L. A. Cox, L. T. Van-eijk, B. P. Ramakers, M. J. Dorresteijn, J. Gerretsen et al., Inflammation-Induced Increases in Plasma Endocan Levels Are Associated With Endothelial Dysfunction in Humans In Vivo, 2015.

S. Balta, D. P. Mikhailidis, S. Demirkol, C. Ozturk, T. Celik et al., Endocan: A novel inflammatory indicator in cardiovascular disease?, Atherosclerosis, vol.243, pp.339-382, 2015.

D. Orbegozo, L. Rahmania, M. Irazabal, M. Mendoza, F. Annoni et al., Endocan as an early biomarker of severity in patients with acute respiratory distress syndrome, Ann Intensive Care, vol.7, p.93, 2017.

L. Tang, Y. Zhao, D. Wang, W. Deng, C. Li et al., Endocan levels in peripheral blood predict outcomes of acute respiratory distress syndrome, Mediators Inflamm, p.625180, 2014.

D. M. Mihajlovic, D. F. Lendak, S. V. Brkic, B. G. Draskovic, G. P. Mitic et al., Endocan is useful biomarker of survival and severity in sepsis, Microvasc Res, vol.93, pp.92-99, 2014.

S. Balta, D. P. Mikhailidis, S. Demirkol, C. Ozturk, E. Kurtoglu et al., Endocan--a novel inflammatory indicator in newly diagnosed patients with hypertension: a pilot study, Angiology, vol.65, pp.773-780, 2014.

N. De-freitas-caires, B. Legendre, E. Parmentier, A. Scherpereel, A. Tsicopoulos et al., Identification of a 14 kDa endocan fragment generated by cathepsin G, a novel circulating biomarker in patients with sepsis, J Pharm Biomed Anal, pp.45-51, 2013.

E. Rennel, S. Mellberg, A. Dimberg, L. Petersson, J. Botling et al., Endocan is a VEGF-A and PI3K regulated gene with increased expression in human renal cancer, Exp Cell Res, vol.313, pp.1285-94, 2007.

A. Scherpereel, F. Depontieu, B. Grigoriu, B. Cavestri, A. Tsicopoulos et al., Endocan, a new endothelial marker in human sepsis, Crit Care Med, vol.34, pp.532-539, 2006.

F. Roudnicky, C. Poyet, P. Wild, S. Krampitz, F. Negrini et al., Endocan is upregulated on tumor vessels in invasive bladder cancer where it mediates VEGF-A-induced angiogenesis, Cancer Res, vol.73, pp.1097-106, 2013.

D. Bechard, T. Gentina, M. Delehedde, A. Scherpereel, M. Lyon et al., Endocan is a novel chondroitin sulfate/dermatan sulfate proteoglycan that promotes hepatocyte growth factor/scatter factor mitogenic activity, J Biol Chem, vol.276, pp.48341-48350, 2001.

S. F. Rocha, M. Schiller, D. Jing, H. Li, S. Butz et al., Esm1 modulates endothelial tip cell behavior and vascular permeability by enhancing VEGF bioavailability, Circ Res, vol.115, pp.581-90, 2014.

K. A. Nguyen, H. Hamzeh-cognasse, M. Sebban, E. Fromont, P. Chavarin et al., A computerized prediction model of hazardous inflammatory platelet transfusion outcomes, PloS one, vol.9, p.97082, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01011939

G. Baimukanova, B. Miyazawa, D. R. Potter, M. O. Muench, R. Bruhn et al., Platelets regulate vascular endothelial stability: assessing the storage lesion and donor variability of apheresis platelets, Transfusion, vol.56, issue.1, pp.65-75, 2016.

K. A. Nguyen, P. Chavarin, C. A. Arthaud, F. Cognasse, and O. Garraud, Do manual and automated processes with distinct additive solutions affect whole blood-derived platelet components differently?, Blood Transfus, vol.11, pp.152-155, 2013.

K. Broos, Platelets at work in primary hemostasis, Blood Rev, vol.25, issue.4, pp.155-67, 2011.

J. W. Semple, J. E. Italiano, J. , and J. Freedman, Platelets and the immune continuum, Nat Rev Immunol, vol.11, issue.4, pp.264-74, 2011.

F. Cognasse, Evidence of Toll-like receptor molecules on human platelets, Immunol Cell Biol, vol.83, issue.2, pp.196-204, 2005.

F. Cognasse, The Inflammatory Role of Platelets via Their TLRs and Siglec Receptors. Front Immunol, vol.6, p.83, 2015.

K. A. Nguyen, Role of Siglec-7 in apoptosis in human platelets, PLoS One, vol.9, issue.9, p.106239, 2014.

H. Heijnen and P. Van-der-sluijs, Platelet secretory behaviour: as diverse as the granules ... or not?, J Thromb Haemost, vol.13, issue.12, pp.2141-51, 2015.

B. K. Manne, S. C. Xiang, and M. T. Rondina, Platelet secretion in inflammatory and infectious diseases, Platelets, pp.1-10, 2016.

D. M. Maynard, Proteomic analysis of platelet alpha-granules using mass spectrometry, J Thromb Haemost, vol.5, issue.9, pp.1945-55, 2007.

M. R. Thomas and R. F. Storey, The role of platelets in inflammation, Thromb Haemost, vol.114, issue.3, pp.449-58, 2015.

L. M. Wuescher, A. Takashima, and R. G. Worth, A novel conditional platelet depletion mouse model reveals the importance of platelets in protection against Staphylococcus aureus bacteremia, J Thromb Haemost, vol.13, issue.2, pp.303-316, 2015.

B. Xiang, Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway, Nat Commun, vol.4, p.2657, 2013.

A. Corken, Platelet glycoprotein Ib-IX as a regulator of systemic inflammation, Arterioscler Thromb Vasc Biol, vol.34, issue.5, pp.996-1001, 2014.

J. A. Guerrero, Gray platelet syndrome: proinflammatory megakaryocytes and alphagranule loss cause myelofibrosis and confer metastasis resistance in mice, Blood, vol.124, issue.24, pp.3624-3659, 2014.

C. Deppermann, Gray platelet syndrome and defective thrombo-inflammation in Nbeal2-deficient mice, J Clin Invest, 2013.

W. H. Kahr, Abnormal megakaryocyte development and platelet function in Nbeal2(-/-) mice. Blood, vol.122, pp.3349-58, 2013.

J. M. Sowerby, NBEAL2 is required for neutrophil and NK cell function and pathogen defense, J Clin Invest, vol.127, issue.9, pp.3521-3526, 2017.

L. D. Hazlett, X. Jiang, and S. A. Mcclellan, IL-10 function, regulation, and in bacterial keratitis, J Ocul Pharmacol Ther, vol.30, issue.5, pp.373-80, 2014.

P. H. Hart, Potential antiinflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factor alpha, interleukin 1, and prostaglandin E2, Proc Natl Acad Sci, vol.86, issue.10, pp.3803-3810, 1989.

C. Marie, Regulation by anti-inflammatory cytokines (IL-4, IL-10, IL-13, TGFbeta)of interleukin-8 production by LPS-and/ or TNFalpha-activated human polymorphonuclear cells, Mediators Inflamm, vol.5, issue.5, pp.334-374, 1996.

X. L. Huang, Role of anti-inflammatory cytokines IL-4 and IL-13 in systemic sclerosis, Inflamm Res, vol.64, pp.151-160, 2015.

G. T. Brown, Lipopolysaccharide stimulates platelets through an IL-1beta autocrine loop, J Immunol, vol.191, issue.10, pp.5196-203, 2013.

A. R. Gear and D. Camerini, Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and host defense. Microcirculation, vol.10, pp.335-50, 2003.

C. A. Gleissner, P. Von-hundelshausen, and K. Ley, Platelet chemokines in vascular disease, Arterioscler Thromb Vasc Biol, vol.28, issue.11, pp.1920-1927, 2008.

, Références : 1. ANSM, French Haemovigilance Activity Report, 2015.

P. Alvarez, Transfusion-Related Acute Lung Injured (TRALI): Current Concepts, Open Respir Med J, vol.9, pp.92-98, 2015.

A. L. Peters, D. Van-stein, and A. P. Vlaar, Antibody-mediated transfusion-related acute lung injury; from discovery to prevention, Br J Haematol, 2015.

A. L. Peters, Pathogenesis of non-antibody mediated transfusion-related acute lung injury from bench to bedside, Blood Rev, vol.29, issue.1, pp.51-61, 2015.

A. P. Vlaar and N. P. Juffermans, Transfusion-related acute lung injury: a clinical review, Lancet, vol.382, issue.9896, pp.984-94, 2013.

O. Garraud and F. Cognasse, Are Platelets Cells? And if Yes, are They Immune Cells? Front Immunol, vol.6, p.70, 2015.

O. Garraud, Transfusion as an Inflammation Hit: Knowns and Unknowns. Front Immunol, vol.7, p.534, 2016.

B. K. Manne, S. C. Xiang, and M. T. Rondina, Platelet secretion in inflammatory and infectious diseases, Platelets, pp.1-10, 2016.

F. Cognasse, The Inflammatory Role of Platelets via Their TLRs and Siglec Receptors. Front Immunol, vol.6, p.83, 2015.

F. Cognasse, Lipopolysaccharide induces sCD40L release through human platelets TLR4, but not TLR2 and TLR9. Intensive Care Med, vol.33, pp.382-386, 2007.

E. A. Middleton, A. S. Weyrich, and G. A. Zimmerman, Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases, Physiol Rev, vol.96, issue.4, pp.1211-59, 2016.

M. R. Thomas and R. F. Storey, The role of platelets in inflammation, Thromb Haemost, vol.114, issue.3, pp.449-58, 2015.

R. Kapur, Nouvelle cuisine: platelets served with inflammation, J Immunol, vol.194, issue.12, pp.5579-87, 2015.

Y. Boulaftali, Platelet ITAM signaling is critical for vascular integrity in inflammation, J Clin Invest, vol.123, issue.2, pp.908-924, 2013.

S. F. De-stoppelaar, Thrombocytopenia impairs host defense in gram-negative pneumonia-derived sepsis in mice, Blood, vol.124, issue.25, pp.3781-90, 2014.

T. Goerge, Inflammation induces hemorrhage in thrombocytopenia, Blood, vol.111, issue.10, pp.4958-64, 2008.

A. Gros, Single platelets seal neutrophil-induced vascular breaches via GPVI during immune-complex-mediated inflammation in mice, Blood, vol.126, issue.8, pp.1017-1043, 2015.

M. R. Looney, Neutrophils and their Fc gamma receptors are essential in a mouse model of transfusion-related acute lung injury, J Clin Invest, vol.116, issue.6, pp.1615-1638, 2006.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat Methods, vol.9, issue.7, pp.671-676, 2012.

G. Ortiz-munoz, Aspirin-triggered 15-epi-lipoxin A4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice, Blood, vol.124, issue.17, pp.2625-2659, 2014.

A. Caudrillier and M. R. Looney, Platelet-neutrophil interactions as a target for prevention and treatment of transfusion-related acute lung injury, Curr Pharm Des, vol.18, issue.22, pp.3260-3266, 2012.

A. Caudrillier, Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury, J Clin Invest, vol.122, issue.7, pp.2661-71, 2012.

M. R. Looney, Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury, J Clin Invest, vol.119, issue.11, pp.3450-61, 2009.

S. Tong, Accumulation of CD62P during storage of apheresis platelet concentrates and the role of CD62P in transfusion-related acute lung injury, Mol Med Rep, 2015.

B. Hechler, Platelets are dispensable for antibody-mediated transfusion-related acute lung injury in the mouse, J Thromb Haemost, 2016.

±. Sem, , pp.5-10

N. H. Roubinian, M. R. Looney, S. Keating, D. J. Kor, C. A. Lowell et al., Differentiating pulmonary transfusion reactions using recipient and transfusion factors, 2017.

P. Hughes, A. S. Cooney, and J. P. , A case report of transfusion-related acute lung injury during plasma exchange therapy for thrombotic thrombocytopenia purpura, Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy, vol.12, pp.78-81, 2008.

N. M. Dunbar, Current options for transfusion-related acute lung injury risk mitigation in platelet transfusions, Current opinion in hematology, vol.22, issue.6, pp.554-558, 2015.

A. P. Vlaar and N. P. Juffermans, Transfusion-related acute lung injury: a clinical review, Lancet, vol.2013, issue.9896, pp.984-994

C. C. Silliman, The two-event model of transfusion-related acute lung injury, Critical care medicine, vol.34, issue.5, pp.124-131, 2006.

R. A. Middelburg and J. G. Van-der-bom, Transfusion-related acute lung injury not a two-hit, but a multicausal model, Transfusion, 2014.

