K. Amako, T. Ushimaru, A. Ishikawa, Y. Ogishi, R. Kishimoto et al., Heterologous expression of dehydroascorbate reductase from rice and its application to determination of dehydroascorbate concentrations, J. Nutr. Sci. Vitaminol, vol.52, pp.89-95, 2006.

K. Asada and M. Takahashi, Production and scavenging of active oxygen species in photosynthesis, pp.227-287, 1987.

S. Barranco-medina, T. Krell, I. Finkemeier, F. Sevilla, J. J. Lázaro et al., Biochemical and molecular characterization of the mitochondrial peroxiredoxin PsPrxII F from Pisum sativum, Plant Physiol. Biochem, vol.45, pp.729-739, 2007.

J. B. Barroso, F. J. Corpas, A. Carreras, M. Rodríguez-serrano, F. J. Esteban et al., Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress, J. Exp. Bot, vol.57, pp.1785-1793, 2006.

L. Bernier-villamor, E. Navarro, F. Sevilla, and J. J. Lázaro, Cloning and characterization of a 2-Cys peroxiredoxin from Pisum sativum, J. Exp. Bot, vol.55, pp.2191-2199, 2004.

J. A. Bick, F. Aslund, Y. Chen, and T. Leustek, Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5'-adenylylsulfate reductase, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.8404-8409, 1998.

J. A. Bick, A. T. Setterdahl, D. B. Knaff, Y. Chen, L. H. Pitcher et al., Regulation of the plant-type 5'-adenylyl sulfate reductase by oxidative stress, Biochemistry, vol.40, pp.9040-9048, 2001.

W. Bors, W. Heller, C. Michel, M. Saran, C. ;--i-bréhélin et al., Resemblance and dissemblance of Arabidopsis type II peroxiredoxins: similar sequences for divergent gene expression, protein localization, and activity, Oxygen Radicals in Biological Systems: Oxygen Radicals and Antioxidants, vol.186, pp.2045-2057, 1990.

N. G. Cairns, M. Pasternak, A. Wachter, C. S. Cobbett, and A. J. Meyer, Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo, Plant Physiol, vol.141, pp.446-455, 2006.

S. Chaouch, G. Queval, S. Vanderauwera, A. Mhamdi, M. Vandorpe et al., Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE 1 in a daylength-related manner, Plant Physiol, vol.153, pp.1692-1705, 2010.

J. H. Chen, H. W. Jiang, E. J. Hsieh, H. Y. Chen, C. T. Chien et al., Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid, Plant Physiol, vol.158, pp.340-351, 2012.

Z. Chen and D. R. Gallie, Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance, Plant Physiol, vol.138, pp.1673-1689, 2005.

O. Chew, J. Whelan, and A. H. Millar, Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants, J. Biol. Chem, vol.278, pp.46869-46877, 2003.

V. Collin, P. Lamkemeyer, M. Miginiac-maslow, M. Hirasawa, D. B. Knaff et al., Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type, Plant Physiol, vol.136, pp.4088-4095, 2004.

J. Couturier, E. Ströher, A. N. Albetel, T. Roret, M. Muthuramalingam et al., Arabidopsis chloroplastic glutaredoxin C5 as a model to explore molecular determinants for iron-sulfur cluster binding into glutaredoxins, J. Biol. Chem, vol.286, pp.27515-27527, 2011.

, Frontiers in Plant Science | Plant Physiology, vol.4, 2013.

. Rahantaniaina, Glutathione metabolism in plants

I. Cummins, D. J. Cole, and R. Edwards, A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass, Plant J, vol.18, pp.285-292, 1999.

I. Cummins, D. O. Hagan, I. Jablonkai, D. J. Cole, A. Hehn et al., Cloning, characterization and regulation of family of phi class glutathione transferases from wheat, Plant Mol. Biol, vol.52, pp.591-603, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01738305

R. Dayer, B. B. Fischer, R. I. Eggen, and S. D. Lemaire, The peroxiredoxin and glutathione peroxidase families in Chlamydomonas reinhardtii, Genetics, vol.179, pp.41-57, 2008.

B. P. Deridder, D. P. Dixon, D. J. Beussman, R. Edwards, and P. B. Goldsbrough, Induction of glutathione S-transferases in Arabidopsis by herbicide safeners, Plant Physiol, vol.130, pp.1497-1505, 2002.

A. A. Dghim, A. Mhamdi, M. V. Vaultier, M. P. Hasenfratz-sauder, D. Le-thiec et al., Analysis of cytosolic isocitrate dehydrogenase and glutathione reductase 1 in photoperiod-influenced responses to ozone using Arabidopsis knockout mutants, Plant Cell Environ, vol.36, 1981.
URL : https://hal.archives-ouvertes.fr/hal-01268425

M. Díaz, H. Achkor, E. Titarenko, and M. C. Martínez, The gene encoding glutathione-dependent formaldehyde dehydrogenase/GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid, FEBS Lett, vol.543, pp.136-139, 2003.

K. J. Dietz, Plant peroxiredoxins, Annu. Rev. Plant Biol, vol.54, pp.93-107, 2003.

K. J. Dietz, F. Horling, J. König, and M. Baier, The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation, J. Exp. Bot, vol.53, pp.1321-1329, 2002.

D. Mascio, P. Kaiser, S. Sies, and H. , Lycopene as the most efficient biological carotenoid singlet oxygen quencher, Arch. Biochem. Biophys, vol.274, pp.532-538, 1989.

S. Dipierro and G. Borranccino, Dehydroascorbate reductase from potato tubers, Phytochemistry, vol.30, p.83698, 1991.

D. P. Dixon, B. G. Davis, and R. Edwards, Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana, J. Biol. Chem, vol.277, pp.30859-30869, 2002.

D. P. Dixon and R. Edwards, Glutathione S-transferases, The Arabidopsis Book, 2010.

D. P. Dixon, T. Hawkins, P. J. Hussey, and R. Edwards, Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily, J. Exp. Bot, vol.60, pp.1207-1218, 2009.

D. P. Dixon, M. Skipsey, N. M. Grundy, and R. Edwards, Stress-induced protein S-glutathionylation in Arabidopsis, Plant Physiol, vol.138, pp.2233-2244, 2005.

E. A. Edwards, S. Rawsthorne, and P. M. Mullineaux, Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.), Planta, vol.180, pp.278-284, 1990.

R. Edwards, J. W. Blount, and R. A. Dixon, Glutathione and elicitation of the phytoalexin response in legume cell cultures, Planta, vol.184, pp.403-409, 1991.

Y. Eshdat, D. Holland, Z. Faltin, and G. Ben-hayyim, Plant glutathione peroxidases, Physiol. Plant, vol.100, pp.234-240, 1997.

I. Finkemeier, M. Goodman, P. Lamkemeyer, A. Kandlbinder, L. J. Sweetlove et al., The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress, J. Biol. Chem, vol.280, pp.12168-12180, 2005.

C. H. Foyer and B. Halliwell, Purification and properties of dehydroascorbate reductase from spinach leaves, Phytochemistry, vol.16, pp.1347-1350, 1977.

C. H. Foyer and G. Noctor, Ascorbate and glutathione: the heart of the redox hub, Plant Physiol, vol.155, pp.2-18, 2011.

F. Gama, C. Bréhélin, E. Gelhaye, Y. Meyer, J. P. Jacquot et al., Functional analysis and expression characteristics of chloroplastic Prx IIE, Plant Physiol, vol.133, pp.599-610, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02118623

F. Gama, O. Keech, F. Eymery, I. Finkemeier, E. Gelhaye et al., The mitochondrial type II peroxiredoxin from poplar, Physiol. Plant, vol.129, pp.196-206, 2007.

L. Gomez, H. Vanacker, P. Buchner, G. Noctor, and C. H. Foyer, The intercellular distribution of glutathione synthesis and its response to chilling in maize, Plant Physiol, vol.134, pp.1662-1671, 2004.

R. Gromes, M. Hothorn, E. D. Lenherr, V. Rybin, K. Sheffzek et al., The redox switch of ?-glutamylcysteine ligase via a reversible monomerdimer transition is a mechanism unique to plants, Plant J, vol.54, pp.1063-1075, 2008.

A. Grzam, P. Tennstedt, S. Clemens, R. Hell, and A. J. Meyer, Vacuolar sequestration of glutathione S-conjugates outcompetes a possible degradation of the glutathione moiety by phytochelatin synthase, FEBS Lett, vol.580, pp.6384-6390, 2006.

Y. Han, A. Mhamdi, S. Chaouch, and G. Noctor, Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione, Plant Cell Environ, vol.36, pp.1135-1146, 2013.

Y. Han, S. Chaouch, A. Mhamdi, G. Queval, B. Zechmann et al., Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H 2 O 2 to activation of salicylic acid accumulation and signaling, Antioxid. Redox Signal, vol.18, pp.2106-2121, 2013.

A. Hausladen and K. J. Kunert, Effects of artificially enhanced levels of ascorbate and glutathione on the enzymes monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase in spinach (Spinacia oleracea), Plant Physiol, vol.79, pp.384-388, 1990.

S. Herbette, C. Lenne, N. Leblanc, J. L. Julien, J. R. Drevet et al., Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities, Eur. J. Biochem, vol.269, pp.2414-2420, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01189670

L. M. Hicks, R. E. Cahoon, E. R. Bonner, R. S. Rivard, J. Sheffield et al., Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana, Plant Cell, vol.19, pp.2653-2661, 2007.

F. Horling, P. Lamkemeyer, J. König, I. Finkemeier, A. Kandlbinder et al., Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis, Plant Physiol, vol.131, pp.317-325, 2003.

M. A. Hossain, A. , and K. , Purification of dehydroascorbate reductase from spinach and its characterisation as a thiol enzyme, Plant Cell Physiol, vol.25, pp.85-92, 1984.

A. Iqbal, Y. Yabuta, T. Takeda, Y. Nakano, S. Shigeoka et al., Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves, Plant Physiol, vol.273, pp.275-284, 1997.

T. Jubany-mari, L. Alegre-batlle, K. Jiang, and L. J. Feldman, Use of a redox-sensing GFP (c-roGFP1) for real-time monitoring of cytosol redox status in Arabidopsis thaliana water-stressed plants, FEBS Lett, vol.584, pp.889-897, 2010.

A. M. Kataya and S. Reumann, Arabidopsis glutathione reductase 1 is dually targeted to peroxisomes and the cytosol, Plant Signal Behav, vol.5, pp.171-175, 2010.

E. Kwon, A. Feechan, B. Yun, B. Hwang, J. A. Pallas et al., AtGSNOR1 function is required for multiple developmental programs in Arabidopsis, Planta, vol.236, pp.887-900, 2012.

C. Laloi, M. Stachowiak, E. Pers-kamczyc, E. Warzych, I. Murgia et al., Cross-talk between singlet oxygen-and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.672-677, 2007.

Y. P. Lu, Z. S. Li, Y. M. Drozdowicz, S. Hörtensteiner, E. Martinoia et al., AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with AtMRP1, Plant Cell, vol.10, pp.267-282, 1998.

B. Mannervik, Glutathione peroxidases, Meths. Enzymol, vol.113, pp.490-495, 1985.

. Rahantaniaina, Glutathione metabolism in plants

E. Martinoia, E. Grill, R. Tommasini, K. Kreuz, A. et al., ATPdependent glutathione S-conjugate 'export' pump in the vacuolar membrane of plants, Nature, vol.364, pp.247-249, 1993.

L. Marty, W. Siala, M. Schwarzländer, M. D. Fricker, M. Wirtz et al., The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.9109-9114, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00685706

A. J. Meyer, The integration of glutathione homeostasis and redox signaling, J. Plant Physiol, vol.165, pp.1390-1403, 2008.

A. J. Meyer, T. Brach, L. Marty, S. Kreye, N. Rouhier et al., , 2007.

, Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer, Plant J, vol.52, pp.973-986

A. Mhamdi, G. Queval, S. Chaouch, S. Vanderauwera, F. Van-breusegem et al., Catalase in plants: a focus on Arabidopsis mutants as stressmimic models, J. Exp. Bot, vol.61, pp.4197-4220, 2010.

