, 192 7.2.3 Model setups for ENF tests

. .. Modeling, 3 Tier 2: 3D Shell blade section

D. .. Conclusions,

. Pts-flapwise, bending moment applied in the flapwise direction from the pressure side (intrados) of the blade towards its suction side (extrados)

. Stp-flapwise, bending moment applied in the flapwise direction from the suction side (extrados) of the blade towards its pressure side (intrados)

. Ttl-edgewise,

. Ltt-edgewise,

H. Abedi, Aerodynamic Loads on Rotor Blades, 2013.

A. Abouhnik and A. Albarbar, Wind turbine blades condition assessment based on vibration measurements and the level of an empirically decomposed feature, Energy Conversion and Management, vol.64, pp.606-613, 2012.

, Advanced Materials : S-2 Glass® Fiber, Advanced Materials, 2011.

O. Allix, P. Ladevèze, and A. Corigliano, Damage analysis of interlaminar fracture specimens, 1995.
URL : https://hal.archives-ouvertes.fr/hal-01745239

, Composite Structures, vol.31, pp.61-74

S. I. Andersen, Fatigue of materials and components for wind turbine rotor blades

J. Andersons, M. Hojo, and S. Ochiai, Empirical model for stress ratio effect on fatigue délamination growth rate in composite laminates, International Journal of Fatigue, pp.597-604, 2004.

A. Argüelles, Using a statistical model for the analysis of the influence of the type of matrix carbon-epoxy composites on the fatigue delamination under modes I and II of fracture, International Journal of fatigue, pp.54-59, 2013.

F. Avilés and L. Carlsson, Analysis of the sandwich DCB specimen for debond characterization, Engineering Fracture Mechanics, vol.75, issue.2, pp.153-168, 2008.

M. Bechly and P. Clausen, Structural design of a composite wind turbine blade using finite element analysis, Computers & Structures, vol.63, 1997.

G. E. Beltz, Dislocation Nucleation Versus Cleavage Decohesion at Crack Tips, The Minerals, Metals & Materials Society, 1991.

C. Berggreen, K. Branner, J. F. Jensen, and J. P. Schultz, Application and Analysis of Sandwich Elements in the Primary Structure of Large Wind Turbine Blades, Journal of Sandwich Structures and Materials, vol.9, pp.525-551, 2007.

M. Bizeul, C. Bouvet, J. Barrau, and R. Cuenca, Fatigue crack growth in thin notched woven glass composites under tensile loading. Part I: Experimental. Composites Science and Technology, pp.289-296, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01852900

M. Bizeul, C. Bouvet, J. Barrau, and R. Cuenca, Fatigue crack growth in thin notched woven glass composites under tensile loading, Part II: Modelling. Composites Science and Technology, pp.297-305, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01852900

E. C. Botelho, Fatigue behaviour study on repaired aramid fiber/epoxy composites, Journal of Aerospace Technology and Management, issue.2, p.1, 2009.

G. T. Camacho, Computational Modelling of Impact Damage in Brittle Materials, Int. J. Solids Struct, Issue, vol.33, pp.2899-2938, 1996.

P. Camanhoa, Three-dimensional invariant-based failure criteria for fiber-reinforced composites, International Journal of Solids and Structures, 2014.

N. D. Carvalho, S. Pinho, and P. Robinson, An experimental study of failure initiation and propagation in 2D woven composites under compression, Composites Science and Technology, vol.71, issue.10, pp.1316-1325, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00768854

C. C. Chamis, Simplified composites micromehanics equations for hygal, thermal and mechanical properties, 1984.

. Sampe-qtrly,

N. E. Chazly, Static and dynamic analysis of wind turbine blades using the finite element method. Renewable Energy, pp.705-724, 1993.

H. S. Choi, J. D. Achenbach, and C. Kim, Micromechanical Bilinear Behavior of Composite Lamina Subjected to Combined Thermal and Mechanical Loadings, Mechanics of Composite Materials and Structures, vol.8, issue.2, pp.135-155, 2001.

T. L. Chr and L. Overgaard-&-erik, Structural Design Sensitivity Analysis and Optimization of Vestas V52 Wind Turbine Blade, 2005.

