, Contributions: Pradeep Das (3D reconstruction of samples

, Kiss (development of analysis tools, computation of local curvature) REFERENCES

R. Álvarez-asencio, E. Thormann, and M. W. Rutland, Note: Determination of torsional spring constant of atomic force microscopy cantilevers: Combining normal spring constant and classical Preliminary data showing the effect of 1mM IAA exogenous treatment on wild-type (A-H) and clv3-2 (I-N) SAM expressing the DR5::GFPer reporter, 2013.

, 12 hours (t12h, C) or 30 hours (t30h, D and M) after the beginning of the 5-hour IAA treatment. Orthogonal views taken at the centre of the SAM in (A-D) are shown in (E-H), respectively. Pictures in (I, J, L, M) are two zones from a single fasciated clv3-2 SAM at t0 (I, J)

A. , I. , J. , L. , and M. ). , Asterisks in (E-H) indicate the centre of the SAM. Arrows in (G) point regions of lower DR5 expression in the periphery of the SAM. Scale bars are, Orthogonal views of (J, M) are shown in (K, N), respectively, vol.50

N. Abbasi, Y. Park, and S. Choi, Pumilio Puf domain RNA-binding proteins in Arabidopsis, Plant Signaling & Behavior, vol.6, pp.364-368, 2011.

P. Aggarwal, R. K. Yadav, and G. V. Reddy, Identification of novel markers for stem-cell niche of Arabidopsis shoot apex, Gene Expression Patterns, vol.10, pp.259-264, 2010.

J. M. Alonso, A. N. Stepanova, T. J. Leisse, C. J. Kim, H. Chen et al., Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana, Science, vol.301, pp.653-657, 2003.

A. Armezzani, U. Abad, A. O. , A. Robin, A. Vachez et al.,

L. Taconnat, V. Battu, and T. Stanislas, Transcriptional induction of cell wall remodelling genes is coupled to microtubule-driven growth isotropy at the shoot apex in Arabidopsis, Development, vol.145, p.162255, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01894645

R. Atta, L. Laurens, E. Boucheron-dubuisson, A. Guivarc'h, E. Carnero et al., Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro, The Plant Journal, vol.57, pp.626-644, 2009.

P. Barbier-de-reuille, R. Kierzkowski, D. Bassel, G. W. Schüpbach, T. Tauriello et al., MorphoGraphX: A platform for quantifying morphogenesis in 4D, vol.4, p.5864, 2015.

L. Beauzamy, M. Louveaux, O. Hamant, and A. Boudaoud, Mechanically, the Shoot Apical Meristem of Arabidopsis Behaves like a Shell Inflated by a Pressure of About 1 MPa, Frontiers in Plant Science, vol.6, 2015.

F. Besnard, Y. Refahi, V. Morin, B. Marteaux, G. Brunoud et al., Cytokinin signalling inhibitory fields provide robustness to phyllotaxis, Nature, vol.505, pp.417-421, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00926908

F. Besnard, F. Rozier, and T. Vernoux, The AHP6 cytokinin signaling inhibitor mediates an auxin-cytokinin crosstalk that regulates the timing of organ initiation at the shoot apical meristem, Plant Signaling & Behavior, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01601710

A. Bleckmann, S. Weidtkamp-peters, C. Seidel, and R. Simon, Stem Cell Signaling in, 2010.

, Arabidopsis Requires CRN to Localize CLV2 to the Plasma Membrane, PLANT PHYSIOLOGY, vol.152, pp.166-176

P. Bommert, B. I. Je, A. Goldshmidt, and D. Jackson, The maize G? gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size, Nature, vol.502, pp.555-558, 2013.

K. Boutilier, R. Offringa, V. K. Sharma, H. Kieft, T. Ouellet et al., Ectopic Expression of BABY BOOM Triggers a Conversion from Vegetative to Embryonic Growth, The Plant Cell, vol.14, pp.1737-1749, 2002.

U. Brand, J. C. Fletcher, M. Hobe, E. M. Meyerowitz, and R. Simon, Dependence of Stem Cell Fate in Arabidopsis on a Feedback Loop Regulated by CLV3 Activity, Science, vol.289, pp.617-619, 2000.

