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Abstract 

Computational reproducibility is an unavoidable concept in the 21st century. Computer hardware 

evolutions have driven a growing interest into the concept of reproducibility within the scientific 

community. Simulation experts press that this concept is strongly correlated to the one of 

verification, confirmation and validation either may it be for research results credibility or for the 

establishment of new knowledge. Reproducibility is a very large domain. Within the area of 

numerical and computational Science, we aim to ensure the verification of research data 

provenance and integrity. Furthermore, we show interest on the precise identification of 

operating systems parameters, compilation options and simulation models parameterization 

with the goal of obtaining reliable and reproducible results on modern computer architectures. 

To be able to consistently reproduce a software, some basic information must be collected. 

Among those we can cite the operating system, virtualization environment, the software 

packages used with their versions, the hardware used (CPU, GPU, many core architectures such 

as the former Intel Xeon Phi, Memory, …), the level of parallelism and eventually the threads 

identifiers, the status of pseudo-random number generators, etc. In the context of scientific 

computing, even obvious, it is currently not possible to consistently gather all this information 

due to the lack of a common model and standard to define what we call here execution context. 

A scientific software that runs in a computer or a computing node, either as a cluster node, a grid 

cluster or a supercomputer possesses a unique state and execution context. Gathering 

information about the latter must be complete enough that it can be hypothetically used to 

reconstruct an execution context that will at best be identical to the original. This of course while 

considering the execution environment and the execution mode of the software. Our effort 

during this journey can be summarized as seeking an optimal way to both ease genuine access to 

reproducibility methods to scientists and aim to deliver a method that will provide a strict 

scientific numerical reproducibility. Moreover, our journey can be laid out around three aspects. 

The first aspect involves spontaneous efforts in collaborating either to bring awareness or to 

implement approaches to better reproducibility of research projects. The second aspect focuses 

in delivering a unifying execution context model and a mechanism to federate existing 

reproducibility tools behind a web platform for World Wide access. Furthermore, we investigate 
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applying the outcome of the second aspect to research projects. Finally, the third aspect focuses 

in completing the previous one with an approach that guarantees an exact numerical 

reproducibility of research results. 

 

Keywords: Reproducibility, Platform, Web, Tools, Caching, Artifact, Interoperability, 

Integration, Execution, Environment. 
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Résumé 

La reproductibilité en informatique est un concept incontournable au 21ème siècle. Les 

évolutions matérielles des calculateurs font que le concept de reproductibilité connaît un intérêt 

croissant au sein de la communauté scientifique. Pour les experts en simulation, ce concept est 

indissociable de celui de vérification, de confirmation et de validation, que ce soit pour la 

crédibilité des résultats de recherches ou pour l’établissement de nouvelles connaissances. La 

reproductibilité est un domaine très vaste. Dans le secteur computationnel et numérique, nous 

nous attacherons, d’une part, à la vérification de la provenance et de la consistance des données 

de recherches. D’autre part, nous nous intéressons à la détermination précise des paramètres 

des systèmes d’exploitation, des options de compilation et de paramétrage des modèles de 

simulation permettant l’obtention de résultats fiables et reproductibles sur des architectures 

modernes de calcul. Pour qu’un programme puisse être reproduit de manière consistante il faut 

un certain nombre d’information de base. On peut citer entre autres le système d’exploitation, 

l’environnement de virtualisation, les diverses librairies utilisées ainsi que leurs versions, les 

ressources matérielles utilisées (CPU, GPU, accélérateurs de calcul multi cœurs tel que le 

précédent Intel Xeon Phi, Mémoires, ...), le niveau de parallélisme et éventuellement les 

identifiants des threads, le statut du ou des générateurs pseudo-aléatoires et le matériel 

auxquels ils accèdent, etc. Dans un contexte de calcul scientifique, même évident, il n’est 

actuellement pas possible d’avoir de manière cohérente toutes ces informations du fait de 

l’absence d’un modèle standard commun permettant de définir ce que nous appellerons ici 

contexte d'exécution. Un programme de simulation s'exécutant sur un ordinateur ou sur un 

nœud de calcul, que ce soit un nœud de ferme de calcul (cluster), un nœud de grille de calcul ou 

de supercalculateur, possède un état et un contexte d'exécution qui lui sont propres. Le contexte 

d'exécution doit être suffisamment complet pour qu’à partir de celui-ci, hypothétiquement, 

l'exécution d’un programme puisse être faite de telle sorte que l’on puisse converger au mieux 

vers un contexte d’exécution identique à l’original dans une certaine mesure. Cela, en prenant 

en compte l'architecture de l’environnement d’exécution ainsi que le mode d'exécution du 

programme. Nous nous efforçons, dans ce travail, de faciliter l'accès aux méthodes de 

reproductibilité et de fournir une méthode qui permettra d’atteindre une reproductibilité 
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numérique au sens strict. En effet, de manière plus précise, notre aventure s’articule autour de 

trois aspects majeurs. Le premier aspect englobe les efforts de collaboration, qui favorisent l'éveil 

des consciences vis à vis du problème de la reproductibilité, et qui aident à implémenter des 

méthodes pour améliorer la reproductibilité dans les projets de recherche. Le deuxième aspect 

se focalise sur la recherche d’un modèle unifiant de contexte d'exécution et un mécanisme de 

fédération d’outils supportant la reproductibilité derrière une plateforme web pour une 

accessibilité mondiale. Aussi, nous veillons à l’application de ce deuxième aspect sur des projets 

de recherche. Finalement, le troisième aspect se focalise sur une approche qui garantit une 

reproductibilité numérique exacte des résultats de recherche.  

 

Mots clés : Reproductibilité, Plateforme, Web, Outils, Enregistrement, Artéfact, 

Interopérabilité, Intégration, Exécution, Environnement. 
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Chapter 1 – GENERAL INTRODUCTION 

1.1 ON THE MATTER OF REPRODUCIBILITY 

One of the most currently trending crisis in Science is labelled under issues with the generic 

concept of reproducibility [Baker 2016]. As a key element of the scientific method itself, impeding 

on the latter shakes Science at the core of its success. One of the main causes is probably the 

growth in complexity and the diversity of systems and methods. Moreover, fraud in Science has 

also been identified as a cause simply because of the relentless hunt for more fame and all its 

resulting benefits [Eisner 2018]. 

Anyhow, the fact is that Science has evolved and still is. It is not anymore at its early ages of pure 

intellectual endeavors. Today, numerous of its results are systematically used in life critical 

missions such as curing disease, sending mankind out of earth, piloting autonomous cars or 

protecting financial, private and sensitive data [Andel et al. 2012]. The cost of a scientific fraud 

or any failure to corroborate back in the golden age of Science (between 8th and 14th century) 

had more chances to only cause discredit to the inculpated scientist. Today, the consequences of 

fraud and scientific mistakes can have far greater damages. In fact, a fundamental trust in Science 

is questioned by the general public which is mostly affected by using the applicative end solutions 

of scientific results [Smith 1997]. Now, we are in the ages where the scientific method, the core 

success of Science, must revise the safeguards of its reproducibility requirement. For Science that 

cannot be recreated consistently is not Science. Moreover, Science that cannot be corroborated 

effectively is not Science. 

Science today has diversified itself. Theoretical and experimental are its two eldest forms 

[Stodden 2017]. They have been motivating each other since the dawn of Science. By the early 

19th century advancement in these two forms has paved the way for a third form of scientific 

inquiry. Motivated by the need to automate calculus and equation resolutions always faster and 

faster, a newer form of Science up to the task has been introduced: computational. This new 

form has proven itself to bridge the two previous. Also, despite its unicity, it can be seen as a 

productivity booster for these two and it has impacted and boosted the evolution of more 

‘traditional’ Sciences [Kurzweil 2004]. 
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However, independently of the form in which a result is being presented, Science requires that it 

must be indefinitely provable [Burke 1962] in the same conditions. The power of theoretical 

Science is in its hundred percent intellectual nature. With the appropriate theoretical background 

(ground truths), some paper, means of writing and enough time, any well-aware scientist can 

corroborate any result. A result using this form is proved with theorems, axioms, data and results 

by any logical means possible in the constrained construct. Despite its growth in complexity and 

sophistication, theoretical Science has preserved this level of abstract elegance in its 

corroboration mechanism. Unfortunately, this is not the same neither for experimental nor is it 

for computational. With these two forms, the complexity incurred by the furthering of Science is 

correlated to the growing challenges of their diverse corroboration mechanisms. In 

computational Science for example, due to enormous differences in computers architectures and 

operating systems, being able to run a simulation in one computer does not always translate well 

to any other computer or operating system. Furthermore, within the same system, being able to 

run a simulation now does not imply that it will still be the case at different points in time. 

Numerous things occur in computers today and some of these things are likely to disrupt the 

possibility to successfully run a simulation again. To make this more challenging, with computer 

technology changes occur quickly. Five years are enough to see hardware architectures become 

discontinued, file formats unsupported and so on. 

Scientists have taken the matter to their own hands. Around the world, teams of scientists are 

developing software to support the process of making computational Science results 

corroboration easier. These tools are created to reduce the effects of the growing complexity 

within computational environments. Their main approaches are: detailed documentation, 

automation and guided corroboration. Thus, instead of being faced with thousands of ways to be 

lost in various modes of failing to corroborate a result, these tools and methods either fully or 

partially do it on behalf of the scientist or guide the scientist through the least amount of effort 

to realize the corroboration. 

The present document communicates the outcome of a deep overview of modern day 

corroboration of scientific results. Moreover, our work focused in how to best address some of 

the persistent problems of the latter. Thus, we address the meanings of the notions used by 
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scientists today through the core reason of this entire investigation. Extensive knowledge on the 

current state of the art in the matter of corroboration is compiled and reviewed at the discretion 

of the reader. Also, we describe the two main results of this research. We believe they are 

significant contributions to the body of Science in the matter of scientific results corroboration. 

Mastering all different aspects of corroboration has the privilege of putting one at the stage of 

the unknown and spikes the continuous fuel of curiosity to try and drive advancement in an even 

more significant manner. We assume this to be the “fate” of the cutting-edge scientist. However, 

there is another side to the one of being at the leading line of a scientific domain. The frustration 

of the limitations in every solution and approach we know so far is most pressing. In fact, we 

quickly grasp the fact that we clearly leave in a world of compromises. Indeed, most of these 

existing solutions will be suitable in very specific situations and be totally inadequate in others. 

We welcome the reader into an activity that will elude the specifics of these words may they 

appear too abstract at the moment. To start, we invite the reader to the next section for a slightly 

more detailed presentation of the content and the structure of the document. 

1.2 THESIS OUTLINE 

In the next chapter, we elaborate on the problematic that gives sense to this adventure. More 

specifically, we first take on the details of the current nuances to the notion of reproducibility 

and it ties to the general notion of scientific outcome corroboration. Then, we develop the 

fundamental problems that seriously imped the awareness of reproducibility issues and the 

access to the current solutions expressed today in the form of tools and web platforms. 

Additionally, we deem appropriate in this chapter of problematic to share the motivations behind 

the problematic statement of this thesis. Thus, we propose to elaborate on some of the most 

persistent problems in reproducible research and the reasons that motivated the early motion of 

this thesis. Furthermore, we invite the reader into a deep overview of the current state of the art 

in term of reproducibility and in general, the corroboration of scientific results. 

In chapter 3, we present contributions in the literature aimed towards bettering the 

reproducibility of research results. It defends its bipartite view of these contributions. In fact, the 

first section overviews contributions in terms of software designed for general-purpose 
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reproducibility issues. Such issues scope roughly, attempting to successfully run a previous 

computation anew without a runtime crash. Thus, a result should be obtained. Moreover, the 

result is expected to be within acceptable error scales. Also, this first section explores the current 

methods used to perform a numerical assessment with the goal to reach results that are 

invariable to changes. The second section presents the landscape of reproducible research 

platforms that go a step further than the previous ones. In fact, a small fraction of these platforms 

provides an outline of solutions to the problematic statement presented in the previous chapter. 

However, as we show in this chapter, none of the existing solutions approaches the problems of 

interest in this document at the same degree of completeness as the results of this research. This 

brings us to the main reason behind the two major contributions during this thesis. They are 

respectively developed in the following chapters. 

In chapter 4, we introduce the first result of this research in response to three statements of this 

research problematic. Moreover, this result is engineered in accordance to our first motivation. 

In this chapter, we present a web platform named CoRR (Cloud of Reproducible Records). This 

platform presents itself as a sound solution to the three first problems stated in this document 

by being a feature augmenting gateway for tools and platforms alike. Those features include: 

web capability, scientific collaboration, inherent dissemination and a promise of interoperability. 

Thus, it surpasses any of the existing solutions in general-purpose reproducibility and the current 

platforms landscape by providing an all in one answer to most of the problems of interest in this 

thesis. However, it does not address the last of the four problematic statements described in this 

document in chapter 2. 

Consequently, in chapter 5, we detail a new method that can guarantee an exact reproducibility 

of research results. Therefore, this result implemented as a library named Num-Cache is a viable 

solution to the last unsolved problem by our first result, presented in the previous chapter. In 

fact, most reproducible research methods are currently either using numerical approximations 

to reduce variations or in general just attempting to achieve execution without a runtime crash. 

This infers that results from ulterior runs will most likely drift from the original due to many 

untracked changes such as scheduling and hardware tricks. Num-Cache comes in this chapter as 

a complementary effort to the one of the previous chapter. By combining these two we are able 
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to address some of the most persisting problems in reproducible research. Thus, we recommend 

scientists in the next chapters that obtaining a complete solution to the problems eluded in this 

document involves using Num-Cache in their simulations tracked by a CoRR supported software 

and obviously connected to a running instance of the latter. As a result, their computations will 

have better chances of being reproduced, shared and improved through collaborations with 

other scientists. These two contributions have been applied during their development and after 

their current experimental releases. The following chapter elaborates on these applications. 

In chapter 6, we briefly narrate a few of the collaborative activities that occurred with the two 

results of this thesis. First, we present the integration activities involving the first three supported 

tools in the current experimental version of CoRR. These tools have been carefully chosen due to 

their audience, their presence and the impact of CoRR in pushing them further with its features. 

Second, we list five of the most critical use cases in collaborative contributions involving mostly 

CoRR or the solicitation of the knowledge absorbed during this thesis. The main applications to 

Num-Cache have been presented in the chapter 5 and at SummerSim 2018 conference in 

Bordeaux, France. However, complete and directly applicable, the two results presented 

respectively in the previous chapters have limitations of their own. We open discussions into the 

latter and beyond in the next chapter. 

Chapter 7 discusses the strength and the current limitations of CoRR and Num-Cache. Moreover, 

we debate on the other problems not being handled in this thesis against which our solutions are 

not tailored for. Such cases are the notion of reproducibility not meaning correctness, as the 

latter requires more. Thus, we open discussions into the crucial need for independent 

verifications which indeed are the ultimate solution to approaching the unanimous correctness 

of research results. Yet, the unavoidable problems of uncontrolled runtime variations and 

reproducibility at Exa-Scale are also addressed in these discussions as they are both challenging 

our current solutions. 
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Chapter 2 – PROBLEMATIC STATEMENTS 

2.1 ON THE CURRENT MEANINGS OF CORROBORATION 

The credibility of research results has never been as much scrutinized as now [Franzen 2016]. It 

almost seems as there was a grace period of negligence that gave room to the inadmissible issues 

we are facing today [Bhardwaj 2015]. Issues that every reproducible research advocate currently 

points at. Thus, we are witnessing growing efforts from institutions, journals and individuals to 

unite for reproducibility enforcement [McNutt 2014]. Therefore, it is vital for the reader to grasp 

the great deal of importance behind the concept of reproducibility. In other words, how was 

reproducibility framed and why is it so critical to the success of Science (Episteme), shown in 

Figure 2.1? 

 

Figure 2.1 The scientific method: The scientific inquiry is expected to leverage previous 
contributions to Science and follows a standard path of investigation to reach satisfactory 
evidence that could lead to the addition of new knowledge. 
 

Our journey to the origin and foundation of reproducibility takes us back to two of the main 

elements of success of Science. Science is thought to be the most optimal form of reasoning 

according to Stanford Encyclopedia of Philosophy [Andersen and Hepburn 2016]. One of its main 
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elements of success goes deep into its standard guideline for scientific inquiry depicted in Figure 

2.1: The scientific method. 

Since Aristotle’s Organon [Aristotle et al. 1938], many forms of the scientific method have been 

used by theoreticians, experimentalists and nowadays computationalists [Andersen and Hepburn 

2016]. With it, scientists can tool themselves to achieve new discoveries knowing that the 

outcome will be mostly welcomed. Yet, why should we trust the scientific method? This question 

takes us on to the second main elements of Science’s success that we want to introduce here. 

The core feature of human reasoning is the intrinsic need for new knowledge to rely on older 

ones. This is how Science has incrementally grown to converge toward more sophistication or by 

replacing false understandings by more robust findings. The continuous accumulation of 

discoveries in Science have laid the path towards ever more fundamental knowledge [Bird 2008]. 

Pr. Albert Einstein formulated his theory of special relativity from the difficulties faced by Pr. 

James Clerk Maxwell in his tremendous body of contribution to our current knowledge of 

Electromagnetism [Snyder 2000]. Yet, what makes Pr. Maxwell’s, and all known scientific 

discoveries universally accepted today is the most critical requirements of the scientific method: 

corroboration. Anyone at any time with the same tools and workflow of inquiry following the 

scientific method must be able to consistently corroborate a previously accepted outcome. 

Corroboration is strengthened when the use of different tools or approaches leads to the same 

scientific conclusions. The corroborative feature of the scientific method is the foundation for 

trust through which new scientific knowledge is being chained to old ones and majorly accepted 

as part of a body of contribution to Science [Kurt and DeSalle 2009]. 

The latter feature of the scientific method has evolved to undertake many forms today. Science 

has advanced and so did the tools for performing inquiries. We are not anymore at the times 

when there was no or very limited number of tools to achieve the same outcome. Today, we 

thankfully have more tools than ever before, from more manufacturers, with more interface 

types and based on more designs. As such, corroborating discoveries has increased in complexity.  

In the experimental Sciences, laboratory machines for achieving equivalent tasks have increased 

in number. However, standards haven’t got all the way across manufacturers processes. In fact, 

fierce competition has brought tremendous differences in how machines are used, how they 
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function and how their outputs are structured. Hence, the need for differentiation and secrecy 

have created an inconsistent ecosystem of disconnected marketplaces of brands. Consequently, 

using any equivalent tools in the scientific method with the hope to obtain a previous outcome 

is not guaranteed. Moreover, the time incurred in achieving equivalent manipulations on 

machines with different interfaces and design philosophies is considerable. An appropriate 

example is probably the major difficulty faced by Dr. Laura Espinal in the NIST Facility for 

Adsorbent Characterization and Testing (FACT (https://www.nist.gov/mml/fact accessed 

September 28, 2018)) lab. It is a facility commissioned to provide state-of-the-art measurement 

capabilities for impartial, accurate testing and characterization. Measurement equipment 

includes volumetric instrumentation, gravimetric instrumentation, and combined systems for 

multi-component gas mixtures. Absorbents include carbon dioxide, methane, hydrogen, 

nitrogen, helium, water vapor, and toluene. In adsorptive material characterization, it had been 

challenging to assure consistent, reliable measurements between laboratories. There are often 

discrepancies in isotherm data from “round robin” studies mostly pointing to the use of 

instruments from segregated manufacturers and designed around different measurements 

approaches. 

In the computational Sciences, problems persist despite the non-zero-sum games enforced by 

major stakeholders [Kerber and Schweitzer 2017] for the sake of interoperability and portability. 

In fact, the diversity of computer hardware, operating systems, formats, protocols, specifications 

and software designs is widening the complexity involved in corroborating a research simulation. 

Each of these aspects of computers evolves separately in its own confine challenges, 

requirements and obsolescence paradigms. While hardware manufacturers battling with the 

laws of physics push for smaller and more powerful machines, software architects are unleashing 

their creativity in building more sophisticated applications that will leverage the power given by 

newer machines. Furthermore, the amount of dependencies in today’s software and their 

changes per release cycle simply surpasses our capability to effectively catalog them manually. 

Figure 2.2 shows the number of dependencies added or removed in 89 python packages (colored) 

as their versions increase.  
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Figure 2.2 Dependencies removals and additions in major python packages on PyPi: The change 
in dependencies (y axis) per package release (x axis) allows us to appreciate its globally chaotic 
nature. 

 

The previous figure is based on data from packages listed on PyPi (https://pypi.org accessed 

September 28, 2018) with at least 50 release cycles. This data clearly shows a glimpse into how 

the dependency growth and variations in modern software can be very challenging to monitor 

without specialized automated tools.  

The overall complexity incurred with the recent technological advances requires more nuances 

to express the early meaning of the term ‘corroboration’, which alone has become too 

ambiguous. Such nuances express how strongly the corroborator must comply with the ever-

diversifying tools and core parts of the scientific method that lead to a specific outcome. We have 

enumerated three major nuances: 

Definition 1.1. The strongest meaning of corroboration requires the usage of the exact same 

tools involved in the scientific method with the same scientific approaches that lead to a previous 

outcome. 

Definition 1.2. The weakest meaning of corroboration focuses in obtaining a previous outcome 

at all cost. Thus, the tools or more often the scientific approaches are expected to differ from a 

previous inquiry that unveiled the outcome. 
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Definition 1.3. The closest meaning of corroboration of yore scopes any attempt to reach to a 

previous outcome by following the same scientific approaches yet tolerating variations in the 

tools used across the scientific method. 

Terms such as reproducibility, repeatability, replicability, etc. have been controversially recycled 

across different scientific communities to correspond to one of the three nuanced definitions 

listed above. According to Webster’s (https://www.merriam-webster.com accessed September 

28, 2018) Third New International Dictionary, these three terms have the following meaning: 

Definition 1.4. Reproducibility is the capability to cause to exist again or anew; or to cause to be 

or seem to be repeated. 

Definition 1.5. Repeatability is the capability to say or state again; or to say over from memory. 

Definition 1.6. Replicability is the capability to copy, duplicate; or to produce a facsimile of an 

original work. 

The light differential ambiguity between these terms and the ongoing terminology adjustments 

between communities, groups and individuals have tasked us early on in this thesis. In fact, how 

can the debate be effectively contributive if we mean different things with the same terms? We 

will be discussing this aspect thoroughly in chapter 3. 

While the nuances in modern day corroboration are still not being dramatically experienced 

unanimously, the current issues in corroborating scientific outcome in general is rising attention 

and gaining momentum [Munafò et al. 2017]. Hence, more institutions are funding scientific 

teams to develop methods and tools that ensure the corroboration of their results [LeVeque et 

al. 2012]. 

A typical modern research outcome does not contain the pedigree of tools used in the scientific 

method workflow that produced it. Yet, having this information is the only sustainable way to 

attempt any corroboration. Thus, a recommended good habit schooled to new scientists is to 

always record this pedigree in their lab notebooks. While this might have been appropriate in the 

past, it is currently becoming humanly impossible for a scientist to manually account for 

everything that contributed to produce a specific result. Hence, scientists either find themselves 
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not being able to corroborate their own results or others at another point in time. Moreover, 

some scientists find themselves not being able to corroborate results that others are able to 

corroborate. It is becoming obvious that manually recording the pedigree of a research inquiry 

even with the guidance of the scientific method is a closing dead end. The utterly consequence 

is that most scientists end up fighting their way back to reconstruct the pedigree of tools and 

steps that lead to one of their own results or someone else’s. 

The currently developed tools to ensure corroboration of scientific results focus mainly on how 

to best capture and store the pedigree of tools and methods used in the scientific method. While 

some tools look at the entire pedigree, others drive their interests only towards key steps in the 

pedigree. Independently from the specifics of the techniques used, one common and unchanged 

characteristic is automation. Most of these tools provide a guided or automatic way of capturing 

the pedigree. Yet, since these tools have been developed without a consensus, they each require 

training to be properly used. In fact, what is important to catalog in the pedigree for one team in 

an institution is not the same for one in another institution or even in the same one for that 

matter. 

This thesis aims in, first, bringing awareness as early as possible towards the need of tools to 

shield scientists from the current hidden complexities of trying to manually corroborate a result. 

For the sake of awareness, we dare to compare the importance of reproducibility to version 

control [Koc and Tansel 2011]. In fact, scientists not aware of the ecosystem of version control 

tools that exists today will do as everyone of us did. They will spend a tremendous amount of 

time compressing and datetime naming the same folders over and over. Keeping up with this 

scheme quickly drives anyone weary, especially when faced with trying to manually perform a 

collaborative merge of different modifications. This is barely the case now, everyone knows and 

talk about version control. Sadly, reproducibility is at this early situation faced by version control. 

Secondly, we have taken to heart to address a direct consequence of the thriving growth in terms 

of tools and services in support of reproducible research. In fact, such a growth has given birth 

to a disconnected web of solutions that do not talk to each other nor interoperate with each 

other. Consequently, we worry that new scientists getting into reproducible research will be 

overwhelmed. Furthermore, scientists already well versed in this aspect of Science, will fear being 
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trapped in one tool. In fact, since there is no guarantee which tool will not lose support and 

survive, it is a bit of a gamble to adopt one and face the fact that all the records of one’s scientific 

experiments will be obsolete and require significant work to be ported to another. 

The body of knowledge unearthed during this research is barely scratching at the surface of what 

is a major concern now. Thus, we dare hope that the spark of this present endeavor will ignite a 

flame that will be carried on in a fashion that soon enough, searching for the keyword 

“reproducibility” on any major search engines such as Google, Bing, etc. will recommend tools 

instead of the current references to publications about its challenges and terminology ambiguity 

as compared to version control. 

We invite the reader to perform a quick sentiment overview from the results of searching for 

both keywords blocks “version control” and “reproducibility” in the Google search engine. It is 

interesting to see how terms used for reproducibility tend to indicate more dynamism, more 

movement than those for version control. It is as if, from a simple search, one could have a sneak 

peek into the entropy of scientific debates and concerns regarding specific subjects [Demartini 

and Siersdorfer 2010] using technologies such as IBM Watson (https://www.ibm.com/watson/ 

accessed September 28, 2018). We gladly hope to be wrong in the upcoming years. 