A. Mhamdi, J. Hager, S. Chaouch, G. Queval, Y. Han et al., Arabidopsis GLUTATHIONE REDUCTASE 1 plays a crucial role in leaf responses to intracellular H 2 O 2 and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways, Plant Physiol, vol.153, pp.1144-1160, 2010.

L. Michelet, M. Zaffagnini, C. Marchand, V. Collin, P. Decottignies et al., Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.16478-16483, 2005.

Y. Nakano, A. , and K. , Purification of ascorbate peroxidase in spinach chloroplasts: its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical, Plant Cell Physiol, vol.28, pp.131-140, 1987.

N. Navrot, V. Collin, J. Gualberto, E. Gelhaye, M. Hirasawa et al., Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stress, Plant Physiol, vol.142, pp.1364-1379, 2006.

A. Nishizawa, Y. Yabuta, and S. Shigeoka, Galactinol and raffinose constitute a novel function to protect plants from oxidative damage, Plant Physiol, vol.147, pp.1251-1263, 2008.

G. Noctor, A. Mhamdi, G. Queval, and C. H. Foyer, Regulating the redox gatekeeper: vacuolar sequestration puts glutathione disulfide in its place, Plant Physiol, vol.163, pp.665-671, 2013.

E. Nutricati, A. Miceli, F. Blando, D. Bellis, and L. , Characterization of two Arabidopsis thaliana glutathione S-transferases, Plant Cell Rep, vol.25, pp.997-2005, 2006.

H. J. Park, H. Y. Cho, and K. H. Kong, Purification and biochemical properties of glutathione S-transferase from Lactuca sativa, J. Biochem. Mol. Biol, vol.38, pp.232-237, 2005.

A. Polle, Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling: computer simulations as a step towards flux analysis, Plant Physiol, vol.126, pp.445-462, 2001.

P. Pulido, M. C. Spínola, K. Kirchsteiger, M. Guinea, M. B. Pascual et al., Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts, J. Exp. Bot, vol.61, pp.4043-4054, 2010.

G. Queval, D. Jaillard, B. Zechmann, and G. Noctor, Increased intracellular H 2 O 2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts, Plant Cell Environ, vol.34, pp.21-32, 2011.

G. Queval, J. Neukermans, S. Vanderauwera, F. Van-breusegem, and G. Noctor, Day length is a key regulator of transcriptomic responses to both CO 2 and H 2 O 2 in Arabidopsis, Plant Cell Environ, vol.35, pp.374-387, 2012.

G. Queval, D. Thominet, H. Vanacker, M. Miginiac-maslow, B. Gakière et al., H 2 O 2 -activated up-regulation of glutathione in Arabidopsis involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast, Mol. Plant, vol.2, pp.344-356, 2009.

C. Riondet, J. P. Desouris, J. G. Montoya, Y. Chartier, Y. Meyer et al., A dicotyledon-specific glutaredoxin GRXC1 family with dimerdependent redox regulation is functionally redundant with GRXC2, Plant Cell Environ, vol.35, pp.360-373, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02118569

L. Rizhsky, E. Hallak-herr, F. Van-breusegem, S. Rachmilevitch, J. E. Barr et al., Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase, New Phytol, vol.32, pp.365-372, 2002.

N. Rouhier, E. Gelhaye, J. P. Jacquot, N. Rouhier, E. Gelhaye et al., Active site mutagenesis and phospholipid hydroperoxide reductase activity of poplar type II peroxiredoxin, Cell Mol. Life Sci, vol.61, pp.57-62, 2004.

N. Rouhier, E. Gelhaye, and J. P. Jacquot, Glutaredoxin-dependent peroxiredoxin from poplar: protein-protein interaction and catalytic mechanism, J. Biol. Chem, vol.277, pp.13609-13614, 2002.

N. Rouhier and J. P. Jacquot, The plant multigenic family of thiol peroxidases. Free Radic, Biol. Med, vol.38, pp.1413-1421, 2005.

N. Rouhier, A. Villarejo, M. Srivastava, E. Gelhaye, O. Keech et al., Identification of plant glutaredoxin targets, Antioxid. Redox Signal, vol.7, pp.919-929, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02321218

V. P. Roxas, S. A. Lodhi, D. K. Garrett, J. R. Mahan, A. et al., Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase, Plant Cell Physiol, vol.41, pp.1229-1234, 2000.

A. Sakamoto, M. Ueda, and H. Morikawa, Arabidopsis glutathionedependent formaldehyde dehydrogenase is an S-nitrosoglutathione reductase, FEBS Lett, vol.515, pp.20-24, 2002.

M. Schwarzländer, M. D. Fricker, C. Müller, L. Marty, T. Brach et al., Confocal imaging of glutathione redox potential in living plant cells, J. Microsc, vol.231, pp.299-316, 2008.

S. Gupta, A. Alscher, R. G. Mccune, and D. , Response of photosynthesis and cellular antioxidants to ozone in Populus leaves, Plant Physiol, vol.96, pp.650-655, 1991.

S. Gupta, A. Webb, R. P. Holaday, S. , A. et al., Overexpression of superoxide dismutase protects plants from oxidative stress. lnduction of ascorbate peroxidase in superoxide dismutase-overexpressing plants, Plant Physiol, vol.103, pp.1067-1073, 1993.

T. Shimaoka, C. Miyake, Y. , and A. , Mechanism of the reaction catalyzed by dehydroascorbate reductase from spinach chloroplasts, Eur. J. Biochem, vol.270, pp.921-928, 2003.

T. Shimaoka, A. Yokota, and C. Miyake, Purification and characterization of chloroplast dehydroascorbate reductase fom spinach leaves, Plant Cell Physiol, vol.41, pp.1110-1118, 2000.

I. K. Smith, A. C. Kendall, A. J. Keys, J. C. Turner, and P. J. Lea, The regulation of the biosynthesis of glutathione in leaves of barley (Hordeum vulgare L.), Plant Sci, vol.41, pp.11-17, 1985.

T. Su, J. Xu, Y. Li, L. Lei, L. Zhao et al., Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana, Plant Cell, vol.23, pp.364-380, 2011.

Z. X. Tang, Y. , and H. L. , Functional divergence and catalytic properties of dehydroascorbate reductase family proteins from Populus tomentosa, Mol. Biol. Rep, vol.40, pp.5105-5114, 2013.

L. Tarrago, E. Laugier, M. Zaffagnini, C. Marchand, P. Le-maréchal et al., Regeneration mechanisms of Arabidopsis thaliana methionine sulfoxide reductases B by glutaredoxins and thioredoxins, J. Biol. Chem, vol.284, pp.18963-18971, 2009.

B. N. Tripathi, I. Bhatt, and K. J. Dietz, Peroxiredoxins: a less studied component of hydrogen peroxide detoxification in photosynthetic organisms, Protoplasma, vol.235, pp.3-15, 2009.

J. Urano, T. Nakagawa, Y. Maki, T. Masumura, K. Tanaka et al., Molecular cloning and characterization of a rice dehydroascorbate reductase, FEBS Lett, vol.466, pp.107-111, 2000.

H. Vanacker, T. L. Carver, and C. H. Foyer, Early H 2 O 2 accumulation in mesophyll cells leads to induction of glutathione during the hypersensitive response in the barley-powdery mildew interaction, Plant Physiol, vol.123, pp.1289-1300, 2000.

, Frontiers in Plant Science | Plant Physiology, vol.4, 2013.

E. M. Bayer, A. R. Bottrill, J. Walshaw, M. Vigouroux, M. J. Naldrrett et al., Arabidopsis cell wall proteome defined using multidimensional protein identification technology, Proteomics, vol.6, pp.301-311, 2005.

J. J. Benschop, S. Mohammed, M. O'flaherty, A. J. Heck, M. Slijper et al., Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis, Mol Cell Proteomics, vol.6, pp.1198-1214, 2007.

L. V. Bindschedler, M. Palmblad, and R. Cramer, Hydroponic isotope labelling of entire plants (HILEP) for quantitative plant proteomics; an oxidative stress case study, Phytochemistry, vol.69, pp.1962-1972, 2008.

C. Carter, S. Pan, J. Zouhar, E. L. Avila, T. Girke et al., The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins, Plant Cell, vol.16, pp.3285-3303, 2004.

I. C. Chen, I. C. Huang, M. J. Liu, Z. G. Wang, S. S. Chung et al., Glutathione S-transferase interacting with far-red insensitive 219 is involved in phytochrome A-mediated signaling in Arabidopsis, Plant Physiol, vol.143, pp.1189-1202, 2007.

J. B. Peltier, Y. Cai, Q. Sun, V. Zabrouskov, L. Giacomelli et al., The oligomeric stromal proteome of Arabidopsisthaliana chloroplasts, Mol. Cell Proteomics, vol.5, pp.114-133, 2006.

S. Reumann, S. Quan, K. Aung, P. Yang, K. Manandhar-shrestha et al., In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes, Plant Physiol, vol.150, pp.125-143, 2009.

N. Rouhier and J. P. Jacquot, The plant multigenic family of thiol peroxidases. Free Radic, Biol. Med, vol.38, pp.1413-1421, 2005.

A. P. Smith, S. D. Nourizadeh, W. A. Peer, J. Xu, A. Bandyopadhyay et al., Arabidopsis AtGSTF2 is regulated by ethylene and auxin, and encodes a glutathione S-transfer-ase that interacts with fl avonoids, Plant J, vol.36, pp.433-442, 2003.

B. N. Tripathi, I. Bhatt, and K. J. Dietz, Peroxiredoxins: a less studied component of hydrogen peroxide detoxification in photosynthetic organisms, Protoplasma, vol.235, pp.3-15, 2009.

U. Wagner, R. Edwards, D. P. Dixon, and F. Mauch, Probing the diversity of the Arabidopsis glutathione S-transferase gene family, Plant Mol Biol, vol.49, pp.515-532, 2002.

B. Zybailov, H. Rutschow, G. Friso, A. Rudella, O. Emanuelsson et al., Sorting signals, N-terminal modifications and abundance of the chloroplast proteome, PLoS ONE, vol.3, pp.1994-1995, 2008.

, AtSubP analysis from TAIR, 2012.

, ** Localizations of Gpxs are essentially based on prediction programs

K. J. Dietz, R. Mittler, and G. Noctor, Recent progress in understanding the role of reactive oxygen species in plant cell signaling, Plant Physiol, vol.171, pp.1535-1539, 2016.

S. D. Lemaire, L. Michelet, M. Zaffagnini, V. Massot, and E. Issakidis-bourguet, Thioredoxins in chloroplasts, Curr Genet, vol.51, pp.343-365, 2007.

Y. Meyer, C. Belin, V. Delorme-hinoux, J. P. Reichheld, and C. Riondet, Thioredoxin and glutaredoxin systems in plants:molecular mechanisms, crosstalks, and functional significance, Antioxid Redox Signal, vol.17, pp.1124-1160, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02118567

, For the transcript abundance, data are expressed relative to ACT2 and RCE1, have been multiplied by 100 for ease of expression, and are means § SE of 3 biological replicates from plants growing in conditions as described for Fig. 2. For MDHAR extractable activity, values are means § SE of 4 plants. Significant difference between mutants and Col-0 at P< 0

M. Rahantaniaina and . Al,

N. Rouhier, Plant glutaredoxins:pivotal players in redox biology and iron-sulfur centre assembly, New Phytol, vol.186, pp.365-372, 2010.

G. Noctor, A. Mhamdi, S. Chaouch, Y. Han, J. Neukermans et al., Glutathione in plants: an integrated overview, Plant Cell Environ, vol.35, pp.454-484, 2012.

A. Mhamdi, G. Queval, S. Chaouch, S. Vanderauwera, F. Van-breusegem et al., Catalase in plants: a focus on Arabidopsis mutants as stress-mimic models, J Exp Bot, vol.61, pp.4197-4220, 2010.

A. Mhamdi, J. Hager, S. Chaouch, G. Queval, Y. Han et al., Arabidopsis GLUTATHIONE REDUCTASE 1 plays a crucial role in leaf responses to intracellular H 2 O 2 and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways, Plant Physiol, vol.153, pp.1144-1160, 2010.

C. H. Foyer and B. Halliwell, The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism, Planta, vol.133, pp.21-25, 1976.

