H. Goenner, Some remarks on the genesis of scalar-tensor theories, Gen. Relativ. Gravit, vol.44, p.2077, 2012.

C. M. Will and H. W. Zaglauer, Gravitational radiation, close binary systems, and the Brans-Dicke theory of gravity, Astrophys. J, vol.346, p.366, 1989.

K. Nordtvedt, Post-Newtonian metric for a general class of scalar-tensor gravitational theories and observational consequences, Astrophys. J, vol.161, p.1059, 1970.

T. Damour and G. Esposito-farese, Tensor multiscalar theories of gravitation, Classical Quantum Gravity, vol.9, p.2093, 1992.

S. Mirshekari and C. M. Will, Compact binary systems in scalar-tensor gravity: Equations of motion to 2.5 post-Newtonian order, Phys. Rev. D, vol.87, p.84070, 2013.

M. Shibata, K. Taniguchi, H. Okawa, and A. Buonanno, Coalescence of binary neutron stars in a scalar-tensor theory of gravity, Phys. Rev. D, vol.89, p.84005, 2014.

R. N. Lang, Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order, Phys. Rev. D, vol.89, p.84014, 2014.

R. N. Lang, Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux, Phys. Rev. D, vol.91, p.84027, 2015.

N. Sennett, S. Marsat, and A. Buonanno, Gravitational waveforms in scalar-tensor gravity at 2PN relative order, Phys. Rev. D, vol.94, p.84003, 2016.

T. Damour and N. Deruelle, Lagrangien généralisé de deux masses ponctuelles à l'approximation post-post-Newtonienne de la relativité générale, CR Academy Science, vol.293, p.537, 1981.

T. Damour, Problème des deux corps et freinage de rayonnement en relativité générale, vol.294, p.1355, 1982.

G. Schaefer, Acceleration-dependent Lagrangians in general relativity, Phys. Lett, vol.100, p.128, 1984.

T. Damour and G. Schaefer, Redefinition of position variables and the reduction of higher order Lagrangians, J. Math. Phys. (N.Y.), vol.32, p.127, 1991.

T. Damour and G. Esposito-farese, Testing gravity to second post-Newtonian order: A field theory approach, Phys. Rev. D, vol.53, p.5541, 1996.

E. Di-casola, S. Liberati, and S. Sonego, Nonequivalence of equivalence principles, Am. J. Phys, vol.83, p.39, 2015.

D. M. Eardley, Observable effects of a scalar gravitational field in a binary pulsar, Astrophys. J., Lett. Ed, vol.196, p.59, 1975.

T. Damour, Gravitational radiation and the motion of compact bodies, Gravitational Radiation, 1983.

T. Damour and G. Esposito-farese, Nonperturbative Strong-Field Effects in Tensor-Scalar Theories of Gravitation, Phys. Rev. Lett, vol.70, p.2220, 1993.

H. W. Zaglauer, Neutron stars, and gravitational scalars, Astrophys. J, vol.393, p.685, 1992.

S. W. Hawking, Black holes in the Brans-Dicke theory of gravitation, Commun. Math. Phys, vol.25, p.167, 1972.

T. Ohta, H. Okamura, T. Kimura, and K. Hiida, Higher order gravitational potential for many-body system, Prog. Theor. Phys, vol.51, p.1220, 1974.

T. Damour, Gravitational scattering, post-Minkowskian approximation, and effective-one-body theory, Phys. Rev. D, vol.94, p.104015, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01554052

A. Buonanno, Reduction of the two-body dynamics to a one-body description in classical electrodynamics, Phys. Rev. D, vol.62, p.104022, 2000.

J. Antoniadis, A massive pulsar in a compact relativistic binary, Science, vol.340, p.1233232, 2013.

P. C. Freire, N. Wex, G. Esposito-farese, J. P. Verbiest, M. Bailes et al., The relativistic pulsarwhite dwarf binary PSR J1738 þ 0333 II. The most stringent test of scalar-tensor gravity, Mon. Not. R. Astron. Soc, vol.423, p.3328, 2012.

T. Damour and A. Nagar, New effective-one-body description of coalescing nonprecessing spinning black-hole binaries, Phys. Rev. D, vol.90, p.44018, 2014.

A. Nagar, T. Damour, C. Reisswig, and D. Pollney, Energetics and phasing of nonprecessing spinning coalescing black hole binaries, Phys. Rev. D, vol.93, p.44046, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01554948

D. Bini and T. Damour, Analytical determination of the two-body gravitational interaction potential at the fourth post-Newtonian approximation, Phys. Rev. D, vol.87, p.121501, 2013.

E. Barausse and A. Buonanno, An improved effectiveone-body Hamiltonian for spinning black-hole binaries, Phys. Rev. D, vol.81, p.84024, 2010.

T. Damour and A. Nagar, Effective-one-body description of tidal effects in inspiralling compact binaries, Phys. Rev. D, vol.81, p.84016, 2010.

E. Barausse, C. Palenzuela, M. Ponce, and L. Lehner, Neutron-star mergers in scalar-tensor theories of gravity, Phys. Rev. D, vol.87, p.81506, 2013.

T. Damour and K. Nordtvedt, General Relativity as a Cosmological Attractor of Tensor-Scalar Theories, Phys. Rev. Lett, vol.70, p.2217, 1993.

T. Damour and K. Nordtvedt, Tensor-scalar cosmological models and their relaxation toward general relativity, Phys. Rev. D, vol.48, p.3436, 1993.

. Two-body, . In-scalar-tensor, and . Theories, AS ? PHYSICAL REVIEW D, vol.95, p.124054, 2017.

T. Damour and A. Nagar, The effective-one-body approach to the general relativistic two body problem, Lect. Notes Phys, vol.905, p.273, 2016.

S. Mirshekari and C. M. Will, Compact binary systems in scalar-tensor gravity: Equations of motion to 2.5 post-Newtonian order, Phys. Rev. D, vol.87, p.84070, 2013.

T. Damour and G. Esposito-farèse, Tensor multiscalar theories of gravitation, Classical Quantum Gravity, vol.9, p.2093, 1992.

R. N. Lang, Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order, Phys. Rev. D, vol.89, p.84014, 2014.

R. N. Lang, Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux, Phys. Rev. D, vol.91, p.84027, 2015.

N. Sennett, S. Marsat, and A. Buonanno, Gravitational waveforms in scalar-tensor gravity at 2PN relative order, Phys. Rev. D, vol.94, p.84003, 2016.

F. Julié and N. Deruelle, Two-body problem in scalar-tensor theories as a deformation of general relativity: An effectiveone-body approach, Phys. Rev. D, vol.95, p.124054, 2017.

A. Buonanno and T. Damour, Effective one-body approach to general relativistic two-body dynamics, Phys. Rev. D, vol.59, p.84006, 1999.

T. Damour and G. Esposito-farèse, Testing gravity to second post-Newtonian order: a field theory approach, Phys. Rev. D, vol.53, p.5541, 1996.

R. Coquereaux and G. Esposito-farèse, The theory of Kaluza-Klein-Jordan-Thiry revisited, vol.52, p.113, 1990.

T. Damour and K. Nordtvedt, General Relativity As a Cosmological Attractor of Tensor-Scalar Theories, Phys. Rev. Lett, vol.70, p.2217, 1993.

T. Damour and K. Nordtvedt, Tensor-scalar cosmological models and their relaxation toward general relativity, Phys. Rev. D, vol.48, p.3436, 1993.

. Reducing, . Two-body, and . In-scalar-?, PHYS. REV. D, vol.97, p.24047, 2018.

S. W. Hawking, Black holes in the Brans-Dicke theory of gravitation, Commun. Math. Phys, vol.25, p.167, 1972.

T. Damour and G. Esposito-farèse, Nonperturbative Strong Field Effects in Tensor-Scalar Theories of Gravitation, Phys. Rev. Lett, vol.70, p.2220, 1993.