C. M. Doerschuk, Mechanisms of leukocyte sequestration in inflamed lungs, vol.8, pp.71-88, 2001.

A. L. Peters, D. Van-stein, and A. P. Vlaar, Antibody-mediated transfusion-related acute lung injury; from discovery to prevention, British journal of haematology, 2015.

F. B. West and C. C. Silliman, Transfusion-related acute lung injury: advances in understanding the role of proinflammatory mediators in its genesis, Expert review of hematology, vol.6, issue.3, pp.265-276, 2013.

M. R. Looney, J. X. Nguyen, Y. Hu, J. A. Van-ziffle, C. A. Lowell et al., Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury, The Journal of clinical investigation, vol.119, issue.11, pp.3450-3461, 2009.

C. Van-kooten and J. Banchereau, Journal of leukocyte biology, vol.67, issue.1, pp.2-17, 2000.

P. Andre, L. Nannizzi-alaimo, S. K. Prasad, and D. R. Phillips, Platelet-derived CD40L: the switch-hitting player of cardiovascular disease, Circulation, vol.106, issue.8, pp.896-899, 2002.

C. Aloui, A. Prigent, C. Sut, S. Tariket, H. Hamzeh-cognasse et al., The signaling role of CD40 ligand in platelet biology and in platelet component transfusion, International journal of molecular sciences, vol.15, issue.12, pp.22342-22364, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02346140

R. Elgueta, M. J. Benson, V. C. De-vries, A. Wasiuk, Y. Guo et al., Molecular mechanism and function of CD40/CD40L engagement in the immune system, Immunological reviews, vol.229, issue.1, pp.152-172, 2009.

B. Zhang, T. Wu, M. Chen, Y. Zhou, D. Yi et al., The CD40/CD40L system: a new therapeutic target for disease, vol.153, pp.58-61, 2013.

S. Tariket, C. Sut, H. Hamzeh-cognasse, S. Laradi, B. Pozzetto et al., Transfusion-related acute lung injury: transfusion, platelets and biological response modifiers, Expert review of hematology, vol.2016, pp.1-12

H. Hamzeh-cognasse, D. P. Nguyen, K. A. Arthaud, C. A. Eyraud, M. A. Chavarin et al., Immune-reactive soluble OX40 ligand, soluble CD40 ligand, and interleukin-27 are simultaneously oversecreted in platelet components associated with acute transfusion reactions, Transfusion, vol.54, issue.3, pp.613-625, 2014.

F. Cognasse, J. M. Payrat, L. Corash, J. C. Osselaer, and O. Garraud, Platelet components associated with acute transfusion reactions: the role of platelet-derived soluble CD40 ligand, Blood, vol.112, issue.12, pp.4780-4771, 2008.

, Charles-Antoine Arthaud 2 , Sandrine Laradi 1, 2 , Thomas Bourlet 1 , Philippe Berthelot 1 , Hind Hamzeh-Cognasse 1 , Olivier Garraud 1, 3 , Fabrice Cognasse 1, 2 1 Université de Lyon, CD40/CD40L complex protects mice against TRALI-induced pancreas degradation Sofiane Tariket 1, vol.2

, France 3 Institut National de Transfusion Sanguine (INTS)

, *Address for correspondence and reprint requests: Dr Fabrice Cognasse, PhD, vol.3064

A. P. Vlaar and N. P. Juffermans, Transfusion-related acute lung injury: a clinical review, Lancet, vol.382, pp.984-994, 2013.

Y. Ozier, J. Y. Muller, P. M. Mertes, P. Renaudier, P. Aguilon et al., Transfusion-related acute lung injury: reports to the French Hemovigilance Network, Transfusion, vol.51, pp.2102-2110, 2007.

C. C. Silliman, The two-event model of transfusion-related acute lung injury, Critical care medicine, vol.34, pp.124-131, 2006.

R. A. Middelburg and J. G. Van-der-bom, Transfusion-related acute lung injury not a two-hit, but a multicausal model, Transfusion, 2014.

C. M. Doerschuk, Mechanisms of leukocyte sequestration in inflamed lungs, Microcirculation, vol.8, pp.71-88, 2001.

A. L. Peters, D. Van-stein, and A. P. Vlaar, Antibody-mediated transfusion-related acute lung injury; from discovery to prevention, British journal of haematology, 2015.

P. Alvarez, R. Carrasco, C. Romero-dapueto, and R. L. Castillo, Transfusion-Related Acute Lung Injured (TRALI): Current Concepts. The open respiratory medicine journal, vol.9, pp.92-96, 2015.

M. R. Looney, J. X. Nguyen, Y. Hu, J. A. Van-ziffle, C. A. Lowell et al., Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury, The Journal of clinical investigation, vol.119, pp.3450-3461, 2009.

W. Xu, Y. Zhu, Y. Ning, Y. Dong, H. Huang et al., Nogo-B protects mice against lipopolysaccharide-induced acute lung injury, Scientific reports, vol.5, p.12061, 2015.

R. Sakaguchi, S. Chikuma, T. Shichita, R. Morita, T. Sekiya et al., Innate-like function of memory Th17 cells for enhancing endotoxin-induced acute lung inflammation through IL-22, International immunology, 2015.

E. Kolaczkowska and P. Kubes, Neutrophil recruitment and function in health and inflammation, Nature reviews Immunology, vol.13, pp.159-175, 2013.

E. Wetterholm, J. Linders, M. Merza, S. Regner, and H. Thorlacius, Platelet-derived CXCL4 regulates neutrophil infiltration and tissue damage in severe acute pancreatitis. Translational research : the journal of laboratory and clinical medicine, 2016.

M. Merza, H. Hartman, M. Rahman, R. Hwaiz, E. Zhang et al., Neutrophil Extracellular Traps Induce Trypsin Activation, Inflammation, and Tissue Damage in Mice With Severe Acute Pancreatitis, Gastroenterology, vol.149, pp.1920-1931, 2015.

E. Huang, R. Liu, Z. Lu, J. Liu, X. Liu et al., NKT cells mediate the recruitment of neutrophils by stimulating epithelial chemokine secretion during colitis, Biochemical and biophysical research communications, vol.474, pp.252-258, 2016.

R. Sumagin, J. C. Brazil, P. Nava, H. Nishio, A. Alam et al., Neutrophil interactions with epithelial-expressed ICAM-1 enhances intestinal mucosal wound healing, Mucosal immunology, 2016.

J. Zhang, P. Xu, P. Song, H. Wang, Y. Zhang et al., CCL2-CCR2 signaling promotes hepatic ischemia/reperfusion injury, The Journal of surgical research, vol.202, pp.352-362, 2016.

P. C. Dagher, T. Hato, H. E. Mang, Z. Plotkin, Q. V. Richardson et al., Inhibition of Toll-Like Receptor 4 Signaling Mitigates Microvascular Loss but Not Fibrosis in a Model of Ischemic Acute Kidney Injury, International journal of molecular sciences, p.17, 2016.

M. Rahman, S. Zhang, M. Chew, A. Ersson, B. Jeppsson et al., Platelet-derived CD40L (CD154) mediates neutrophil upregulation of Mac-1 and recruitment in septic lung injury, Annals of surgery, vol.250, pp.783-790, 2009.

R. Jin, S. Yu, Z. Song, X. Zhu, C. Wang et al., Soluble CD40 ligand stimulates CD40-dependent activation of the beta2 integrin Mac-1 and protein kinase C zeda (PKCzeta) in neutrophils: implications for neutrophil-platelet interactions and neutrophil oxidative burst, PloS one, vol.8, p.64631, 2013.

G. Li, J. M. Sanders, M. H. Bevard, Z. Sun, J. W. Chumley et al., CD40 ligand promotes Mac-1 expression, leukocyte recruitment, and neointima formation after vascular injury, The American journal of pathology, vol.172, pp.1141-1152, 2008.

S. B. Hassan, J. F. Sorensen, B. N. Olsen, and A. E. Pedersen, Anti-CD40-mediated cancer immunotherapy: an update of recent and ongoing clinical trials, Immunopharmacology and immunotoxicology, vol.36, pp.96-104, 2014.

C. Van-kooten, J. Banchereau, and . Cd40-cd40-ligand, Journal of leukocyte biology, vol.67, pp.2-17, 2000.

P. Andre, L. Nannizzi-alaimo, S. K. Prasad, and D. R. Phillips, Platelet-derived CD40L: the switch-hitting player of cardiovascular disease, Circulation, vol.106, pp.896-899, 2002.

S. Tariket, C. Sut, H. Hamzeh-cognasse, S. Laradi, B. Pozzetto et al., Transfusionrelated acute lung injury: transfusion, platelets and biological response modifiers, Expert review of hematology, vol.2016, pp.1-12

A. Adawi, Y. Zhang, R. Baggs, P. Rubin, J. Williams et al., Blockade of CD40-CD40 ligand interactions protects against radiation-induced pulmonary inflammation and fibrosis, Clinical immunology and immunopathology, vol.89, pp.222-230, 1998.

A. Adawi, Y. Zhang, R. Baggs, J. Finkelstein, and R. P. Phipps, Disruption of the CD40-CD40 ligand system prevents an oxygen-induced respiratory distress syndrome, The American journal of pathology, vol.152, pp.651-657, 1998.

N. Hashimoto, T. Kawabe, K. Imaizumi, T. Hara, M. Okamoto et al., CD40 plays a crucial role in lipopolysaccharide-induced acute lung injury, American journal of respiratory cell and molecular biology, vol.30, pp.808-815, 2004.

J. Schmidt, D. W. Rattner, K. Lewandrowski, C. C. Compton, U. Mandavilli et al., A better model of acute pancreatitis for evaluating therapy, Annals of surgery, vol.215, pp.44-56, 1992.

M. R. Looney, X. Su, J. A. Van-ziffle, C. A. Lowell, and M. A. Matthay, Neutrophils and their Fc gamma receptors are essential in a mouse model of transfusion-related acute lung injury, The Journal of clinical investigation, vol.116, pp.1615-1623, 2006.

M. Manohar, A. K. Verma, S. U. Venkateshaiah, N. L. Sanders, and A. Mishra, Pathogenic mechanisms of pancreatitis, World journal of gastrointestinal pharmacology and therapeutics, vol.8, pp.10-25, 2017.

P. Dumnicka, D. Maduzia, P. Ceranowicz, R. Olszanecki, R. Drozdz et al., The Interplay between Inflammation, Coagulation and Endothelial Injury in the Early Phase of Acute Pancreatitis: Clinical Implications, International journal of molecular sciences, vol.18, 2017.

S. J. Pandol, A. K. Saluja, C. W. Imrie, and P. A. Banks, Acute pancreatitis: bench to the bedside, Gastroenterology, vol.132, pp.1127-1151, 2007.

Z. W. Yang, X. X. Meng, and P. Xu, Central role of neutrophil in the pathogenesis of severe acute pancreatitis, Journal of cellular and molecular medicine, vol.19, pp.2513-2520, 2015.

C. Yu, M. Merza, L. Luo, and H. Thorlacius, Inhibition of Ras signalling reduces neutrophil infiltration and tissue damage in severe acute pancreatitis, European journal of pharmacology, vol.746, pp.245-251, 2015.

W. Hartwig, R. E. Jimenez, C. Fernandez-del-castillo, A. Kelliher, R. Jones et al., Expression of the adhesion molecules Mac-1 and L-selectin on neutrophils in acute pancreatitis is protease-and complement-dependent, Annals of surgery, vol.233, pp.371-378, 2001.

D. Awla, A. Abdulla, S. Zhang, J. Roller, M. D. Menger et al., Lymphocyte function antigen-1 regulates neutrophil recruitment and tissue damage in acute pancreatitis, British journal of pharmacology, vol.163, pp.413-423, 2011.

J. L. Frossard, A. Saluja, L. Bhagat, H. S. Lee, M. Bhatia et al., The role of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis-associated lung injury, Gastroenterology, vol.116, pp.694-701, 1999.

W. Hartwig, J. Werner, A. L. Warshaw, B. Antoniu, C. F. Castillo et al., Membrane-bound ICAM-1 is upregulated by trypsin and contributes to leukocyte migration in acute pancreatitis, American journal of physiology Gastrointestinal and liver physiology, vol.287, pp.1194-1199, 2004.

D. Wu, Y. Zeng, Y. Fan, J. Wu, T. Mulatibieke et al., Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury, Scientific reports, vol.6, p.20545, 2016.

T. Hackert, D. Pfeil, W. Hartwig, S. Fritz, L. Schneider et al., Journal of gastrointestinal surgery : official journal of the Society for Surgery of the, Alimentary Tract, vol.11, pp.439-444, 2007.

T. Hackert, D. Pfeil, W. Hartwig, M. M. Gebhard, M. W. Buchler et al., Platelet function in acute experimental pancreatitis induced by ischaemia-reperfusion, The British journal of surgery, vol.92, pp.724-728, 2005.

