, the time correlations between the electrical pacing signal and the 
transient velocities of the myocardium were computed. Therefore, the resulting 3D activation 
time maps had an absolute reference since the pacing. All negatives times were discarded. 

5.3.2. Results 

5.3.2.1. Sinus rhythm 

a) Preliminary analysis of the cardiac cycle 

Snapshots of the tissue velocities movie of one acquisition are represented on sfigure 5.3. The 
activation of the myocardium seemed to start simultaneously at the apex of the heart and in the 
mid-lateral part of the LV before reaching the septum, and finally the RV (note that due to the 
retrograde perfusion of the heart, the atria are not visible).  

For the better understanding of the heart behavior during the cardiac cycle, M-Modes of 
velocities, displacements and strain rates along the left ventricle free wall are represented figure 
5.4. One can see the sudden mechanical activation (corresponding to the QRS complex of the 
ECG) depicted by a sharp, negative tissue velocity (figure 5.4b and c), followed by a lower 
positive peak approximately 200ms later (corresponding to the T wave). Between these two 
events, there is no substantial motion, as it is restricted by the balloon inside the left ventricle. 
The global motion of the ROI presented figure 5.4d and figure 5.4e is calculated by the cumulative 
sum of velocities over time, and normalized to be equal to 0mm before the beginning of the 
activation (here at t=120ms). The returning of the global motion towards its original position at 
the end of the acquisition indicates the completion of the systole. Besides, it is interesting to 
notice that the amplitude of the movement is limited, due to the balloon inside the LV. Finally, 
the strain rates obtained after spatial derivation of velocities relatively to the z-axis (kernel size 
1.80mm) and smoothing with a convolution filter (kernel size 1.63mm*0.60mm*0.66mm) are 
presented figure 5.4f (M-Mode) and figure 5.4g (plot of profiles at selected depths). By 
convention, positive strain values describe thickening and negative values describe shortening of 
a given myocardial segment related to its original length. In this study, the strains were computed 
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along the long-axis of the heart: thus the cardiac contraction appeared as negative strains (at 
t≈200ms).  

To emphasize the activation sequence of the LV free wall, an enlargement of the M-Modes of 
tissue velocities, displacements and strain rates around the beginning of the systole are 
represented figure 5.5. On all graphs, the propagation of the mechanical activation from the 
apical part towards the base is clearly visible. Moreover, the profiles of tissue velocities at three 
different depths of the LV shown figure 5.5c are similar. An ambitious reader may correlate 
visually the shapes of the curves and find the activation delays between the selected depths, or 
at least, gain confidence that the cross-correlation algorithm may success to do the task.   

When looking at the enlargement of the strain rates’ M-Mode around the activation time (figure 
5.5f), one can note a beginning of thickening (positive strain) near the base and shortening 
(negative strain) in the apical region of the heart at t≈135ms, before the actual contraction 
(negative strain at t≈160ms). This pattern can be explained by analyzing velocities along the z-
axis at that time: the apical region started to move whereas the more basal side were not yet 
moving (velocity M-Mode, figure 5.5b). Thus, the basal parts of the wall were stretched, which 
translated as a positive strain pattern. Nevertheless, the same apical-basal activation sequence 
observed on velocities is noticeable, and highlighted by the plots of the strain rates at three 
different depths on figure 5.5g.  

To conclude this parenthesis on the analysis of velocities and strain rates behaviors, one could 
say that the cross-correlation algorithm in a narrow time-window of one or the other would be 
able to successfully retrieve activation times. However, the use of strain rate implies a derivative 
operator, which generates noise and therefore requires additional filtering to smoothen the data. 
Moreover, under pacing condition, the simpler shape of the velocity will be better to correlate 
with the electrical pulse. Thus, in the following, all analysis will be based on velocity. 
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Figure 5.3 Snapshots every 7ms of the velocities of the myocardium in the case of sinus rhythm. 
Positive velocities indicate movement toward the base of the heart, and negative velocities toward 
the apex. Two 3D views are represented for each time: lateral view (first and third rows) and top 
view (second and fourth rows). The stars at t=t0+7ms indicate early activation points, and the 

arrows highlight the propagation of myocardial activation. The ticks on the axis are separated by 
5mm. 
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Figure 5.4 Analysis of M-Modes of velocities and strains in a selected region of interest in the left 
ventricle (data of each depth are averaged along x and y axis). Positive velocity or displacement 

indicate a movement toward the base of the heart (upwards), and positive strains indicate a 
thickening of the wall. To ease the visualization, a low-pass filter of cut-off frequency 50Hz has been 
applied. Three dashed lines representing selected depth (z=15mm, 18mm and 20mm) are overlaid on 
M-Modes. (a): Selected region of interest (ROI). (b): M-Mode of velocities in the ROI. (c): Plot of 