D. M. Eardley, Observable effects of a scalar gravitational field in a binary pulsar, Astrophys. J, vol.196, p.59, 1975.

T. Damour and G. Esposito-farèse, Gravitational wave versus binary-pulsar tests of strong field gravity, Phys. Rev. D, vol.58, p.42001, 1998.

T. Damour, Gravitational Radiation, 1983.

T. Damour, P. Jaranowski, and G. Schaefer, On the determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation, Phys. Rev. D, vol.62, p.84011, 2000.

T. Damour, P. Jaranowski, and G. Schaefer, Fourth post-Newtonian effective-one-body dynamics, Phys. Rev. D, vol.91, p.84024, 2015.

T. Damour, Gravitational scattering, post-Minkowskian approximation and effective-one-body theory, Phys. Rev. D, vol.94, p.104015, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01554052

M. Fierz, On the physical interpretation of P. Jordan's extended theory of gravitation, Helv. Phys. Acta, vol.29, p.128, 1956.

C. Brans and R. H. Dicke, Mach's principle and a relativistic theory of gravitation, Phys. Rev, vol.124, p.925, 1961.

T. Damour and A. Nagar, New effective-one-body description of coalescing nonprecessing spinning blackhole binaries, Phys. Rev. D, vol.90, p.44018, 2014.

A. Nagar, T. Damour, C. Reisswig, and D. Pollney, Energetics and phasing of nonprecessing spinning coalescing black hole binaries, Phys. Rev. D, vol.93, p.44046, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01554948

D. Bini and T. Damour, Analytical determination of the two-body gravitational interaction potential at the fourth post-Newtonian approximation, Phys. Rev. D, vol.87, p.121501, 2013.

P. C. Freire, N. Wex, G. Esposito-farèse, J. P. Verbiest, M. Bailes et al., The relativistic pulsarwhite dwarf binary PSR J1738+0333 II. The most stringent test of scalar-tensor gravity, Mon. Not. R. Astron. Soc, vol.423, p.3328, 2012.

N. Wex, Testing relativistic gravity with radio pulsars, Fund. Theor. Phys, vol.179, p.651, 2015.

E. Barausse, C. Palenzuela, M. Ponce, and L. Lehner, Neutron-star mergers in scalar-tensor theories of gravity, Phys. Rev. D, vol.87, p.81506, 2013.

C. Palenzuela, E. Barausse, M. Ponce, and L. Lehner, Dynamical scalarization of neutron stars in scalar-tensor gravity theories, Phys. Rev. D, vol.89, p.44024, 2014.

N. Sennett and A. Buonanno, Modeling dynamical scalarization with a resummed post-Newtonian expansion, Phys. Rev. D, vol.93, p.124004, 2016.

N. Sennett, L. Shao, and J. Steinhoff, Effective action model of dynamically scalarizing binary neutron stars, Phys. Rev. D, vol.96, p.84019, 2017.

K. Taniguchi, M. Shibata, and A. Buonanno, Quasiequilibrium sequences of binary neutron stars undergoing dynamical scalarization, Phys. Rev. D, vol.91, p.24033, 2015.

P. Jai-akson, A. Chatrabhuti, O. Evnin, and L. Lehner, Black hole merger estimates in Einstein-Maxwell and Einstein-Maxwell-dilaton gravity, Phys. Rev. D, vol.96, p.44031, 2017.

E. W. Hirschmann, L. Lehner, S. L. Liebling, and C. Palenzuela, Black hole dynamics in Einstein-Maxwelldilaton theory

B. P. Abbott, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett, vol.116, p.61102, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01273200

B. P. Abbott, GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett, vol.116, p.241103, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01332514

, -18

B. P. Abbott, GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett, vol.118, p.221101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645700

B. P. Abbott, GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett, vol.119, p.141101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645341

B. Abbott, GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett, vol.119, p.161101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645859

T. Damour, Gravitational radiation and motion of compact bodies, 1983.

L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Rev. Rel, vol.17, p.2, 2014.

D. M. Eardley, Observable e?ects of a scalar gravitational field in a binary pulsar, Astrophys. J. Lett, vol.196, p.59, 1975.

T. Damour and G. Esposito-farèse, Tensor multiscalar theories of gravitation, Class. Quant. Grav, vol.9, p.2093, 1992.

T. Damour and G. Esposito-farèse, Testing gravity to second postNewtonian order: A field theory approach, Phys. Rev. D, vol.53, p.5541, 1996.

S. Mirshekari and C. M. Will, Compact binary systems in scalar-tensor gravity: Equations of motion to 2.5 post-Newtonian order, Phys. Rev. D, vol.87, p.84070, 2013.

T. Damour and G. Esposito-farèse, Nonperturbative strong field e?ects in tensor-scalar theories of gravitation, Phys. Rev. Lett, vol.70, p.2220, 1993.

E. Barausse, C. Palenzuela, M. Ponce, and L. Lehner, Neutron-star mergers in scalar-tensor theories of gravity, Phys. Rev. D, vol.87, p.81506, 2013.

C. Palenzuela, E. Barausse, M. Ponce, and L. Lehner, Dynamical scalarization of neutron stars in scalar-tensor gravity theories, Phys. Rev. D, vol.89, p.44024, 2014.

F. Julié, Reducing the two-body problem in scalar-tensor theories to the motion of a test particle: a scalar-tensor e?ective-one-body approach

S. W. Hawking, Black holes in the Brans-Dicke theory of gravitation, Commun. Math. Phys, vol.25, p.167, 1972.

G. W. Gibbons and K. Maeda, Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields, Nucl. Phys. B, vol.298, p.741, 1988.

D. Garfinkle, G. T. Horowitz, and A. Strominger, Charged black holes in string theory, Phys. Rev. D, vol.43, p.3140, 1991.

V. P. Frolov, A. I. Zelnikov, and U. Bleyer, Charged Rotating Black Hole From Five-dimensional Point of View, Annalen Phys, vol.44, p.371, 1987.

J. H. Horne and G. T. Horowitz, Rotating dilaton black holes, Phys. Rev. D, vol.46, p.1340, 1992.

E. W. Hirschmann, L. Lehner, S. L. Liebling, and C. Palenzuela, Black Hole Dynamics in Einstein-Maxwell-Dilaton Theory

T. Damour and G. Esposito-farèse, Gravitational wave versus binary -pulsar tests of strong field gravity, Phys. Rev. D, vol.58, p.42001, 1998.

R. L. Arnowitt, S. Deser, and C. W. Misner, The dynamics of general relativity, Gen. Rel. Grav, vol.40, 1997.

D. Christodoulou and R. Ru, Reversible transformations of a charged black hole, Phys. Rev. D, vol.4, p.3552, 1971.

S. D. Majumdar, A class of exact solutions of Einstein's field equations, Phys. Rev, vol.72, p.390, 1947.

A. Papapetrou, A Static solution of the equations of the gravitational field for an arbitrary charge distribution, Proc. Roy. Irish Acad. A, vol.51, p.191, 1947.

J. B. Hartle and S. W. Hawking, Solutions of the Einstein-Maxwell equations with many black holes, Commun. Math. Phys, vol.26, p.87, 1972.

G. W. Gibbons and P. J. Ruback, The Motion of Extreme Reissner-Nordström Black Holes in the Low Velocity Limit, Phys. Rev. Lett, vol.57, p.1492, 1986.

J. Scherk, Antigravity: a crazy idea?, Phys. Lett. B, vol.88, p.265, 1979.

K. Shiraishi, Multicentered solution for maximally charged dilaton black holes in arbitrary dimensions, J. Math. Phys, vol.34, p.1480, 1993.