D. Uhlmann, H. Lauer, F. Serr, S. Ludwig, A. Tannapfel et al., Pathophysiological role of platelets in acute experimental pancreatitis: influence of endothelin A receptor blockade, Cell and tissue research, vol.327, pp.485-492, 2007.

A. Abdulla, D. Awla, H. Hartman, M. Rahman, B. Jeppsson et al., Role of platelets in experimental acute pancreatitis, The British journal of surgery, vol.98, pp.93-103, 2011.

A. Abdulla, D. Awla, H. Hartman, H. Weiber, B. Jeppsson et al., Platelets regulate P-selectin expression and leukocyte rolling in inflamed venules of the pancreas, European journal of pharmacology, vol.682, pp.153-160, 2012.

G. Lu, Z. Tong, Y. Ding, J. Liu, Y. Pan et al., Aspirin Protects against Acinar Cells Necrosis in Severe Acute Pancreatitis in Mice, BioMed research international, p.6089430, 2016.

Y. Y. Qiao, X. Q. Liu, C. Q. Xu, Z. Zhang, and H. W. Xu, Interleukin-22 ameliorates acute severe pancreatitisassociated lung injury in mice, World journal of gastroenterology : WJG, vol.22, pp.5023-5032, 2016.

L. Bonjoch, V. Casas, M. Carrascal, and D. Closa, Involvement of exosomes in lung inflammation associated with experimental acute pancreatitis, The Journal of pathology, vol.240, pp.235-245, 2016.

F. Wang, F. Lu, H. Huang, M. Huang, and T. Luo, Ultrastructural changes in the pulmonary mechanical barriers in a rat model of severe acute pancreatitis-associated acute lung injury, Ultrastructural pathology, vol.40, pp.33-42, 2016.

F. Cognasse, F. Boussoulade, P. Chavarin, S. Acquart, P. Fabrigli et al., Release of potential immunomodulatory factors during platelet storage, Transfusion, vol.46, pp.1184-1189, 2006.

J. Kaufman, S. L. Spinelli, E. Schultz, N. Blumberg, and R. P. Phipps, Release of biologically active CD154 during collection and storage of platelet concentrates prepared for transfusion, Journal of thrombosis and haemostasis : JTH, vol.5, pp.788-796, 2007.

N. Blumberg, K. F. Gettings, C. Turner, J. M. Heal, and R. P. Phipps, An association of soluble CD40 ligand (CD154) with adverse reactions to platelet transfusions, Transfusion, vol.46, pp.1813-1821, 2006.

G. Zuchtriegel, B. Uhl, D. Puhr-westerheide, M. Pornbacher, K. Lauber et al., Platelets Guide Leukocytes to Their Sites of Extravasation, PLoS biology, vol.14, p.1002459, 2016.

M. Rahman, J. Roller, S. Zhang, I. Syk, M. D. Menger et al., Metalloproteinases regulate CD40L shedding from platelets and pulmonary recruitment of neutrophils in abdominal sepsis. Inflammation research : official journal of the European Histamine Research Society, vol.61, pp.571-579, 2012.

M. Hausding, K. Jurk, S. Daub, S. Kroller-schon, J. Stein et al., CD40L contributes to angiotensin II-induced pro-thrombotic state, vascular inflammation, oxidative stress and endothelial dysfunction, Basic research in cardiology, vol.108, p.386, 2013.

J. A. Greene, J. A. Portillo, L. Corcino, Y. Subauste, and C. S. , CD40-TRAF Signaling Upregulates CX3CL1 and TNF-alpha in Human Aortic Endothelial Cells but Not in Retinal Endothelial Cells, PloS one, vol.10, p.144133, 2015.

D. Hollenbaugh, N. Mischel-petty, C. P. Edwards, J. C. Simon, R. W. Denfeld et al., Expression of functional CD40 by vascular endothelial cells, The Journal of experimental medicine, vol.182, pp.33-40, 1995.

K. Karmann, C. C. Hughes, J. Schechner, W. C. Fanslow, and J. S. Pober, CD40 on human endothelial cells: inducibility by cytokines and functional regulation of adhesion molecule expression, Proceedings of the National Academy of Sciences of the United States of America, vol.92, pp.4342-4346, 1995.

K. M. Omari, R. Chui, and K. Dorovini-zis, Induction of beta-chemokine secretion by human brain microvessel endothelial cells via CD40/CD40L interactions, Journal of neuroimmunology, vol.146, pp.203-208, 2004.

R. Pluvinet, R. Olivar, J. Krupinski, I. Herrero-fresneda, A. Luque et al., CD40: an upstream master switch for endothelial cell activation uncovered by RNAi-coupled transcriptional profiling, Blood, vol.112, pp.3624-3637, 2008.

S. Chakrabarti, P. Blair, and J. E. Freedman, CD40-40L signaling in vascular inflammation, The Journal of biological chemistry, vol.282, pp.18307-18317, 2007.

D. Yacoub, A. Hachem, J. F. Theoret, M. A. Gillis, W. Mourad et al., Enhanced levels of soluble CD40 ligand exacerbate platelet aggregation and thrombus formation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway, Arteriosclerosis, thrombosis, and vascular biology, vol.30, pp.2424-2433, 2010.

C. Aloui, A. Prigent, C. Sut, S. Tariket, H. Hamzeh-cognasse et al., The Signaling Role of CD40 Ligand in Platelet Biology and in Platelet Component Transfusion, International journal of molecular sciences, vol.15, pp.22342-22364, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02346140

T. E. Brittingham, Immunologic studies on leukocytes, Vox Sang, vol.2, issue.4, pp.242-250, 1957.

R. D. Barnard, Indiscriminate transfusion: a critique of case reports illustrating hypersensitivity reactions, N Y State J Med, vol.51, pp.2399-402, 1920.

M. A. Popovsky, M. D. Abel, and S. B. Moore, Transfusion-related acute lung injury associated with passive transfer of antileukocyte antibodies, Am Rev Respir Dis, vol.128, issue.1, pp.185-194, 1983.

P. M. Kopko, Transfusion-related acute lung injury: report of a clinical look-back investigation, JAMA, vol.287, issue.15, pp.1968-71, 2002.

O. Gajic, Transfusion-related acute lung injury in the critically ill: prospective nested case-control study, Am J Respir Crit Care Med, vol.176, issue.9, pp.886-91, 2007.

A. B. Benson, M. Moss, and C. C. Silliman, Transfusion-related acute lung injury (TRALI): a clinical review with emphasis on the critically ill, Br J Haematol, vol.147, issue.4, pp.431-474, 2009.

S. Tariket, Transfusion-related acute lung injury: transfusion, platelets and biological response modifiers, Expert Rev Hematol, pp.1-12, 2016.

P. E. Marik and H. L. Corwin, Acute lung injury following blood transfusion: expanding the definition, Crit Care Med, vol.36, issue.11, pp.3080-3084, 2008.

M. Goldman, Proceedings of a consensus conference: towards an understanding of TRALI, vol.19, pp.2-31, 2005.

D. Stainsby, Serious hazards of transfusion: a decade of hemovigilance in the UK, Transfus Med Rev, vol.20, issue.4, pp.273-82, 2006.

S. Kleinman, A perspective on transfusion-related acute lung injury two years after the Canadian Consensus Conference, Transfusion, vol.46, issue.9, pp.1465-1473, 2006.

L. Holness, Fatalities caused by TRALI, Transfus Med Rev, vol.18, issue.3, pp.184-192, 2004.

P. Toy, S. H. Kleinman, and M. R. Looney, Reply to concerns regarding dropping the term "possible TRALI, Transfusion, vol.56, issue.9, pp.2394-2399, 2016.

N. P. Juffermans and A. P. Vlaar, Possible TRALI is a real entity, Transfusion, 2017.

T. T. Bauer, Acute respiratory distress syndrome and pneumonia: a comprehensive review of clinical data, Clin Infect Dis, vol.43, issue.6, pp.748-56, 2006.

A. P. Vlaar and N. P. Juffermans, Transfusion-related acute lung injury: a clinical review, Lancet, vol.382, issue.9896, pp.984-94, 2013.

C. C. Silliman, Transfusion-related acute lung injury: epidemiology and a prospective analysis of etiologic factors, Blood, vol.101, issue.2, pp.454-62, 2003.

A. P. Vlaar, Risk factors and outcome of transfusion-related acute lung injury in the critically ill: a nested case-control study, Crit Care Med, vol.38, issue.3, pp.771-779, 2010.

R. Rana, Transfusion-related acute lung injury and pulmonary edema in critically ill patients: a retrospective study, Transfusion, vol.46, issue.9, pp.1478-83, 2006.

P. Toy, Transfusion-related acute lung injury: incidence and risk factors, Blood, vol.119, issue.7, pp.1757-67, 2012.

J. Bux and U. J. Sachs, The pathogenesis of transfusion-related acute lung injury (TRALI), Br J Haematol, vol.136, issue.6, pp.788-99, 2007.

R. A. Bom, Transfusion-related acute lung injury not a two-hit, but a multicausal model, Transfusion, 2014.

F. R. Rosendaal, Venous thrombosis: a multicausal disease, Lancet, vol.353, issue.9159, pp.1167-73, 1999.

K. J. Rothman and . Causes, Am J Epidemiol, vol.104, issue.6, pp.587-92, 1976.

C. Politis, The International Haemovigilance Network Database for the Surveillance of Adverse Reactions and Events in Donors and Recipients of Blood Components: technical issues and results, Vox Sang, vol.111, issue.4, pp.409-417, 2016.

A. Chabanel, National French observatory of the quality of blood components for transfusion, Transfus Clin Biol, vol.15, issue.3, pp.85-90, 2008.

F. Ansm, , 2015.

A. B. Benson, Transfusion-related acute lung injury in ICU patients admitted with gastrointestinal bleeding, Intensive Care Med, vol.36, issue.10, pp.1710-1717, 2010.

B. H. Shaz, S. R. Stowell, and C. D. Hillyer, Transfusion-related acute lung injury: from bedside to bench and back, Blood, vol.117, issue.5, pp.1463-71, 2011.

M. R. Looney, Prospective study on the clinical course and outcomes in transfusion-related acute lung injury*, Crit Care Med, vol.42, issue.7, pp.1676-87, 2014.

M. Nakagawa and P. Toy, Acute and transient decrease in neutrophil count in transfusion-related acute lung injury: cases at one hospital. Transfusion, vol.44, pp.1689-94, 2004.

M. B. Marques, Acute transient leukopenia as a sign of TRALI, Am J Hematol, vol.80, issue.1, pp.90-91, 2005.

E. A. Fadeyi, The transfusion of neutrophil-specific antibodies causes leukopenia and a broad spectrum of pulmonary reactions. Transfusion, vol.47, pp.545-50, 2007.

A. P. Vlaar, Transfusion-related acute lung injury in cardiac surgery patients is characterized by pulmonary inflammation and coagulopathy: a prospective nested case-control study, Crit Care Med, vol.40, issue.10, pp.2813-2833, 2012.

R. Yomtovian, Severe pulmonary hypersensitivity associated with passive transfusion of a neutrophil-specific antibody, Lancet, vol.1, issue.8371, pp.244-250, 1984.

R. Leger, Transfusion-related lung injury with leukopenic reaction caused by fresh frozen plasma containing anti-NB1, Anesthesiology, vol.91, issue.5, pp.1529-1561, 1999.

G. Ilango, S. Senthilkumar, and N. Sambanthan, TRALI in Perioperative Period-A Case Report, Indian J Anaesth, vol.53, issue.2, pp.209-222, 2009.

Y. Butt, A. Kurdowska, and T. C. Allen, Acute Lung Injury: A Clinical and Molecular Review, Arch Pathol Lab Med, vol.140, issue.4, pp.345-50, 2016.

R. B. Goodman, Cytokine-mediated inflammation in acute lung injury, Cytokine Growth Factor Rev, vol.14, issue.6, pp.523-558, 2003.

N. H. Roubinian, Cytokines and clinical predictors in distinguishing pulmonary transfusion reactions, Transfusion, 2015.

M. C. Muller, Contribution of damage-associated molecular patterns to transfusion-related acute lung injury in cardiac surgery, Blood Transfus, vol.12, issue.3, pp.368-75, 2014.

R. Kapur, Elevation of C-reactive protein levels in patients with transfusion-related acute lung injury, Oncotarget, vol.7, issue.47, pp.78048-78054, 2016.

R. Kapur, Low levels of interleukin-10 in patients with transfusion-related acute lung injury, Ann Transl Med, vol.5, issue.16, p.339, 2017.

E. A. Middleton, A. S. Weyrich, and G. A. Zimmerman, Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases, Physiol Rev, vol.96, issue.4, pp.1211-59, 2016.

R. F. Xie, Platelet-derived microparticles induce polymorphonuclear leukocyte-mediated damage of human pulmonary microvascular endothelial cells, Transfusion, vol.55, issue.5, pp.1051-1058, 2015.

