.. .. Moyens-de-test-laser,

. .. , Banc laser (N d : Y AG, 400 ps), p.48

. .. , Modélisation des processus d'absorption, p.75

, Génération de porteurs et calcul de la charge déposée, p.76

, Diodes de redressement ultrarapides en technologie silicium, p.86

, Événements singuliers dans les diodes Schottky : état de l'art, p.96

, Synthèse de résultats de test sous faisceau d'ions lourds, p.107

. .. , Préparation des tests laser par simulation, p.130

, Tests sur le banc LISA 1064 nm

, Comparaison des résultats de test laser et ions lourds, p.140

, Phénomène de latchup dans une structure CMOS -état de l'art, p.150

S. .. Au, Étude bibliographie sur la sensibilité, p.152

, IV.2.1 Conception du composant et choix technologiques, p.155

, Étude de la sensibilité de l'ASIC sous faisceau d'ions lourds et par simulation158 IV.3.1 Présentation du banc de test

, Résultat des tests sous faisceau d'ions lourds et par simulation, p.160

, Étude de la sensibilité au SEL au moyen d'impulsions laser, p.161

, Préparation des composants et adaptation du banc de test, p.162

, Analyse comparative des résultats de test

M. Mauguet, D. Lagarde, F. Widmer, N. Chatry, X. Marie et al., Single Event Latchup in a CMOS-based ASIC Using Heavy Ions, Laser Pulses and Coupled Simulation, vol.2017, 2018.

M. Mauguet and D. Lagarde, « Pulsed Laser for Single Events Sensitivity Studies, 2017.

M. Mauguet, « SEE Induced By Laser Pulses In Silicon Schottky Diodes, 2017.

M. Mauguet, D. Lagarde, F. Widmer, N. Chatry, X. Marie et al., Single events induced by heavy ions and laser pulses in silicon schottky diodes, IEEE Transactions on Nuclear Science, vol.65, pp.1768-1775, 2018.

M. Mauguet, D. Lagarde, F. Widmer, N. Chatry, X. Marie et al., Analysis of Heavy Ion Irradiation Test Results on Power Diodes

M. Mauguet, N. Andrianjohany, D. Lagarde, L. Gouyet, L. Azema et al., Single Event Latchup in a CMOS-based ASIC Using Heavy Ions, Laser Pulses and Coupled Simulation, IEEE Transactions on Nuclear Science, 2019.

F. Miller, « Etude expérimentale et théorique des effets d'un faisceau laser pulsé sur les composants électroniques et comparaison avec les événements singuliers induits par l'environnement radiatif naturel, 2006.

, Institut National de Physique Nucléaire et de Physique des Particules, 2015.

N. Andrianjohany, « Méthodologie de prédiction multi-échelle pour l'évaluation et le durcissement des circuits intégrés complexes face aux événements singuliers d'origine radiative, 2018.

A. Chulliat, G. Hulot, L. R. Et, and . Newitt, « Magnetic flux expulsion from the core as a possible cause of the unusually large acceleration of the North magnetic pole during the, Journal of Geophysical Research, vol.115, 1990.

J. A. Van-allen, « Radiation Belts around the Earth, Scientific American, vol.200, pp.39-47, 1959.

J. C. Boudenot, Tenue des circuits aux radiations ionisantes. Techniques de l'ingénieur, 1999.

A. Luu, « SEB characterization of commercial power MOSFETs with backside laser and heavy ions of different ranges, IEEE Transactions on Nuclear Science, vol.55, pp.2166-2173, 2008.

E. Monier, Vent solaire et aurores polaires, 2007.

R. Ecoffet, « Radiation effects in space : on-going issues and new concerns, 2016.

R. L. Fleischer, P. B. Price, and R. M. Walker, Nuclear Tracks in Solids : Principles and Applications, 1975.

A. Luu, « Méthodologie de prédiction des effets destructifs dus à l'environnement radiatif naturel sur les MOSFETs et IGBTs de puissance, Université Toulouse, vol.3, 2010.

