S. Mann, Molecular recognition in biomineralization, Nature, vol.332, p.10, 1988.

H. A. Lowenstam, Minerals formed by organisms, Science, vol.211, p.10, 1981.

A. Akiva, On the pathway of mineral deposition in larval zebraish caudal in bone, Bone, vol.75, p.10, 2015.

J. Mahamid, A. Sharir, L. Addadi, and S. Weiner, Amorphous calcium phosphate is a major component of the forming in bones of zebraish : Indications for an amorphous precursor phase, Proceedings of the National Academy of Sciences, vol.105, p.10, 2008.

J. Mahamid, Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebraish in rays, Proceedings of the National Academy of Sciences, vol.107, p.10, 2010.

B. Engfeldt and F. Reinholt, Structure and calciication of epiphyseal growth cartilage. Calciication in biological systems, p.10, 1992.

H. C. Slavkin and T. Diekwisch, Evolution in tooth developmental biology : of morphology and molecules, The Anatomical Record, vol.245, p.10, 1996.

S. Raz, P. C. Hamilton, F. H. Wilt, S. Weiner, and L. Addadi, The transient phase of amorphous calcium carbonate in sea urchin larval spicules : the involvement of proteins and magnesium ions in its formation and stabilization, Advanced Functional Materials, vol.13, p.10, 2003.

D. F. Travis, Structural features of mineralization from tissue to macromolecular levels of organization in the decapod Crustacea, Annals of the New York Academy of Sciences, vol.109, p.10, 1963.

J. L. Arias, D. J. Fink, S. Xiao, A. H. Heuer, and A. I. Caplan, Biomineralization and eggshells : cell-mediated acellular compartments of mineralized extracellular matrix, International review of cytology, vol.145, p.10, 1993.

P. Monje, E. Baran, and A. Hemantaranjan, Advances in Plant Physiology, vol.7, p.10, 2004.

K. Kim, The stones. Scanning electron microscopy, 1635 (1982) (cf, p.10

C. D. Fermin and M. Igarashi, Review of statoconia formation in birds and original research in chicks (Gallus domesticus), Scan. Electron Microsc, vol.4, p.10, 1986.

F. G. Pautard, in Biological calciication : Cellular and molecular aspects, p.10, 1970.

S. C. Benson and F. H. Wilt, Calciication of spicules in the sea urchin embryo. Calciication in biological systems, p.11, 1992.

P. A. Dirac, Quantum mechanics of many-electron systems in, Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.123, p.13, 1929.

R. M. Martin, Electronic Structure (Cambridge, 2004) (cf, vol.17, p.13

P. Hohenberg and W. Kohn, Self-consistent equations including exchange and correlation efects, Physical Review, vol.136, p.14, 1964.

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation efects, Physical Review, vol.140, p.15, 1965.

S. Boys, Electronic wave functions. III. Some theorems on integrals of antisymmetric functions of equivalent orbital form in, Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.206, p.18, 1951.

J. Vandevondele, Quickstep : Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, Computer Physics Communications, vol.167, p.19, 2005.

S. Grimme and . Semiempirical, GGA-type density functional constructed with a long-range dispersion correction, Journal of computational chemistry, vol.27, p.20, 2006.

T. Bucko, J. Hafner, S. Lebegue, and J. G. Angyán, Improved description of the structure of molecular and layered crystals : ab initio DFT calculations with van der Waals corrections, The Journal of Physical Chemistry A, vol.114, p.21, 2010.

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, The Journal of chemical physics, vol.132, p.21, 2010.

R. P. Feynman, Forces in molecules, Physical Review, vol.56, p.21, 1939.

P. Forman, Alfred Landé and the anomalous Zeeman efect, 1919-1921. Historical Studies in the, Physical Sciences, vol.2, p.24, 1970.

U. Haeberlen, High Resolution NMR in solids selective averaging : supplement 1 advances in magnetic resonance, p.25, 2012.

E. Andrew, A. Bradbury, and R. Eades, Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation, Nature, vol.183, p.25, 1959.

