W. Abdelwahed, G. Degobert, S. Stainmesse, and H. Fessi, Freeze-drying of nanoparticles: Formulation, process and storage considerations?, Advanced Drug Delivery Reviews, vol.58, issue.15, pp.1688-1713, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02020761

G. D. Adams, Freeze-Drying of, Biological Materials'. Drying Technology, vol.9, issue.4, pp.891-925, 1991.

M. J. Akers, Sterile drug products: formulation, packaging, manufacturing and quality, 2016.

B. Akhilesh and M. M. Babu, Selection of Containers/Closures for Use in Lyophilization Applications: Possibilities and Limitations, American Pharmaceutical Review, vol.13, issue.4, 2010.

P. R. Amestoy, I. S. Duff, J. L'excellent, and J. Koster, MUMPS: A General Purpose Distributed Memory Sparse Solver, Applied Parallel Computing. New Paradigms for HPC in Industry and Academia: 5th International Workshop, pp.121-130, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00856652

A. A. Barresi, S. Ghio, D. Fissore, and R. Pisano, Freeze Drying of Pharmaceutical Excipients Close to Collapse Temperature, Influence of the Process Conditions on Process Time and Product Quality'. Drying Technology, vol.27, pp.805-816, 2009.

A. A. Barresi, S. A. Velardi, D. Fissore, and R. Pisano, Modeling, Control, Simulation and Diagnosis of Complex Industrial and Energy Systems, pp.139-162, 2009.

C. Béal and F. Fonseca, Freezing of Probiotic Bacteria, Advances in Probiotic Technology, p.19, 2015.

R. B. Bird, W. E. Stewart, E. N. Lightfoot, S. Wiley-bosca, A. A. Barresi et al., Use of a soft sensor for the fast estimation of dried cake resistance during a freeze-drying cycle, International Journal of Pharmaceutics, vol.451, issue.1-2, pp.23-33, 2002.

S. Bosca, A. A. Barresi, D. Fissore, and M. Deamichela, Risk-Based Design of a Freeze-Drying Cycle for Pharmaceuticals, EMChIE 2015 Conference Proceedings, vol.1, pp.265-270, 2015.

R. P. Broadwater, H. E. Shaalan, W. J. Fabrycky, and R. E. Lee, Decision evaluation with interval mathematics: a power distribution system case study, IEEE Transactions on power delivery, vol.9, pp.59-67, 1994.

M. Brülls and . Rasmuson, Heat transfer in vial lyophilization, International Journal of Pharmaceutics, vol.246, issue.1-2, pp.1-16, 2002.

M. Brülls and A. Rasmuson, Heat transfer in vial lyophilization, International Journal of Pharmaceutics, vol.246, issue.1-2, pp.1-16, 2002.

A. Cannon and K. Shemeley, Statistical evaluation of vial design features that influence sublimation rates during primary drying, Pharmaceutical research, vol.21, issue.3, pp.536-542, 2004.

B. S. Chang and N. L. Fischer, Development of an efficient single-step freeze-drying cycle for protein formulations, Pharmaceutical Research, vol.12, issue.6, pp.831-837, 1995.

S. Dushman and . Lafferty, Scale-up and process transfer of freeze-drying recipes, Drying Technology, vol.29, issue.14, pp.1673-1684, 1962.

D. Fissore and R. Pisano, Computer-Aided Framework for the Design of Freeze-Drying Cycles: Optimization of the Operating Conditions of the Primary Drying Stage, Processes, vol.3, issue.2, pp.406-421, 2015.

D. Fissore, R. Pisano, and A. A. Barresi, On the Methods Based on the Pressure Rise Test for Monitoring a Freeze-Drying Process, Drying Technology, vol.29, issue.1, pp.73-90, 2010.

D. Fissore, R. Pisano, and A. A. Barresi, Advanced approach to build the design space for the primary drying of a pharmaceutical freeze-drying process', Journal of Pharmaceutical Sciences, vol.100, issue.11, pp.4922-4933, 2011.