R. A. Mewaldt, Elemental composition and energy spectra of galactic cosmic rays, NASA, 1988.

O. C. Allkofer and P. K. Grieder, « Cosmic rays on earth, vol.25, pp.179-192, 1984.

E. Normand, Single Event Upsets at ground level, IEEE Transactions on Nuclear Science, vol.43, pp.2742-2750, 1996.

J. C. Boudenot, L'environnement spatial. Presses Universitaires de France, Références bibliographiques, 1995.

J. Vuillez, Interactions des rayonnements avec la matière, 2011.

E. Okuno, Interactions of radiation with matter, International Atomic Energy Agency, 2005.

L. Dusseau, Université Montpellier 2 -Institut d'électronique du sud, 2009.

Y. Bordulev, Development of a digital spectrometric system for material studying by positron annihilation techniques, Proceedings IEEE 7th International Forum on Strategic Technology, 2012.

C. Bonnoit-chevalier, Interaction particule -matière et conception d'un détecteur. Institut National de Physique Nucléaire et de Physique des Particules, 2011.

. Trad, Radiation Engineering Training rev

. Ioffe, Physical properties of semiconductors. Russian acamedy of Science, 2018.

D. K. Schroder, R. N. Thomas, and J. C. Swartz, « Free carrier absorption in silicon, Journal of solid-state circuits, vol.13, pp.180-187, 1978.

M. Nedeljkovi?, R. Soref, and G. Z. Mashanovich, « Free-carrier electro-refraction and electro-absorption modulation predictions for silicon over the 1 -14 µm infrared wavelength range, Photonics Journal, vol.3, pp.1171-1180, 2011.

R. A. Soref and B. R. Bennett, « Electroical effects in silicon, Journal of quantum electronics, vol.23, pp.123-129, 1987.

T. Xinzhu, S. En-kuang, and O. Boyraz, « Applications of two-photon absorption in silicon, Journal of oelectronics and advanced materials, vol.11, pp.15-25, 2008.

M. Raine, Effect of the ion mass and energy on the response of 70-nm SOI transistors to the ion deposited charge by direct ionization, IEEE Transactions on Nuclear Science, vol.57, pp.1892-1899, 2010.

X. W. Zhu, « Charge deposition modelling of thermal neutron products in fast submicron MOS devices, IEEE Transactions on Nuclear Science, vol.46, pp.1378-1385, 1999.

A. K. Richter and I. Arimura, « Simulation of heavy charged particule tracks using focused laser beams, IEEE Transactions on Nuclear Science, vol.34, pp.1234-1239, 1987.

J. Grenet, Cours de physique du solide, 2014.

H. Mathieu and H. Fanet, Physique des semiconducteurs et des composants électroniques. Dunod, 2009.

B. C. Forget, « Caractérisation des propriétés de transport électronique du silicium par méthodes photothermiques, 2013.

A. Michez, « Simulation numérique de la collection des charges induites par un ion lourd dans une diode silicium, Université Montpellier, vol.2, 1991.

C. M. Hsieh, P. C. Murley, and R. R. O'brien, « A field-funneling effect on the collection of alpha-particle-generated carriers in silicon devices, IEEE Electron Device Letters, vol.4, pp.103-105, 1981.

M. Takada, Charge-collection length induced by proton and alpha particle injected into silicon detectors due to funneling effect, IEEE Transactions on Nuclear Science, vol.56, pp.337-345, 2009.

A. Johnston, « Charge generation and collection in p-n junctions excited with pulsed infrared lasers, IEEE Transactions on Nuclear Science, vol.40, pp.1694-1702, 1993.

P. E. Dodd, « Current and future challenges in radiation effects on CMOS electronics, IEEE Transactions on Nuclear Science, vol.57, pp.1747-1763, 2010.

M. Beaumel, « Proton, electron, and heavy ion single event effects on the HAS2 CMOS image sensor, IEEE Transactions on Nuclear Science, vol.61, pp.1909-1917, 2014.

J. M. Trippe, « Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs, IEEE Transactions on Nuclear Science, vol.62, pp.2709-2716, 2015.

R. Gaillard, Single event effets : mechanisms and classification, 2011.

C. S. Guenzer, R. G. Wolicki, E. A. , and A. , Single event upset of dynamic RAMs by neutrons and protons, IEEE Transactions on Nuclear Science, vol.6, pp.5048-5052, 1979.