velocities at selected depths. (d): M-Mode of cumulated displacements. (e): Plot of cumulated 
displacements at selected depths. (f): M-Mode of strain rate in the ROI. (g): Plot of strain rates at 

selected depths. 
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Figure 5.5 Enlargement of M-Modes of velocities and strains around activation time in a selected 
region of interest in the left ventricle (data of each depth are averaged along x and y axis). Positive 

displacements indicate a movement toward the base of the heart (upwards), and positive strains 
indicate a thickening of the wall. To ease the visualization, a low-pass filter of cut-off frequency 50Hz 
has been applied. Three dashed lines representing selected depth (z=15mm, 18mm and 20mm) are 
overlaid on M-Modes. (a): Selected region of interest (ROI). (b): M-Mode of velocities in the ROI. 

(c): Plot of velocities at selected depths. (d): M-Mode of cumulated displacements. (e): Plot of 
cumulated displacements at selected depths. (f): M-Mode of strain rate in the ROI. (g): Plot of strain 

rates at selected depths. 

 

b) Analysis of cardiac activation using the cross-correlation algorithm 

The activation time map of the contraction depicted figure 5.3 obtained with the cross-correlation 
algorithm of velocities is shown figure 5.6. The sequence apex-LV-septum-RV observable on the 
snapshots of the propagation movie is successfully retrieved. To enquire the repeatability of the 
method, acquisitions were ran over several heartbeats. Figure 5.7 shows the activation time maps 
obtained for 3 different acquisitions of the same heart: the activation sequence are visually 
similar, starting at the apex, shortly moving toward the left ventricle, before reaching the septum 
and eventually the right ventricle. 

These preliminary results highlight the complex 3D pattern of myocardial activation sequence, 
including multiple sources of activation that triggers the contraction within a few milliseconds. 



 

125 
 

In order to push further the analyses, the heart was paced, allowing to better control its activation 
pattern, ensuring the repeatability of measurements, and having the pacing time an absolute 
time reference.. 

 

Figure 5.6 Activation time map of the mechanical propagation depicted figure 5.3. (a): Lateral view. 
The red lines represents the clipping plane used for better visualization. (b). Top view. 

 

 

Figure 5.7 Activation time maps during sinus rhythm of 3 different acquisitions of the same heart. 
Two camera positions are represented: top view (first row) and lateral view (second row). To 

compare the maps, activation times were shifted to be equal to 0ms in an ROI chosen arbitrarily in 
the LV. 
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5.3.2.2. Pacing 
The heart was paced by an electrode positioned at various locations of the epicardium (apex, left 
or right ventricles) during acquisitions. Figure 5.8 shows snapshots of the velocities of the 
myocardium after pacing of the left ventricle at  𝑡 = 𝑡 : the first region activated is clearly the 
mid-part of the left ventricle, followed by the septum and the right ventricle. The activation map 
obtained by correlating velocities with the pacing signal is visible figure 5.9a. As expected, the 
activation sequence changed compared to sinus rhythm: the earliest activation zone is clearly in 
the left ventricle, corresponding to the pacing location. The contraction then propagates towards 
the septum and finally the right ventricle. Moreover, the activation times are now relative to the 
pacing time: one can note that the minima times visible on the map are approximately 25ms. 
This latency corresponds to the electromechanical delay, i.e. the delay between electrical and 
mechanical activation of the muscle, reported in the literature (Brooks et al., 1987; Conrad et 
al., 1991). The activation map obtained by pacing the apical segment of the right ventricle is 
shown figure 5.9b: the earliest activation points are accordingly retrieved in the correct region. 

 

 

Figure 5.8 Snapshots every 5ms of the velocity of the myocardium 19ms after pacing time t0. Positive 
velocities indicates movement toward the base of the heart, and negative velocities toward the apex. 

The ticks on the axis are separated by 5mm.  
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Figure 5.9 Activation map obtained when pacing the left ventricle (a) or the right ventricle apical 
segment (b). The ticks on the axis are separated by 5mm. 

 

5.3.2.3. Effect of hypothermia 
In this section, we aimed at studying the mechanical activation sequence a physiological 
parameter is changed. We choose to vary the temperature as it was easily controlled and it is 
well-known that the electrical conduction speed is strongly reduced by temperature decrease 
(Nygren et al., 2003; Smeets et al., 1986). The temperature of the perfusate was varied from 37°C 
to 27°C during pacing of the heart. Examples of activation maps obtained during apical pacing 
are represented on figure 5.10: one can see the global shit of activation time map toward longer 
delays. Note that the pattern of the activation time map at 27°C is drastically different than the 
patterns at warmer temperatures, indicating arrhythmias caused by the severe hypothermia. To 
visualize these results in a synthetic manner, the figure 5.11 plots the median activation time, 
i.e. the median of activation times of all points of the myocardium, against temperature. For this 
specific heart, the median activation time varied from 32ms at 37°C to 47ms at 27°C, which 
corresponds to a relative change of 47%. This lengthening can also be seen on the electrical 
activation delay measured by the left and right ventricles physiological electrodes, which are 
shown figure 5.12. 