STATEMENTS 
In the previous section, we have brushed up the origins of new meanings behind the term 

reproducibility: corroboration. Then, we have pointed to the terminology mismatches and 

disagreements among scientists. Additionally, we have made the parallel between the 

phenomena of reproducibility global awareness struggle to the early times of version control. 

Despite the funding and involvement of more institutions, we have come to the fact that the 

current solutions are mostly missing fundamental features of the modern-day scientist 

environment. These features are listed as statements as following: 

P1.  Lack of adequate means of reaching out to Scientists: 

It’s one thing to know that what one is experiencing is a reproducibility problem instead of a lack 

of proper usage of tools. It is another thing to gather awareness that the problem is fundamental 
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and that there are solutions in the form of software and services to help. We are living today in 

a connected world through Internet. Most of us get informed mainly by reading, listening or 

watching contents from web multimedia. The success of digital advertising through Internet is a 

crucial metric to assess how important web presence is. Awareness on the existence of 

reproducibility support tools is almost absent simply because very few of the developed tools are 

designed with the proper dedication to this philosophy. Consequently, most informed 

reproducible research advocates feel the frustration that in general their audiences may grasp 

the problems they are addressing but have no clue to what Sumatra [Davison 2014], ReproZip 

[Chirigati et al. 2016], CDE [Guo 2012], etc. are. There has been tremendous ingenuity poured 

into these projects. Surely their reputation can be boosted. 

P2.  Absence of a standard or an interoperability feature between the current tools: 

The rich variety of tools developed proves that the issues of reproducibility are taken seriously. 

Yet, the growing number of tools is bringing an overwhelming breath of confined designs and 

internal representations. In fact, as of today none of the tools have a process to turn what its 

representation of a reproducible capture is to the one of another tool. It is on the other end 

crucial to note that we are living in a world in which obsolescence is a de facto parameter of our 

technological advances. Hardware architectures, software designs, file formats and much more 

have been judged obsolete in the past and thus not supported anymore on today’s systems. As 

such, standards for following common principles for the sake of sustainability in research work is 

unpriceable. However, when standards have not reach proper maturity, today’s software must 

focus in being interoperable with others as much as possible and as early as possible. The fear of 

being trapped with obsolete data unusable with other software is effectively present. Today’s 

software users will naturally go to the tools that provides the most useful features and 

accommodates the best with other software. This problem goes back to the previous one on the 

aspect of users’ adoption. In fact, what is the benefit of using a specialized tool with a doubtful 

future if one can produce an ad hoc scheme proper to a situation of interest that one understands 

and is able to shift at will? 
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P3.  Scarcity of collaborative features in a collaboration driven world: 

The issues of reproducibility as presented in the previous section under the more generic term 

of corroboration is inherently a collaboration drama. In fact, corroborating a result mostly 

involves others considering how they could appreciate, vet and use it. Additionally, the trust in 

Science comes from its collaborative nature. New discoveries are built on top of the successes 

and failures of old ones through communication. As such, tools supporting reproducibility must 

be built with collaborative features. This is not currently the case in most core tools. And for those 

who are providing such features, they suffer from the previous problem of interoperability which 

makes the collaboration very confined to an isolated ecosystem. It’s a fundamental thing to be 

able to collect reproducible artifacts of research inquiries for personal use. Yet, it is another 

critical one to be able to appropriately share and collaborate around such artifacts in our 

collaboration driven world. Our technological advances tend to strongly support that we are 

moving toward a de facto of the latter. 

P4.  No solution to exact reproducibility due to Numerical precision issues: 

Numerical precision is the key to advance computation. Without it, we are trapped at a level of 

accuracy that does not allow us to unearth the secrets of the infinitely small, infinitely fast, 

infinitely big and infinitely slow. And we have much more to learn at these scales. Yet, we must 

keep in mind that computers approximate our theoretical calculations which suppose a perfect 

result. In fact, the reality is that our current CPU architectures are showing the signs of their 

limitations. The issues of numerical precision due to the loss of the associativity property when 

computing big and small number is an appropriate example. Equations 1.1 to 1.11 describe a 

computational problem in which the sum of a permuted bag of numbers does not always return 

the same results. 
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We want to generate 10000 ordered bags from E by permutating its elements. Thus, Ei is an 

ordered bag and the permutation number i of E. Here, A ∪	B represents the union of the two 

bags A and B. 

∀𝑖 ∈ [0,9999];	𝐸; = 𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝐸, 𝑖) = {𝜎;(𝑥)|𝑥 ∈ 𝐸}	(1.2) 

Then, we compute Si the sum of all numbers of each of the generated ordered bags Ei. 

𝑆 = {∀𝑖 ∈ [0,9999]; 𝑆; = J 	
|K|L#

$

{𝐸;	}	(1.3) 

Mathematically, the permutation should not impact the result. We have indeed constructed E 

purposely so that its mathematical true sum be exactly 10000. The following equations explain 

how this value is obtained. 𝑆NOPQ  represents the expected mathematical result of S. 

𝑆NOPQ = J 	
|K|L#

$

{𝐸}	(1.4) 
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	1000	(1.5) 

J 𝐸
|K|L#

$

	=
1
100 +

9
100 +

9
10 + 9 + 90 + 900 + 9000	 = 	10000	(1.6) 

Computationally, we have also crafted E to prove the point that the permutation has an impact 

in the sum of Floating-Point. Scomp shows the actual computation evaluation of each elements of 

the bags in Equation 1.1. The next paragraph gives the result of Scomp for the 10000 permutations. 

𝑆WXYZ = {1𝑒[}. ∪ {1\#𝑒[}[][ ∪ {1\]𝑒[}^^.[ ∪ {1\^𝑒[}_]$^ ∪ {1\[𝑒[}.`$(1.7) 

1\# = 1. (0)#_1819	(1.8)								1\] = 1. (0)#_3638	(1.9) 

1\^ = 1. (0)#_5457	(1.10)								1\[ = 1. (0)#_7276	(1.11) 

𝑆WXYZ shows the computational result done on an Intel ® i7 CPU.  
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When aggregating the different results across the possible permutations as shown in Figure 2.3, 

we unveil the Achilles' tendon. 

 
Figure 2.3 Results of the sum in Equation 1.1 for 10000 permutations: The occurrences of the 
results from the sum in the 10000 permutations clearly shows that in the case of out of order 
computation [Zitzlsberger 2014], this specific sum gives a 0.09% chance to get the correct result.  
 

Only 9 out of the 10000 permutations return the correct mathematically result of 10000. 

Currently, none of the tools available for supporting reproducibility provide an appropriate 

solution to these specific issues of numerical precision.  

The use of multi-core architectures and networks of many computers have been the way to solve 

problems involving massive amount of computation through programming models such as 

MapReduce [Dean and Ghemawat 2004]. As shown in the previous example, the order in which 

numerical operations are carried out is important when dealing with Floating-Point numbers 

[Goldberg 1991]. When not taken care of and thus carried through more complex functions, 

precision errors will grow and thus make results significantly drift from what should be expected. 

Furthermore, optimization techniques available on processors such as the Intel ® Xeon Phi’s out 

of order cores that have proven to significantly speed up computations are not recommended 
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[Zitzlsberger 2014] when accuracy is the goal. The order of the numerical operations becomes 

non-deterministic which leads to different results from a run to another. In the previous example, 

10000 runs on such processors of the operation in Equation 1.1 will return a similar variability to 

what was demonstrated with the permutations in Equation 1.7 and Figure 1.4. 

2.2 MOTIVATIONS 

The body of contributions added by worldwide research teams through reproducibility support 

tools is to be acclaimed. As of January 3rd, 2018, we have listed 40 of them. Despite, the possible 

improvements proper to each tool, our aim in this thesis is not to provide another tool that will 

provide a different solution to the current ones. Instead, we ought to appropriately reason about 

how to best contribute to the existing efforts. Thus, we sincerely propose to inquire on the 

problem statements in the previous section 1.2. As such, we have formulated two observations 

and proposed solutions as hypothesis currently in experimentation: 

 

O1.  Can we design a system that will appropriately address P1, P2 and P3? 

Going through P1, P2 and P3 in the previous section gives the feeling of similarity and dependency. 

In fact, the issue of collaboration expressed in P3 seems to be the fundamental glue. First, in P1, 

the need for reaching out better can benefit from collaboration. Moreover, collaboration implies 

communication and the sharing of knowledge. Consequently, it will inherently drive awareness. 

Also, in a reverse manner, collaboration can benefit from more effective awareness driven 

schemes for reaching out. The more people are aware of the problem and the solutions, the more 

people will collaborate. Second, in P2, the lack of standards or interoperability mechanisms limits 

significantly the scientists’ freedom to use any tool of their liking. The reality is that every scientist 

will most likely not be introduced to the same tools at the same time. Thus, collaboration 

between scientists will take a toll, which will escalade to P1 as discussed before. In this thesis, we 

have indeed taken the challenge of building such as system. 

 

 



36 
 

O2.  Can we craft a method that will allow to finally answer to P4? 

P4 requires going beyond the scope of documenting the tools and scientific methods pipelines 

that contributed to a specific result. This explains why the current tools are deprived when facing 

numerical precision issues. Additionally, as mentioned earlier, our problems in P4 are the 

manifestation of the limitations of what today’s computers can achieve. Thus, we venture in 

search of a solution. 

2.3 CONCLUSION 

In this chapter, we elaborate on four principal problems and our research motivations to address 

them. These problems have been identified as impeding scientific results reproducibility. 

Moreover, we have reasons to believe that they limit adoption of the tremendous efforts 

contributed by research teams in various institutions across the world. Beyond reproducibility, 

there is a growing concern in genuinely corroborating new scientific claims. The present thesis 

does not pretend to solve all the subsequent underlying issues. Instead, we have come to realize 

that a scheme for unifying the current contributions will be far more beneficial and impactful. As 

such we specifically propose to solve to the issues of the existing efforts. 

Leaving this chapter with a clear view of what concerns us in the matter of advancing 

reproducibility, we take the reader onto the critical chapter of what is out there. The following 

chapter informs the reader on the current methods used to solve reproducibility issues. It shows 

the strength of those techniques and their limitations which will mostly reflect our main concerns 

expressed in the present chapter. 
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Chapter 3 – LITERATURE REVIEW 

3.1 INTRODUCTION 

It is clear now more than ever before, that the complexity and speed at which our technological 

shifts occur are impeding our ability to properly reproduce scientific results without specialized 

tools. However, there is a growing consensus that solving these problems requires the proper 

identification and recording of some key elements that contributed to these computational 

results [Sandve et al. 2013]. They are: the research environment, the experiment dependencies, 

the experiment inputs, the experiment executable and the experiment outputs. The following 

definitions express how these key elements were understood during this thesis based on the 

literature. 

Definition 3.1. Environment means enough information about the system in which the 

simulation/experiment was run (hardware, operating system and compiler).  

Definition 3.2. Dependencies represent all elements such as the libraries required by the 

simulation code/experimental design to be properly built and executed. 

Definition 3.3. Inputs contain all the data ingested by the simulation/experiment to produce the 

expected outputs at the end of its execution. 

Definition 3.4. Executable signifies enough information to retrieve/recover and execute the 

simulation/experiment (lab procedure, experimental design, source code, binary, execution 

command). 

Definition 3.5. Outputs refer to all the data produced by the simulation/experiment during its 

execution. 

The identification and documentation of these five elements in a way that fosters reproducibility 

is currently regarded as a gold standard in various efforts [Stodden, et al. 2014]. Currently, more 

journals are asking authors to publish more than the data they used to provide within traditional 

articles. As pointed out in [Donoho 2010], Dr. Claerbout slogan is most adequate here: 
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An article about computational Science in a scientific publication is not the scholarship 

itself, it is merely advertising of the scholarship. The actual scholarship is the complete 

software development environment and the complete set of instructions which generated 

the figures.  

In this chapter we would like to first, inform the reader on the current landscape of software that 

are being developed in support of scientific results reproducibility. The rich landscape of research 

and software in the first section is the cornerstone that motivated this thesis. Then, we guide the 

reader in a hierarchical and comprehensive exploration of the current landscape of platforms in 

the literature that attempt to solve or partially solve P1, P2, P3 or P4. 

3.2 AN OVERVIEW OF REPRODUCIBILITY FOCUSED SOFTWARE 

The current landscape of core research that focuses solely in the problem of reproducing a result 

is composed of three major categories. First, we have research that focuses in general purpose 

reproducible research. The two categories in this cluster are:  Literate Programming (C1) and 

Execution Wrapping (C2). Despite their fundamental opposite philosophies, these two 

complementary categories focus on reaching a point where another scientist can successfully re-

run a previously executed experiment to the point of getting a result. On the other end, the third 

category aims for an exact run to run reproducibility that yields identical results: Numerical 

Assessment (C3). The latter does not care about the recording of the previously defined five key 

elements. Instead, it focuses on methods that guarantee identical numerical reproducibility. In 

the following subsections we propose an overview of these three categories. 

3.2.1 ON GENERAL-PURPOSE REPRODUCIBLE RESEARCH 

For a scientist who has a hard time reproducing another scientist result, there is likely a feeling 

that this journey be memorable. More importantly, one can acutely recall the most burdening 

aspects. Intuitively, these can be aggregated in one single question that most corroborators ask: 

How can I create the equivalent conditions to run this experiment again? Most of the tricks, ideas 

and research pulled off to answer this question again and again lead to at least looking to simply 

run it again. At this point we don’t even think about the result as we spend hours struggling to 
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install hardware specific drivers, setup libraries, find the right OS configurations and so on 

[Hothorn and Leisch 2011].  

As such, general-purpose reproducible research attempts to provide solutions in two categories 

to answer this question. Thus, the methods presented here focus in capturing the five key 

elements listed in the introductory section of this chapter. In fact, they are thought to be enough 

to allow a reconstruction of the conditions behind the correct execution of previously run 

experiments. Moreover, with the tools that implement the methods presented in this section, 

the corroborating scientist can focus more in the actual corroboration of the result. We mean, 

seeking to know if the results of the new run are within acceptable domain specific error scales 

or why not identical to the original. Table 3.1 provides a non-exhaustive list of tools implementing 

these categories. 

Disclaimer: Certain commercial entities, equipment, or materials may be identified in this 

document in order to describe an experimental procedure or concept adequately. Such 

identification is not intended to imply recommendation or endorsement by the National Institute 

of Standards and Technology (NIST), the Université Clermont Auvergne (UCA), the Laboratoire 

d’Informatique, de Modélisation et d’Optimisation des Systèmes (LIMOS), nor is it intended to 

imply that the entities, materials, or equipment are necessarily the best available for the purpose. 

Table 3.1 Software supporting general-purpose reproducibility of scientific results 

Tools C1 C2 Method Tools C1 C2 Method 

ActivePapers [Hinsen 2015] ✓ ✓ ExP PANDA [Dolan-Gavitt et al. 2015] × ✓ PoW 

Arvados [Guthrie et al. 2015] ✓ ✓ WoM Nextflow [Di Tommaso et al. 2017] ✓ × WoM 

Autosubmit [Badia et al. 2017] ✓ × WoM Nipype [Gorgolewski et al. 2011] ✓ ✓ WoM 

CDE [Guo 2012] × ✓ InW ReproZip [Chirigati et al. 2016] × ✓ InW 

Codalab ✓ ✓ ExP rkt [Wood 2017] × ✓ PrW 



40 
 

Dask [Rocklin et al. 2015] ✓ × WoM runc [Gantikow 2017] × ✓ PrW 

Docker [Turnbull 2014] × ✓ PrW SHARE [Gorp and Mazanek 2017] ✓ × ExP 

Fireworks [Jain et al. 2015] ✓ × WoM Sumatra [Davison 2014] × ✓ InW 

Jupyter [Perez and Granger 2007] ✓ × CoN VCR [Gavish and Donoho, 2011] ✓ × ExP 

Kepler [Altintas et al. 2004] ✓ × WoM Vistrails [Callahan et al. 2006] ✓ × ExP 

OpenMole [Reuillon et al. 2013] × ✓ WoM NoWorkflow [Pimentel et al. 2017] × ✓ InW 

 

For every tool, Table 3.1 shows which one of the two categories is implemented. It also provides 

the primary method (presented in the following subsections) implemented by the tool: ExP 

(Executable Paper), CoN (Computational Notebook), WoM (Workflow Manager), PrW (Pre-

Execution Wrapping), InW (In-Execution Wrapping) and PoW (Post-Execution Wrapping). 

3.2.1.1 LITERATE PROGRAMMING 

Introduced by Pr. Donald Knuth [Knuth 1992], the credo of literate programming is that most 

problems in computer Science such as software maintainability and results reproducibility come 

from the fact that we conventionally focus mainly in telling the computer what to do. Instead, 

we should be focusing more in embedding enough information to tell another human being what 

we want the computer to do. In fact, the way we tell computers what to do through programming 

languages and how computers understand them based on their CPU instruction sets and 

architecture continuously change. One well-known example among others is certainly file format 

obsolescence [Rosenthal 2010]. As such, literate programming is an adequate mixture of code 

and a guided explanation of what we intend to do with it as shown as following from Inweb 

(http://inform7.com/sources/inweb accessed July 17, 2018). 
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∮13. So here the head of one sequence is 𝑇Zeand the head of another is 𝑇Zf, so in the product we ought 
to see (𝑇Ze)ge. (𝑇Zf)gf = 𝑇ZegehZfgf. But we don’t enter terms that have cancelled out, that is, where 
𝑝#𝑠# + 𝑝]𝑠] = 0. 

⟨Both terms refer to the same base unit, so combine these into the result 13⟩ ≡ 

int p = p1*s1 + p2*s2;      combined power of t1 = t2 

if (p != 0) { 

     if (result ⟶   no_units_pairs == MAX_BASE_UNITS_IN_SEQUENCE) 

            ⟨Trip a unit sequence overflow 15⟩; 

     return⟶   unit_pairs[result⟶   no_unit_pairs].base_unit = t1; 

     return⟶   unit_pairs[result⟶  no_unit_pairs++].power = p; 

} 

t1 = UNKNOWN; t2 = UNKNOWN;   dispose of both terms as dealt with 

∮14. Otherwise we copy. By copying the numerically lower term, we can be sure that it will never occur 
again in either sequence, so we can copy it straight into the results. 
 

Thus, literate programming has the advantage that when problems occur, another scientist with 

the appropriate background will understand the embedded information. Hence, it will be 

possible to either fix the issues or migrate the software to a newer working environment.  

In this section, we are referring to literate programming in a slightly larger sense than what was 

coined by Pr. Knuth in his WEB software [Knuth 1984]. The former focused on software source 

code literacy. Here by literate programming, we also propose to include metadata in support of 

today’s complex software pipelines executions. In the following subsections we describe the 

three major methods that we have identified within the concept of literate programming. 

Executable papers 

More aligned with the original idea of Pr. Knuth, executable papers [Strijkers et al. 2011] are 

more than just publishable artifacts of their former academic version, now thought to be 

obsolete [Somers 2018] or otherwise inaccessible [Taylor and Taylor 2018]. Their main feature 

is that, the typically inserted results as tables, figures and graphs are the outputs or links to codes 

computed on the fly when rendering the paper. Moreover, any client reader can rerun these 

codes and therefore regenerate all the results in a more corroborative and interactive way than 

ever before. The evident advantage of the codes living alongside their scientific argumentations 
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is that they are the implementations of the latter and produce the results that support the claims 

advertised in the paper, all in one shot. While traditional academic papers can be read either on 

physical support or with software supporting their files formats (PDF, TEX, Word, etc.), 

executable papers require specialized software and services to be properly viewed or to run the 

codes. Such software and services can be identified as executable paper servers and clients 

usually designed as shown in Figure 3.1. 



43 
 

 

Fi
gu

re
 3

.1
 G

en
er

ic
 a

rc
hi

te
ct

ur
e 

of
 a

n 
ex

ec
ut

ab
le

 p
ap

er
 s

er
ve

r: 
In

si
de

 t
he

 v
ie

w
er

, t
he

 r
ea

de
r 

ca
n 

ed
it 

an
d 

re
-c

om
pu

te
 t

he
 

so
ur

ce
 o

f t
he

 a
ny

 c
on

te
nt

 b
ei

ng
 re

nd
er

ed
. 



44 
 

From within a client viewer, a reader of an executable paper is viewing computed and rendered 

parts of the paper by an executable paper server engine. Typically, an executable paper is 

identifiable with a unique Id and is composed of computable parts also identifiable with some 

unique Ids. A computable part contains either a text script that can be executed to render 

formatted text or a source code that can be computed or a link to either of the formers. In the 

case of the source code, the result is typically rendered by a figure object. Hence, the reader can 

request the live re-computation of every parts of the paper. Moreover, in some cases, the reader 

can edit the paper parts sources. Thus, the embedded source code can be executed on a different 

dataset or even be altered during the viewing session. In the case of links, the reader is taken to 

a subsequent view (generally in a browser) in which they can perform the previously described 

actions. Table 2.1 provides five executable paper tools that we briefly describe in the following. 

v ActivePapers. The research behind this tool mostly focuses on a file format for storing 

computation. The goal of this R&D work is to help scientists produce research that is 

more reliable and easily publishable. In ActivePapers’ philosophy, data is more important 

than software. However, everything is again data in the tool’s vision. Thus, the tool stores 

everything using HDF5 [Folk et al. 2011] as its underlying storage format. Therefore, 

datasets within an ActivePaper can be analyzed using any generic HDF5 viewing tool such 

as HDFView (https://support.hdfgroup.org/products/java/hdfview accessed July 17, 

2018). Moreover, platforms such as figshare [Kraker et al. 2015] and Zenodo 

(https://zenodo.org accessed July 17, 2018) are great venues to publish and view 

ActivePapers. 

v Codalab. It is an executable paper web server that provides sandboxed environments to 

researchers. Within these sandboxes, scientists can run their code on the data they 

uploaded. Thus, CodaLab makes it easy for collaborators to re-run the same code on the 

same data, to run the code on new data, or to even run the code with some 

modifications. To use Codalab, scientists must understand two major concepts. First, 

sandboxed environments are called bundles. They are immutable files/directories that 

represent the code, data, and results of an experimental pipeline and are submitted to 

CodaLab as data and/or code containers. The goal of the bundles is to enforce 
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reproducibility. Second, the concept of an executable paper is called worksheets in 

Codalab. Furthermore, they can be seen as lab notebooks and tutorials material. They 

are meant to organize and present an experimental pipeline in a comprehensible way. 

CodaLab’s server engine is called in its jargon: the worker system. It manages the bundles 

and the worksheets created, modified and uploaded by the scientists. It is composed of 

three components. The first one is the core server. It’s a REST [Pautasso et al. 2008] RPC 

[Srinivasan 1995] server responsible for processing requests from the client viewers 

(browser) and the worker. It also handles the collection and storage of metadata and all 

data in a database and on disk. The second component is the worker node. The CodaLab 

server engine is composed of a distributable set of worker nodes that can be run on 

machines with available compute resources. It executes scientists’ commands within 

bundles as Docker containers. The last component is the bundle manager. It’s a process 

that continuously fetch bundles in the database and schedules them to run on workers. 

v SHARE. It is a product of the challenges faced by the Transformation Tool Contest (TTC) 

which encourages submission of software even at prototype phase. Such challenges 

scope difficulties to install or consistently configure the software. Additionally, there is 

no guarantee that the current version of the software will be available in the future. TTC 

is an event that focuses on a yearly basis evaluation and dissemination of advanced 

transformation techniques and related software. As such, SHARE was developed as a 

solution to provide environments in which all software and related data are installed, 

configured properly and ready for evaluation. Within SHARE web portal, scientists can 

create, share and access environment remotely as virtual machines from researcher’s 

papers. Thus, results can be published alongside the links to the computation that 

produced them in SHARE. When clicked, the reader is taken to a live virtual machine 

session provided by SHARE in which they can re-run the computation as published or 

modify them at will. The Technische Universiteit Eindhoven (TU/e) University of 

Technology has been providing a free academic instance of SHARE. 

v VCR. The Verifiable Computational Result is the outcome of research in which 

computations, the data they ingest and the results they produce get assigned Verifiable 
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Result Identifiers (VRIs). It is designed to deliver the same working environment as what 

scientists are currently used to. As such, scientists using VCR produce computational 

scripts and word processor files that are very much like those they work on today with a 

few subtle changes. In fact, these scripts generate a stream of verifiable results that are 

the same tables, figures, charts and datasets the scientist would typically produce but 

assigned a VRI and stored in a VCR repository. Thus, within the community, collaboration 

involves sharing those VRIs. Moreover, when included in papers, the reader is taken to a 

web portal in which they can locate, browse and when appropriate re-run the 

computations that generated the results. To reference data and source code, the 

scientist need to commit them along with the libraries used to a VCR server instance. 

Following the proper order, the data must be submitted first to retrieve VRIs that can be 

used within the source code to access them. Then, source code can be uploaded to 

retrieve a VRI that can be referenced to run it. After the execution of the source code, 

the VCR server sends back an email to the scientist, which contains VRIs of all the results 

produced during the execution. 

v Vistrails.  It’s a tool whose research aims at integrating data acquisition, derivation, 

analysis, and visualization as executable components. Thus, these components will 

facilitate the generation and sharing of repeatable results. Compared to its pairs, Vistrails 

certainly differentiate itself through its mechanism for capturing metadata and 

provenance information from source code and libraries. It engages with authors, 

reviewers, publishers and readers throughout the paper life cycle. It keeps track of the 

computations, the data and the executed parameters while scientists do their research. 

Later, the resulting data, plots or visualizations can be referenced in the paper in a similar 

way as done with VCR. 

Computational notebooks 

Like executable papers, computational notebooks [Rule et al. 2018] are computed and generated 

by notebook servers. Despite their similarities in principle, notebooks and executable papers are 

quite different in their purpose. First, while an executable paper aims at enhancing the former 

academical standard research paper, notebooks intend to instead make the whole process of 
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research investigation and teaching easier. As such, a notebook is a reasoning interface like a 

digital whiteboard on which scientists can test their ideas, build methodical teaching materials 

and finally distribute them without the hassle of a review board. Therefore, most notebook tools 

support more programming languages and allow scientists to leverage and use most libraries 

available in those programming languages. Even though notebooks were not initially meant for 

academic publication, media giants such as O’Reilly (https://www.oreilly.com/ideas/jupyter-

at-oreilly accessed July 17, 2018) are interestingly adopting notebook tools. In Table 2.1, Jupyter 

is certainly the most popular notebook tool available. The Jupyter notebook provides a web-

based server allowing scientist to open sessions in which they can: develop, document, format 

text and execute source code. Thus, the formerly named IPython notebook contains two main 

components. The first component is a web server. It is a tool that allows interactive integration 

and execution of code, explanatory text scripts and their formatted outputs in notebooks from 

within a browser client to the server machine on which it is installed. The second component is 

the notebook. It is a document holding all the data, text scripts and source codes as inputs from 

the scientist; and all their outputs as internal objects, formatted texts, tables, graphs and images. 