C. Hafer, « SEU, SET, and SEFI test results of a hardened 16Mbit MRAM device, IEEE Radiation Effects data workshop, 2012.

J. S. Kauppila, Single event upset characterization across temperature and supply voltage for a 20-nm bulk planar CMOS technology, IEEE Transactions on Nuclear Science, vol.62, pp.2613-2619, 2015.

R. Koga, Single event functional interrupt (SEFI) sensitivity in microcircuits, European Conference on Radiation and its Effects on Components and Systems, 1997.

P. and K. Yu, Permanent single event functional interrupts (SEFIs) in 128-and 256-megabit synchronous dynamic random access memories (SDRAMs), Nuclear and Space Radiation Effects Conference, pp.6-13, 2001.

D. N. Nguyen and F. Irom, « Radiation effects on MRAM, Radiation and Its Effects on Components and Systems, 2007.

, Références bibliographiques

S. Gerardin, Radiation effects in flash memories, IEEE Transactions on Nuclear Science, vol.60, pp.1953-1969, 2013.

J. Guillermin, High current event and single event functional interrupt in non-volatile memories, Radiation and Its Effects on Components and Systems, 2018.

R. Koga, On the suitability of non hardened high density SRAMs for space applications, IEEE Transactions on Nuclear Science, vol.38, pp.1507-1513, 1991.

C. Poivey, « Characterization of single hard errors (SHE) in 1M-bit SRAMs from single ion, IEEE Transactions on Nuclear Science, vol.41, pp.2235-2239, 1994.

E. Lorfevre, Heavy Ion Induced Failures in a Power IGBT, IEEE Transactions on Nuclear Science, vol.44, pp.2353-2357, 1997.

S. H. Voldman and . Latchup, , 2007.

G. H. Johnson, « Characterization of single hard errors (SHE) in 1M-bit SRAMs from single ion, IEEE Transactions on Nuclear Science, vol.43, pp.546-560, 1996.

D. S. Peck and D. S. Schmid, « Effects of Radiation on Transistors in the First Telstar Satellite, Nature, vol.199, 1963.

K. L. Bedingfield, R. D. Leach, and M. B. Alexander, « Spacecraft system failures and anomalies attributed to the natural space environment, NASA reference publication 1390, pp.2235-2239, 1996.

S. Musacchio, Cubesat design specification. CNRS, 2004.

J. Beaucour, « Heavy ion testing using GANIL accelerator and compilation of results with predictions, IEEE Radiation Effects Data Workshop, pp.20-26, 1993.

D. H. Habing, « The use of lasers to simulate radiation-induced transients in semiconductor devices and circuits, IEEE Transactions on Nuclear Science, vol.12, pp.91-100, 1965.

S. P. Buchner, Simulation of heavy charged particle tracks using focused laser beams, IEEE Transactions on Nuclear Science, vol.34, pp.1227-1233, 1987.

J. S. Melinger, « Critical evaluation of the pulsed laser method for single event effects testing and fundamental studies, IEEE Transactions on Nuclear Science, vol.41, pp.2574-2584, 1994.

S. P. Buchner, « Pulsed-laser testing for single-event effects investigations, IEEE Transactions on Nuclear Science, vol.60, pp.1852-1875, 2013.

V. Pouget, Facilities and methods for radiation testing, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01932598

, Références bibliographiques, p.191

A. Douin, « Influence of Laser Pulse Duration in Single Event Upset Testing, IEEE Transactions on Nuclear Science, vol.53, pp.1799-1805, 2006.

A. I. Chumakov, Compendium of SEE comparative results under ion and laser irradiation, IEEE Proceedings RADECS Data Workshop, 2013.

D. Mcmorrow, « SEU in substrate-etched CMOS SOI SRAMs using UV optical pulses with wub-micrometer spot size, IEEE Transactions on Nuclear Science, vol.60, pp.4184-4191, 2013.