The electrical activation times of right and left ventricles raised of 52% and 68%, respectively. 
In order to compare the evolutions of median mechanical activation times and electrical 
activation times, it is more convenient to compute the corresponding relative changes of speed 
of activation. This calculation is possible since neither the geometry of the heart nor the positions 
of the electrodes changed during one set of temperature acquisitions. In this example, the 
mechanical activation speed slowed down of -32%, whereas the right and left ventricles electrical 
activation speed decreased of -34% and -41%, respectively.  

These measurements have been repeated over 5 hearts and various pacing locations. From 37°C 
to 27°C, the mean electrical activation speed variations was -41±4.6%, whereas the mean median 
mechanical activation speed changed of -36.0±5.0%. Therefore, the evolution of electrical and 
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mechanical activation speeds are comparable, and in good agreement with literature: Smeets et 
al. reported an electrical speed decrease of -3.8%/°C between 37°C and 27°C (Smeets et al., 
1986); Nygren et al. found a decrease of -5.6%/°C from 37°C to 32°C (Nygren et al., 2003). 

 

Figure 5.10 Activation maps of the same heart under the same pacing condition, for a temperature 
varying from 37°C (left) to 27°C (right). The ticks on the axis are separated by 5mm. 

 
Figure 5.11 Median of activation times of the myocardium, plotted against temperature. Each star 

corresponds to one acquisition, and the dashed line represents the linear fit. 

 
Figure 5.12 Comparison of electrical activation times measured by physiological electrodes in the 
right and left ventricles, for temperature of the heart decreasing from 37°C to 27°C. Dash lines 

represent the linear fit derived from measurements. 
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5.3.3. Discussion 
In this study, we showed the feasibility of imaging the mechanical activation sequence of isolated 
rat hearts in 3D and within a single heartbeat, during sinus rhythm and pacing, and studied the 
effect of hypothermia. Activation maps of sinus rhythm could be retrieved by calculating the 
cross-correlation of velocities. The complex pattern of activation sequence of sinus rhythm has 
been highlighted, including multiple early activation points in the apex and the left ventricle. A 
limitation of the cross-correlation calculation is that the resulting maps do not have an absolute 
time reference to the beginning of the electrical activation, but estimate only the mechanical 
activation sequence of the ventricles. 

Under pacing, activation maps could be computed via the correlation of velocities with the 
electrical pulse, providing activation times relative to the pacing time. The mechanical activation 
pattern was greatly simplified, as the pacing stimulus was taking over the natural electrical 
propagation of sinus rhythm. Therefore, the source of activation was unique and clearly identified, 
and the sequential propagation of the mechanical contraction through the rest of the myocardium 
was visible. 

Finally, still under pacing conditions, the effect of hypothermia down to 27°C has been studied. 
The relative changes of electrical and mechanical activation speeds were found to be similar: -
4.1%/°C and -3.6%/°C, respectively. An interesting development for future studies would be to 
compute and compare the absolute propagation speeds of the electrical and mechanical 
activations, which could be done by using the fast-marching algorithm developed in the previous 
chapter of this thesis. Moreover, extending the number of electrical activation measuring points 
using arrays of electrodes or voltage-sensitive dyes would allow for the computation of electrical 
activation maps, and then their comparison to mechanical activation maps obtained with 
ultrasound. 

In a general manner, the Langendorff heart setup used in this study is a great simplification 
compared to an in-vivo situation. Indeed in this work the heart is not under normal physiological 
conditions (forced isovolumic contraction), and more especially, the valves are not opening nor 
closing. Yet, we discussed in the previous chapter the elastic wave generated by the closing of 
the aortic valve at the end of the systole. In a similar manner, the closing of the mitral and 
tricuspid valves generate elastic waves propagating in the myocardium, simultaneously with the 
mechanical activation of the ventricles. As we will see in the following paragraphs, these two 
phenomenon interfere, and tracking one or the other will be delicate. 