K. Shiraishi, Moduli space metric for maximally charged dilaton black holes, Nucl. Phys. B, vol.402, p.399, 1993.

N. Kan and K. Shiraishi, Interparticle Potential up to Next-to-leading Order for Gravitational, Electrical and Dilatonic Forces, Gen. Rel. Grav, vol.44, p.887, 2012.

M. Cárdenas, F. Julié, and N. Deruelle, Thermodynamics sheds light on black hole dynamics

T. Maki and K. Shiraishi, Motion of test particles around a charged dilatonic black hole, Class. Quant. Grav, vol.11, p.227, 1994.

P. Jai-akson, A. Chatrabhuti, O. Evnin, and L. Lehner, Black hole merger estimates in Einstein-Maxwell and Einstein-Maxwell-dilaton gravity, Phys. Rev. D, vol.96, p.44031, 2017.

N. Sennett, L. Shao, and J. Steinho?, E?ective action model of dynamically scalarizing binary neutron stars, Phys. Rev. D, vol.96, p.84019, 2017.

T. Damour and K. Nordtvedt, Tensor -scalar cosmological models and their relaxation toward general relativity, Phys. Rev. D, vol.48, p.3436, 1993.

F. Julié and N. Deruelle, Two-body problem in Scalar-Tensor theories as a deformation of General Relativity: an E?ective-One-Body approach, Phys. Rev. D, vol.95, p.124054, 2017.

A. Buonanno and T. Damour, E?ective one-body approach to general relativistic two-body dynamics, Phys. Rev. D, vol.59, p.84006, 1999.

T. Damour and A. Nagar, The E?ective-One-Body Approach to the General Relativistic Two Body Problem, Lect. Notes Phys, vol.905, p.273, 2016.

L. Blanchet and T. Damour, Postnewtonian generation of gravitational waves, Ann. Inst. H. Poincare Phys. Theor, vol.50, p.377, 1989.

T. Damour, M. So?el, and C. Xu, General relativistic celestial mechanics. 1. Method and definition of reference systems, Phys. Rev. D, vol.43, p.3273, 1991.

M. E. Pati and C. M. Will, PostNewtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. 2. Two-body equations of motion to second postNewtonian order and radiation reaction to 3.5 postNewtonia order, Phys. Rev. D, vol.65, p.104008, 2002.

F. Julié, On the motion of hairy black holes in Einstein-Maxwell-dilaton theories, JCAP, vol.01, p.26, 2018.

D. M. Eardley, Observable effects of a scalar gravitational field in a binary pulsar, Astrophys. J, vol.196, p.59, 1975.

G. W. Gibbons, Antigravitating Black Hole Solitons with Scalar Hair in N = 4 Supergravity, Nucl. Phys. B, vol.207, p.337, 1982.

G. W. Gibbons and K. Maeda, Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields, Nucl. Phys. B, vol.298, p.741, 1988.

M. Cárdenas, F. Julié, and N. Deruelle, Thermodynamics sheds light on black hole dynamics, Phys. Rev. D, vol.97, p.124021, 2018.

L. Landau and E. Lifshitz, The Classical Theory of Fields, 1975.

N. Deruelle and J. Uzan, Relativity in Modern Physics, 2018.

F. Julié, Sur le problèmeà deux corps et le rayonnement gravitationnel en théories scalaire-tenseur et Einstein-Maxwell-dilaton

T. Damour and G. Esposito-farese, Tensor multiscalar theories of gravitation, Class. Quant. Grav, vol.9, p.2093, 1992.

A. Buonanno and T. Damour, Transition from inspiral to plunge in binary black hole coalescences, Phys. Rev. D, vol.62, p.64015, 2000.

F. Julié and N. Deruelle, Two-body problem in Scalar-Tensor theories as a deformation of General Relativity : an Effective-One-Body approach, Phys. Rev. D, vol.95, p.124054, 2017.

. Virgo, B. P. Scientific-collaborations, and . Abbott, GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett, vol.119, p.141101, 2017.

B. Bertotti, L. Iess, and P. Tortora, A test of general relativity using radio links with the Cassini spacecraft, Nature, vol.425, p.374, 2003.

M. Khalil, N. Sennett, J. Steinhoff, J. Vines, and A. Buonanno, Hairy binary black holes in Einstein-Maxwell-dilaton theory and their effective-one-body description

J. Katz, A note on Komar's anomalous factor, Class. Quant. Grav, vol.2, p.423, 1985.

J. Katz, J. Bicak, and D. Lynden-bell, Relativistic conservation laws and integral constraints for large cosmological perturbations, Phys. Rev. D, vol.55, p.5957, 1997.

M. Henneaux, C. Martinez, R. Troncoso, and J. Zanelli, Asymptotic behavior and Hamiltonian analysis of Anti-de Sitter gravity coupled to scalar fields, Annals Phys, vol.322, p.824, 2007.

M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP, vol.07, p.23, 1998.

H. Lü, C. N. Pope, and Q. Wen, Thermodynamics of AdS black holes in Einstein-Scalar gravity, p.165, 2015.

A. Anabalon, D. Astefanesei, D. Choque, and C. Martinez, Trace anomaly and counterterms in designer gravity, JHEP, issue.03, p.117, 2016.

H. Lü, Y. Pang, and C. N. Pope, AdS dyonic black hole and its thermodynamics, JHEP, issue.11, p.33, 2013.

A. Perez, M. Riquelme, D. Tempo, and R. Troncoso, Asymptotic structure of the Einstein-Maxwell theory on AdS, vol.3, issue.02, p.15, 2016.

P. Breitenlohner and D. Z. Freedman, Positive energy in Anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett. B, vol.115, p.197, 1982.

P. Breitenlohner and D. Z. Freedman, Stability in gauged extended supergravity, Annals Phys, vol.144, p.249, 1982.

A. Anabalon, D. Astefanesei, and J. Oliva, Hairy black hole stability in AdS, quantum mechanics on the half-line and holography, JHEP, issue.10, p.68, 2015.

B. Julia and S. Silva, Currents and superpotentials in classical gauge invariant theories. 1. Local results with applications to perfect fluids and general relativity, Class. Quant. Grav, vol.15, p.2173, 1998.

N. Deruelle, J. Katz, and S. Ogushi, Conserved charges in Einstein Gauss-Bonnet theory, vol.21, 1971.

N. Deruelle and J. Katz, On the mass of a Kerr-Anti-de Sitter spacetime in D dimensions, Class. Quant. Grav, vol.22, p.421, 2005.

N. Deruelle and Y. Morisawa, Mass and angular momenta of Kerr Anti-de Sitter spacetimes in Einstein-Gauss-Bonnet theory, Class. Quant. Grav, vol.22, p.933, 2005.

A. N. Petrov, Noether and Belinfante corrected types of currents for perturbations in the Einstein-Gauss-Bonnet gravity, Class. Quant. Grav, vol.28, p.215021, 2011.

N. Deruelle and J. Katz, Comments on conformal masses, asymptotics backgrounds and conservation laws, Class. Quant. Grav, vol.23, p.753, 2006.

F. Faedo, D. Klemm, and M. Nozawa, Hairy black holes in N = 2 gauged supergravity, JHEP, issue.11, p.45, 2015.

H. Liu and H. Lü, Scalar charges in asymptotic AdS geometries, Phys. Lett. B, vol.730, p.267, 2014.

A. Anabalon, D. Astefanesei, and C. Martinez, Mass of asymptotically Anti-de Sitter hairy spacetimes, Phys. Rev. D, vol.91, p.41501, 2015.

A. Anabalon, Exact black holes and universality in the backreaction of non-linear ?-models with a potential in (A)dS 4, JHEP, issue.06, p.127, 2012.

, -13

M. Cárdenas, O. Fuentealba, and J. Matulich, On conserved charges and thermodynamics of the AdS 4 dyonic black hole, JHEP, issue.05, p.1, 2016.