I. Lowe, Free induction decays of rotating solids, Physical Review Letters, vol.2, p.25, 1959.

S. Hartmann and E. Hahn, Nuclear double resonance in the rotating frame, Physical Review, vol.128, p.28, 1962.

A. Pines, M. Gibby, and J. Waugh, Proton-enhanced NMR of dilute spins in solids, The Journal of Chemical Physics, vol.59, p.28, 1973.

J. Schaefer and E. Stejskal, Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle, Journal of the American Chemical Society, vol.98, p.29, 1976.

A. W. Overhauser, Polarization of nuclei in metals, Physical Review, vol.92, p.30, 1953.

T. R. Carver and C. P. Slichter, Experimental veriication of the Overhauser nuclear polarization efect, Physical Review, vol.102, p.30, 1956.

L. R. Becerra, G. J. Gerfen, R. J. Temkin, D. J. Singel, and R. G. Griffin, Dynamic nuclear polarization with a cyclotron resonance maser at 5 T, Physical Review Letters, vol.71, p.30, 1993.

P. E. Blöchl, Projector augmented-wave method, Physical review B, vol.50, p.31, 1994.

H. M. Petrilli, P. E. Blöchl, P. Blaha, and K. Schwarz, Electric-ieldgradient calculations using the projector augmented wave method, Physical Review B, vol.57, p.31, 1998.

C. J. Pickard and F. Mauri, All-electron magnetic response with pseudopotentials : NMR chemical shifts, Physical Review B, vol.63, p.31, 2001.

C. Bonhomme, First-principles calculation of NMR parameters using the gauge including projector augmented wave method : a chemist's point of view
URL : https://hal.archives-ouvertes.fr/hal-01468419

, Chem. Rev, vol.112, p.32, 2012.

T. Charpentier, The PAW/GIPAW approach for computing NMR parameters : A new dimension added to NMR study of solids. Solid state nuclear magnetic resonance, vol.40, p.32, 2011.

R. K. Harris, P. Hodgkinson, C. J. Pickard, J. R. Yates, and V. Zorin, Chemical shift computations on a crystallographic basis : some relections and comments, Magnetic Resonance in Chemistry, vol.45, p.32, 2007.

J. R. Yates, A combined irst principles computational and solid-state NMR study of a molecular crystal : lurbiprofen, Physical Chemistry Chemical Physics, vol.7, p.32, 2005.

H. Colas, CaC2O4H2O : structural study by a combined NMR, crystallography and modelling approach, CrystEngComm, vol.15, p.32, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00881226

F. Peccati, CO32-Mobility in Carbonate Apatite As Revealed by Density Functional Modeling, The Journal of Physical Chemistry C, vol.118, p.32, 2013.

S. E. Ashbrook and D. Mckay, Combining solid-state NMR spectroscopy with irst-principles calculations-a guide to NMR crystallography, Chemical Communications, vol.52, p.33, 2016.

J. Schmidt and D. Sebastiani, Anomalous temperature dependence of nuclear quadrupole interactions in strongly hydrogen-bonded systems from irst principles, Journal of Chemical Physics, vol.123, p.33, 2005.

E. Salager, R. S. Stein, C. J. Pickard, B. Elena, and L. Emsley, Powder NMR crystallography of thymol, Physical Chemistry Chemical Physics, vol.11, p.33, 2009.

M. Dra?ínský and P. Bou?, Vibrational averaging of the chemical shift in crystalline ?-glycine, Journal of computational chemistry, vol.33, p.33, 2012.

B. Monserrat, R. J. Needs, and C. J. Pickard, Temperature efects in irstprinciples solid state calculations of the chemical shielding tensor made simple, p.33, 2014.

R. Nemausat, Phonon efects on x-ray absorption and nuclear magnetic resonance spectroscopies, Physical Review B, vol.92, p.33, 2015.

J. N. Dumez and C. J. Pickard, Calculation of NMR chemical shifts in organic solids : Accounting for motional efects, Journal of Chemical Physics, vol.130, p.33, 2009.

Y. J. Lee, High-resolution solid-state NMR studies of poly(vinyl phosphonic acid) proton-conducting polymer : Molecular structure and proton dynamics, Journal of Physical Chemistry B, vol.111, p.33, 2007.