M. S. Rahantaniaina, A. Tuzet, A. Mhamdi, and G. Noctor, Missing links in understanding redox signaling via thiol/disulfide modulation: How is glutathione oxidized in plants?, Front Plant Sci, vol.4, p.477, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01189786

D. P. Dixon, T. Hawkins, P. J. Hussey, and R. Edwards, Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily, J Exp Bot, vol.60, pp.1207-1218, 2009.

N. Rouhier, E. Gelhaye, and J. P. Jacquot, Glutaredoxin-dependent peroxiredoxin from poplar: protein-protein interaction and catalytic mechanism, J Biol Chem, vol.277, pp.13609-13614, 2002.

A. Iqbal, Y. Yabuta, T. Takeda, Y. Nakano, and S. Shigeoka, Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of Arabidopsis thaliana, FEBS J, vol.273, pp.5589-5597, 2006.

N. Navrot, V. Collin, J. Gualberto, E. Gelhaye, M. Hirasawa et al., Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses, Plant Physiol, vol.142, pp.1364-1379, 2006.

L. A. Mueller, C. D. Goodman, R. A. Silady, and V. Walbot, AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein, Plant Physiol, vol.123, pp.1561-1570, 2000.

S. C. Kampranis, R. Damianova, M. Atallah, G. Toby, G. Kondi et al., A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast, J Biol Chem, vol.275, pp.29207-29216, 2000.

V. P. Roxas, R. K. Smith, E. R. Allen, and R. D. Allen, Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress, Nat Biotechnol, vol.15, pp.988-991, 1997.

I. Cummins, D. J. Cole, and R. Edwards, A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass, Plant J, vol.18, pp.285-292, 1999.

C. Br-eh-elin, E. H. Meyer, J. P. De-souris, G. Bonnard, and Y. Meyer, Resemblance and dissemblance of Arabidopsis type II peroxiredoxins: similar sequences for divergent gene expression, protein localization, and activity, Plant Physiol, vol.132, pp.2045-2057, 2003.

I. Finkemeier, M. Goodman, P. Lamkemeyer, A. Kandlbinder, L. J. Sweetlove et al., The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress, J Biol Chem, vol.280, pp.12168-12180, 2005.

M. S. Rahantaniaina, S. Li, G. Chatel-innocenti, A. Tuzet, E. Issakidis-bourguet et al., Cytosolic and chloroplastic DHARs cooperate in oxidative stress-driven activation of the salicylic acid pathway, Plant Physiol, vol.174, issue.2, pp.956-971, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01583189

S. Chaouch, G. Queval, S. Vanderauwera, A. Mhamdi, M. Vandorpe et al., Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE 1 in a daylengthrelated manner, Plant Physiol, vol.153, pp.1692-1705, 2010.

Y. Han, S. Chaouch, A. Mhamdi, G. Queval, B. Zechmann et al., Functional analysis of arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling, Antioxid Redox Signal, vol.18, pp.2106-2121, 2013.

S. Vanderauwera, N. Suzuki, G. Miller, B. Van-de-cotte, S. Morsa et al., Extranuclear protection of chromosomal DNA from oxidative stress, Proc Natl Acad Sci USA, vol.108, pp.1711-1716, 2011.

A. Polle, Dissecting the superoxide dismutase-ascorbate-glutathionepathway in chloroplasts by metabolic modeling, Plant Physiol, vol.126, pp.445-462, 2001.

M. Noshi, R. Hatanaka, N. Tanabe, Y. Terai, T. Maruta et al., Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis, Biosci Biotechnol Biochem, vol.80, pp.870-877, 2016.

M. Noshi, H. Yamada, R. Hatanaka, N. Tanabe, M. Tamoi et al., Arabidopsis dehydroascorbate reductase 1 and 2 modulate redox states of ascorbate-glutathione cycle in the cytosol in response to photooxidative stress, Biosci Biotechnol Biochem, vol.81, pp.523-533, 2017.

, PLANT SIGNALING & BEHAVIOR, pp.1356531-1356536

, H 2 O 2 and plant antioxidative systems

, Insight from studies of mutants

, Models of ROS processing in plants

, Simulating photorespiratory H 2 O 2 production, metabolism and accumulation

, Catalase and the ascorbate-glutathione system in the control of H 2 O 2 accumulation

, Simulating ascorbate and glutathione responses to H 2 O 2

, Pathways of glutathione oxidation and light-dependent regulation of ascorbate synthesis

, Impact of H 2 O 2 processing on the modelled glutathione redox potential

, The key role of MDHAR in determining glutathione oxidation

, Low NADPH triggers glutathione oxidation by limiting MDHAR but not GR

, NADPH-generating dehydrogenases and the ascorbate-glutathione pathway

.. .. Concluding,

I. Aller, N. Rouhier, and A. Meyer, Development of roGFP2-derived redox probes for measurement of the glutathione redox potential in the cytosol of severely glutathione-deficient rml1 seedlings, Front Plant Sci, vol.4, p.506, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268531

K. Apel and H. Hirt, Reactive oxygen species: metabolism, oxidative stress, and signal transduction

, Annu Rev Plant Biol, vol.55, pp.373-399, 2004.

S. Attacha, D. Solbach, K. Bela, A. Moseler, S. Wagner et al., Glutathione peroxidase-like enzymes cover five distinct cell compartments and membrane surfaces in Arabidopsis thaliana, Plant Cell Environ, vol.40, pp.1281-1295, 2017.

J. Awad, H. U. Stotz, A. Fekete, M. Krischke, C. Engert et al., 2-Cys peroxiredoxins and thylakoid ascorbate peroxidase create a water-water cycle that is essential to protect the photosynthetic apparatus under high light stress conditions, Plant Physiol, vol.167, pp.1592-1603, 2015.

J. A. Bick, A. T. Setterdahl, D. B. Knaff, Y. Chen, L. H. Pitcher et al., Regulation of the plant-type 5?-adenylyl sulfate reductase by oxidative stress, Biochemistry, vol.40, pp.9040-9048, 2001.

G. P. Bienert, J. K. Schjoerring, and J. Tp, Membrane transport of hydrogen peroxide, Biochim Biophys Acta, vol.1758, pp.994-1003, 2006.

E. Bloem, S. Haneklaus, I. Salac, P. Wickenhäuser, and E. Schnug, Facts and fiction about sulphur metabolism in relation to plant-pathogen interactions, Plant Biol, vol.9, pp.596-607, 2007.

E. Bloem, A. Riemenschneider, J. Volker, J. Papenbrock, A. Schmidt et al., Sulphur supply and infection with Pyrenopeziza brassicae influence L-cysteine desulphydrase activity in Brassica napus L, J Exp Bot, vol.55, pp.2305-2312, 2004.

Y. C. Boo and J. Jung, Water deficit-induced oxidative stress and antioxidative defenses in rice plants, J Plant Physiol, vol.155, pp.255-261, 1999.

A. Bratt, S. Rosenwasser, A. Meyer, and F. R. , Organelle redox autonomy during environmental stress, Plant Cell Environ, vol.39, 1909.

F. Buwalda, D. Kok, L. J. Stulen, I. Kuiper, and P. , Cysteine, ?-glutamylcysteine and glutathione contents of spinach leaves as affected by darkness and application of excess sulfur, Physiol Plant, vol.74, pp.663-668, 1988.

S. Chaouch, G. Queval, and G. Noctor, AtRbohF is a crucial modulator of defence-associated metabolism and a key actor in the interplay between intracellular oxidative stress and pathogenesis responses in Arabidopsis, Plant J, vol.69, pp.613-627, 2012.

S. Chaouch, G. Queval, S. Vanderauwera, A. Mhamdi, M. Vandorpe et al., Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE 1 in a daylength-related manner, Plant Physiol, vol.153, pp.1692-1705, 2010.

S. Chardonnet, S. Sakr, C. Cassier-chauvat, L. Maréchal, P. Chauvat et al., First proteomic study of S-glutathionylation in cyanobacteria, J Proteome Res, vol.14, pp.59-71, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01179279

O. Chew, J. Whelan, and A. H. Millar, Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants, J Biol Chem, vol.278, pp.46869-46877, 2003.

T. A. Dar, M. Uddin, M. Khan, and K. R. Hakeem, Jasmonates counter plant stress: a review

, Environ Exp Bot, vol.115, pp.49-57, 2015.

S. Davletova, L. Rizhsky, H. Liang, Z. Shengqiang, D. J. Oliver et al., Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis, Plant Cell, vol.17, pp.268-281, 2005.

P. M. Debnam, A. R. Fernie, A. Leisse, A. Golding, C. G. Bowsher et al., Altered activity of the P2 isoform of plastidic glucose 6-phosphate dehydrogenase in tobacco (Nicotiana tabacum cv. Samsun) causes changes in carbohydrate metabolism and response to oxidative stress in leaves, Plant J, vol.38, pp.49-59, 2004.

D. Río and L. A. , ROS and RNS in plant physiology: an overview, J Exp Bot, vol.66, pp.2827-2837, 2015.

A. A. Dghim, A. Mhamdi, M. N. Vaultier, M. P. Hasenfratz-sauder, D. Le-thiec et al., Analysis of cytosolic isocitrate dehydrogenase and glutathione reductase 1 in photoperiod-influenced responses to ozone using Arabidopsis knockout mutants, Plant Cell Environ, vol.36, 1981.
URL : https://hal.archives-ouvertes.fr/hal-01268425

K. J. Dietz and R. Hell, Thiol regulation networks in the chloroplast, Biol Chem, vol.396, pp.483-494, 2015.

J. Dowdle, T. Ishikawa, S. Gatzek, S. Rolinski, and N. Smirnoff, Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability

, Plant J, vol.52, pp.673-689, 2007.

R. Edwards, J. W. Blount, and R. A. Dixon, Glutathione and elicitation of the phytoalexin response in legume cell cultures, Planta, vol.184, pp.403-409, 1991.

A. E. Eltayeb, N. Kawano, G. H. Badawi, H. Kaminaka, T. Sanekata et al., Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses, Planta, vol.225, pp.1255-1264, 2007.

M. Esposito-rodriguez, P. P. Laissue, G. Yvon-durocher, N. Smirnoff, and P. M. Mullineaux, Photosynthesis-dependent H 2 O 2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism, Nat Commun, vol.8, p.49, 2017.

G. D. Farquhar and S. Von-caemmerer, Modeling of photosynthetic responses to environmental conditions, Encyclopedia of Plant Physiology (New Series), pp.549-587, 1982.

G. D. Farquhar, S. Von-caemmerer, and J. A. Berry, A biochemical model of photosynthetic carbon dioxide assimilation in leaves of 3-carbon pathway species, Planta, vol.149, pp.78-90, 1980.

A. Feechan, E. Kwon, B. W. Yun, Y. Wang, J. A. Pallas et al., A central role for S-nitrosothiols in plant disease resistance, Proc Natl Acad Sci, vol.102, pp.8054-8059, 2005.

B. B. Fischer, E. Hideg, and A. Krieger-liszkay, Production, detection, and signaling of singlet oxygen in photosynthetic organisms, Antioxid Redox Signal, vol.18, p.26, 2013.

Y. Han, A. Mhamdi, S. Chaouch, and G. Noctor, Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione, Plant Cell Environ, vol.36, pp.1135-1146, 2013.

E. Harada, Y. Yamaguchi, N. Koizumi, and S. Hiroshi, Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis, J Plant Physiol, vol.159, pp.445-448, 2002.

K. Harms, P. Von-ballmoos, C. Brunold, R. Hofgen, and H. Hesse, Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione, Plant J, vol.22, pp.335-343, 2000.

D. Heineke, B. Riens, H. Grosse, P. Hoferichter, U. Peter et al., Redox transfer across the inner chloroplast envelope membrane, Plant Physiol, vol.95, pp.1131-1137, 1991.

R. Heinrich, S. M. Rapoport, and R. Ta, Metabolic regulation and mathematical models, Prog Biophys Mol Biol, vol.32, pp.1-82, 1977.

R. Hell and L. Bergmann, ?-Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localization, Planta, vol.180, pp.603-612, 1990.

L. M. Hicks, R. E. Cahoon, E. R. Bonner, R. S. Rivard, J. Sheffield et al., Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana, Plant Cell, vol.19, pp.2653-2661, 2007.