5.4. Toward clinical applications  
In this work, we investigated the feasibility of imaging the mechanical activation sequence in-
vivo and in a clinical setup. As the availability of 3D ultrafast ultrasound scanner is yet limited 
to research laboratories, we became interested in the feasibility of studying the mechanical 
activation sequence using 2D ultrafast ultrasound scanner, already available to clinicians. This 
situation adds two difficulties compared to the Langendorff study: first, having “only” two 
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dimensions will harden the visualization of 3D mechanical propagations in the heart. Secondly, 
the atrioventricular valves will close during the ventricular activation, generating elastic waves 
propagating in the myocardium and mixing with the mechanical activation of the walls. With 
these additional constraints in mind, it is necessary to come back to a primitive analysis of 
mechanical events visible during activation before being able to think of extending the automated 
correlations-based algorithm developed previously. 

Konofagou et al. at Columbia University have investigated extensively the feasibility of 2D 
ultrafast imaging for mapping the sequence of myocardial activation using the so-called 
electromechanical wave imaging. They have evaluated this technique on patients with 
arrhythmia. One limitation of this technique is the manual detection of the activation performed 
by an operator. An automatic detection of the activation time, such as the one presented in the 
Langendorff study, would represent an important step towards the development of a clinical tool.  

Therefore, the objective of this section will be to investigate the feasibility of studying the cardiac 
activation sequence in 2D and in-vivo. Two clinical challenges retained our attention: the 
activation sequences of adults’ heart on the one hand, and of fetuses’ heart on the other hand.  

On the former, as discussed previously in section 3.1.1, the non-invasive evaluation of the 
activation sequence of the heart in the clinical setting remains challenging, and an ultrafast 
ultrasound-based system would have an interesting potential. The Langendorff study showed 
that we were able to retrieve the cardiac contraction sequence in a simplified setup: therefore, 
the objectives of this study were to test the feasibility of our methodology on the human in-vivo.  

On the latter, clinicians suffer a lack of tools allowing for the precise evaluation of fetal cardiac 
function. Indeed, despite being an extensive field of research over the last decades, assessing the 
fetal ECG remains challenging (Sameni, 2010) as its signal is covered by the maternal ECG. 
Thus, as of today, cardiac function evaluation relies only on conventional echocardiography, and 
any novel developments would be welcome by clinicians. Indeed, congenital heart diseases 
accounts for nearly one-third of all major congenital abnormalities (van der Linde et al., 2011), 
and more especially, cardiac arrhythmias are known to be linked to growth restriction, premature 
births and mortality (van Engelen et al., 1994; Eliasson et al., 2011).  

 

5.4.1. Material and methods 

5.4.1.1. Adult acquisitions 
Ultrafast ultrasound acquisitions were performed using a phased array probe (2.25MHz, 96 
elements, 0.2mm pitch) placed on the 4-chamber apical view with a frame rate of 1130 
images/seconds during 1.3s to cover an entire cardiac cycle. ECG was systematically co-
registered. 
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5.4.1.2. Fetal acquisitions 
Ultrafast ultrasound exams were performed aside routine follow-ups of 5 fetuses (18, 22, 22, 25, 
32 weeks of pregnancy) using a linear probe (6MHz, 128 elements, 0.2mm pitch). 1250 frames of 
a 4-chamber view were acquired at a frame rate of 2532Hz. 

Clinical data accessible were collected from conventional modes (B-Mode, Tissue Doppler, Pulsed 
Doppler, M-Mode): heart rate, E/A ration E’/A’ ratio, systolic duration, diastolic duration, PR 
interval. 

5.4.1.3. Post-processing 
RF data were beamformed and demodulated to IQ signals. Axial velocities were estimated using 
the Kasai algorithm (Kasai et al., 1985), smoothed spatially by convolution filters (kernel sizes 
of 1.5° * 6.8mm before scan conversion in the case of the adults and 1.3mm*1.3mm for fetal 
acquisitions). Tissue accelerations were calculated by the time derivative over 14ms for the adults 
and 7.9ms for the fetuses.   

To visualize mechanical events and their propagations in the hearts walls, curves were manually 
drawn over selected segments of the myocardium (i.e. right atrium free wall, atrial and 
ventricular septa, right and left ventricle free walls)4 using B-Mode images. M-Modes of tissue 
velocities and accelerations of points along those curves were then displayed. 

The velocities M-Modes allowed to retrieve the different phases of the cardiac cycle during the 
acquisitions (and the comparison with the ECG that could be acquired on adults). To define the 
mechanical activation of the walls, we used the acceleration data rather than the velocity. Indeed, 
the activation is depicted by a sudden change of tissue velocity, i.e., a peak of acceleration. The 
correlation algorithm previously used for the Langendorff study is actually comparing the velocity 
profiles of each point of the myocardium, but to be done visually using M-Modes, it is more 
relevant to search for maxima of accelerations. Furthermore, it is important to keep in mind the 
direction of motion of each wall during the mechanical contraction, as this information will be 
used to identify the corresponding local peak of acceleration. 

