M. J. Kerr, A. Cuevas, and P. Campbell, Limiting Efficiency of Crystalline Silicon Solar Cells Due to Coulomb-Enhanced Auger Recombination, Prog. Photovoltaics Res. Appl, vol.11, issue.2, pp.97-104, 2003.

A. Richter, M. Hermle, and S. Glunz, Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells, IEEE J. Photovoltaics, vol.2013, issue.4, pp.1184-1191

J. P. Connolly, D. Mencaraglia, C. Renard, D. Bouchier, . Designing et al., Multijunction Solar Cells on Silicon. Prog. Photovoltaics Res. Appl, vol.22, issue.7, pp.810-820, 2014.

J. P. Mailoa, C. D. Bailie, E. C. Johlin, E. T. Hoke, A. J. Akey et al., A 2-Terminal Perovskite/Silicon Multijunction Solar Cell Enabled by a Silicon Tunnel Junction, Appl. Phys. Lett, issue.12, p.121105, 2015.

C. D. Bailie and M. D. Mcgehee, High-Efficiency Tandem Perovskite Solar Cells, MRS Bull, vol.40, issue.8, pp.681-685, 2015.

S. Essig, C. Allebé, T. Remo, J. F. Geisz, M. A. Steiner et al., Raising the One-Sun Conversion Efficiency of III-V/Si Solar Cells to 32.8% for Two Junctions and 35.9% for Three Junctions, Nat. Energy, vol.2017, issue.9, p.17144

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-ebinger et al., Solar Cell Efficiency Tables (Version 51), Prog. Photovoltaics Res. Appl, vol.26, issue.1, pp.3-12, 2018.

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai et al., Achievement of More than 25% Conversion Efficiency with Crystalline Silicon Heterojunction Solar Cell, IEEE J. Photovoltaics, vol.2014, issue.6, pp.1433-1435

D. Adachi, J. L. Hernández, and K. Yamamoto, Impact of Carrier Recombination on Fill Factor for Large Area Heterojunction Crystalline Silicon Solar Cell with 25.1% Efficiency, Appl. Phys. Lett, issue.23, pp.23-26, 2015.

D. D. Smith, G. Reich, M. Baldrias, M. Reich, N. Boitnott et al., IEEE 43rd Photovoltaic Specialists Conference (PVSC). In Silicon solar cells with total area efficiency above 25 %, 2016.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi et al., Silicon Heterojunction Solar Cell with Interdigitated Back Contacts for a Photoconversion Efficiency over 26%, Nat. Energy, vol.2017, issue.5, p.17032

N. V. Yastrebova, High-Efficiciency Multijunction Solar Cells: Current Status and Future Potential. Centre for Research in Photonics, 2007.

C. Peters, Thin Film Tandem Solar Cells -Coursework for Physics 240, 2010.

J. F. Geisz, D. J. Friedman, and . Iii-n-v, Semiconductors for Solar Photovoltaic Applications. Semicond. Sci. Technol, vol.17, issue.8, pp.769-777, 2002.

N. Jain and M. K. Hudait, III-V Multijunction Solar Cell Integration with Silicon: Present Status, Challenges and Future Outlook, Energy Harvest. Syst, vol.2014, issue.3-4, pp.121-145

J. F. Geisz, J. M. Olson, D. J. Friedman, K. M. Jones, R. C. Reedy et al., Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference, pp.695-698, 2005.

J. W. Ager, L. A. Reichertz, K. M. Yu, W. J. Schaff, T. L. Williamson et al., 33rd IEEE Photovoltaic Specialists Conference. In InGaN/Si heterojunction tandem solar cells, 2008.

B. T. Tran, E. Y. Chang, H. D. Trinh, C. T. Lee, K. C. Sahoo et al., Fabrication and Characterization of N-In0.4Ga0.6N/p-Si Solar Cell, Sol. Energy Mater. Sol. Cells, vol.102, pp.208-211, 2012.

J. F. Geisz, J. M. Olson, M. J. Romero, C. S. Jiang, and A. Norman, Conference Record of the, IEEE 4th World Conference on Photovoltaic Energy Conversion, WCPEC-4. In Lattice-mismatched GaAsP Solar Cells Grown on Silicon by OMVPE, 2006.

M. R. Lueck, C. L. Andre, A. J. Pitera, M. L. Lee, E. A. Fitzgerald et al., Dual Junction GaInP/GaAs Solar Cells Grown on Metamorphic SiGe/Si Substrates with High Open Circuit Voltage, IEEE Electron Device Lett, vol.27, issue.3, pp.142-144, 2006.

F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli et al., Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon, IEEE J. Photovoltaics, vol.2014, issue.2, pp.620-625

K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener et al., Fabrication of GaInP/GaAs//Si Solar Cells by Surface Activated Direct Wafer Bonding, IEEE J. Photovoltaics, vol.2013, issue.4, pp.1423-1428

H. Taguchi, N. Okada, T. Soga;-takashi, ;. Jimbo, and ;. Masayoshi,


K. Tanabe, K. Watanabe, Y. Arakawa, and . Iii-v/si, Hybrid Photonic Devices by Direct Fusion Bonding. Sci. Rep. 2012, vol.2, p.349

A. I. Hochbaum and P. Yang, Semiconductor Nanowires for Energy Conversion, Chem. Rev, issue.10, pp.527-546, 2010.

M. Law, J. Goldberger, and P. Yang, Semiconductor Nanowires and Nanotubes, Annu. Rev. Mater. Res, vol.34, issue.1, pp.83-122, 2004.

B. Tian, T. J. Kempa, and C. M. , Renewable Energy Issue, Chem. Soc. Rev, vol.38, issue.1, pp.165-184, 2009.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen et al., Challenges and Prospects of Nanopillar-Based Solar Cells, Nano Res, vol.2, issue.11, pp.829-843, 2009.

K. Yu and J. Chen, Enhancing Solar Cell Efficiencies through 1-D Nanostructures, Nanoscale Res. Lett, vol.4, pp.1-10, 2009.

E. Garnett and P. Yang, Light Trapping in Silicon Nanowire Solar Cells, Nano Lett, vol.2010, issue.3, pp.1082-1087

L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, Resonant Germanium Nanoantenna Photodetectors, Nano Lett, issue.4, pp.1229-1233, 2010.

L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, ZnO -TiO 2 Core -Shell Nanorod / P3HT Solar Cells, J. Phys. Chem. C, issue.50, pp.18451-18456, 2007.

K. Takanezawa, K. Tajima, and K. Hashimoto, Efficiency Enhancement of Polymer Photovoltaic Devices Hybridized with ZnO Nanorod Arrays by the Introduction of a Vanadium Oxide Buffer Layer, Appl. Phys. Lett, issue.6, pp.10-13, 2008.