M. A. Hossain and K. Asada, Monodehydroascorbate reductase from cucumber is a flavin adenine dinucleotide enzyme, J Biol Chem, vol.260, pp.12920-12926, 1985.

A. Iqbal, Y. Yabuta, T. Takeda, Y. Nakano, and S. Shigeoka, Hydroperoxide reduction by thioredoxinspecific glutathione peroxidase isoenzymes of Arabidopsis thaliana, FEBS J, vol.273, pp.5589-5597, 2006.

T. Ishikawa and S. Shigeoka, Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms, Biosci Biotechnol Biochem, vol.72, pp.1143-1154, 2008.

J. M. Jez, R. E. Cahoon, and C. S. , Arabidopsis thaliana glutamate-cysteine ligase: Functional properties, kinetic mechanism, and regulation of activity, J Biol Chem, vol.279, pp.33463-33470, 2004.

G. Jiang, Z. Wang, H. Shang, W. Yang, Z. Hu et al., Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration, Planta, vol.225, pp.1405-1420, 2007.

A. Jiménez, J. A. Hernández, G. Pastori, L. A. Del-río, and F. Sevilla, Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves, Plant Physiol, vol.118, pp.1327-1335, 1998.

E. J. Johnston, E. L. Rylott, E. Beynon, A. Lorenz, V. Chechik et al., Monodehydroascorbate reductase mediates TNT toxicity in plants, Science, vol.349, pp.1072-1075, 2015.

T. Jubany-mari, L. Alegre-batlle, J. , K. Feldman, and L. J. , Use of a redox-sensing GFP (c-roGFP1) for real-time monitoring of cytosol redox status in Arabidopsis thaliana water-stressed plants, FEBS Lett, vol.584, pp.889-897, 2010.

P. Kerchev, C. Waszczak, A. Lewandowska, P. Willems, A. Shapiguzov et al., Lack of GLYCOLATE OXIDASE1, but not GLYCOLATE OXIDASE2, attenuates the photorespiratory phenotype of CATALASE2-deficient Arabidopsis, Plant Physiol, vol.171, pp.1704-1719, 2016.

A. J. Keys, Biochemistry of photorespiration and the consequences for plant performance, Plant Carbohydrate Biochemistry, pp.147-161, 1999.

M. Klein, B. Burla, and M. E. , The multidrug resistance-associated protein (MRP/ABCC) subfamily of AT P-binding cassette transporters in plants, FEBS Lett, vol.580, pp.1112-1122, 2006.

B. E. Koffler, R. Maier, and B. Zechmann, Subcellular distribution of glutathione precursors in Arabidopsis thaliana, J Integr Plant Biol, vol.53, pp.930-941, 2011.

J. König, M. Baier, F. Horling, U. Kahmann, G. Harris et al., The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux, Proc Natl Acad Sci, vol.99, pp.5738-5743, 2002.

A. Koornneef, A. Leon-reyes, T. Ritsema, A. Verhage, D. Otter et al., Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation, Plant Physiol, vol.147, pp.1358-1368, 2008.

S. Koussevitzky, N. Suzuki, S. Huntington, L. Armijo, W. Sha et al.,

, Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination, J Biol Chem, vol.283, pp.34197-34203, 2008.

I. Kranner, S. Birtic, K. M. Anderson, and P. Hw, Glutathione half-cell reduction potential: A universal stress marker and modulator of programmed cell death, Free Rad Biol Med, vol.40, pp.2155-2165, 2006.

M. Leterrier, J. B. Barroso, J. M. Palma, and C. Fj, Cytosolic NADP-isocitrate dehydrogenase in Arabidopsis leaves and roots, Biol Plant, vol.56, pp.705-710, 2012.

M. Leterrier, L. A. Del-río, and C. Fj, Cytosolic NADP-isocitrate dehydrogenase of pea plants: genomic clone characterization and functional analysis under abiotic stress conditions, Free Radic Res, vol.41, pp.191-199, 2007.

S. Li, A. Mhamdi, C. Clement, Y. Jolivet, and G. Noctor, Analysis of knockout mutants suggests that Arabidopsis NADP-MALIC ENZYME2 does not play an essential role in responses to oxidative stress of intracellular or extracellular origin, J Exp Bot, vol.64, pp.3605-3614, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268155

Y. P. Lu, Z. S. Li, Y. M. Drozdowicz, S. Hortensteiner, E. Martinoia et al., AtMRP2, and Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with AtMRP1, Plant cell, vol.10, pp.267-282, 1998.

R. Maheshwari and R. S. Dubey, Nickel-induced oxidative stress and the role of antioxidant defense in rice seedlings, Plant Growth Regul, vol.59, pp.37-49, 2009.

D. Marino, P. Frendo, E. M. González, A. Puppo, A. et al., NADPH recycling systems in oxidative stressed nodules: a key role for the NADP+-dependent isocitrate dehydrogenase, Planta, vol.225, pp.413-421, 2007.

M. N. Martin, P. H. Saladores, E. Lambert, A. O. Hudson, and T. Leustek, Localization of members of the ?-glutamyl transpeptidase family identifies sites of glutathione and glutathione S-conjugate hydrolysis, Plant Physiol, vol.144, pp.1715-1732, 2007.

T. Maruta, M. Noshi, A. Tanouchi, M. Tamoi, Y. Yabuta et al.,

, H 2 O 2 -triggered retrograde signalling from chloroplasts to nucleus plays specific role in response to stress, J Biol Chem, vol.287, pp.11717-11729, 2012.

N. Masaaki, S. Maiko, M. Nakamura, M. Aono, H. Saji et al., Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environmental pollutants, Plant Physiol, vol.126, pp.973-980, 2001.

S. C. Maughan, M. Pasternak, N. Cairns, G. Kiddle, T. Brach et al.,

C. S. Cobbett, Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses, Proc Natl Acad Sci, vol.107, pp.2331-2336, 2010.

M. Mj and C. J. Leaver, Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures, Plant Physiol, vol.103, pp.621-627, 1993.

M. J. May, J. E. Parker, M. J. Daniels, C. J. Leaver, and C. Cs, An Arabidopsis mutant depleted in glutathione shows unaltered responses to fungal and bacterial pathogens, Mol Plant Microb Int, vol.9, pp.349-356, 1996.

A. Meister, Glutathione biosynthesis and its inhibition, Meth Enzymol, vol.252, pp.26-39, 1995.

D. Mendoza-cozatl, S. Devars, H. Loza-tavera, M. , and R. , Cadmium accumulation in the chloroplast of Euglena gracilis, Physiol Plant, vol.115, pp.276-283, 2002.

A. J. Meyer, The integration of glutathione homeostasis and redox signaling, J Plant Physiol, vol.165, pp.1390-1403, 2008.

A. J. Meyer, T. Brach, L. Marty, S. Kreye, N. Rouhier et al., Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer, Plant J, vol.52, pp.973-986, 2007.

A. Mhamdi and G. Noctor, Analysis of the roles of the Arabidopsis peroxisomal isocitrate dehydrogenase in leaf metabolism and oxidative stress, Environ Exp Bot, vol.114, pp.22-29, 2015.

A. Mhamdi and G. Noctor, High CO 2 primes plant biotic stress defences through redox-linked pathways, Plant Physiol, vol.172, pp.929-942, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01606581

A. Mhamdi, J. Hager, S. Chaouch, G. Queval, Y. Han et al., Arabidopsis GLUTATHIONE REDUCTASE 1 plays a crucial role in leaf responses to intracellular H 2 O 2 and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways, Plant Physiol, vol.153, pp.1144-1160, 2010.

A. Mhamdi, G. Queval, S. Chaouch, S. Vanderauwera, F. Van-breusegem et al., Catalases in plants: a focus on Arabidopsis mutants as stress-mimic models, J Exp Bot, vol.61, pp.4197-4220, 2010.

A. Mhamdi, C. Mauve, H. Gouia, P. Saindrenan, M. Hodges et al., Cytosolic NADP-dependent isocitrate dehydrogenase contributes to redox homeostasis and the regulation of pathogen responses in Arabidopsis leaves, Plant Cell Environ, vol.33, pp.1112-1123, 2010.

K. I. Minard and L. Mcalister-henn, Antioxidant function of cytosolic sources of NADPH in yeast, Free Radic Biol Med, vol.31, pp.832-843, 2001.

R. Mittler, S. Vanderauwera, N. Suzuki, G. Miller, V. B. Tognetti et al., ROS signalling: the new wave?, Trends Plant Sci, vol.16, pp.300-309, 2011.

T. Miyaji, T. Kuromori, Y. Takeuchi, N. Yamaji, K. Yokosho et al., is a chloroplast-localized ascorbate transporter in Arabidopsis, Nat Commun, vol.4, p.5928, 2014.

C. Miyake and K. Asada, Ferredoxin-dependent photoreduction of the monodehydroascorbate radical in spinach thylakoids, Plant Cell Physiol, vol.35, pp.539-549, 1994.

Z. Mou, W. Fan, and D. X. , Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes, Cell, vol.113, pp.935-944, 2003.

P. Müller-moulé, P. L. Conklin, and N. Kk, Ascorbate deficiency can limit violaxanthin deepoxidase activity in vivo, Plant Physiol, vol.128, pp.970-977, 2002.

S. Narendra, S. Venkataramani, G. Shen, J. Wang, V. Pasapula et al.,

H. Zhang, The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membrane-bound antioxidant enzyme and is dispensable for Arabidopsis growth and development, J Exp Bot, vol.57, pp.3033-3042, 2006.

N. Navrot, V. Collin, J. Gualberto, E. Gelhaye, M. Hirasawa et al., Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stress, Plant Physiol, vol.142, pp.1364-1379, 2006.

G. Noctor and C. H. Foyer, Intracellular redox compartmentation and ROS-related communication in regulation and signaling, Plant Physiol, vol.171, pp.1581-1592, 2016.

G. Noctor, C. Lelarge-trouverie, and A. Mhamdi, The metabolomics of oxidative stress, Phytochemistry, vol.112, pp.33-53, 2015.

G. Noctor, A. Mhamdi, and C. H. Foyer, Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation, Plant Cell Environ, vol.39, pp.1140-1160, 2016.

G. Noctor, A. Mhamdi, S. Chaouch, Y. Han, J. Neukermans et al., Glutathione in plants: an integrated overview, Plant Cell Environ, vol.35, pp.454-484, 2012.

G. Noctor, A. Mhamdi, G. Queval, and C. H. Foyer, Regulating the redox gatekeeper: vacuolar sequestration puts glutathione disulfide in its place, Plant Physiol, vol.163, pp.665-671, 2013.

G. Noctor, S. D. Veljovic-jovanovic, S. Driscoll, L. Novitskaya, and C. H. Foyer, Drought and oxidative load in the leaves of C 3 plants : a predominant role for photorespiration?, Ann Bot (Lond), vol.89, pp.841-850, 2002.

M. Noji and K. Saito, Molecular and biochemical analysis of serine acetyltransferase and cysteine synthase towards sulphur metabolic engineering in plants, Amino Acids, vol.22, pp.231-243, 2002.

J. A. O&apos;brien, A. Daudi, V. S. Butt, and G. P. Bolwell, Reactive oxygen species and their role in plant defence and cell wall metabolism, Planta, vol.236, pp.765-779, 2012.

J. A. O&apos;brien, A. Daudi, P. Finch, V. S. Butt, J. P. Whitelegge et al., A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMPelicited defense, Plant Physiol, vol.158, pp.2013-2027, 2012.

H. T. Parsons and S. C. Fry, Oxidation of dehydroascorbic acid and 2,3-diketogulonate under plant apoplastic conditions, Phytochemistry, vol.75, pp.41-49, 2012.

H. T. Parsons, T. Yasmin, and S. C. Fry, Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism, Biochem J, vol.440, pp.375-383, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00658156

L. Pnueli, H. Liang, M. Rozenberg, and R. Mittler, Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants, Plant J, vol.34, pp.187-203, 2003.

A. Polle, Dissecting the superoxide dismutase-ascorbate glutathione-pathway in chloroplasts by metabolic modeling, Plant Physiol, vol.126, pp.445-462, 2001.

G. Queval, E. Issakidis-bourguet, F. A. Hoeberichts, M. Vandorpe, B. Gakière et al., Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression and define photoperiod as a crucial factor in the regulation of H 2 O 2 -induced cell death

, Plant J, vol.52, pp.640-657, 2007.