The methodology to obtain activation time maps can be summarized as follow: 

1. Manual selection of a wall (e.g. left ventricle free wall, septum, etc.) 

2. Identification of tissue velocities along this wall during the mechanical activation 

3. Selection of corresponding peaks of acceleration 

4. Repetition of previous steps to cover as much as possible the entire heart. 

                                         
4 In the case of the fetal study, because of the relatively random position of the fetuses, it was not always 
possible to visualize all of these regions. 
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5.4.2. Results 

5.4.2.1. Adults 
A B-Mode obtained on a healthy subject and the lines drawn over the walls of the heart are 
presented Figure 5.13. Before going into details of cardiac activation, the motion during the 
entire acquisition will be discussed, in order to understand how to interpret M-Modes. 

a) Preliminary analysis of the whole acquisition 

The M-Modes as well as the ECG during the entire acquisition (1.3s) presented figure 5.14 
contain many information depicted by the timestamps numbered from 1 to 6. Before a detailed 
analysis of the activation sequence, it is important to keep in mind the directions of the movement 
of the walls during the contraction. During atrial systole, the lateral walls of the ventricles moved 
away from the apex (positive displacement at timestamp 1). The ejected blood inflated the 
ventricles, pushing the mid and basal parts of their free wall towards the bottom of the image 
(this is often referred as “atrial kick”). Then, the contraction of the ventricles induced a 
movement of their walls towards the apex, as the volume diminished (timestamps 2 to 5. The 
mechanical events occurring between those timestamps will be discussed in the following 
paragraph). The motion of the apical region is hardly interpretable, as the received RF signals 
during the acquisition were saturated, and the apical wall of the right ventricle is not visible 
here. That being said, it is known that the axial motion of this area is limited (Ballester-Rodés 
et al., 2006; McDonald, 1970) and therefore is not of prime interest in this work. To sum-up this 
quick analysis, what needs to be reminded for the following is that the activation of the atria is 
depicted by positive velocities, and the activation of the ventricles by negative velocities. 

 

 

Figure 5.13 B-Mode of the 4-chamber view of ultrafast ultrasound acquisition of a healthy adult 
heart. The three different curves used for analysis of the activation sequence are overlaid. 
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b) Close-up analysis of activation sequence 

Figure 5.15 shows the M-Modes of tissue velocities and accelerations zoomed-in around the 
activation of the heart. The atrial contraction started at t≈350ms (positive peak of acceleration 
at timestamp 1), followed by the activation of the ventricles at t=450ms (negative peak of 
acceleration, timestamp 2). The undesired effect of valves closure is clearly visible at t≈500ms 
(timestamp 3): the contraction of the ventricles caused the blood pressure to rise and when the 
pressure in the ventricles became higher than the pressure in the atria, the mitral and tricuspid 
valves were pushed and closed. The elastic waves generated are clearly visible on M-Modes. 
Finally, when the pressure in the ventricles were sufficient to open the pulmonary and aortic 
valves, the blood was ejected out of the ventricles. Their volume diminished as their walls moved 
toward the apex (timestamp 4). The crosses placed on the acceleration M-Modes indicates the 
measurements of the activation times of points along the walls. 

The activation delays obtained are overlaid on the B-Mode image presented figure 5.16. Several 
conclusions can be drawn from these results. First of all, the lowest activation time was found to 
be in the atrial septum whereas it would be expected that the activation starts at the sinus node 
located in the right atrial wall: this suggest that the beginning of the atrial activation was missed, 
or in other words, that the total activation time is longer than what is found here. Secondly, the 
delay between the atrial and ventricular activations was 89ms, to be compared to the PR interval 
measureable on the ECG (here ~110ms): the shorter mechanical delay may come from the 
underestimated atrial activation time. Thirdly, the delays of the ventricular walls suggests that 
the activation went from the apex towards the basal sections of the wall, which is coherent with 
the implementation of Purkinje fibers discussed in the introduction of this chapter.  

These results suggest that it is possible to provide a coarse cardiac activation sequence of the 
adult heart despite the increased difficulty brought by the in-vivo conditions. In the following 
section, the results obtained on fetal heart will be shown. 
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Figure 5.14 ECG (a) and  M-Modes of velocities along left free wall (b), septum (c), and right free 
wall (d) during one ultrafast ultrasound acquisition. Positive tissue velocity indicates a movement 
towards greater depths. The time annotations describe: 1: Atrial contraction and atrial kick; 2: 

Ventricular activation; 3: Atrioventricular valves closure, isovolumetric contraction; 4: Pulmonary 
and aortic valves opening, ventricular blood ejection; 5: Aortic and pulmonary valves closures, 
isovolumetric relaxation; 6. Opening of atrioventricular valves, early filling of the ventricles. 