D. D. Chow and G. Compère, Dyonic AdS black holes in maximal gauged supergravity, Phys. Rev. D, vol.89, p.65003, 2014.

V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys, vol.208, p.413, 1999.

R. Emparan, C. V. Johnson, and R. C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D, vol.60, p.104001, 1999.

M. M. Caldarelli, G. Cognola, and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, vol.17, p.399, 2000.

, ), il est facile de vérifier que l'action Einstein-Maxwell-dilaton-Katz "on shell" satisfait encore la relation de Gibbs, présentée au chapitre précédent, bien que ce calcul ne fasse pas l

. Dans-le-cas-des-Étoiles,

. Notons-que-la-méthode-qui-y-est-employée and . Emd, ), supposé régulier. Dans le cas d'un trou noir, qui est singulier en r = 0, l'intégration du Lagrangien d'Einstein (où de celui d'Einstein-Katz, qui en est la généralisation covariante), ne peut s'étendre que de l

. Ainsi, énergie libre" de Gibbs, suggérant là encore la thermodynamique comme outil privilégié pour interpréter la "skeletonisation

?. )-À-charge-q-et-masse-;-m-constantes, de sorte que son entropie S reste elle aussi constante. Le fait que son mouvement soit entièrement décrit par les deux constantes q A et µ A trouve donc une explication naturelle dans le cadre de la thermodynamique : si q A s'identifie à sa charge U(1) conservée, la constante d'intégration notée µ A dans le chapitre 4, s'avérait coïncider avec la masse irréductible du trou noir, µ A = ? A + /16? (avec A + l'aire de son l'horizon) pour la bonne raison que son entropie

, Elle permet en effet d'interpréter, et peutêtre même de guider, la façon dont la trajectoire d'un trou noir peut être réduite à une ligne d'univers. Elle montre en particulier que les échanges de masse sous forme d'ondes gravitationnelles et de charges sont ignorés. De plus, il est clair que, dans les derniers stades précédant la fusion d'un système binaire, où la période orbitale devient comparable au temps de relaxation d'un trou noir, il n'est plus possible de le considérer comme étant à l'équilibre, aussi bien en théories EMD qu'en relativité générale d'ailleurs : son comportement ne satisfait plus la première loi de la thermodynamique, L'article qui suit ouvre donc une interface entre la thermodynamique des trous noirs d'une part

, ) doit donc, probablement, être étendue pour pouvoir décrire une particule sensible aussi aux gradients {? t , ? i } des champs, ce qui permettra d'encoder, cette fois-ci, la réponse du trou noir à un environnement non plus quasi-statique, mais dynamique, cf

F. L. Julié, On the motion of hairy black holes in Einstein-Maxwell-dilaton theories, J. Cosmol. Astropart. Phys, vol.01, p.26, 2018.

D. M. Eardley, Observable effects of a scalar gravitational field in a binary pulsar, Astrophys. J, vol.196, p.59, 1975.

G. W. Gibbons, Antigravitating black hole solitons with scalar hair in N ¼ 4 supergravity, Nucl. Phys, vol.207, p.337, 1982.

G. W. Gibbons and K. I. Maeda, Black holes and membranes in higher dimensional theories with dilaton fields, Nucl. Phys, vol.298, p.741, 1988.

D. Garfinkle, G. T. Horowitz, and A. Strominger, Charged black holes in string theory, Phys. Rev. D, vol.43, p.3140, 1991.

T. Damour and G. Esposito-farèse, Nonperturbative Strong Field Effects in Tensor-Scalar Theories of Gravitation, Phys. Rev. Lett, vol.70, p.2220, 1993.

E. Barausse, C. Palenzuela, M. Ponce, and L. Lehner, Neutron-star mergers in scalar-tensor theories of gravity, Phys. Rev. D, vol.87, p.81506, 2013.

T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Ann. Phys. (N.Y.), vol.88, p.286, 1974.

J. Katz, A note on Komar's anomalous factor, Classical Quantum Gravity, vol.2, p.423, 1985.

J. Katz, J. Bicak, and D. Lynden-bell, Relativistic conservation laws and integral constraints for large cosmological perturbations, Phys. Rev. D, vol.55, p.5957, 1997.

M. Henneaux, C. Martinez, R. Troncoso, and J. Zanelli, Black holes and asymptotics of 2 þ 1 gravity coupled to a scalar field, Phys. Rev. D, vol.65, p.104007, 2002.

M. Henneaux, C. Martinez, R. Troncoso, and J. Zanelli, Asymptotically anti-de Sitter spacetimes and scalar fields with a logarithmic branch, Phys. Rev. D, vol.70, p.44034, 2004.

T. Hertog and K. Maeda, Black holes with scalar hair and asymptotics in N ¼ 8 supergravity, J. High Energy Phys, vol.07, p.51, 2004.

G. W. Gibbons, R. Kallosh, B. Kol, and M. , Scalar Charges, and the First Law of Black Hole Thermodynamics, Phys. Rev. Lett, vol.77, p.4992, 1996.

M. Cárdenas, O. Fuentealba, and J. Matulich, On conserved charges and thermodynamics of the AdS 4 dyonic black hole, J. High Energy Phys, vol.05, p.1, 2016.

A. Anabalón, N. Deruelle, and F. L. Julié, Einstein-Katz action, variational principle, Noether charges and the thermodynamics of AdS-black holes, J. High Energy Phys, vol.08, p.49, 2016.

D. Christodoulou, Reversible and Irreversible Transformations in Black Hole Physics, Phys. Rev. Lett, vol.25, p.1596, 1970.

D. Christodoulou and R. Ruffini, Reversible transformations of a charged black hole, Phys. Rev. D, vol.4, p.3552, 1971.

R. M. Wald, The thermodynamics of black holes, Living Rev. Relativity, vol.4, p.6, 2001.

T. Damour, M. Soffel, and C. M. Xu, General relativistic celestial mechanics. 2. Translational equations of motion, Phys. Rev. D, vol.45, p.1017, 1992.

T. Damour and G. Esposito-farèse, Gravitational wave versus binary-pulsar tests of strong field gravity, Phys. Rev. D, vol.58, p.42001, 1998.

W. D. Goldberger and I. Z. Rothstein, Dissipative effects in the worldline approach to black hole dynamics, Phys. Rev. D, vol.73, p.104030, 2006.

N. Deruelle, J. Katz, and S. Ogushi, Conserved charges in Einstein Gauss-Bonnet theory, Classical Quantum Gravity, vol.21, p.1971, 2004.

, La dégénérescence avec la relativité générale étant ainsi levée, le formalisme EOB permettra de contraster les prédictions des théories EMD à celles de la relativité générale, même lorsque le dipôle est nul, dans le régime de champ fort, Conclusion en calculant le flux d'ondes gravitationnelles à l'ordre 1PK (l'approximation du dipôle nul suffisant)

, Cette information s'avérera utile dans le régime de champ fort, et pourra faire l'objet de travaux futurs afin de l'incorporer au sein du formalisme EOB. De la même façon, il serait utile de calculer le lagrangien EMD à l'ordre 2PK

, Afin de rendre compte de l'augmentation de l'entropie des trous noirs à laquelle on s'attend près de leur coalescence, une façon de procéder est de faire dépendre leurs sensibilités des gradients des champs, par exemple, du champ scalaire : comme l'ont montré T. Damour et G. Esposito-Farèse dans, comme nous l'avons suggéré dans le chapitre 7 par l'exemple des trous noirs EMD

, c 2 ) 2 . Comme de plus ? = O(v 2 /c 2 ), on trouve que ce terme en gradients est accompagné d'un préfacteur 1/c 6 . C'est donc un terme d'ordre 3PK, contrairement à 5PN pour celui décrivant les effets de taille finie en relativité générale, faisant intervenir par covariance le tenseur de Weyl au carré, La fonction n A (?) a la dimension d'une masse fois une longueur au carré, ce qui permet de l'estimer