I. D. Gortari, Time Averaging of NMR Chemical Shifts in the MLF Peptide in the Solid State, p.33, 2010.

M. Robinson and P. D. Haynes, Dynamical efects in ab initio NMR calculations : Classical force ields itted to quantum forces, Journal of Chemical Physics, vol.133, p.33, 2010.

M. Dra?ínský and P. Hodgkinson, Efects of quantum nuclear delocalisation on NMR parameters from path integral molecular dynamics, Chemistry -A European Journal, vol.20, p.33, 2014.

M. Dra?ínský and P. Hodgkinson, A molecular dynamics study of the efects of fast molecular motions on solid-state NMR parameters, CrystEngComm, vol.15, p.33, 2013.

M. Dracinsky, P. Bour, and P. Hodgkinson, Temperature dependence of NMR parameters calculated from path integral molecular dynamics simulations, Journal of Chemical Theory and Computation, p.33, 2016.

P. Giannozzi and S. Baroni, Vibrational and dielectric properties of C60 from density-functional perturbation theory, The Journal of chemical physics, vol.100, p.34, 1994.

K. Esfarjani, Y. Hashi, J. Onoe, K. Takeuchi, and Y. Kawazoe, Vibrational modes and IR analysis of neutral photopolymerized C 60 dimers, Physical Review B, vol.57, p.34, 1998.

S. Baroni, S. De-gironcoli, A. Dal-corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Reviews of Modern Physics, vol.73, p.34, 2001.

T. Kazuto, N. Tomoaki, T. Yukihiko, M. Junichi, and . Tunable, Diode Laser Gas Analyzer and its Application to Industrial Process rapp. tech, p.34, 2010.

J. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters, vol.77, p.34, 1996.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical review A, vol.38, p.35, 1988.

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density, Physical review B, vol.37, p.35, 1988.

B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr, Chemical Physics Letters, vol.157, p.35, 1989.

A. Bankura, A. Karmakar, V. Carnevale, A. Chandra, and M. L. Klein, Structure, Dynamics, and Spectral Difusion of Water from First-Principles Molecular Dynamics, The Journal of Physical Chemistry C, vol.118, p.35, 2014.

G. Kresse and . Furhmuller, J. Software VASP, 1999.

G. Kresse and J. Hafner, Phys. Rev. B, vol.47, p.35, 1993.

G. Kresse and J. Furthmüller, Eiciency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science 6, p.35, 1996.

G. Kresse and J. Furthmüller, Eicient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set, Physical review B, vol.54, p.35, 1996.

P. Giannozzi, QUANTUM ESPRESSO : a modular and open-source software project for quantum simulations of materials, vol.21, p.35, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00717147

N. Troullier and J. L. Martins, Eicient pseudopotentials for plane-wave calculations, Physical review B, vol.43, p.35, 1991.

L. Kleinman and D. Bylander, Eicacious form for model pseudopotentials, Physical Review Letters, vol.48, p.35, 1982.

S. Goedecker, M. Teter, and J. Hutter, Separable dual-space Gaussian pseudopotentials, Physical Review B, vol.54, p.35, 1996.

J. Vandevondele and J. Hutter, Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases, The Journal of chemical physics, vol.127, p.35, 2007.

S. Nosé, A uniied formulation of the constant temperature molecular dynamics methods, The Journal of chemical physics, vol.81, p.35, 1984.

W. G. Hoover, Canonical dynamics : equilibrium phase-space distributions, Physical review A, vol.31, p.35, 1985.

T. Charpentier, P. Kroll, and F. Mauri, First-principles nuclear magnetic resonance structural analysis of vitreous silica, The Journal of Physical Chemistry C, vol.113, p.35, 2009.

A. Pedone, T. Charpentier, and M. C. Menziani, Multinuclear NMR of CaSiO 3 glass : simulation from irst-principles, Physical Chemistry Chemical Physics, vol.12, p.35, 2010.

K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, Journal of Applied Crystallography, vol.44, p.35, 2011.