A. Khachatrian, Spatial mapping of pristine and irradiated AlGaN/GaN HEMTs with UV single-photon absorption single-event transient technique, IEEE Transactions on Nuclear Science, vol.4, pp.1995-2001, 2016.

D. Lewis, Backside laser testing of ICs for SET sensitivity evaluation, IEEE Transactions on Nuclear Science, vol.48, pp.2193-2201, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00185400

D. Mcmorrow, Subbandgap laser induced single event effects : carrier generation via two-photon absorption, IEEE Transactions on Nuclear Science, vol.49, pp.3002-3008, 2002.

D. Mcmorrow, Three-dimensional mapping of single-event effects using two photon absorption, IEEE Transactions on Nuclear Science, vol.6, pp.2199-2207, 2003.

F. Darracq, « Investigation on the single event burnout sensitive volume using two-photon absorption laser testing, IEEE Transactions on Nuclear Science, vol.59, pp.999-1006, 2012.

N. Mbaye, « Contribution à l'étude de la fiabilité des technologies avancées en environnement radiatif atmosphérique et spatial par des méthodes optiques, 2013.

M. Mauguet, Single events induced by heavy ions and laser pulses in silicon schottky diodes, IEEE Transactions on Nuclear Science, vol.65, pp.1768-1775, 2018.

F. W. Sexton, « Microbeam Studies of Single-Event Effects, IEEE Transactions on Nuclear Science, vol.43, pp.687-695, 1996.

L. Sheng, High energy heavy ion microbeam irradiation facility at IMP, Nuclear Instruments and Methods in Physics Research, vol.269, pp.2189-2192, 2011.

P. Barbereta, « The GSI heavy ion microbeam : a tool for the investigation of cellular response to high LET radiations, Proceedings of the XL Zakopane School of Physics, vol.109, pp.329-334, 2006.

W. Yang, Microbeam heavy-ion single event effect on Xilinx 28-nm system on chip, IEEE Transactions on Nuclear Science, vol.65, pp.545-549, 2018.

A. Fontana, « Heavy ion microbeam experimental study of ASET on a fullcustom CMOS OpAmp, 31st Symposium on Integrated Circuits and Systems Design (SBCCI), 2018.

, Références bibliographiques

H. Navirian, « Shortening X-ray Pulses for Pump-Probe Experiments at Synchrotrons, Journal of Applied Physics, vol.109, 2011.

L. Emery, K. Harkay, and V. Sajaev, « Alternate Hybrid Mode Bunch Patterns for the Advanced Photon Source, 23rd Particle Accelerator Conference, p.1084, 2009.

R. Torchio, ESRF sends shockwaves (and an X-ray pulse) through iron to prove a new technique. European Synchrotron Radiation Facility (ESRF), 2014.

S. Buchner, Charge collection from focused picosecond laser pulses, IEEE Transactions on Nuclear Science, vol.35, pp.1517-1522, 1988.

D. Cardoza, Comparison of single event transients generated by short pulsed X-Rays, lasers and heavy ions, IEEE Transactions on Nuclear Science, vol.61, pp.3154-3162, 2014.

V. Pouget, Theoretical investigation of an equivalent laser LET, Microelectronics Reliability, vol.41, pp.1513-1518, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00185402

D. Mcmorrow, Two-photon-absorption-induced carrier generation : calibration, modeling and experimental validation, 2017.

J. M. Hales, Experimental validation of an equivalent LET approach for correlating heavy-ion and laser-induced charge deposition, IEEE Transactions on Nuclear Science, vol.65, pp.1724-1733, 2018.

F. E. Bassri, « Sources lasers déclenchées nanosecondes : Applications à la spectroscopie Raman cohérente sous champ électrique, 2015.

«. Banc-de-test and . Laser, , 2014.

P. F. Moulton, « Spectroscopic and laser characteristics of Ti :Sa, Solid state laser materials, vol.3, pp.125-133, 1986.

T. «-tsunami, Sa ultrafast oscillators brochure ». Spectra Physics, 2009.

S. C. Moss, « Correlation of picosecond laser-induced latchup and energetic particle-induced latchup in CMOS test structures, IEEE Transactions on Nuclear Science, vol.42, pp.1948-1956, 1995.