B. D. Yuhas and P. Yang, Nanowire-Based All-Oxide Solar Cells, J. Am. Chem. Soc, vol.131, issue.10, pp.3756-3761, 2009.

O. K. Varghese, M. Paulose, and C. A. Grimes, Long Vertically Aligned Titania Nanotubes on Transparent Conducting Oxide for Highly Efficient Solar Cells, Nat. Nanotechnol, vol.4, issue.9, pp.592-597, 2009.

K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou et al., Synthesis and Photovoltaic Effect of Vertically Aligned ZnO/ZnS Core/Shell Nanowire Arrays, Appl. Phys. Lett, issue.12, pp.15-18, 2010.

Z. Fan, H. Razavi, J. Do, A. Moriwaki, O. Ergen et al., Three-Dimensional Nanopillar-Array Photovoltaics on Low-Cost and Flexible Substrates, Nat. Mater, vol.8, issue.8, pp.648-653, 2009.

C. Lévy-clément, R. Tena-zaera, M. A. Ryan, A. Katty, and G. Hodes, CdSe-Sensitized p-CuSCN/Nanowire n-ZnO Heterojunctions, Adv. Mater, vol.17, issue.12, pp.1512-1515, 2005.

Y. J. Dong, B. Z. Tian, T. J. Kempa, and C. M. Lieber, Coaxial Group III-Nitride Nanowire Photovoltaics, Nano Lett, vol.9, pp.2183-2187, 2009.

S. S. Williams, M. J. Hampton, V. Gowrishankar, I. K. Ding, J. L. Templeton et al., Nanostructured Titania-Polymer Photovoltaic Devices Made Using PFPE-Based Nanomolding Techniques, Chem. Mater, vol.20, issue.16, pp.5229-5234, 2008.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nanowire Dye-Sensitized Solar Cells, Nat. Mater, vol.4, issue.6, pp.455-459, 2005.

A. L. Briseno, T. W. Holcombe, A. I. Boukai, E. C. Garnett, S. W. Shelton et al., Oligo-and Polythiophene/ZnO Hybrid Nanowire Solar Cells, Nano Lett, issue.1, pp.334-340, 2010.

S. Ihn, J. Song, Y. Kim, and J. Y. Lee, GaAs Nanowires on Si Substrates Grown by a Solid Source Molecular Beam Epitaxy, Appl. Phys. Lett, issue.5, p.53106, 2006.

J. H. Paek, T. Nishiwaki, M. Yamaguchi, N. Sawaki, and . Mbe-vls, Growth of GaAs Nanowires on (111)Si Substrate. Phys. Status Solidi Curr. Top. Solid State Phys, vol.6, pp.1436-1440, 2009.

M. A. Green, Solar Cells: Operating Principles, Technology and System Applications, New South Wales, 1982.

E. Hecht, . Optics, and . Pearson, , 2002.

J. Zhao and M. A. Green, Optimized Antireflection Coatings for High Efficiency Silicon Solar Cells, IEEE Trans. Electron Devices, vol.38, issue.8, pp.1925-1934, 1991.

J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor et al., Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays, Nano Lett, vol.9, issue.1, pp.279-282, 2009.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, Design of Light Scattering in Nanowire Materials for Photovoltaic Applications, Nano Lett, vol.8, issue.9, pp.2638-2642, 2008.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima et al., Silicon Nanowire Solar Cells, Appl. Phys. Lett, issue.110, p.233117, 2007.

Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong et al., Vertically Aligned P-Type Single-Crystalline GaN Nanorod Arrays on n-Type Si for Heterojunction Photovoltaic Cells, Nano Lett, vol.8, issue.12, pp.4191-4195, 2008.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh et al., Ordered Arrays of Dual-Diameter Nanopillars for Maximized Optical Absorption, Nano Lett, issue.10, pp.3823-3827, 2010.

S. L. Diedenhofen, G. Grzela, E. Haverkamp, G. Bauhuis, J. Schermer et al., Broadband and Omnidirectional Anti-Reflection Layer for III/V Multi-Junction Solar Cells, Sol. Energy Mater. Sol. Cells, vol.101, pp.308-314, 2012.

C. Colombo, M. Hei?, M. Gra?tzel, and A. Fontcuberta-i-morral, Gallium Arsenide P-i-n Radial Structures for Photovoltaic Applications, Appl. Phys. Lett, issue.17, p.173108, 2009.

J. Kupec, R. L. Stoop, and B. Witzigmann, Light Absorption and Emission in Nanowire Array Solar Cells, Opt. Express, vol.18, issue.26, p.27589, 2010.

L. Hu and G. Chen, Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications, Nano Lett, vol.7, issue.11, pp.3249-3252, 2007.

N. Anttu and H. Q. Xu, Coupling of Light into Nanowire Arrays and Subsequent Absorption, J. Nanosci. Nanotechnol, vol.10, issue.11, pp.7183-7187, 2010.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. Bakkers et al., Large Photonic Strength of Highly Tunable Resonant Nanowire Materials, Nano Lett, vol.9, issue.3, pp.930-934, 2009.

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. Mcgehee, Nanowire Solar Cells, Annu. Rev. Mater. Res, vol.41, issue.1, pp.269-295, 2011.

D. Ginley, M. A. Green, and R. Collins, Solar Energy Conversion toward 1 Terawatt, MRS Bull, vol.33, issue.4, pp.355-364, 2008.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, Complete Composition Tunability of InGaN Nanowires Using a Combinatorial Approach, Nat. Mater, vol.6, issue.12, pp.951-956, 2007.

B. M. Kayes, H. Atwater, and N. S. Lewis, Comparison of the Device Physics Principles of Planar and Radial P-n Junction Nanorod Solar Cells, J. Appl. Phys, issue.11, pp.1-11, 2005.

M. Yao, N. Huang, S. Cong, C. Chi, M. A. Seyedi et al., GaAs Nanowire Array Solar Cells with Axial p ? i ? n Junctions, Nano Lett, issue.6, pp.3293-3303, 2014.

C. Gutsche, A. Lysov, D. Braam, I. Regolin, G. Keller et al., N-GaAs/InGaP/p-GaAs Core-Multishell Nanowire Diodes for Efficient Light-to-Current Conversion, Adv. Funct. Mater, vol.2012, issue.5, pp.929-936

N. Huang, C. Lin, and M. L. Povinelli, Limiting Efficiencies of Tandem Solar Cells Consisting of III-V Nanowire Arrays on Silicon, J. Appl. Phys, vol.112, p.64321, 2012.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu et al., Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources, Nature, vol.449, pp.885-890, 2007.

Y. Zhang, L. W. Wang, and A. Mascarenhas, Quantum Coaxial Cables" for Solar Energy Harvesting, Nano Lett, vol.7, issue.5, pp.1264-1269, 2007.