W. Busch, A. Miotk, F. D. Ariel, Z. Zhao, J. Forner et al.,

L. A. Sj, Transcriptional Control of a Plant Stem Cell Niche, Developmental Cell, vol.18, pp.841-853, 2010.

R. Buvat, Evolution et Fonctionnement du Méristème Apical de quelques Dicotylédones. Annales des sciences naturelles 11e série, pp.199-300, 1952.

O. Chaudhuri, S. T. Koshy, B. Da-cunha, C. Shin, J. Verbeke et al., Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium, Nature Materials, vol.13, pp.970-978, 2014.

A. Y. Cheung and H. Wu, THESEUS 1, FERONIA and relatives: a family of cell wall-sensing receptor kinases?, Current Opinion in Plant Biology, vol.14, pp.632-641, 2011.

V. S. Chickarmane, S. P. Gordon, P. T. Tarr, M. G. Heisler, and E. M. Meyerowitz, Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem, Proceedings of the National Academy of Sciences of the United States of America, vol.109, pp.4002-4007, 2012.

H. Chou, Y. Zhu, Y. Ma, and G. A. Berkowitz, The CLAVATA signaling pathway mediating stem cell fate in shoot meristems requires Ca 2+ as a secondary cytosolic messenger, The Plant Journal, vol.85, pp.494-506, 2016.

H. Chu, Q. Qian, W. Liang, C. Yin, H. Tan et al., The FLORAL ORGAN NUMBER4 Gene Encoding a Putative Ortholog of Arabidopsis CLAVATA3 Regulates Apical Meristem Size in Rice, PLANT PHYSIOLOGY, vol.142, pp.1039-1052, 2006.

S. E. Clark, S. E. Jacobsen, J. Z. Levin, and E. M. Meyerowitz, The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis, Development, vol.122, pp.1567-1575, 1996.

S. E. Clark, M. P. Running, and E. M. Meyerowitz, CLAVATA1, a regulator of meristem and flower development in Arabidopsis, Development, vol.119, pp.397-418, 1993.

S. E. Clark, M. P. Running, and E. M. Meyerowitz, CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1, Development, vol.121, pp.2057-2067, 1995.

S. E. Clark, R. W. Williams, and E. M. Meyerowitz, The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis, Cell, vol.89, pp.575-585, 1997.

J. M. Cock and S. Mccormick, A Large Family of Genes That Share Homology withCLAVATA3, Plant Physiology, vol.126, pp.939-942, 2001.

S. R. Cutler, D. W. Ehrhardt, J. S. Griffitts, and C. R. Somerville, Random GFP cDNA fusions ? the National Academy of Sciences, vol.97, pp.3718-3723, 2000.

R. K. Das, V. Gocheva, R. Hammink, O. F. Zouani, and A. E. Rowan, Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels, Nature Materials, 2015.

G. Daum, A. Medzihradszky, T. Suzaki, and J. U. Lohmann, A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis, Proceedings of the National Academy of Sciences, vol.111, pp.14619-14624, 2014.

Y. Deveaux, A. Peaucelle, G. R. Roberts, E. Coen, R. Simon et al., The ethanol switch: a tool for tissue-specific gene induction during plant development, The Plant Journal, vol.36, pp.918-930, 2003.

B. J. Deyoung, K. L. Bickle, K. J. Schrage, P. Muskett, K. Patel et al., The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis: BAM receptor kinases regulate meristem function, The Plant Journal, vol.45, pp.1-16, 2006.

A. Dievart, CLAVATA1 Dominant-Negative Alleles Reveal Functional Overlap between Multiple Receptor Kinases That Regulate Meristem and Organ Development, THE PLANT CELL ONLINE, vol.15, pp.1198-1211, 2003.

A. Dolzblasz, J. Nardmann, E. Clerici, B. Causier, E. Van-der-graaff et al., Stem Cell Regulation by Arabidopsis WOX Genes, Molecular Plant, vol.9, pp.1028-1039, 2016.