Within a Jupyter notebook browser session, a research can first edit syntax highlighted source 

code or rich text [Ovadia 2014] as any modern text editor. Then run the code or rich text on the 

server machine from the browser and receive the results. And finally display the results of code 

and rich text (mathematical notation) computations as rich media representations through 

HTML, LaTeX, PNG, SVG, etc.  

Jupyter and other notebook tools not listed in Table 3.1 such as BeakerX (http://beakerx.com 

accessed July 17, 2018), Kajero (http://www.joelotter.com/kajero accessed July 17, 2018) and 

Zeppelin (https://zeppelin.apache.org accessed July 17, 2018) are based on the idea of a lab 

notebook, brought to life in web browsers. Each notebook is a place for recording the written 

ideas, data, images, spreadsheets, diagrams, equations, and especially code, that one produces 

in the course of research. Scientists can analyze, visualize, and document data and Science, using 

multiple programming languages. 
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Workflow management 

Unlike the executable papers and computational notebooks methods which focus on literate 

programming from within the source code, the workflow management method addresses the 

aspect of software execution. In fact, the modern in-silico experimental scientist investigation 

involves an ever more complex pipeline of tasks. Each task in the pipeline will typically ingest 

some inputs and produce outputs that are fed into the next tasks as inputs and so on until the 

last tasks are reached [Altintas et al. 2004]. Moreover, a task can be a simple function, a complete 

software or a webservice. Well-known job schedulers such as Slurm 

(https://slurm.schedmd.com accessed July 17, 2018), TORQUE 

(http://www.adaptivecomputing.com/products/open-source/torque accessed July 17, 2018) 

and Grid Engine (http://www.univa.com/products accessed July 17, 2018) are either being 

replaced or wrapped by new tools in order to provide a better literacy to the design, execution 

and management of current scientific pipelines. Thus, newer scheduling scripts embed more 

explanatory information detailing the pipelines, their purposes and how to launch them in a 

reproducible fashion. 

Most workflow management tools implement literate programming by providing specialized 

languages or software libraries that are used by the scientists to craft their pipeline recipes. 

Figure 3.2 taken from Dask respectively showcase a Dask recipe and its resulting computational 

pipeline. 
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Figure 3.2 Computational workflow recipe and graph with Dask: This pipeline aims to sum the 
result of add of the results of inc and double for the five digits in data. The resulting graph seems 
less complicated when looked at with the recipe that generated it. Despite its complexity the 
graph visually details the chain of calls that produces the final result. 

 

The resulting pipeline is a Direct Acyclic Graph (DAG) of three tasks (inc, double and add) 

composed to achieve a Single Instruction/Multiple Data (SIMD) execution paradigm. Here the 

single instruction is a graph branch involving a single instance of inc, double and add tasks used 

on a single value of data which can be interpreted in the case of 1 as add(inc(1), double(1)) and 

intermediary results double-#0, inc-#2 and add-#1. 

In some ways, complex software executions today are done by source code that is also executed 

[Amstutz et al. 2016] and thus would benefit from literate programming. In the previous Dask 

example [Rocklin et al. 2015], while the source code can benefit from more commentary efforts, 

the generated graph provides enough literacy so that the idea can be implemented again with 

other tools and fixed in the advent of an error or Dask becoming obsolete in the future. 

In Table 3.1, we list eight workflow-based tools used by scientists. We provide a brief description 

of each in the following. 
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v Dask. It’s a workflow engine based on a novel specification that allows scientists to write 

their workflow as a Python program. With the use of objects such as Dicts, Tuples and 

Callables, the Dask specification allows a direct mapping of its workflows to their 

corresponding DAGs. As such when a Dask recipe is executed, the scientist can visualize 

the live execution of the tasks through a Bokeh (https://bokeh.pydata.org accessed July 

17, 2018) interface. Hence, the scientist can have both the source code of the tasks and 

the recipe of their intricate execution in a single place with the ability to provide extra 

explanatory text. Moreover, the produced graph figures are additional literature 

explaining what was intended. 

v Kepler. It’s a platform for executing scientific workflows. It allows researchers to compose 

heterogenous software components written in different programming languages. Inside 

Kepler, a workflow is composed of components connected to each other and to data 

sources. As such scientists using Kepler can share and reuse data, workflows and 

components developed by the scientific community. Moreover, workflows can easily be 

executed locally or in a distributed fashion. Kepler inherits both its GUI and workflow 

system from Ptolemy (https://ptolemy.berkeley.edu accessed July 17, 2018). 

v Nipype.  Neuroimaging in Python is a software package that eases the development and 

integration of neuroimaging-based data analysis algorithms. These algorithms are 

represented as workflows along with their inputs and outputs described in an object-

oriented fashion. Nipype gives Neuroscientists the capability to use a plug-in architecture 

to run workflows locally, on multi-core machines and remotely on clusters. 

v Fireworks. It is a python workflow software that leverages the equivalence between 

Python Objects (Dict, List, Tuple, etc.) and JavaScript Object Notation (JSON) to deliver a 

direct mapping between the representation of its workflow objects and how they are 

stored. With a powerful query language, scientists can directly perform search operations 

and recombination of workflow parts (jobs) that can be intuitively executed by FireWorks. 

Similarly, to other workflow tools, FireWorks workflows can be executed locally in parallel 

or distributed across remote workers. 
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v Arvados. It is a workflow platform for data Science applications involving very large data 

sets. It is composed of two major parts. First, Keep 

(https://dev.arvados.org/projects/arvados/wiki/Keep accessed July 17, 2018) is a 

storage system for large files with an addressable content feature. Second, Crunch 

(https://doc.arvados.org/user/tutorials/intro-crunch.html accessed July 17, 2018) is a 

workflow engine based on container technology. Thus, scientists using Arvados, can 

manipulate flexible, scalable, versioned and reproducible workflows. Moreover, they will 

additionally be able to seamlessly access and manage large amounts of data. 

v Autosubmit. It is an High-Performance Computing (HPC) utility that allows scientists to 

manage their workflows inside clusters, and Supercomputers remotely and mostly via SSH 

(Secure Shell). With Autosubmit, researchers can manage dependencies between 

computing jobs and leverage an HPC specifics agnostic layer that will not require code re-

adaptation when sharing the workflow between clusters. Moreover, this tool allows 

provenance capture in a way that allows automatic retrials and the capability to rerun 

parts in case of a failure or a corruption. 

v OpenMole. Although designed to give more control to researchers around their 

numerical models, this software provides more in terms of how to run the latter. 

OpenMole, models are designed as workflow nodes that can be run independently of the 

programming language and the type of input/output space. Furthermore, the software 

allows a seamless scaling feature across servers, clusters, grids and clouds. 

v Nextflow. Similarly, to Arvados, this tool allows the construction of data-driven 

computational pipelines that are scalable and reproducible scientific workflows. Its 

similarity to Arvados comes from the fact that it also leverages container technology to 

bundle experiments. It differentiates itself from other tools due to its Domain Specific 

Language (DSL) which allows the implementation and deployment of complex parallel 

workflows in HPC infrastructures. 

3.2.1.2 EXECUTION WRAPPING  

An opposing philosophy to the one of literate programming considers that issues in corroborating 

scientific results come not from relying too much on computers but instead from the trust in the 
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human factor. Moreover, this philosophy focuses mainly in capturing the execution environment 

[Davison 2016]. Figure 3.3 shows the three execution wrapping methods that are implemented 

to put the trust on the computer by allowing it to automatically wrap its execution in a 

corroborative fashion. This category scopes methods that puts the blame on unguided manual 

operations and the memory of the scientist. Errors will be introduced through the lack or loss of 

precision in operations. Moreover, forgetting cannot be avoided especially when documenting 

key elements to ensure corroboration. Without a consensus, what one think not important to be 

documented might be important to another in the process of understanding. Thus, everything 

must be automated. The machine should be given the control to record and guide the scientist 

during the investigation in a corroborative fashion. Therefore, another machine will 

automatically be able to perform the same operations again from that record. 
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Pre-Execution wrapping 

In execution wrapping, the present method involves a prior determination of the investigation 

key elements as shown in Figure 3.3 downmost diagram. This is referred to in [Davison 2016] by 

pre-emptive capture. Typically guided by a tool, the scientist can produce the record of what is 

needed to reconstruct the investigation. Such record is generally in a standard format that any 

tool aware of, can execute. The Open Container Initiative (OCI 

(https://www.opencontainers.org accessed July 17, 2018)) Image Format Specification is an 

appropriate example. When using pre-execution wrapping, scientists spend the major part of 

their time assessing the record. In fact, the record must reach a first successful run which 

demonstrates that the environment, the dependencies, the inputs and the executable are 

properly wrapped and produce the expected result. Pre-execution wrapping tools speculate on 

the fact that when the wrapping follows some guidelines, the resulting record or its equivalent 

build is guaranteed to always work with any other supporting tool. Thus, a scientist that wants to 

corroborate the experiment results, needs to use the same tool that produced the record or 

another tool that supports its format. According to Github (https://github.com accessed 

September 21, 2018), the top four pre-execution wrapping tools in Table 3.1 are: Docker, rkt, 

runC and Nextflow. The following subsections briefly review them. 

v Application Container Systems. Differently from hypervisor virtualization which 

virtualizes the hardware layer to accommodate one or more independent machines, 

containers instead come on top of the Operating System (OS) kernel to split the user space 

into small sandboxes scoped for applications build, deployment and execution. They are 

run within the user space on top of an operating system's kernel. Hence, container 

virtualization is often referred to as operating system-level virtualization [Morabito et al. 

2015]. Docker [Turnbull 2014] is a container system that allows scientists to capture key 

elements to enhance corroboration by following two guidelines. The first one involves the 

capture of the environment, the software, its dependencies and how to run it in a file 

named Dockerfile. With such a file, scientists can custom tailor the operating system and 

prepare the ideal self-contained environment in which their simulation can run. A 

Dockerfile gets built into a Docker container which in turn is persisted on the host and can 



55 
 

be launched as a guest. Moreover, scientists can generate lightweight images from their 

Docker containers. Thus, these images can be distributed to others directly or through 

the Docker Hub (https://hub.docker.com/ accessed September 29, 2018). The second 

guideline helps scientists custom design the execution requirements of their containers. 

This is expressed on a file named Docker-compose in which the scientist can express 

where inputs can be found and where outputs should be stored. Within such a file, 

scientists can also combine Docker containers to produce a complex combination of well 

contained scientific codes. As soon as scientists can wrap their simulations inside Docker 

containers and provide a Docker-compose file to run them, they have done most of the 

work. Then, collaborators need only to install the Docker tools suite to be able to 

reproduce their results. Similar tools such as rkt [Wood 2017] and runC [Gantikow 2017] 

are container engines like Docker that come with equivalent mechanisms to pre-wrap 

scientists simulation codes in containers before executing them. Yet these two tools are 

slightly different from Docker. For example, rkt, introduced by CoreOS 

(https://coreos.com accessed July 17, 2018) and naming its containers, pods, has a design 

philosophy that is similar to Kubernetes (https://kubernetes.io accessed July 17, 2018). 

It does not rely on an intermediate daemon. Instead, a pod is executable directly and is 

always in non-root state. Moreover, to create the image of a simulation, scientists must 

use acbuild ( https://github.com/containers/build accessed July 17, 2018) which is a 

command line utility to build and modify App Container Images (ACIs), the container 

image format defined in the App Container (appc) spec (https://github.com/appc/spec 

accessed July 17, 2018). As such, rkt’s pod images are inherently following the Open 

Container Initiative consensus and are therefore compatible with other container engines 

images within the Initiative. Also, in order to use runC, scientists must have their 

containers in the format of an OCI bundle. If Docker is installed, scientists can use its 

export method to acquire a root filesystem from an existing Docker container. After a root 

filesystem is populated, they can generate a spec in the format of a config.json file inside 

their bundle. runC provides a spec command to generate a base template spec that can 

then be edited. From an OCI bundle, runC offers two ways of running them. The simplest 
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way is to call the run parameter of runC inside the bundle, which will allow it to create, 

start and delete the container after it exits. The second way allows the user to custom 

tailor the internals of the bundle by modifying the generated spec and accessing the 

lifecycle of the bundle, giving the user more power over how the container is created and 

managed while it is running. 

v Nextflow. It is a platform that helps scientists run reproducible scientific workflows in a 

scalable fashion. It does so by enabling the usage of a Domain Specific Language (DSL) to 

create workflows on clouds and clusters. Moreover, every task within the workflow is 

wrapped inside a container. In fact, Nextflow supports Docker and Singularity 

(https://singularity.lbl.gov accessed July 17, 2018) as container engines. With the use of 

GitHub, it gives scientists the power to write self-contained and versioned pipelines that 

seamlessly reproduce any configuration. Nextflow is a pre-wrapping execution tool that 

is designed to serve scientists in large clusters. As such it relies on the famous LSF 

(https://www.ibm.com/support/knowledgecenter/en/SSETD4/product_welcome_pla

tform_lsf.html accessed July 17, 2018) SLURM (https://slurm.schedmd.com accessed 

July 17, 2018) PBS and HTCondor (https://research.cs.wisc.edu/htcondor accessed July 

17, 2018) as batch schedulers. Compared to container engine tools that can be used by a 

scientist alone, Nextflow is designed for scientific infrastructures that intend to enforce 

reproducibility in all research projects through a pre-execution wrapping method. 

Intra-Execution wrapping 

This method (shown in Figure 3.3 middlemost diagram) exercises a wrapping of the execution in 

two steps and is referred to in [Davison 2016] as run-time capture. First, during the computation 

it typically intercepts the execution calls to the investigation environment resources. It does so 

by either taking care of the execution process itself or by generally watching everything on the 

system. There are two possibilities. In the first one with a computational experiment, the tool 

implementing this method act as a parent process that handles the execution of the experiment. 

In the second one, with a computational experiment, the tool implementing this method act like 

a watching daemon that listens for activity in the system. Second, at the end of the execution, 

the tool automatically or by directing the scientist, produces the record of the experiment 
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execution. Thus, differently from the previous method which mostly involves container 

technology [Gantikow 2017], here, the execution is firstly done outside of the record. In fact, the 

record is generated from the first successful execution. Then, to corroborate the experiment, 

another scientist need not to worry more than having a tool that supports the record format and 

structure. The following present in-execution wrapping tools listed in Table 3.1. 

v Sumatra. It’s an in-execution wrapping tool that captures data from the execution context 

of the scientific software that it launches. It does so in three parts. The first part involves 

the use of version control to enforce the proper management of scientific source code 

and the continuous mapping of an executable to it source code version. The second part 

focuses in the snapshot of the inputs, outputs of the execution and the capture of 

metadata about the hardware, OS and libraries versions. The last phase enables the 

storage of Sumatra records in the file system and a database in a way that enables their 

versioning. The software comes with a web application that allows a visual interaction 

with the records. Sumatra has indeed profoundly inspired various aspect of this thesis. 

v CDE. It is an in-execution wrapping tool that uses ptrace (http://man7.org/linux/man-

pages/man2/ptrace.2.html accessed July 17, 2018) to automatically intercept scientific 

software execution calls to the system. Then, it stores all the files involved in the system 

calls following a hierarchy that allows them to be returned through a reverse use of ptrace 

again in future system calls during re-executions. CDE persists its records as a compressed 

file that can easily be distributed. Moreover, the re-run of the computation does not 

require any installation (except for CDE), configuration or root permissions. 

v ReproZip. It also uses ptrace to automatically trace system calls issued by a scientific 

software. Yet, differently than CDE, this trace is used to create a reproducible package 

that contains both metadata and copies of the files accessed during computation. 

ReproZip comes with a secondary command line tool named ReproUnzip. This tool is 

responsible for unpacking ReproZip packages into an executable form which can be 

customized by scientists. ReproZip is different than both Sumatra and CDE as it produces 

both metadata and a full snapshot of the files used during the execution. As such while 
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the scientist can read the metadata for more clue, ReproUnzip is able to rerun the 

resulting packages or turn them into Docker images that can be executed as containers. 

v NoWorkflow. It’s an in-execution wrapping tool that enables the collection of scientific 

code execution provenance at different levels of granularity. It does so by identifying 

three forms of provenance. First, a definition provenance that represents scripts and their 

contents: functions, arguments, calls and static data. Second, a deployment provenance 

that represents the operating system, the environment variables and the library on which 

the code depends. Finally, an execution provenance that traces the execution of the code. 

Fully leveraging the Python programming language, this tool consequently allows a novel 

provenance collection of scientific code execution that enables a better reproducibility. 

Post-Execution wrapping 

Challenging in principle, this upmost method (in Figure 3.3) is barely implemented. Yet, it does 

not have less merit than the others to be listed here. Similarly, to Pre-Execution wrapping, this 

method is based on virtualization. However, instead of aiming to preserve the software stack 

only (from OS layer) as the former, Post-Execution wrapping focuses in preserving a hardware 

stack. Thus, it is a virtualization in which the code from another architecture is translated to the 

host one [Rosenthal 2015]. Tools implementing this method will typically have a way to emulate 

the entire investigation system. Thus, the scientist only needs to be able to execute the 

experiment on a system emulated by the tool. A record of the inputs, the dependencies, the 

executable and a clear specification of the system is sufficient. The novelty in tools implementing 

post-execution wrapping is that independently from the system where computations are being 

run, the tool will emulate the proper system on top of any host system. Thus, it will provide the 

subsystem needed by scientists to compute their experiments. This means that a executable built 

on a PowerPC on an early Apple OS will still be able to be run on a more recent MacBook Pro with 

an Intel i7 CPU or any other recent Personal Computer (PC) hardware architecture. We 

recommend the user to review Table 3.1 to recall the tools implementing this method and the 

previously presented ones. 

PANDA is a post-execution wrapping tool that is based on the QEMU [Bellard 2005] emulation 

system which supports thirteen different CPU architectures. As such it allows the record and 
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replay of executions while enabling deep dynamic analysis. Since PANDA intervenes at the 

machine code level, the use of QEMU allows the full repeatability of replays. 

However, record and replay performance in PANDA are known to be currently fairly slow. In the 

example provided in [Dolan-Gavitt et al. 2015] with gzip-1.2.4 (https://ftp.gnu.org/gnu/gzip 

accessed July 17, 2018), PANDA itself is about 5% slower than QEMU 2.1.0. Recording incurs a 

slowdown of almost 2x, and replay adds about another factor of 2. So, replay is almost 4x slower 

than standard QEMU. This may not seem slow, but replay is noninteractive, and, in many cases, 

analysis plugins incur much larger overheads of 10-100x and so the replay slowdown is 

insignificant. 

3.2.2 NUMERICAL ASSESSMENT 

Despite the popularity of the two previously presented categories, we also provide literature 

demonstrating first hand that the recording of the “elucidated” key elements that contributed to 

a computation result is not enough to achieve reproducibility in some cases. In fact, no matter 

the methods of recording an experiment for reproducibility, when it comes to running it again, 

variations can occur in the results for other reasons, such as: 

v Unstable experiment by design. The result of the experiment may be based on factors 

that may change from a run to another. As such, if not designed in purpose with care, 

reproducing a result becomes a stochastic event that reduces the odds of 

corroborating it. 

v Uncontrolled hardware execution decisions. With our technological changes, 

hardware and operating systems might take different execution decisions as they are 

improved, based on various environmental conditions. Thus, reproducing a result may 

be as hard as recreating the entire hardware and operating system states at the 

various stages that concurred in producing the result. Certainly, this is not a trivial 

task. 

v Uncontrolled hardware flaws. In june 2017, a new flaw was discovered impacting 

Intel HyperThreading on Skylake and Kaby Lake-based processors (Intel 6th and 7th 

Generation). All types of operating systems are affected as specified by a recent Intel 
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errata documentation. This documentation explains that under some complex micro-

architectural conditions, short loops of less than 64 instructions that use AH, BH, CH 

or DH registers, as well as their corresponding wider register (e.g. RAX, EAX or AX for 

AH), can cause unpredictable system behavior sometimes leading to crashes and 

potential data loss. 

During this thesis we have also explored this complementary aspect in the scope of 

computational Science. Hence, we provide here an overview of the third category (C3) used to 

complement the two others in bettering the corroboration of scientific results. 

A numerical result is an intricate combination of the arithmetical operations results evaluated by 

the CPU during the execution. None of the tools implementing the methods in the previously 

presented categories currently preserve any trace of that information except within the outputs. 

Yet, outputs usually provide a limited view into how they came to be. Or we wouldn’t be doing 

any of this. Would we? Only final numerical values are typically the one contained it the result. 

Thus, identifying the origin of a variation is not a trivial task. Out of order execution is one of the 

modern optimizations provided by CPU constructors that helps speed up computations. Yet, as 

addressed by Intel [Zitzlsberger 2014], its impact on floating point operations and the level of 

difficulty involved in debugging such a situation is unprecedented. 

There are currently two methods that are widely used to reduce numerical irreproducibility. 

These methods are in essence, approximations that when finely tuned [Hill 2015] yield 

interestingly precise results yet to be considered at a certain order of magnitude. The following 

subsections provide a brief overview of these methods. 

3.2.2.1 Interval arithmetic 

The approximation of PI by Archimedes 223/71 < π < 22/7 may well be the de facto “hello world” 

introductive example to Interval arithmetic. By avoiding direct evaluation of numerical values, 

this method focuses instead in computing the upper and lower bounds of all numerical variables 

inside the simulation inputs and consequently its outputs. Implemented first as a software 

package in 1976 at the University of Karlsruhe, this method was part of the project to develop 
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Extensions for Scientific Computation (XSC) for various programming languages such as C++, 

Fortran and Pascal [Bohlender et al. 1993].  

While this method can be used to reduce numerical irreproducibility, it is currently known to 

suffer from side effects of ending in unrealistic intervals of magnified uncertainties. Thus, the 

craft of interval algorithms must be practiced with precautions [Revol and Theveny 2014]. 

Moreover, well-established numerical packages should be preferred among others. 

Since the approval of Standard 1788-2015 by IEEE, there have been a rising interest [Heimlich 

2015] in implementing this method. Libraries such as C++ libieeep1788 [Nehmeier 2014] joined 

GNU Octave (https://www.gnu.org/software/octave accessed July 17, 2018) to vulgarize 

Interval arithmetic and its use in computational Science. 

3.2.2.2 Uncertainty quantification 

It is currently a challenging prospect to evaluate the degree of confidence in numerical precision 

since the same object of the research itself (physical processes) is yet to be fully captured by 

computer models. Uncertainty Quantification (UQ) regroups a set of rigorous methods that 

enables the attenuation of variations in scientific results. UQ is a trending field that has been 

yielding promising results in a variety of engineering domains. 

Statistical techniques can be directly applied to simulations [Raychaudhuri 2008] as done in the 

following UQ methods to quantify and reduce the effect of uncertainty in varying results. 

Stochastic design 

Mostly known for its applications in nuclear physics and financial markets, it is now used in 

computational Science. Moreover, it is appropriate when the solution to a problem can be the 

aggregation of many smaller solutions with as many parameters as possible. The approximation 

nature of this technique relies on two factors. The first one is the quality of the domain of the 

randomly picked input values. And the second is the number of results from as many different 

randomly picked values as possible to cover the input domains. Known to be the most widely 

used category, the Monte Carlo method aims at increasing the precision while reducing the 

sources of variability within the finally aggregated result. However, due to the importance of 
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quality in the distribution of the random numbers, it is consequently critical that the quality of 

the generators used be enforced by sound parallelization techniques of those generators to 

guarantee reliable results [Hill et al 2013]. Thus, thorough method such as the one proposed in 

[Hill 2015], is needed to guide scientists into mastering the reproducibility of stochastic 

simulations results when parallelized. 

Stratified sampling 

The present method is recommended when inputs parameters domains can be exhaustively 

partitioned into disjoint subgroups. It is a variance reduction method that differentiate itself by 

limiting the population parameters for groups within the population. Additionally, it enables 

more manageable measurements and guarantees that measurements within a stratum have 

lower standard deviations. Hence, a correlated smaller error in estimation is to be expected 

[Bucher and Bourgund 1987]. 

Latin hypercube sampling 

Co-authored at separate times by Eglajs, McKay and Ronald L. Iman (1977, 1979, 1981), it is a 

statistical method that generates a sample of plausible collections of parameter values from a 

multidimensional distribution. Thus, it enables inputs parameters values selection with the aim 

to yield output values that are the most accurate [Nishimura and Matsumoto 1998]. 

Surface method 

Introduced by G. E. P. Box and K. B. Wilson in 1951, this method allows the study of correlation 

between several explanatory and response variables. It enables the recasting of mathematical 

models of physical processes as stochastic Partial Differential Equations (PDEs) in order to solve 

them using deterministic methods [Barth 2011]. As such, response surface is an approximation 

method that can be used on sequences for the design of experiments that will yield optimal 

results (low variability impact). 
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3.2.3 DISCUSSION 

The presented categories remain the foundation of substantial contributions in terms of research 

and software that principally support scientific results corroborations. However, they present 

some limitations, do not address or partially address the four problems stated in this thesis.  

In the case of numerical assessment, the current methods are still approximations that either 

require highly technical knowledge of random numbers generators and adequate parallel 

programming or a unique expertise in domains such as interval arithmetic. In the case of 

numerical precision due to out of order execution, the current methods specifically fail at 

providing a robust solution in run to run numerical exactitude. 

In the case of the methods in the two general-purpose reproducible research categories, the 

fundamental problem of interoperability is left genuinely unsolved. In fact, independently from 

the categories and the methods used, most general-purpose reproducible research softwares 

produces one of three types of reproducible artifacts structures defined as following. 

Definition 3.6. A metadata-based structure involves artifacts that mostly record information 

about the experiment in Text using languages and file formats like: eXtensible Markup Language 

(XML), JSON, Yet Another Markup Language (YAML), etc.  