, Une autre extension possible de cette thèse concerne l'étude de la relaxation du trou noir final issu de la fusion d'un système binaire en théories EMD. En effet

, Un projet futur (en collaboration avec E. Berti) est donc d'étudier la théories des perturbations des trous noirs EMD, afin d'en déterminer les modes quasi-normaux (notons d'ailleurs que des travaux préliminaires ont été effectués dans cette direction par R, Mais si nous voulons pousser son évolution au-delà de l'ISCO, il faut

, Enfin, les méthodes développées ici pourront être étendues à d'autres gravités modifiées, telles que les théories scalaire-tenseur couplées à l'invariant de Gauss-Bonnet, dans lesquelles les trous noirs manifestent des phénomènes de scalarisation spontanée similaires à ceux des théories scalaire-tenseur, vol.118

, Une autre possibilité à explorer, dans la continuité des théories EMD, serait celle où le couplage du champ scalaire ? au "graviphoton" A µ devient une fonction générique

. Ainsi, EOBisée" de corps compacts (y compris de trous noirs) en théories de gravité modifiée, et qui, vu la nouveauté du sujet, s'est arrétée aux premières étapes

B. P. Abbott, « Observation of Gravitational Waves from a Binary Black Hole Merger, Phys.Rev.Lett, vol.116, issue.6, p.61102, 2016.

J. Weber, « Evidence for discovery of gravitational radiation, Phys.Rev.Lett, vol.22, pp.1320-1324, 1969.

B. P. Abbott, Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys.Rev.Lett, vol.116, p.241103, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01332514

P. Benjamin and . Abbott, Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2 », Phys.Rev.Lett, vol.118, p.221101, 2017.

B. P. Abbott, GW170814 : A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys.Rev.Lett, vol.119, p.141101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645341

B. P. Abbott, Observation of a 19-solar-mass Binary Black Hole Coalescence, Astrophys.J, vol.851, issue.2, p.35

B. P. Abbott, Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys.Rev.Lett, vol.119, p.161101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645859

B. P. Abbott, Multi-messenger Observations of a Binary Neutron Star Merger, Astrophys.J, vol.848, issue.2, p.12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01646052

M. Paul, B. Louise, and W. , « Cygnus X-1-a Spectroscopic Binary with a Heavy Companion ?, Nature, vol.235, pp.37-38, 1972.

W. M. Goss, R. L. Brown, and K. Y. Lo, The Discovery of Sgr A* ». In : Astronomische Nachrichten 324.S1 (sept. 2003), pp.4-6337

K. S. , On the gravitational field of a mass point according to Einstein's theory, Sitzungsber.Preuss.Akad, vol.1916, pp.189-196, 1916.

R. A. Hulse and J. H. Taylor, « Discovery of a pulsar in a binary system, Astrophys.J, vol.195, pp.51-53, 1975.

T. Damour and N. D. , General relativistic celestial mechanics of binary systems. II. The post-Newtonian timing formula, » In : Ann. Inst. Henri Poincaré Phys. Théor, vol.44, issue.3, pp.263-292, 1986.

J. M. Weisberg and J. H. Taylor, Relativistic Binary Pulsar B1913+16 : Thirty Years of Observations and Analysis, 2004.

. Galilée and . Sidereus,

J. Aasi, Advanced LIGO, vol.32, p.74001, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-00807196

. The and . Collaboration, Interferometer design of the KAGRA gravitational wave detector, Physical Review D, vol.88, issue.4, p.43007, 2013.

C. S. Unnikrishnan and L. Indigo, scope and plans for gravitational wave research and precision metrology in India, International Journal of Modern Physics D, vol.22, pp.218-2718, 2013.

S. Kawamura, The Japanese space gravitational wave antenna -DECIGO ». en, Journal of Physics : Conference Series, vol.122, pp.1742-6596, 2008.

A. Pau, Laser Interferometer Space Antenna

G. Hobbs, « The international pulsar timing array project : using pulsars as a gravitational wave detector, Classical and Quantum Gravity, vol.27, pp.264-9381

B. Sathyaprakash, « Scientific objectives of Einstein Telescope ». en. In : Classical and Quantum Gravity, vol.29, 2012.

D. Thibault, « Gravitational radiation and motion of compact bodies, Gravitational radiation. N. Deruelle et T. Piran. Centre de Physique des Houches, 1983.

K. Daniel, Traveling at the Speed of Thought

D. Nathalie and L. Jean-pierre, Ondes gravitationnelles -Éditions Odile Jacob. fr

A. E. , The Field Equations of Gravitation, Sitzungsber.Preuss.Akad, vol.1915, pp.844-847, 1915.

E. Albert, « Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity, Sitzungsber.Preuss.Akad, vol.1915, pp.831-839, 1915.

A. E. , On the General Theory of Relativity, Sitzungsber.Preuss.Akad, vol.1915, pp.778-786, 1915.

E. Albert, « The Foundation of the General Theory of Relativity, Annalen Phys, vol.49, pp.769-822, 1916.

E. Albert, « Approximative Integration of the Field Equations of Gravitation, Sitzungsber.Preuss.Akad, vol.1916, pp.688-696, 1916.

E. Albert and . Über-gravitationswellen, Sitzungsber.Preuss.Akad, vol.1918, pp.154-167, 1918.

A. Stanley and E. , « The propagation of gravitational waves », Proc.Roy.Soc.Lond, vol.102, pp.268-282, 1922.

, Born-Einstein Letters (n.71). en

E. Albert and N. Rosen, On Gravitational waves, vol.223, pp.43-54, 1937.

K. Daniel, « Controversies in the History of the Radiation Reaction problem in General Relativity

Y. Foures-bruhat, Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires, Acta Mat, pp.141-225, 1952.

F. A. Pirani, « Invariant formulation of gravitational radiation theory, Phys.Rev, vol.105, pp.1089-1099, 1957.

T. Andrzej, « Radiation and Boundary Conditions in the Theory of Gravitation, Bull.Acad.Pol.Sci.Ser.Sci.Math.Astron.Phys, vol.6, pp.407-412, 1958.

H. Bondi, F. A. Pirani, and I. Robinson, « Gravitational waves in general relativity. 3. Exact plane waves », Proc.Roy.Soc.Lond, vol.251, pp.519-533, 1959.

C. M. De-witt, Proceedings : Conference on the Role of Gravitation in Physics, 1957.

B. Hermann, « Plane gravitational waves in general relativity, Nature, vol.179, pp.1072-1073, 1957.

J. H. Taylor, L. A. Fowler, and P. M. Mcculloch, « Measurements of general relativistic effects in the binary pulsar PSR, Nature, vol.277, pp.437-440, 1979.

. Ligo and . Url,

W. Sitter, Einstein's theory of gravitation and its astronomical consequences, Second Paper, Mon.Not.Roy.Astron.Soc, vol.77, pp.155-184, 1916.

H. A. Lorentz and J. Droste, « The Motion of a System of Bodies under the Influence of their Mutual Attraction, According to Einstein's Theory ». en, Collected Papers

D. Springer, , pp.330-355, 1937.

E. Albert, L. Infeld, and B. Hoffmann, « The Gravitational equations and the problem of motion, Annals Math, vol.39, pp.65-100, 1938.

D. Thibault, The Problem of Motion in General Relativity, Harnack House, 2015.

K. Westpfahl and H. Hoyler, « Gravitational bremsstrahlung in postlinear fast motion approximation, Lett.Nuovo Cim, vol.27, pp.581-585, 1980.

O. Tadayuki, Coordinate Condition and Higher Order Gravitational Potential in Canonical Formalism, Prog.Theor.Phys, vol.51, p.1598, 1974.

S. Gerhard, « The Gravitational Quadrupole Radiation Reaction Force and the Canonical Formalism of Adm, Annals Phys, vol.161, pp.90337-90346, 1985.