R. M. Christensen, Failure Criteria for Anisotropic Fiber Composite Materials, 2014.

J. Clausen-&-epaarachchi, A Model for Fatigue Behavior Prediction of Glass Fibre-Reinforced Plastic (GFRP) Composites for Various Stress Ratios and Test Frequencies, Composite A: Applied Science and Manufacturing, vol.34, pp.313-326, 2003.

C. Colombo and L. Vergani, Influence of delamination on fatigue properties of a fibreglass composite, Composite Structures, pp.325-333, 2014.

F. Curà, G. Curti, and R. Sesana, A new iteration method for the thermographic determination of fatigue limit in steels, International Journal of Fatigue, vol.27, issue.4, pp.453-459, 2005.

M. Damghani, D. Kennedy, and C. Featherston, Global buckling of composite plates containing rectangular delaminations using exact stiffness analysis and smearing method, Computers & Structures, vol.134, pp.32-47, 2014.

B. D. Davidson and V. Sundarararaman, A single leg bending test for interracial fracture toughness determination, International Journal of fracture, vol.78, pp.193-210, 1996.

B. D. Davidson and V. Sunderaman, A single leg bending test for interracial fracture toughness determination, International Journal of fracture, vol.78, pp.193-210, 1996.

&. Decolon and . Christian, Criteria of Failure, Structures Composites calcul des plaques et des poutres multicouches, pp.70-76, 2000.

, The Energy Challenge: Energy Review Report, 2006.

K. S. Dubouloz, Adhesives for bonding wind turbine blades, 2009.

E. Engineering and A. , Life Cycle Assessment of Offshore and Onshore Sited Wind Farms, 2004.

T. Emery and J. Dulieu-barton, Thermoelastic Stress Analysis of damage mechanisms in composite materials, Composites: Part A, pp.1729-1742, 2010.

V. Esfahanian, Numerical analysis of flow field around NREL PhaseII wind turbinebyahybridCFD/BEMmethod, Journal of Wind Engineering and Industrial Aerodynamics, pp.29-36, 2013.

, Deep water: The next step for offshore wind energy, European Wind Energy Association (EWEA), 2013.

, The European offshore wind industry -key trends and statistics 1st half, EWEA, 2013.

G. Fargione, A. Geraci, G. L. Rosa, and A. Risitano, Rapid determination of the fatigue curve by the thermographic method, International Journal of Fatigue, pp.11-19, 2002.

N. Fern, P. Alam, F. Touaiti, and M. Toivakka, Fatigue life predictions of porous composite paper coatings, Journal of Fatigue, pp.181-187, 2012.

G. Freebury and W. Musial, Determining Equivalent Damage Loading for Full-Scale Wind Turbine Blade Fatigue Tests. Nevada, 19th American Society of Mechanical Engineers (ASME) Wind Energy Symposium, 2000.

Y. A. Freed and .. L. , A New Cohesive Zone Model for Mixed Mode Interface Fracture in Bimaterials, Eng. Fract. Mech, vol.75, issue.15, pp.4583-4593, 2008.

Y. F. Gao and A. F. Bower, A simple technique for avoiding convergence problems in finite element simulations of crack nucleation andgrowth on cohesive interfaces, vol.12, pp.453-463, 2004.

C. Gebhardt and B. Roccia, Non-linear aeroelasticity: An approach to compute the response of three-blade large-scale horizontal-axis wind turbines, Renewable Energy, vol.66, pp.495-514, 2014.

P. H. Geubelle, Impact-Induced Delamination of Composites: A 2D Simulation, Compos. Part B: Eng., Issue, vol.29, issue.5, pp.589-602, 1998.

, Global Wind Energy Council (GWEC), 2005.

. Griffin-&-dayton, Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine, pp.2002-1879, 2002.

D. A. Griffin and M. D. Zuteck, Scaling of Composite Wind Turbine Blades for Rotor of 80 to 120 Meter Diameter, Journal of Solar Energy Engineering, vol.123, pp.310-318, 2001.

D. A. Griffin, Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine, pp.2002-1879, 2002.

D. A. Griffin, Manufacturing Process and Structural Design for Large Wind Turbine Blades, 2002.

U. Nevada,

J. D. Gunderson, J. F. Brueck, and A. J. Paris, Alternative test method for interlaminar fracture toughness of composites, Int J Fract, vol.143, pp.273-276, 2007.