. Free-space, . Eo-modulators, and . Thorlabs, , 2010.

S. Forget, Lasers et optique non linéaire -optique des lasers et faisceaux Gaussiens, 2007.

A. Culoma, Propagation des faisceaux gaussiens, transport des faisceaux de puissance, Laserdot, 1992.

M. Carotta, « Effect of thickness and surface treatment on silicon wafer reflectance, Solar Energy Materials and Solar Cells, vol.27, pp.265-272, 1992.

P. E. Schmid, « Optical absorption in heavily doped silicon, Physical review B, vol.23, pp.5531-5536, 1981.

X. Wang, Laser-induced damade threshold of silicon in millisecond, nanosecond and picosecond regimes, Journal of Applied Physics, vol.108, 2010.

J. George, Single event burnout observed in Schottky diodes, Proceedings IEEE RAdiation Effects Data Workshop IEEE Transactions on Nuclear Science, vol.1, pp.167-174, 2013.

M. C. Casey, Destructive Single-Event Failures in Schottky Diodes. NASA Electronic Parts et Packaging Program, Wed _ June12 _ 2013 / 1430 _ Casey _ Schottky _ Diode _ Radiation _ Failures.pdf, 2014.

A. Chovet and P. Masson, Physique des semiconducteurs. Ecole Polytechnique, 2004.

C. Koeniguer, Physique des dispositifs électroniques. Ecole Polytechnique, 2006.

S. Kuboyama, Anomalous charge collection in Si carbide schottky barrier diodes and resulting permanent damage and SEB, IEEE Transactions on Nuclear Science, vol.53, pp.3343-3348, 2006.

B. V. Zeghbroeck, Principles of Semiconductor Devices. University of Colorado, 2011.

S. Kuboyama, Thermal Runaway in SiC Schottky Barrier Diodes Caused by Heavy Ions, IEEE Transactions on Nuclear Science -RADECS Proceedings, 2018.

J. Theiss, Simulation for Risk Assessment of Diode Single Event Burnout, Proc. IEEE Aerospace Conference, pp.3762-3769, 2015.

. Vishay and . Tmbs®, Trench MOS Barrier Schottky Rectifiers Address Weaknesses of Traditional Planar Schottky Devices. Application Note. Vishay, 2015.

M. Chen, H. Kuo, and K. Sweetman, High-Voltage TMBS Diodes Challenge Planar Schottkys, pp.22-32, 2006.

M. D. Miller, « Differences Between Platinum-and Gold-Doped Silicon Power Devices, IEEE Transactions on Nuclear Science, vol.23, pp.1279-1283, 1976.

F. Cappelluti, Physics-based mixed-mode reverse recovery modeling and imization of Si PiN and MPS fast recovery diodes, Microelectronics Journal, vol.37, pp.190-196, 2007.

G. Soelkner, Charge carrier avalanche multiplication in high-voltage diodes triggered by ionizing radiation, IEEE Transactions on Nuclear Science, vol.47, pp.2365-2372, 2000.

R. Gigliuto and M. Casey, Observed diode failures in DC-DC converters. NASA Electronic Parts et Packaging Program, 2012.

M. V. O'bryan, Compendium of single event effects for candidate spacecraft electronics for NASA, Proceedings IEEE RAdiation Effects Data Workshop, pp.22-30, 2012.

K. H. Maier, Single-event burnout in high power diodes, Nuclear Instruments and Methods Physical Research B, vol.146, pp.596-600, 1998.

M. C. Casey, Failure Analysis of Heavy Ion-Irradiated Schottky Diodes, IEEE Transactions on Nuclear Science, vol.65, pp.269-279, 2018.

C. Abbate, Analysis of heavy ion irradiation induced thermal damage in SiC Schottky diode, IEEE Transactions on Nuclear Science, pp.202-209, 2015.

J. Ralston-good, « Analysis of Schottky diode failure mechanisms during exposure to e-beam pulse using TCAD simulation, 2003.

S. K. Ghandhi, Semiconductor power device, 1977.

A. C. English, « Mesoplasmas and second breakdown in silicon junctions, Solid-State Electronics, vol.6, pp.511-521, 1963.