Definition 3.7. A snapshot-based structure contains copies of all the raw files and elements that 

were involved in the execution usually stored in a hierarchical manner within a compressed file. 

It contains automated guidelines that can be used to rebuild the environment and re-execute the 

experiment. 

Definition 3.8. A hybrid-based structure contains both record about the experiment in a form of 

metadata and also as a snapshot of all the involved elements during the computation. 

While each of these structure types have their advantages, they also present some challenges. 

The following Table 3.2 shows criteria used to qualitatively compare the three artifact structures 

types.  



64 
 

Table 3.2 Qualitative criteria for comparing the three artifacts structure 

  Meaning Values 

H Human readable How easy is it for a person to read and 

understand the artifact content? 

Unreadable, Readable and 

Very readable 

O Likeliness of obsolescence How likely is it for the artifact structure to 

become obsolete? 

Very likely, Likely and 

Unlikely 

R Ease to reproduce How easy is it to go from the artifact to an 

actual reproduction of the result? 

Hard, Fair and Easy 

S Ease to share How easy is it to share the artifact to other 

scientists and communicate around them? 

Hard, Fair and Easy 

P Provenance content How rich is the artifact in terms of pedigree 

information about the result and its originators? 

Poor, Rich and Very rich 

V Volume How big in average are the artifacts sizes? Very small, Small and Big 

 

Each of these criteria embodies qualities that are important in corroborating results. We provide 

a meaning and their various values. 

The previous table is then referenced in the following Table 3.3 which provides the comparison 

and the methods whose implementations tend to produce these structures. 

Table 3.3 Comparing artifacts structures and implemented methods 

 H O R S P V Methods 

Metadata Very 

readable 

Unlikely Fair Easy Very 

rich 

Very 

small 

Executable Papers, Notebooks, 

Workflow Management, In-Execution 

Wrapping. 

Snapshot Unreadable Very 

unlikely 

Easy Fair Poor Big Pre-Execution Wrapping, In-Execution 

Wrapping, Post-Execution Wrapping. 
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Hybrid Readable Likely Easy Fair Rich Big Executable Papers, Workflow 

Management, Pre-Execution Wrapping, 

In-Execution Wrapping. 

 

In Table 3.3 we would like to specifically communicate to the reader, that depending on the way 

the artifact is structured, the quality in terms of general usefulness for corroboration in a large 

sense may be impacted. Additionally, we augment the table by linking methods to structures 

types based on what the average tool that implements them produces. 

Although, metadata-based structure is ideal for the understanding of others, sharing, unlikely to 

become obsolete because it is usually textual and cause a very low memory print, it is not trivial 

to reproduce research results from it. In the contrary, while snapshot-based artifacts are trivial 

to reproduce, they are significantly heavier in memory, human unreadable, can come in ad-hoc 

unstandardized forms which renders them highly obsolescent and hard to share. Furthermore, 

the hybrid structure while taking the better parts of the others suffers from its volume and is 

consequently hard to share. 

In addition to the limitation of each structure, we must stress to the reader that tools producing 

the same structure types do not mean same structure contents. In fact, based on the overview 

done during this thesis, few to a very limited number of the listed software produces similar 

content despite following the same structure. These great factors clearly point that none of the 

presented categories address P2. Moreover, C3 does not still properly address P4 in our opinion. 

And it is clear that due to their general-purpose nature as explained in this chapter, C1 and C2 do 

not address P4 at all. 

While having a Web interface and being collaborative can be byproducts in the implementation 

of the previously listed software, we argue that these are not their primary features. As such, in 

our opinion, neither P1 nor P3 are properly approached by any of the current software listed in 

Table 3.1. 
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In the following section, we propose to take the reader in an overview of aspects within the 

current reproducible research platforms that attempt or could attempt to provide partial 

solutions to the problems of interest of this thesis. 

3.3 LANDSCAPE OF REPRODUCIBLE RESEARCH PLATFORMS 

Before embarking in this review section, it is appropriate to inform the reader that at the moment 

of writing this thesis, there is no other reproducible research software and services that address 

P4 but the few ones cited in this chapter. As such, we will be overviewing the rest of the literature 

with regards to what they contribute in the episteme of solutions for P1, P2 and P3. Furthermore, 

it is important for the reader to grasp that the literature work presented here goes beyond the 

problem of reproducibility itself. It assumes that at least one of the previously described methods 

is implemented. We instead consider the overall bigger picture of democratizing these 

implementations and providing them sustainably. During this thesis we have identified three 

hierarchically dependent concepts leveraged to achieve this ultimate goal. There are three core 

properties aimed for by reproducible research platforms: Web transformation (T), Collaboration 

schemes (C) and Workflow models (W). We infer that research focusing in these concepts are 

attempting to respectively solve directly or indirectly P1, P1&P3 and P1&P3&P2. To be more 

specific, these concepts will be presented here in the order at which one includes its 

predecessors. For example, Web transformation will be a previous subsection to Collaboration 

schemes. By that we imply that the presented research and platforms within the Collaboration 

schemes concept presuppose a Web transformation aspect. 

3.3.1 Web transformation (T) 

It has only been 28 years that the first Web browser was released. Yet, applications of the World 

Wide Web have tremendously proliferated and still are to great lengths. Now, we have Web 

servers all over the world serving various content. Moreover, as of June 15, 2018, we have more 

than 4.5 billion indexed Web pages (http://www.worldwidewebsize.com accessed July 17, 

2018). The Web has transformed the way we access information and the way we inform others 

all over the planet [Kling 1991]. It has been a trending venue for new concepts such as digital 

marketing [Stephen 2016] and the renewal of others such as advertisement [Ratliff and 
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Rubinfeld 2010]. Today, Internet and the Web are fundamental parts of our day to day life so 

much that it is being sought to be considered as a basic human right [Best 2004]. 

While the possible applications of the Web are still limitless, all the current ones are still based 

on its original feature: interlinked Uniform Resource Locators (URLs). Moreover, despite the fact 

that anyone today can setup a website in minutes and be ready to reach out, the Web has grown 

in complexity. As such, low level applications for indexing the content of the Web and their 

portals are the first places users go to find new content [Introna and Nissenbaum 2000]. The 

rush in optimizing this mechanism and the marketing battle of having one’s URL presented first 

in a query have gave an economic viability to big Corporates such as Google and Yahoo. To put 

this in numbers, Google famous search engine processes over 3.5 billion requests per day ( 

http://www.internetlivestats.com/google-search-statistics accessed July 17, 2018). Figure 3.4 

shows In-platform full and Off-platform construction of the artifacts. 
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In fact, we have identified two major categories used by web platforms to allow scientists to 

construct reproducible artifacts. An In-platform full construction of reproducible artifacts is a 

core feature of reproducible research Web platforms that provides a complete set of operations 

that allows scientists to perform their entire experiment from any supported Web browser. In 

computational Science, most implementations take the form of a literate programming-based 

Notebook method. 

Alternatively, in the case of an Off-platform construction of reproducible artifacts, the platform 

will provide a guided mechanism to the scientist to construct the artifacts from externally 

generated content. As such, metadata will be inputted by the scientist or an authorized machine. 

Moreover, in computational Science, the scientist will be able to upload files as code, executable, 

dependencies, results, etc. Also, in experimental Science, an authorized machine will be able to 

communicate with the platform to contribute in the construction of the artifact in a meaningful 

way. 

While the current use of the Web to deliver reproducibility capabilities and to reach out to 

scientists addresses P1, we argue that it still does so partially. The Web offers other features that 

may be leveraged. A few of those are: Multiple private/public launch configuration and a 

subsequent federation capability [Gorelik 2013]. Due to security, policy and management 

requirements, institutions across cities, states and countries prefer running their own web 

platforms in a segregated fashion with well-defined boundaries for the access and the sharing of 

information. As such, to ease adoption from scientists all over the world and consequently reach 

the broadest audience, Web platforms must be implemented in a way that: 

- Allows anyone to launch an instance. 

- Allows instances to be launched in private networks for restricted access. 

- Allows instances to switch from private to public networks. 

Moreover, based on access agreements across institutions, platforms instances should be 

connectable to each other to form a bigger federated entity [Rubin 2015]. Hence, scientists can 

search and collaborate across instances.  
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For these additional important capabilities, we infer P1 to be currently partially solved by the 

majority of existing platforms.  

3.3.2 Collaboration Schemes (C) 

As a core compartment of Science itself and a sparkling ingredient of its success, collaboration is 

the second feature implemented by most reproducible research platforms after enabling Web 

access. Moreover, reproducibility is not only meant for the original author. In fact, when we bring 

in the aspect of collaboration, we inherently [Lomas et al. 2008] mean involving another person 

to assess the reproducibility of results. Additionally, this concept is trending across all types of 

web platforms. It is specially with the applications in Social Media platforms (Google, Facebook, 

Twitter, LinkedIn, etc.). Consequently, a platform lacking collaboration appears as very limited 

and serving as a one-way publishing portal. Collaboration enables the bidirectional exchange 

which fosters more applicative aspects of the Web [den Exter et al. 2012]. 

We have identified two collaboration modes implemented within the current Web platforms: 

Segregated and Unsegregated collaboration. 

Unsegregated collaboration is the simplest, easiest and less sophisticated mode that is typically 

managed by the scientists owning the artifacts. In such a mode, scientists can collaborate on 

reproducible artifacts through a privacy setting change. Artifacts are either set as private or 

public. When an artifact is private, it is not publicly visible to others. At this point only, the creator 

of the artifact can view and edit it. However, once made public, an artifact becomes visible and 

interactive to others. Thus, other scientists can view the artifact, download it and interact with 

the author and pairs on its web page by uploading content and sharing their thoughts typically 

through comments. 

Inspired mostly from social media platforms, segregated collaboration involves a more 

sophisticated, finer grain interaction feature between scientists. In fact, one known limitation of 

unsegregated collaboration is that once shared, the scientist cannot filter who interacts with him 

or her on the matter of the shared artifact. It is either open to everyone or not at all. Alternatively, 

segregation allows more. Platform managers and in some case, users can create groups of 
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scientists and allow a fine grain sets of possible actions for each group. For example, a segregation 

scheme involving three groups could be as following: 

- public: scientists in this group can only view shared artifacts. 

- collaborators: scientists in this group can provide comments and upload files. 

- team: scientists in this group can edit the artifact and provide direct modifications. 

Implementing the latter mode is often done by the platform administrator. 

Clearly, these two modes of collaboration and the platforms implementing them address P3. Yet, 

they do so again only but partially. To be fully collaborative, a Web platform must provide 

mechanisms to accommodate other reproducible research platforms and tools. Even though 

most collaborative web platforms expose an Application Programming Interface (API), it is still an 

adoption barrier that is not exempted of burden. Also, sometimes as we will show later in this 

manuscript, most of the work must be done in the other tools and platform to allow 

accommodation. As such, we press our concern to the reader that P3 is not fully resolved here 

because most platforms provide this feature to their direct users. Moreover, due to P2 not being 

solved here we end up in a situation where scientists must duplicate their reproducibility efforts 

across platforms to be able to collaborate with larger audiences. To provide an example, users in 

a platform A will find a hard time to collaborate with users in another platform B if these two are 

not integrated to each other. Thus, scientists must learn to play with their respective APIs to at 

least have their artifacts synchronized between the two platforms. Such a work is not trivial and 

significantly impairs collaboration. Figure 3.5 provides a graphical expression of the two modes 

described in this section. 
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3.3.3 Workflow Models (W) 

To accommodate the growth in complexity of scientific experimental pipelines, more 

collaborative Web platforms for reproducible research provide a way to design Workflows from 

within. Thus, scientists craft their experimental pipelines in their browsers and provide the data 

and the executable based on their platform’s artifact construction approach: in-platform or off-

platform as presented previously. Moreover, in the case of in-platform construction of artifacts, 

most platforms host their own marketplace of modules that scientists can use as the building 

blocks of their workflows. As such, scientist will have artifacts composed of pre-bundled tasks 

that are managed by the platforms.  Additionally, some platforms, will allow scientists to create 

custom modules that can be contributed to the marketplaces. Then, others can use these custom 

modules in their own workflows. Alternatively, in platforms offering off-platform construction of 

artifacts, the workflow definition and its components can be partially created outside of the 

platform and uploaded at different moments. 

One of the most controversially important features of workflow systems is that every module is 

treated as a black box. As such, only descriptions of the inputs and outputs are provided to link 

them together to generate the pipeline. Hence, module nodes within research pipelines have a 

certain level of agnosticism to be able to leverage interoperability. Moreover, while every task 

runs within its own context (black box), scientists can use any underlying reproducible research 

software and service to record a reproducible artifact. Thus, another scientist that is more 

familiar with another reproducible research software can still link it to the latter tasks. Even 

though we haven’t found any use case involving such a combination, we are confident that this 

feature of workflow systems can be a potential solution to P2. However, there is a catch. The link 

between two software wrapped in different ways will require a little more work than the basic 

effort advertised by the platforms for creating a task. In fact, within the workflow, reproducible 

research tools inside the task’s modules will have to implement a comprehensive understanding 

of their direct predecessors. They will specifically need to provide enhanced processing 

capabilities for their inputs which are outputs from other modules. 
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Based on our overview in the previous paragraph, it is easy to deduce that despite our 

explanation of how workflows could be used to solve P2, we haven’t found any literature 

reference for such as solution. Furthermore, such a solution does still present a challenge to be 

implemented. In the following we present eight of the most used reproducible research-oriented 

web platforms.  

v Citrine. Developed by Citrine Informatics, it’s a web platform to provide machine learning 

and advanced analytics to material scientists. As such this platform pushes forward for 

collaboration and the enrichment of dataset manipulations history through materials 

characterization management, task tracking and data capture. Therefore, this platform is 

well versed in Web Transformation and Collaboration Schemes. This platform is well 

known among federal research institutions in the U.S. [White 2015]. 

v Ergatis. It’s a web-based workflow platform that allows its users to manage reusable 

computational analysis pipelines [Orvis et al. 2010]. Ergatis has in own marketplace of 

composable modules in the domain of bioinformatics. Scientists can leverage these on a 

graphical interface to craft their own pipelines. Biological data can be loaded and 

annotated using the well-established community based schema specification: CHADO 

schema (http://gmod.org/wiki/Chado_-_Getting_Started accessed July 17, 2018). 

Ergatis workflow engine is based on an XML processing core and can be plugged on a 

compute grid. Thus, it provides enhanced execution metadata and error recovery 

procedures.  

v Galaxy. Built by the center for Comparative Genomics and Bioinformatics, Galaxy [Afgan 

et al., 2016] is a collaborative web platform that allows scientists to perform reproducible 

biomedical analyses. It is accessible in two ways. The first way is a public centralized web 

instance (usegalaxy.org) released since 2007. It is a public site that provides considerable 

CPU power and disk space to thousands of users. The second way is an open source 

application that can be deployed on any Unix system. Any scientist, team and institution 

can customize and run their own Galaxy instance. Among the core features of Galaxy are 

the capability to keep history of the analysis, allow users to manage workflows through a 

graphical user interface, share and publish their work within Galaxy. 
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v HyperThought. Developed by the U.S Air Force Research Laboratory (AFRL) researchers, 

HyperThought is a framework with a web aspect that aims at improving the recording, 

sharing and access of research data. The web aspect of this framework is called ICE for 

Integrated Collaborative Environment. It has been tremendously used internally at AFRL 

by scientists specially among Materials and Manufacturing domains. 

v MATIN. It’s an e-collaboration web platform that allows scientists to manage databases 

or repositories, datasets, software and teaching material. This web framework is a giant 

factory that binds tools from simple executable to entire computational environment as 

virtual machines in a collaborative way for scientists. Therefore, scientists can run their 

executable directly or work within a VM or with a Jupyter Notebook. MATIN is a product 

of Georgia Tech that is accessible through a centralized instance at 

https://matin.gatech.edu. 

v OSF. The Open Science Framework [Foster and Deardorff 2017] is a web platform aiming 

at simplifying scientists’ collaboration. It provides a cloud-based features to manage 

research projects in a structured fashion. Moreover, scientists can manage the access to 

their projects and activate third party integration. Currently OSF supports the integration 

of Dropbox, Github, Amazon Web Services, box, Google Drive, figshare, The Dataverse 

Project and MENDELEY. OSF is free, open source and accessible through a centralized 

instance at https://osf.io. 

v Taverna. It’s an open source workflow management system that allows scientists to 

design an execute scientific workflows. Taverna [Oinn 2004] leverages other tools for 

workflow management, activity and service management, user interfaces, workflow 

components and provenance management, web portals and finally computing 

infrastructure integration. With Taverna, scientists can construct complex analysis on 

their data within various types of computational resources. Taverna is open source and 

can be deployed by anyone respecting the Apache License, version 2.0. 

The following Table 3.4 provides a list of the most used reproducible research-oriented web 

platforms and the concepts they implement. 
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Table 3.4 Reproducible research web platforms 

Platform Web Transformation Collaboration Schemes Workflow Models 

Citrine ✓ ✓ × 

Ergatis ✓ × ✓ 

Galaxy ✓ ✓ ✓ 

HyperThought ✓ ✓ × 

MATIN ✓ ✓ × 

OSF ✓ ✓ × 

Taverna ✓ ✓ ✓ 

 

3.4 CONCLUSION 

In this chapter we reviewed the current contributions into the corroboration/reproducibility of 

research results in two parts. We first overviewed reproducible research focus software methods 

that deal with the core aspect of reproducibility itself. Second, we overviewed reproducible 

research platform in the lights of the current concepts that may be potential or partial solution 

to the problems of interest in this thesis.  

In Table 3.1, we list a non-exhaustive list of the current software implementing the six methods 

(Executable Papers, Notebooks, Workflows, Pre-execution Wrapping, In-execution Wrapping and 

Post-Execution Wrapping). These methods are clustered in the two major categories described 

(Literature Programming and Execution Wrapping) in the case of general-purpose reproducible 

research. 

In the discussion section of the first overview, we address the limitations of the current 

reproducible research focused tools with regard to the problems of interests in this thesis. While 
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numerical assessment addresses P4 partially, other general-purpose reproducible research 

methods barely address P1, P2 and P3. 

Finally, we propose to send the reader back to the introduction of P1, P2, P3 and P4 in chapter 2. 

While some of the existing software and platforms nor their underlying methods and concepts 

partially address some of these problems, none of them uniformly addresses them. 

While P1 might be currently partially addressed in isolation to the other problems, the ultimate 

goal of this thesis to deliver a unified solution that also covers P2, P3 and P4 which is not addressed 

neither here nor in the following concepts as we will present. In fact, as far as the literature is 

concerned, interoperability in both reproducible research software and platforms is still an open 

problem that we address in this thesis. Moreover, we have developed on the fact that an effective 

solution to some of the problems exposed must also solve others in order to be viable. This brings 

us to state that a solution to P3 must also solve P2 to be a complete solution to P3. 

The following chapters present the two major contributions of this thesis. We enroll the reader 

in the narrative of the mission we have set to deliver a unifying solution to the exposed 

problems in two complementary investigations. 
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Chapter 4 – CORR, THE CLOUD OF REPRODUCIBLE RECORDS  

4.1 INTRODUCTION 

Plainly showed in the previous chapter, the current solutions to reproducibility can be 

summarized in terms of the motivations fueling their creators at the time of their inceptions. In 

fact, the reality of these tools and platforms existence is that their Research and Development 

(R&D) is guided by the need of the team and the agenda of the Institution, University or 

Laboratory. As such, general-purpose tools mostly tend to focus in getting closer to the internals 

of reproducibility issues and resolve them in a way that suits most their current use cases. The 

platform-based solutions on the other end scale a few steps further with the goal to 

accommodate more scientists in a more collaborative fashion. 

Consequently, most general-purpose tools do not address P1, P2, P3 and P4. Moreover, while 

platform-based solutions partially address P1 and P3, they fail at covering P2 and P4. Hence, in the 

current literature we have P1 and P3 that remain partially unsolved while P2 and P4 are left open. 

In the present chapter, we present CoRR as a solution to P1, P2 and P3. The unique nature of this 

solution is that it solves these three problems completely. Moreover, it provides a unifying way 

to do so. In the process of developing such a solution we must guide the reader through a new 

terminology understanding beyond the current confusion. This is our attempt to harmonize the 

various concepts in reproducible research. Then, in the rest of the chapter we present the 

features that makes CoRR an effective solution to three of the problems aimed for in this thesis. 

4.2 ON THE TERMINOLOGY CHIMERA 

Lengthily evocated in the problematic statement, there are currently nuances in the notions of 

corroboration that is impeding our understanding of each other. The three major nuances 

beneath the concept of corroborating one research investigation host more than one form. As 

explained in chapter 2, these terms were borrowed and recycled by different scientists, teams 

and communities. Thus, the first form relates to the borrowed fact of words with a pre-existing 

meaning not quite unilaterally adopted. The second form relates to the fact that in the literature, 

we find contradictory meanings. Indeed, some publications clearly redefine one term to the 
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meaning of another by other publications [Barba 2018]. Based on the Merriam Webster 

International Dictionary cited in chapter 2, the first form taken by the three terms in 

correspondence to corroboration have overlapping meanings. Figure 4.1 sketches the mingled 

interpretation. 

 

Figure 4.1 Overlap meanings of the three terms: From their original meaning in the English 
dictionary, there is a subtle overlapping meaning to the three terms used when referring to 
corroboration. 
 

In 1, repeat can be confused with replicate [Bell 2016] when being thought as stated again or as 

a copy. Therefore, in that sense a repeated result means a replicated result. In 2, repeat can mean 

reproduce [Bartlett and Frost 2008] when thinking in term of respectively stating again or causing 

again. Thus, a reproduced result is a repeated result. In 3, replicating a result can be understood 

as reproducing a result [Duvendack et al. 2017] if though as copying or duplicating for one and 

causing again or anew. In 4, the three terms are confused for one another. In fact, looking at 1, 2 

and 3, one can easily point to the fact that when it comes to meaning corroboration at the 

strictest sense (copy, state again, cause again), there is a great deal of confusion from one article 
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to the other. In 4, we place the current global confusion behind the general notion of 

corroboration. In fact, it encapsulates, based on the needs, the capability to repeat, replicate or 

reproduce scientific results. 

Instead of expanding the current terminology as most scientists will tend to do [JCGM 2008], we 

ought to look for the counter-intuitive. In fact, we seek compressing it to a common sense 

understanding that it can be expressed in different words depending on the field and the use 

case.  

The three base terms, independently from their extensions, are used to express various meaning 

in the aspect of corroborating scientific results. Among these terms and based on their original 

definition, reproducibility is the most accommodating of the three. In some sense it almost 

provides the sentiment of equivalence to the notion of corroborating in a general sense. Thus, 

when referring to this term in this manuscript, we actually mean corroboration in a more modern 

way of caricaturing it. However, we propose to the reader to consider the following ambiguity 

avoidance from what is currently happening. 

v Strict Corroboration. We refer to this when everything that concurred to the 

corroborated item is preserved as is. In the case of a scientific result, as soon as a 

computation was done, we must have all ingredients to do it again and obtain the same 

result. This is what most papers aim for when referring to repeat or in the original sense 

as stating from memory. 

v Loose Corroboration. We recall to this aspect when we can afford to tolerate a few 

variations, such as outsourcing the execution to another team with a possible change in 

material, operating system, etc. This is the meaning mostly attributed to reproducibility 

as a term. 

v Open Corroboration. The meaning to this is to indicate when the goal has been to double 

back a finding by using a different input or fundamentally switching to a new process and 

method. Replication in its original meaning as creating a facsimile or a similar outcome 

fits well in this notion. 
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These three notions are purposely defined to be related to corroboration. Indeed, when 

detached from it, as done with the current raw recall to repeat, reproduce and replicate it is very 

much ambiguous to understand the sense of what is meant in general. When we say to have 

“repeated” a result, we in fact mean that in the process of corroborating a result we were able 

to strictly recreate it. Thus, repeatability is the process of strictly corroborating a result. 

Reproducibility is on the other end the process of loosely corroborating a result. And finally, 

replicability is the process of openly corroborating a result by following another path that 

fundamentally differ from the original one. 

Understanding and reasoning about reproducibility is not as trivial as one thinks. To achieve our 

unification goal, we must educate ourselves on commonly acceptable ways to express the 

general notion of corroboration and its subsequent meanings. Therefore, we think the present 

section is an important aspect of this result. Thus, we expect it to scope more precisely the reader 

thoughts on the core terminology agreements used during this thesis. 

Once settled down on the terminology, we can move toward the most important aspect of 

corroborating a computation. What is a computation? Under the common notion of execution 

context, most tools presented in the general-purpose section in chapter 3 have a different answer 

to this question. To succeed in solving P2, CoRR must address this aspect in a novel way that will 

encompass all existing understanding. The next section elaborates lengthily into how we thought 

best do this: a morphing execution context representation. 

4.3 THE EXECUTION CONTEXT IN CORR  

4.3.1 Introduction 

In the process of corroborating a computational result independently of the level of such 

corroboration (strict, loose, open), one cannot escape to answer the question of how to 

represent the execution context that produced such result. In fact, when a problem occurs, one 

must dig into the execution context to investigate: 

• What caused it to change: if trying to repeat. 

• What concessions cannot be made: if trying to reproduce. 
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• What changes are creating too much divergence: if trying to replicate. 

Within the current literature, as presented in chapter 3, most methods that focus in helping 

scientists directly corroborate results had to deal with this representational requirement. Thus, 

we have enumerated three types of representations currently in used within most scientific tools, 

services and platforms. They are: metadata focused, raw data focused, and hybrid data focused.  

v Metadata. This type of representation tends to focus in capturing information in a 

literature programming fashion. Thus, the goal is that this information could be 

understood by another scientist or tool and used to construct the corresponding context. 

v Raw data. This representation holds the copy of all computer related elements involved 

in the computation that can be copied. As such, the way it has been copied and stored is 

proper to each tool and platform as each has its own way of recreating the context mostly 

automatically. Therefore, it follows a very much non-literature programming philosophy. 

v Hybrid data. More complex than its two pairs, this representation judiciously couples the 

latter to deliver the best of the two worlds. As such, they are human readable and at the 

same time can be automatically processed by tools. 