O. W. Moe, Kidney stones : pathophysiology and medical management, The lancet, vol.367, p.37, 2006.

C. Y. Pak, Kidney stones, The Lancet, vol.351, p.37, 1998.

M. Daudon, Sex-and age-related composition of 10 617 calculi analyzed by infrared spectroscopy, Urological Research, vol.23, p.37, 1995.

R. Walton, J. Kavanagh, B. Heywood, and P. Rao, Calcium oxalates grown in human urine under diferent batch conditions, Journal of crystal growth, vol.284, p.37, 2005.

R. Young and W. Brown, Structures of biological minerals. Biological Mineralization and Demineralization, p.37, 1982.

S. Deganello, A. R. Kampf, and P. B. Moore, The crystal structure of calcium oxalate trihydrate ; Ca (H 2 O) 3 (C 2 O 4), American Mineralogist, vol.66, p.37, 1981.

S. R. Khan, Calcium oxalate in biological systems, p.37, 1995.

P. A. Nakata, Advances in our understanding of calcium oxalate crystal formation and function in plants, Plant Science, vol.164, p.38, 2003.

V. R. Franceschi and P. A. Nakata, Calcium oxalate in plants : formation and function, Annu. Rev. Plant Biol, vol.56, p.38, 2005.

V. R. Franceschi and H. T. Horner, Calcium oxalate crystals in plants, The Botanical Review, vol.46, p.38, 1980.

P. A. Nakata, An assessment of engineered calcium oxalate crystal formation on plant growth and development as a step toward evaluating its use to enhance plant defense, PloS one, vol.10, p.38, 2015.

V. Raman, H. T. Horner, and I. A. Khan, New and unusual forms of calcium oxalate raphide crystals in the plant kingdom, Journal of plant research, vol.127, p.38, 2014.

P. A. Nakata, An Assessment of Engineered Calcium Oxalate Crystal Formation on Plant Growth and Development as a Step toward Evaluating Its Use to Enhance Plant Defense, PLOS ONE, vol.10, p.38, 2015.

M. Pierantoni, Plants and Light Manipulation : The Integrated Mineral System in Okra Leaves, Advanced Science, vol.4, p.38, 2017.

G. H. Nancollas, Biological mineralization and demineralization : report of the Dahlem Workshop on Biological Mineralization and Demineralization, p.38, 1981.

G. Gardner, Nucleation and crystal growth of calcium oxalate trihydrate, Journal of Crystal Growth, vol.30, p.38, 1975.

M. Daudon, Épidémiologie actuelle de la lithiase rénale en France in Annales d'urologie, vol.39, p.38, 2005.

B. Xie, T. J. Halter, B. M. Borah, and G. H. Nancollas, Aggregation of calcium phosphate and oxalate phases in the formation of renal stones, Crystal growth & design, vol.15, p.38, 2014.

M. Hajir, R. Graf, and W. Tremel, Stable amorphous calcium oxalate : synthesis and potential intermediate in biomineralization, Chem. Commun, vol.50, p.38, 2014.

C. Leroy, Calcium oxalates and hydroxyapatite : synthetic and natural materials studied by NMR and DNP techniques Theses, vol.51, p.38, 2016.

M. Daudon, Examination of whewellite kidney stones by scanning electron microscopy and powder neutron difraction techniques, Journal of Applied Crystallography, vol.42, pp.38-40, 2009.

V. Tazzoli and C. Domeneghetti, The crystal structures of whewellite and weddellite : re-examination and comparison, American Mineralogist, vol.65, pp.38-40, 1980.

R. Basso, G. Lucchetti, L. Zefiro, A. Palenzona, and . Caoxite, Ca (H2O) 3 (C2O4), a new mineral from the Cerchiara mine, Neues Jahrbuch für Mineralogie, vol.2, pp.84-96, 1997.

T. Echigo, M. Kimata, A. Kyono, M. Shimizu, and T. Hatta, Re-investigation of the crystal structure of whewellite [Ca(C2O4).H2O] and the dehydration mechanism of caoxite

, Mineralogical Magazine, vol.69, p.40, 2005.