R. Fernandez, P. Das, V. Mirabet, E. Moscardi, J. Traas et al., Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution, Nature Methods, vol.7, pp.547-553, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00521491

J. C. Fletcher, U. Brand, M. P. Running, R. Simon, and E. M. Meyerowitz, Signaling of Cell Fate Decisions by CLAVATA3 in Arabidopsis Shoot Meristems, Science, vol.283, pp.1911-1914, 1999.

A. S. Foster, Structure and Growth of the Shoot Apex in Ginkgo Biloba, Bulletin of the Torrey Botanical Club, vol.65, pp.531-556, 1938.

J. Friml, A. Vieten, M. Sauer, D. Weijers, H. Schwarz et al., Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis, Nature, vol.426, pp.147-153, 2003.

N. Fulcher and R. Sablowski, Hypersensitivity to DNA damage in plant stem cell niches, Proceedings of the National Academy of Sciences, vol.106, pp.20984-20988, 2009.

C. S. Galvan-ampudia, A. M. Chaumeret, C. Godin, and T. Vernoux, Phyllotaxis: from patterns of organogenesis at the meristem to shoot architecture: Organogenesis at the meristem and shoot architecture, Wiley Interdisciplinary Reviews: Developmental Biology, vol.5, pp.460-473, 2016.

S. P. Gordon, V. S. Chickarmane, C. Ohno, and E. M. Meyerowitz, Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem, Proceedings of the National Academy of Sciences, vol.106, pp.16529-16534, 2009.

J. Gruel, B. Landrein, P. Tarr, C. Schuster, Y. Refahi et al., An epidermis-driven mechanism positions and scales stem cell niches in plants, Science Advances, vol.2, pp.1500989-1500989, 2016.

R. Gutierrez, J. J. Lindeboom, A. R. Paredez, A. Emons, and D. W. Ehrhardt, Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments, Nature Cell Biology, vol.11, pp.797-806, 2009.

O. Hamant, M. G. Heisler, H. Jönsson, P. Krupinski, M. Uyttewaal et al., Developmental Patterning by Mechanical Signals in Arabidopsis. Science, vol.322, pp.1650-1655, 2008.

C. S. Hardtke and T. Berleth, The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development, The EMBO Journal, vol.17, pp.1405-1411, 1998.

J. Harholt, A. Suttangkakul, and H. V. Scheller, Biosynthesis of Pectin. Plant Physiology, vol.153, pp.384-395, 2010.

M. G. Heisler, O. Hamant, P. Krupinski, M. Uyttewaal, C. Ohno et al., Alignment between PIN1 Polarity and Microtubule Orientation in the Shoot Apical Meristem Reveals a Tight Coupling between Morphogenesis and Auxin Transport, PLoS Biology, vol.8, 2010.

M. G. Heisler, C. Ohno, P. Das, P. Sieber, G. V. Reddy et al., Patterns of Auxin Transport and Gene Expression during Primordium Development Revealed by Live Imaging of the Arabidopsis Inflorescence Meristem, Current Biology, vol.15, pp.1899-1911, 2005.

R. Hooke, Micrographia, or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses, 1665.

C. Hu, Y. Zhu, Y. Cui, K. Cheng, W. Liang et al., A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis, Nature, p.9, 2018.

B. I. Je, F. Xu, Q. Wu, L. Liu, R. Meeley et al., The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors, vol.7, p.35673, 2018.

S. Jeong, A. E. Trotochaud, and S. E. Clark, The Arabidopsis CLAVATA2 Gene Encodes a Receptor-like Protein Required for the Stability of the CLAVATA1 Receptor-like Kinase, The Plant Cell, vol.11, pp.1925-1933, 1999.

J. M. Kayes and S. E. Clark, CLAVATA2, a regulator of meristem and organ development in Arabidopsis, Development, vol.125, pp.3843-3851, 1998.

M. Kieffer, Analysis of the Transcription Factor WUSCHEL and Its Functional Homologue in Antirrhinum Reveals a Potential Mechanism for Their Roles in Meristem Maintenance, THE PLANT CELL ONLINE, vol.18, pp.560-573, 2006.