G. Queval, J. Hager, B. Gakière, and G. Noctor, Why are literature data for H 2 O 2 contents so variable? A discussion of potential difficulties in quantitative assays of leaf extracts, J Exp Bot, vol.59, pp.135-146, 2008.

G. Queval, D. Jaillard, B. Zechmann, and G. Noctor, Increased intracellular H 2 O 2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts, Plant Cell Environ, vol.34, pp.21-32, 2011.

G. Queval, D. Thominet, H. Vanacker, M. Miginiac-maslow, B. Gakière et al., H 2 O 2 -activated up-regulation of glutathione in Arabidopsis involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast, Molecular Plant, vol.2, pp.344-356, 2009.

M. S. Rahantaniaina, S. Li, G. Chatel-innocenti, A. Tuzet, E. Eissakidis-bourguet et al., Cytosolic and chloroplastic DHARs cooperate in oxidative stress-driven activation of the salicylic acid pathway, Plant Physiol, vol.174, pp.956-971, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01583189

M. S. Rahantaniaina, S. Li, G. Chatel-innocenti, A. Tuzet, A. Mhamdi et al., Glutathione oxidation in response to intracellular H 2 O 2 : key but overlapping roles for dehydroascorbate reductases, Plant Signal Behav, vol.12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01764388

M. S. Rahantaniaina, A. Tuzet, A. Mhamdi, and G. Noctor, Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants?, Front Plant Sci, vol.4, p.477, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01189786

P. A. Rea, Plant ATP-binding cassette transporters, Annu Rev Plant Biol, vol.58, pp.347-375, 2007.

S. P. Rius, P. Casati, A. A. Iglesias, and G. Df, Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase, Plant Mol Biol, vol.61, pp.945-957, 2006.

A. Rochon, P. Boyle, T. Wignes, P. R. Fobert, and C. Després, The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines, Plant Cell, vol.18, pp.3670-3685, 2006.

J. E. Sarry, L. Kuhn, C. Ducruix, A. Lafaye, C. Junot et al., The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses, Proteomics, vol.6, pp.2180-2198, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00022184

L. Schäfer and J. Feierabend, Photoinactivation and protection of glycolate oxidase in vitro and in leaves, Z Naturf, vol.55, pp.361-372, 2000.

M. Schwarzländer, M. Fricker, C. Müller, L. Marty, T. Brach et al., Confocal imaging of glutathione redox potential in living plant cells, J Microsc, vol.231, pp.299-316, 2008.

M. Schwarzländer, D. C. Logan, M. D. Fricker, and L. J. Sweetlove, The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide 'flashes', Biochem J, vol.437, pp.381-387, 2011.

S. Gupta, A. Alscher, R. G. , and C. D. , Response of photosynthesis and cellular antioxidants to ozone in Populus leaves, Plant Physiol, vol.96, pp.650-655, 1991.

T. D. Sharkey, Estimating the rate of photorespiration in leaves, Physiol Plant, vol.73, pp.147-152, 1988.

P. Sharma and R. S. Dubey, Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings, Plant Growth Regul, vol.46, pp.209-221, 2005.

P. Sharma and R. S. Dubey, Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum, Plant Cell Rep, vol.26, pp.2027-2038, 2007.

H. Sies, Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress, Redox Biol, vol.11, pp.613-619, 2017.

N. Smirnoff, Vitamin C: the metabolism and functions of ascorbic acid in plants, Adv Bot Res, vol.59, pp.107-177, 2011.

I. K. Smith, A. C. Kendall, A. J. Keys, J. C. Turner, and L. Pj, Increased levels of glutathione in a catalasedeficient mutant of barley (Hordeum vulgare L.), Plant Sci Lett, vol.37, pp.29-33, 1984.

A. Smykowski, P. Zimmermann, and U. Zentgraf, G-box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis, Plant Physiol, vol.153, pp.1321-1331, 2010.

R. Stevens, D. Page, B. Gouble, C. Garchery, D. Zamir et al., Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress, Plant Cell Environ, vol.31, pp.1086-1096, 2008.

Y. Tada, S. H. Spoel, K. Pajerowska-mukhtar, Z. Mou, J. Song et al., Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins, Science, vol.321, pp.952-956, 2008.

V. B. Tognetti, O. Van-aken, K. Morreel, K. Vandenbroucke, B. Van-de-cotte et al., Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance, Plant Cell, vol.22, pp.2660-79, 2010.

R. Tommasini, E. Martinoia, E. Grill, K. Dietz, and A. N. , Transport of oxidized glutathione into barley vacuoles: evidence for the involvement of the glutathione-S-conjugate ATPase, Z Naturf, vol.48, pp.867-871, 1993.

R. Tommasini, E. Vogt, M. Fromenteau, S. Hörtensteiner, P. Matile et al., An ABC?transporter of Arabidopsis thaliana has both glutathione?conjugate and chlorophyll catabolite transport activity, Plant J, vol.13, pp.773-780, 1998.

M. A. Torres and J. D. Jones, Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana, Nat Genet, vol.37, pp.1130-1134, 2005.

B. N. Tripathi, I. Bhatt, and K. J. Dietz, Peroxiredoxins: a less studied component of hydrogen peroxide detoxification in photosynthetic organisms, Protoplasma, vol.235, pp.3-15, 2009.

H. Tsukagoshi, W. Busch, and P. N. Benfey, Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root, Cell, vol.143, pp.606-616, 2010.

A. Tuzet, A. Granier, P. Betsch, M. Peiffer, and A. Perrier, Modelling hydraulic functioning of an adult beech stand under non-limiting soil water and severe drought condition, Ecol Model, vol.348, pp.56-77, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01594884

A. Tuzet, A. Perrier, and L. R. , A coupled model of stomatal conductance, photosynthesis and transpiration, Plant Cell Environ, vol.26, pp.1097-1116, 2003.

A. Tuzet, A. Perrier, B. Loubet, and P. Cellier, Modelling ozone deposition fluxes: The relative roles of deposition and detoxification processes, Agricult Forest Meteorol, vol.151, pp.480-492, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000721

. Vainonen and J. Kangasjärvi, Plant signalling in acute ozone exposure, Plant Cell Environ, vol.38, pp.240-252, 2015.

R. Valderrama, F. J. Corpas, A. Carreras, M. V. Gómez-rodríguez, M. Chaki et al., The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants, Plant Cell Environ, vol.29, pp.1449-1459, 2006.

E. Valero, M. I. González-sánchez, H. Macià, G. , and F. , Computer simulation of the dynamic behavior of the glutathione-ascorbate redox cycle in chloroplasts, Plant Physiol, vol.149, 1958.

E. Valero, H. Macià, I. Fuente, J. A. Hernandez, M. I. Gonzales-sanchez et al., Modeling the ascorbate-glutathione cycle in chloroplasts under light/dark conditions, BMC Systems Biol, vol.10, p.11, 2016.

H. Vanacker, T. L. Carver, and C. H. Foyer, Early H 2 O 2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction, Plant Physiol, vol.123, pp.1289-1300, 2000.

S. Vandenabeele, S. Vanderauwera, M. Vuylstecke, S. Rombauts, C. Langebartels et al., Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana, Plant J, vol.39, pp.45-58, 2004.

S. Vanderauwera, N. Suzuki, G. Miller, B. Van-de-cotte, S. Morsa et al., Extranuclear protection of chromosomal DNA from oxidative stress, Proc Natl Acad Sci, vol.108, pp.1711-1716, 2011.

L. M. Voll, M. B. Zell, T. Engelsdorf, A. Saur, M. G. Wheeler et al., Loss of cytosolic NADP-malic enzyme 2 in Arabidopsis thaliana is associated with enhanced susceptibility to Colletotrichum higginsianum, New Phytol, vol.195, pp.189-202, 2012.

C. Von, Biochemical Models of Leaf Photosynthesis, vol.2, 2000.

H. Willekens, S. Chamnongpol, M. Davey, M. Schraudner, C. Langebartels et al., Catalase is a sink for H 2 O 2 and is indispensable for stress defense in C 3 plants, EMBO J, vol.16, pp.4806-4816, 1997.

W. Hell and R. , Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco, Plant Cell, vol.19, pp.625-639, 2007.

C. Xiang and D. J. Oliver, Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis, Plant Cell, vol.10, pp.1539-1550, 1998.

K. Yoshimura, Y. Yabuta, T. Ishikawa, and S. Shigeoka, Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses, Plant Physiol, vol.123, pp.223-234, 2000.

M. Zaffagnini, M. Bedhomme, S. D. Lemaire, and T. P. , The emerging roles of protein glutathionylation in chloroplasts, Plant Sci, vol.185, pp.86-96, 2012.

M. Zamocky, P. G. Furtmüller, and C. Obinger, Evolution of catalases from bacteria to humans, Antioxid Redox Signal, vol.10, pp.1527-1548, 2008.

B. Zechmann, M. Müller, and G. Zellnig, Modified levels of cysteine affect glutathione metabolism in plant cells, Sulfur Assimilation and Abiotic Stress in Plants, pp.193-206, 2008.

B. Zechmann, G. Zellnig, A. Urbanek-krajnc, and M. Müller, Artificial elevation of glutathione affects symptom development in ZYMV-infected Cucurbita pepo L. plants, Arch Virol, vol.152, pp.747-762, 2007.

G. Arabaci, Partial purification and some properties of catalase from dill (Anethum graveolens L.), J Bio Life Sci, vol.2, pp.11-15, 2011.

K. Asada and M. Takahashi, Production and scavenging of active oxygen species in photosynthesis, pp.227-287, 1987.

D. D. Baldocchi, An analytical solution for coupled leaf photosynthesis and stomatal conductance models, Tree Physiol, vol.14, pp.1069-1079, 1994.

J. T. Ball, I. E. Woodrow, and J. A. Berry, A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, Progress in Photosynthesis Research (ed. I. Biggins), pp.221-224, 1987.

B. Bielski, D. A. Comstock, and R. A. Bowen, Ascorbic acid free radicals. I. Pulse radiolysis study of optical absorption and kinetic properties, J Am Chem Soc, vol.93, pp.5624-5629, 1971.

H. Bisswanger and . Enzymkinetik, Theorie und Methoden. VHC Verlagsgesellschaft, p.140, 1994.

G. Borraccino, S. Dipierro, and A. O. , Purification and properties of ascorbate free radical reductase from potato tubers, Planta, vol.167, pp.521-526, 1986.

M. Cardi, M. Zaffagnini, D. Lillo, A. Castiglia, D. Chibani et al., Plastidic P2 glucose-6P dehydrogenase from poplar is modulated by thioredoxin m-type: distinct roles of cysteine residues in redox regulation and NADPH inhibition, Plant Sci, vol.252, pp.257-266, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01496820

D. Castiglia, M. Cardi, S. Landi, D. Cafasso, and S. Esposito, Expression and characterization of a cytosolic glucose-6-phosphate dehydrogenase isoform from barley (Hordeum vulgare) roots Protein

, Expr Purif, vol.112, pp.8-14, 2015.

C. Rd and P. Gadal, Structure, functions and regulation of NAD and NADP dependent isocitrate dehydrogenases in higher plants and in other organisms, Plant Physiol Biochem, vol.28, pp.411-427, 1990.

D. Pury, D. Farquhar, and G. D. , Simple scaling of photosynthesis from leaves to canopies without the errors of bigleaf models, Plant Cell and Environ, vol.20, pp.537-557, 1997.

L. A. Del-río, M. G. Ortega, A. L. López, and J. L. Gorgé, A more sensitive modification of the catalase assay with the Clark oxygen electrode. Application to the kinetic study of the pea leaf enzyme, Anal Biochem, vol.80, pp.409-415, 1977.

A. A. Dghim, A. Mhamdi, M. N. Vaultier, M. P. Hasenfratz-sauder, D. Le-thiec et al., Analysis of cytosolic isocitrate dehydrogenase and glutathione reductase 1 in photoperiod-influenced responses to ozone using Arabidopsis knockout mutants, Plant Cell Environ, vol.36, 1981.
URL : https://hal.archives-ouvertes.fr/hal-01268425

G. D. Farquhar and S. Von-caemmerer, Modeling of photosynthetic responses to environmental conditions, Encyclopedia of Plant Physiology (New Series), pp.549-587, 1982.