E. C. Garnett and P. Yang, Silicon Nanowire Radial p -n Junction Solar Cells, J. Am. Chem. Soc, vol.130, pp.9224-9225, 2008.

J. A. Czaban, D. A. Thompson, and R. R. Lapierre, GaAs Core-Shell Nanowires for Photovoltaic Applications, Nano Lett, vol.9, issue.1, pp.148-154, 2008.

W. Wei, X. Bao, C. Soci, Y. Ding, Z. Wang et al., Direct Heteroepitaxy of Vertical InAs Nanowire Array on Si Substrates for Broadband Photovoltaics and Photodetection, Nano Lett, vol.9, issue.8, pp.2926-2934, 2009.

H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma et al., Growth of Core-Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic Vapor Phase Epitaxy, Appl. Phys. Express, vol.2, p.35004, 2009.

C. Lin and M. L. Povinelli, The Effect of Plasmonic Particles on Solar Absorption in Vertically Aligned Silicon Nanowire Arrays, Appl. Phys. Lett, issue.7, p.71110, 2010.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin et al., InxGa1-xAs Nanowires on Silicon: One-Dimensional Heterogeneous Epitaxy, Bandgap Engineering, and Photovoltaics, Nano Lett, issue.11, pp.4831-4838, 2011.

K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, T. Fukui et al., Selective-Area Growth and Device Applications, IEEE J. Sel. Top. Quantum Electron, vol.17, issue.4, pp.1112-1129, 2011.

J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, Solution-Processed Core -Shell Nanowires for Efficient Photovoltaic Cells, Nat. Nanotechnol, vol.6, issue.9, pp.568-572, 2011.

R. R. Lapierre, Numerical Model of Current-Voltage Characteristics and Efficiency of GaAs Nanowire Solar Cells, J. Appl. Phys, issue.3, p.109, 2011.

G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro et al., Patterned Radial GaAs Nanopillar Solar Cells, Nano Lett, issue.6, pp.2490-2494, 2011.

N. Huang, C. Lin, M. L. Povinelli, and . Broadband, Absorption of Semiconductor Nanowire Arrays for Photovoltaic Applications, J. Opt, vol.2012, issue.2, p.24004

T. J. Kempa, J. F. Cahoon, S. Kim, R. W. Day, D. C. Bell et al., Coaxial Multishell Nanowires with High-Quality Electronic Interfaces and Tunable Optical Cavities for Ultrathin Photovoltaics, PNAS, vol.2012, issue.5, pp.1407-1412

M. Heurlin, D. Lindgren, K. Deppert, L. Samuelson, M. H. Magnusson et al., Continuous Gas-Phase Synthesis of Nanowires with Tunable Properties, Nature, vol.2012, issue.7427, pp.90-94

G. Mariani, Z. Zhou, A. Scofield, and D. L. Huffaker, Direct-Bandgap Epitaxial Core-Multishell Nanopillar Photovoltaics Featuring Subwavelength Optical Concentrators, Nano Lett, vol.13, issue.4, pp.1632-1637, 2013.

S. Hu, C. Chi, K. T. Fountaine, M. Yao, H. A. Atwater et al., Electrical, and Solar Energy-Conversion Properties of Gallium Arsenide Nanowire-Array Photoanodes, Energy Environ. Sci, vol.6, pp.1879-1890, 2013.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg et al., InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit, Science, issue.6123, pp.1057-1060, 2013.

J. V. Holm, H. I. Jørgensen, P. Krogstrup, J. Nygård, H. Liu et al., Surface-Passivated GaAsP Single-Nanowire Solar Cells Exceeding 10% Efficiency Grown on Silicon, Nat. Commun, 1498.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. Vu et al., Efficiency Enhancement of InP Nanowire Solar Cells by Surface Cleaning, Nano Lett, vol.2013, issue.9, pp.4113-4117

E. Nakai, M. Chen, M. Yoshimura, K. Tomioka, and T. Fukui, InGaAs Axial-Junction Nanowire-Array Solar Cells, Jpn. J. Appl. Phys, vol.54, p.15201, 2015.

N. Anttu and ?. Shockley, Queisser Detailed Balance Efficiency Limit for Nanowire Solar Cells, ACS Photonics, vol.2015, issue.3, pp.446-453

I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy et al., A GaAs Nanowire Array Solar Cell with 15 . 3 % Efficiency at 1 Sun, IEEE J. Photovoltaics, vol.6, issue.1, pp.185-190, 2015.

J. P. Boulanger, A. C. Chia, B. Wood, S. Yazdi, T. Kasama et al., Characterization of a Ga-Assisted GaAs Nanowire Array Solar Cell on Si Substrate, IEEE J. Photovoltaics, vol.6, issue.3, pp.661-667, 2016.

D. Dam, N. J. Van;-hoof, Y. Van;-cui, P. J. Veldhoven, E. P. Van;-bakkers et al., High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium ? Tin ? Oxide Mie Scatterers, ACS Nano, vol.10, pp.11414-11419, 2016.

G. Mariani, A. C. Scofield, C. Hung, and D. L. Huffaker, GaAs Nanopillar-Array Solar Cells Employing in Situ Surface Passivation, Nat. Commun, 1497.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm et al., Single-Nanowire Solar Cells beyond the Shockley-Queisser Limit, Nat. Photonics, vol.7, issue.4, pp.306-310, 2013.

C. H. Henry, Limiting Efficiencies of Ideal Single and Multiple Energy Gap Terrestrial Solar Cells, J. Appl. Phys, issue.8, p.4494, 1980.

J. B. Jackson, D. Kapoor, S. Jun, M. S. Miller, J. B. Jackson et al., Integrated Silicon Nanowire Diodes and the Effects of Gold Doping from the Growth Catalyst, J. Appl. Phys, p.54310, 2007.

V. Schmidt, J. V. Wittemann, S. Senz, and U. Gósele, Silicon Nanowires: A Review on Aspects of Their Growth and Their Electrical Properties, Adv. Mater, vol.21, pp.2681-2702, 2009.

M. Bar-sadan, J. Barthel, H. Shtrikman, and L. Houben, Direct Imaging of Single Au Atoms within GaAs Nanowires -Supporting Information, Nano Lett, vol.12, pp.2352-2356, 2012.

M. J. Tambe, S. Ren, and S. Grade?ak, Effects of Gold Diffusion on N-Type Doping of GaAs Nanowires, Nano Lett, issue.11, pp.4584-4589, 2010.

S. Breuer, C. Pfu?ller, T. Flissikowski, O. Brandt, H. T. Grahn et al., Suitability of Au-and Self-Assisted GaAs Nanowires for Optoelectronic Applications, Nano Lett, vol.11, issue.3, pp.1276-1279, 2011.