D. Kierzkowski, N. Nakayama, A. Routier-kierzkowska, A. Weber, E. Bayer et al., Elastic domains regulate growth and organogenesis in the plant shoot apical meristem, Science, vol.335, pp.1096-1099, 2012.

Y. Kimura, M. Tasaka, K. U. Torii, and N. Uchida, ERECTA-family genes coordinate stem cell functions between the epidermal and internal layers of the shoot apical meristem, p.156380, 2017.

A. Kinoshita, S. Betsuyaku, Y. Osakabe, S. Mizuno, S. Nagawa et al., RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis, Development, vol.137, pp.4327-4327, 2010.

A. Kinoshita, M. Seo, Y. Kamiya, and S. Sawa, Mystery in genetics: PUB4 gives a clue to the complex mechanism of CLV signaling pathway in the shoot apical meristem, Plant Signaling & Behavior, vol.10, p.1028707, 2015.

A. Kiss, T. Moreau, V. Mirabet, C. I. Calugaru, A. Boudaoud et al., Segmentation of 3D images of plant tissues at multiple scales using the level set method, Plant Methods, vol.13, 2017.

T. Kondo, S. Sawa, A. Kinoshita, S. Mizuno, T. Kakimoto et al., A Plant Peptide Encoded by CLV3 Identified by in Situ MALDI-TOF MS Analysis, Science, vol.313, pp.845-848, 2006.

M. Koornneef, J. Van-eden, C. J. Hanhart, P. Stam, F. J. Braaksma et al., Linkage map of Arabidopsis thaliana, Journal of Heredity, vol.74, pp.265-272, 1983.

M. Kucukoglu and O. Nilsson, CLE peptide signaling in plants -the power of moving around, Physiologia Plantarum, vol.155, pp.74-87, 2015.

D. Kwiatkowska, Flower primordium formation at the Arabidopsis shoot apex: quantitative analysis of surface geometry and growth, Journal of Experimental Botany, vol.57, pp.571-580, 2006.

A. Lance, Sur la structure et le fonctionnement du point végétatif de Vici faba L. Annales des sciences naturelles 11e série, pp.301-339, 1952.

P. Laufs, O. Grandjean, C. Jonak, K. Kiêu, and J. Traas, Cellular parameters of the shoot apical meristem in Arabidopsis, The Plant Cell Online, vol.10, pp.1375-1389, 1998.

T. Laux, K. F. Mayer, J. Berger, and G. Jurgens, The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis, Development, vol.122, pp.87-96, 1996.

D. Lee, D. L. Parrott, E. Adhikari, N. Fraser, and L. E. Sieburth, The mobile bypass Signal Arrests Shoot Growth by disrupting SAM Maintenance, Cytokinin Signaling, and WUS Expression, Plant Physiology, p.474, 2016.

A. Leibfried, J. To, W. Busch, S. Stehling, A. Kehle et al.,

, WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators, Nature, vol.438, pp.1172-1175

H. Li, M. Qi, M. Sun, Y. Liu, Y. Liu et al., Tomato Transcription Factor SlWUS Plays an Important Role in Tomato Flower and Locule Development, Frontiers in Plant Science, 2017.

E. Logemann, R. P. Birkenbihl, B. Ülker, and I. E. Somssich, An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol, Plant Methods, vol.2, p.16, 2006.

J. U. Lohmann, R. L. Hong, M. Hobe, M. A. Busch, F. Parcy et al., A Molecular Link between Stem Cell Regulation and Floral Patterning in Arabidopsis, Cell, vol.105, pp.793-803, 2001.

J. A. Long, E. I. Moan, J. I. Medford, and M. K. Barton, A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis, Nature, vol.379, pp.66-69, 1996.

L. Luo, J. Zeng, H. Wu, Z. Tian, and Z. Zhao, A Molecular Framework for Auxin-Controlled Homeostasis of Shoot Stem Cells in Arabidopsis, Molecular Plant, vol.11, pp.899-913, 2018.