While each of these three present advantages and drawbacks (Table 4.1), the specifics regarding 

what information is crucial and how it must be stored is as important.  
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As such we have come to a set of four aspects that must be respected in a representation that 

intend to unify all others independently of what and how each tool may leverage the three 

representations types. 

Table 4.1 Features values for the three types of context representation modes 

Features Metadata Raw data Hybrid data 

Human-Readable Yes No Yes 

Small Memory Print Yes No No 

Self-sufficient No Yes Yes 
 

 

In our quest of characterizing an ideal representation that is capable of coping with the three 

existing ones we have leveraged Model Driven Engineering (MDE). Its model-based reasoning has 

allowed us to produce an abstraction from which we are able to descend to specific case with 

CoRR aiming to solve P1, P2 and P3. Moreover, we show in Figure 4.2 how this latter case scopes 

the representation of three existing tools. At first, the abstraction or meta-model specifies the 

relationship between the actors of the computation execution: Scientist, Tool, Representation, 

Collaboration and File. These five models can be extended to take any form the solution requires. 

For example, within CoRR, Project, Record, Environment and Version extend from 

Representation while Bundle and File extend both from the more abstract File model in the meta-

model.  

4.3.2 Open aspect 

As shown during this thesis and recalled, reproducibility is a large and often confusing concept. 

As such, besides systemically capturing everything to guarantee reproducibility, one must know 

what is crucial and what is not. Indeed, although tempting, capturing everything is not a 

sustainable endeavor. In fact, a 5 Gigabyte virtual machine image that is being snapshotted every 

minute will require 2.4192 Petabyte of storage in one year. As a reference of how enormous this 

is, scientists have estimated the entire world storage capacity from all digital and analogic devices 

to 295 Exabytes [Hilbert and Lopez 2011]. This is roughly 295000 Petabytes. Thus, the world 

cannot sustain more than 121942 scientists doing this for more than a year! And this is totally 
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hypothetical. No one has access to that amount of storage capacity. The second alternative is 

indeed to choose what we consider as important and enough to represent a computation 

context. This is what each tool and web platform does and the reason behind the lack of 

interoperability between tools (P2). Thus, the only alternative to unification is to have a 

representation that can evolve, it must be open to the point of being easy to extend and readjust. 

In contrast, having a rigid representation even if it helps enforce some rigor and rush into a formal 

standard, will probably break sooner than later. An open and flexible representation model is the 

most sustainable approach. 

4.3.3 Corroborative aspect 

A software execution context representation that is able to encapsulate all representations from 

existing tools and platforms must deliver all the spectrum of corroboration aspects. In fact, it 

must allow scientists to repeat, reproduce and prove that what they are doing is a replicate of 

the former.  This is possible initially by allowing the flexible representation to be transformed 

into any of the existing representations. For example, a CoRR representation of a simulation 

pushed by ReproZip can be downloaded and used with ReproZip. As such, CoRR augments the 

initial representation. It will preserve the existing corroboration features from the tool and if 

possible add missing features. A unifying solution cannot provide a representation that is not 

practically used back by at least the originally submitting tools or platforms. We invite the reader 

to imagine for a moment a case in which a representation of an executable paper become non-

executable anymore. Thus, such a representation despite its added features loses one of the 

most fundamental features which is backward compatibility. 

4.3.4 Versioning aspect 

As introduced in the Open aspect, an execution context that cannot be versioned will most likely 

not live for long. The reason is simple. It is the core nature of computing itself. The scientists of 

our time run simulations all the time. First, because the process of obtaining the appropriate 

code takes many iterations. Second, when obtained, the same code might be run with different 

datasets or new libraries. As such, computation is very dynamic. Tracking each is additionally 

useless if we are not able to compare them meaningfully. As such, comprehensive versioning is 
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critical. Beyond the usual backup, knowing that a computation result has changed because of a 

change of operating system, library version or dataset is very useful in the scientific pipeline. Here 

again, we call to the experience and imagination of the reader. Among the dozens, hundreds, 

thousands or tens of thousands if not millions of simulations launched, how can one remember 

why they did in one computation compared to another and what was the actual reason of the 

difference in results beyond the scientific method change? Most of us will agree that this is a 

hard question to answer and it is hard for any kind of versioning. Source code versioning falls into 

the same issue. Without the fact that we can know and tell why we are deleting, adding or 

modifying lines of code, the whole process of versioning will totally lose its sense beyond the 

default backup mechanism. 

4.3.5 Dissemination aspect 

What use is a corroborative execution context if it cannot be easily disseminated? Referencing 

P1 and P3, this aspect has effect on how easy a representation type can be used to reach out to 

scientists and how easily scientists can collaborate around them. Storage is certainly the main 

concern. An execution context that exposes directly memory consuming content will 

tremendously imped user experience. First, scientists must download those content, this may 

relatively take time and bandwidth. Second, before downloading, scientists must have the 

adequate storage to hold the representations. As such, an effective representation must separate 

its meta-data content from its actual raw-data which will be the most memory consuming part. 

Then, the meta-data content should be exposed to scientists and be made available for the 

scientists in a way that allows an effective decision of its importance before a final decision to 

download or perform a cloud-based action on the raw-data. Moreover, such a separation, will 

allow collaboration to occur at the meta-data level and thus cause the least memory footprint.  

4.3.6 Summary 

The present section overviewed what we think, it constitutes the grail of what is required of a 

software execution context representation that can be the foundation of a unification scheme. It 

must be open to accommodate for unexpected changes and evolutions from existing tools and 

platforms. 
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Table 4.2 How CoRR features resolve P1, P2 and P3. 

P1 P2 P3 

CoRR is in essence a Web 

application and thus benefits 

from the reach that derives 

from it. Moreover, scientists 

have the liberty to make their 

computation representation 

records public and share it 

through a Web link 

mechanism. 

From the unification 

standpoint and the research 

for a generic model that can 

be equivalent to all possible 

representations, CoRR can act 

as a bridge between existing 

tools. Therefore, tools can 

leverage this feature to 

interoperate with each other. 

In addition to Web sharing, 

CoRR enables collaboration 

that are reproducibility 

assessments of two records. 

Such an interaction ideally 

yields a conclusion that two 

records are repeats, 

reproductions or replications. 

Such a result is invaluable.  

Web-based Platform and 

Web sharing feature 

Generic Intermediary 

Representation 

Reproducibility Assessment 

feature 

 

It must maintain, add or augment the corroborative nature of the captured information: 

execution. It must be structured in a way to ease its versioning and dissemination. By covering 

those aspect, we effectively and fundamentally address P1, P2 and P3 shown in Table 4.2. Or at 

least, we have a construct that can support solutions/features to leverage one or many of the 

aspects to achieve such goals. In the following section, we present the result of our investigation 

in implementing such an execution content representation. Furthermore, we show how this 

representation is leveraged to effectively solve P1, P2 and P3 within a Web Platform: CoRR. 

4.4 THE ARCHITECTURE OF CORR 

4.4.1 An adaptive and open model 

Our investigation has proven that the engineering of a representation model that meets our 

requirements and delivers on the expected features is both a research for design and technology. 

First, on the design side, it requires the unavoidable determination of the initial form that will 

take this representation model. Therefore, we enumerate three major groups of objects that 
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scope the open aspect, corroborative, versioning and dissemination aspects of the execution 

context we are looking for. These three groups shown in Figure 4.3 are: the corroboration 

components, the social features and the platform analytics. 

The corroboration components contain, first, the objects that put together, yield the open and 

flexible representation that can support all other three types of representations and even more 

allow their extension for additional features. The ultimate object that encapsulates an execution 

context in CoRR is the record object. Within CoRR, record objects must belong to a project object 

in a relationship of one to many. The project object serves at identifying the grand purpose 

behind all the computations. Thus, it is mostly composed of meta-data that stores its name, its 

goals and its description. The record object is mostly an aggregation from many others. It 

references the tool object that represents the software that created it, the environment object 

within which it was created and multiple file objects (input, output, resources) created or used 

during the execution. The meta-data part of the record object contains labels, the reason of the 

computation, the status of the computations and other vital information about the computation. 

The tool object is merely pure meta-data information about the reproducible research support 

software and the credentials given to scientists to authorize their interactions with CoRR. This 

vital mechanism will be explained further. The environment object is composed of meta-data 

describing the system in which the computation was executed. As such, it contains hardware 

information, operating system information, configuration and libraries details. Also, the record 

can provide a bundle object for the environment. It is an object that contains both specific meta-

data and actual raw content of the environment. For example, a bundle of a docker image can 

be provided as the environment. Thus, the meta-data will be providing details about what a 

docker image is. Finally, a file object similarly to a bundle object is designed to represent any file 

uploaded to the record as an input, output or resource of the computation. 

While these three groups might be useful in our conception of how CoRR should be specially in 

terms of collaboratives features, only a few models are critical to achieving our investigation. 

They are shown in Figure 4.2 which displays how they related to our abstraction. In fact, while 

Figure 4.2 shows CoRR models in the bigger picture of how they came to be, Figure 4.3 narrows 
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it to how it has been applied. The models that are not listed in 4.2 are: Message, Profile, Stats, 

Traffic and Access. 

Although part of the notion of collaboration, Message has been left out of Figure 4.2 for simplicity 

due to its versatile usage possibility. In fact, scientists can communicate through messages on 

subjects irrelevant to any project or record. 

Similar to Message, Profile has been taken out from Figure 4.3 as it is not a critical model to 

extend the Scientist meta-model from. 

The models Stats, Traffic and Access are purely administrative concepts are not even 

conceptualized in the meta-model abstraction. 
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They are useful in practice to the manager of the CoRR instance only and does not add nor 

reduces in any way scientists experience. Moreover, it does not have any added value to the 

features solving P1, P2 and P3. However, in modern design of cloud platforms, these analytics 

features used for the measurement of the solution impact to society in terms of adoption and 

contribution are fundamental. The other two groups concurring in the representation of the 

execution context in CoRR contains objects that construct the collaborative nature embedded 

into scientific inquiries in the platform. The social features category concerns objects that focus 

on user’s information and communication within the platform. The platform analytics category 

contains the models that are dedicated to capture filtered and useful analytics on interactions 

between the users, the tools and the platform. While the platform analytics focuses in 

quantifying this activity, the social features focus in the scientists’ identifications and their core 

interactions. Thus, the record object withdraws information such as ownership, interactions and 

statistics from these two groups. The later are indeed part of the foundation for the extended 

features added by CoRR.  

Second, on the technology side, we have faced the question of the adaptive and open nature of 

our representation. To implement the previously described abstract representation, a question 

of the technology to use as a database to effectively store these objects had to be answered. We 

have not dug into the specifics of what should be in each object across the four groups as nothing 

is mandatory beyond their fundamental relationships. In fact, we are in need of a database 

technology that will technically allow that the creation of instances of each object be void of what 

each requires in their initial form and even more. This is shown in Figure 4.2 through the possible 

implementations of the CoRR models with three tools. If for example a tool decides that its 

representation of its computations must include the speed of the internet, the new field 

“internet” should be accepted as a custom field and stored in the record object. To provide the 

necessary flexibility, CoRR uses MongoDB (https://www.mongodb.com accessed August 29, 

2018), which supports a highly flexible data model and manages complex data model migrations. 

By using MongoDB, the data model can handle three possible representations of the 

computation: pure meta-data, file only and a mixture of both. Additionally, by enforcing a 

consistent mapping between the data representation and its associated tool, CoRR can 



92 
 

seamlessly migrate the data model whenever the representation of reproducible research 

support tool is updated. Despite this flexibility, the CoRR data representation requires a minimal 

structure from the data model associated with the given tool. In fact, we have come to a minimal 

set of requirements and flow of interactions expected from the tools. By agreeing to the following 

non-intrusive requirements, the tools are expected to keep the same level of flexibility in their 

designs: 

• The creation of a project requires at least a unique name. 

• The creation of a record requires at least a project id. 

• Files can be uploaded to projects and records under specific groups: resources, inputs, 

outputs, environments and bundles. 

In addition, these requirements allow a more thoughtful and productive conversation between 

the CoRR research team, the tools research teams and the scientific communities involved. We 

are looking out to build a sustainable ecosystem that does not focus on a single tool but instead 

allows any number of tools that follows our basic common rules to interact with CoRR and open 

doors for interoperability between tools and even more for scientists. 

4.4.2 State of the art scalable-federated architecture 

CoRR is a web platform composed of five key components as shown in Figure 4.4. They are: a 

web frontend, a cloud service, an API service, a database service and a storage service. The 

database and the storage are linked to the cloud and API components. The CoRR database 

(pointed out previously) is dedicated to managing meta-data content only, whilst the CoRR 

storage service manages the file storage distinct from meta-data. Currently, CoRR supports both 

AWS S3 and standard file system for file storage. Support is planned for more storage types such 

as SFTP and modern alternatives such as distributed file systems. Users interact with CoRR 

through two main entry points: the web frontend and the API service. The frontend is the web 

view access exposed to the user. The frontend is designed following Google Material Design 

guideline (https://material.io/design accessed August 29 2018), via the Material Design CSS 

framework. Material design provides a familiar and contemporary look and feel to the web 
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interface. The CoRR frontend is compatible with most commonly used web browsers. The CoRR 

API is a HTTP RESTful entry point that allows tools to securely write and read to the CoRR 

platform. The CoRR frontend forms an exclusive one-to-one link with the CoRR cloud component. 

CoRR’s cloud component is the restricted bridge that the frontend must go through to 

communicate with the database and the storage. Thus, the cloud component is an HTTP RESTful 

service that is dedicated to the frontend only while the API is dedicated to tools. CoRR 

components are designed in a standalone fashion as microservices. 

By logically linking its components, CoRR benefits from all the advantages of a modern 

microservices oriented web platform such as scalability, high availability and flexible deployment. 

Moreover, the judicious coupling of the frontend and the cloud component enhances federated 

capabilities in which access to an instance could give the user search capabilities across all the 

other open CoRR instances. 

In the following sections, we provide details on how CoRR frontend visually displays its four major 

elements:  

v Tool. The element that contains the credentials of a supported and authorized tool. 

Administrators must create tool object instances to authorize access to tools through 

which scientists can connect to CoRR. 

v Project. The element that groups records and allows users to cluster computing 

campaigns. Projects can be created both from the web or using an authorized tool. 

v Record. The element that stores a computation in CoRR. Records can be manually built 

through the web or automatically created using a tool. 
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v Diff. The element that holds a reproducibility assessment which is a one-to-one 

relationship between records (see the section on “CASE STUDY” for more details). 

4.4.3 The main elements of views in CoRR 

The CoRR frontend uses a common visual structure to display its four main elements. This 

common structure is composed of three groups of interactives action items. From bottom to top, 

the first display group is the references area. It shows statistics or references to other elements 

related to the one being viewed. For example, the record element is related to some input’s files, 
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outputs files and some dependencies. Hence, the record element’s bottom view displays the 

number of inputs, outputs and dependencies. The second display group is the content area. It 

only shows the most important fields of the element. The content also varies from a major 

element to another. Thus, while the tool content displays its creation date, name, status, key and 

description; the project content displays its name, creation date, access, tags, goals and 

description. The last display group is the toolbox area. It provides actions to be performed on the 

element and its content. Such action items are: 

• delete. an action that allows the element’s owner to delete it. All elements have this action 

item. 

• update. an action that synchronizes the local changes on the element’s fields with the 

database. All elements have this action item. 

• share. an action that produces a sharable single page link of the element. All elements 

have this action item. 

• download. an action that produces a file that represents the element. The project element 

is the only element that does not currently have this action item. 

• upload. an action that allows the element’s owner to add content to the element. The 

project and record elements are the only one to provide this action item. 

• environment. an action item that allows the construction of an environment. The project 

element is the only one to allow such an action item. 

• user. an action item that displays the element’s owner short bio. This action is typically 

provided on the diff element. Yet, when logged in as administrator, this action is provided 

on all elements. 

• project. an action item that displays the related project. This action is only provided by the 

record element. 

• select. an action item that allows the selection of an element. It is only allowed on the 

record element to build “diff” elements. 

• key. an action item that allows only the administrator to renew the tool element key. 

In the following parts, we invite the reader into a more detailed acquaintance of these four crucial 

concepts of CoRR visual innerworkings. 
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Concept of tool 

Derived from the tool model, the tool view is a component that holds information about tools 

supported on a CoRR instance. As shown in Figure 4.5, this view contains three types of view 

elements.  

The top section is the toolbox area. It contains clickable icons. It allows the user to perform 

actions on the credential object. In this case from left to right, the user can firstly share the 

credentials and secondly download the credential. The share icon produces a public URL that can 

be easily distributed. This URL leads back to a single page rendering the credential view. The 

download icon results in the production of a JSON file that all supported tools must have to 

configure themselves to communicate with a CoRR instance. The middle section contains 

information about the tool (name and description), the tool credential key and its status. The tool 

credential key is a SHA-256 hash. The status of the credential is activated when usable and 

deactivated when unusable. The bottom section holds the statistics about the credential usage. 

From the left to the right, we first have the number of scientists that use the credential. Then, it 

shows the number of projects created with this credential. And finally, it displays the number of 

recorded computations done with the credential. The tool credential top section allows more 

actions to the administrator. For instance, they have three extra icons. One for editing the 

content of the middle section, a the second one for renewing the credential key and a last one 

for deleting the credential. 
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Figure 4.5 Visual representation of a tool object in CoRR frontend 

 

Concept of project 

Before being able to store computations in CoRR, as explained when mentioning the minimal 

requirements in the previous sections, a project must be created. For the computational scientist, 

a project is the main piece of code/executable on which the recording tool is expected to focus 

on. The project view also contains three types of view elements as shown in Figure 4.6. 

The top section contains the toolbox for altering the project content from the web. From left to 

right it firstly allows the user to get a shareable URL for dissemination beyond CoRR. The second 

action allows the update of some of the content in the middle section. The third action let the 

user provide meta-data and data about a computational environment to be uploaded. The 

project owner can for example, provide description only information about the operating system 

and the hardware used as a document or upload virtual machine/container images. The fourth 

action gives the user the capability to create a record from the web. Finally, the last action, allows 

the user to delete a project and all its content. The middle section contains two types of 
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information. The project name and the date of creation cannot be modified from the web.  On 

the other end, the project privacy state, the labels, the description and the reason can be edited 

by the project owner when clicking the edit action in the toolbox section. The bottom section 

contains three statistics about the project. From left to right, it firstly shows the amount of 

computations recorded in this project. Then it displays the number of reproducibility assessment 

done on records in the project. And finally, it presents the number of environments uploaded in 

the project. 

 
Figure 4.6 Visual representation of a project object in CoRR frontend 

 

Concept of record 

A record is the capture of a computation pushed to CoRR. Records are stored in CoRR within their 

associated projects. The record view is also composed of three sections as shown in Figure 4.7. 
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Figure 4.7 Visual representation of a record object in CoRR frontend 

 

The top section, from left to right allows the record owner to select the record. The selection of 

two records is required to create a reproducibility assessment. Then, the second action item 

generates a shareable URL of the record. The third action allows the user to view the project from 

which this record depends on. The fourth action allows the owner to edit parts of the content in 

the middle section. The fifth action allows the user to download the record. The download of a 

record from CoRR results in a compressed file that contains a self-descriptive content with 

metadata in JSON and actual data files.  

The metadata JSON files are:  

• application. metadata about the tool used to record the computation. 

• project. information about the project to which the record belongs to. 

• environment. uploaded environment metadata associated with the record. 

• body. important fields that define a record in CoRR. 
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• record. extra metadata fields that are supplementary to the body. It includes fields 

that are tool specific. 

• parent. id of a record that is the parent or the predecessor of the current one. This 

helps support complex workflows records. 

• execution. metadata of the command used to execute the computation. 

• dependencies. metadata of the libraries or dependencies required by the 

computation to execute. 

• inputs. metadata of the input files ingested by the computation. 

• outputs. metadata of the output files produced by the computation. 

• resources. any other meta-data of general data files that must be associated to the 

computation for some reason. 

• comments. communications in terms of comments sent by users on the record. 

The corresponding data files that are associated with the metadata files in inputs, outputs or 

resources, are named in a CoRR record using the following pattern: 

• input. input-recordID_fileName.fileExtension 

• output. output-recordID_fileName.fileExtension 

• resource. resource-recordID_fileName.fileExtension 

We invite the reader to download a record for corroboration on the NIST instance of CoRR at 

https://corr.nist.gov. The sixth action item allows the record’s owner to alter the record 

metadata through JSON, YAML or XML format. The record owner is also able to upload data files 

such as inputs, outputs and resources. Finally, the seventh action item allows the record’s owner 

to delete it with all its associated content. The middle section of a record shows its id, its creation 

date and the last update time. This metadata cannot be edited from the web. This section also 

displays the privacy status, the tags, the rationales and the computational status of the record. 

This metadata can be altered with the edit button on the top section. The bottom section of a 

record displays from left to right the number of input files, output files and finally dependencies. 

Concept of diff 

A diff in CoRR is the component responsible for storing a reproducibility assessment that links a 

pair of records. These assessments are based on the terminology contextualized here: replicated, 
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repeated, reproduced and their respective opposites. The diff view like the other concepts views 

is composed of three sections as shown in Figure 4.8. 

The top section contains the set of actions that the record owners can perform on the diff. From 

left to right, the first action item produces a shareable URL for dissemination purposes. The 

second action allows one of the diff contributors (referenced records owners) to edit parts of the 

middle section. The third action is for downloading the diff. It consequently results in the 

download of the two records involved in the diff. The last action item allows one of the diff 

contributors to delete it. The middle section shows the diff id in CoRR and the time of its creation. 

These two cannot be altered from the edit button in the top section. This section also displays 

the assessment method (default, visual or custom), the assessment scope (repeated, replicated, 

…) and the status of the assessment (proposed, agreed, denied). These fields can be updated by 

one of the two contributors. The bottom section displays from left to right, first the record from 

which the assessment is initiated. Secondly, it shows the record to which the assessment is 

created and finally the number of comments made on the assessment. 

In the case study, we present in section 4.5, we give examples of reproducibility assessments 

creations and how they are interpreted. The current version of CoRR restricts their creations to 

the creators of the records only. We plan to open it to all users in a later version. 
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Figure 4.8 Visual representation of a diff object in CoRR frontend 

 

4.4.4 Instance Administration 

By briefly recalling the architecture subsection on “State of the art scalable-federated 

architecture”, it derives from it that the CoRR deployment is up to date in terms of DevOps best 

practices. A CoRR instance can either be managed as a set of Linux services or a set of Docker 

containers. Automated and configurable deployment schemes reduce greatly the amount of 

work needed to setup an instance. Moreover, the CoRR instance at https://corr.nist.gov is a 

Docker container based deployment while the one at https://corr-root.org is a Linux services 

based deployment. During the deployment, an administrator (admin) account credential is 

required to create the first account. This admin has the following roles: user management, 

content management and tools credentials management. Regarding the user management, the 

admin is required to approve users accounts upon registrations, manages their access rights and 

moderate their storage limits. The admin has the rights to delete or alter any content on the 

instance. To be able to push content to a CoRR instance, a tool is required to hold two 256-SHA 

access credentials. The first credential is the user API key. The second credential is the tool API 
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key. The administrator of the instance is the only one capable of issuing tool credentials and 

renewing their keys. A tool is denied access to push content into a user’s account without this 

pair of keys. 

4.4.5 Main User Features 

By registering in a CoRR instance, scientists are given two ways of interactions. The first 

interaction entry point is the web. From the home page, they can first manage their accounts 

information and media. Then, from the dashboard page, the scientist can view the authorized 

tools and manage projects, records, environments and assessments.  

The current features described here constitutes CoRR version 0.1 shown in Figure 4.9. A search 

capability with excluding filters is available not only from the home page, but also from the 

connected user dashboard. The second interaction entry point is with a CVC tool. The number of 

features provided by the tool is not constrained by its integration to CoRR. Thus, tool features 

vary from one to another and follow their own roadmaps. We have come to the resolution that 

it has enough functionality for initial usability. 
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4.5 CASE STUDY 

In this case study we compare the integration of the three most used tools (Sumatra, ReproZip 

and CDE) with CoRR. The comparison is based on the computation of four Machine Learning 

examples. In the following, we first describe the examples in question. Then, we show how these 

examples are computed using these three tools. Subsequently, we provide their resulting CoRR 

records. Third, we present the features used to compare the tools integrations to CoRR. We also 

provide an aggregated view of the results (see Table 4.1). Finally, we provide a summary of this 

case study which includes the important notion of reproducibility assessment in CoRR. We note 

for reproducibility concerns that the computation of all the examples in the machine learning 

book’s Chapter 10 [Rosebrock 2018] took 13GB in CoRR and 16 hours on a ThinkPad model P50s. 

Moreover, we made available a GitHub repository (https://goo.gl/K2Z4BY accessed September 

26, 2018), that will help the readers install the CoRR integrated version of Sumatra, Reprozip and 

CDE. The readers will find directions in the repository README. Thus, the readers will be able to 

register, to access the shared instance of CoRR in this article, and to execute the examples we 

computed in this case study while storing their records in their personal user spaces within CoRR. 

Also, the reproducibility assessments and all the other materials produced in this case study can 

be found by search in CoRR. 

4.5.1 Examples 

This section presents the two pairs of examples used in this case study. The first pair focuses on 

Artificial Neural Network (ANN) models learning the logical Xor, while the second focuses on 

more complicated ones recognizing handwritten digits. 

The first pair of examples models the logical exclusive OR of the corresponding bits from two 

binary strings. Modeling such an operation can be part of the fundamentals of learning ANN 

techniques. As such, Dr. Rosebrock (the author of the examples’ book), provides two codes that 

model the Xor bitwise operation. 

In the second pair of examples, Dr. Rosebrock explains how to model the MNIST which is a 

collection of handwritten digits. Recognizing digits and in general any characters/drawing is an 
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active research area that is recently witnessing many contributions from the Machine Learning 

community. 

A Neural Network Model of Xor 

Like the previous example, this is also implementing an ANN model of the Xor operation. Yet, 

differently than the previous one, which rely on a Perceptron approach, this example uses a 

backpropagation technique with extra layers in a more complicated Neural Network. This 

example can be viewed as a replicate of the previous one. But one that outperforms its 

predecessor because it can properly model the Xor operation. 