G. D. Farquhar, S. Von-caemmerer, and J. A. Berry, A biochemical model of photosynthetic carbon dioxide assimilation in leaves of 3-carbon pathway species, Planta, vol.149, pp.78-90, 1980.

R. Gerhardt, M. Stitt, and H. Hw, Subcellular metabolite levels in spinach leaves. Regulation of sucrose synthesis during diurnal alterations in photosynthetic partitioning, Plant Physiol, vol.83, pp.399-407, 1987.

B. Halliwell and C. H. Foyer, Properties and physiological function of a glutathione reductase purified from spinach leaves, Planta, vol.139, pp.9-17, 1978.

A. Hausladen and K. J. Kunert, Effects of artificially enhanced levels of ascorbate and glutathione on the enzymes monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase in spinach (Spinacia oleracea), Physiol Plant, vol.79, pp.384-388, 1990.

H. and G. B. , Plant catalase, Plant Peroxisomes: Biochemistry, pp.103-140, 2002.

R. Hell and L. Bergmann, ?-Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localization, Planta, vol.180, pp.603-612, 1990.

M. A. Hossain and K. Asada, Monodehydroascorbate reductase from cucumber is a flavin adenine dinucleotide enzyme, J Biol Chem, vol.260, pp.12920-12926, 1985.

M. A. Hossain and K. Asada, Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme, Plant Cell Physiol, vol.25, pp.85-92, 1984.

A. A. Iglesias and M. Losada, Purification and kinetic and structural properties of spinach leaf NADPdependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase, Arch Biochem Biophys, vol.260, pp.830-840, 1988.

J. M. Jez and R. E. Cahoon, Kinetic mechanism of glutathione synthetase from Arabidopsis thaliana, J Biol Chem, vol.279, pp.42726-42731, 2004.

J. M. Jez, R. E. Cahoon, and C. S. , Arabidopsis thaliana glutamate-cysteine ligase: Functional properties, kinetic mechanism, and regulation of activity, J Biol Chem, vol.279, pp.33463-33470, 2004.

N. Kato, H. Sahm, H. Schütte, and F. Wagner, Purification and properties of glucose-6-phosphate dehydrogenase and 6-phospho-gluconate dehydrogenase from a methanol-utilizing yeast Candida boidinii, Biochim Biophys Acta, vol.566, pp.1-11, 1979.

G. J. Kelly and M. Gibbs, Non-reversible d-glyceraldehyde 3-phosphate dehydrogenase of plant tissues, Plant Physiol, vol.52, pp.111-118, 1973.

S. Krueger, A. Niehl, M. Martin, D. Steinhauser, A. Donath et al., Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopsis, Plant Cell Environ, vol.32, pp.349-367, 2009.

M. Leterrier, J. B. Barroso, J. M. Palma, and C. Fj, Cytosolic NADP-isocitrate dehydrogenase in Arabidopsis leaves and roots, Biol Plant, vol.56, pp.705-710, 2012.

Y. P. Lu, Z. S. Li, Y. M. Drozdowicz, S. Hortensteiner, E. Martinoia et al., AtMRP2, and Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with AtMRP1, Plant cell, vol.10, pp.267-282, 1998.

A. Mhamdi and G. Noctor, Analysis of the roles of the Arabidopsis peroxisomal isocitrate dehydrogenase in leaf metabolism and oxidative stress, Environ Exp Bot, vol.114, pp.22-29, 2015.

A. Mhamdi, J. Hager, S. Chaouch, G. Queval, Y. Han et al., Arabidopsis GLUTATHIONE REDUCTASE 1 plays a crucial role in leaf responses to intracellular H 2 O 2 and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways, Plant Physiol, vol.153, pp.1144-1160, 2010.

A. Mhamdi, C. Mauve, H. Gouia, P. Saindrenan, M. Hodges et al., Cytosolic NADP-dependent isocitrate dehydrogenase contributes to redox homeostasis and the regulation of pathogen responses in Arabidopsis leaves, Plant Cell Environ, vol.33, pp.1112-1123, 2010.

M. Auleb and L. , Partial purification and kinetic characterization of wheat germ glucose-6-phosphate dehydrogenase, J Pl Physiol, vol.135, pp.191-196, 1989.

R. Mittler and Z. B. , Molecular cloning and nucleotide sequence analysis of a cDNA encoding pea cytosolic ascorbate peroxidase, FEBS Lett, vol.289, pp.257-259, 1991.

G. Noctor, A. Mhamdi, and C. H. Foyer, Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation, Plant Cell Environ, vol.39, pp.1140-1160, 2016.

G. Noctor, A. Mhamdi, S. Chaouch, Y. Han, J. Neukermans et al., Glutathione in plants: an integrated overview, Plant Cell Environ, vol.35, pp.454-484, 2012.

J. Palomo, F. Gallardo, M. Suarez, and F. M. Canovas, Purification and Characterization of NADP1-Linked Isocitrate Dehydrogenase from Scots Pine, Plant Physiol, vol.118, pp.617-626, 1998.

A. Polle, Dissecting the superoxide dismutase-ascorbate glutathione-pathway in chloroplasts by metabolic modeling, Plant Physiol, vol.126, pp.445-462, 2001.

M. Powell, A hybrid method for nonlinear algebraic equations, Numerical Methods for Nonlinear Algebraic Equations, Gordon and Breach, London (ed Rabinowitz P), vol.7, pp.87-114, 1970.

G. Queval and G. Noctor, A plate-reader method for the measurement of NAD, NADP, glutathione and ascorbate in tissue extracts: Application to redox profiling during Arabidopsis rosette development, Anal Biochem, vol.363, pp.58-69, 2007.

G. Queval, D. Jaillard, B. Zechmann, and G. Noctor, Increased intracellular H 2 O 2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts, Plant Cell Environ, vol.34, pp.21-32, 2011.

G. Queval, D. Thominet, H. Vanacker, M. Miginiac-maslow, B. Gakière et al., H 2 O 2 -activated up-regulation of glutathione in Arabidopsis involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast, Molecular Plant, vol.2, pp.344-356, 2009.

M. S. Rahantaniaina, S. Li, G. Chatel-innocenti, A. Tuzet, E. Eissakidis-bourguet et al., Cytosolic and chloroplastic DHARs cooperate in oxidative stress-driven activation of the salicylic acid pathway, Plant Physiol, vol.174, pp.956-971, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01583189

M. S. Rahantaniaina, A. Tuzet, A. Mhamdi, and G. Noctor, Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants?, Front Plant Sci, vol.4, p.477, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01189786

B. Riens, G. Lohaus, D. Heineke, and H. Hw, Amino acid and sucrose content determined in the cytosolic, chloroplastic, and vacuolar compartments and in the phloem sap of spinach leaves, Plant Physiol, vol.97, pp.227-233, 1991.

S. P. Rius, P. Casati, A. A. Iglesias, and G. Df, Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase, Plant Mol Biol, vol.61, pp.945-957, 2006.

J. G. Scandalios, Regulation and properties of plant catalases, Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants (eds Foyer CH and Mullineaux PM), pp.275-315, 1994.

C. Schnarrenberger, A. Oeser, and T. Ne, Two isoenzymes each of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in spinach leaves, Arch Biochem Biophys, vol.154, pp.438-448, 1973.

I. H. Segel, Steady-state kinetics of multi reactant enzymes, Enzyme Kinetics, pp.684-687, 1975.

T. D. Sharkey, C. J. Bernacch, G. D. Farquhar, and S. El, Fitting photosynthetic carbon dioxide response curves for C3 leaves, Plant Cell Environ, vol.30, pp.1035-1040, 2007.

T. Shimaoka, C. Miyake, and Y. A. , Mechanism of the reaction catalyzed by dehydroascorbate reductase from spinach chloroplasts, Eur J Biochem, vol.270, pp.921-928, 2003.

Y. Tanaka, S. S. Sugano, T. Shimada, and I. Hara-nishimura, Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis, New Phytol, vol.198, pp.757-764, 2013.

R. Tommasini, E. Vogt, M. Fromenteau, S. Hörtensteiner, P. Matile et al., An ABC?transporter of Arabidopsis thaliana has both glutathione?conjugate and chlorophyll catabolite transport activity, Plant J, vol.13, pp.773-780, 1998.

A. Tuzet, A. Granier, P. Betsch, M. Peiffer, and A. Perrier, Modelling hydraulic functioning of an adult beech stand under non-limiting soil water and severe drought condition, Ecol Model, vol.348, pp.56-77, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01594884

A. Tuzet, A. Perrier, and L. R. , A coupled model of stomatal conductance, photosynthesis and transpiration, Plant Cell Environ, vol.26, pp.1097-1116, 2003.

E. Valero, M. I. González-sánchez, H. Macià, G. , and F. , Computer simulation of the dynamic behavior of the glutathione-ascorbate redox cycle in chloroplasts, Plant Physiol, vol.149, 1958.

E. Valero, H. Macià, I. Fuente, J. A. Hernandez, M. I. Gonzales-sanchez et al., Modeling the ascorbate-glutathione cycle in chloroplasts under light/dark conditions, BMC Systems Biol, vol.10, p.11, 2016.

S. Vanderauwera, N. Suzuki, G. Miller, B. Van-de-cotte, S. Morsa et al., Extranuclear protection of chromosomal DNA from oxidative stress, Proc Natl Acad Sci, vol.108, pp.1711-1716, 2011.

M. A. Vanoni, K. K. Wong, D. P. Ballou, and J. S. Blanchard, Glutathione reductase: comparison of steadystate and rapid reaction primary kinetic isotope effects exhibited by the yeast, spinach, and Escherichia coli enzymes, Biochemistry, vol.29, pp.5790-5796, 1990.

S. Vaseghi, A. Baumeister, M. Rizzi, and M. Reuss, In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae, Metab Eng, vol.1, pp.128-140, 1999.

S. D. Veljovic-jovanovic, C. Pignocchi, G. Noctor, and C. H. Foyer, Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system, Plant Physiol, vol.127, pp.426-435, 2001.

C. Von, Biochemical Models of Leaf Photosynthesis, vol.2, 2000.

A. Wachter, S. Wolf, H. Steininger, J. Bogs, and T. Rausch, Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: Implications for the compartmentation of glutathione biosynthesis in the Brassicaceae, Plant J, vol.41, pp.15-30, 2005.

S. Wakao and C. Benning, Genome-wide analysis of glucose-6-phosphate dehydrogenases in Arabidopsis, Plant J, vol.41, pp.243-256, 2005.

S. Weise, D. Carr, A. Bourke, D. T. Hanson, D. Swarthout et al., The arc mutants of Arabidopsis with fewer large chloroplasts have a lower mesophyll conductance, Photosynth Res, vol.124, p.117, 2015.

K. G. Welinder, Superfamily of plant, funga1 and bacterial peroxidases, Curr Opin Struct Biol, vol.2, pp.388-393, 1992.

H. Winter, D. G. Robinson, and H. Hw, Subcellular Volumes and metabolite concentrations in spinach leaves, Planta, vol.193, pp.530-535, 1994.

A. J. Zera, S. Newman, D. Berkheim, C. Black, L. Klug et al., Purification and characterization of cytoplasmic NADP + -isocitrate dehydrogenase, and amplification of the NADP + -IDH gene from the wing-dimorphic sand field cricket, Gryllus firmus, J Insect Sci, vol.11, 2011.

, France, qui fournit des bases de données intégratives sur le génome d'Arabidopsis thaliana -Le site SIGnAL pour « Salk Institute Genomic Analysis Laboratory, tdnaexpress) qui permet de visualiser la position des gènes, des insertions d'ADN-T et des ADNc disponibles auprès de la communauté scientifique -Le site de NASC pour « The European Arabidopsis Stock Centre

, Il s'agit d'un site de catalogues de ressources génétiques qui permet en particulier de commander des lignées mutantes d'Arabidopsis thaliana

. Zimmermann, ) qui fournit des profils d'expression d'après des bases de données d'expression génique, pour des gènes d'intérêt chez plusieurs espèces, notamment en fonction des différents organes, du stade de développement, en réponse à des stimuli ou chez différents mutants, Genevestigator, un site de bases de données transcriptomiques Pour les études transcriptomiques, je me suis servie du site internet Genevestigator, 2004.