L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo et al., Theoretical Analysis and Modeling of Light Trapping in High Efficicency GaAs Nanowire Array Solar Cells, Appl. Phys. Lett, p.99, 2011.

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M. Pistol, Colorful InAs Nanowire Arrays: From Strong to Weak Absorption, Nano Lett, vol.12, 1990.

A. Fontcuberta-i-morral, C. Colombo, G. Abstreiter, J. Arbiol, and J. R. Morante, Nucleation Mechanism of Gallium-Assisted Molecular Beam Epitaxy Growth of Gallium Arsenide Nanowires, Appl. Phys. Lett, issue.6, p.63112, 2008.

S. Dubois, O. Palais, M. Pasquinelli, S. Martinuzzi, and C. Jaussaud, Influence of Substitutional Metallic Impurities on the Performances of P-Type Crystalline Silicon Solar Cells: The Case of Gold, J. Appl. Phys, p.123502, 2006.

T. J. Kempa, B. Tian, D. R. Kim, H. Jinsong, Z. Xiaolin et al., Single and Tandem Axial P-i-n Nanowire Photovoltaic Devices, Nano Lett, vol.8, issue.10, pp.3456-3460, 2008.

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert et al., Axial InP Nanowire Tandem Junction Grown on a Silicon Substrate, Nano Lett, issue.5, pp.2028-2031, 2011.

R. R. Lapierre, Theoretical Conversion Efficiency of a Two-Junction III-V Nanowire on Si Solar Cell, J. Appl. Phys, vol.110, issue.1, p.14310, 2011.

O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. Fontcuberta-i-morral, Impact of Surfaces on the Optical Properties of GaAs Nanowires, Appl. Phys. Lett, issue.20, p.97, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00997210

Y. Hu, M. Li, J. J. He, and R. R. Lapierre, Current Matching and Efficiency Optimization in a Two-Junction Nanowire-on-Silicon Solar Cell, Nanotechnology, vol.2013, issue.6, p.65402

S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao et al., Optical and Electrical Simulations of Two-Junction III-V Nanowires on Si Solar Cell, Appl. Phys. Lett, vol.102, issue.3, p.31106, 2013.

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell, Nanoscale Res. Lett, vol.10, issue.1, p.269, 2015.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli et al., Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition, Nano Lett, issue.11, pp.7217-7224, 2015.

A. Virkar, Lecture notes

H. Ibach and H. Lueth, Solid State Physics

M. H. Hermann and . Sitter, Molecular Beam Epitaxy -Fundamentals and Current Status, Series in, 1996.

J. Klein, Epitaktische Heterostrukturen Aus Dotierten Manganaten, 2001.

D. Rudolph, S. Hertenberger, S. Bolte, W. Paosangthong, D. Spirkoska et al., Direct Observation of a Noncatalytic Growth Regime for GaAs Nanowires, Nano Lett, vol.11, issue.9, pp.3848-3854, 2011.

X. Dai, A. Olivier, C. Wilhelm, S. A. Dayeh, and C. Soci, Advanced III-V Nanowire Growth toward Large-Scale Integration, Semiconductor Nanowires: Materials, Synthesis, Characterization and Applications

T. Dursap and . Phase, Ga Droplet Catalyst and Patterning Studies of Self-Catalyzed GaAs Nanowires, 2018.

T. Dursap, M. Vettori, C. Botella, P. Regreny, A. Danescu et al., Crystal Phase Engineering of Self-Catalyzed GaAs Nanowires: A RHEED Study, 2019.

K. A. Dick and P. Caroff, Metal-Seeded Growth of III-V Semiconductor Nanowires: Towards Gold-Free Synthesis, Nanoscale, vol.6, issue.6, p.3006, 2014.

R. S. Wagner and W. C. Ellis, Vapor-Liquid-Solid Mechanism of Single Crystal Growth, Appl. Phys. Lett, vol.4, issue.5, pp.89-90, 1964.

E. I. Givargizov, Fundamental Aspects of VLS Growth. Vap. Growth Ep, vol.31, pp.20-30, 1975.

V. G. Dubrovskii and N. V. Sibirev, Growth Rate of a Crystal Facet of Arbitrary Size and Growth Kinetics of Vertical Nanowires, Phys. Rev. E -Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top, vol.70, issue.3, p.31604, 2004.

V. G. Dubrovskii, G. E. Cirlin, I. P. Soshnikov, A. A. Tonkikh, N. V. Sibirev et al., Diffusion-Induced Growth of GaAs Nanowhiskers during Molecular Beam Epitaxy: Theory and Experiment, Phys. Rev. B -Condens. Matter Mater. Phys, issue.20, p.205325, 2005.

V. G. Dubrovski?, N. V. Sibirev, R. A. Suris, G. É. Cirlin, V. M. Ustinov et al., The Role of Surface Diffusion of Adatoms in the Formation of Nanowire Crystals, Semiconductors, vol.40, issue.9, pp.1075-1082, 2006.

F. Glas and J. C. Harmand, Calculation of the Temperature Profile in Nanowhiskers Growing on a Hot Substrate, Phys. Rev. B -Condens. Matter Mater. Phys, issue.15, p.155320, 2006.

V. G. Dubrovskii and N. V. Sibirev, General Form of the Dependences of Nanowire Growth Rate on the Nanowire Radius, J. Cryst. Growth, vol.304, issue.2, pp.504-513, 2007.

F. Glas, J. Harmand, and G. Patriarche, Why Does Wurtzite Form in Nanowires of III-V Zinc Blende Semiconductors?, Phys. Rev. Lett, issue.14, p.146101, 2007.

V. G. Dubrovskii and N. V. Sibirev, Growth Thermodynamics of Nanowires and Its Application to Polytypism of Zinc Blende III-V Nanowires, Phys. Rev. B -Condens. Matter Mater. Phys, vol.77, issue.3, p.35414, 2008.

V. G. Dubrovskii, N. V. Sibirev, J. C. Harmand, and F. Glas, Growth Kinetics and Crystal Structure of Semiconductor Nanowires, Phys. Rev. B, issue.23, p.235301, 2008.

G. E. Cirlin, V. G. Dubrovskii, Y. B. Samsonenko, A. D. Bouravleuv, K. Durose et al., Self-Catalyzed, Pure Zincblende GaAs Nanowires Grown on Si(111) by Molecular Beam Epitaxy, Phys. Rev. B, vol.2010, issue.3, p.35302

P. Krogstrup, S. Curiotto, E. Johnson, M. Aagesen, J. Nygård et al., Impact of the Liquid Phase Shape on the Structure of III-V Nanowires, Phys. Rev. Lett, issue.12, p.125505, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00581241

C. Yeh, Z. W. Lu, S. Froyen, and A. Zunger, Zinc-Blende -Wurtzite Polytypism in Semiconductors, Phys. Rev. B, issue.16, pp.10086-10097, 1992.