T. Mandel, H. Candela, U. Landau, L. Asis, E. Zelinger et al., Differential regulation of meristem size, morphology and organization by the ERECTA, CLAVATA and class III HD-ZIP pathways, Development, vol.143, pp.1612-1622, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01327485

T. Mandel, F. Moreau, Y. Kutsher, J. C. Fletcher, C. C. Carles et al., The ERECTA receptor kinase regulates Arabidopsis shoot apical meristem size, phyllotaxy and floral meristem identity, Development, vol.141, pp.830-841, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00980143

W. Meng, Z. J. Cheng, Y. L. Sang, M. M. Zhang, X. F. Rong et al., , 2017.

-. Type, ARABIDOPSIS RESPONSE REGULATORs Is Critical to the Specification of Shoot Stem Cell Niche by Dual Regulation of WUSCHEL. The Plant Cell, 2016.

P. Milani, M. Gholamirad, J. Traas, A. Arnéodo, A. Boudaoud et al., In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy: Measuring wall stiffness in meristems with AFM, The Plant Journal, vol.67, pp.1116-1123, 2011.

P. Milani, V. Mirabet, C. Cellier, F. Rozier, O. Hamant et al., Matching Patterns of Gene Expression to Mechanical Stiffness at Cell Resolution through Quantitative Tandem Epifluorescence and Nanoindentation, PLANT PHYSIOLOGY, vol.165, pp.1399-1408, 2014.

R. Müller, A. Bleckmann, and R. Simon, The Receptor Kinase CORYNE of Arabidopsis Transmits the Stem Cell-Limiting Signal CLAVATA3 Independently of CLAVATA1, The Plant Cell Online, vol.20, pp.934-946, 2008.

C. Nägeli, Wachsthumsgeschichte der Laub-und Lebermoose, vol.2, pp.138-210, 1845.

C. Nägeli, H. Leitgeb, and S. Schwendener, Beiträge zur wissenschaftlichen Botanik, 1858.

J. Nardmann and W. Werr, The Shoot Stem Cell Niche in Angiosperms: Expression Patterns of WUS Orthologues in Rice and Maize Imply Major Modifications in the Course of Mono-and Dicot Evolution, Molecular Biology and Evolution, vol.23, pp.2492-2504, 2006.

Z. L. Nimchuk, P. T. Tarr, C. Ohno, X. Qu, and E. M. Meyerowitz, Plant Stem Cell Signaling Involves Ligand-Dependent Trafficking of the CLAVATA1 Receptor Kinase, Current Biology, vol.21, pp.345-352, 2011.

Z. L. Nimchuk, Y. Zhou, P. T. Tarr, B. A. Peterson, and E. M. Meyerowitz, Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases, Development, vol.142, pp.1043-1049, 2015.

Y. Nishiyama, Structure and properties of the cellulose microfibril, Journal of Wood Science, vol.55, pp.241-249, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00413871

K. Oelkers, N. Goffard, G. F. Weiller, P. M. Gresshoff, U. Mathesius et al., , 2008.

, Bioinformatic analysis of the CLE signaling peptide family, BMC Plant Biology, vol.8, p.1

K. Ohyama, H. Shinohara, M. Ogawa-ohnishi, and Y. Matsubayashi, A glycopeptide regulating stem cell fate in Arabidopsis thaliana, Nature Chemical Biology, vol.5, pp.578-580, 2009.

K. Okada, J. Ueda, M. K. Komaki, C. J. Bell, and Y. Shimura, Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation, The Plant Cell, vol.3, p.677, 1991.

A. Peaucelle, S. A. Braybrook, L. Guillou, L. Bron, E. Kuhlemeier et al., Pectin-Induced Changes in Cell Wall Mechanics Underlie Organ Initiation in Arabidopsis, Current Biology, vol.21, pp.1720-1726, 2011.

M. Perales, K. Rodriguez, S. Snipes, R. K. Yadav, M. Diaz-mendoza et al., , 2016.

, Threshold-dependent transcriptional discrimination underlies stem cell homeostasis, Proceedings of the National Academy of Sciences, 201607669.