A Neural Network Model of MNIST 

In Dr. Rosebrock book, this first technique to model MNIST is based on a custom Neural Network 

example using a backpropagation technique. This technique allows the model to reach an overall 

accuracy of 98%. The following subsection presents another example provided by Dr. Rosebrock 

that uses a different technique. 

A Keras Model of MNIST 

In this second example aiming at modeling the MNIST dataset, Dr. Rosebrock shows the usage of 

a Deep Learning library called Keras. By using the Keras library, Dr. Rosebrock implements a 

technique using a feedforward approach. While the previous example can obtain 98% of 

accuracy, this example is only capable of reaching up to 92%. Furthermore, the author prepares 

the reader for a more suited type of ANN capable of reaching an overall accuracy of 99%: CCN 

(Convolutional Neural Networks). The latter is not discussed in this case study. This example and 

the previous one can be interpreted as replicated techniques (like the previous pair) with the first 

one outperforming the second this time. 

In the following three subsections, we show how the three most used tools are used to run these 

examples and record their computations in CoRR. 
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4.5.2 Computing with Sumatra and CoRR 

Before running the examples, we create four directories. Each directory contains the appropriate 
code of each example. To run the four examples with Sumatra, we achieve the following set of 
actions: put all the directories under version control, setup Sumatra in each folder, run each code 
with Sumatra to capture the computation and push it to CoRR. The exact generic commands are 
provided in Code 4.1. 
 

 

Sumatra and all the following tools require the config.json file when used with CoRR. It contains 

the credentials they need to access CoRR. Sumatra produces a local hidden folder on the host 

computer (named smt) which contains a JSON file named project and a SQLite database named 

records. The project file holds metadata about the project while the database stores metadata 

about the computations. Sumatra makes copies of the output files only if placed in a folder 

named Data. Every time that a computation is done another set of rows is added to the tables in 

the record database. Thus, Sumatra’s local storage is kept and updated when also using CoRR. 

4.5.3 Computing with Reprozip and CoRR 

Differently from Sumatra, ReproZip does not require any prior setup. The configuration, the 

execution and the capture are all done in the same command as shown in Code 4.2. 

 

$ git init; git add –all; git commit -m “begin” 

$ smt init -s config.json project_name 

$ smt config --executable=python --main=code.py 

$ smt run 

Code 4.1 Example of commands to configure Sumatra: The first line shows the version control 
setup. The following two lines initialize Sumatra by providing the necessary parameters in 
“config.json” and what to execute. The last line direct Sumatra to launch the computation. 

$ reprozip trace -config=config.json -name=project_name python code.py 

 Code 4.2 Example of commands to configure ReproZip: This single command both configures 
the tool and directs it to launch the computation. 
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ReproZip produces a hidden folder on the host computer (named reprozip-trace) which also 

contains two files: a YAML file named config and a SQLite database named trace. The YAML file 

stores all the necessary configuration metadata to construct the computations records. The 

database records all the additional metadata required to generate the ReproZip computations 

records as compressed files. For every new computation, ReproZip asks the scientist if the new 

content should be appended to the previous one or erase it.  

With the metadata hosted in the YAML file and the snapshot of literally everything linked to the 

computation, CoRR represents a ReproZip computation with some metadata but also the entire 

computational environment involved. 

4.5.4 Computing with CDE and CoRR 

CDE is very much like ReproZip in the method used to capture the computational environment 

and the unnecessary need for a prior setup as shown in Code 4.3.  

 

The YAML file produced by ReproZip allows metadata to be understood by CoRR and pushed in. 

This specific feature is the major difference between CDE and ReproZip. In fact, CDE captures are 

only compressed files with no metadata in addition for now.  

The main content produced by CDE on the host computer is a folder named cde-package that 

contains the snapshotted content. Thus, in CoRR, CDE generates records that are purely 

computational environment snapshots with no metadata as Sumatra and ReproZip. 

4.5.5 Results  

This case study is provided to the reader to firstly demonstrate how the integration of the most 

used tools to CoRR does not impact their original behavior. Second, to demonstrate the 

differences between Sumatra, ReproZip and CDE in terms of local storage and how it relates to 

the example’s records in CoRR. Third, it allows the reader to grasp the challenge of coping with 

various representations of the same concept. In this case: computations. The result of this 

$ corr-cde --config config.json --name project_name --cmd= “python code.py” 

 Code 4.3 Example of commands to configure CDE: This single command also both configures the 
tool and executes the computation. 
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experiment is a set of twelve computations records using Sumatra, ReproZip and CDE on four 

ANN examples in Dr. Adrian Rosebrock’s book. Moreover, we compare these tools based on their 

integration to CoRR. While we provide an aggregated view of the results of this comparison (see 

Table 4.3). 

The following bullet-points present the features used for this comparison: 

• integration work. number of lines added to the tool source code to provide its current 
integration capability. 

• storage used. storage capacity used by the tool to store the computations records in CoRR. 
• metadata capture. does the tool representation of the computation contains some 

metadata? 
• environment snapshot. does the tool representation stores the snapshot of the 

computational environment? 
• reproducibility effort. is the tool representation directly reproducible after a download 

from CoRR? 

Table 4.3 Integration Comparison Results * 

Features Sumatra ReproZip CDE 

Integration Work 526 234 204 

Storage Used ~1GB ~6.5GB ~5.5GB 

Metadata Capture YES YES NO 

Environment Snapshot NO YES YES 

Reproducibility Effort NO YES1 YES1 

* Table displays how each tool performs with regards to the compared feature. 

1 Requires a few tweaks to rerun the record. 

 

The aggregated results (see Table 4.1) show the impact of the environment snapshot in the 

storage being used but also regarding the reproducibility effort. Also, the integration and the 

metadata capture capability indicate that the latter requires more lines of code than the 
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environment snapshot. Thus, Sumatra requires more lines of code for mostly metadata capture 

which leads to a smaller storage footprint. At the opposite of Sumatra, CDE requires less lines of 

code to focus in environment snapshot, which requires more storage but less effort to effectively 

reproduce the computation. Finally, ReproZip at the middle of Sumatra and CDE, has the 

advantage of delivering metadata and environment snapshot for a better insight into the 

computation and its reproducibility. Yet, its storage footprint is bigger than CDE’s. 

One of the current challenges in reproducible research is how to interactively and socially frame 

reproducibility assessments in a digital way. In other words, how can scientist X digitally tell 

scientist Y that computation result Rx is a replicate, repeat or reproduction of computation Ry?  

CoRR is attempting to solve this by providing the concept of a diff (like Git) as a reproducibility 

assessment proxy. By picking two records, a scientist can contribute to a new layer of 

assessments. This is a very useful feature to any scientific interests in which an answer to 

questions such as; “what are the existing replicates of the Keras MNIST ANN model ?”; might be 

relatively important. For this case study, we identify reproducibility assessment contributions 

that are possible with the twelve computation records.  

First, within each of the four projects, all the records (computations) from the three CVC tools 

are indubitably repeats of one another. This creates three unique reproducibility assessments as 

“repeats” in each project. This leads to another set of twelve reproducibility assessments at the 

scale of the four projects. Second, since NN-MNIST and Keras-MNIST are two examples of ANNs 

modeling the MNIST handwritten digits recognition. Hence, their computations are “replicates” 

from one project to the other. In this case, we can make three reproducibility assessments in 

which a captured computation using respectively CDE, Reprozip and Sumatra in NN-MNIST is a 

replicate of the other in Keras-MNIST. For convenience, downloading an assessment from CoRR 

results in a compressed file that contains the two records involved in the assessment. Finally, to 

come back to the previous question that marks the importance of these assessments, the answer 

will be NN-MNIST records for now. 

The development of CoRR is composed of two major repositories. The first repository 

(https://github.com/usinstgov/corr accessed September 27, 2018) contains the source code of 
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the platform. The second repository (corr-deploy) contains the mechanisms for customizing the 

deployment of the platform depending on the infrastructure. In fact, CoRR can be deployed as a 

set of containers preferably on non-Linux machines or a set of Linux services otherwise. The corr 

repository is composed of 47 Python files and 14696 lines of code. There are 15 classes that 

represent the models in the corr-db module shared by the corr-cloud corr-api services. The user 

interface frontend is composed of 5 main view pages that are dynamically populated by 19 XML 

files. The corr-deploy repository is composed of 23 configuration files to build a Linux-based 

services version of a CoRR instance and 35 configuration files for a docker-based containers 

version. This deployment mechanism takes into account complex requirements. For example, 

any number of services can be organized at will to deploy on the available servers. If there were 

3 servers available, we could do any of the following combinations to fit DB, Cloud, API, Storage 

and Frontend: 1-1-3, 2-1-2, 4-1-0 or 5-0-0. Moreover, the deployment can be readjusted at any 

time to accommodate with the load on the whole platform. Practically CoRR addressed P1, P2 and 

P3 better than any of the existing solutions presented in chapter 3 because it addresses them as 

a whole as they are inter-dependent of each other for efficiency. For example, CoRR is better at 

solving P1 because it addresses P3 better by allowing advanced collaborative actions through diffs 

as shown in Figure 4.10 for the use case. Furthermore, it addresses better P3 because it models 

are designed to solve P2. Thus, as shown in Figure 4.2, Tools representations gain equivalence 

within CoRR. Therefore, collaboration benefits extensively. 

It is important to remember that CoRR is a unification-based contribution. Despite the features 

added to the tools integrated to it, CoRR suffers from what these tools cannot solve at their core. 

We are referring to the features needed by scientists locally in their computing environments. A 

major issue is exact numerical repeatability. In fact, as of today, no tool can currently guarantee 

exact numerical reproducibility from any current execution context representation. The most 

CoRR can guarantee in that direction is that a representation pushed to CoRR can be reused as if 

it came straight from the tool itself. CoRR augments the representations without tempering with 

their inner properties. Therefore, we must stress that a record from CoRR cannot be expected to 

deliver the same numerical outcome as this is beyond the capabilities of our approach. Such a 
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feature must be implemented in the tool itself and will most likely change the way the tool 

approach in representation construction. Thus, CoRR is limited in that sense. 
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4.6 INTEROPERABILITY UTILITY BETWEEN CORR, TOOLS AND PLATFORMS 

Achieving interoperability between tools in CoRR took more than the comprehensive MDE 

detailed previously. In our considering of CoRR as being a unification point suppose that it 

will bridge the equivalent flow of representations from one tool to the other as shown in 

Figure 4.11. In the latter we draw the case of Scientist-1 and Scientist-2 using different tools 

Tool-A and Tool-B to manage their computations. When computing the same code 

(Experiment-1), the two tools produce Computation-A1 and Computation-A2 locally. When 

pushed to CoRR, the two representations take an equivalent form as Computation-C1 and 

Computation-C2.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Interoperability case between Tool-A and Tool-B with CoRR 
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When comparing the three possible ways of representing a computation (Metadata, Hybrid data 

and Raw data) we have come to realize that there is an intrinsic logical flow with regards to how 

each of these structures can be comprehensively processed. Therefore, we have enumerated 

three generic state machines that capture this inherent logical flow as shown in Figure 4.12. 

From the state machines shown in Figure 4.12, we can generate an ingestion recipe that is specific 

to each tool. We have named these recipes “Flowers” to refer to the fact that they encapsulate 

the flow of operations needed to process the data. In table 4.4 we demonstrate how these state 

Figure 4.12 State Machines capturing the three Representation Types: Each of these state 
machines displays a comprehensive way to process each type of computation representation 
record. 
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machines can guide extract the flowers of Sumatra, ReproZip and CDE. To produce a flower, the 

succession of the actions is based on any list-based content being sorted alphabetically 

independently of its nature. This allows consistency across representations flowers when 

executing them. We have used the YAML as the language to store the flowers. As such it uses 

YAML construct to represent the succession of the operations (open, read, parse and load). 

Moreover, while a list node indicates that the operation will be repeated across a list of content, 

a field element indicates that it is an optional operation as the other fields of the same level are.  

Table 4.4 Sumatra, ReproZip and CDE record processing Flowers 

Tool Sumatra ReproZip CDE 

Type Hybrid Raw Raw 

Logic Data: File [folder] 
project: File [json] 
record: File [json] 
    

DATA.tar.tgz: File [folder] 
  Hash: File [folder] 
     DATA: File [folder] 
        bin: File [folder] 
        etc: File [folder] 
        home: File [folder] 
        lib: File [folder] 
        lib64: File [folder] 
        sbin: File [folder] 
        usr: File [folder] 
        var: File [folder] 
 

cde-package: File [folder] 
  cde.environment: File [raw] 
  cde-exec: File [raw] 
  cde-root: File [folder] 
    lib: File [folder] 
    home: File [folder] 
    etc: File [folder] 
  origin-run-pwd-txt: File [text] 
 

Flower start: 
  # return list of files 
  -open: #for each 
     -open*: #repeat for each 
        read: #do this 
        open: #or this 
     -parse*: #or repeat for each 
         load: #do this 
         parse: #or this 
        
   

start: 
  # return DATA.tar.tgz folder 
  open: 
    # return Hash folder 
    open: 
      # return DATA Hash folder 
      open: 
        # return list of files 
        -open: 
           -open*: #repeat for each 
              read: #do this 
              open: #or this 
 

start: 
  # return list of files 
  -open: #for each 
     -open*: #repeat for each 
        read: #do this 
        open: #or this 
     -read: #or repeat for each 
        parse: #or repeat for each 
        
   

 

Sumatra flower can be read as: open the record and expect a list. Then, for each element open 

or parse in a loop fashion. So, after opening, read or open the file and if opened do this again. 

And, after parsing, load or parse and if parsed do this again. While its flower allows automation 

with regard to Sumatra’s structure logic, it is still generic. In fact, we have not specified what the 
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operations open, read, parse and load are. While in the case of Sumatra we can say that they are 

respectively glob.blog, open, json.load(open) and any dictionary, in case of CDE, the parse 

operation (aimed at cde.environment and orig-run-pwd.txt) requires a custom method to extract 

some content. 

While its flower allows automation with regard to Sumatra’s structure logic, it is still generic. In 

fact, we have not specified what the operations open, read, parse and load are. While in the case 

of Sumatra we can say that are respectively glob.blog, open, json.load(open) and [], in case of 

CDE, the parse operation (aimed at cde.environment and orig-run-pwd.txt) requires a custom 

method to extract some content. 

We have researched the processing recipes (flowers) for automation but beyond this aspect, we 

have designed them as a practical way to achieve interoperability. 

 In fact, when two flowers are obtained for two different tools, a mapping specification between 

key elements of both is enough to allow a certain degree of equivalence. To be more specific, 

guided with a mapping specification, a flower can construct a new record from a processed one. 

In Table 4.5, we provide a mapping specification between ReproZip and CDE. 

Table 4.5 Interoperability mapping specification between ReproZip and CDE 

 

 

Tool ReproZip CDE 

Mapping # hierarchy definition 
?:DATA.tar.tgz # a generically named folder in contained 
DATA:? # folder DATA is in this generically named folder  
cde-root:cde-package # cde-root is contained in cde-package 
bin:DATA 
bin:DATA 
bin:DATA 
etc:DATA 
home:DATA 
lib:DATA 
lib64:DATA 

lib:cde-root 
cde_exec 
home:cde-root 
etc:cde-root 
home:cde-root 
lib:cde-root 
lib:cde-root 
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The reader will gather that a mapping specification is simply a file that lists equivalence between 

flower operations results. For example dependencies:record=lib:cde-root:cde-package means 

that at the moment of parse(record), load(dependencies) is equal to open(cde-package), 

open(cde-root).open(lib). Thus, every row in the dependencies field in Sumatra record would be 

file inside the lib folder in CDE. 

We would like to stress that “:” is used to indicate path precedence. Furthermore, the reader 

must keep in mind that a mapping from one rule to the other is matching the equivalent flower 

operation pipeline output. Thus, only identical or close in value results in the output will be 

converted. For example, the two last lines indicates that from CDE standpoint the content of lib 

folder can be built from the content lib and lib64 folders in ReproZip. Additionally, from ReproZip 

standpoint, the content of lib and lib64 can be built from the one from lib in cde-root. In the latter 

case, some duplication will occur but will not incur in any issue. 

The reader might have noticed that the provided mapping does not cover ReproZip and CDE 

structure logic fully. Files such as sbin, usr, var, origin-run-pwd-txt, environment.cde are not 

mapped. While it is not possible to guarantee the mapping of all components since some tools 

may not need as much information as others, it is possible to provide customized mapping 

functions. An example would be a mapping function “data” used in the mapping 

data~inputs:record=var:cde-root:cde-package to match input file names from Sumatra to CDE. 

The same mapping function could be applied to outputs. 

The result of this section shows the ongoing exploration of a novel way to achieve interoperability 

between tools in a way that benefits their users. As such, it was implemented in a library named 

Contracts (https://github.com/usnistgov/contracts accessed September 26, 2018). While this 

implementation is still very experimental, we are confident that it is our assurance for 

reproducibility between reproducible research tools and platforms. However trivial with CoRR as 

we provide default components for the latter, the interoperability crafting may bypass CoRR 

completely.  
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4.7 CONCLUSION 

This chapter, while emphasizing the necessity of version control tools, postulates that standard 

source code versioning is not sufficient for reproducible research. The chapter advocates for an 

alternative form of version control based on the capture of computational provenance and 

environment. Reproducible research support tools have the potential to become a critical 

component of reproducible research workflow and complement more established approaches 

such as Software version control. However, to achieve broad acceptability, a highly functional 

web platform is required to support sharing and dissemination of support tools records. 

Thus, this chapter focuses on introducing the Cloud of Reproducible Records (CoRR) as a web 

platform for these tools. Among the features delivered by CoRR, is the enabling of a new way of 

scientific networking. This networking is made possible by integrating tools, allowing scientists to 

collaborate with each other around scientific computations and findings. CoRR also addresses 

the issue of properly framing reproducibility assessments. An assessment in CoRR is a one-to-one 

relationship between records in which a resulting decision is made to conclude if two 

computations are repeats, reproductions, replicates or their opposites. While automatic 

assessments are possible up to a certain point, it also allows scientists to contribute by either 

initiating the assessments or participating in the decision. A case study is reviewed to allow the 

reader to grasp the importance of integrating the three major tools with CoRR. Furthermore, a 

live instance of CoRR is made available in support of this case study and to the community. It 

contains the recorded computations and resulting assessments of ANN examples from Dr. Adrian 

Rosebrock’s book. 

These tools are currently not interoperable. This is a perfect fit for CoRR. First, because it 

designed to deliver an intermediate model that can store different tools representations of 

computations. Secondly, it eliminates the skepticism toward adopting any of these tools, 

specially knowing that the obsolescence of a tool is equivalent to future obsolete records. 

Moreover, making computation records representations equivalent is not the end goal of this 

initiative. The ultimate outcome is to allow scientists to re-compute executions from a CoRR 

record. This is how reproducibility, replicability and repeatability are verified and corroborated. 
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Thus, tools development teams must first define a minimal set of features for a tool to be called 

a tool. In fact, some for example will argue that a tool should be called a support tool, when it 

does not allow a consistent re-execution of the its previously recorded computations. CoRR is 

expected to moderate these discussions. 

The presented challenges are opportunities for improvement and innovation. They lay the way 

for CoRR’s future and features. They also point the fact that CoRR’s road map requires playing a 

central role between tools by leading the way for a sustainable ecosystem of useful and 

interoperable reproducibility tools. One of the most critical challenged that remained unsolved 

by CoRR is the actual corroborative nature of the execution context representations. Most of the 

current solutions cannot guarantee as exact run to run corroboration, especially in the meaning 

of numerical repeatability. The following chapter shows that an effective solution to this major 

challenge must come from deep within the computation of numerical operations. As such we 

propose an approach that implements such a solution. 
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Chapter 5 – COMPUTATION OPERATIONS CACHING FOR 
NUMERICAL REPEATABILITY 

5.1 INTRODUCTION 

We are currently witnessing the scientific method alarm buzzing across many fields of Science 

either may it be more of a traditional experimental one or a modern computational one. 

Terminology in reproducible research (repeatability, reproducibility, replicability, etc.) allows one 

to place himself in the appropriate context to interact within its own community. In fact, we have 

yet to reach a terminology consensus across domains as pointed out by many [Drummond 2009; 

Gordon-McKeon 2015; Slezák and Waczulíková 2011]. Throughout this chapter we will be using 

the same terminology as used previously in the present manuscript. We recall the latter as 

following: 

Definition 5.1. Repeatability is the simple re-execution of a simulation while enforcing the 

preservation of the previous execution context (environment) to get the same result.  

Definition 5.2. Reproducibility is any attempt to reach the same result as a previous execution, 

yet tolerating changes in the environment, the dependencies, the inputs, the executable itself as 

long as the output results stay in the meaning of the scientific background to be acceptably 

conform.  

Definition 5.3. Replicability is any attempt within the scientific logic that leads to the exact same 

result. Variations are not tolerated in the results. The goal is to have an identical result no matter 

what was used to get there.  

Sometimes as Reproducibility is the most compromising one of these notions in terms of 

tolerated variations, we will prefer to use it when referring to all terms in a general sense. 

While a list of probable sources of issues in reproducibility, repeatability and replicability is still 

being investigated in various domains, there is an intuitive growing agreement that solving these 

problems requires the proper capture of some key elements that contributed to the 

computational results [Sandve et al. 2013]: 
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Definition 5.4. Environment means enough information about the system in which the simulation 

was run (hardware, operating system and compiler).  

Definition 5.5. Dependencies represent all the elements required by the simulation code to be 

properly built and executed (libraries). 

Definition 5.6. Inputs contains all the data read by the simulation to produce the outputs at the 

end of its execution.  

Definition 5.7. Executable signifies enough information to get and execute the simulation (source 

code, binary, execution command). 

Definition 5.8. Outputs refer to all the data produced by the simulation during its execution. 

Recording these elements, should allow us to recreate the computational requirements needed 

for the executable to produce the same outputs (as recorded) when run with the same inputs. 

This means being able to numerically repeat a computational experiment. It is often called 

numerical reproducibility [Hill 2017]. The current representations of the software execution 

context presented in the previous chapter are based on this philosophy. Even CoRR. 

However, we argue here that for the numerical repeatability of computational results the 

tracking of these key elements is not enough. The numerical result is the complex functional 

aggregation of all the arithmetical operations results computed by the CPU during the execution. 

And the currently recorded key elements do not preserve any trace of that information except 

the outputs which usually retain the final results. Thus, to guarantee that a result be replicable, 

repeatable or reproducible one will have to wait until the end of the next run to be able to 

compare the outputs when possible. This requires also more rigor in the structure of the outputs. 

And since only final numerical values are usually saved, identifying the origin of a variation is not 

a trivial task. A classic example would be the impact of out of order execution on floating point 

operations [Zitzlsberger 2014] and the level of difficulty involved in debugging such a situation. 

We propose in this chapter to introduce another key element: the numerical computations 

cache. It is the capture of all the mathematical calculations done during the execution. Thus, 

during another execution of the computation, this cache can be of great use when attempting to 
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numerically repeat the result. It helps to track at a deeper level the source of the numerical 

variations and apply various execution strategies which is not possible with the currently 

referenced key elements. Furthermore, every cache entry name is strongly correlated to the 

symbolic representation of its corresponding computation and is time stamped. This makes the 

construct sensitive to precision changes and the execution order of the underlying computations 

that produced the operands fed in. Therefore, any variations in these two cases due to facts like 

non-associativity in Q [Goldberg 1991], will either lead to a detected result variation or to the 

creation of a new cache entry and by the same token cause some inconsistencies in the cache. In 

Table 5.1, we demonstrate trivial cases in which the loss of the associativity for the core 

mathematical operators (+, -, *, /) is obvious. 

The proof of loss of associativity shown here can only be worse for complex functions which are 

composed of these core operations. In fact, the resulting precision errors will be accumulated 

and thus cause major drifts in the final results. 

In this chapter, we first overviewed the current techniques used to guarantee numerical 

reproducibility in a more general sense (including replicability and repeatability), then we will go 

into more details in our proposition with its drawbacks and finally provide an application use 

case. 

Table 5.1 Non-associativity demonstration for the four core mathematical operators 

Addition subtraction multiplication division 

a b c a b c a b c A b c 

0.001 1 -1 1 1 0.001 0.001 1e308 11 100 1e308 11 

(a + b) + c (a - b) - c (a * b) * c (a / b) / c 

0.00099...86588 -0.00100...00208 1.09999...99722e+306 9.09090...13424e-308 

a + (b + c) a - (b + c) a * (b * c) a / (b * c) 

0.00100...00208 -0.00099...86588 inf 0.00000...00000e+00 
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5.2 NUMERICAL COMPUTATION CACHING 

During the process of implementing a computational solution, debugging is the most painful step. 

This is especially due to all the sources of irreproducibility that can cause a simulation to give 

different results at different moments in time with the same or different computing 

environments. Profiling and debugging tools like prof, Valgrind, Dr. Memory, Jtracer, Vtune… are 

typically used in this case to track the simulation execution as a process in mostly the aspect of 

memory management and threading. We argue that these techniques and tools do not provide 

any persistent result from their integration that can be reused later as a mean to ease 

repeatability or to investigate numerical reproducibility. We present in this research, the 

investigation of a numerical library Num-Cache that when integrated into a simulation code, can 

be setup to generate the full numerical cache of the scoped computations as shown in Figure 5.1. 

The caching mechanism provides interesting features that will be discussed in the next section. 

 

Figure 5.1 The Num-Cache functional architecture: The mathematical operations calls go 
through the library first, which generates the cache entries after the actual computation by the 
CPU. 
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5.2.1 Mathematical operation caching 

In most programming languages, the mathematical functions provided for calculus are often split 

into two libraries: the standard library and the maths library. The standard library provides 

operators like -, +, * and /, while the maths library provides approximated evaluation of more 

complex functions like exp, log, log10, pow, sqrt, etc. All the operators and functions can be 

roughly grouped based on the size of their operands in three classes that we name here: 0-

Operand, 1-Operand and 2-Operands. A 0-Operand operator is in fact a function called like 

procedure with no parameter: a call to a basic rand function is an example. A 1-Operand operator 

(monadic operator) is an operator or a function requiring only one operand or parameter: like 

the negative ‘-‘, exp, log, sin, etc. And finally, a 2-Operand operator (dyadic operator) requires 

two operands: +, -, * and /. While it is possible to have more operands, in the case of this research 

we limit the number of any operator parameters to two at most. We propose to atomically and 

uniquely cache every call to these operators by capturing: information about the operator, the 

result and the operands. 