F. Cognasse, Platelet soluble CD40-Ligand level is associated with transfusion adverse reactions in a mixed threshold and hit model, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581312

M. Urner, Effects of blood products on inflammatory response in endothelial cells in vitro, PLoS One, vol.7, issue.3, p.33403, 2012.

L. H. Boudreau, Platelets release mitochondria serving as substrate for bactericidal group IIAsecreted phospholipase A2 to promote inflammation, Blood, vol.124, issue.14, pp.2173-83, 2014.

F. Cognasse, Platelet components associated with adverse reactions: predictive value of mitochondrial DNA relative to biological response modifiers, Transfusion, vol.56, issue.2, pp.497-504, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01203813

K. Yasui, Mitochondrial damage-associated molecular patterns as potential proinflammatory mediators in post-platelet transfusion adverse effects. Transfusion, vol.56, pp.1201-1213, 2016.

S. Sun, Mitochondrial DAMPs increase endothelial permeability through neutrophil dependent and independent pathways, PLoS One, vol.8, issue.3, p.59989, 2013.

L. Zhang, Intra-Peritoneal Administration of Mitochondrial DNA Provokes Acute Lung Injury and Systemic Inflammation via Toll-Like Receptor 9, Int J Mol Sci, vol.17, issue.9, 2016.

Y. L. Lee, Mitochondrial DNA Damage Initiates Acute Lung Injury and Multi-Organ System Failure Evoked in Rats by Intra-Tracheal Pseudomonas Aeruginosa, vol.48, pp.54-60, 2017.

Q. Zhang, Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature, vol.464, issue.7285, pp.104-111, 2010.

E. Lacoste, I. Martineau, and G. Gagnon, Platelet concentrates: effects of calcium and thrombin on endothelial cell proliferation and growth factor release, J Periodontol, vol.74, issue.10, pp.1498-507, 2003.

I. Martineau, E. Lacoste, and G. Gagnon, Effects of calcium and thrombin on growth factor release from platelet concentrates: kinetics and regulation of endothelial cell proliferation, Biomaterials, vol.25, issue.18, pp.4489-502, 2004.

X. Huang, Prognostic value of endocan expression in cancers: evidence from meta-analysis, Onco Targets Ther, vol.9, pp.6297-6304, 2016.

K. Seo, Characteristics of serum endocan levels in infection, PLoS One, vol.10, issue.4, p.123358, 2015.

L. A. Cox, Inflammation-Induced Increases in Plasma Endocan Levels Are Associated With Endothelial Dysfunction in Humans In Vivo. Shock, 2015.

S. Balta, Endocan: A novel inflammatory indicator in cardiovascular disease?, Atherosclerosis, vol.243, issue.1, pp.339-382, 2015.

L. Tang, Endocan levels in peripheral blood predict outcomes of acute respiratory distress syndrome, Mediators Inflamm, p.625180, 2014.

D. M. Mihajlovic, Endocan is useful biomarker of survival and severity in sepsis, Microvasc Res, vol.93, pp.92-99, 2014.

D. Orbegozo, Endocan as an early biomarker of severity in patients with acute respiratory distress syndrome. Ann Intensive Care, vol.7, p.93, 2017.

J. A. Bastarache, Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome, Am J Physiol Lung Cell Mol Physiol, vol.297, issue.6, pp.1035-1076, 2009.

C. M. Shaver, Circulating microparticle levels are reduced in patients with ARDS. Crit Care, vol.21, p.120, 2017.

L. Wang, Effect of Antiplatelet Therapy on Acute Respiratory Distress Syndrome and Mortality in Critically Ill Patients: A Meta-Analysis, PLoS One, vol.11, issue.5, p.154754, 2016.

D. Mohananey, Effect of antiplatelet therapy on mortality and acute lung injury in critically ill patients: A systematic review and meta-analysis, Ann Card Anaesth, vol.19, issue.4, pp.626-637, 2016.

K. Bdeir, Platelet-Specific Chemokines Contribute to the Pathogenesis of Acute Lung Injury, Am J Respir Cell Mol Biol, vol.56, issue.2, pp.261-270, 2017.

T. Lu, A NET Outcome. Front Immunol, vol.3, p.365, 2012.

J. Tilgner, Aspirin, but Not Tirofiban Displays Protective Effects in Endotoxin Induced Lung Injury, PLoS One, vol.11, issue.9, p.161218, 2016.

M. J. Mcvey, Acid sphingomyelinase mediates murine acute lung injury following transfusion of aged platelets, Am J Physiol Lung Cell Mol Physiol, vol.312, issue.5, pp.625-637, 2017.

B. Hechler, Platelets are dispensable for antibody-mediated transfusion-related acute lung injury in the mouse, J Thromb Haemost, 2016.

D. Simic, Blocking alpha5beta1 Integrin Attenuates sCD40L-Mediated Platelet Activation, Clin Appl Thromb Hemost, 2015.

C. Aloui, The signaling role of CD40 ligand in platelet biology and in platelet component transfusion, Int J Mol Sci, vol.15, issue.12, pp.22342-64, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02346140

T. O'connor, L. Borsig, and M. Heikenwalder, CCL2-CCR2 Signaling in Disease Pathogenesis, vol.15, pp.105-123, 2015.

C. Stumpf, Platelet CD40 contributes to enhanced monocyte chemoattractant protein 1 levels in patients with resistant hypertension, Eur J Clin Invest, vol.46, issue.6, pp.564-71, 2016.

K. Moller, Mechanism and functional impact of CD40 ligand-induced von Willebrand factor release from endothelial cells, Thromb Haemost, vol.113, issue.5, pp.1095-108, 2015.

J. A. Greene, CD40-TRAF Signaling Upregulates CX3CL1 and TNF-alpha in Human Aortic Endothelial Cells but Not in Retinal Endothelial Cells, PLoS One, vol.10, issue.12, p.144133, 2015.

D. Lievens, Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis, Blood, vol.116, pp.4317-4344, 1920.

M. Hausding, CD40L contributes to angiotensin II-induced pro-thrombotic state, vascular inflammation, oxidative stress and endothelial dysfunction, Basic Res Cardiol, vol.108, issue.6, p.386, 2013.

L. Bou-khzam, Soluble CD40 ligand impairs the anti-platelet function of peripheral blood angiogenic outgrowth cells via increased production of reactive oxygen species, Thromb Haemost, vol.109, issue.5, pp.940-947, 2013.

D. Yacoub, Enhanced levels of soluble CD40 ligand exacerbate platelet aggregation and thrombus formation through a CD40-dependent tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated protein kinase signaling pathway, Arterioscler Thromb Vasc Biol, vol.30, issue.12, pp.2424-2457, 2010.

M. J. Kuijpers, Platelet CD40L Modulates Thrombus Growth Via Phosphatidylinositol 3-Kinase beta, and Not Via CD40 and IkappaB Kinase alpha, Arterioscler Thromb Vasc Biol, vol.35, issue.6, pp.1374-81, 2015.

G. Zuchtriegel, Platelets Guide Leukocytes to Their Sites of Extravasation, PLoS Biol, vol.14, issue.5, p.1002459, 2016.

R. Jin, Soluble CD40 ligand stimulates CD40-dependent activation of the beta2 integrin Mac-1 and protein kinase C zeda (PKCzeta) in neutrophils: implications for neutrophil-platelet interactions and neutrophil oxidative burst, PLoS One, vol.8, issue.6, p.64631, 2013.

S. Y. Khan, Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury, Blood, vol.108, issue.7, pp.2455-62, 2006.

P. Vanichakarn, Neutrophil CD40 enhances platelet-mediated inflammation, Thromb Res, vol.122, issue.3, pp.346-58, 2008.

L. Zhao, P-selectin, tissue factor and CD40 ligand expression on platelet-leucocyte conjugates in the presence of a GPIIb/IIIa antagonist, Platelets, vol.14, issue.7-8, pp.473-80, 2003.

P. Andre, Platelet-derived CD40L: the switch-hitting player of cardiovascular disease, Circulation, vol.106, issue.8, pp.896-905, 2002.

N. Gerdes, Platelet CD40 Exacerbates Atherosclerosis by Transcellular Activation of Endothelial Cells and Leukocytes, Arterioscler Thromb Vasc Biol, vol.36, issue.3, pp.482-90, 2016.

M. Rahman, Platelet shedding of CD40L is regulated by matrix metalloproteinase-9 in abdominal sepsis, J Thromb Haemost, issue.11, pp.1385-98, 2013.

R. Hwaiz, Rac1 regulates platelet shedding of CD40L in abdominal sepsis, Lab Invest, vol.94, issue.9, pp.1054-63, 2014.

M. Rahman, Metalloproteinases regulate CD40L shedding from platelets and pulmonary recruitment of neutrophils in abdominal sepsis, Inflamm Res, vol.61, issue.6, pp.571-580, 2012.

M. Rahman, Platelet-derived CD40L (CD154) mediates neutrophil upregulation of Mac-1 and recruitment in septic lung injury, Ann Surg, vol.250, issue.5, pp.783-90, 2009.

S. Zhang, Simvastatin antagonizes CD40L secretion, CXC chemokine formation, and pulmonary infiltration of neutrophils in abdominal sepsis, J Leukoc Biol, vol.89, issue.5, pp.735-777, 2011.

B. Y. Setianto, Circulating soluble CD40 ligand mediates the interaction between neutrophils and platelets in acute coronary syndrome. Heart Vessels, vol.25, pp.282-289, 2010.

G. Li, CD40 ligand promotes Mac-1 expression, leukocyte recruitment, and neointima formation after vascular injury, Am J Pathol, vol.172, issue.4, pp.1141-52, 2008.

L. Dong, The activation of macrophage and upregulation of CD40 costimulatory molecule in lipopolysaccharide-induced acute lung injury, J Biomed Biotechnol, p.852571, 2008.

N. Hashimoto, CD40 plays a crucial role in lipopolysaccharide-induced acute lung injury, Am J Respir Cell Mol Biol, vol.30, issue.6, pp.808-823, 2004.

T. M. Moore, Involvement of CD40-CD40L signaling in postischemic lung injury, Am J Physiol Lung Cell Mol Physiol, vol.283, issue.6, pp.1255-62, 2002.

A. Adawi, Disruption of the CD40-CD40 ligand system prevents an oxygen-induced respiratory distress syndrome, Am J Pathol, vol.152, issue.3, pp.651-658, 1998.

A. Adawi, Blockade of CD40-CD40 ligand interactions protects against radiation-induced pulmonary inflammation and fibrosis, Clin Immunol Immunopathol, vol.89, issue.3, pp.222-252, 1998.

P. R. Tuinman, Lack of evidence of CD40 ligand involvement in transfusion-related acute lung injury, Clin Exp Immunol, vol.165, issue.2, pp.278-84, 2011.

M. R. Looney, Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury, J Clin Invest, vol.119, issue.11, pp.3450-61, 2009.

P. A. Banks, D. L. Conwell, and P. P. Toskes, The management of acute and chronic pancreatitis, Gastroenterol Hepatol (N Y), issue.6, pp.1-16, 2010.

I. Nordback and K. Lauslahti, Clinical pathology of acute necrotising pancreatitis, J Clin Pathol, vol.39, issue.1, pp.68-74, 1986.

B. Xu, Interleukin-1beta induces autophagy by affecting calcium homeostasis and trypsinogen activation in pancreatic acinar cells, Int J Clin Exp Pathol, vol.7, issue.7, pp.3620-3651, 2014.

T. Berney, Serum profiles of interleukin-6, interleukin-8, and interleukin-10 in patients with severe and mild acute pancreatitis, Pancreas, vol.18, issue.4, pp.371-378, 1999.

M. Hansen, Increased levels of YKL-40 and interleukin 6 in patients with chronic pancreatitis and secondary diabetes, Pancreas, vol.41, issue.8, pp.1316-1324, 2012.

C. J. Mckay, Increased monocyte cytokine production in association with systemic complications in acute pancreatitis, Br J Surg, vol.83, issue.7, pp.919-942, 1996.

P. Daniel, Circulating levels of visfatin, resistin and pro-inflammatory cytokine interleukin-8 in acute pancreatitis, Pancreatology, vol.10, issue.4, pp.477-82, 2010.

T. Ueda, Significant elevation of serum interleukin-18 levels in patients with acute pancreatitis, J Gastroenterol, vol.41, issue.2, pp.158-65, 2006.

G. Lu, Aspirin Protects against Acinar Cells Necrosis in Severe Acute Pancreatitis in Mice, Biomed Res Int, p.6089430, 2016.

Y. Y. Qiao, Interleukin-22 ameliorates acute severe pancreatitis-associated lung injury in mice, World J Gastroenterol, vol.22, issue.21, pp.5023-5055, 2016.