D. Thibault and D. Nathalie, « Radiation Reaction and Angular Momentum Loss in Small Angle Gravitational Scattering, Phys.Lett, vol.87, pp.90567-90570, 1981.

D. Thibault, Problème des deux corps et freinage de rayonnement en relativité générale, pp.1355-1357, 1982.

N. D. , Sur les équations du mouvement et le rayonnement gravitationnel d'un système binaire en Relativité Générale, 1982.

J. Benjamin, B. S. Owen, and . Sathyaprakash, « Matched filtering of gravitational waves from inspiraling compact binaries : Computational cost and template placement, Phys.Rev, vol.60, p.22002, 1999.

D. Thibault, J. Piotr, and S. Gerhard, « Dimensional regularization of the gravitational interaction of point masses, Physics Letters B, vol.513, pp.642-648, 2001.

B. Luc, D. Thibault, and G. Esposito-farese, « Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates, Physical Review D, vol.69, issue.12, 2004.

D. Thibault, J. Piotr, and S. Gerhard, « Conservative dynamics of two-body systems at the fourth post-Newtonian approximation of general relativity, Phys.Rev, p.84014

B. Laura, Fokker action of nonspinning compact binaries at the fourth post-Newtonian approximation, Phys.Rev, p.84037

B. Laura, Dimensional regularization of the IR divergences in the Fokker action of point-particle binaries at the fourth post-Newtonian order, Phys.Rev. D96, vol.10, p.104043, 2017.

L. Blanchet, R. Bala, . Iyer, and J. Benoit, Gravitational waves from inspiralling compact binaries : Energy flux to third postNewtonian order, vol.65, p.64005, 2002.

B. Luc, « Gravitational wave tails of tails, Class.Quant.Grav, vol.15, pp.113-141, 1998.

M. E. Pati and M. W. Clifford, PostNewtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. 2. Twobody equations of motion to second postNewtonian order, and radiation reaction to 3.5 postNewtonia order, Phys.Rev, vol.65, p.104008, 2002.

B. Luc, « Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries ». In : Living Rev.Rel, vol.17, 2014.

P. Eric, P. Adam, . Et-ian, and . Vega, « The motion of point particles in curved spacetime ». en. In : (fév, 2011.

R. Tullio and J. A. Wheeler, « Stability of a Schwarzschild singularity, Phys.Rev, vol.108, pp.1063-1069, 1957.

C. V. Vishveshwara, Stability of the schwarzschild metric ». fr, Phys.Rev, vol.1, pp.2870-2879, 1970.

K. D. Kokkotas, G. Bernd, and . Schmidt, Quasi-Normal Modes of Stars and Black Holes ». en. In : Living Reviews in Relativity 2.1 (déc. 1999), pp.2367-3613

A. Buonanno and T. Damour, « Effective one-body approach to general relativistic two-body dynamics, Phys.Rev, vol.59, p.84006, 1999.

P. R. Brady, D. E. Jolien, K. S. Creighton, and . Thorne, « Computing the merger of black hole binaries : The IBBH problem, Phys.Rev, vol.58, p.61501, 1998.

P. Thomas, . Brev, . Us6509866b2, and . Url,

R. Arnowitt, S. Deser, and C. W. Misner, « The Dynamics of General Relativity, General Relativity and Gravitation, vol.40, issue.9, pp.1-7701, 2008.

P. Frans, « Evolution of binary black hole spacetimes, Phys.Rev.Lett, vol.95, p.121101, 2005.

C. Vitor, Exploring New Physics Frontiers Through Numerical Relativity, Living Rev.Relativity, vol.18, p.1, 2015.

A. Buonanno and D. Thibault, « Transition from inspiral to plunge in binary black hole coalescences, Phys.Rev, vol.62, p.64015, 2000.

A. Nagar, Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides and self-spin effects, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01817917

P. J. Relativistische-gravitationstheorie-mit-variabler-gravitationskonstante, Naturwissenschaften, vol.33, pp.28-1042, 1946.

T. Yves-rené, Étude mathématique des équations d'une théorie unitaire à quinze variables de champ, 1951.

M. F. , On the physical interpretation of P.Jordan's extended theory of gravitation, Helv.Phys.Acta, vol.29, pp.128-134, 1956.

C. Brans and R. H. Dicke, « Mach's principle and a relativistic theory of gravitation, Phys.Rev, vol.124, pp.925-935, 1961.

G. Hubert, « Some remarks on the genesis of scalar-tensor theories, General Relativity and Gravitation, vol.44, pp.1-7701, 2012.

N. Kenneth, « Equivalence Principle for Massive Bodies. 1. Phenomenology, Phys.Rev, vol.169, pp.1014-1016, 1968.

N. Kenneth, Equivalence Principle for Massive Bodies. 2. Theory, vol.169, pp.1017-1025, 1968.

D. M. Eardley, Observable effects of a scalar gravitational field in a binary pulsar, The Astrophysical Journal Letters, vol.196, 1975.

G. Peter and . Bergmann, Comments on the scalar-tensor theory ». en, International Journal of Theoretical Physics, vol.1, issue.1, pp.20-7748, 1968.

N. Kenneth, « PostNewtonian metric for a general class of scalar tensor gravitational theories and observational consequences, Astrophys.J, vol.161, pp.1059-1067, 1970.

V. Robert and . Wagoner, Scalar-Tensor Theory and Gravitational Waves, Physical Review D, vol.1, issue.12, pp.3209-3216

C. M. Will, W. Helmut, and . Zaglauer, « Gravitational Radiation, Close Binary Systems, and the Brans-dicke Theory of Gravity, Astrophys.J, vol.346, p.366, 1989.

D. Thibault and E. Gilles, Tensor multiscalar theories of gravitation, Class.Quant.Grav, vol.9, pp.2093-2176, 1992.

M. W. Clifford, The Confrontation between General Relativity and Experiment, Living Reviews in Relativity 17.1 (déc. 2014)

C. Timothy, « Modified Gravity and Cosmology, vol.513, pp.1-189, 2012.

T. Pierre, The MICROSCOPE mission : first results of a space test of the Equivalence Principle, Physical Review Letters, vol.119, 2017.

F. Yasunori and M. Kei-ichi, The Scalar-Tensor Theory of Gravitation. en. Cambridge University Press, pp.978-979, 2003.

G. N. Relativitätsprinzip-und-gravitation, Phys. Zeit, vol.13, p.1126, 1912.

D. Nathalie and . Nordstrom, s scalar theory of gravity and the equivalence principle, General Relativity and Gravitation, vol.43, pp.1-7701, 2011.

D. I. Eolo, . Casola, L. Stefano, and S. Sebastiano, « Nonequivalence of equivalence principles, Am.J.Phys, vol.83, p.39, 2015.

M. Saeed and M. W. Clifford, Compact binary systems in scalar-tensor gravity : Equations of motion to 2.5 post-Newtonian order, Phys.Rev. D87, vol.8, p.84070

B. Laura, « Dynamics of compact binary systems in scalar-tensor theories : Equations of motion to the third post-Newtonian order, Phys.Rev, vol.98, issue.4, p.44004, 2018.

J. D. Anderson, E. L. Lau, and G. Giacomo, Measurement of the PPN Parameter $\gamma$ with radio signals from the Cassini Spacecraft at X-and Ka-Bands ». In : (déc. 2005)

E. Gilles, Motion in Alternative Theories of Gravity ». en. In : Mass and Motion in General Relativity. Fundamental Theories of Physics. Springer, Dordrecht, pp.461-489, 2009.

D. Thibault and G. Esposito-farese, « Nonperturbative strong field effects in tensor -scalar theories of gravitation, Phys.Rev.Lett, vol.70, pp.2220-2223, 1993.