I. Le-site and . Brenda,

. Mev, Ce logiciel constitue une interface souple couplée à un large choix d'outils statistiques (classification hiérarchique, ANOVA, carte de chaleur

V. I. Partie, . Bibliographie, K. Bela, E. Horváth, Á. Gallé et al., Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses, J Plant Physiol, vol.176, pp.192-201, 2015.

K. Benekos, C. Kissoudis, I. Nianiou-obeidat, N. Labrou, P. Madesis et al., Overexpression of a specific soybean GmGSTU4 isoenzyme improves diphenyl ether and chloroacetanilide herbicide tolerance of transgenic tobacco plants, J Biotechnol, vol.150, pp.195-201, 2010.

J. J. Benschop, S. Mohammed, M. O&apos;flaherty, A. J. Heck, M. Slijper et al., Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis, Mol Cell Proteomics, vol.6, pp.1198-121410, 2007.

J. A. Bick, A. T. Setterdahl, D. B. Knaff, Y. Chen, L. H. Pitcher et al., Regulation of the plant-type 5?-adenylyl sulfate reductase by oxidative stress, Biochemistry, vol.40, pp.9040-9048, 2001.

S. Biemelt, U. Keetman, and G. Albrecht, Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings, Plant Physiol, vol.116, pp.651-658, 1998.

G. P. Bienert and F. Chaumont, Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide, 2014.

, Biochim Biophys Acta, vol.1840, pp.1596-1604

?. Bienert, . Gp, R. B. Heinen, M. C. Berny, and F. Chaumont, Maize plasma membrane aquaporin ZmPIP2;5, but not ZmPIP1;2, facilitates transmembrane diffusion of hydrogen peroxide, Biochim Biophys Acta, vol.1838, pp.216-222, 2014.

K. A. Blee, S. C. Jupe, G. Richard, A. Zimmerlin, D. R. Davies et al., Molecular identification and expression of the peroxidase responsible for the oxidative burst in French bean (Phaseolus vulgaris L.) and related members of the gene family, Plant Mol Biol, vol.47, pp.607-627, 2001.

E. Bloem, S. Haneklaus, I. Salac, P. Wickenhäuser, and E. Schnug, Facts and fiction about sulphur metabolism in relation to plant-pathogen interactions, Plant Biol, vol.9, pp.596-607, 2007.

E. Bloem, A. Riemenschneider, J. Volker, J. Papenbrock, A. Schmidt et al., Sulphur supply and infection with Pyrenopeziza brassicae influence L-cysteine desulphydrase activity in Brassica napus L, J Exp Bot, vol.55, pp.2305-2312, 2004.

O. Blokhina and K. V. Fagerstedt, Reactive Oxygen Species and Nitric Oxide in Plant Mitochondria: Origin and Redundant Regulatory Systems, Physiol Plant, vol.138, pp.447-462, 2010.

T. Blomster, J. Salojärvi, N. Sipari, M. Brosché, R. Ahlfors et al., Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis, Plant Physiol, vol.157, pp.1866-1883, 2011.

R. Blum, A. Beck, A. Korfte, A. Stengel, T. Letzel et al., Function of phytochelatin synthase in catabolism of glutathione-conjugates, Plant J, vol.49, pp.740-749, 2007.

R. Blum, K. C. Meyer, J. Wünschmann, K. J. Lendzian, and E. Grill, Cytosolic action of phytochelatin synthase, Plant Physiol, vol.153, pp.159-169, 2010.

W. Bond and N. P. Zaloumis, The deforestation story: testing for anthropogenic origins of Africa's flammable grassy biomes, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.371, pp.1-9, 2016.

M. M. Borisova, M. A. Kozuleva, N. N. Rudenko, I. A. Naydov, I. B. Klenina et al., Photosynthetic electron flow to oxygen and diffusion of hydrogen peroxide through the chloroplast envelope via aquaporins, Biochim Biophys Acta, vol.1817, pp.1314-1321, 2012.

C. Bowler, M. Van-montagu, and D. Inzé, Superoxide dismutase and stress tolerance, Annu Rev Plant Physiol Mol Biol, vol.43, pp.83-116, 1992.

?. Branco-price, C. Kaiser, K. A. Jang, C. J. Larive, C. K. Bailey-serres et al., Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana, Plant J, vol.56, pp.743-755, 2008.

A. Bratt, S. Rosenwasser, A. Meyer, and R. Fluhr, Organelle redox autonomy during environmental stress, Plant Cell Environ, vol.39, pp.1909-1919, 2016.

C. ?-bréhélin, E. H. Meyer, J. P. De-souris, G. Bonnard, and Y. Meyer, Resemblance and dissemblance of Arabidopsis type II peroxiredoxins: similar sequences for divergent gene expression, protein localization, and activity, Plant Physiol, vol.132, pp.2045-2057, 2003.

M. Brosché, T. Blomster, J. Salojärvi, F. Cui, N. Sipari et al., Transcriptomics and functional genomics of ROS-induced cell death regulation by RADICAL-INDUCED CELL DEATH1, 2014.

Q. ?-bruggeman, C. Raynaud, M. Benhamed, and M. Delarue, To die or not to die? Lessons from lesion mimic mutants, Front Plant Sci, vol.10, issue.2, p.24, 2015.

P. Brunetti, L. Zanella, D. Paolis, A. , D. Litta et al., Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis, J Exp Bot, vol.66, pp.3815-3829, 2015.

J. O. Brunkard, A. M. Runkel, and P. C. Zambryski, Chloroplasts extend stromules independently and in response to internal redox signals, Proc Natl Acad Sci, vol.112, pp.10044-10049, 2015.

F. Buwalda, I. Stulen, D. Kok, L. J. Kuiper, and P. , Cysteine, ?-glutamylcysteine and glutathione contents of spinach leaves as affected by darkness and application of excess sulfur. II. Glutathione accumulation in detached leaves exposed to H2S in the absence of light is stimulated by the supply of glycine to the petiole, Physiol Plant, vol.80, pp.196-204, 1990.

R. S. Byrne, R. Hansche, R. R. Mendel, and R. Hille, Oxidative half-reaction of Arabidopsis thaliana sulfite oxidase: generation of superoxide by a peroxisomal enzyme, J Biol Chem, vol.284, pp.35479-35484, 2009.

N. G. Cairns, M. Pasternak, A. Wachter, C. S. Cobbett, and A. J. Meyer, Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo, Plant Physiol, vol.141, pp.446-455, 2006.

J. S. ?-caplan, R. N. Hager, J. P. Megonigal, and T. J. Mozdzer, Global change accelerates carbon assimilation by a wetland ecosystem engineer, Environ Res Lett, vol.10, p.115006, 2015.

?. Cassin-ross, G. Hu, J. ;-?-caverzan, C. Bonifacio, A. Carvalho et al., The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice, Plant Signal Behav, vol.9, pp.74-87, 2014.

L. ?-chae, S. Sudat, S. Dudoit, T. Zhu, S. Luan et al., Diverse transcriptional programs associated with environmental stress and hormones in the Arabidopsis receptor-like kinase gene family, Mol Plant, vol.2, p.84, 1996.

, Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesisrelated expression under high light, Plant J, vol.10, pp.491-503

S. Chamnongpol, H. Willekens, W. Moeder, C. Langebartels, H. Sandermann et al., Defense activation and enhanced pathogen tolerance induced by H 2 O 2 in transgenic tobacco, Proc Natl Acad Sci, vol.95, pp.5818-5823, 1998.

S. Chaouch and G. Noctor, Myo-inositol abolishes salicylic acid-dependent cell death and pathogen defence responses triggered by peroxisomal H 2 O 2, New Phytol, vol.188, pp.711-718, 2010.

S. Chaouch, G. Queval, and G. Noctor, AtRbohF is a crucial modulator of defence-associated metabolism and a key actor in the interplay between intracellular oxidative stress and pathogenesis responses in Arabidopsis, Plant J, vol.69, pp.613-627, 2012.

C. Chater, K. Peng, M. Movahedi, J. A. Dunn, H. J. Walker et al., Elevated CO 2 -induced responses in stomata require ABA and ABA signaling, Curr Biol, vol.25, pp.2709-2716, 2015.

S. Chawla, S. Jain, and V. Jain, Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice, Oryza sativa L.). J Plant Biochem Biotechnol, vol.22, pp.27-34, 2013.

J. M. Cheeseman, Hydrogen peroxide concentrations in leaves under natural conditions, J Exp Bot, vol.57, pp.2435-2444, 2006.

J. H. Chen, H. W. Jiang, E. J. Hsieh, H. Y. Chen, C. T. Chien et al., Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid, Plant Physiol, vol.158, pp.340-351, 2012.

R. Chen, S. Sun, C. Wang, Y. Li, Y. Liang et al., , 2009.

, Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death, Cell Res, vol.19, pp.1377-1387

Z. Chen and D. R. Gallie, Dehydroascorbate reductase affects leaf growth, development and function, 2006.

, Plant Physiol, vol.142, pp.775-787

L. Cheng, I. Kellogg, . Ew, L. Packer, O. Chew et al., Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants, Photochem Photobiol, vol.34, pp.46869-46877, 1981.

S. Clemens, E. J. Kim, D. Neumann, and J. I. Schroeder, Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast, EMBO J, vol.18, pp.3325-3333, 1999.

R. Clifton, A. H. Millar, and J. Whelan, Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses, Biochim Biophys Acta, vol.1757, pp.730-741, 2006.

C. Cobbett and P. Goldsbrough, Phytochelatins and metallothioneins: roles in heavy metal detoxifaction and homeostasis, Annu Rev Plant Biol, vol.53, pp.159-182, 2002.

C. S. Cobbett, M. J. May, R. Howden, and B. Rolls, The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in ??glutamylcysteine synthetase, Plant J, vol.16, pp.73-78, 1998.

N. S. Coll, P. Epple, and J. L. Dangl, Programmed cell death in the plant immune system, Cell Death Differ, vol.18, pp.1247-1256, 2011.

A. Cona, G. Rea, R. Angelini, R. Federico, and P. Tavladoraki, Function of amine oxidases in plant development and defence, Trends Plant Sci, vol.11, pp.80-88, 2006.

M. J. ?-considine and C. H. Foyer, Antioxid Redox regulation of plant development, Redox Signal, vol.21, pp.1305-1331, 2014.

R. V. Cooney, P. J. Harwood, L. J. Custer, and A. A. Franke, Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids, Environ Health Perspect, vol.102, pp.460-462, 1994.

F. J. Corpas, J. B. Barroso, J. M. Palma, and L. A. Del-río, Peroxisomes as key organelles in the metabolism of reactive oxygen species, reactive nitrogen species and reactive sulfur species, 2009.

, Emergent Functions of the Peroxisome. Research Signpost, pp.97-124

F. J. Corpas, A. Fernández-ocaña, A. Carreras, R. Valderrama, F. Luque et al., The expression of different superoxide dismutase forms is cell-type dependent in olive (Olea europaea L.) leaves, Plant Cell Physiol, vol.47, pp.984-994, 2006.

F. J. Corpas, J. M. Palma, L. M. Sandalio, R. Valderrama, J. B. Barroso et al., Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L.) leaves, Journal of Plant Physiology, vol.165, pp.1319-1330, 2008.

?. Correa-aragunde, N. Foresi, N. Lamattina, and L. , Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study, J Exp Bot, vol.66, pp.2913-2921, 2015.

D. J. Cosgrove, Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics and the action of wall-modifying enzymes, J Exp Bot, vol.67, pp.463-476, 2016.

I. ?-couee, C. Sulmon, and G. Gouesbet, Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants, El Amrani A, vol.57, pp.449-459, 2006.

G. ?-creissen, J. Firmin, M. Fryer, B. Kular, N. Leyland et al., Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress, Plant Cell, vol.11, pp.1277-1292, 1999.

I. Cummins, D. J. Wortley, F. Sabbadin, Z. He, C. R. Coxon et al., The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis, Plant J, vol.55, pp.774-786, 2008.

M. Schmidt, S. Dehne, and J. Feierabend, Post-transcriptional mechanisms control catalase synthesis during its light-induced turnover in rye leaves through the availability of the hemin cofactor and reversible changes of the translation efficiency of mRNA, Plant J, vol.31, pp.601-613, 2002.