L. Bonjoch, Involvement of exosomes in lung inflammation associated with experimental acute pancreatitis, J Pathol, vol.240, issue.2, pp.235-280, 2016.

F. Wang, Ultrastructural changes in the pulmonary mechanical barriers in a rat model of severe acute pancreatitis-associated acute lung injury, Ultrastruct Pathol, vol.40, issue.1, pp.33-42, 2016.

S. J. Pandol, Acute pancreatitis: bench to the bedside, Gastroenterology, vol.132, issue.3, pp.1127-51, 2007.

Z. W. Yang, X. X. Meng, and P. Xu, Central role of neutrophil in the pathogenesis of severe acute pancreatitis, J Cell Mol Med, vol.19, issue.11, pp.2513-2533, 2015.

M. Bhatia, The effects of neutrophil depletion on a completely noninvasive model of acute pancreatitis-associated lung injury, Int J Pancreatol, vol.24, issue.2, pp.77-83, 1998.

A. S. Gukovskaya, Neutrophils and NADPH oxidase mediate intrapancreatic trypsin activation in murine experimental acute pancreatitis, Gastroenterology, vol.122, issue.4, pp.974-84, 2002.

G. Chen, Depletion of neutrophils protects against L-arginine-induced acute pancreatitis in mice, Cell Physiol Biochem, vol.35, issue.6, pp.2111-2131, 2015.

E. Wetterholm, Platelet-derived CXCL4 regulates neutrophil infiltration and tissue damage in severe acute pancreatitis, Transl Res, 2016.

C. Yu, Inhibition of Ras signalling reduces neutrophil infiltration and tissue damage in severe acute pancreatitis, Eur J Pharmacol, vol.746, pp.245-51, 2015.

D. Wu, Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitisassociated lung injury, vol.6, p.20545, 2016.

W. Hartwig, Expression of the adhesion molecules Mac-1 and L-selectin on neutrophils in acute pancreatitis is protease-and complement-dependent, Ann Surg, vol.233, issue.3, pp.371-379, 2001.

D. Awla, Lymphocyte function antigen-1 regulates neutrophil recruitment and tissue damage in acute pancreatitis, Br J Pharmacol, vol.163, issue.2, pp.413-436, 2011.

J. L. Frossard, The role of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis-associated lung injury, Gastroenterology, vol.116, issue.3, pp.694-701, 1999.

K. S. Guice, Neutrophil-dependent, oxygen-radical mediated lung injury associated with acute pancreatitis, Ann Surg, vol.210, issue.6, pp.740-747, 1989.

M. G. Raraty, Mechanisms of acinar cell injury in acute pancreatitis, Scand J Surg, vol.94, issue.2, pp.89-96, 2005.

M. Merza, Neutrophil Extracellular Traps Induce Trypsin Activation, Inflammation, and Tissue Damage in Mice With Severe Acute Pancreatitis, Gastroenterology, vol.149, issue.7, p.8, 2015.

V. Brinkmann, Neutrophil extracellular traps kill bacteria, Science, vol.303, issue.5663, pp.1532-1537, 2004.

E. C. Paulino, Neutrophils from acute pancreatitis patients cause more severe in vitro endothelial damage compared with neutrophils from healthy donors and are differently regulated by endothelins. Pancreas, vol.35, pp.37-41, 2007.

T. J. Jeon and J. Y. Park, Clinical significance of the neutrophil-lymphocyte ratio as an early predictive marker for adverse outcomes in patients with acute pancreatitis, World J Gastroenterol, vol.23, issue.21, pp.3883-3889, 2017.

A. Abdulla, Platelets regulate P-selectin expression and leukocyte rolling in inflamed venules of the pancreas, Eur J Pharmacol, vol.682, issue.1-3, pp.153-60, 2012.

H. Hartman, P-selectin mediates neutrophil rolling and recruitment in acute pancreatitis, Br J Surg, vol.99, issue.2, pp.246-55, 2012.

W. Hartwig, Membrane-bound ICAM-1 is upregulated by trypsin and contributes to leukocyte migration in acute pancreatitis, Am J Physiol Gastrointest Liver Physiol, vol.287, issue.6, pp.1194-1203, 2004.

E. Folch, Role of P-selectin and ICAM-1 in pancreatitis-induced lung inflammation in rats: significance of oxidative stress, Ann Surg, vol.230, issue.6, pp.798-807, 1999.

R. Pezzilli, Serum adhesion molecules in acute pancreatitis: time course and early assessment of disease severity, Pancreas, vol.37, issue.1, pp.36-41, 2008.

U. Wereszczynska-siemiatkowska, Serum profiles of E-selectin, interleukin-10, and interleukin-6 and oxidative stress parameters in patients with acute pancreatitis and nonpancreatic acute abdominal pain, Pancreas, vol.26, issue.2, pp.144-52, 2003.

S. Ida, Significance of endothelial molecular markers in the evaluation of the severity of acute pancreatitis, Surg Today, vol.39, issue.4, pp.314-323, 2009.

Y. Chen, Endothelial markers are associated with pancreatic necrosis and overall prognosis in acute pancreatitis: A preliminary cohort study, Pancreatology, vol.17, issue.1, pp.45-50, 2017.

H. M. Chen, Early microcirculatory derangement in mild and severe pancreatitis models in mice, Surg Today, vol.31, issue.7, pp.634-676, 2001.

X. M. Liu, Microcirculation disturbance affects rats with acute severe pancreatitis following lung injury, World J Gastroenterol, vol.11, issue.39, pp.6208-6219, 2005.

T. Keck, Pancreatic proteases in serum induce leukocyte-endothelial adhesion and pancreatic microcirculatory failure, Pancreatology, vol.5, issue.2-3, pp.241-50, 2005.

D. Uhlmann, Pathophysiological role of platelets in acute experimental pancreatitis: influence of endothelin A receptor blockade, Cell Tissue Res, vol.327, issue.3, pp.485-92, 2007.

S. Jamdar, Differential kinetics of plasma CD105 and transforming growth factor beta expression early in human acute pancreatitis, Pancreas, vol.32, issue.2, pp.152-160, 2006.

P. Leveau, Severity of pancreatitis-associated gut barrier dysfunction is reduced following treatment with the PAF inhibitor lexipafant, Biochem Pharmacol, vol.69, issue.9, pp.1325-1356, 2005.

F. Lu, Intestinal capillary endothelial barrier changes in severe acute pancreatitis, Hepatogastroenterology, vol.58, pp.1009-1026, 2011.

A. Abdulla, Role of platelets in experimental acute pancreatitis, Br J Surg, vol.98, issue.1, pp.93-103, 2011.

T. Hackert, Platelet function in acute experimental pancreatitis, J Gastrointest Surg, vol.11, issue.4, pp.439-483, 2007.

T. Hackert, Platelet function in acute experimental pancreatitis induced by ischaemiareperfusion, Br J Surg, vol.92, issue.6, pp.724-732, 2005.

T. Hackert, P-selectin inhibition reduces severity of acute experimental pancreatitis, Pancreatology, vol.9, issue.4, pp.369-74, 2009.

L. Jiang, W. Ding, and M. Zhang, The progressive increase of the platelet count in a patient with acute severe pancreatitis, Am J Emerg Med, vol.35, issue.1, pp.191-192, 2017.

E. Akbal, Alterations of platelet function and coagulation parameters during acute pancreatitis, Blood Coagul Fibrinolysis, vol.24, issue.3, pp.243-249, 2013.

Y. Park, N. Schoene, and W. Harris, Mean platelet volume as an indicator of platelet activation: methodological issues, Platelets, vol.13, pp.301-307, 2002.

J. Osada, Platelet activation in acute pancreatitis, Pancreas, vol.41, issue.8, pp.1319-1343, 2012.

Y. Beyazit, Mean platelet volume as an indicator of disease severity in patients with acute pancreatitis, Clin Res Hepatol Gastroenterol, vol.36, issue.2, pp.162-170, 2012.

J. L. Frossard, Cd40 ligand-deficient mice are protected against cerulein-induced acute pancreatitis and pancreatitis-associated lung injury, Gastroenterology, vol.121, issue.1, pp.184-94, 2001.

F. A. Gultekin, Leptin treatment ameliorates acute lung injury in rats with cerulein-induced acute pancreatitis, World J Gastroenterol, vol.13, issue.21, pp.2932-2940, 2007.

O. Vosters, N-acetylcysteine derivative inhibits CD40-dependent proinflammatory properties of human pancreatic duct cells, Pancreas, vol.36, issue.4, pp.363-371, 2008.

A. Abdulla, CD40L is not involved in acute experimental pancreatitis, Eur J Pharmacol, vol.659, issue.1, pp.85-93, 2011.

J. L. Frossard, Soluble CD40 ligand in prediction of acute severe pancreatitis, World J Gastroenterol, vol.12, issue.10, pp.1613-1619, 2006.

O. Wera, P. Lancellotti, and C. Oury, The Dual Role of Neutrophils in Inflammatory Bowel Diseases, J Clin Med, issue.5, 2016.

D. H. Kim and J. H. Cheon, Pathogenesis of Inflammatory Bowel Disease and Recent Advances in Biologic Therapies. Immune Netw, vol.17, pp.25-40, 2017.

M. F. Neurath, Cytokines in inflammatory bowel disease, Nat Rev Immunol, vol.14, issue.5, pp.329-371, 2014.

P. Buanne, Crucial pathophysiological role of CXCR2 in experimental ulcerative colitis in mice, J Leukoc Biol, vol.82, issue.5, pp.1239-1285, 2007.

S. M. Farooq, Therapeutic effect of blocking CXCR2 on neutrophil recruitment and dextran sodium sulfate-induced colitis, J Pharmacol Exp Ther, vol.329, issue.1, pp.123-132, 2009.

E. Huang, NKT cells mediate the recruitment of neutrophils by stimulating epithelial chemokine secretion during colitis, Biochem Biophys Res Commun, vol.474, issue.2, pp.252-260, 2016.

R. Daig, Increased interleukin 8 expression in the colon mucosa of patients with inflammatory bowel disease, Gut, vol.38, issue.2, pp.216-238, 1996.

K. Mitsuyama, IL-8 as an important chemoattractant for neutrophils in ulcerative colitis and Crohn's disease, Clin Exp Immunol, vol.96, issue.3, pp.432-438, 1994.

B. Vainer, O. H. Nielsen, and T. Horn, Comparative studies of the colonic in situ expression of intercellular adhesion molecules (ICAM-1, -2, and -3), beta2 integrins (LFA-1, Mac-1, and p150,95), and PECAM-1 in ulcerative colitis and Crohn's disease, Am J Surg Pathol, vol.24, issue.8, pp.1115-1139, 2000.

L. Kruidenier, Intestinal oxidative damage in inflammatory bowel disease: semi-quantification, localization, and association with mucosal antioxidants, J Pathol, vol.201, issue.1, pp.28-36, 2003.

Y. Naito, T. Takagi, and T. Yoshikawa, Neutrophil-dependent oxidative stress in ulcerative colitis, J Clin Biochem Nutr, vol.41, issue.1, pp.18-26, 2007.

Z. He, Phosphotidylserine exposure and neutrophil extracellular traps enhance procoagulant activity in patients with inflammatory bowel disease, Thromb Haemost, vol.115, issue.4, pp.738-51, 2016.

D. Cibor, Endothelial dysfunction in inflammatory bowel diseases: Pathogenesis, assessment and implications, World J Gastroenterol, vol.22, issue.3, pp.1067-77, 2016.

S. Danese, Adhesion molecules in inflammatory bowel disease: therapeutic implications for gut inflammation. Dig Liver Dis, vol.37, pp.811-819, 2005.

O. A. Hatoum, H. Miura, and D. G. Binion, The vascular contribution in the pathogenesis of inflammatory bowel disease, Am J Physiol Heart Circ Physiol, vol.285, issue.5, pp.1791-1797, 2003.

S. Danese, Role of the vascular and lymphatic endothelium in the pathogenesis of inflammatory bowel disease: 'brothers in arms, Gut, vol.60, issue.7, pp.998-1008, 2011.

M. Briskin, Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue, Am J Pathol, vol.151, issue.1, pp.97-110, 1997.

T. Vowinkel, CD40-CD40 ligand mediates the recruitment of leukocytes and platelets in the inflamed murine colon, Gastroenterology, vol.132, issue.3, pp.955-65, 2007.

G. Tolstanova, Early endothelial damage and increased colonic vascular permeability in the development of experimental ulcerative colitis in rats and mice, Lab Invest, vol.92, issue.1, pp.9-21, 2012.

M. G. Goggins, Soluble adhesion molecules in inflammatory bowel disease, Ir J Med Sci, vol.170, issue.2, pp.107-118, 2001.