D. Fissore, R. Pisano, and A. A. Barresi, Monitoring of the Secondary Drying in Freeze-Drying of Pharmaceuticals', Journal of Pharmaceutical Sciences, vol.100, issue.2, pp.732-742, 2011.

D. Fissore, R. Pisano, and A. A. Barresi, Using Mathematical Modeling and Prior Knowledge for QbD in Freeze-Drying Processes, Quality by Design for Biopharmaceutical Drug Product Development, vol.18, pp.565-593, 2015.

F. Fonseca, S. Cenard, and S. Passot, Freeze-Drying of Lactic Acid Bacteria, Cryopreservation and Freeze-Drying Protocols, vol.1257, pp.477-488, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01535358

F. Fonseca, S. Passot, O. Cunin, and M. Marin, Collapse Temperature of Freeze-Dried Lactobacillus bulgaricus Suspensions and Protective Media', Biotechnology Progress, vol.20, issue.1, pp.229-238, 2008.

, of Health and Human Services, Food and Drug Administration, p.26, 2009.

F. Franks, Freeze-drying of bioproducts: putting principles into practice, European Journal of Pharmaceutics and Biopharmaceutics, vol.45, issue.3, pp.221-229, 1998.

S. Fukusako, Thermophysical properties of ice, snow, and sea ice', International Journal of Thermophysics, vol.11, issue.2, pp.353-372, 1990.

K. H. Gan, R. Bruttini, O. K. Crosser, and A. I. Liapis, Freeze-drying of pharmaceuticals in vials on trays: effects of drying chamber wall temperature and tray side on lyophilization performance, International Journal of Heat and Mass Transfer, vol.48, issue.9, pp.1675-1687, 2005.

A. Ganguly, S. L. Nail, and A. Alexeenko, Experimental Determination of the Key Heat Transfer Mechanisms in Pharmaceutical Freeze-Drying', Journal of Pharmaceutical Sciences, vol.102, issue.5, pp.1610-1625, 2013.

H. Gieseler, W. J. Kessler, M. Finson, S. J. Davis, P. A. Mulhall et al., Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze drying, Journal of Pharmaceutical Sciences, vol.96, issue.7, pp.1776-1793, 2007.

A. Giordano, A. A. Barresi, and D. Fissore, On the Use of Mathematical Models to Build the Design Space for the Primary Drying Phase of a Pharmaceutical Lyophilization Process', Journal of Pharmaceutical Sciences, vol.100, issue.1, pp.311-324, 2011.

L. J. Hansen, R. Daoussi, C. Vervaet, J. Remon, and T. R. De-beer, Freeze-drying of live virus vaccines: A review, pp.5507-5519, 2015.

W. M. Haynes, D. R. Lide, and . Bruno, CRC Handbook of Chemistry and Physics, 2014.

, Encyclopedia of Agricultural, Food, and Biological Engineering, 2010.

S. Hibler and H. Gieseler, Heat transfer characteristics of current primary packaging systems for pharmaceutical freeze-drying', Journal of Pharmaceutical Sciences, vol.101, issue.11, pp.4025-4031, 2012.

S. Hibler, C. Wagner, and H. Gieseler, Vial Freeze-Drying, part 1: New Insights into Heat Transfer Characteristics of Tubing and Molded Vials', Journal of Pharmaceutical Sciences, vol.101, issue.3, pp.1189-1201, 2012.

A. Hottot, R. Peczalski, S. Vessot, and J. Andrieu, Freeze-Drying of Pharmaceutical Proteins in Vials: Modeling of Freezing and Sublimation Steps'. Drying Technology, vol.24, pp.561-570, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02060537

A. Hottot, S. Vessot, and J. Andrieu, Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products'. PDA journal of pharmaceutical science and technology / PDA, vol.59, pp.138-153, 2005.

T. A. Jennings, Lyophilization: introduction and basic principles, 1999.

J. H. De-boer, R. Lewis, and L. , Freeze-drying protein formulations above their collapse temperatures: Possible issues and concerns, American Pharmaceutical Review, vol.14, issue.3, pp.50-54, 1953.

J. C. Kasper and W. Friess, The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals, European Journal of Pharmaceutics and Biopharmaceutics, vol.78, issue.2, pp.248-263, 2011.