 

Figure 5.2 The computations cache generation: It is demonstrated on an example involving 5 
computations. 
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In this investigation, we assume assignment operator calls as root operations. This assumption is 

justified by the fact that all other operator calls are finalized by assignments to variables. It is also 

required as all the mathematical operators are subjected to cause variability in the outcome. 

Moreover, we want to separate precision errors which usually come during assignments from 

out of order execution errors and cumulative addition in limited precision. Thus, we propose an 

indexing technique that uniquely identifies the cache entries as shown in Figure 5.2. 

This is done here by generating the index of any computation from its content by replacing its 

operands values by the index of the computation that produced them. This rule applies for all 

operators except from the assignment. This indexing ensures that the mathematical relations 

between the computations be preserved. This indexing mechanism ensures also that the link 

between the computations be sensitive to precision error during assignment and from out of 

order execution during any other computation. Thus, it starts with the assignment’s operations 

cache entries. To do so, it generates index strings from the content of the assignment’s caches 

(operator, operands). 

Since we want to preserve the relationships of the mathematical operations, we cannot generate 

their cache contents like the assignments. Because, the generation from the content of other 

operations will lose the relationship nature among them. Therefore, the assignment is assumed 

to be a root operator. The operands of an operator are either results from an assignment or from 

another operation. Thus, we define the index of the other mathematical operators as being based 

on the indexes of operations that produced their operands (assignments or others). This provides 

a chain of indexes that from any mathematical computation cache folds down following the 

computations relationships to the assignment indexes (as roots). Precision errors will be detected 

early on from loading the assignment operations and comparing the results. Out of order errors 

on the other end will be detected by a change in the relationship order between operations. This 

modification will then make it impossible to properly reload the appropriate computation and 

make sustainable comparisons. It is caused by the fact that we generated the index of all 

computations of operators based on their mathematical relationships to others through their 

operands. In the advent of a different result within a single operation we can track the impact of 
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this modification through the solid mathematical relationship graph between operations. Also, 

this indexing technique allows us to always guarantee identical cache entries even when the 

computation result varies for non-assignment operations, which is fundamental to be able to 

reliably compare two caches that may have different results that are not caused by precision 

error in the same cache entries. In addition, this chaining between computations through their 

operands allows us to first detect precision errors for assignments; and then to identify execution 

order variations for other operators. The occurrence of these variations will trigger the 

generation of new indexes and will be propagated throughout the chain of computations. As 

such, an inconsistent cache will be generated. When reloading the numerical cache of a previous 

execution we propose three strategies: ignore-cache, use-cache and load-cache. When using 

ignore-cache, the library generates a verbose log of the comparison between the loaded cache 

computations results and their current computations results. This allows the detection of 

precision errors, out of order computation, their impact and individual operations results 

changes. On the other end, use-cache will simply load the cached results when the newly 

computed ones are different and log their variations. Finally load-cache directly loads all the 

results of the operations without any logs of the variations and in summary not doing the actual 

computation on the machine. 

5.2.2 The Num-Cache library 

We propose the implementation of the Num-Cache library for C++ and Python. The Num-Cache 

library overloads selected mathematical operators and functions. The cache content is: 

operator|result|operand1|operand2 for 2-Operand operators, operator|result|operand for 1-

Operand operators and operator|result for 0-Operand operators. For every cache entry the 

name is the index of the content of the cache without the character '|' and the result. The source 

code is online can be found online on Github at the following url : (https://github.com/faical-

yannick-congo/Num-Cache accessed September 29, 2018). 

The repository contains a proof of concept application folder that will be explained in the next 

section, a cpp and python folders that hold the implementation of the Num-Cache for the two 
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supported programming languages. Test programs in C++ and Python are provided and are the 

numerical caching of the following block of pseudocode in Table 5.2. 

The Num-Cache library comes with a Numb Entity that is used to wrap assignment values and 

overload the operators.  

 

Table 5.2 The two ways “a+b+c” can be evaluated 

Left-add Right-add 

a = 0.001 a = 0.001 

b = 1 b = 1 

c = -1 c = -1 

d = (a + b) + c d = a + (b + c) 

 

The Num-Cache library should be initialized before the run using a setup function which takes 

four parameters: cache_out, cache_in, precision and strategy: 

Definition 5.9. cache_out is the produced cache location. 

Definition 5.10. cache_in is the path to a cache to load. 

Definition 5.11. precision is the precision of the computations. 

Definition 5.12. strategy is the input strategy cache (ignore, use or load). 

For testing, we first do the numerical caching of left-add without an input cache at a precision of 

20 and generate ‘cache1’. Then we do another numerical caching of right-add by loading the 

previously generated cache 'cache1' but using the ignore-cache strategy. This produces the Num-

Cache comparison log and the second cache ‘cache2’. The Num-Cache implementation for both 

Python and C++ is based on floating point representation. As a result, with the C++ and Python 

implementations, the execution of the test produces two caches: cache1 and cache2. The output 

of Num-Cache shows different caches. Moreover, the execution of the test in both C++ and 
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Python gives as expected different caches as soon as the addition operation begin to be evaluated 

as shown in Table 5.3 at entry orders 4 and 5. 

Table 5.3 Computation cache entries for (a+b)+c and a+(b+c) 

Entry order Entry cache name for (a+b)+c Entry cache name for a+(b+c) 

1 assign0.001 assign0.001 

2  assign1 assign1 

3 assign-1 assign-1 

4 add_1_2 add_2_3 

5 add_4_3 add_1_4 

 

The assignment of a value or a computation result to a variable is identified as the assign operator 

when cached. In this example, each corresponding cache entry contents for left-add and right-

add are compared and shown in Table 5.4. 

Each implementation of left-add and right-add in Python and C++ return the same cache. The 

entries shown in Table 5.3 allows us to compare the content of the cache1 (from running left-

add) and cache (from running right-add). They start to differ as pointed in Table 5.4 for entry 

orders 4, 5 (left-add) and 4’, 5 (right-add). This clearly shows that Num-Cache caching technique 

is able to single out operations in which the execution order change for some reason. Thus 

(a+b)+c is different from a+(b+c) for the specified values. Further details with more operations is 

provided in the use case section. 
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Table 5.4 Computation cache entries contents 

 

5.2.3 The computational costs involved 

The method proposed here has the drawback of lowering the computation speed as one would 

expect. Thus, scaling up is consequently problematic. Following are the extra operations added 

to the executed simulation for each strategy in Table 5.5. By integrating the proposed approach 

library, one should expect a multiplicative complexity factor of O(log n). This is interesting for 

applications that cannot afford to have a non-numerically debuggable result.  

Table 5.5 Computation cache entries contents 

 indexing loading comparing assigning loging Total 

use-cache O(1) O(log n) O(1) O(1) O(1) O(log n) 

load-cache O(1) O(log n) ∅ O(1) O(1) O(log n) 

ignore-cache O(1) O(log n) O(1) ∅ O(1) O(log n) 

 

We also stress the fact that the library is implemented in the scope of a centralized cache. For 

distributed computation complicated situations might come up. Distributed high performance 

computing databases might be a solution. 

Entry order Entry cache content (operator|result|operands..) 

4 [(a+b)] add|1.00099999999999988987|0.00100000000000000002|1.00000000000000000000 

5 [(a+b)+c] add|0.00099999999999988987|1.00099999999999988987|-1.00000000000000000000 

4’ [(b+c)] add|0.00000000000000000000|1.00000000000000000000|-1.00000000000000000000 

5’ [a+(b+c)] add|0.00100000000000000002|0.00100000000000000002|0.00000000000000000000 
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5.3 USE CASE 

In Table 5.6 we show the use of Num-Cache on the four codes provided in Table 5.1: (0.001+1)-

1, (1-1)-0.001, (0.001*1e308)*11 and (100/1e308)/11. Here, for comparison purposes, we have 

generated a SHA-256 signature of each cache entry for each operator on steps 4, 5, 4’ and 5’ as 

shown in Table 4 for addition. The differences between the signatures of the two operations 

involved in (a op b) op c and a op (b op c) demonstrate how Num-Cache detects out of order 

discrepancies. Thus, running Num-Cache with a computations cache from a system which 

evaluates [a op b op c] as [(a op b) op c] will throw an out of order alert on a system which 

evaluates it as [a op (b op c)]. 

Table 5.6 Signatures of the two computations steps for each operations factorization 

signature generation addition Subtraction multiplication division 

(a op b) op c (a + b) + c (a - b) - c (a * b) * c (a / b) / c 

signature {4: op_1_2} 710f...de22 b39c...d55b 2d35...75a8 b39c...d55b 

signature {5: op_4_3} fd7e...f277 4dfc...2554 6110...35a1 309b...6672 

a op (b op c) a + (b + c) a - (b + c) a * (b * c) a / (b * c) 

signature {4’: op_2_3} fbd3...14ad 1fb2...43e5 d432...9955 d432...9955 

signature {5’: op_1_4’} 4535...69a5 4f6b...8a7d 41c6...cc47 010d...378e 

 

Num-Cache goes beyond simply caching. Its cache entry keys are the operations expressions in 

their order of computation. Also, each cache entry contains the operation result and operands. 

Therefore, when a new signature is created in a future computation, it implies that there was a 

change in the order of the two operands with regards to the operator. This, indeed, because the 

main purpose of the signature is to capture this fundamental relationship. Thus, the creation of 

new cache entry keys confidently indicates an out of order computation as shown in table 5.6. 
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Furthermore, when the signature of a new computation is identical to the one of a previous one, 

Num-Cache will carry on to the comparison of their results. If they are different, it is this time not 

an issue in the order of the operations but a failure/error in the operator execution itself. While 

the latter issue is rarer in ordinary computers, in exa-scale machines they appear more 

frequently. These two features allow the separation of issues due to pure out of order execution 

from pure operation inaccuracy or fault. Finally, a byproduct with having a previous cache is that 

Num-Cache can be tasked to trust the new or the cached result and thus achieve true numerical 

repeatability while alerting when issues are detected and avoided. In fact, with Num-Cache, 

scientists can identify which portion of their applications to watch closely for numerical changes. 

Also, in case of a change, the library can accept the new result or load one of a provided cached 

computation or just crash. In any case, a computation log is generated by the library to show 

when issues occur, and the strategy taken for a deeper investigation. 

Despite its interesting features, Num-Cache must be used properly for maximum adequacy. For 

static executions, where all the possible computations are done for any execution, the Num-

Cache code works out of the box. Yet, for dynamic executions where the number of operations 

and the values on which the computations are done varies from one run to another, the best 

caching results are obtained when the computations domain is well covered, which implies 

generating as much cache as possible so that Num-Cache can load it back later on, as shown in 

Code 5.1.  
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try: 

 from sklearn import datasets, svm, metrics 

 deep = true, digits = datasets.load_digits() 

except: 

 from tensorflow import tf 

 from tensorflow.examples.tutorials.mnist.mnist as digits 

 deep = false 

images_and_labels = list(zip(digits.images, digits.target)) 

n_samples = len(digits.images) 

data = digits.images.reshape((n_samples, -1)) 

if deep: 

  x = tf.placeholder(tf.float32, shape=[None, 784]) 

  y_ = tf.placeholder(tf.float32, shape=[None, 10]) 

  W = tf.Variable(tf.zeros([784,10])) 

  b = tf.Variable(tf.zeros([10])) 

  y = tf.nn.softmax(tf.matmul(x,W) + b) 

  cross_entropy = tf.reduce_mean( 

                                 -tf.reduce_sum( 

                                                y_ * tf.log(y),  
                                                reduction_indices=[1] 

                                               ) 

                                ) 

  sess = tf.Session() 

  init = tf.initialize_all_variables() 

  sess.run(init) 

  training = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) 

  correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) 

  accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 

  for i in range(4001): 

    sess.run(training, feed_dict={x: data[:n_samples // 2], y_: digits.target[:n
_samples // 2]}) 

else: 

  classifier = svm.SVC(gamma=0.001) 

  classifier.fit(data[:n_samples // 2], digits.target[:n_samples // 2]) 

 Code 5.1 Dynamic execution of machine learning libraries on the MNIST dataset 
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In this example in Code 5.1, we propose to the reader to consider a Num-Cache wrapped version 

of sklearn and tensorflow. They are two machine learning packages in Python. We demonstrate 

the case of dynamic execution and the limitation of the Num-Cache approach with regards to 

such a situation. When executing the code provided, if sklearn is available it will launch the C-

Support Vector Classification (SVC) algorithm. Otherwise if not, we suppose that tensorflow must 

be present. Thus, we launch an Optimized Gradient Descent algorithm. Both algorithms are used 

to produce a trained machined learning model that can recognize handwritten characters based 

on the MNIST dataset. The accuracy of the first algorithm is between 0.93 to 1.0 while the second 

is in average 0.9 for 4000 steps.  

In this example, we invite the reader to consider it as a process of trying the recognition with the 

best algorithm and that in the advent of it being unavailable, we use the less accurate option. 

Moreover, while the import calls may not cause any variation to the result, the operations 

involved in both algorithms are different. Thus, two possible cache can be generated from this 

code. To ensure numerical repeatability, the scientist must generate and use the merge cache of 

these two cases. In fact, if not done so, Num-Cache will simply not be capable to check for 

numerical variations as it may be faced with unseen operations from the other algorithm.  

5.4 CONCLUSION 

We proposed in this chapter, an additional key element that is important to be recorded as part 

of the data produced when running a simulation. The current approaches provide a form of an 

approximation of either intermediate or final results within a certain error margin. Also, they do 

not allow an easy debugging of the internal numerical variations. In this chapter, we described a 

numerical caching approach that enables true numerical repeatability when using load-cache as 

a caching strategy but also logs all the numerical operations variations during the execution of 

the simulation when using ignore-cache as a strategy. Another caching strategy use-cache is 

similar to load-cache yet only logs the variations and uses the cached result instead of the newly 

calculated one. We scoped the features that Num-Cache encapsulated as part of our interest to 

approach numerical reproducibility. Also, we have achieved implementations in both C++ and 

Python. Demonstration codes covering the widely used operators (+, - , *, /) were also 
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implemented in both C++ and Python. By focusing the issues of non-associativity due to a change 

in execution order for these core operators, we are able to press the greater presence of the 

issues in more complex functions. 

Num-Cache is designed with an internal representation in floating point only as most problems 

occurs with these. As a proof of concept, the library only covers the most used mathematical 

operators. In order to build a reliable cache index that may change only in specific situations, we 

have made the assumption that the assignment operator is a root operator. The caching process 

is centralized and only captures executed operations. For executions that might trigger the 

computation of other operations for other runs, we recommend as much computations 

operations as possible to allow the entries to be created in the first run. This research and the 

current state of Num-Cache does not include any symbolic execution capabilities and involve 

complexity costs in the order of O(log n) across the three strategies. 

It is fair to ask the reproducible nature of a method that is attempting to enforce reproducibility. 

As a matter of fact, Num-Cache is a wrapper that mostly persists its cache and uses it based on 

the described strategies. A reproducibility issue may occur if the cache is corrupted. In fact, 

tampering with the cache in between runs or during the run due to a file system or a database 

issue will most likely lead to the skipping of the Num-Cache execution. 

The evolution of computer hardware architectures and their diversity is bringing an awareness 

regarding the non-portability of software execution (numerical irreproducibility) [NRE 2015]. As 

depicted by V.T. Dao and his colleagues [Dao et al. 2014] through a survey on different 

hardwares, operating systems and configurations, we have to better grasp the complexity of 

debugging for numerical irreproducibility as it is a problem now and still an expected one at 

Exascale. 

Being able to complement the computation execution context represented by all currently 

existing tools and platforms, the Num-Cache approach, allows CoRR to reach the ultimate 

representation model. Such model can effectively augment the current tools representations in 

all three corroboration levels. 
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However, one major drawback of the cache based approached used in Num-Cache is the toll 

incurred on computation intensive applications. Despite the use of a hash table-based storage 

strategy, the overall computing time decrease will clearly be noticeable. Moreover, during the 

re-execution, depending on the strategy used, additional computing time will incur. In all cases 

where the cache is not directly reloaded such a slowdown will be present. In the case of full 

consideration of the cached computation, many factors must be considered. In fact, if the storage 

media can match computation time compared reloading the result from the hash table then no 

computation time will incur. Based on this evident ongoing challenge in our approach here, Num-

Cache will be mostly useful in situations such as: 

- Debug phase: When building the scientific code, it will help track the numerical aspect. 

- Few operations: When the experiment does more than just numerical operations. 

- Custom caching: Identify weak numerical places (big sums, etc..) and only cache those. 

In the following chapter, we invite the reader into a brief tour of the most substantial applications 

of this thesis. We first present the current work in integrating major reproducibility tools and 

their representations with CoRR. Then, we share actual use cases in which either CoRR is involved 

directly or the episteme and research knowledge collected during this journey was solicited.  
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Chapter 6 – APPLICATIONS 

6.1 INTRODUCTION 

The umbrella of activities done during this thesis are still ongoing and mostly involves CoRR. 

These activities are organized in two groups. The first group focuses in leveraging CoRR’s main 

feature in solving P2. As such, it is composed of the current integration work with existing general-

purpose reproducible research tools. The second group presents activities that demonstrate the 

usage of CoRR in ongoing projects. We list three of the most relevant ones at NIST and two others 

with external collaborators. The following subsections give more details to these activities. 

6.2 INTEGRATION ACTIVITIES 

One of the main features of CoRR is its capability to integrate any tools or web platforms. This is 

possible because of its open API access and the flexibility of its storage model. Thus, tools and 

web platforms integrated to CoRR can allow scientists to interoperate seamlessly. In fact, within 

the CoRR interface, all records are homogenous despite the specifics of the execution record 

being heterogenous to one another depending on the tool. Currently, CoRR supports three of the 

most known general-purpose reproducible research tools. The following subsections describe 

each of those. 

6.2.1 CNRS - Sumatra 

In this integration with CoRR, scientists using Sumatra are able to push meta-data, inputs and 

outputs files of their simulation’s executions to CoRR. This integration comes as an additional 

feature of the tool. Thus, it does not eliminate the default storage capabilities. Instead it coexists 

with those. Therefore, when recording a simulation execution two records are created. One local 

where Sumatra has been setup to record it and another one remotely on the configured CoRR 

instance. The current integration only supports submitting records in one direction: from 

Sumatra to CoRR. All other actions are not currently available from the tools and must be done 

within CoRR web interface: Pull, Edit, Deletion and Collaboration. Future integrations include 

extension to pull, edit, delete and collaborate from Sumatra Command line through CoRR. The 
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integration to CoRR is currently held in a forked copy of the official Sumatra code and is still in 

experimental phase. It is accessible at: (https://github.com/usnistgov/corr-sumatra accessed 

September 29, 2018). It is open source and we look forward for an integration level that will meet 

official acceptance.  

6.2.2 NYU - ReproZip 

When integrating this tool, we had a version that was not exposing the meta-data construction 

in an open fashion. As such, the integration is currently limited to a simple push of the ‘rpz’ 

compressed file that represents the execution. However, this situation has evolved. The current 

version of ReproZip fully details the meta-data captured. Thus, future integrations will involve a 

more complex integration that is similar to what is proposed for Sumatra. Also, since ReproZip 

records can be turned into Docker containers or other similar containing structures, we are also 

considering a docker based pull from CoRR or a more advanced way of partially performing 

operations of ReproUnzip within the CoRR instance. This extends the choices of the structure to 

pull from: chroot environment, virtual machine and docker. The current integration of ReproZip 

to CoRR is also held in a forked copy on Github: (https://github.com/usnistgov/corr-reprozip 

accessed September 29, 2018). A more stable integration will be submitted for official acceptance 

and will give its users the possibility to link their tool to any CoRR instance of their liking. 

6.2.3 MIT - CDE 

Designed to directly generate a portable Linux environment that encapsulated the snapshot of 

the execution, CDE produces a single compressed file that is pushed to CoRR in a single API call. 

This integration is similar to the current one with a previous version of ReproZip. Regardless of 

CDE moving in the direction of ReproZip and Sumatra to add meta-data capture, we are looking 

for an integration in which CDE can also be used to pull records. In fact, the current integration 

only supports pushed to CoRR. However, if more features are enabled in the future, its 

integration to CoRR can be expanded for more complex interactions as done with Sumatra. The 

source code of the integration is also a modified version of the official code and is to be 

considered experimental as the two previous ones: (https://github.com/usnistgov/corr-CDE 

accessed September 29, 2018). We are also looking forward to reaching an agreement with the 
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tool contributors and share experiences with other tools with more complex interactions’ 

schemes with CoRR. 

6.3 COLLABORATIONS 

By providing viable solutions to P1, P2 and P3, CoRR has received vivid interests for immediate 

applications at NIST. Moreover, it has stirred up collaborations with Air Force Research 

Laboratory (AFRL) and LLNL. Most of the applications of CoRR in ongoing projects look for 

leveraging its main feature as a federating interface that deliver features that are tools and web 

platform agnostic with regards to reproducible research efforts. As such while the tools and 

platforms evolve separately, CoRR adjusts to them by accordingly updating their integrations, its 

API and its storage model. Therefore, these platforms need not to worry but to keep up with the 

changes in CoRR only in the cases where the interactions protocol has drastically changed. We 

have designed the platform to avoid such cases and mainly focus on smooth updates with low 

consequences to backward compatibility. The following subsections describe these activities in 

more details. 

6.3.1 NIST - Joint Automated Repository for Various Integrated Simulations 

(JARVIS) reproducible calculations with Sumatra and CoRR  

With his mission to automate materials discovery using classical force-field, density functional 

theory, machine learning calculations and experiments, Dr. Choudhary has been leading JARVIS 

for a few years now. The novelty of his approach is using formal tools in automated fashion and 

new prediction techniques to capture the intricated existence of materials. As such, he 

automatically launches thousands of Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS) and Vienna Ab initio Simulation Package (VASP) computations to respectively achieve 

force-field calculations on DFT geometries and 3D-bulk, single layer (2D), nanowire (1D) and 

molecular (0D) systems. The resulting data contains materials properties such as: energetics, 

elastic constants, surface energies, defect formations energies, phonon frequencies, diffraction 

pattern, radial distribution function, band-structure, density of states, carrier effective mass, 

temperature, carrier concentration dependent thermoelectric properties and gamma-point 
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phonons. Dr. Choudhary then uses the calculations done with DFT to train a machine learning 

model. The goal of such an approach is to be able to predict energetics, heat of formation, 

GGA/METAGGA bandgaps, bulk and shear modulus. 

To be able to reproduce the thousands of computations done with LAMMPS and VASP, JARVIS 

automated calculations used Sumatra at its early stage. Moreover, the version of Sumatra used 

by Dr. Choudhary is the modified version of Sumatra integrated to CoRR. The execution captured 

by Sumatra were stored on an internal instance of CoRR at NIST. Therefore, reference of this 

usage of CoRR for JARVIS-DFT has been made by Dr. Choudhary in a Nature Scientific Data 

publication in May 2018 (Choudhary and al. 2018). The database and features of JARVIS-

(DFT|FF|ML) can be accessed at: (https://ctcms.nist.gov/~knc6/JARVIS.html accessed 

September 29, 2018). 

6.3.2 NIST - CHiMAD Benchmark computations in CoRR 

CHiMAD is program funded by NIST to promote the excellence in the development of advanced 

materials through the next generation of computational tools, databases and experimental data. 

The ultimate goal of this program is well scoped in NIST mission to accelerate the design of novel 

materials and their integration to industry. Within the same program, NIST funded the PFHUB: 

Phase Field Community Hub website. It contains phase field benchmark problems vetted by the 

community to test, validate and verify phase field codes. From May to August, we have 

supervised graduate student Andrey Moskalenko in an internship with the mission to capture 

execution of phased field codes computations on some of the benchmarks on PFHUB. Like 

JARVIS, the version of Sumatra used by Andrey is an integrated one with CoRR. Thus, the captures 

where stored on the NIST internal instance of CoRR. Andrey’s work was part the test phase of the 

earliest integration stage of Sumatra to CoRR. A result of 38 computations were captured. The 

outcome of the computation of these codes was mostly performance-based data: memory usage, 

cpu usage, duration and the actual benchmark results. While some of the computations took a 

few minutes, other took days and some even weeks. This was part of our goal in testing the 

stability of the integration for fast running computations and gradually slower ones. The PFHUB 

site can be found at: (https://pages.nist.gov/pfhub/ accessed September 29, 2018). 
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6.3.3 NIST - FACT 

Dr. Espinal at the NIST FACT lab solicited our help in addressing a possible uncertainty issue that 

occurred at multiple instance with the adsorption machines used. Composed of three machines, 

Dr. Espinal and her team have been running cycles for years now and have consistently noted 

some discrepancies. Despite the differences in procedures, all adsorption data could be aligned 

on the same sets of units. While measurements between machines were odd from time to time, 

what was more interesting is that the changes were occurring within the same machines. Our 

collaboration can be comprehended as a forward lookup into an important additional feature of 

CoRR. In fact, once the execution of computations is captured, one could imagine automatic 

mechanisms of characterizing the output through a reference structure identification. Thus, 

results drifting from what is known can be quickly identified and addressed. However, in the case 

of the FACT lab, we are in an experimental use case. The additional challenge was the 

investigation of a design architecture that could prove the level agnosticism that could be 

handled by CoRR. The result of this collaboration is a separate web application named laura-

reference that can take any sorption data and whenever needed generate a reference data from 

all the existing datasets. As such, another feature of laura-reference is the capability to assess 

new datasets with this reference data. When measurements are drifting too much in some 

portions, the new dataset is rejected. Yet, when it is closed to the dataset in a way that is similar 

in parts to existing and accepted measurements, the dataset is labeled as a valid characterization 

measurement output. We have learned enormously from this project. First, by being a 

computational solution, CoRR interface can be adapted to tools and web platforms. Moreover, 

the software controlling experimental machines can be modified as done with tools and web 

platforms to communicate with an instance of CoRR. Thus, we have come to the conclusion that 

integrating a tool to CoRR to ensure the reproducibility of its managed computation is at a level 

of flexibility that its agnostic to whether the end unit is a standard computer or more of a complex 

custom machine. Second, the design of laura-reference has open the perspective for how plugins 

for extended features of CoRR could leverage the API in new ways to provide advanced 

mechanisms such as here: reference output fitting and output validity assessment from a large 
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collection of previous ones. The source code laura-reference is open source and can be found at: 

(https://github.com/faical-yannick-congo/laura-reference accessed September 29, 2018). 