W. B. Song, Soluble intercellular adhesion molecule-1, D-lactate and diamine oxidase in patients with inflammatory bowel disease, World J Gastroenterol, vol.15, issue.31, pp.3916-3925, 2009.

S. Kanazawa, VEGF, basic-FGF, and TGF-beta in Crohn's disease and ulcerative colitis: a novel mechanism of chronic intestinal inflammation, Am J Gastroenterol, vol.96, issue.3, pp.822-830, 2001.

K. A. Oikonomou, Angiogenin, angiopoietin-1, angiopoietin-2, and endostatin serum levels in inflammatory bowel disease, Inflamm Bowel Dis, vol.17, issue.4, pp.963-70, 2011.

I. E. Koutroubakis, Potential role of soluble angiopoietin-2 and Tie-2 in patients with inflammatory bowel disease, Eur J Clin Invest, vol.36, issue.2, pp.127-159, 2006.

J. Matowicka-karna, Markers of inflammation, activation of blood platelets and coagulation disorders in inflammatory bowel diseases, Postepy Hig Med Dosw, vol.70, pp.305-317, 2016.

E. Senchenkova, H. Seifert, and D. N. Granger, Hypercoagulability and Platelet Abnormalities in Inflammatory Bowel Disease, vol.41, pp.582-591, 2015.

E. Voudoukis, K. Karmiris, and I. E. Koutroubakis, Multipotent role of platelets in inflammatory bowel diseases: a clinical approach, World J Gastroenterol, vol.20, issue.12, pp.3180-90, 2014.

S. Danese, L. Motte-cd-cde, and C. Fiocchi, Platelets in inflammatory bowel disease: clinical, pathogenic, and therapeutic implications, Am J Gastroenterol, vol.99, issue.5, pp.938-983, 2004.

Y. H. Gao, Relationship and significance between anti-beta2-glycoprotein I antibodies and platelet activation state in patients with ulcerative colitis, World J Gastroenterol, vol.14, issue.5, pp.771-776, 2008.

T. Atsumi, Research around beta 2-glycoprotein I: a major target for antiphospholipid antibodies, Autoimmunity, vol.38, issue.5, pp.377-81, 2005.

P. Wilhelmsen, Elevated platelet expression of CD36 may contribute to increased risk of thrombo-embolism in active inflammatory bowel disease, Arch Physiol Biochem, vol.119, issue.5, pp.202-210, 2013.

A. Ghosh, Platelet CD36 mediates interactions with endothelial cell-derived microparticles and contributes to thrombosis in mice, J Clin Invest, vol.118, issue.5, pp.1934-1977, 2008.

R. Nergiz-unal, Signaling role of CD36 in platelet activation and thrombus formation on immobilized thrombospondin or oxidized low-density lipoprotein, J Thromb Haemost, vol.9, issue.9, pp.1835-1881, 2011.

Y. M. Park, CD36, a scavenger receptor implicated in atherosclerosis, Exp Mol Med, vol.46, p.99, 2014.

K. Chen, A specific CD36-dependent signaling pathway is required for platelet activation by oxidized low-density lipoprotein, Circ Res, vol.102, issue.12, pp.1512-1521, 2008.

A. Andoh, Increased aggregation response of platelets in patients with inflammatory bowel disease, J Gastroenterol, vol.41, issue.1, pp.47-54, 2006.

S. L. Yan, J. Russell, and D. N. Granger, Platelet activation and platelet-leukocyte aggregation elicited in experimental colitis are mediated by interleukin-6, Inflamm Bowel Dis, vol.20, issue.2, pp.353-62, 2014.

H. Sato, Platelet interaction with lymphatics aggravates intestinal inflammation by suppressing lymphangiogenesis, Am J Physiol Gastrointest Liver Physiol, vol.311, issue.2, pp.276-85, 2016.

B. Gawronska, Markers of inflammation and influence of nitric oxide on platelet activation in the course of ulcerative colitis, Oncotarget, 2017.

M. Bai, Mean platelet volume as a possible marker for monitoring the disease activity in ulcerative colitis, Int J Lab Hematol, vol.38, issue.4, pp.77-86, 2016.

H. Kayahan, Reticulated platelet levels in patients with ulcerative colitis, Int J Colorectal Dis, vol.22, issue.12, pp.1429-1464, 2007.

B. Polinska, J. Matowicka-karna, and H. Kemona, Assessment of the influence of the inflammatory process on the activation of blood platelets and morphological parameters in patients with ulcerative colitis (colitis ulcerosa), Folia Histochem Cytobiol, vol.49, issue.1, pp.119-143, 2011.

Y. Tekelioglu, H. Uzun, and G. Sisman, Activated platelets in patients suffering from inflammatory bowel disease, Bratisl Lek Listy, vol.115, issue.2, pp.83-88, 2014.

G. E. Pamuk, Increased circulating platelet-neutrophil, platelet-monocyte complexes, and platelet activation in patients with ulcerative colitis: a comparative study, Am J Hematol, vol.81, issue.10, pp.753-762, 2006.

S. Kayo, Close association between activated platelets and neutrophils in the active phase of ulcerative colitis in humans, Inflamm Bowel Dis, vol.12, issue.8, pp.727-762, 2006.

L. Ye, Serum platelet factor 4 is a reliable activity parameter in adult patients with inflammatory bowel disease: A pilot study, Medicine, vol.96, issue.11, p.6323, 2017.

Z. A. Ozturk, Could platelet indices be new biomarkers for inflammatory bowel diseases?, Eur Rev Med Pharmacol Sci, vol.17, issue.3, pp.334-375, 2013.

C. E. Collins, Platelet aggregation and neutrophil sequestration in the mesenteric circulation in inflammatory bowel disease, Eur J Gastroenterol Hepatol, vol.9, issue.12, pp.1213-1220, 1997.

D. Sabatino and A. , Oxidative stress and thromboxane-dependent platelet activation in inflammatory bowel disease: effects of anti-TNF-alpha treatment, Thromb Haemost, vol.116, issue.3, pp.486-95, 2016.

S. Danese, Activated platelets are the source of elevated levels of soluble CD40 ligand in the circulation of inflammatory bowel disease patients, Gut, vol.52, issue.10, pp.1435-1476, 2003.

O. Ludwiczek, A. Kaser, and H. Tilg, Plasma levels of soluble CD40 ligand are elevated in inflammatory bowel diseases, Int J Colorectal Dis, vol.18, issue.2, pp.142-149, 2003.

K. Suzuki, Activated platelets in ulcerative colitis enhance the production of reactive oxygen species by polymorphonuclear leukocytes, Scand J Gastroenterol, vol.36, issue.12, pp.1301-1307, 2001.

Y. Tekelioglu and H. Uzun, Circulating platelet-leukocyte aggregates in patients with inflammatory bowel disease, J Chin Med Assoc, vol.76, issue.4, pp.182-187, 2013.

S. L. Yan, Platelet abnormalities during colonic inflammation, Inflamm Bowel Dis, vol.19, issue.6, pp.1245-53, 2013.

S. Danese, Platelets trigger a CD40-dependent inflammatory response in the microvasculature of inflammatory bowel disease patients, Gastroenterology, vol.124, issue.5, pp.1249-64, 2003.

S. H. Patel, M. A. Rachchh, and P. D. Jadav, Evaluation of anti-inflammatory effect of anti-platelet agent-clopidogrel in experimentally induced inflammatory bowel disease, Indian J Pharmacol, vol.44, issue.6, pp.744-752, 2012.

L. Polese, The role of CD40 in ulcerative colitis: histochemical analysis and clinical correlation, Eur J Gastroenterol Hepatol, vol.14, issue.3, pp.237-278, 2002.

F. Borcherding, The CD40-CD40L pathway contributes to the proinflammatory function of intestinal epithelial cells in inflammatory bowel disease, Am J Pathol, vol.176, issue.4, pp.1816-1843, 2010.

S. Danese, Critical role of the CD40 CD40-ligand pathway in regulating mucosal inflammation-driven angiogenesis in inflammatory bowel disease. Gut, vol.56, pp.1248-56, 2007.

S. R. Mulay, Targeting Inflammation in So-Called Acute Kidney Injury, Semin Nephrol, vol.36, issue.1, pp.17-30, 2016.

B. Suarez-alvarez, H. Liapis, and H. J. Anders, Links between coagulation, inflammation, regeneration, and fibrosis in kidney pathology, Lab Invest, vol.96, issue.4, pp.378-90, 2016.

A. Zuk and J. V. Bonventre, Acute Kidney Injury, Annu Rev Med, vol.67, pp.293-307, 2016.

H. R. Jang and H. Rabb, Immune cells in experimental acute kidney injury, Nat Rev Nephrol, vol.11, issue.2, pp.88-101, 2015.

M. Takada, The cytokine-adhesion molecule cascade in ischemia/reperfusion injury of the rat kidney. Inhibition by a soluble P-selectin ligand, J Clin Invest, vol.99, issue.11, pp.2682-90, 1997.

K. K. Donnahoo, Early kidney TNF-alpha expression mediates neutrophil infiltration and injury after renal ischemia-reperfusion, Am J Physiol, vol.277, pp.922-931, 1999.

M. R. Daha and C. Van-kooten, Is the proximal tubular cell a proinflammatory cell, Nephrol Dial Transplant, vol.15, pp.41-44, 2000.

M. Miura, Neutralization of Gro alpha and macrophage inflammatory protein-2 attenuates renal ischemia/reperfusion injury, Am J Pathol, vol.159, issue.6, pp.2137-2182, 2001.

M. Araki, Expression of IL-8 during reperfusion of renal allografts is dependent on ischemic time, Transplantation, vol.81, issue.5, pp.783-791, 2006.

T. Nemoto, Small molecule selectin ligand inhibition improves outcome in ischemic acute renal failure, Kidney Int, vol.60, issue.6, pp.2205-2219, 2001.

K. Solez, L. Morel-maroger, and J. D. Sraer, The morphology of "acute tubular necrosis" in man: analysis of 57 renal biopsies and a comparison with the glycerol model, Medicine, vol.58, issue.5, pp.362-76, 1979.

K. J. Kelly, Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury, J Clin Invest, vol.97, issue.4, pp.1056-63, 1996.

H. Rabb, Role of CD11a and CD11b in ischemic acute renal failure in rats, Am J Physiol, vol.267, issue.6, pp.1052-1060, 1994.

M. P. Jansen, Release of extracellular DNA influences renal ischemia reperfusion injury by platelet activation and formation of neutrophil extracellular traps, Kidney Int, vol.91, issue.2, pp.352-364, 2017.

X. H. Li, Effect of Platelet-derived P-selectin on Neutrophil Recruitment in a Mouse Model of Sepsis-induced Acute Kidney Injury, Chin Med J (Engl, issue.14, pp.1694-1699

K. Singbartl, S. B. Forlow, and K. Ley, Platelet, but not endothelial, P-selectin is critical for neutrophil-mediated acute postischemic renal failure, FASEB J, vol.15, issue.13, pp.2337-2381, 2001.

S. K. Ramaiah and H. Jaeschke, Role of neutrophils in the pathogenesis of acute inflammatory liver injury, Toxicol Pathol, vol.35, issue.6, pp.757-66, 2007.

J. S. Gujral, Neutrophils aggravate acute liver injury during obstructive cholestasis in bile ductligated mice, Hepatology, vol.38, issue.2, pp.355-63, 2003.

J. G. Chosay, Neutrophil margination and extravasation in sinusoids and venules of liver during endotoxin-induced injury, Am J Physiol, vol.272, issue.5, pp.1195-200, 1997.

H. Jaeschke and T. Hasegawa, Role of neutrophils in acute inflammatory liver injury, Liver Int, vol.26, issue.8, pp.912-921, 2006.

A. B. Lentsch, Chemokine involvement in hepatic ischemia/reperfusion injury in mice: roles for macrophage inflammatory protein-2 and Kupffer cells, Hepatology, vol.27, issue.2, pp.507-519, 1998.

H. Ohira, Adhesion molecules and CXC chemokines in endotoxin-induced liver injury, Fukushima J Med Sci, vol.49, issue.1, pp.1-13, 2003.

M. L. Bajt, A. Farhood, and H. Jaeschke, Effects of CXC chemokines on neutrophil activation and sequestration in hepatic vasculature, Am J Physiol Gastrointest Liver Physiol, vol.281, issue.5, pp.1188-95, 2001.

P. Zhang, Attenuation of hepatic neutrophil sequestration by anti-CINC antibody in endotoxic rats, Shock, vol.4, issue.4, pp.262-270, 1995.

L. M. Colletti, The role of cytokine networks in the local liver injury following hepatic ischemia/reperfusion in the rat, Hepatology, vol.23, issue.3, pp.506-520, 1996.

J. Zhang, CCL2-CCR2 signaling promotes hepatic ischemia/reperfusion injury, J Surg Res, vol.202, issue.2, pp.352-62, 2016.