M. Kochs, C. Körber, B. Nunner, and I. Heschel, The influence of the freezing process on vapour transport during sublimation in vacuum-freeze-drying', International Journal of Heat and Mass Transfer, vol.34, issue.9, pp.2395-2408, 1991.

T. Kodama, H. Sawada, H. Hosomi, M. Takeuchi, N. Wakiyama et al., Determination for dry layer resistance of sucrose under various primary drying conditions using a novel simulation program for designing pharmaceutical lyophilization cycle, International Journal of Pharmaceutics, vol.452, issue.1-2, pp.180-187, 2013.

V. R. Koganti, E. Y. Shalaev, M. R. Berry, T. Osterberg, M. Youssef et al., Investigation of Design Space for Freeze-Drying: Use of Modeling for Primary Drying Segment of a Freeze-Drying Cycle, AAPS PharmSciTech, vol.12, issue.3, pp.854-861, 2011.

A. K. Konstantinidis, W. Kuu, L. Otten, S. L. Nail, and R. R. Sever, Controlled nucleation in freeze-drying: Effects on pore size in the dried product layer, mass transfer resistance, and primary drying rate, Journal of Pharmaceutical Sciences, vol.100, issue.8, pp.3453-3470, 2011.

D. M. Kremer, M. J. Pikal, W. J. Petre, E. Y. Shalaev, L. A. Gatlin et al., A procedure to optimize scale-up for the primary drying phase of lyophilization', Journal of Pharmaceutical Sciences, vol.98, issue.1, pp.307-318, 2009.

W. Kuu, L. Hardwick, and M. Akers, Rapid determination of dry layer mass transfer resistance for various pharmaceutical formulations during primary drying using product temperature profiles, International Journal of Pharmaceutics, vol.313, issue.1-2, pp.99-113, 2006.

W. Y. Kuu, S. L. Nail, and G. Sacha, Rapid determination of vial heat transfer parameters using tunable diode laser absorption spectroscopy (TDLAS) in response to step-changes in pressure set-point during freeze-drying', Journal of Pharmaceutical Sciences, vol.98, issue.3, pp.1136-1154, 2009.

W. Y. Kuu, K. R. O'bryan, L. M. Hardwick, and T. W. Paul, Product mass transfer resistance directly determined during freeze-drying cycle runs using tunable diode laser absorption spectroscopy (TDLAS) and pore diffusion model, Pharmaceutical Development and Technology, vol.16, issue.4, pp.343-357, 2011.

A. I. Liapis and R. Bruttini, A theory for the primary and secondary drying stages of the freeze-drying of pharmaceutical crystalline and amorphous solutes: comparison between experimental data and theory, Separations Technology, vol.4, issue.3, pp.144-155, 1994.

A. I. Liapis and R. J. Litchfield, Optimal control of a freeze dryer-I Theoretical development and quasi steady state analysis, Chemical Engineering Science, vol.34, issue.7, pp.975-981, 1979.

Y. Liu, Y. Zhao, and X. Feng, Exergy analysis for a freeze-drying process, Applied Thermal Engineering, vol.28, issue.7, pp.675-690, 2008.

E. Lopez-quiroga, L. T. Antelo, and A. A. Alonso, Time-scale modeling and optimal control of freeze-drying', Journal of Food Engineering, vol.111, issue.4, pp.655-666, 2012.

X. Lu and M. J. Pikal, Freeze-Drying of Mannitol-Trehalose-Sodium Chloride-Based Formulations: The Impact of Annealing on Dry Layer Resistance to Mass Transfer and Cake Structure, Pharmaceutical Development and Technology, vol.9, issue.1, pp.85-95, 2004.

W. J. Mascarenhas, H. U. Akay, and M. J. Pikal, A computational model for finite element analysis of the freeze-drying process, Computer Methods in Applied Mechanics and Engineering, vol.148, issue.1-2, pp.105-124, 1997.

Y. Mayeresse, Moisture content in freeze-dried product, 2008.

M. J. Millman, A. I. Liapis, and J. M. Marchello, An analysis of the lyophilization process using a sorption-sublimation model and various operational policies, AIChE Journal, issue.10, pp.1594-1604, 1985.