 

135 
 

 

 

 

Figure 5.15 M-Modes of velocities (2nd column) and accelerations (3rd column) along left free wall, 
septum, and right free wall during the activation of the heart. Positive tissue velocity indicates a 

movement towards greater depths. Note that the valvular floor is located at Z≈100mm, its 
delimitation is clearly visible on the M-Modes along the left wall. The times annotations describe: 1: 

Atrial contraction and atrial kick; 2: Ventricular activation; 3: Atrioventricular valves closures, 
isovolumetric contraction; 4: Pulmonary and aortic valves openings, ventricular blood ejection. The 

crosses on acceleration M-Modes indicates the measurements of the activation points along the walls. 
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Figure 5.16 Activation times obtained on a healthy adult heart overlaid onto the B-Mode image. 

5.4.2.2. Fetus 
The B-Mode image of the heart of a fetus (22 weeks of pregnancy) is presented figure 5.17. The 
4-chambers are visible in a lateral view. Note that the right part of the heart is above the left 
part. As discussed previously, the fetal ECG is hardly accessible: therefore, the first step to 
analyze the cardiac activation using echocardiography is to understand the phases of the cardiac 
cycle visible on the acquisition. 

a) Preliminary analysis of the whole acquisition 

The M-Modes of tissue velocity of left, right and septum walls of the heart are presented figure 
5.18. At t≈50ms (timestamp 1) the right and left atria moved closer to each other, which means 
that they contracted to eject blood in the ventricles (atrial systole). At t≈150ms (timestamps 2 
and 3 that will be further discussed in the following paragraph), the right and left ventricle free 
walls got closer, showing the beginning of the ventricular systole. The closing of the pulmonary 
and/or aortic valves is clearly depicted by the sharp velocity peak of the septum at t≈300ms 
(timestamp 4). At t≈350ms, the early filling of the ventricles marking the beginning of the 
diastole (timestamp 5) is visible on both left and right free walls. Finally, the next cycle starts 
at t≈450ms with the contractions of the atria. 

b) Close-up analysis of activation sequence 

The M-Modes of tissue velocities and accelerations zoomed-in during the activation of the heart 
are presented figure 5.19. As in the adult study, activation times were defined by local peaks of 
acceleration during the movement leading to blood ejection (see crosses on acceleration M-
Modes).  
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Figure 5.17 B-Mode image extracted from ultrafast ultrasound acquisition of a foetus. Lines represent 

manually selected walls. 

The activation of the left atrium started at t≈35ms, followed a few milliseconds later by the right 
atrium. Whereas the contraction timing of the atria is explicit, it is more difficult to extract the 
activation sequence of the ventricles. Indeed, in this case, the mechanical events of cardiac 
contraction and atrioventricular valves seemed to have happened simultaneously and are hardly 
distinguishable: at t≈100ms, the apical part of the right ventricle started the contraction 
movement, whereas the basal part of the wall had an acceleration of the opposite sign, probably 
due to the tricuspid valve closing.  Thus, activation of contraction was defined as the local 
maxima of acceleration towards the direction of movement of the wall during the systole. For 
example, the right ventricle free wall moves toward the septum during the systole, i.e., it is a 
positive movement: therefore, its activation must be marked by a positive acceleration. 

The measured activation delays are overlaid onto the B-Mode image presented figure 5.20. The 
earliest activated point was found in the left atrium, suggesting that the actual beginning of 
activation t=t0 was missed, as it should be located in the sinus node, in the right atrium. It is 
therefore unwise to push further the analysis of the atrium activation. The activation of the 
ventricles ranged from t=77ms to 91ms. The total activation delay should be equivalent to the 
PR interval measured on the ECG and seems to agree well with previous values reported in the 
literature: Marvel et al. found an averaged value of 103ms on a cohort of 37 fetuses using fECG 
(Marvell et al., 1980), whereas more recently, Wacker et al. (Wacker-Gussmann et al., 2014) 
measured an average PR delay of 91ms in n=19 fetus with fetal magnetocardiography. 

c) Comparison with clinical measurements 

During routine follow-ups of pregnancy, clinicians use pulsed-Doppler echocardiography to assess 
a mechanical equivalent of PR duration. To do so, they measure the time interval between the 
maximum of mitral flow (equivalent to “P” wave, i.e. atrial systole) and the maximum of blood 
flow through the aortic valve (equivalent to “R” wave i.e. ventricular systole). In our study, we 



 

138 
 

are able to measure an equivalent delay between the beginning of activation of the atria and the 
beginning of blood ejection out of the ventricles (delay between timestamps 1 and 3 of figure 
5.19). Note that this “mechanical” PR is different than the “electrical” PR discussed above, as 
it includes the isovolumetric contraction time:  

PRmechanical =  PRelectrical+ isovolumetric contraction. 