L. M. Colletti, Role of tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat, J Clin Invest, vol.85, issue.6, pp.1936-1979, 1990.

S. Suzuki and L. H. Toledo-pereyra, Interleukin 1 and tumor necrosis factor production as the initial stimulants of liver ischemia and reperfusion injury, J Surg Res, vol.57, issue.2, pp.253-261, 1994.

E. Castro-santa, O. Salnikova, and E. Ryschich, The role of beta2-integrins and CD44 in intrahepatic leukocyte sequestration, J Surg Res, vol.184, issue.2, pp.1070-1075, 2013.

H. Jaeschke, A. Farhood, and C. W. Smith, Neutrophil-induced liver cell injury in endotoxin shock is a CD11b/CD18-dependent mechanism, Am J Physiol, vol.261, issue.6, pp.1051-1057, 1991.

H. Jaeschke, Functional inactivation of neutrophils with a Mac-1 (CD11b/CD18) monoclonal antibody protects against ischemia-reperfusion injury in rat liver, Hepatology, vol.17, issue.5, pp.915-938, 1993.

H. Kono, ICAM-1 is involved in the mechanism of alcohol-induced liver injury: studies with knockout mice, Am J Physiol Gastrointest Liver Physiol, vol.280, issue.6, pp.1289-95, 2001.

J. S. Gujral, Functional importance of ICAM-1 in the mechanism of neutrophil-induced liver injury in bile duct-ligated mice, Am J Physiol Gastrointest Liver Physiol, vol.286, issue.3, pp.499-507, 2004.

N. A. Essani, Cytokine-induced upregulation of hepatic intercellular adhesion molecule-1 messenger RNA expression and its role in the pathophysiology of murine endotoxin shock and acute liver failure, Hepatology, vol.21, issue.6, pp.1632-1641, 1995.

P. Bystrom, Ischemic preconditioning modulates ROS to confer protection in liver ischemia and reperfusion, vol.16, pp.483-496, 2017.

A. Chauhan, Platelets: No longer bystanders in liver disease, Hepatology, vol.64, issue.5, pp.1774-1784, 2016.

P. A. Lang, Aggravation of viral hepatitis by platelet-derived serotonin, Nat Med, vol.14, issue.7, pp.756-61, 2008.

M. Iannacone, Platelets mediate cytotoxic T lymphocyte-induced liver damage, Nat Med, vol.11, issue.11, pp.1167-1176, 2005.

G. Sitia, M. Iannacone, and L. G. Guidotti, Anti-platelet therapy in the prevention of hepatitis B virus-associated hepatocellular carcinoma, J Hepatol, vol.59, issue.5, pp.1135-1143, 2013.

S. Pak, Platelet adhesion in the sinusoid caused hepatic injury by neutrophils after hepatic ischemia reperfusion, Platelets, vol.21, issue.4, pp.282-290, 2010.

P. F. Lalor, Hepatic sinusoidal endothelium avidly binds platelets in an integrin-dependent manner, leading to platelet and endothelial activation and leukocyte recruitment, Am J Physiol Gastrointest Liver Physiol, vol.304, issue.5, pp.469-78, 2013.

B. P. Sullivan, Protective and damaging effects of platelets in acute cholestatic liver injury revealed by depletion and inhibition strategies, Toxicol Sci, vol.115, issue.1, pp.286-94, 2010.

J. W. Salter, Platelets modulate ischemia/reperfusion-induced leukocyte recruitment in the mesenteric circulation, Am J Physiol Gastrointest Liver Physiol, vol.281, issue.6, pp.1432-1441, 2001.

G. Andreu, Analysis of Transfusion-Related Acute Lung Injury and Possible Transfusion-Related Acute Lung Injury Reported to the French Hemovigilance Network From, Transfus Med Rev, 2007.

D. Bechard, Endocan is a novel chondroitin sulfate/dermatan sulfate proteoglycan that promotes hepatocyte growth factor/scatter factor mitogenic activity, J Biol Chem, vol.276, issue.51, pp.48341-48350, 2001.

O. Garraud, Transfusion as an Inflammation Hit: Knowns and Unknowns. Front Immunol, vol.7, p.534, 2016.

G. L. Reed, M. L. Fitzgerald, and J. Polgar, Molecular mechanisms of platelet exocytosis: insights into the "secrete" life of thrombocytes, Blood, vol.96, issue.10, pp.3334-3376, 2000.

R. Flaumenhaft, Molecular basis of platelet granule secretion, Arterioscler Thromb Vasc Biol, vol.23, issue.7, pp.1152-60, 2003.

W. H. Kahr, Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome, Nat Genet, vol.43, issue.8, pp.738-778, 2011.

E. Lefrancais, The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors, Nature, vol.544, issue.7648, pp.105-109, 2017.

A. Zufferey, Characterization of the platelet granule proteome: evidence of the presence of MHC1 in alpha-granules, J Proteomics, vol.101, pp.130-170, 2014.

J. W. Semple, J. E. Italiano, J. , and J. Freedman, Platelets and the immune continuum, Nat Rev Immunol, vol.11, issue.4, pp.264-74, 2011.

A. Caudrillier and M. R. Looney, Platelet-neutrophil interactions as a target for prevention and treatment of transfusion-related acute lung injury, Curr Pharm Des, vol.18, issue.22, pp.3260-3266, 2012.

A. Caudrillier, Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury, J Clin Invest, vol.122, issue.7, pp.2661-71, 2012.

M. R. Looney, Neutrophils and their Fc gamma receptors are essential in a mouse model of transfusion-related acute lung injury, J Clin Invest, vol.116, issue.6, pp.1615-1638, 2006.

C. G. Mckenzie, Peripheral blood monocyte-derived chemokine blockade prevents murine transfusion-related acute lung injury (TRALI). Blood, vol.123, pp.3496-503, 2014.

R. T. Strait, MHC class I-specific antibody binding to nonhematopoietic cells drives complement activation to induce transfusion-related acute lung injury in mice, J Exp Med, vol.208, issue.12, pp.2525-2569, 2011.

M. Manohar, Pathogenic mechanisms of pancreatitis, World J Gastrointest Pharmacol Ther, vol.8, issue.1, pp.10-25, 2017.

R. Dasararaju and M. B. Marques, Adverse effects of transfusion, Cancer Control, vol.22, issue.1, pp.16-25, 2015.

O. Garraud, Blood transfusion and inflammation as of yesterday

, Transfus Clin Biol, vol.22, issue.3, pp.168-77, 2015.

N. M. Heddle, Pathophysiology of febrile nonhemolytic transfusion reactions, Curr Opin Hematol, vol.6, issue.6, pp.420-426, 1999.

F. Hirayama, Current understanding of allergic transfusion reactions: incidence, pathogenesis, laboratory tests, prevention and treatment, Br J Haematol, vol.160, issue.4, pp.434-478, 2013.

M. B. Pagano, Hypotensive transfusion reactions in the era of prestorage leukoreduction, Transfusion, vol.55, issue.7, pp.1668-74, 2015.

A. L. Peters, D. Van-stein, and A. P. Vlaar, Antibody-mediated transfusion-related acute lung injury; from discovery to prevention, Br J Haematol, 2015.

A. L. Peters, Pathogenesis of non-antibody mediated transfusion-related acute lung injury from bench to bedside, Blood Rev, vol.29, issue.1, pp.51-61, 2015.

C. Aloui, Levels of human platelet-derived soluble CD40 ligand depend on haplotypes of CD40LG-CD40-ITGA2. Sci Rep, vol.6, p.24715, 2016.

G. Baimukanova, Platelets regulate vascular endothelial stability: assessing the storage lesion and donor variability of apheresis platelets, Transfusion, vol.56, issue.1, pp.65-75, 2016.

G. Baimukanova, The effects of 22 degrees C and 4 degrees C storage of platelets on vascular endothelial integrity and function, Transfusion, vol.56, issue.1, pp.52-64, 2016.

P. Alvarez, Transfusion-Related Acute Lung Injured (TRALI): Current Concepts, Open Respir Med J, vol.9, pp.92-98, 2015.

M. Kechagia, I. Papassotiriou, and K. I. Gourgoulianis, Endocan and the respiratory system: a review, Int J Chron Obstruct Pulmon Dis, vol.11, pp.3179-3187, 2016.

S. Balta, Endocan--a novel inflammatory indicator in newly diagnosed patients with hypertension: a pilot study, Angiology, vol.65, issue.9, pp.773-780, 2014.

N. De-freitas-caires, Identification of a 14 kDa endocan fragment generated by cathepsin G, a novel circulating biomarker in patients with sepsis, J Pharm Biomed Anal, pp.45-51, 2013.

E. Rennel, Endocan is a VEGF-A and PI3K regulated gene with increased expression in human renal cancer, Exp Cell Res, vol.313, issue.7, pp.1285-94, 2007.

A. Scherpereel, Endocan, a new endothelial marker in human sepsis, Crit Care Med, vol.34, issue.2, pp.532-539, 2006.

H. Hamzeh-cognasse, Immune-reactive soluble OX40 ligand, soluble CD40 ligand, and interleukin-27 are simultaneously oversecreted in platelet components associated with acute transfusion reactions, Transfusion, vol.54, issue.3, pp.613-638, 2014.

K. A. Nguyen, A computerized prediction model of hazardous inflammatory platelet transfusion outcomes, PLoS One, vol.9, issue.5, p.97082, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01011939

O. Garraud and F. Cognasse, Are Platelets Cells? And if Yes, are They Immune Cells? Front Immunol, vol.6, p.70, 2015.

F. Cognasse, The Inflammatory Role of Platelets via Their TLRs and Siglec Receptors. Front Immunol, vol.6, p.83, 2015.

P. Damien, LPS stimulation of purified human platelets is partly dependent on plasma soluble CD14 to secrete their main secreted product, soluble-CD40-Ligand, BMC Immunol, vol.16, p.3, 2015.

D. Cox, S. W. Kerrigan, and S. P. Watson, Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation, J Thromb Haemost, vol.9, issue.6, pp.1097-107, 2011.

H. D. Schaufelberger, Platelets in ulcerative colitis and Crohn's disease express functional interleukin-1 and interleukin-8 receptors, Eur J Clin Invest, vol.24, issue.10, pp.656-63, 1994.

J. S. Alexander, Platelet-derived lysophosphatidic acid decreases endothelial permeability in vitro, Am J Physiol, vol.274, issue.1, pp.115-137, 1998.

F. R. Haselton and J. S. Alexander, Platelets and a platelet-released factor enhance endothelial barrier, Am J Physiol, vol.263, issue.6, pp.670-678, 1992.

S. K. Lo, Role of platelets in maintenance of pulmonary vascular permeability to protein, Am J Physiol, vol.254, pp.763-71, 1988.

F. L. Minnear, Platelet lipid(s) bound to albumin increases endothelial electrical resistance: mimicked by LPA, Am J Physiol Lung Cell Mol Physiol, vol.281, issue.6, pp.1337-1381, 2001.

S. Patil, J. E. Kaplan, and F. L. Minnear, Protein, not adenosine or adenine nucleotides, mediates platelet decrease in endothelial permeability, Am J Physiol, vol.273, issue.5, pp.2304-2315, 1997.

P. S. Paty, Role of adenosine in platelet-mediated reduction in pulmonary vascular permeability, Am J Physiol, vol.262, pp.771-778, 1992.

B. Ho-tin-noe, M. Demers, and D. D. Wagner, How platelets safeguard vascular integrity, J Thromb Haemost, issue.9, pp.56-65, 2011.

Y. Boulaftali, Platelet ITAM signaling is critical for vascular integrity in inflammation, J Clin Invest, vol.123, issue.2, pp.908-924, 2013.

S. F. De-stoppelaar, Thrombocytopenia impairs host defense in gram-negative pneumonia-derived sepsis in mice, Blood, vol.124, issue.25, pp.3781-90, 2014.

T. Goerge, Inflammation induces hemorrhage in thrombocytopenia, Blood, vol.111, issue.10, pp.4958-64, 2008.

A. Gros, Single platelets seal neutrophil-induced vascular breaches via GPVI during immunecomplex-mediated inflammation in mice, Blood, vol.126, issue.8, pp.1017-1043, 2015.

H. Obinata and T. Hla, Sphingosine 1-phosphate in coagulation and inflammation, Semin Immunopathol, vol.34, issue.1, pp.73-91, 2012.

K. L. Schaphorst, Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products, Am J Physiol Lung Cell Mol Physiol, vol.285, issue.1, pp.258-67, 2003.

T. Mammoto, Platelet-rich plasma extract prevents pulmonary edema through angiopoietin-Tie2 signaling, Am J Respir Cell Mol Biol, vol.52, issue.1, pp.56-64, 2015.

F. A. Bozza, Amicus or adversary: platelets in lung biology, acute injury, and inflammation, Am J Respir Cell Mol Biol, vol.40, issue.2, pp.123-157, 2009.