N. Milton, M. J. Pikal, M. L. Roy, and S. L. Nail, Evaluation of manometric temperature measurement as a method of monitoring product temperature during lyophilization, PDA Journal of Pharmaceutical Science and Technology, vol.51, issue.1, pp.7-16, 1997.

L. N. Mockus, T. W. Paul, N. A. Pease, N. J. Harper, P. K. Basu et al., Quality by design in formulation and process development for a freeze-dried, small molecule parenteral product: a case study, Pharmaceutical Development and Technology, vol.16, issue.6, pp.549-576, 2011.

J. Monchau, Y. Candau, and L. Ibos, Device for Measuring the Emissivity or Reflectivity of a Surface, 2013.

S. T. Mortier, P. Van-bockstal, J. Corver, I. Nopens, K. V. Gernaey et al., Uncertainty analysis as essential step in the establishment of the dynamic Design Space of primary drying during freeze-drying, European Journal of Pharmaceutics and Biopharmaceutics, vol.103, pp.71-83, 2016.

S. L. Nail, The Effect of Chamber Pressure on Heat Transfer in the Freeze Drying of Parenteral Solutions, PDA Journal of Pharmaceutical Science and Technology, vol.34, issue.5, pp.358-368, 1980.

S. L. Nail and J. A. Searles, Elements of quality by design in development and scale-up of freeze parenterals, Biopharm International, vol.21, issue.1, pp.44-52, 2008.

I. Oddone, A. A. Barresi, and R. Pisano, Influence of controlled ice nucleation on the freezedrying of pharmaceutical products: the secondary drying step, International Journal of Pharmaceutics, vol.524, issue.1-2, pp.134-140, 2017.

I. Oddone, R. Pisano, R. Bullich, and P. Stewart, Vacuum-Induced Nucleation as a Method for Freeze-Drying Cycle Optimization, Industrial & Engineering Chemistry Research, vol.53, issue.47, pp.18236-18244, 2014.

I. Oddone, P. Van-bockstal, T. De-beer, and R. Pisano, Impact of vacuum-induced surface freezing on inter-and intra-vial heterogeneity, European Journal of Pharmaceutics and Biopharmaceutics, vol.103, pp.167-178, 2016.

D. E. Overcashier, T. W. Patapoff, and C. C. Hsu, Lyophilization of protein formulations in vials: Investigation of the relationship between resistance to vapor flow during primary drying and small-scale product collapse, Journal of pharmaceutical sciences, vol.88, issue.7, pp.688-695, 1999.

S. Passot, S. Cenard, I. Douania, I. C. Tréléa, and F. Fonseca, Critical water activity and amorphous state for optimal preservation of lyophilised lactic acid bacteria, Food Chemistry, vol.132, issue.4, pp.1699-1705, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01536691

S. Passot, F. Fonseca, N. Barbouche, M. Marin, M. Alarcon-lorca et al., Effect of Product Temperature During Primary Drying on the Long-Term Stability of Lyophilized Proteins, Pharmaceutical Development and Technology, vol.12, issue.6, pp.543-553, 2007.

S. Passot, I. C. Tréléa, M. Marin, M. Galan, G. J. Morris et al., Effect of Controlled Ice Nucleation on Primary Drying Stage and Protein Recovery in Vials Cooled in a Modified Freeze-Dryer', Journal of Biomechanical Engineering, vol.131, issue.7, p.74511, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01537095

S. M. Patel, S. Chaudhuri, and M. J. Pikal, Choked flow and importance of Mach I in freeze-drying process design, Chemical Engineering Science, vol.65, issue.21, pp.5716-5727, 2010.

S. M. Patel, F. Jameel, and M. J. Pikal, The effect of dryer load on freeze drying process design', Journal of Pharmaceutical Sciences, vol.99, issue.10, pp.4363-4379, 2010.

S. M. Patel, S. L. Nail, M. J. Pikal, R. Geidobler, G. Winter et al., Lyophilized Drug Product Cake Appearance: What Is Acceptable, Journal of Pharmaceutical Sciences, vol.106, issue.7, pp.1706-1721, 2017.