B. Hachemane and B. Bezzazi, Comportement en fatigue de matériau composite, 2009.

R. Haj-ali, B. Wei, S. Johnson, and R. El-hajjar, Thermoelastic and infrared-thermography methods for surface strains in cracked orthotropic composite materials, Engineering Fracture Mechanics, pp.58-75, 2008.

J. Halpin and J. Kardos, The Halpin-Tsai equations: a review, Polym Engng Sci, vol.16, pp.344-352, 1976.

H. Hamdi, C. Mrad, A. Hamdi, and R. Nasri, Dynamic response of a horizontal axis wind turbine blade under aerodynamic, gravity and gyroscopic effects, Applied Acoustics, 2014.

L. Hamitouche, M. Tarfaoui, and A. Vautrin, An interface debonding law subject to viscous regularization for avoiding instability: Application to the delamination problems, Engineering Fracture Mechanics, vol.75, issue.10, pp.3084-3100, 2008.
URL : https://hal.archives-ouvertes.fr/emse-00502020

P. Hansen, S. Giannis, and .. R. Martin, Testing And Analysis Of Advanced Composite Materials And Structures In Wind Turbine Applications, 2008.

P. Hansen, S. Giannis, and R. Martin, Testing And Analysis Of Advanced Composite Materials And Structures In Wind Turbine Applications, 2008.

B. Harris, Fatigue in Composites, 2003.

, Théorie de HELICIEL, HELICIEL, 2013.

B. Hillmer, T. Borstelmann, P. Schaffarczyk, and L. Dannenberg, Aerodynamic and Structural Design of Multi MW Wind Turbine Blades beyond 5 MW. The Science of Making Torque from Wind, 2007.

J. W. Holmes and B. F. Brøndsted, Reliability of Wind Turbine Blades: An Overview of Materials Testing, 2007.

J. W. Holmes, B. F. Sørensen, and P. Brøndsted, Reliability of Wind Turbine Blades: An Overview of Materials Testing, 2007.

Z. Huang, Micromechanical modeling of fatigue strength of unidirectional fibrous composites, International Journal of Fatigue, pp.659-670, 2002.

G. Ingram, Wind Turbine Blade Analysis using the Blade Element Momentum Method. International Energy Agency, Key World Energy Statistics, 2005.

S. L. Janajreh, Development and application of an improved blade element momentum method model on horizontal axis wind turbines, International Journal of Energy and Environmental Engineering, issue.30, p.3, 2012.

Y. Ji and K. Han, Fracture mechanics approach for failure of adhesive joints in wind turbine blades, Renewable Energy, vol.65, pp.23-28, 2014.

S. Joncas, M. J. De-ruiter, and F. Van-keulen, Preliminary Design of Large Wind Turbine Blades Using Layout Optimization Techniques, 2004.

E. R. Jørgensen, Full scale testing of wind turbine blade to failure -flapwise loading, 2004.

C. W. Kensche, Fatigue of composites for wind turbines, 2004.

T. Kim, A. M. Hansen, and K. Branne, Development of an anisotropic beam finite element for composite wind turbine blades in multibody system, Renewable Energy, vol.59, pp.172-183, 2013.

T. J. Knill, The Application of Aeroelastic Analysis Output Load Distributions to Finite Element Models of Wind. Wind Engineering, vol.2, pp.153-168, 2005.

E. Kordatosa, K. Dassiosa, D. Aggelisa, and T. Matikasa, Rapid evaluation of the fatigue limit in composites using infrared lock-in thermography and acoustic emission, Mechanics Research Communications, pp.14-20, 2013.

R. Kregting, Cohesive zone models towards a robust implementation of irreversible behaviour, 2005.

L. Krstulovic-opara, B. Klarin, P. Neves, and Z. Domazet, Thermal imaging and Thermoelastic Stress Analysis of impact damage of composite materials, Engineering Failure Analysis, pp.713-719, 2011.

R. Krueger, P. J. Minguet, and T. K. O'brien, A Method For Calculating Strain Energy Release Rates In Preliminary Design Of Composite Skin/Stringer Debonding Under Multi-Axial Loading, Composite Structures: Theory and Practice, ASTM STP 1383, pp.105-128, 2000.

D. Lekou, 10 -Probabilistic design of wind turbine blades, pp.325-329, 2013.

D. Li, Y. Liu, and X. Zhang, Low-velocity impact responses of the stiffened composite laminated plates based on the progressive failure model and the layerwise/solid-elements method, Composite Structures, vol.110, pp.249-275, 2014.