R. L. Nachman, B. Weksler, and B. Ferris, Characterization of human platelet vascular permeability-enhancing activity, J Clin Invest, vol.51, issue.3, pp.549-56, 1972.

M. T. Rondina, A. S. Weyrich, and G. A. Zimmerman, Platelets as cellular effectors of inflammation in vascular diseases, Circ Res, vol.112, issue.11, pp.1506-1525, 2013.

A. Tabuchi and W. M. Kuebler, Endothelium-platelet interactions in inflammatory lung disease, Vascul Pharmacol, vol.49, pp.141-50, 2008.

A. Zarbock and K. Ley, The role of platelets in acute lung injury (ALI), vol.14, pp.150-158, 2009.

J. Grommes, Disruption of platelet-derived chemokine heteromers prevents neutrophil extravasation in acute lung injury, Am J Respir Crit Care Med, vol.185, issue.6, pp.628-664, 2012.

A. Zarbock, K. Singbartl, and K. Ley, Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation, J Clin Invest, vol.116, issue.12, pp.3211-3220, 2006.

R. Medzhitov, Origin and physiological roles of inflammation, Nature, vol.454, issue.7203, pp.428-463, 2008.

E. D. Hottz, Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation, Blood, vol.122, pp.3405-3419, 1920.

M. A. Boogaerts, Enhancement of granulocyte-endothelial cell adherence and granulocyte-induced cytotoxicity by platelet release products, Proc Natl Acad Sci, vol.79, issue.22, pp.7019-7042, 1982.

A. Vieira-de-abreu, Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum, Semin Immunopathol, vol.34, issue.1, pp.5-30, 2012.

A. C. Zago, The importance of the interaction between leukocyte integrin Mac-1 and platelet glycoprotein Ib-a for leukocyte recruitment by platelets and for the inflammatory response to vascular injury, Arq Bras Cardiol, vol.90, issue.1, pp.54-63, 2008.

A. Hidalgo, Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury, Nat Med, vol.15, issue.4, pp.384-91, 2009.

C. N. Jenne, The use of spinning-disk confocal microscopy for the intravital analysis of platelet dynamics in response to systemic and local inflammation, PLoS One, vol.6, issue.9, p.25109, 2011.

C. N. Jenne, Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps, Cell Host Microbe, vol.13, issue.2, pp.169-80, 2013.

V. Sreeramkumar, Neutrophils scan for activated platelets to initiate inflammation, Science, vol.346, issue.6214, pp.1234-1242, 2014.

J. Chen and J. A. Lopez, Interactions of platelets with subendothelium and endothelium. Microcirculation, vol.12, pp.235-281, 2005.

L. Ostrovsky, A juxtacrine mechanism for neutrophil adhesion on platelets involves plateletactivating factor and a selectin-dependent activation process, Blood, vol.91, issue.8, pp.3028-3064, 1998.

P. Von-hundelshausen, R. R. Koenen, and C. Weber, Platelet-mediated enhancement of leukocyte adhesion. Microcirculation, vol.16, pp.84-96, 2009.

J. J. Zwaginga, Minimal platelet deposition and activation in models of injured vessel wall ensure optimal neutrophil adhesion under flow conditions, Arterioscler Thromb Vasc Biol, vol.19, issue.6, pp.1549-54, 1999.

S. A. Green, Activated platelet-T-cell conjugates in peripheral blood of patients with HIV infection: coupling coagulation/inflammation and T cells, AIDS, vol.29, issue.11, pp.1297-308, 2015.

E. D. Hottz, Platelet activation and apoptosis modulate monocyte inflammatory responses in dengue, J Immunol, vol.193, issue.4, pp.1864-72, 2014.

T. M. Laidlaw, Cysteinyl leukotriene overproduction in aspirin-exacerbated respiratory disease is driven by platelet-adherent leukocytes, Blood, vol.119, issue.16, pp.3790-3798, 2012.

M. T. Rondina, In vivo platelet activation in critically ill patients with primary 2009 influenza A(H1N1), Chest, vol.141, issue.6, pp.1490-1495, 2012.

M. T. Rondina, Platelet-monocyte aggregate formation and mortality risk in older patients with severe sepsis and septic shock, J Gerontol A Biol Sci Med Sci, vol.70, issue.2, pp.225-256, 2015.

O. Eickmeier, Aspirin-triggered resolvin D1 reduces mucosal inflammation and promotes resolution in a murine model of acute lung injury, Mucosal Immunol, vol.6, issue.2, pp.256-66, 2013.

G. Ortiz-munoz, Aspirin-triggered 15-epi-lipoxin A4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice, Blood, vol.124, issue.17, pp.2625-2659, 2014.

V. B. Le, Platelet activation and aggregation promote lung inflammation and influenza virus pathogenesis, Am J Respir Crit Care Med, vol.191, issue.7, pp.804-823, 2015.

C. J. Kuckleburg, Endothelial cell-borne platelet bridges selectively recruit monocytes in human and mouse models of vascular inflammation, Cardiovasc Res, vol.91, issue.1, pp.134-175, 2011.

F. W. Lam, Platelets enhance neutrophil transendothelial migration via P-selectin glycoprotein ligand-1, Am J Physiol Heart Circ Physiol, vol.300, issue.2, pp.468-75, 2011.

G. Passacquale, Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes, PLoS One, vol.6, issue.10, p.25595, 2011.

A. Zarbock, R. K. Polanowska-grabowska, and K. Ley, Platelet-neutrophil-interactions: linking hemostasis and inflammation, Blood Rev, vol.21, issue.2, pp.99-111, 2007.

V. Brinkmann and A. Zychlinsky, Neutrophil extracellular traps: is immunity the second function of chromatin?, J Cell Biol, vol.198, issue.5, pp.773-83, 2012.

W. H. Kahr, Abnormal megakaryocyte development and platelet function in Nbeal2(-/-) mice. Blood, vol.122, pp.3349-58, 2013.

C. Deppermann, Platelet secretion is crucial to prevent bleeding in the ischemic brain but not in the inflamed skin or lung in mice, 2017.

J. M. Sowerby, NBEAL2 is required for neutrophil and NK cell function and pathogen defense, J Clin Invest, vol.127, issue.9, pp.3521-3526, 2017.

J. P. Tung, Age of blood and recipient factors determine the severity of transfusion-related acute lung injury (TRALI), Crit Care, vol.16, issue.1, p.19, 2012.

R. F. Xie, The effect of platelet-derived microparticles in stored apheresis platelet concentrates on polymorphonuclear leucocyte respiratory burst, Vox Sang, vol.106, issue.3, pp.234-275, 2014.

J. P. Maloney, Platelet Vascular Endothelial Growth Factor is a Potential Mediator of Transfusion-Related Acute Lung Injury, J Pulm Respir Med, 2004.

C. C. Silliman, Plasma and lipids from stored platelets cause acute lung injury in an animal model, Transfusion, vol.43, issue.5, pp.633-673, 2003.

C. C. Silliman, Mirasol Pathogen Reduction Technology treatment does not affect acute lung injury in a two-event in vivo model caused by stored blood components, Vox Sang, vol.98, issue.4, pp.525-555, 2010.

J. P. Tung, A novel in vivo ovine model of transfusion-related acute lung injury (TRALI). Vox Sang, vol.100, pp.219-249, 2011.

N. Chiang, Aspirin triggers antiinflammatory 15-epi-lipoxin A4 and inhibits thromboxane in a randomized human trial, Proc Natl Acad Sci U S A, vol.101, issue.42, pp.15178-83, 2004.

M. Romano, Lipoxins and aspirin-triggered lipoxins in resolution of inflammation, Eur J Pharmacol, vol.760, pp.49-63, 2015.

S. Tong, Accumulation of CD62P during storage of apheresis platelet concentrates and the role of CD62P in transfusion-related acute lung injury, Mol Med Rep, vol.12, issue.5, pp.7777-81, 2015.

Y. Torii, Antiplatelet antibody may cause delayed transfusion-related acute lung injury, Int J Gen Med, vol.4, pp.677-80, 2011.

H. Ikeda, Platelet membrane protein CD36. Hokkaido Igaku Zasshi, vol.74, pp.99-104, 1999.

R. Kapur, Nouvelle cuisine: platelets served with inflammation, J Immunol, vol.194, issue.12, pp.5579-87, 2015.

V. Evangelista, Platelet/polymorphonuclear leukocyte interaction: P-selectin triggers proteintyrosine phosphorylation-dependent CD11b/CD18 adhesion: role of PSGL-1 as a signaling molecule, Blood, vol.93, issue.3, pp.876-85, 1999.

S. Nomura, Platelets expressing P-selectin and platelet-derived microparticles in stored platelet concentrates bind to PSGL-1 on filtrated leukocytes, Clin Appl Thromb Hemost, vol.6, issue.4, pp.213-234, 2000.

R. P. Phipps, J. Kaufman, and N. Blumberg, Platelet derived CD154 (CD40 ligand) and febrile responses to transfusion, Lancet, vol.357, issue.9273, pp.2023-2027, 2001.

N. Blumberg, An association of soluble CD40 ligand (CD154) with adverse reactions to platelet transfusions, Transfusion, vol.46, issue.10, pp.1813-1834, 2006.

N. Blumberg, The platelet as an immune cell-CD40 ligand and transfusion immunomodulation, Immunol Res, vol.45, issue.2-3, pp.251-60, 2009.

H. Hamzeh-cognasse, Immune-reactive soluble OX40 ligand, soluble CD40 ligand, and interleukin-27 are simultaneously oversecreted in platelet components associated with acute transfusion reactions, Transfusion, vol.54, issue.3, pp.613-638, 2014.

F. Akbiyik, Human bone marrow megakaryocytes and platelets express PPARgamma, and PPARgamma agonists blunt platelet release of CD40 ligand and thromboxanes, Blood, vol.104, issue.5, pp.1361-1369, 2004.

C. Sut, S. Tariket, F. Cognasse, and O. Garraud, Determination of predictors of severity for recipient adverse reactions during platelet product transfusions, Transfusion Clinique et Biologique, 2017.

C. Sut, S. Tariket, M. L. Chou, O. Garraud, S. Laradi et al., Duration of red blood cell storage and inflammatory marker generation, 2017.

C. Aloui, A. Prigent, S. Tariket, C. Sut, J. Fagan et al., Levels of human platelet-derived soluble CD40 ligand depend on haplotypes of CD40LG-CD40-ITGA2. Scientifique Report, 2016.

, Communications orales

S. Tariket, C. A. Arthaud, O. Garraud, and F. Cognasse, La neutralisation de complexe CD40/CD40L inhibe le développement du TRALI, induit par du lipopolysaccharide combiné à un anticorps anti-CMH I, dans un modèle de souris. 28 ème congrès de la Société Française de Transfusion Sanguines (SFTS), 2017.

S. Tariket, C. A. Arthaud, O. Garraud, and F. Cognasse, La neutralisation de complexe CD40/CD40L inhibe le développement du TRALI, induit par du lipopolysaccharide combiné à un anticorps anti-CMH I, dans un modèle de souris, International Society on Thrombosis and Haemostasis (ISTH), 2017.

S. Tariket, C. A. Arthaud, O. Garraud, and F. Cognasse, Investigation de la pathogenèse du syndrome de détresse respiratoire aiguë post-transfusionnel (TRALI) dans un modèle murin. 17 ème Journées stéphanoises de cytométrie

F. Andrézieux-bouthéon, , 2016.

, Communications affichées

S. Tariket, C. Sut, C. A. Arthaud, M. A. Eyraud, S. Laradi et al., Modeling the effect of platelet concentrate supernatants on endothelial cells: focus on Endocan/ESM-1. 28 ème congrès de la Société Française de Transfusion Sanguines (SFTS), 2017.

S. Tariket, C. Sut, C. A. Arthaud, M. A. Eyraud, S. Laradi et al., Modeling the effect of platelet concentrate supernatants on endothelial cells: focus on Endocan/ESM-1. 27 th regional congress of the International Society of Blood Transfusion (ISBT). Copenhage

S. Tariket, C. Sut, C. A. Arthaud, M. A. Eyraud, S. Laradi et al., Modeling the effect of platelet concentrate supernatants on endothelial cells: focus on Endocan/ESM-1. 28 ème congrès de la Société Française de Transfusion Sanguines (SFTS), 2017.

S. Tariket, A. Meneveaux, C. A. Arthaud, O. Garraud, and F. Cognasse,

. Dans-un-modèle-murin, Journée de l'Académie de Médecine, 2016.

S. Tariket, A. Meneveaux, C. A. Arthaud, O. Garraud, and F. Cognasse,

. Dans-un-modèle-murin, Journée de l'Institut Fédératif de Recherche en Sciences et Ingénierie de la Santé (IFRESIS), 2016.