P. Krogstrup, H. I. Jørgensen, E. Johnson, M. H. Madsen, C. B. Sørensen et al., Advances in the Theory of III-V Nanowire Growth Dynamics, J. Phys. D. Appl. Phys, vol.2013, issue.31, p.313001

X. Yu, H. Wang, J. Lu, J. Zhao, J. Misuraca et al., Von Molnár, S. Evidence for Structural Phase Transitions Induced by the Triple Phase Line Shift in Self-Catalyzed GaAs Nanowires, Nano Lett, vol.2012, issue.10, pp.5436-5442

D. Jacobsson, F. Panciera, J. Tersoff, M. C. Reuter, S. Lehmann et al., Interface Dynamics and Crystal Phase Switching in GaAs Nanowires, Nature, vol.2016, issue.7594, pp.317-322

W. Kim, V. G. Dubrovskii, J. Vukajlovic-plestina, G. Tütüncüoglu, L. Francaviglia et al., Fontcuberta i Morral, A. Bi-Stability of Contact Angle and Its Role in Achieving Quantum-Thin Self-Assisted GaAs Nanowires, vol.18, pp.49-57, 2018.

C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A. Fontcuberta-i-morral, Ga-Assisted Catalyst-Free Growth Mechanism of GaAs Nanowires by Molecular Beam Epitaxy, Phys. Rev. B -Condens. Matter Mater. Phys, p.155326, 2008.

S. Plissard, K. A. Dick, G. Larrieu, S. Godey, A. Addad et al., Growth of GaAs Nanowires on Silicon: Arrays and Polytypism, vol.2010, p.385602
URL : https://hal.archives-ouvertes.fr/hal-00548717

M. Madsen, M. Aagesen, P. Krogstrup, C. Sørensen, and J. Nygård, Influence of the Oxide Layer for Growth of Self-Assisted InAs Nanowires on Si(111), Nanoscale Res. Lett, vol.6, issue.1, p.516, 2011.

A. Benali, Nanofils de Ga(Al)As Sur Silicium Pour Le Photovoltaïque de 3eme Génération : Simulation et Croissance Auto-Catalysée, 2017.

J. Becdelievre, Etude Des Propriétés Électriques et Mécaniques de Nanofils de GaAs : Vers Une Modulation Du Transport Par Effet Piézoélectrique Ou Ferroélectrique, 2017.

X. Guan, Growth of Semiconductor (Core) / Functional Oxide (Shell) Nanowires: Application to Photoelectrochemical Water Splitting, 2017.

T. Tauchnitz, T. Nurmamytov, R. Hübner, M. Engler, S. Facsko et al., Decoupling the Two Roles of Ga Droplets in the Self-Catalyzed Growth of GaAs Nanowires on SiOx/Si(111) Substrates. Cryst. Growth Des, vol.17, pp.5276-5282, 2017.

F. Matteini, G. Tütüncüoglu, H. Potts, and F. Jabeen, Fontcuberta i Morral, A. Wetting of Ga on SiO x and Its Impact on, GaAs Nanowire Growth. Cryst. Growth Des, vol.15, issue.7, pp.3105-3109, 2015.

M. Tchernycheva, L. Travers, G. Patriarche, F. Glas, J. C. Harmand et al., Au-Assisted Molecular Beam Epitaxy of InAs Nanowires: Growth and Theoretical Analysis, J. Appl. Phys, vol.102, issue.9, p.94313, 2007.

X. Zhang, V. G. Dubrovskii, N. Sibirev, G. E. V;-cirlin, C. Sartel et al., Growth of Inclined GaAs Nanowires by Molecular Beam Epitaxy : Theory and Experiment, Nanoscale Res. Lett, vol.5, pp.1692-1697, 2010.

F. Glas, M. R. Ramdani, G. Patriarche, and J. Harmand, Predictive Modeling of Self-Catalyzed III-V Nanowire Growth, Phys. Rev. B, issue.19, p.88, 2013.

C. T. Foxon, S. V. Novikov, J. L. Hall, R. P. Campion, D. Cherns et al., A Complementary Geometric Model for the Growth of GaN Nanocolumns Prepared by Plasma-Assisted Molecular Beam Epitaxy, J. Cryst. Growth, issue.13, pp.3423-3427, 2009.

E. Galopin, L. Largeau, G. Patriarche, L. Travers, F. Glas et al., Morphology of Self-Catalyzed GaN Nanowires and Chronology of Their Formation by Molecular Beam Epitaxy, Nanotechnology, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02132767

M. R. Ramdani, J. C. Harmand, F. Glas, G. Patriarche, and L. Travers, Arsenic Pathways in Self-Catalyzed Growth of GaAs Nanowires, Cryst. Growth Des, vol.13, issue.1, pp.91-96, 2013.

D. Rudolph, S. Hertenberger, S. Bolte, W. Paosangthong, D. Spirkoska et al., Direct Observation of a Noncatalytic Growth Regime for GaAs Nanowires, Nano Lett, vol.11, issue.9, pp.3848-3854, 2011.

F. Glas, Vapor Fluxes on the Apical Droplet during Nanowire Growth by Molecular Beam Epitaxy. Phys. Status Solidi Basic Res, vol.247, pp.254-258, 2010.

M. Shibata, S. S. Stoyanov, and M. Ichikawa, Selective Growth of Nanometer-Scale Ga Dots on Si(111) Surface Windows Formed in an Ultrathin SiO2 Film, Phys. Rev. B, issue.15, pp.289-295, 1999.

S. C. Lee and S. R. Brueck, Scaling of the Surface Migration Length in Nanoscale Patterned Growth, Appl. Phys. Lett, issue.15, p.153110, 2009.

P. Schroth, J. Jakob, L. Feigl, S. M. Mostafavi-kashani, J. Vogel et al., Radial Growth of Self-Catalyzed GaAs Nanowires and the Evolution of the Liquid Ga-Droplet Studied by Time-Resolved in Situ X-Ray Diffraction, Nano Lett, vol.18, issue.1, pp.101-108, 2018.

V. G. Dubrovskii, T. Xu, A. D. Álvarez, S. R. Plissard, P. Caroff et al., Self-Equilibration of the Diameter of Ga-Catalyzed GaAs Nanowires, Nano Lett, issue.8, pp.5580-5584, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01713077

F. Oehler, A. Cattoni, A. Scaccabarozzi, G. Patriarche, F. Glas et al., Measuring and Modeling the Growth Dynamics of Self-Catalyzed GaP Nanowire Arrays, Nano Lett, vol.18, issue.2, pp.701-708, 2018.