E. L. Thompson and . Wilkonson, « Destructive breakdown in large area phosphorus diffused high voltage n+-p junctions, Solid-State Electronics, vol.10, pp.983-989, 1967.

A. Javanainen, Heavy-ion-induced degradation in SiC Schottky diodes : incident angle and energy deposition dependence, IEEE Transactions on Nuclear Science, vol.64, pp.2031-2037, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-02021535

M. C. Casey, « Schottky diode derating for survivability in a heavy ion environment, IEEE Transactions on Nuclear Science, vol.6, pp.2482-2489, 2015.

A. Michez, S. Dhombres, and J. Boch, « ECORCE : a TCAD tool for total ionizing dose and single event effect modeling, IEEE Transactions on Nuclear Science, vol.62, pp.1516-1527, 2015.

A. Ruotolo, High-quality alloxide Schottky junctions fabricated on heavily Nb-doped SrTiO3 substrates, Physical review B, vol.76, pp.3343-3348, 2007.

M. Mauguet, Analysis of heavy ion irradiation test results on power diodes, IEEE Proceedings RADECS Data Workshop, 2018.

S. Sahu, EEE-INST-002 : Instructions for EEE parts selection, screening, qualification and derating. NASA, 2008.

G. Hubert, « Study of Basic Mechanisms Induced by an Ionizing Particle on Simple Structures, IEEE Transactions on Nuclear Science, vol.47, pp.519-526, 2000.

G. C. Messenger, « Collection of charge on junction nodes from ion tracks, IEEE Transactions on Nuclear Science, vol.29, pp.2024-2031, 1982.

W. G. Bennett, Experimental Characterization of Radiation-Induced Charge Sharing, IEEE Transactions on Nuclear Science, vol.6, pp.4159-4165, 2013.

Y. Dimaio, « Etude de l'interaction laser-matière en régime d'impulsions ultra-courtes : application au micro-usinage de matériaux à destination de senseurs, 2014.

N. C. Hooten, « Characterization of the two-photon absorption carrier generation region in bulk silicon diodes, 2011.

A. H. Johnston and B. W. Hughlock, Latchup in CMOS from single particles, vol.37, pp.1886-1893, 1990.

J. R. Schwank, Effects of angle of incidence on proton and neutron-induced single event latchup, IEEE Transactions on Nuclear Science, vol.53, pp.3122-3131, 2006.

A. Youssef, « Investigation of electrical latchup and SEL mechanisms at low temperature for applications down to 50 K, IEEE Transactions on Nuclear Science, vol.64, pp.2089-2097, 2017.

L. Artola, G. Hubert, and T. Rousselin, « Single-event latchup modeling based on couple physical and electrical transient simulation in CMOS technology, IEEE Transactions on Nuclear Science, vol.61, pp.3543-3549, 2014.

N. A. Dodds, « SEL-sensitive area mapping and the effects of reflection and diffraction from metal lines on laser SEE testing, IEEE Transactions on Nuclear Science, vol.60, pp.2550-2558, 2013.

B. L. Gregory and B. D. Shafer, « Latch-up in CMOS integrated circuits, IEEE Transactions on Nuclear Science, vol.20, pp.293-299, 1973.

R. Fang and J. L. Moll, « Latchup model for the parasitic p-n-p-n path in bulk CMOS, IEEE Transactions on Nuclear Science, vol.1, pp.113-120, 1984.

N. A. Dodds, « Single Event Latchup : hardening stratefies, triggering mechanisms, and testing considerations, 2012.

A. Weger, « Transmission line pulse picosecond imaging circuit analysis methodology of ESD and latchup, 41st Annual International Reliability Physics Symposium, 2003.

D. Mcmorrow, « Laser induced latchup screening and mitigation in CMOS devices, IEEE Transactions on Nuclear Science, vol.53, pp.1819-1824, 2006.

A. Youssef, « Etude par modélisation des SEE induits pas l'environnement radiatif dans les composants électroniques, 2017.

N. Andrianjohany, Single event effect prediction early in the design phase and latchup case study on ASIC, Proceedings RADECS, 2018.