The mechanical PR measured by clinicians on this heart was 120ms, which is close to the measure 
done with ultrafast ultrasound (122ms). Moreover, as ultrafast ultrasound allows to measure both 
“electrical” and “mechanical” PR, it is possible to deduce the isovolumetric contraction duration, 
which was 122-91=31ms in the case of this fetus., in good agreement with the literature: Koga 
et al. found an average value of 29ms on 116 fetuses (Koga et al., 2001). 

5.4.3. Discussion 
The feasibility of studying the cardiac activation within a single heartbeat using tissue Doppler 
information obtained with 2D ultrafast ultrasound was investigated for two different scenarios, 
and similar conclusions could be learnt from these analyses. First of all, the earliest activation 
points were not located where expected in the sinus node, but in the atrial septum and the left 
atria, respectively. This inability to find the earliest activation location may have two causes. 
On the one hand, only axial movements were estimated: any motion with little or no component 
projected on the probe axis is not perceived. On the second hand, it is possible that the sinus 
node is not included in the 2D imaging plane. These two doubts could be clarified by using 
speckle-tracking algorithm and 3D ultrafast imaging, respectively. The second outcome of our 
investigations is the possibility of measuring the atrioventricular delay. This parameter is of 
interest for clinicians as it is crucial for the effectiveness of the cardiac cycle, ensuring the optimal 
filling of the ventricles before their contraction to eject blood in the circulatory system. The third 
outcome was the possibility to retrieve ventricular activation patterns related to the Purkinje 
network terminations, despite the undesired masking effect generated by the atrioventricular 
valves closure. 

These preliminary results needs to be confirmed by the analyses of more acquisitions of the same 
heart, comparisons with results obtained on other hearts, and validation against gold standard 
measurements, which is the subject of on-going work. In futures studies, limitations induced by 
the 1D Doppler estimation may be overcome by speckle-tracking algorithms. Moreover, as 3D 
mapping is necessary to visualize the complex activation patterns of the heart, it would be an 
essential improvement to study pathological hearts suffering trouble of conductions. 3D speckle-
tracking algorithms may also be applied, and allow for the computation 3D displacements and 
strains, which would probably ease the separation of mechanical events due to the contraction 
of the heart and due to the closure of atrioventricular valves. Last but not least, an automation 
of the post-processing treatment will be essential for the clinical viability of the method. 
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Figure 5.18 M-Modes of velocities along right wall, septum and left wall of a foetus’ heart. Note that 
the valvular floor is located at X≈20mm. The following timestamps are marked: 1: Atrial activation; 

2: Ventricular activation; 3: Blood ejection (opening of pulmonary and aortic valves); 4: 
isovolumetric relaxation; 5: early filling of ventricles 
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Figure 5.19 Enlargement of M-Modes of velocities along right wall, septum and left wall around the 
activation time. Note that the valvular floor is located at X≈20mm. The following timestamps are 
marked: 1: Atrial activation; 2: Ventricular activation and atrioventricular valves closure; 3: Blood 

ejection (opening of pulmonary and aortic valves). 
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Figure 5.20 Activation times obtained on a healthy foetal heart. 

5.5. Conclusion 
In this chapter, we discussed the feasibility of imaging the cardiac mechanical activation sequence 
within a single heartbeat, using non-invasive ultrafast ultrasound. The methodology relies on an 
automatic analysis of the myocardial axial velocities estimated using ultrafast tissue Doppler 
imaging. Firstly, we used 3D ultrafast ultrasound on isolated rat hearts to obtain 3D activation 
time maps during both sinus rhythm and pacing. The pacing allowed us to verify that we were 
able to retrieve the correct stimulus locations. Furthermore, physiological electrodes were placed 
on the epicardium to compare local electrical activation with mechanical activation times. The 
effects of hypothermia on the contraction delays were observed, and the lengthening of activation 
times reported on the literature was correctly retrieved. We then moved forward a clinical setup 
based on the use of 2D ultrafast ultrasound scanners already disseminated into the hospitals. 
That analysis was more complex to perform in vivo due to the limited information of the 2D 
images but also due to to several transient mechanical events such as the valve closures. Despite 
the challenges, we showed that it was possible to retrieve local activation times manually.  