M. W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR, vol.29, 2001.

M. W. Pfaffl, A. Tichopad, C. Prgomet, and T. P. Neuvians, Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations, Biotechnology letters, vol.26, pp.509-515, 2004.

A. Pfeiffer, C. Wenzl, and J. U. Lohmann, Beyond flexibility: controlling stem cells in an ever changing environment, Current Opinion in Plant Biology, vol.35, pp.117-123, 2017.

W. R. Philipson, Organization of the shoot apex in dicotyledons, Phytomorphology, vol.4, pp.70-75, 1954.

R. A. Popham, Principal Types of Vegetative Shoot Apex Organization in Vascular Plants, The Ohio Journal of Science, vol.51, pp.249-269, 1951.

E. H. Rademacher, B. Möller, A. S. Lokerse, C. I. Llavata-peris, W. Van-den-berg et al., A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family, The Plant Journal, vol.68, pp.597-606, 2011.

G. V. Reddy and E. M. Meyerowitz, Stem-Cell Homeostasis and Growth Dynamics Can Be Uncoupled in the Arabidopsis Shoot Apex, Science, vol.310, pp.663-667, 2005.

D. Reinhardt, T. Mandel, and C. Kuhlemeier, Auxin Regulates the Initiation and Radial Position of Plant Lateral Organs, The Plant Cell, vol.12, pp.507-518, 2000.

P. B. De-reuille, I. Bohn-courseau, K. Ljung, H. Morin, N. Carraro et al., Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.1627-1632, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00023247

K. Rodriguez, M. Perales, S. Snipes, R. K. Yadav, M. Diaz-mendoza et al., DNAdependent homodimerization, sub-cellular partitioning, and protein destabilization control WUSCHEL levels and spatial patterning, Proceedings of the National Academy of Sciences, 2016.

E. Rojo, CLV3 Is Localized to the Extracellular Space, Where It Activates the Arabidopsis CLAVATA Stem Cell Signaling Pathway, THE PLANT CELL ONLINE, vol.14, pp.969-977, 2002.

O. Rosspopoff, L. Chelysheva, J. Saffar, L. Lecorgne, D. Gey et al.,

P. Hilson and R. Berthomé, Direct conversion of root primordium into shoot meristem relies on timing of stem cell niche development, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01605725

A. Sampathkumar, P. Krupinski, R. Wightman, P. Milani, and A. Berquand,

O. , J. H. Meyerowitz, and E. M. , Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells, vol.3, 2014.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al.,

C. Rueden, S. Saalfeld, and B. Schmid, Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.9, pp.676-682, 2012.

A. Schmidt, Histologische Studien an phanerogamen Vegetationspunkten, Bot. Archiv, vol.9, pp.345-404, 1924.

C. Schuster, C. Gaillochet, A. Medzihradszky, W. Busch, G. Daum et al., A Regulatory Framework for Shoot Stem Cell Control Integrating Metabolic, Transcriptional, and Phytohormone Signals, Developmental Cell, vol.28, pp.438-449, 2014.

T. Schwann, M. J. Schleiden, and H. Smith, Microscopical researches into the accordance in the structure and growth of animals and plants, 1847.

H. Shih, N. D. Miller, C. Dai, E. P. Spalding, and G. B. Monshausen, The Receptor-like Kinase FERONIA Is Required for Mechanical Signal Transduction in Arabidopsis Seedlings, Current Biology, vol.24, pp.1887-1892, 2014.

H. Shinohara and Y. Matsubayashi, Reevaluation of the CLV3-receptor interaction in the shoot apical meristem: dissection of the CLV3 signaling pathway from a direct ligand-binding point of view, The Plant Journal, 2015.

S. Shiu and A. B. Bleecker, Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases, Proceedings of the National Academy of Sciences of the United States of America, vol.98, pp.10763-10768, 2001.

D. R. Smyth, J. L. Bowman, and E. M. Meyerowitz, Early flower development in Arabidopsis, The Plant Cell Online, vol.2, pp.755-767, 1990.