C. C. Paulo and . Freire, The relativistic pulsar-white dwarf binary PSR J1738+0333 II. The most stringent test of scalar-tensor gravity, Monthly Notices of the Royal Astronomical Society, vol.423, pp.3328-3343, 2012.

T. Damour and K. N. , Tensor -scalar cosmological models and their relaxation toward general relativity, Phys.Rev, vol.48, pp.3436-3450, 1993.

B. Enrico, Neutron-star mergers in scalar-tensor theories of gravity, Phys.Rev, p.81506

P. Carlos, Dynamical scalarization of neutron stars in scalar-tensor gravity theories, Phys.Rev, p.44024

S. Noah and A. Buonanno, « Modeling dynamical scalarization with a resummed post-Newtonian expansion, Phys.Rev. D93, vol.12, p.124004, 2016.

S. Noah, L. Shao, and J. S. , Effective action model of dynamically scalarizing binary neutron stars, Phys.Rev, vol.96, p.84019, 2017.

N. L. Ryan, Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order, Phys.Rev, p.84014

N. L. Ryan, Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux, Phys.Rev, p.84027

S. Noah, M. Sylvain, and A. Buonanno, « Gravitational waveforms in scalar-tensor gravity at 2PN relative order, Phys.Rev, vol.94, p.84003, 2016.

J. D. Bekenstein and . Novel, no-scalar-hair" theorem for black holes, Phys.Rev. D51, vol.12, 1995.

A. Andrés, Universal Formula for the Holographic Speed of Sound

A. R. Carlos, . Herdeiro, and R. Eugen, Asymptotically flat black holes with scalar hair : a review

G. Cecilia and G. Gaston, The Lovelock Black Holes ». en. In : (mai, 2008.

B. Emanuele, Y. Kent, and Y. Nicolás, « Extreme Gravity Tests with Gravitational Waves from Compact Binary Coalescences : (I) Inspiral-Merger, vol.50, p.46, 2018.

. Bibliographie,

B. Emanuele, Extreme Gravity Tests with Gravitational Waves from Compact Binary Coalescences : (II) Ringdown ». In : Gen.Rel.Grav, vol.50, p.49, 2018.

B. Eugeny, C. Christos, and L. Antoine, Asymptotically flat black holes in Horndeski theory and beyond, p.27

B. Enrico, « Testing the strong equivalence principle with gravitational-wave observations of binary black holes, 2017.

H. O. Silva, Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling, vol.120, p.131104, 2018.

J. Luis and B. Salcedo, Perturbed black holes in Einstein-dilaton-Gauss-Bonnet gravity : Stability, ringdown, and gravitational-wave emission, Phys.Rev, vol.94, p.104024, 2016.

O. Maria, Numerical binary black hole mergers in dynamical Chern-Simons : I. Scalar field, Physical Review D, vol.96, issue.4, 2017.

D. Yves, F. Antoine, O. Mohamed, and . El-hadj, « Waveforms produced by a scalar point particle plunging into a Schwarzschild black hole : Excitation of quasinormal modes and quasibound states, Phys.Rev, vol.92, issue.2, p.24057, 2015.

D. Yves, F. Antoine, O. Mohamed, and . El-hadj, « Waveforms in massive gravity and neutralization of giant black hole ringings, Phys.Rev. D93, vol.12, p.124027, 2016.

G. W. Gibbons and M. Kei-ichi, Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields, vol.298, pp.90006-90011, 1988.

G. David, G. T. Horowitz, and S. Andrew, Charged black holes in string theory, vol.43, p.3140, 1991.

V. P. Frolov, A. I. Zelnikov, and U. Bleyer, « Charged Rotating Black Hole From Five-dimensional Point of View, Annalen Phys, vol.44, pp.371-377, 1987.

H. James, . Horne, T. Gary, and . Horowitz, Rotating dilaton black holes, Phys.Rev, vol.46, pp.1340-1346, 1992.

G. W. Gibbons and M. Kei-ichi, Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields, vol.298, pp.90006-90011, 1988.

E. W. Hirschmann, « Black Hole Dynamics in Einstein-Maxwell-Dilaton Theory, Phys.Rev. D97, vol.6, p.64032, 2018.

S. Kiyoshi, « Moduli space metric for maximally charged dilaton black holes, Nucl.Phys, vol.402, issue.93, pp.90648-90657, 1993.

S. Kiyoshi, « Multicentered solution for maximally charged dilaton black holes in arbitrary dimensions, J.Math.Phys, vol.34, pp.1480-1486, 1993.

K. Nahomi and S. Kiyoshi, « Interparticle Potential up to Next-to-leading Order for Gravitational, Electrical, and Dilatonic Forces, Gen.Rel.Grav, vol.44, pp.887-903, 2012.

H. Reissner, Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie, vol.355, 1916.

D. Nathalie and U. Jean-philippe, Théories de la relativité, pp.978-980, 2014.

R. Penrose and R. M. Floyd, « Extraction of rotational energy from a black hole, Nature, vol.229, pp.177-179, 1971.

D. C. , Reversible and irreversible transforations in black hole physics, Phys.Rev.Lett, vol.25, pp.1596-1597, 1970.

D. Christodoulou and R. R. , Reversible transformations of a charged black hole, Phys.Rev, vol.4, pp.3552-3555, 1971.

S. W. Hawking-;-b.-et and C. De-witt, Black holes -Les Astres occlus, 1972.

J. D. Bekenstein, « Black holes and the second law, Lett.Nuovo Cim, vol.4, pp.737-740, 1972.

S. W. Hawking, « Black hole explosions, Nature, vol.248, pp.30-31, 1974.

S. W. Hawking, « Particle Creation by Black Holes, Commun.Math.Phys, vol.43, pp.199-220, 1975.

J. M. Bardeen, B. Carter, and S. W. Hawking, « The Four laws of black hole mechanics, Commun.Math.Phys, vol.31, pp.161-170, 1973.

M. W. Robert, The Thermodynamics of Black Holes ». en, Living Reviews, pp.1433-8351

D. Thibault, « The entropy of black holes : a primer, pp.227-264, 2004.

C. Geoffrey and . Kerr, CFT correspondence and its extensions ». In : Living Rev.Rel, vol.15, issue.1, p.11

A. Andres, Hairy Black Holes and Duality in an Extended Supergravity Model, vol.2018, 2018.

M. W. Robert, The Thermodynamics of Black Holes ». en, Living Reviews, pp.1433-8351

B. László and . Szabados, Quasi-Local Energy-Momentum and Angular Momentum in GR : A, Review Article ». en. In : Living Reviews in Relativity, vol.7, issue.1, pp.1433-8351, 2004.

G. W. Gibbons, M. J. Perry, and C. N. Pope, The First Law of Thermodynamics for Kerr-Anti-de Sitter Black Holes, Classical and Quantum Gravity, vol.22, issue.9, pp.264-9381, 2005.

J. Katz, « A note on Komar's anomalous factor ». en, Classical and Quantum Gravity, vol.2, p.423, 1985.

K. Joseph, B. Jiri, L. Donald, and . Bell, « Relativistic conservation laws and integral constraints for large cosmological perturbations, Physical Review D, vol.55, issue.10, pp.5957-5969, 1997.

L. D. Landau and E. Lifshitz, The Classical Theory of Fields. en. Butterworth-Heinemann, pp.978-978, 1975.

W. James and . York, Role of Conformal Three-Geometry in the Dynamics of Gravitation, Physical Review Letters, vol.28, pp.1082-1085

G. W. Gibbons and S. W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys.Rev, vol.15, pp.2752-2756, 1977.

K. Arthur and . Covariant, Conservation Laws in General Relativity, Physical Review 113.3 (fév. 1959), pp.934-936

E. Poisson, Advanced general relativity

N. Deruelle and K. Joseph, On the mass of a Kerr-anti-de Sitter spacetime in D dimensions, Class.Quant.Grav, vol.22, pp.421-424, 2005.