S. M. Patel and M. J. Pikal, Lyophilization Process Design Space', Journal of Pharmaceutical Sciences, vol.102, issue.11, pp.3883-3887, 2013.

R. H. Perry, D. W. Green, and . Maloney, Perry's Chemical Engineering Handbook, 1997.

M. J. Pikal, Use of laboratory data in freeze drying process design: heat and mass transfer coefficients and the computer simulation of freeze drying', Journal of Parenteral Science and Technology: A Publication of the Parenteral Drug Association, vol.39, issue.3, pp.115-139, 1985.

M. J. Pikal, Freeze-Drying of Proteins: Process, Formulation, and Stability, vol.567, pp.120-133, 1994.

M. J. Pikal, Heat and mass transfer in low pressure gases: applications to freeze drying, Drugs and the Pharmaceutical Sciences, vol.102, pp.611-686, 2000.

M. J. Pikal, R. Bogner, V. Mudhivarthi, P. Sharma, and P. Sane, Freeze-Drying Process Development and Scale-Up: Scale-Up of Edge Vial Versus Center Vial Heat Transfer Coefficients, Kv'. Journal of Pharmaceutical Sciences, issue.11, p.105, 2016.

M. J. Pikal, K. M. Dellerman, M. L. Roy, and R. M. Riggin, The Effects of Formulation Variables on the Stability of Freeze-Dried Human Growth Hormone, Pharmaceutical Research, vol.8, issue.14, pp.427-436, 1991.

M. J. Pikal, W. J. Mascarenhas, H. U. Akay, S. Cardon, C. Bhugra et al., The Nonsteady State Modeling of Freeze Drying: In-Process Product Temperature and Moisture Content Mapping and Pharmaceutical Product Quality Applications, Pharmaceutical Development and Technology, vol.10, issue.1, pp.17-32, 2005.

M. J. Pikal, M. L. Roy, and S. Shah, Mass and heat transfer in vial freeze-drying of pharmaceuticals: role of the vial', Journal of Pharmaceutical Sciences, vol.73, issue.9, pp.1224-1237, 1984.

M. J. Pikal and S. Shah, The collapse temperature in freeze drying: Dependence on measurement methodology and rate of water removal from the glassy phase, International Journal of Pharmaceutics, vol.62, issue.2-3, pp.165-186, 1990.

M. J. Pikal, S. Shah, D. Senior, and J. E. Lang, Physical chemistry of freeze-drying: Measurement of sublimation rates for frozen aqueous solutions by a microbalance technique, Journal of pharmaceutical sciences, vol.72, issue.6, pp.635-650, 1983.

M. Pikal, S. Shah, M. Roy, and R. Putman, The secondary drying stage of freeze drying: drying kinetics as a function of temperature and chamber pressure?', International Journal of Pharmaceutics, vol.60, issue.3, pp.203-207, 1990.

R. Pisano, A. A. Barresi, and D. Fissore, Heat transfer in freeze-drying apparatus, Developments in Heat Transfer, pp.91-114, 2011.

R. Pisano, D. Fissore, and A. A. Barresi, Quality by Design in the Secondary Drying Step of a Freeze-Drying Process'. Drying Technology, vol.30, pp.1307-1316, 2012.

R. Pisano, D. Fissore, and A. A. Barresi, Quality by Design in the Secondary Drying Step of a Freeze-Drying Process'. Drying Technology, vol.30, pp.1307-1316, 2012.

R. Pisano, D. Fissore, A. A. Barresi, P. Brayard, P. Chouvenc et al., Quality by design: optimization of a freeze-drying cycle via design space in case of heterogeneous drying behavior and influence of the freezing protocol, Pharmaceutical Development and Technology, vol.18, issue.1, pp.280-295, 2013.

S. Rambhatla and M. J. Pikal, Heat and mass transfer scale-up issues during freeze-drying, I: atypical radiation and the edge vial effect, Aaps Pharmscitech, vol.4, issue.2, pp.22-31, 2003.