J. Llorca, Fatigue of particle and whisker reinforced metal matrix composites. Progress in Materials Science, pp.283-353, 2000.

&. Madsen and . Krogsgaard, Offshore Wind Power, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00530475

M. Manca, A. Quispitupa, C. Berggreen, and L. A. Carlsson, Face/core debond fatigue crack growth characterization using the sandwich mixed mode bending specimen, Composites: Part A, vol.43, pp.2120-2127, 2012.

K. Mason, Carbon/glass hybrids used in composite wind turbine rotor blade design, Composites Technology, 2004.

L. Mccartney, Energy methods for fatigue damage modelling of laminates, Composites Science and Technology, pp.2601-2615, 2008.

L. R. Mckittrick, Wind Turbine Using a Finite Element Model, pp.2001-1441, 2001.

J. Montesanoa, Z. Fawaz, and H. Bougherara, Use of infrared thermography to investigate the fatigue behavior of a carbon fiber reinforced polymer composite. Composite Structures, pp.76-83, 2013.

G. B. Murri, Effect of Data Reduction and Fiber-Bridging on Mode I Delamination Characterization of Unidirectional Composites, 2011.

L. S. Musial, Comprehensive Testing of Nedwind 12 -Meter Wind Turbine Blade at NERL, 2000.

&. Nass and . Wind, Cross Section Drawings of SPM 1 MW Wind Blade

A. Needleman, A Continuum Model for Void Nucleation by Inclusion Debonding, ASME J. Appl. Mech, Issue, vol.54, issue.3, pp.525-531, 1987.

A. Needleman, An Analysis of Tensile Decohesion Along an Interface, J. Mech. Phys. Solids, pp.289-324, 1990.

M. A. Ortiz, Finite-Deformation Irreversible Cohesive Elements for Three Dimensional Crack-Propagation Analysis, Int. J. Numer. Methods Eng., Issue, vol.44, issue.9, pp.1267-1282, 1999.

A. Paquette, T. D. , and J. , Composite Materials For Innovative Wind Turbine Blades, 2011.

T. D. Paquette, Composite Materials For Innovative Wind Turbine Blades, 2011.

S. Parida and A. Pradhan, Influence of curvature geometry of laminated FRP composite panels on delamination damage in adhesively bonded lap shear joints, International Journal of Adhesion and Adhesives, vol.54, pp.57-66, 2014.

B. Park, Y. An, and H. Sohn, Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning, Composites Science and Technology, vol.100, pp.10-18, 2014.

K. Park and G. H. Paulino, Cohesive Zone Models: A critical review of traction seperation relationships across fracture surfaces, Applied Mechanics Reviews, 2011.

P. P. Parlevliet and H. E. Beukers, Residual stresses in thermoplastic composites-A study of the literature-Part I: Formation of residual stresses, 2006.

P. E. Petersson, Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials, .: LUTVDG/TVBM-1006 Lund Institute of Technology, 1981.

J. Reinoso, Experimental and three-dimensional global-local finite element analysis of a composite component including degradation process at the interfaces, Composites Part B: Engineering, issue.4, p.43, 2012.

, Renewable Energy Policy Network for the 21st Century, REN21, 2011.

G. L. Rosa and A. Risitano, Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components, International Journal of Fatigue, pp.65-73, 2000.

P. Roth-johnson, R. E. Wirz, and E. Lin, Structural design of spars for 100-m biplane wind turbine blades, Renewable Energy, vol.71, pp.133-155, 2014.

D. Roylance, Laminated Composite Plates, 2000.

B. P. Russel, T. Liu, N. A. Fleck, and V. S. Deshpande, Quasi-Static Three-Point bending of carbon sandwich beams with square honeycomb cores, Journal of applied mechancis, vol.78, 2011.

I. Scheider and W. Brocks, Simulation of Cup-Cone Fracture Using the Cohesive Model, Eng. Fract. Mech, vol.70, issue.14, pp.1943-1961, 2003.

M. M. Shokrieh and R. Rafiee, Simulation of fatigue failure in a full composite wind turbine blade, Composite Structures, vol.74, issue.3, pp.332-342, 2006.

. Siemens, Siemens Global Website, 2008.