K. Tateno, H. Gotoh, and Y. Watanabe, Multi-Quantum Structures of GaAs/AlGaAs Free-Standing Nanowires, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap, vol.45, issue.4 B, pp.3568-3572, 2006.

K. Ishikawa, N. Yamamoto, K. Tateno, and Y. Watanabe, Characterization of Individual GaAs/AlGaAs Self-Standing Nanowires by Cathodoluminescence Technique Using Transmission Electron Microscope, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap, issue.8, pp.6596-6600, 2008.

A. Hayashida, T. Sato, S. Hara, J. Motohisa, K. Hiruma et al., , p.196

, Characterization of GaAs Quantum Well Buried in AlGaAs/GaAs Heterostructure Nanowires, J. Cryst. Growth, issue.24, pp.3592-3598, 2010.

G. Priante, F. Glas, G. Patriarche, K. Pantzas, F. Oehler et al., Sharpening the Interfaces of Axial Heterostructures in Self-Catalyzed AlGaAs Nanowires: Experiment and Theory, Nano Lett, vol.16, pp.1917-1924, 2016.

Z. H. Wu, M. Sun, X. Y. Mei, and H. E. Ruda, Growth and Photoluminescence Characteristics of AlGaAs Nanowires, Appl. Phys. Lett, vol.85, issue.4, pp.657-659, 2004.

C. Chen, S. Shehata, C. Fradin, R. Lapierre, C. Couteau et al., Self-Directed Growth of AlGaAs Core-Shell Nanowires for Visible Light Applications, Nano Lett, vol.7, issue.9, pp.2584-2589, 2007.

C. Chen, N. Braidy, C. Couteau, C. Fradin, G. Weihs et al., Multiple Quantum Well AlGaAs Nanowires, Nano Lett, vol.8, issue.2, pp.495-499, 2008.

D. Barettin, A. Platonov, A. Pecchia, V. N. Kats, G. E. Cirlin et al., Model of a GaAs Quantum Dot Embedded in a Polymorph AlGaAs Nanowire, Ieee J. Sel. Top. Quantum Electron, vol.19, issue.5, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00785275

C. E. Wicks and F. E. Block, Thermodynamic Properties of 65 Elements -Their Oxides, Halides, Carbides, and Nitrides. Bureau of Mines, United States Government Printing Office, 1963.

R. S. Williams, P. S. Wehner, G. Apai, J. Stöhr, D. A. Shirley et al., Angleand Energy-Dependent Core-Level Photoelectron Energy Loss Studies in Al and In, J. Electron Spectros. Relat. Phenomena, vol.12, issue.4, pp.477-492, 1977.

K. Tomioka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui, GaAs/AlGaAs Core Multishell Nanowire-Based Light-Emitting Diodes on Si, Nano Lett, issue.5, pp.1639-1644, 2010.

E. M. Gallo, G. Chen, M. Currie, T. Mcguckin, P. Prete et al., Picosecond Response Times in GaAs / AlGaAs Core / Shell Nanowire-Based Photodetectors Picosecond Response Times in GaAs / AlGaAs Core / Shell Nanowire-Based Photodetectors, Appl. Phys. Lett, p.241113, 2011.

J. Winnerl, J. Treu, B. Mayer, D. Rudolph, J. Schnell et al., Lasing from Individual GaAs-AlGaAs Core-Shell Nanowires up to Room Temperature, Nat. Commun, 2013.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao et al., Optically Pumped Room-Temperature GaAs Nanowire Lasers, Nat. Photonics, issue.7, p.963, 2013.

X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu et al., GaAs/AlGaAs Nanowire Photodetector, Nano Lett, vol.14, issue.5, pp.2688-2693, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02351651

J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, S. Iwamoto et al., Low-Threshold near-Infrared GaAs ? AlGaAs Core ? Shell Nanowire Plasmon Laser, ACS Photonics, vol.2, issue.1, pp.165-171, 2015.

V. Piazza, M. Vettori, A. Ahmed, N. Chauvin, G. Patriarche et al., Nanoscale Investigation of Radial P-n Junction in Self-Catalyzed GaAs Nanowires Grown on Si (111), Nanoscale, vol.10, issue.43, pp.20207-20217, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01701482

M. Vettori, V. Piazza, A. Cattoni, A. Scaccabarozzi, G. Patriarche et al., Growth Optimization and Characterization of Regular Arrays of GaAs/AlGaAs Core/Shell Nanowires for Tandem Solar Cells on Silicon, Nanotechnology, vol.30, p.84005, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01969073

M. Hilse, M. Ramsteiner, S. Breuer, L. Geelhaar, and H. Riechert, Incorporation of the Dopants Si and Be into GaAs Nanowires, Appl. Phys. Lett, issue.19, pp.10-12, 2010.

Y. Zhang, Z. Sun, A. M. Sanchez, M. Ramsteiner, M. Aagesen et al., Doping of Self-Catalyzed Nanowires under the Influence of Droplets, Nano Lett, vol.18, pp.81-87, 2018.

E. Dimakis, M. Ramsteiner, A. Tahraoui, H. Riechert, and L. Geelhaar, Shell-Doping of GaAs Nanowires with Si for n-Type Conductivity, Nano Res, vol.2012, issue.11, pp.796-804

L. Titova,

T. B. Hoang, H. E. Jackson, L. M. Smith, J. M. Yarrison-rice, Y. Kim et al., Temperature Dependence of Photoluminescence from Single Core-Shell GaAs -AlGaAs Nanowires, Appl. Phys. Lett, p.173126, 2006.

S. Perera, M. A. Fickenscher, H. E. Jackson, L. M. Smith, J. M. Yarrison-rice et al., Nearly Intrinsic Exciton Lifetimes in Single Twin-Free GaAs / AlGaAs Core-Shell Nanowire Heterostructures, Appl. Phys. Lett, p.53110, 2008.

P. Krogstrup, R. Popovitz-biro, E. Johnson, M. H. Madsen, J. Nygård et al., Structural Phase Control in Self-Catalyzed Growth of GaAs Nanowires on Silicon, issue.111

, Nano Lett, issue.11, pp.4475-4482, 2010.

M. Heiss, S. Conesa-boj, J. Ren, H. Tseng, A. Gali et al., Direct Correlation of Crystal Structure and Optical Properties in Wurtzite/Zinc-Blende GaAs Nanowire Heterostructures, Phys. Rev. B, vol.83, issue.4, p.45303, 2011.

N. Ben-sedrine, R. Ribeiro-andrade, A. Gustafsson, M. R. Soares, J. Bourgard et al., Fluctuating Potentials in GaAs:Si Nanowires: Critical Reduction of the Influence of Polytypism on the Electronic Structure, vol.10, pp.3697-3708, 2018.