S. Rambhatla, R. Ramot, C. Bhugra, and M. J. Pikal, Heat and mass transfer scale-up issues during freeze drying: II. Control and characterization of the degree of supercooling, Aaps Pharmscitech, vol.5, issue.4, pp.54-62, 2004.

V. Rasetto, D. L. Marchisio, D. Fissore, and A. A. Barresi, Model-based monitoring of a non-uniform batch in a freeze-drying process, Proceedings of 18th European Symposium on Computer Aided Process Engineering-ESCAPE18, pp.1-4, 2008.

C. Ratti, Hot air and freeze-drying of high-value foods: a review', Journal of food engineering, vol.49, issue.4, pp.311-319, 2001.

S. Riedel, Edward Jenner and the history of smallpox and vaccination'. Proceedings (Baylor University, Medical Center), vol.18, issue.1, pp.21-25, 2005.

Y. H. Roos, Frozen state transitions in relation to freeze drying, Journal of thermal analysis, vol.48, issue.3, pp.535-544, 1997.

Y. H. Roos, Glass Transition Temperature and Its Relevance in Food Processing, Annual Review of Food Science and Technology, vol.1, issue.1, pp.469-496, 2010.

Y. Roos and M. Karel, Amorphous state and delayed ice formation in sucrose solutions, International Journal of Food Science & Technology, vol.26, issue.6, pp.553-566, 2007.

H. Sadikoglu and A. I. Liapis, Mathematical Modelling of the Primary and Secondary Drying Stages of Bulk Solution Freeze-Drying in Trays: Parameter Estimation and Model Discrimination by Comparison of Theoretical Results With Experimental Data, Drying Technology, vol.15, issue.3, pp.791-810, 1997.

H. Sadikoglu, A. I. Liapis, and O. K. Crosser, Optimal Control of the Primary and Secondary Stages of Bulk Solution Freeze-Drying in Trays, Drying Technology, vol.16, issue.3-5, pp.399-431, 1998.

H. Sadikoglu, M. Ozdemir, and M. Seker, Freeze-Drying of Pharmaceutical Products: Research and Development Needs'. Drying Technology, vol.24, pp.849-861, 2006.

E. K. Sahni and M. J. Pikal, Modeling the Secondary Drying Stage of Freeze Drying: Development and Validation of an Excel-based Model', Journal of Pharmaceutical Sciences, vol.106, issue.3, pp.779-791, 2017.

S. C. Schneid, H. Gieseler, W. J. Kessler, S. A. Luthra, and M. J. Pikal, Optimization of the Secondary Drying Step in Freeze Drying Using TDLAS Technology, AAPS PharmSciTech, vol.12, issue.1, pp.379-387, 2011.

M. P. Schoen, B. K. Braxton, L. A. Gatlin, and R. P. Jefferis, A simulation model for the primary drying phase of the freeze-drying cycle, International Journal of Pharmaceutics, vol.114, issue.2, pp.159-170, 1995.

B. Scutellà, S. Passot, E. Bourlés, F. Fonseca, and I. C. Tréléa, How Vial Geometry Variability Influences Heat Transfer and Product Temperature During Freeze-Drying', Journal of Pharmaceutical Sciences, vol.106, issue.3, pp.770-778, 2017.

B. Scutellà, A. Plana-fattori, S. Passot, E. Bourlès, F. Fonseca et al., , 2017.

, 3D mathematical modelling to understand atypical heat transfer observed in vial freeze-drying, Applied Thermal Engineering, vol.126, pp.226-236

J. A. Searles, Freeze Drying/ Lyophilization of Pharmaceutical and Biological Products, Drugs and the pharmaceutical sciences, pp.52-81, 2010.

J. A. Searles, Freeze Drying/ Lyophilization of Pharmaceutical and Biological Products, Drugs and the pharmaceutical sciences, 2010.

J. A. Searles, J. F. Carpenter, and T. W. Randolph, Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization, Journal of pharmaceutical sciences, vol.90, issue.7, pp.872-887, 2001.