P. Schopfer, E. Heyno, F. Drepper, and A. Krieger-liszkay, Naphthoquinone-dependent generation of superoxide radicals by quinone reductase isolated from the plasma membrane of soybean, Plant Physiol, vol.147, pp.1-15, 2008.

A. Schutzendubel, P. Schwanz, T. Teichmann, K. Gross, R. Langenfeld-heyser et al., Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots, Plant Physiol, vol.127, pp.887-898, 2001.

M. Schwarzländer, M. Fricker, C. Müller, L. Marty, T. Brach et al., Confocal imaging of glutathione redox potential in living plant cells, J Microsc, vol.231, pp.299-316, 2008.

A. ?-sen-gupta, R. G. Alscher, and D. Cune, Response of photosynthesis and cellular antioxidants to ozone in Populus leaves, Plant Physiol, vol.96, pp.650-655, 1991.

A. T. Setterdahl, P. T. Chivers, M. Hirasawa, S. D. Lemaire, E. Keryer et al., Effect of pH on the oxidation-reduction properties of thioredoxins, Biochemistry, vol.42, pp.14877-14884, 2003.

N. Sewelam, N. Jaspert, K. Van-der-kelen, V. B. Tognetti, J. Schmitz et al., Spatial H 2 O 2 signaling specificity: H 2 O 2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially, Mol Plant, vol.7, pp.1191-1210, 2014.

J. Shah, P. Kachroo, A. Nandi, and D. F. Klessig, A recessive mutation in the Arabidopsis SSI2 gene confers SA-and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens, Plant J, vol.25, pp.563-574, 2001.

C. Shan and Z. Liang, Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress, Plant Sci, vol.178, pp.130-139, 2010.

V. Shanmugam, M. Tsednee, and K. C. Yeh, ZINC TOLERANCE INDUCED BY IRON 1 reveals the importance of glutathione in the cross-homeostasis between zinc and iron in Arabidopsis thaliana, Plant J, vol.69, pp.1006-1017, 2012.

A. Shapiguzov, J. P. Vainonen, M. Wrzaczek, and J. Kangasjärvi, ROS-talk -how the apoplast, the chloroplast, and the nucleus get the message through, Front Plant Sci, vol.3, p.292, 2012.

O. P. Sharma, O. Bambawale, J. B. Gopali, S. Bhagat, S. Yelshetty et al., Government of India, Department of agricultural and cooperation, Field guide Mung bean and Urd bean, vol.53, pp.1305-1319, 2002.

M. Sierla, M. Rahikainen, J. Salojärvi, J. Kangasjärvi, and S. Kangasjärvi, Apoplastic and chloroplastic redox signaling networks in plant stress responses, Antioxid Redox Signal, vol.18, pp.2220-2239, 2013.

?. Silva-neta, I. C. Pinho, E. Veiga, A. Pinho, R. Guimaraes et al., Expression of genes related to tolerance to low temperature for maize seed germination, Genet Mol Res, vol.14, pp.2674-2690, 2015.

K. ?imková, C. Kim, K. Gacek, A. Baruah, C. Laloi et al., The chloroplast division mutant caa33 of Arabidopsis thaliana reveals the crucial impact of chloroplast homeostasis on stress acclimation and retrograde plastid-to-nucleus signaling, Plant J, vol.69, pp.701-712, 2012.

S. Singh-s?nag and S. B. K?kundu-ss?maity, Relative intake, eating pattern, nutrient digestibility, nitrogen metabolism, fermentation pattern and growth performance of lambs fed organically and inorganically produced cowpea hay-barley grain diets, Trop Grassl, vol.44, pp.55-61, 2010.

?. Singh, . Kl, A. Chaudhuri, and K. Rk, Role of peroxidase activity and Ca(2+) in axis growth during seed germination, Planta, vol.242, pp.997-1007, 2015.

R. Sinha, C. Lacadie, P. Skudlarski, R. K. Fulbright, B. J. Rounsaville et al., Neural activity associated with stress-induced cocaine craving: a functional magnetic resonance imaging study, Psychopharmacology, vol.183, pp.171-180, 2005.

N. Smirnoff, Vitamin C: the metabolism and functions of ascorbic acid in plants, Adv Bot Res, vol.59, pp.107-177, 2011.

N. Smirnoff and Q. J. Cumbes, Hydroxyl Radical Scavenging Activity of Compatible Solutes, 1989.

, Phytochemistry, vol.28, pp.1057-1060

I. K. Smith, A. C. Kendall, A. J. Keys, J. C. Turner, and P. J. Lea, Increased levels of glutathione in a catalasedeficient mutant of barley (Hordeum vulgare L, Plant Sci Lett, vol.37, pp.29-33, 1984.

N. C. Soares, R. Francisco, J. M. Vielba, C. P. Ricardo, and P. A. Jackson, Associating wound-related changes in the apoplast proteome of Medicago with early steps in the ROS signal-transduction pathway, J Prot Res, vol.8, pp.2298-2309, 2009.

A. Sofo, A. Scopa, M. Nuzzaci, and A. Vitti, Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses, Intl. J. Mol. Sci, vol.16, pp.13561-13578, 2015.

W. Y. Song, T. Yamaki, N. Yamaji, D. Ko, K. H. Jung et al., A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain, Proc Natl Acad Sci, vol.111, pp.15699-15704, 2014.

K. Sorkheh, B. Shiran, M. Khodambashi, V. Rouhi, S. Mosavei et al., Exogenous proline alleviates the effects of H2O2-induced oxidative stress in wild almond species, Russ. J. Plant Physiol, vol.59, pp.788-798, 2012.

E. R. ?-stadtman, J. Moskovitz, B. S. Berlett, and R. L. Levine, Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism, Mol Cell Biochem, vol.234, pp.3-9, 2002.

S. Stael, P. Kmiecik, P. Willems, K. Van-der-kelen, N. S. Coll et al., Plant innate immunitysunny side up?, Trends Plant Sci, vol.20, pp.3-11, 2015.

R. Steinkamp and H. Rennenberg, Degradation of glutathione in plant cells: evidence against the participation of a ?-glutamyltranspeptidase, Z. Naturforsch C, vol.40, pp.29-33, 1985.

R. Steinkamp, B. Schweihofen, and H. Rennenberg, ?-Glutamylcyclotransferase in tobacco suspension cultures: catalytic properties and subcellular localization, Physiol Plant, vol.69, pp.499-503, 1987.

A. Wachter, S. Wolf, H. Steininger, J. Bogs, and T. Rausch, Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae, Plant J, vol.41, pp.15-30, 2005.

U. Wagner, R. Edwards, D. P. Dixon, and F. Mauch, Probing the diversity of the Arabidopsis glutathione S-transferase gene family, Plant Mol Biol, vol.49, pp.515-532, 2002.

Y. Wang, B. W. Yun, E. J. Kwon, J. K. Hong, J. Y. Yoon et al., S-nitrosylation: an emerging redoxbased post-translational modification in plants, J Exp Bot, vol.57, pp.1777-1784, 2006.

D. ?-wanke, Ü. Kolukisaoglu, and H. , An update on the ABCC transporter family in plants: many genes, many proteins, but how many functions, Plant Biol, vol.12, pp.15-25, 2010.

D. ?-wendehenne, G. Q. Kachroo, A. Kachroo, and P. , Free radical-mediated systemic immunity in plants, Curr Opin Plant Bio, vol.20, pp.127-134, 2014.

D. ?-wendehenne, A. Pugin, D. F. Klessig, and J. Durner, Nitric oxide: comparative synthesis and signaling in animal and plant cells, Trends Plant Sci, vol.6, pp.177-183, 2001.

S. J. Wi, N. R. Ji, and K. Y. Park, Synergistic biosynthesis of biphasic ethylene and reactive oxygen species in response to hemibiotrophic Phytophthora parasitica in tobacco plants, Plant Physiol, vol.159, pp.251-265, 2012.

E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys Rev, vol.40, pp.749-759, 1932.

H. Willekens, S. Chamnongpol, M. Davey, M. Schraudner, C. Langebartels et al., Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants, 1997.

, EMBO J, vol.16, pp.4806-4816

H. Willekens, S. Chamnongpol, M. Davey, M. Schraudner, C. Langebartels et al., Catalase is a sink for H 2 O 2 and is indispensable for stress defence in C3 plants, 1997.

, EMBO J, vol.16, pp.4806-4816

H. Willekens, . Inzé, M. Van-montagu, V. Camp, and W. , Catalases in plants. Mol Breed, vol.1, pp.207-228, 1995.

B. Williams and M. Dickman, Plant programmed cell death: can't live with it; can't live without it, Mol Plant Pathol, vol.9, pp.531-544, 2008.

A. Wingler, T. Fritzius, A. Wiemken, and T. Boller, A AeschbacherTrehalose induces the ADPglucose pyrophosphorylase gene, ApL3, and starch synthesis in, Arabidopsis Plant Physiol, vol.124, pp.105-114, 2000.

?. Wojtaszek, P. Wolf, A. E. Dietz, K. J. Schroder, and P. , Degradation of glutathione S-conjugates by a carboxypeptidase in the plant vacuole, Biochem J, vol.322, pp.31-34, 1996.

M. Wrzaczek, M. Brosché, and J. Kangasjärvi, ROS signaling loops -production, perception, regulation, Curr Opin Plant Biol, vol.16, pp.575-582, 2013.

?. Wrzaczek, M. Brosché, M. Kollist, H. Kangasjärvi, and J. , Arabidopsis GRI is involved in the regulation of cell death induced by extracellular ROS, Proc Natl Acad Sci, vol.106, pp.5412-5417, 2009.

C. Xiang and D. J. Oliver, Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis, Plant Cell, vol.10, pp.1539-1550, 1998.

J. Xu, Y. S. Tian, X. J. Xing, R. H. Peng, B. Zhu et al., Over-expression of AtGSTU19 provides tolerance to salt, drought and methyl viologen stresses in Arabidopsis, Physiol Plant, vol.14, p.12347, 2015.

Y. Yabuta, T. Motoki, K. Yoshimura, T. Takeda, T. Ishikawa et al., Thylakoid membranebound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress, Plant J, vol.32, pp.915-925, 2002.

H. Yamasaki and Y. Sakihama, Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species, FEBS Lett, vol.468, pp.89-92, 2000.

N. Yao and J. T. Greenberg, Arabidopsis (2006) ACCELERATED CELL DEATHE modulates programmed cell death, Plant Cell, vol.18, pp.397-411

K. Yoshimura, Y. Yabuta, T. Ishikawa, and S. Shigeoka, Expression of ascorbate peroxidase isoenzymes in response to oxidative stresses, Plant Physiol, vol.123, pp.223-233, 2000.

Q. Yu and S. B. Powles, Resistance to AHAS inhibitor herbicides: current understanding, Pest Manag Sci, vol.70, pp.1340-1350, 2014.

M. Zaffagnini, M. Bedhomme, H. Groni, C. H. Marchand, C. Puppo et al., , 2012.

, Glutathionylation in the photosynthetic model organism Chlamydomonas reinhardtii: a proteomic survey

, Mol. Cell. Proteomics, vol.11, p.111

M. Zaffagnini, M. Bedhomme, C. H. Marchand, S. Morisse, P. Trost et al., Redox regulation in photosynthetic organisms: focus on glutathionylation, Antioxid Redox Signal, vol.16, pp.567-586, 2012.

E. Zago, S. Morsa, J. F. Dat, P. Alard, A. Ferrarini et al., Nitric oxide-and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco, 2006.

, Plant Physiol, vol.141, pp.404-411

M. Zamocky, P. G. Furtmüller, and C. Obinger, Evolution of catalases from bacteria to humans, Antioxid Redox Sign, vol.10, pp.1527-1547, 2008.

B. ?-zechmann, Compartment-specific importance of glutathione during abiotic and biotic stress, 1996.

B. ?-zechmann, G. Zellnig, A. Urbanek-krajnc, and M. Müller, Artifical elevation of glutathione affects symptom development in ZYMV-infected Cucurbita pepo L plants, Front Plant Sci, vol.152, pp.747-762, 2007.

Y. Zhang, H. Zhu, Q. Zhang, M. Li, M. Yan et al., , 2009.