S. A. Snipes, K. Rodriguez, A. E. Devries, K. N. Miyawaki, M. Perales et al., Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription (T Ito, PLOS Genetics, vol.14, p.1007351, 2018.

M. Somssich, B. I. Je, R. Simon, and D. Jackson, CLAVATA-WUSCHEL signaling in the shoot meristem, Development, vol.143, pp.3238-3248, 2016.

X. Song, T. Xu, S. Ren, and C. Liu, Individual amino acid residues in CLV3 peptide contribute to its stability in vitro, Plant Signaling & Behavior, vol.8, p.25344, 2013.

X. Song, Y. Xu, T. Ren, S. Guo, P. Liu et al., Contributions of Individual Amino Acid Residues to the Endogenous CLV3 Function in Shoot Apical Meristem Maintenance in Arabidopsis, Molecular Plant, vol.5, pp.515-523, 2012.

T. Stanislas, M. P. Platre, M. Liu, L. Rambaud-lavigne, Y. Jaillais et al., A phosphoinositide map at the shoot apical meristem in Arabidopsis thaliana, BMC Biology, vol.16, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02348886

I. M. Sussex and T. A. Steeves, Apical initials and the concept of meristem, vol.17, pp.387-91, 1967.

T. Suzaki, The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1, Development, vol.131, pp.5649-5657, 2004.

T. Suzaki, M. Ohneda, T. Toriba, A. Yoshida, and H. Hirano, FON2 SPARE1 Redundantly Regulates Floral Meristem Maintenance with FLORAL ORGAN NUMBER2 in Rice (GP Copenhaver, PLoS Genetics, vol.5, p.1000693, 2009.

T. Suzaki, T. Toriba, M. Fujimoto, N. Tsutsumi, H. Kitano et al., Conservation and Diversification of Meristem Maintenance Mechanism in Oryza sativa : Function of the FLORAL ORGAN NUMBER2, Gene. Plant and Cell Physiology, vol.47, pp.1591-1602, 2006.

T. Suzaki, A. Yoshida, and H. Hirano, Functional Diversification of CLAVATA3-Related CLE Proteins in Meristem Maintenance in Rice, THE PLANT CELL ONLINE, vol.20, pp.2049-2058, 2008.

T. Szczesny, A. Routier-kierzkowska, and D. Kwiatkowska, Influence of clavata3-2 mutation on early flower development in Arabidopsis thaliana: quantitative analysis of changing geometry, Journal of Experimental Botany, vol.60, pp.679-695, 2009.

F. Taguchi-shiobara, The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize, Genes & Development, vol.15, pp.2755-2766, 2001.

P. P. Tam, I. H. Barrette-ng, D. M. Simon, M. W. Tam, A. L. Ang et al., The Puf family of RNA-binding proteins in plants: phylogeny, structural modeling, activity and subcellular localization, BMC Plant Biology, vol.10, p.44, 2010.

K. U. Torii, N. Mitsukawa, T. Oosumi, Y. Matsuura, R. Yokoyama et al., , 1996.

, The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats, The Plant Cell, vol.8, pp.735-746

A. E. Trotochaud, T. Hao, G. Wu, Z. Yang, and S. E. Clark, The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rhorelated protein, The Plant Cell, vol.11, pp.393-406, 1999.

I. Tzafrir, R. Pena-muralla, A. Dickerman, M. Berg, R. Rogers et al.,

J. Mcelver, G. Aux, and D. Patton, Identification of Genes Required for Embryo Development in Arabidopsis, Plant Physiology, vol.135, pp.1206-1220, 2004.

S. Verger, S. Chabout, E. Gineau, and G. Mouille, Cell adhesion in plants is under the control of putative O-fucosyltransferases, Development, vol.143, pp.2536-2540, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01602505

T. Vernoux, G. Brunoud, E. Farcot, V. Morin, H. Van-den-daele et al., The auxin signalling network translates dynamic input into robust patterning at the shoot apex, Molecular Systems Biology, vol.7, p.508, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00828880

V. Vogel and M. Sheetz, Local force and geometry sensing regulate cell functions, Nature Reviews. Molecular Cell Biology, vol.7, pp.265-275, 2006.