J. A. Searles, J. F. Carpenter, and T. W. Randolph, The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf, Journal of Pharmaceutical Sciences, vol.90, issue.7, pp.860-871, 2001.

P. Sheehan and A. I. Liapis, Modeling of the primary and secondary drying stages of the freeze drying of pharmaceutical products in vials: Numerical results obtained from the solution of a dynamic and spatially multi-dimensional lyophilization model for different operational policies, Biotechnology and Bioengineering, vol.60, issue.6, pp.712-728, 1998.

X. C. Tang, S. L. Nail, and M. J. Pikal, Evaluation of manometric temperature measurement (MTM), a process analytical technology tool in freeze drying, part III: heat and mass transfer measurement, AAPS PharmSciTech, vol.7, issue.4, pp.105-111, 2006.

X. C. Tang and M. J. Pikal, Design of freeze-drying processes for pharmaceuticals: practical advice, Pharmaceutical research, vol.21, issue.2, pp.191-200, 2004.

X. Tang, S. L. Nail, and M. J. Pikal, Evaluation of manometric temperature measurement, a process analytical technology tool for freeze-drying: Part I, product temperature measurement, AAPS PharmSciTech, vol.7, issue.1, pp.95-103, 2006.

S. Tchessalov, D. Dixon, and N. W. Warne, Principles of lyophilization cycle scale-up, American Pharmaceutical Review, vol.10, issue.2, 2007.

I. C. Trelea, F. Fonseca, and S. Passot, Dynamic modeling of the secondary drying stage of freeze drying reveals distinct desorption kinetics for bound water, Drying Technology, vol.34, issue.3, pp.335-345, 2016.

I. C. Trelea, F. Fonseca, S. Passot, and D. Flick, A Binary Gas Transport Model Improves the Prediction of Mass Transfer in Freeze Drying, Drying Technology, vol.33, pp.1849-1858, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01269386

I. C. Trelea, S. Passot, F. Fonseca, and M. Marin, An Interactive Tool for the Optimization of Freeze-Drying Cycles Based on Quality Criteria, Drying Technology, vol.25, issue.5, pp.741-751, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01537101

S. C. Tsinontides, P. Rajniak, D. Pham, W. A. Hunke, J. Placek et al., Freeze drying-principles and practice for successful scale-up to manufacturing, International Journal of Pharmaceutics, vol.280, issue.1-2, pp.1-16, 2004.

D. Varshney and M. Singh, History of Lyophilization, Lyophilized Biologics and Vaccines: Modality-Based Approaches, pp.3-10, 2015.

S. A. Velardi and A. A. Barresi, Development of simplified models for the freeze-drying process and investigation of the optimal operating conditions, Chemical Engineering Research and Design, vol.86, issue.1, pp.9-22, 2008.

S. A. Velardi, V. Rasetto, and A. A. Barresi, Dynamic Parameters Estimation Method: Advanced Manometric Temperature Measurement Approach for Freeze-Drying Monitoring of, Pharmaceutical Solutions'. Industrial & Engineering Chemistry Research, vol.47, issue.21, pp.8445-8457, 2008.

J. Xiang, J. M. Hey, V. Liedtke, and D. Wang, Investigation of freeze-drying sublimation rates using a freeze-drying microbalance technique, International Journal of Pharmaceutics, vol.279, issue.1-2, pp.95-105, 2004.

H. Ybema, L. Kolkman-roodbeen, M. P. Booy, and H. Vromans, Vial lyophilization: calculations on rate limitation during primary drying, Pharmaceutical Research, vol.12, issue.9, pp.1260-1263, 1995.

L. Yu, Amorphous pharmaceutical solids: preparation, characterization and stabilization'. Advanced drug delivery reviews, vol.48, pp.27-42, 2001.

L. X. Yu, Pharmaceutical Quality by Design: Product and Process Development, Understanding, and Control', Pharmaceutical Research, vol.25, issue.4, pp.781-791, 2008.

S. Zhai, H. Su, R. Taylor, and N. K. Slater, Pure ice sublimation within vials in a laboratory lyophiliser; comparison of theory with experiment, Chemical Engineering Science, vol.60, issue.4, pp.1167-1176, 2005.