V. Dhaka, J. Oksanen, H. Jiang, T. Haggren, A. Nykänen et al., Aluminum-Induced Photoluminescence Red Shifts in Core-Shell GaAs/AlxGa1-XAs Nanowires, Nano Lett, vol.2013, issue.8, pp.3581-3588

Y. Fontana, P. Corfdir, B. Van-hattem, E. Russo-averchi, M. Heiss et al., Exciton Footprint of Self-Assembled AlGaAs Quantum Dots in Core-Shell Nanowires, Phys. Rev. B -Condens. Matter Mater. Phys, vol.2014, issue.7, p.75307

L. Francaviglia, Y. Fontana, S. Conesa-boj, G. Tütüncüoglu, L. Duchêne et al., Fontcuberta i Morral, A. Quantum Dots in the GaAs/AlxGa1-XAs Core-Shell Nanowires: Statistical Occurrence as a Function of the Shell Thickness, Appl. Phys. Lett, vol.107, issue.3, p.33106, 2015.

B. Loitsch, N. Jeon, M. Döblinger, J. Winnerl, E. Parzinger et al., Suppression of Alloy Fluctuations in GaAs-AlGaAs Core-Shell Nanowires, Appl. Phys. Lett, vol.109, issue.9, p.93105, 2016.

N. Vainorius, D. Jacobsson, S. Lehmann, A. Gustafsson, K. A. Dick et al., Observation of Type-II Recombination in Single Wurtzite/Zinc-Blende GaAs Heterojunction Nanowires, Phys. Rev. B -Condens. Matter Mater. Phys, vol.2014, issue.16, pp.1-8

D. Spirkoska, A. L. Efros, W. R. Lambrecht, T. Cheiwchanchamnangij, A. Fontcuberta-i-morral et al., Valence Band Structure of Polytypic Zinc-Blende/Wurtzite GaAs Nanowires Probed by Polarization-Dependent Photoluminescence, Phys. Rev. B -Condens. Matter Mater. Phys, vol.2012, issue.4, p.45309

U. Jahn, J. Lähnemann, C. Pfüller, O. Brandt, S. Breuer et al., Luminescence of GaAs Nanowires Consisting of Wurtzite and Zinc-Blende Segments, Phys. Rev. B -Condens. Matter Mater. Phys, vol.2012, issue.4, p.45323

J. Bolinsson, M. Ek, J. Trägårdh, K. Mergenthaler, D. Jacobsson et al., GaAs/AlGaAs Heterostructure Nanowires Studied by Cathodoluminescence, Nano Res, vol.7, issue.4, pp.473-490, 2014.

P. Lavenus, A. Messanvi, L. Rigutti, A. De-luna-bugallo, H. Zhang et al., Experimental and Theoretical Analysis of Transport Properties of Core-Shell Wire Light Emitting Diodes Probed by Electron Beam Induced Current Microscopy, Nanotechnology, vol.25, issue.25, p.255201, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02166153

C. W. Cheng, K. T. Shiu, N. Li, S. J. Han, L. Shi et al., Epitaxial Lift-off Process for Gallium Arsenide Substrate Reuse and Flexible Electronics, Nat. Commun, 1577.

A. Luque and S. S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2003.

R. Weihofen, G. Weiser, C. Starck, and R. J. Simes, Energy Gaps in Strained In1-XGaxAs/In1-YGayAszP1-z Quantum Wells Grown on (001) InP, Phys. Rev. B, issue.7, pp.4296-4305, 1995.

V. Maryasin, D. Bucci, Q. Rafhay, F. Panicco, J. Michallon et al., Technological Guidelines for the Design of Tandem III-V Nanowire on Si Solar Cells from Opto-Electrical Simulations, Sol. Energy Mater. Sol. Cells, vol.2017, pp.314-323
URL : https://hal.archives-ouvertes.fr/hal-01959103

J. Michallon, D. Bucci, A. Morand, M. Zanuccoli, V. Consonni et al., Light Trapping in ZnO Nanowire Arrays Covered with an Absorbing Shell for Solar Cells, Opt. Express, vol.22, issue.S4, pp.1174-1189, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01112082

A. C. Chia and R. R. Lapierre, Electrostatic Model of Radial Pn Junction Nanowires, J. Appl. Phys, vol.114, p.74317, 2013.

Z. Li, Y. C. Wenas, L. Fu, S. Mokkapati, H. H. Tan et al., Influence of Electrical Design on Core -Shell GaAs Nanowire Array Solar Cells, IEEE J. Photovoltaics, vol.5, issue.3, pp.854-864, 2015.

K. Madiomanana, M. Bahri, J. B. Rodriguez, L. Largeau, L. Cerutti et al., Silicon Surface Preparation for III-V Molecular Beam Epitaxy, J. Cryst. Growth, vol.413, pp.17-24, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01626282

B. Bauer, A. Rudolph, M. Soda, A. Fontcuberta-i-morral, J. Zweck et al., Position Controlled Self-Catalyzed Growth of GaAs Nanowires by Molecular Beam Epitaxy, Nanotechnology, vol.2010, issue.43, p.435601

S. Plissard, G. Larrieu, X. Wallart, and P. Caroff, High Yield of Self-Catalyzed GaAs Nanowire Arrays Grown on Silicon via Gallium Droplet Positioning, Nanotechnology, vol.22, issue.27, p.275602, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00597081

Y. Zhang, J. Wu, M. Aagesen, J. Holm, S. Hatch et al., Self-Catalyzed Ternary Core-Shell GaAsP Nanowire Arrays Grown on Patterned Si Substrates by Molecular Beam Epitaxy, Nano Lett, issue.8, pp.4542-4547, 2014.

A. M. Munshi, D. L. Dheeraj, V. T. Fauske, D. C. Kim, J. Huh et al., Position-Controlled Uniform GaAs Nanowires on Silicon Using Nanoimprint Lithography, Nano Lett, vol.14, issue.2, pp.960-966, 2014.

K. Tomioka and T. Fukui, Recent Progress in Integration of III-V Nanowire Transistors on Si Substrate by Selective-Area Growth, J. Phys. D. Appl. Phys, vol.2014, issue.39, p.394001

M. Heiss, E. Russo-averchi, A. Dalmau-mallorquí, G. Tu?tu?ncu?o?lu, F. Matteini et al., Alarcon-Lladó, E.; Fontcuberta i Morral, A. III-V Nanowire Arrays: Growth and Light Interaction, Nanotechnology, vol.25, issue.1, p.14015, 2014.

E. Russo-averchi, J. Vukajlovic-plestina, G. Tu?tu?ncu?o?lu, F. Matteini, A. Dalmau-mallorquí et al., High Yield of GaAs Nanowire Arrays on Si Mediated by the Pinning and Contact Angle of Ga, Nano Lett, issue.5, pp.2869-2874, 2015.