J. Wang, C. Tian, C. Zhang, B. Shi, X. Cao et al., , 2017.

, Cytokinin Signaling Activates WUSCHEL Expression during Axillary Meristem Initiation. The Plant Cell, vol.29, pp.1373-1387

T. Wang, O. Zabotina, and M. Hong, Pectin-cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance, Biochemistry, vol.51, pp.9846-9856, 2012.

G. Wang, G. Zhang, and M. Wu, CLE Peptide Signaling and Crosstalk with Phytohormones and Environmental Stimuli, Frontiers in Plant Science, vol.6, 2016.

D. Weigel, J. Alvarez, D. R. Smyth, M. F. Yanofsky, and E. M. Meyerowitz, LEAFY controls floral meristem identity in Arabidopsis, Cell, vol.69, pp.843-859, 1992.

J. H. Wen, L. G. Vincent, A. Fuhrmann, Y. S. Choi, K. C. Hribar et al.,

, Interplay of matrix stiffness and protein tethering in stem cell differentiation, Nature Materials, vol.13, pp.979-987, 2014.

C. D. Whitewoods, J. Cammarata, N. Venza, Z. Sang, S. Crook et al.,

M. Waller, Y. Kamisugi, and A. C. Cuming, CLAVATA Was a Genetic Novelty for the Morphological Innovation of 3D Growth in Land Plants, Current Biology, 2018.

W. Xin, Z. Wang, Y. Liang, Y. Wang, and Y. Hu, Dynamic expression reveals a two-step patterning of WUS and CLV3 during axillary shoot meristem formation in Arabidopsis, Journal of Plant Physiology, vol.214, pp.1-6, 2017.

Y. Xu, N. Prunet, E. Gan, Y. Wang, D. Stewart et al.,

M. Kojima, SUPERMAN regulates floral whorl boundaries through control of auxin biosynthesis, The EMBO Journal, p.97499, 2018.

T. Xu, X. Song, S. Ren, and C. Liu, The sequence flanking the N-terminus of the CLV3, 2013.

, peptide is critical for its cleavage and activity in stem cell regulation in Arabidopsis, BMC Plant Biology, vol.13, p.225

R. K. Yadav, T. Girke, S. Pasala, M. Xie, and G. V. Reddy, Gene expression map of the Arabidopsis shoot apical meristem stem cell niche, Proceedings of the National Academy of Sciences, vol.106, pp.4941-4946, 2009.

R. K. Yadav, M. Perales, J. Gruel, T. Girke, H. Jönsson et al., WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex, Genes & Development, vol.25, pp.2025-2030, 2011.

R. K. Yadav, M. Tavakkoli, and G. V. Reddy, WUSCHEL mediates stem cell homeostasis by regulating stem cell number and patterns of cell division and differentiation of stem cell progenitors, Development, vol.137, pp.3581-3589, 2010.

R. K. Yadav, M. Tavakkoli, M. Xie, T. Girke, and G. V. Reddy, A high-resolution gene expression map of the Arabidopsis shoot meristem stem cell niche, Development, vol.141, pp.2735-2744, 2014.

W. Yang, C. Schuster, C. T. Beahan, V. Charoensawan, A. Peaucelle et al., Regulation of Meristem Morphogenesis by Cell Wall Synthases in Arabidopsis, Current Biology, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01531680

T. Zhang, H. Lian, C. Zhou, L. Xu, Y. Jiao et al., A Two-Step Model for de Novo Activation of WUSCHEL during Plant Shoot Regeneration, The Plant Cell, vol.29, pp.1073-1087, 2017.

Y. Zhou, A. Yan, H. Han, T. Li, Y. Geng et al., HAIRY MERISTEM with WUSCHEL confines CLAVATA3 expression to the outer apical meristem layers, Science, vol.361, pp.502-506, 2018.

Y. O. Zubo, I. C. Blakley, M. V. Yamburenko, J. M. Worthen, I. H. Street et al.,

W. , H. K. Raines, T. Solano, and R. , Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis, Proceedings of the National Academy of Sciences, 2017.