H. Arnott, F. Pautard, and H. Steinfink, Structure of calcium oxalate monohydrate, Nature, vol.208, p.40, 1965.

O. Hochrein, A. Thomas, and R. Kniep, Revealing the crystal structure of anhydrous calcium oxalate, Ca [C2O4], by a combination of atomistic simulation and Rietveld reinement. Zeitschrift für anorganische und allgemeine Chemie, vol.634, p.40, 2008.

S. Deganello, The basic and derivative structures of calcium oxalate monohydrate, Zeitschrift für Kristallographie-Crystalline Materials, vol.152, p.40, 1980.

S. Deganello, The structure of whewellite, CaC2O4. H2O at 328 K, Acta Crystallographica Section B : Structural Crystallography and Crystal Chemistry, vol.37, p.40, 1981.

C. Sterling, Crystal structure of weddellite, Science, vol.146, p.40, 1964.

C. Sterling, Crystal structure analysis of weddellite, CaC2O4.(2+ x) H2O

, Acta Crystallographica, vol.18, p.40, 1965.

A. R. Izatulina and V. Y. Yelnikov, Minerals as Advanced Materials I, p.40, 2008.

A. Izatulina, V. Gurzhiy, and O. Frank-kamenetskaya, Weddellite from renal stones : Structure reinement and dependence of crystal chemical features on H2O content, American Mineralogist, vol.99, p.41, 2014.

C. Conti, Stability and transformation mechanism of weddellite nanocrystals studied by X-ray difraction and infrared spectroscopy, Physical Chemistry Chemical Physics, vol.12, pp.48-50, 2010.

K. El-adraa, Adsorption of l-DOPA intercalated in hydrated Na-saponite clay : a combined experimental and theoretical study, The Journal of Physical Chemistry C, vol.116, p.41, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00808607

R. F. Martin and W. H. Blackburn, Encyclopedia of mineral names ; irst update, The Canadian Mineralogist, vol.37, p.44, 1999.

L. Walterlevy, J. Laniepce, . De-calcium, and . Comptes-ren-,

. Dus, . Des, . De-l-academie, and . Des, SCIENCES, vol.254, p.44, 1962.

B. Tomazic and G. Nancollas, The kinetics of dissolution of calcium oxalate hydrates, Journal of Crystal Growth, vol.46, p.44, 1979.

E. J. Baran, Natural oxalates and their analogous synthetic complexes, Journal of Coordination Chemistry, vol.67, p.44, 2014.

T. Shippey, Vibrational studies of calcium oxalate monohydrate (whewellite) and an anhydrous phase of calcium oxalate, Journal of Molecular Structure, vol.63, p.45, 1980.

I. Petrov and B. ?optrajanov, Infrared spectrum of whewellite. Spectrochimica Acta Part A, Molecular Spectroscopy, vol.31, p.45, 1975.

C. Conti, Synthesis of calcium oxalate trihydrate : New data by vibrational spectroscopy and synchrotron X-ray difraction, Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy, vol.150, pp.48-50, 2015.

J. Ouyang, L. Duan, and B. Tieke, Efects of Carboxylic Acids on the Crystal Growth of Calcium Oxalate Nanoparticles in Lecithin-Water Liposome Systems, Langmuir, vol.19, p.49, 2003.

L. Maurice-estepa, P. Levillain, B. Lacour, and M. Daudon, Advantage of zero-crossing-point irst-derivative spectrophotometry for the quantiication of calcium oxalate crystalline phases by infrared spectrophotometry, Clinica Chimica Acta, vol.298, p.49, 2000.

E. Bouleau, Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning, Chemical Science, vol.6, p.60, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01587521

J. Cuny, Y. Xie, C. J. Pickard, and A. A. Hassanali, Ab initio quality NMR parameters in solid-state materials using a high-dimensional neural-network representation, Journal of chemical theory and computation, vol.12, p.68, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01272736

J. Behler and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces, Physical review letters, vol.98, p.68, 2007.

L. C. Palmer, C. J. Newcomb, S. R. Kaltz, E. D. Spoerke, and S. I. Stupp, Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel, Chemical reviews, vol.108, p.71, 2008.