This work is yet limited in several points. The 1D axial displacements estimations is shadowing 
movements that have little or no components along this axis, which is particularly challenging 
in the case of the fetus. Indeed, the orientation of the heart is dictated by the fetus’ position, 
and the standard echocardiographic views may not be accessible. Motion estimation by speckle-
tracking would solve this issue, but requires good quality signals, which are difficult to obtain 
together with high frame rates. However, great developments have been done to enhance ultrafast 
ultrasound imaging quality: for instance, harmonic imaging may improve the B-Mode quality 
and allow the use of speckle-tracking motion estimation. Another difficulty encountered was the 
closure of the atrioventricular valves that create elastic waves propagating in the heart walls 
simultaneously with the activation sequence, which implies careful interpretation of the 
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displacements. Strain-based algorithms may help to distinguish these two types of waves, but 
would require an improved signal-to-noise ratio. Moreover, the Purkinje network ends in multiple 
locations of the ventricles to insure the effectiveness of their contraction, which makes difficult 
the interpretation of 2D activation maps. Furthermore, when studying pathological cases, it will 
be of first importance to localize the defecting area: those two complications require necessarily 
3D mapping. Once again, speckle-tracking algorithms would permit the estimation of 3D 
movements and strains, providing an extensive amount of information to analyze the contraction 
sequence. However, as of today, such algorithms face the challenges of relatively low quality of 
3D images, and the high computational cost of such calculations.
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 : Conclusion 
 

This thesis was focused on 3D ultrafast ultrasound imaging of the heart for the characterisation 
of cardiac tissues’ properties. In order to do so, a real-time imaging modality was developed on 
a 1024-channel ultrafast ultrasound system, and dedicated 3D and 4D visualization tools were 
developed. This system is highly versatile and has the capability to perform fundamental research 
on small animals but also clinical studies on human patients. This work has enhanced the 
utilisation of the 3D ultrafast ultrasound scanner built in our lab and is being used within our 
group for other research applications on other organs such as the brain or the liver which are not 
presented in this manuscript. 

Then, we presented 3D Backscatter Tensor Imaging (BTI), an application dedicated to the 
imaging of the fibres architecture of the human heart in-vivo and non-invasively during the 
cardiac cycle. The effect of axial motion on the technique was investigated, and a solution to 
estimate its velocity and reduce the undesired artefacts was introduced. BTI could become a tool 
of choice to measure the microstructural anisotropy of soft tissues, and find clinical applications 
in the study of cardiac pathologies implying fibre disarray (such as hypertrophic 
cardiomyopathies), or research applications to image the fibrous structure of the brain. 

Afterward, we introduced a framework dedicated to the imaging of naturally generated elastic 
waves propagating in the human heart walls during the cardiac cycle, as well as a methodology 
to measure their speed. Future developments will be focused on the retrieval of the heart elasticity 
from these measurements, which would allow to assess the myocardial stiffness during both 
contraction and relaxation. 

Last but not least, we performed the imaging of the cardiac contraction in 3D on isolated rat 
hearts in order to analyse the synchronisation of the cardiac activation. The activation sequences 
could be retrieved during the natural rhythm of the heart, under pacing conditions and 
hypothermia. Finally, the application of the technique in 2D in a clinical setting was investigated 
on foetuses and adults human hearts. The perspectives of this work are to enhance and facilitate 
the detection and localization of cardiac arrhythmias, for their better treatment. 

Note that the fibrous texture of the heart impacts directly the velocity of elastic waves within 
the heart walls as well as the activation contraction sequence: both of these phenomenon 
propagate preferably along the directions of the fibres rather than perpendicularly. Thus in future 
studies, it would be interesting to combine the three techniques developed during this PhD and 
compare, from a single 3D ultrafast ultrasound acquisition during one heartbeat, the orientation 
of cardiac fibres, the velocity of elastic waves naturally propagating and their anisotropy, and 
the cardiac activation sequence. 

In general, the techniques developed in this PhD hope to set back the limitations of conventional 
echocardiography while maintaining its advantages, and may find clinical applications in order 
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to better diagnose and/or follow-up cardiac pathologies. Indeed, it may be possible in the future 
to assess at the bed side of the patient new properties such as the myocardial stiffness, the 
myocardial fibers organization, or the precise mechanical activation sequence. Thus, future work 
should also focus on clinical studies to evaluate the benefits of using 3D ultrafast imaging in a 
various set of pathological cases. As of today, the availability of 3D ultrafast ultrasound scanners 
and fully populated matrix probes remains limited to a few research centres, and these material 
remain expensive and bulky. However, future technologies will shortly provide solutions to reduce 
both their costs and size: in particular, current researches aim to reduce the numbers of channels 
of the 3D probes, either by using sparse arrays, raw-column arrays, or integrating micro-
beamformers within the probe. Hence, it is reasonable to think that 3D ultrafast ultrasound 
imaging could become a standard clinical equipment in a few decades.
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