J. Vukajlovic-plestina, W. Kim, V. G. Dubrovski, G. Tu?tu?ncu?o?lu, M. Lagier et al., Ordered GaAs Nanowires on Silicon. Nano Lett, vol.2017, issue.7, pp.4101-4108

S. L. Tan, Y. Genuist, M. I. Den-hertog, E. Bellet-amalric, H. Mariette et al., Highly Uniform Zinc Blende GaAs Nanowires on Si (111) Using a Controlled Chemical Oxide Template, Nanotechnology, vol.28, p.255602, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01638616

H. Küpers, A. Tahraoui, R. B. Lewis, S. Rauwerdink, M. Matalla et al., Surface Preparation and Patterning by Nano Imprint Lithography for the Selective Area Growth of, GaAs Nanowires on Si, issue.111

, Semicond. Sci. Technol, vol.2017, issue.111, p.115003

S. Breuer, Molecular Beam Epitaxy of GaAs Nanowires and Their Suitability for Optoelectronic Applications, 2011.

K. Tomioka, J. Motohisa, S. Hara, and T. Fukui, Control of InAs Nanowire Growth Directions on Si, Nano Lett, vol.8, issue.10, pp.3475-3480, 2008.

. Isp-optics, Si specifications

, AZO Materials

T. Yamane, N. Nagai, S. I. Katayama, and M. Todoki, Measurement of Thermal Conductivity of Silicon Dioxide Thin Films Using a 3? Method, J. Appl. Phys, vol.91, issue.12, pp.9772-9776, 2002.

P. D. Maycock, Thermal Conductivity of Silicon, Germanium, III-V Compounds and III-V Alloys, Solid State Electron, vol.10, issue.3, pp.161-168, 1967.

M. Nolan, T. Perova, R. A. Moore, and H. S. Gamble, Boron Diffusion from a Spin-on Source during Rapid Thermal Processing, J. Non. Cryst. Solids, vol.254, pp.89-93, 1999.

A. Fave, J. F. Lelièvre, T. Gallet, Q. Su, and M. Lemiti, Fabrication of Si Tunnel Diodes for C-Si Based Tandem Solar Cells Using Proximity Rapid Thermal Diffusion, Energy Procedia, vol.124, pp.577-583, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02063256

H. Wu, G. Ru, Y. Zhang, C. Jin, B. Mizuno et al., Electrochemical Capacitance-Voltage Characterization of Plasma-Doped Ultra-Shallow Junctions, Front. Electr. Electron. Eng. China, vol.3, issue.1, pp.116-119, 2008.

M. Yao, N. Huang, S. Cong, C. Chi, M. A. Seyedi et al., GaAs Nanowire Array Solar Cells with Axial P-i-n Junctions, Nano Lett, issue.6, pp.3293-3303, 2014.

M. P. Patkar, T. P. Chin, J. M. Woodall, M. S. Lundstrom, and M. R. Melloch, Very Low Resistance Nonalloyed Ohmic Contacts Using Lowtemperature Molecular Beam Epitaxy of GaAs, Appl. Phys. Express, p.1412, 1995.

J. Zhang, A. C. Chia, and R. R. Lapierre, Low Resistance Indium Tin Oxide Contact to N-GaAs Nanowires, Semicond. Sci. Technol, vol.29, p.54002, 2014.

B. P. Payne and . X-ray, Photoelectron Spectroscopy Studies on the Oxidation Processes of Nickel, Chromium and Their Alloys, 2011.

-. Slideserve and . Spectroscopy,

V. Piazza, M. Vettori, A. Ahmed, N. Chauvin, G. Patriarche et al., Poster: Nanoscale Investigation of Radial p-n Junction in Self-Catalyzed GaAs Nanowires Grown on Si, 2017.

V. Piazza, L. Mancini, H. L. Chen, S. Collin, and M. Tchernycheva, Nanoscale Analyses Applied to Nanowire Devices, In Semiconductors and Semimetals, vol.98, pp.231-319, 2018.

. .. Preliminaries, Droplet saturation condition and amont of species in the droplet, p.4

. .. Remarks,

. .. Numerical-results, , vol.9

M. Tchernycheva, L. Travers, G. Patriarche, F. Glas, J. C. Harmand et al., Au-Assisted Molecular Beam Epitaxy of InAs Nanowires: Growth and Theoretical Analysis, J. Appl. Phys, vol.102, issue.9, p.94313, 2007.

F. Glas, Vapor Fluxes on the Apical Droplet during Nanowire Growth by Molecular Beam Epitaxy. Phys. Status Solidi Basic Res, vol.247, p.254258, 2010.

V. G. Dubrovskii, T. Xu, A. D. Álvarez, S. R. Plissard, P. Caro et al., Self-Equilibration of the Diameter of Ga-Catalyzed GaAs Nanowires, Nano Lett, issue.8, p.55805584, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01713077

P. Schroth, J. Jakob, L. Feigl, S. M. Mostafavi-kashani, J. Vogel et al., Radial Growth of Self-Catalyzed GaAs Nanowires and the Evolution of the Liquid Ga-Droplet Studied by Time-Resolved in Situ X-Ray Diraction, Nano Lett, vol.18, issue.1, 2018.

, Pour atteindre cet objectif, nous avons tout d'abord étudié la croissance de NFs GaAs, étape clé pour le développement des NFs p-GaAs/p.i.n-Al0.2Ga 0.8As coeur/coquille, qui devraient constituer la cellule supérieure de la TSC. Nous avons montré, en particulier, l'influence de l'angle d'incidence du flux de Ga sur la cinétique de croissance des NFs GaAs

, 8As coeur/coquille sur des substrats de Si prêts pour l'emploi. Les caractérisations EBIC réalisées sur ces NFs ont montré qu'ils sont des candidats potentiels pour la réalisation d'une cellule photovoltaïque. Nous avons ensuite fait croître ces NFs sur des substrats de Si patternés afin d'obtenir des réseaux réguliers de ces NFs. Nous avons développé un protocole, basé sur un pré-traitement thermique, qui permet d'obtenir des rendements élevés de NFs verticaux (80-90 %) sur une surface, Nous avons ensuite utilisé le savoir-faire acquis pour faire croître des NFs p-GaAs/p.i.n-Al0,2Ga0

. Enfin, nous avons consacré une partie de notre travail à définir le procédé de fabrication optimal pour la TSC, en concentrant notre attention sur le développement de la jonction tunnel de la TSC, l'encapsulation des NFs et le contact électrique supérieur du réseau de NFs. MOT-CLEFS : Nanofils à base d'AlGaAs, structures coeur/coquille, jonction radiale, EBIC, réseaux ordonnés