S. Weiner and W. Traub, Bone structure : from angstroms to microns, The FASEB journal, vol.6, p.71, 1992.

S. Weiner and H. D. Wagner, The material bone : structure-mechanical function relations, Annual Review of Materials Science, vol.28, p.71, 1998.

M. Glimcher, The nature of the mineral phase in bone : biological and clinical implications, p.71, 1998.

. Bibliographie and C. Leroy, Hydroxyapatites : Key Structural Questions and Answers from DNP (Dynamic Nuclear Polarization), Analytical Chemistry, vol.76, pp.93-95, 2017.

S. Peroos, Z. Du, and N. H. De-leeuw, A computer modelling study of the uptake, structure and distribution of carbonate defects in hydroxy-apatite, Biomaterials, vol.27, pp.72-74, 2006.

M. Born and K. Huang, Dynamical Theory of Crystal LatticesMax Born and Kun Huang (Clarendon P, 1954) (cf, p.72

B. Dick and A. Overhauser, Theory of the dielectric constants of alkali halide crystals, Physical Review, vol.112, 1958.

R. Astala and M. J. Stott, First principles investigation of mineral component of bone : CO3 substitutions in hydroxyapatite, Chemistry of Materials, vol.17, p.77, 2005.

M. E. Marisa, S. Zhou, B. C. Melot, G. F. Peaslee, and J. R. Neilson, Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral. Inorganic Chemistry, vol.78, p.77, 2016.

T. Leventouri, B. C. Chakoumakos, H. Y. Moghaddam, and V. Perdikatsis, Powder neutron difraction studies of a carbonate luorapatite, Journal of Materials Research, vol.15, p.77

T. Leventouri, B. C. Chakoumakos, N. Papanearchou, and V. Perdikatsis, Comparison of crystal structure parameters of natural and synthetic apatites from neutron powder difraction, Journal of Materials Research, vol.16, p.77

R. M. Wilson, J. C. Elliott, S. E. Dowker, and R. I. Smith, Rietveld structure reinement of precipitated carbonate apatite using neutron difraction data, Biomaterials, vol.25, p.77, 2004.

T. Ivanova, O. Frank-kamenetskaya, A. Kol'tsov, and V. Ugolkov, Crystal Structure of Calcium-Deicient Carbonated Hydroxyapatite. Thermal Decomposition, Journal of Solid State Chemistry, vol.160, p.77, 2001.

A. Yasukawa, K. Kandori, and T. Ishikawa, TPD-TG-MS study of carbonate calcium hydroxyapatite particles. Calciied tissue international 72, p.78, 2003.

W. Kolodziejski, New Techniques in Solid-State NMR, p.78, 2005.

D. Nelson, J. Featherstone, J. Duncan, and T. Cutress, Paracrystalline disorder of biological and synthetic carbonate-substituted apatites, Journal of dental research, vol.61, p.78, 1982.

E. Morgan, D. Yetkinler, B. Constantz, and R. Dauskardt, Mechanical properties of carbonated apatite bone mineral substitute : strength, fracture and fatigue behaviour, Journal of Materials Science : Materials in Medicine, vol.8, p.78, 1997.

J. Barralet, S. Best, and W. Bonfield, Carbonate substitution in precipitated hydroxyapatite : an investigation into the efects of reaction temperature and bicarbonate ion concentration, Journal of biomedical materials research part A, vol.41, p.78, 1998.

P. Moens, F. Callens, S. Van-doorslaer, and P. Matthys, ENDOR study of an O-ion observed in X-ray-irradiated carbonated hydroxyapatite powders, Physical Review B, vol.53, p.78, 1996.

M. E. Fleet, Carbonated hydroxyapatite : materials, synthesis, and applications, p.78, 2014.

D. Laks, C. Van-de-walle, G. Neumark, and S. Pantelides, Role of native defects in wide-band-gap semiconductors, Physical review letters, vol.66, p.82, 1991.

N. Nassif, In vivo inspired conditions to synthesize biomimetic hydroxyapatite, Chemistry of Materials, vol.22, p.86, 2010.