D. Nathalie, K. Joseph, and O. Sachiko, Conserved charges in Einstein Gauss-Bonnet theory, vol.21, pp.1971-1985, 2004.

D. Nathalie and M. Yoshiyuki, Mass and angular momenta of Kerr anti-de Sitter spacetimes in Einstein-Gauss-Bonnet theory, Class.Quant.Grav, vol.22, pp.933-938, 2005.

D. Nathalie, M. Nelson, and O. Rodrigo, Einstein-Gauss-Bonnet theory of gravity : The Gauss-Bonnet-Katz boundary term, vol.97, p.104009, 2018.

D. Nathalie, N. Merino, O. Rodrigo, and . Chern-weil-theorem, Lovelock Lagrangians in critical dimensions and boundary terms in gravity actions, 2018.

C. V. Vishveshwara, Scattering of Gravitational Radiation by a Schwarzschild Black-hole, Nature, vol.227, pp.936-938, 1970.

P. Frans, « Evolution of binary black hole spacetimes, Phys.Rev.Lett, vol.95, p.121101, 2005.

D. Nathalie and U. Jean-philippe, Relativity in Modern Physics. Oxford Graduate Texts, pp.978-978, 2018.

D. Thibault-damour-et-nathalie, Lagrangien généralisé de deux masses ponctuelles à l'approximation post-post-Newtonienne de la relativité générale, Comptes rendus des séances de l'Académie des sciences. Série 2 (nov. 1981), pp.537-540

D. Thibault, P. J. , and G. S. , On the determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation, Phys.Rev, vol.62, p.84011, 2000.

D. Thibault, J. Piotr, and S. Gerhard, « Fourth post-Newtonian effective one-body dynamics, Phys.Rev. D91, vol.8, p.84024

A. Nagar, Energetics and phasing of nonprecessing spinning coalescing black hole binaries, Physical Review D 93.4 (fév. 2016)
URL : https://hal.archives-ouvertes.fr/hal-01554948

D. Thibault, R. Bala, A. Iyer, and . Nagar, « Improved resummation of post-Newtonian multipolar waveforms from circularized compact binaries, Phys.Rev, vol.79, p.64004, 2009.

D. Thibault, Coalescence of Two Spinning Black Holes : An Effective One-Body Approach, vol.64, 2001.

A. N. Thibault-damour, A new effective-one-body description of coalescing nonprecessing spinning black-hole binaries, Physical Review D, vol.90, issue.4, pp.1550-7998, 2014.

N. Thibault-damour-et-alessandro and . Effective, One Body description of tidal effects in inspiralling compact binaries, Physical Review D, vol.81, issue.8

D. Thibault, « Gravitational scattering, post-Minkowskian approximation and Effective One-Body theory, Phys.Rev. D94, vol.10, p.104015, 2016.

H. Francesco, Astrophysical Black Holes. en. Lecture Notes in Physics, 2016.

D. Thibault and E. Gilles, Testing gravity to second postNewtonian order : A Field theory approach, Phys.Rev, vol.53, pp.5541-5578, 1996.

J. Félix-louis and D. Nathalie, « Two-body problem in Scalar-Tensor theories as a deformation of General Relativity : an Effective-One-Body approach, Phys.Rev. D95, vol.12, p.124054, 2017.

L. The and C. Scientific, Binary Black Hole Mergers in the first Advanced LIGO Observing Run, Physical Review X, vol.6, 2016.

Y. Nicolas and P. Frans, « Fundamental Theoretical Bias in Gravitational Wave Astrophysics and the Parameterized Post-Einsteinian Framework, Phys.Rev, vol.80, p.122003, 2009.

C. Robert and E. Gilles, The Theory of Kaluza-Klein-Jordan-Thiry revisited, vol.52, pp.113-150, 1990.

J. Félix-louis, Reducing the two-body problem in scalar-tensor theories to the motion of a test particle : a scalar-tensor effective-one-body approach, Phys.Rev, vol.97, issue.2, p.24047, 2018.

D. Thibault and G. Esposito-farese, « Nonperturbative strong field effects in tensor -scalar theories of gravitation, Phys.Rev.Lett, vol.70, pp.2220-2223, 1993.

K. Hajian and M. M. Sheikh-jabbari, « Redundant and Physical Black Hole Parameters : Is there an independent physical dilaton charge ?, Physics Letters B, vol.768, pp.228-234, 2017.

P. Costantino, « Scalar charge of black holes in Einstein-Maxwell-dilaton theory, 2018.

J. Félix-louis, On the motion of hairy black holes in Einstein-Maxwell-dilaton theories, p.26, 2018.

D. Thibault and G. Esposito-farese, « Nonperturbative strong field effects in tensor -scalar theories of gravitation, Phys.Rev.Lett, vol.70, pp.2220-2223, 1993.

P. Eric, Lecture notes

B. Bertotti, L. Iess, and P. Tortora, « A test of general relativity using radio links with the Cassini spacecraft ». en, Nature 425.6956 (sept. 2003), pp.374-376

A. Andrés, D. Nathalie, and J. Félix-louis, « Einstein-Katz action, variational principle, Noether charges and the thermodynamics of AdS-black holes, JHEP 1608, p.49, 2016.

K. Joseph, B. Jiri, L. Donald, and . Bell, « Relativistic conservation laws and integral constraints for large cosmological perturbations, Phys.Rev, vol.55, pp.5957-5969, 1997.

A. Andres, « Exact Black Holes and Universality in the Backreaction of nonlinear Sigma Models with a potential in (A)dS4, p.127, 2012.

H. Lü, P. Yi, and C. N. Pope, AdS Dyonic Black Hole and its Thermodynamics, p.33, 2013.

G. W. Gibbons and S. W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys.Rev, vol.15, pp.2752-2756, 1977.

H. Thomas, Lectures on Quantum Gravity and Black Holes ». en. In : (, p.222

C. Marcela, J. Félix-louis, and D. Nathalie, Thermodynamics sheds light on black hole dynamics, vol.12, p.124021, 2018.

R. Tullio and T. Claudio, Role of Surface Integrals in the Hamiltonian Formulation of General Relativity, Annals Phys, vol.88, pp.90404-90411, 1974.

C. Marcela, F. Oscar, and M. Javier, On conserved charges and thermodynamics of the AdS$_{4}$ dyonic black hole, p.1, 2016.

D. Thibault, S. Michael, and C. Xu, « General relativistic celestial mechanics. 2. Translational equations of motion, Phys.Rev, vol.45, pp.1017-1044, 1992.

D. Thibault and G. Esposito-farese, Gravitational wave versus binarypulsar tests of strong field gravity, vol.58, p.42001, 1998.

D. Walter, . Goldberger, and Z. R. Ira, Dissipative effects in the worldline approach to black hole dynamics, Phys.Rev, vol.73, 2006.

E. Gilles, Motion in alternative theories of gravity, Fundam.Theor.Phys, vol.162, pp.461-489, 2011.

Y. Nicolas and P. Frans, « Fundamental Theoretical Bias in Gravitational Wave Astrophysics and the Parameterized Post-Einsteinian Framework

Y. Nicolas, Y. Kent, and P. Frans, Theoretical Physics Implications of the Binary Black-Hole Mergers GW150914 and GW151226

A. Buonanno, Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors, Phys.Rev, vol.80, p.84043, 2009.

L. E. Alexandre, . Tiec, and G. Philippe, « Horizon Surface Gravity in Corotating Black Hole Binaries, Class.Quant.Grav, vol.35, p.144002, 2018.

R. Brito and P. Costantino, « Quasinormal modes of weakly charged Einstein-Maxwell-dilaton black holes, 2018.

A. R. Carlos and . Herdeiro, Spontaneous scalarisation of charged black holes, 2018.