A. Smaïli and C. Masson, Numerical modelling of flow around wind turbines using a hybrid method based on the Navier-Stockes solver and the generalized actuator disc concept. Revue des Energies Renouvelables SMEE'10 Bou Ismail Tipaza, pp.301-309, 2010.

F. Song, Y. Ni, and Z. Tan, Optimization Design. Procedia Engineering, vol.16, pp.369-406, 2011.

P. Stanely, Application and potential of thermoelastic stress analysis, pp.359-370, 1997.

J. Sutherland, On The Fatigue Analysis of Wind Turbines, pp.99-0089, 1999.

R. Talreja, Damage and fatigue in composites -A personal account, Composites Science and Technology, pp.2585-2591, 2008.

V. Tvergaard and J. W. Hutchinson, The Influence of Plasticity on Mixed Mode Interface Toughness, J. Mech. Phys. Solids, vol.41, issue.6, pp.1119-1135, 1993.

V. Tvergaard, Effect of Fibre Debonding in a Whisker-Reinforced Metal, Mater. Sci. Eng., Issue, vol.125, issue.2, pp.203-213, 1990.

T. Centre, Decarbonising the UK: Energy for a Climate Conscious Future, 2005.

, Levelized Cost of New Generation Resources in the Annual Energy, 2011.

Z. T. Upitis, I. V. Builis, U. E. Krauya, and V. I. Kulik, Initial Stages Of Failure Of An Orthogonally Reinforced Composite Material. Fracture of Composite Materials, 1979.

L. Valencia and J. Ulyses, Design Studies For Twist-Coupled Wind Turbine Blades, pp.2004-0522, 2004.

K. Van-rijswijk, Sustainable Vacuum-Infused Thermoplastic Composites for MW-Size Wind Turbine Blades -Preliminary Design and Manufacturing Issues, Journal of Solar Energy Engineering, vol.127, pp.570-580, 2005.

D. S. Vasconcellos, F. Touchard, and L. Chocinski-arnault, Tension-tension fatigue behaviour of woven hemp fibre reinforced epoxy composite: A multi-instrumented damage analysis, International Journal of Fatigue, 2013.

P. Veers, Trends in the Design, Manufacture and Evaluation of Wind Turbine Blades, Wind Energy, issue.6, pp.245-259, 2003.

D. Verelst, Flexible wind turbine blades, 2009.

J. Wang and P. Qiao, Novel beam analysis of end notched flexure specimen for mode-II fracture, Engineering fracture mechanics, vol.71, pp.219-231, 2003.

L. Wang, A mathematical model for calculating cross-sectional properties of modern wind turbine composite blades, Renewable Energy, vol.64, pp.52-60, 2014.

L. Wang, A mathematical model for calculating cross-sectional properties of modern wind turbine composite blades, Renewable Energy, vol.64, pp.52-60, 2014.

Y. Wang, M. Liang, and J. Xiang, Yanfeng Wang, Ming Liang, Jiawei Xiang, Damage detection method for wind turbine blades based on dynamics analysis and mode shape difference curvature information, Mechanical Systems and Signal Processing, vol.48, pp.351-360, 2014.

K. L. Williams, Determination of Fatigue-related Heat Emission in Composite Materials, Experimental Mechanics, pp.479-485, 1974.

F. Wu and W. Yao, A fatigue damage model of composite materials, International Journal of Fatigue, pp.134-138, 2010.

Y. Xiang, R. Liu, T. Peng, and Y. Liu, A novel subcycle composite delamination growth model under fatigue cyclic loadings. Composite Structures, pp.31-40, 2014.

X. Xu and A. Needleman, Void Nucleation by Inclusion Debonding in a Crystal Matrix, Model. Simul. Mater. Sci. Eng., Issue, vol.1, issue.2, pp.111-132, 1993.

J. Zhang, The influence of wind shear on vibration of geometrically nonlinear wind turbine blade under fluid-structure interaction, Ocean Engineering, vol.84, pp.14-19, 2014.

H. Zhou, A review of full-scale structural testing of wind turbine blades, Renewable and Sustainable Energy Reviews, vol.33, pp.177-187, 2014.

L. Zhuang and R. Talreja, Effects of voids on postbuckling delamination growth in unidirectional composites, International Journal of Solids and Structures, vol.51, issue.5, pp.936-944, 2014.

, Table C-8: Applied bending moments