Y. Wang, Water-mediated structuring of bone apatite, Nature materials, vol.12, p.105, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01289769

Y. Wang, The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite, Nature materials, vol.11, p.86, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01461430

F. Babonneau, C. Bonhomme, S. Hayakawa, and A. Osaka, Solid state NMR characterization of nano-crystalline hydroxy-carbonate apatite using 1H-31P-13C triple resonance experiments, MRS Online Proceedings Library Archive, vol.984, p.98, 2006.

N. Nassif, Self-assembled collagen-apatite matrix with bone-like hierarchy, Chemistry of Materials, vol.22, p.86, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00526857

J. Silvent, Collagen osteoid-like model allows kinetic gene expression studies of non-collagenous proteins in relation with mineral development to understand bone biomineralization, PLoS One, vol.8, p.86, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01142641

. Bibliographie,

S. Hayakawa, Structural characterization and protein adsorption property of hydroxyapatite particles modiied with zinc ions, Journal of the American Ceramic Society, vol.90, p.86, 2007.

H. Yi, A carbonate-luoride defect model for carbonate-rich luorapatite

, American Mineralogist, vol.98, p.86, 2013.

D. Laurencin, Magnesium incorporation into hydroxyapatite, Biomaterials, vol.32, p.86, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00556834

K. Beshah, C. Rey, M. Glimcher, M. Schimizu, and R. Griffin, Solid state carbon-13 and proton NMR studies of carbonate-containing calcium phosphates and enamel, Journal of Solid State Chemistry, vol.84, p.86, 1990.

C. Gervais, New perspectives on calcium environments in inorganic materials containing calcium
URL : https://hal.archives-ouvertes.fr/hal-00358177

N. Ca and . Approach, Chemical Physics Letters, vol.464, p.86, 2008.

P. Gras, From crystalline to amorphous calcium pyrophosphates : a solid state nuclear magnetic resonance perspective, Acta biomaterialia, vol.31, p.88, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01221038

J. W. Singer, A. Ö. Yazaydin, R. J. Kirkpatrick, and G. M. Bowers, Structure and transformation of amorphous calcium carbonate : A solid-state 43Ca NMR and computational molecular dynamics investigation, Chemistry of Materials, vol.24, p.88, 2012.

J. C. Johnston, R. J. Iuliucci, J. C. Facelli, G. Fitzgerald, and K. T. Mueller, Intermolecular shielding contributions studied by modeling the C 13 chemical-shift tensors of organic single crystals with plane waves, The Journal of chemical physics, vol.131, p.91, 2009.

M. Ben-osman, Discrimination of Surface and Bulk Structure of Crystalline Hydroxyapatite Nanoparticles by NMR, The Journal of Physical Chemistry C, vol.119, p.93, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01212297

H. E. Mason, A. Kozlowski, and B. L. Phillips, Solid-state NMR study of the role of H and Na in AB-type carbonate hydroxylapatite, Chemistry of Materials, vol.20, p.93, 2007.

A. Laio and M. Parrinello, Escaping free-energy minima, Proceedings of the National Academy of Sciences, vol.99, p.99, 2002.

A. Laio and F. L. Gervasio, Metadynamics : a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science, Reports on Progress in Physics, vol.71, p.99, 2008.

M. J. Glimcher, Bone : nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation, Reviews in mineralogy and geochemistry, vol.64, p.100, 2006.

P. Chen, D. Toroian, P. A. Price, and J. Mckittrick, Minerals form a continuum phase in mature cancellous bone, Calciied Tissue International, vol.88, p.100, 2011.

E. A. Mcnally, H. P. Schwarcz, G. A. Botton, and A. L. Arsenault, A model for the ultrastructure of bone based on electron microscopy of ion-milled sections, PLoS One, vol.7, p.100, 2012.

W. Brown, N. Eidelman, and B. Tomazic, Octacalcium phosphate as a precursor in biomineral formation, Advances in dental research, vol.1, p.100, 1987.

Y. Tseng, C. Mou, and J. C. Chan, Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite : a mechanistic model for central dark line formation, Journal of the American Chemical Society, vol.128, p.100, 2006.

A. Bigi, E. Boanini, G. Cojazzi, G. Falini, and S. Panzavolta, Morphological and structural investigation of octacalcium phosphate hydrolysis in the presence of polyacrylic acids : efect of relative molecular weights, Crystal Growth & Design, vol.1, p.100, 2001.

W. E. Brown, J. R. Lehr, J. P. Smith, and A. W. Frazier, Crystallography of octacalcium phosphate, Journal of the American Chemical Society, vol.79, p.100, 1957.

M. Mathew, W. Brown, L. Schroeder, and B. Dickens, Crystal structure of octacalcium bis (hydrogenphosphate) tetrakis (phosphate) pentahydrate, Ca 8 (HP0 4) 2 (PO 4) 4· 5H 2 O, Journal of Chemical Crystallography, vol.18, p.100, 1988.

W. E. Brown, J. P. Smith, J. R. Lehr, and A. W. Frazier, Octacalcium phosphate and hydroxyapatite : crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite, Nature, vol.196, p.100, 1962.

I. Harding, N. Rashid, and K. Hing, Surface charge and the efect of excess calcium ions on the hydroxyapatite surface, Biomaterials, vol.26, p.100, 2005.

C. Jäger, T. Welzel, W. Meyer-zaika, and M. Epple, A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite. Magnetic Resonance in Chemistry, vol.44, p.101, 2006.

Y. Tseng, J. Zhan, K. S. Lin, C. Mou, and J. C. Chan, High resolution 31 P NMR study of octacalcium phosphate. Solid state nuclear magnetic resonance 26, p.101, 2004.

E. Davies, M. J. Duer, S. E. Ashbrook, and J. M. Griffin, Applications of NMR crystallography to problems in biomineralization : reinement of the crystal structure and 31P solid-state NMR spectral assignment of octacalcium phosphate, Journal of the American Chemical Society, vol.134, p.101, 2012.

H. Chappell, M. Duer, N. Groom, C. Pickard, and P. Bristowe, Probing the surface structure of hydroxyapatite using NMR spectroscopy and irst principles calculations, Physical chemistry chemical physics : PCCP, vol.10, pp.1463-9076, 2008.

E. Davies, Citrate bridges between mineral platelets in bone, Proceedings of the National Academy of Sciences, vol.111, pp.1354-1363, 2014.

M. J. Abraham, GROMACS : High performance molecular simulations through multi-level parallelism from laptops to supercomputers, vol.1, p.105, 2015.

S. Pall, M. J. Abraham, C. Kutzner, B. Hess, and E. Lindahl, Tackling exascale software challenges in molecular dynamics simulations with GROMACS in International Conference on Exascale Applications and Software, p.105, 2014.

S. Pronk, GROMACS 4.5 : a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics, vol.29, p.105, 2013.

B. Hess, C. Kutzner, D. Van-der-spoel, and E. Lindahl, GROMACS 4 : algorithms for highly eicient, load-balanced, and scalable molecular simulation, Journal of chemical theory and computation, vol.4, p.105, 2008.

D. Van-der-spoel, GROMACS : fast, lexible, and free, Journal of computational chemistry, vol.26, p.105, 2005.

E. Lindahl, B. Hess, . Van-der, and D. Spoel, 0 : a package for molecular simulation and trajectory analysis, Journal of molecular modeling, vol.7, p.105, 2001.

H. J. Berendsen, D. Van-der-spoel, and R. Van-drunen, GROMACS : a message-passing parallel molecular dynamics implementation, Computer Physics Communications, vol.91, p.105, 1995.

B. Aoun, Fullrmc, a rigid body reverse monte carlo modeling package enabled with machine learning and artiicial intelligence, Journal of computational chemistry, vol.37, p.109, 2016.

M. Gierada, I. Petit, J. Handzlik, and F. Tielens, Hydration in silica based mesoporous materials : a DFT model, Physical Chemistry Chemical Physics, vol.18, pp.32962-32972, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01411472

I. Progress, Characterization of Calcium Oxalate Polyhydrates Using IR, NMR and DFT