6.3.4 AFRL/NIST - Integrated Computational Environment (ICE) 

Matthew Jacobsen and his team at AFRL have been working on the ICE project for a few years. 

As a data management tool that have received positive returns from its major user base at AFRL, 

ICE has evolved to become two entities. The original entity (ICE) core mechanism has been 

extracted as an independent part and named HyperThought. Therefore, ICE became the web-

based wrapping around HyperThought which can accommodate various interface integrations. 

As part of its mission to collect data about scientific processes HyperThought inevitably came to 

the question of reproducibility. Thus, our Collaboration with Matthew and his team was on an 

integration scheme between CoRR and HyperThought that will allow any other interfaces such 

as ICE to leverage all the features of CoRR. A critical one of these features, is the fact that 

scientists can use any tool of their liking that is integrated to CoRR without having HyperThought 

deal with this aspect for each tool or web platform. Active discussions and meetings have started 

since 2017 and future work is expected later this year or earlier next year. 

6.3.5 LLNL/NIST - Open Interoperability Project between CoRR and Tools 

From an integration collaboration with two of the MaestroWF project’s team members at a 

Hackaton organized by Matthew Jacobsen at AFRL, we have experienced the YAS (Yet Another 

Something). In this case, the Something is a simulation management package with the goal to 

ease reproducibility. Before this collaboration, when integrating tools to CoRR (Sumatra, 

ReproZip, CDE, NoWorkflow, PANDA), we were modifying the source code of these tools directly. 

As a consequence, we have inevitably created duplicated codes. This collaboration has allowed a 

step back and a reflection into how to avoid this situation. The result of this brainstorm is a shared 

library that will hold most common aspect of integration to CoRR. Tools and Web platforms 

integrations to CoRR will need this library and provide the specifics of each implementation. As a 

result, we are one step further into a dialog between tools and platforms development teams 

and closer to opening more standards in interoperability between those. The resulting library is 

called Contracts as it provides the means to interact with CoRR. Those means can be called in the 
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third parties’ software in the needed order. An initial Python version is available on Github: 

(https://github.com/usnistgov/contracts accessed September 29, 2018). Binders to other 

language will be provided going forward. 

6.4 CONCLUSION 

In this chapter we have enumerated the most substantial projects applying the results of this 

thesis. Far from us to ignore the other collaborations not listed here. Moreover, collaborations 

involving our computational results caching for exact repeatability are barely starting. We expect 

it to be fruitful in the upcoming year. Additionally, despite most applications being on CoRR, we 

have a wider range of possibilities that extend beyond computational reproducibility as shown 

with the FACT lab. Also, dawning projects not listed here demonstrate applicability of CoRR in 

Artificial Intelligence, Blockchain and IoT. All of this in service to augmenting the current practices 

of safeguarding the trust and essence of Science. We briefly describe our integration capability 

with major tools: Sumatra, ReproZip, CDE. As we write this thesis, we are working on adding tools 

such as PANDA, NoWorkflow, MaestroWF. The reader will notice in this chapter that most use 

case applications are done within NIST. The reason is that as of now, there are two active 

instances of CoRR. One internal within NIST is only accessible to Scientists of the institute. A 

second instance https://corr-root.org (corr-root), is a production ready public and serves as an 

experimental instance for testing the latest releases of CoRR. We are currently working to have 

the first official public instance of CoRR hosted at NIST. We encourage scientists interested in 

using the applications to wait for instance https://corr.nist.org (corr.nist). We hope that by the 

time this manuscript reaches the public eye, the instance will be available. While corr-root will 

be more up to date with the CoRR source code latest stable features and will serve as a test bed 

for institution looking to vet new features before upgrading their instances of CoRR, corr.nist will 

always show the most stable and secure instance due to more regulatory applications of the 

Institution’s Office of Information Security and Management (OISM). 
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Chapter 7 – DISCUSSIONS 

7.1 INTRODUCTION 

At the first year of this journey we have set off to uncover how we could harmonize the current 

landscape of ad hoc characterization of how to represent software in execution in order to 

guarantee reproducibility of such a state. This adventure quickly led us to enumerate the four 

major problems impeding the emancipation of current tools and web platforms. To quickly recall 

these problems, we list them here for the reader. For more details refer to chapter 2. 

v P1. Lack of adequate means of reaching out to Scientists 

v P2. Absence of a standard or an interoperability feature between the current tools 

v P3. Scarcity of collaborative features in a collaboration driven world 

v P4. No solution to exact reproducibility due to Numerical precision issues  

Once determined our journey has been since then to uniformly address them. This inquiry 

resulted in CoRR and NumCache. These contributions effectively solve these four problems. 

However not in their final forms, we have done extensive research and have implemented 

versions of these and applied them in situations that can only but show the length of applicability 

of our approaches and tangible results.  

Despite the great promises and effective resolution of the problems of interest in this thesis, 

there are aspects of reproducibility, vital to Science, that are left unsolved or might cause 

confusion if left unchecked. Moreover, there are scales at which our solutions have not been 

tested at yet and cannot be guaranteed to be viable. The following subsections briefly discuss 

those aspects, not solved by this research but still represents a fundamental barrier to advancing 

Science, its trust and collaboration features from within. 

7.2 REPRODUCIBILITY VS CORRECTNESS 

In our sense it is fundamental for the reader to grasp the subtle difference between these two 

terms. The research and solutions investigated during this thesis focus solely on the 

reproducibility factor of research results. By no means do we suppose correctness. By focusing 
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in reproducibility, our methods and all the tools presented here attempt to answer the question: 

given some meta-data and data structured in a comprehensive way, can I reconstruct a research 

computation to reach a result similar, if not identical, to the one from which those meta-data and 

data were taken from? This does not mean in no measure that the result obtain is correct. 

Consequently, a scientific investigation can be made a hundred percent reproducible but be a 

hundred percent wrong. While verifying the correctness of scientific results requires 

reproducibility in the best scenario, the reverse is not true. However, for the sake of trust and 

advancement of Science, reproducibility is in need of a correctness verification mechanism. The 

following section details what this is currently. 

7.3 INDEPENDENT VERIFICATION 

In order to vet the correctness of a scientific result, other scientists must corroborate on its 

reproducibility and its veracity. To avoid any fraudulent activities in support of fake verifications, 

the scientists assessing the veracity of a result may do so independently. This process is called 

independent verification. This process has been extensively used in Quality Insurance and 

corporate review specially in accounting. In recent year, due to the growing number of frauds in 

research publications, independent verifications have been required in pharmaceutical, life 

Science and publication review committees. However, there is typically a cost incurred in 

implementing this process. Although possible as an extended feature of CoRR, independent 

verification and the complexity of managing it through a Web platform has not be investigated. 

One might quickly state that with independent verification implemented, the reproducibility 

pipeline loop is guaranteed and close. However, there is still a situation not accounted for that 

points otherwise. 

7.4 UNCONTROLLED RUNTIME VARIATIONS 

When designing and properly scoping any system, accounting for failures is required. All systems 

eventually fail, while some are controllable, others are not. Furthermore, while some can be 

recovered from, others cannot. In the case of uncontrolled variations during the runtime of a 

computation, the cumulating impact can lead to a reproducibility issue. Situations such as 
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memory failure, data corruption, power surge and computational glitch are few cases for which 

reproducibility can be seriously impeded. As of today, there is no remedy to uncontrolled runtime 

variations and their potential impact of scientific results reproducibility. Worse, in some cases, 

results may be only able to be reproduced on one system due to sustained uncontrolled 

variations that are by essence non-transferable to another system as they just happen for various 

reasons. 

While this is still an open problem that imped the guarantee of reproducibility for all current tools 

and platforms, there is another case in which all current solutions, even those presented in this 

thesis, will become unstable: scaling up. The next subsection briefly details this situation.  

7.5 REPRODUCIBILITY AT EXASCALE 

The major applications of Exascale computing are extremely large and complex simulations. 

Examples are:  combustion, climate modeling, astrophysics, Aerospace, Airframes, Jet Turbines, 

etc… These simulations are typically the orchestration of millions or even billions of small 

computations. Ensuring the reproducibility of such big simulations is already a challenge on its 

own. In fact, the execution of all computations must be captured and stored. Thus, while storage 

is likely to be a problem, reproducing such a simulation requires special hardware (an Exascale 

machine). Besides these challenges, there are issues that while rare on regular computers, 

become very frequent at Exascale. Examples of those have been listed in the previous subsection. 

In essence, if a failure, like a soft error due to an alpha particle, occurs once in a trillion cycles for 

a Gigascale computer, at Exascale one failure will occur at every thousand cycles. Adding this to 

the storage and hardware challenge cause most existing solutions to become unstable or 

unpractical at this scale. 

7.6 CONCLUSION 

We have taken the reader here, into the realm of the confusion, the inadequate and the 

unpractical for this research solutions. In fact, the research conducted during this research tackle 

fundamental problems frequently faced by todays Scientists. As such, the situations listed here 

are beyond this scope by nonetheless critical. Correctness despite being different is in some cases 
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required to confirm reproducibility. However, this can’t generally be done without independent 

validators. By not focusing in capitalizing on the latter specifically, these two situations present a 

limitation of our current solutions. From the four listed situations, the two first recalled 

previously can easily be dealt with through a new feature in CoRR. The other two cases are for 

now considered unsolved even if they occur in rare cases for one and for the other considered a 

problem of the few since Exascale machines are not to be found on every street corner. 
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Chapter 8 – GENERAL CONCLUSION 

8.1 SUMMARY OF THE THESIS 

This thesis takes on the core problem of the current reproducible research tools, platforms and 

approaches. Our work revolves around the research of an adequate representation of software 

execution context to ensure reproducibility. However, as shown in the literature review, the 

current spectrum of tools and platforms uncovers a wide range of representation approaches 

and variations. Thus, instead of reinventing the wheel and leading to yet another tool or platform, 

a deeper look and questioning was inevitable. While the actual questioning and motivation might 

seem subjective and may entice the reader for others, the actual benefit of such a research 

exercise is the extraction of problems of interests and motivations behind them that hopefully 

emerge from questions beyond our own. Therefore, our inquiry yielded four fundamental 

problems that must be addressed in diapason with the execution context representation. First, 

most tools and web platforms in support of reproducible research lack adequate means to reach 

out to scientists. Fundamentally, most do cope well with the importance of the World Wide Web 

in gathering the masses. Second, we are not aware of any reproducible support tool or platform 

that is interoperable with any of the other existing ones. That is, a record from one is equivalent 

to one of the other in a sense that it can be converted or directly ingested as is. Third, if the 

advent of the Internet, the Web and their various applications have taught us one thing is that 

collaboration in Science can be and must be boosted by any means possible. In fact, research 

communities are growing, new processes and methods are invented to be more advanced and 

to require new collaboration paradigms that old notions can’t handle. This is the case in general 

and thus also for reproducible research support tools. Collaborative features are either partially 

proposed or not at all. Fourth and last, up to this moment of the thesis, we are also not aware of 

any approach that could consistently and systematically guarantee the exact numerical 

repeatability of research results. The motivations behind these problems were principally that 

the first three were correlated in a way that a viable solution could only exist if it solves the three 

altogether. Thus, the last problem’s solution can be added to the one of the latter three to obtain 

a complete solution to our investigation and goals. 
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The first stage of this work presented in the previous paragraph is developed in chapter 2 and 

chapter 3. Although presented in reverse order to the presupposed dependency of one to the 

other, we want to stress to the reader that in practice, those two chapters’ facts were 

interchangeably developed reciprocally. 

In the second stage of this work, we research and develop the motivated solutions to our 

problematic. As a result, most of the time spent in this thesis was on the solution to the first three 

problems: the CoRR or Cloud of Reproducible Records. It’s a web platform designed and 

constructed to reach the goal of pushing scientific awareness and collaboration further than ever 

before and provides a novel of offering interoperability to existing tools and platforms through 

its internal flexible execution context representation. Therefore, these platforms need not to 

worry but to keep up with the changes in CoRR only in the cases where the interactions protocol 

has drastically changed. We have designed the platform to avoid such cases and mainly focus on 

smooth updates with low consequences to backward compatibility. Also, by being a 

computational solution, CoRR interface can be adapted to tools and web platforms. Moreover, 

the software controlling experimental machines can be modified as done with tools and web 

platforms to communicate with an instance of CoRR. Thus, we have come to the conclusion that 

integrating a tool to CoRR to ensure the reproducibility of its managed computation is at a level 

of flexibility that its agnostic to whether the end unit is a standard computer or more of a complex 

custom machine. 

The rest of the time spent in this thesis was on the solution to exact numerical results 

repeatability: Computation numerical results caching with Num-Cache. It’s a software package 

that can be imported in scientific software to produce a cache of all intermediary computations 

and is sufficient to guarantee the whole computation’s exact numerical repeatability. 

Despite the adequacy of the thesis’ results as novel solutions to the problems of interest, they 

present some limitations. In fact, in the case of uncontrolled runtime variations and at Exascale, 

they struggle where all attempts at these edges fail. Clearly CoRR and Num-Cache are ill-equiped 

against unexpected failures that beyond their features may render the latter inaccessible. By 

causing total or partial system failures, these random hard crashes jeopardize all executing 

software and stored data. Therefore, it is still a persistent issue. Already hard to manage on a 
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single Gigascale machine, uncontrolled runtime error and their twin pair controlled become a 

problem on Exascale machines. The problem is that there are just too many things going on that 

the controlled nature of the error is waived. They all occur very much more often. Moreover, we 

have deemed critical to open the discussion and clear a possible confusion between CoRR and 

Num-Cache being respectively a reproducibility booster and guarantor. Correctness requires 

advanced techniques of assessing veracity that is approached by involving independent 

verifications. It is getting more interest from communities of scientists across various fields as the 

ultimate assessment mechanism for trust. 

Despite these limitations, the solutions of this thesis are proving useful in existing projects as the 

next subsection will present in addition to briefly reviewing CoRR and Num-Cache. Moreover, the 

perspective development of CoRR and Num-Cache allow a wide range of reflection and research 

to address their current limitations. 

8.2 CONTRIBUTIONS OF THE THESIS 

The vast majority of research activities carried out during this thesis took place at NIST within the 

Materials Measurements Laboratory. Naturally, a fair amount of our scientific contributions 

during this journey are clustered within the domain of Material Science. The contributions can 

be organized in two subsequent parts. The first part contains the two direct contributions that 

motivated this study and aimed at solving the selected problems stated in chapter 2. The second 

part regroups the indirect contributions which are mainly composed of collaborative work 

involving consulting invitation on the subject of reproducibility. Additionally, the latter part 

contains the applicative usages of one of the two direct contributions. 

Con1. CoRR - The Cloud of Reproducible Records:  

As introduced in our motivations O1 regarding problem statements P1, P2 and P3 we designed 

and implemented CoRR (Chapter 2). It aims at delivering 4 major features. First, it provides a 

generic representation model that can store any existing tool representation of what a 

reproducible artifact is. Thus, CoRR can serve as an interoperability bridge between the support 

tools. With its generic model, artifacts can freely transition from one tool to the other. Second, it 

currently integrates three major tools (Sumatra, ReproZip and CDE). As of version 0.1, users of 
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these tools can store their records on any instance of CoRR. The effort to integrate more tools is 

incremental and we hope to integrate the 40 software and services supporting reproducibility. 

Third, CoRR is a social network. It allows scientists to share records and collaborate around them 

by communicating their corroboration attempts outcomes. In addition, the fundamental web 

aspect of it makes the perfect framework for reaching out and driving awareness to the issues of 

reproducibility and the current solutions. The fourth and the last major feature is its federation 

capability. In fact, CoRR is designed to allow the run of multiple instances across various locations. 

Many institutions having their own constraints, it makes it ideal for internal usage, isolated from 

others. Yet, when needed, instances can be connected to each other. Hence, the search and 

collaborative capability of one instance is expended to all its connected pairs. With these 

features, we have reasons to believe that CoRR can substantially inhibit P1, P2 and P3. More 

features and details are provided in the upcoming chapters. 

 

Con2. Computation Operations Caching for Numerical Repeatability: 

By wrapping core operators (+, -, *, /), we can extract the order at which their operations are 

being evaluated. Moreover, by recording the two operands, the operator and the result as the 

operations unfold, we can generate a numerical operations cache. Then, fast retrieval hash-keys 

are produced by hashing the operands values with the operator in the order of the operation 

evaluation. This entire mechanism is implemented in the Num-Cache library. When the 

operations order is changed, Num-Cache can detect it through the generation of new hash with 

respect to the previous state of the cache. Thus, Num-Cache can alert scientists of an out of order 

mechanism that could cause precision issues. Also, when the order is preserved but the operation 

fails to deliver the same result, Num-Cache can reload the previous result and comparatively also 

throw an alert. With these two features, the scientist can furthermore task the library to adopt a 

new result or reload a previously cached one in the advent of an alert. 

With the previous summary description of the novelty in Num-Cache, we are confident that it 

opens a new way to solve the problems of numerical precision due to our current processors’ 

limitations. In fact, we dare hope that it will rise attention to processors manufacturer and spike 
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interests in the release of low-level code that will carry on with our research with Num-Cache 

and make processors smarter when computing operations involving big and small Floating-Point 

numbers. The solution here is to prioritize operations between numbers at same order of 

magnitude. 

Con3. Evaluation and comparison of classical interatomic potentials through a user-friendly 

interactive web-interface: 

This collaborative contribution is among the earliest applicative use cases of CoRR. Classical 

empirical potentials/force-fields provides atomistic insights into material phenomena through 

molecular dynamics and Monte Carlo simulations. Despite their wide applicability, a systematic 

evaluation of materials properties using such potentials and, especially, an easy-to-use user-

interface for their comparison is still lacking. To address this deficiency, CoRR was used to record 

reproducible artifacts of computed energetics and elastic properties of variety of materials such 

as metals and ceramics using a wide range of empirical potentials and compared them to DFT as 

well as to experimental data, where available. The database currently consists of 3248 entries 

including energetics and elastic property calculations, and it is still increasing. We also include 

computational tools for convex-hull plots for DFT and FF calculations. The data covers 1471 

materials and 116 force-fields. 

Con4. Role of e-Collaborations in Scaling-Up Materials Innovation: 

The present intellectual contribution occurred in the form of a rich aggregation of ideas, 

experiences and expertise in the aspects of e-Collaborations importance with regard to advancing 

Materials Science. Our contribution was most pressing on the aspects of innovation activities 

involving the sharing of data/knowledge, collaborative tools, workflow capture and management 

tools. In fact, the goal of the recently announced materials innovation initiatives such as the MGI 

is to substantially reduce the time and cost of materials design and deployment. Achieving this 

goal requires taking advantage of recent advances in data and information Sciences and fostering 

variety of existing and emerging modes of online collaborations between diverse stakeholders, 

hereafter collectively referred to as e-collaborations. These e-collaborations must become a core 

strategy to accomplish the vision of scaled-up materials innovation. Key ingredients needed for 
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successful adoption of e-collaborations in materials innovation activities include shareable and 

accessible data repositories, teaming tools, workflow capture and management tools, and 

annotation tools. The resulting paper reviews opportunities for scaled-up materials innovation 

through adoption of these emerging toolsets and presents a specific case study in modeling and 

design of Ni-based super alloys. 

 

Con5. Data curation software for reproducible results in the FACT Lab: 

This contribution has involved the supervision and training of a summer student for a trimester 

on the general subject of software engineering and more specifically on the aspect of 

reproducible research. It is the main experimentally focused exploration done during this thesis 

on the peculiar issues of reproducibility with laboratory machines and the research of solutions 

to remediate these. The goals of the MGI to reduce the time and cost of the deployment of new 

materials by 50% have increased the need to share experimental and computational data. 

Concurrent with the increased need to share data, the materials Science community has 

increased the emphasis on the data reproducibility as well. To enable the ability to share data 

and provide reproducible data, a variety of data curation tools are being developed. One of these 

curation tools is the NIST Information Technology Laboratory, Materials Data Curation System. 

This data curation tool is a Python/MongoDB/Django Web-based system that provides a means 

for capturing, sharing, and transforming data. This is being used to develop a data curation 

protocol for high pressure CO2 adsorption isotherms measured at 20 °C on the NIST reference 

material RM-8852 (zeolite ZSM-5) using state-of-the-art instruments in the FACT Lab, a 

laboratory commissioned to establish testing procedures and provide reliable material property 

data. We aimed to investigate and build a validation workflow to address the effectiveness of the 

testing procedures and the reliability of the material property data. The data is converted directly 

from Excel into a JSON and XML format using a python script. The XML formatted data can then 

be entered into the curator using an API. Once the data are entered into the MDCS, the data can 

be searched and shared with other users. The result of this workflow will help refine standards 

of how the experimental results are gathered and curated to the MDCS, while also improving 



154 
 

how other scientists should use these results in the best way to improve reproducibility across 

further computations. 

Con6. CHiMAD Benchmark computations in CoRR: 

This contribution has involved the supervision and training of a second summer student for a 

trimester on the aspect of using the early integration of Sumatra with CoRR to record 

computations for a Benchmark. CHiMaD is a phase field community dedicated to distributing 

phase field models to determine the most efficient way of simulating various materials. The goal 

of this contribution was to record the computations and evaluate the performance in terms of 

execution time, memory consumption, CPU usage and convergence speed of various phase field 

codes on 6 major phase field problems: Spinodal Decomposition, Ostwald Ripening, Dendritic 

Growth, Linear Elasticity, Stokes Flow, Electrostatics and MMS Allen-Cahn. 

Con7. Open Interoperability Project between CoRR and Tools: 

This contribution derives from a collaboration with the MaestroWF team from LLNL. Before this 

collaboration, integrations of tools to CoRR were done within each tool source code. This 

obviously led to duplicated code that becomes hard to maintain as they evolve separately within 

each tool. The outcome of this collaboration is a python library named contracts that contains all 

the common mechanisms of interacting with the CoRR API and proposes tool to tool 

communication with CoRR as a translating bridge. Thus, to integrate a new tool with CoRR now 

signifies integrating this library in the tool source code as done with other tools. Therefore, when 

the contracts library evolves, it does so for all the tools homogeneously.  

8.3 PERSPECTIVES 

The limitations to the solutions contributed can be addressed in two separate future timeframes. 

Among these limitations are those that can be addressed relatively easily through features added 

to CoRR and Num-Cache. However, there are others that will require more questioning and 

research. The latter may well possibly open the way to new directions and complementary 

approaches. 
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8.3.1 Future directions with CoRR 

The collaboration schemes provided by CoRR already include the possibility for scientists to link 

two records by stating if they are repeats, reproductions or replicates. Although, this still does 

not mean that CoRR goes beyond reproducibility to correctness, we are confident that the same 

mechanism can be used to allow independent verifications. Thus, scientists can be invited to be 

independent verifiers and will be able to assess the veracity of records as currently done with 

scientific papers reviews invitations. 

CoRR is a web platform and by design is not supposed to cohabitate with the tools and web 

platforms that it integrates. The latter runs inside computing environments or external cloud 

platforms. Thus, in the case of a runtime error on the system in which the traced computation is 

executing, CoRR is able to determine the nature of the failure based on previous runs. Such errors 

include incomplete data reception, data corruption, dependency change, source code alteration, 

etc. However, CoRR is not designed to handle uncontrolled runtime error that leads to total 

system failures on its own computing node or the traced computations. The only evidence will 

be not updated status still at running while the link to the process vanished abruptly in an 

uncontrolled fashion. The problem of scale for CoRR resides at two points. First, the tool watching 

the computations on the Exascale infrastructure must be able to watch the potential billions of 

threads running from a single computation launch. This is where the initial challenge starts. 

Second, as any modern web platform/application that serves users by their millions, a CoRR 

instance that serves scientists across an Exascale machine needs an appropriate cloud 

infrastructure with the proper load balancing and high availability. 

8.3.2 The possibilities ahead of Num-Cache 

By leveraging a caching approach that stores the mathematical operations of computations in 

association with their results in the order of their evaluation, Num-Cache opens the way for new 

techniques in numerical results repeatability. However, at the moment, the main issue of its very 

first version is the additional time incurred in every operation secured by the library. We have 

theoretically evaluated it to be in the order of O(log n). The main challenge going forward is the 

application of techniques to reduce this time lost at best. Indeed, this will move Num-Cache from 
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its suitability at debug time into its adequacy de facto at every stage of the software lifecycle. 

Interesting and insightful comments and recommendations from participants at SummerSim 

edition 2018 suggest three main options going forward. First, instead of a ad hoc library, inject 

some code from the compiler in the case of C++ or the interpreter in the case of Python. Second, 

a study on the impact on the hardware used may reveal being useful. Indeed, the cost of O(log 

n) may just reveal itself to be more acceptable in the case of a GPU based computation than a 

CPU one. Third, maybe we should resign ourselves at advertising this method only at debug time. 

Depending on the second option, this may well be limited to CPU and not GPU based 

computation. Last and not the least, in our opinion, we think Num-Cache can be more effective 

with a more adaptable and more secure core. We think of more dynamic features involving 

interruptions and requesting the user to use the strategy at the moment for the specific 

operation or for all operations. Additionally, we plan to integrate a RSA public encryption to 

protect the cache from unwanted eyes should the scientists feel skeptical in dumping their results 

in clear for all to see. 

8.3.3 Ongoing and Future directions in General 

Going forward with the results of this thesis involves three critical activities. The first activity is 

more personal and involves pushing the approaches and techniques used in these results further. 

We look into bettering each tool but furthermore into fully integrating CoRR and Num-Cache. 

Including future plans for each result separately, we also look forward into other aspect of 

scientific computing that are complementary to reproducibility. The aspect of correctness and 

specifically in ways to automate independent verifications is of interest to us. In fact, it has 

already received a certain level of thoughts in which we see blockchain as the modern-day 

technology that can make such a solution possible and viable. The second activity involves 

collaborations with tools developers. We are looking into yearly meeting in which we could drive 

the various disparities into common understanding in which CoRR can play a key role. We have 

to come to an agreement that despite the common goal and the overlaps most of these tools are 

unique as they mostly aim at solving the problem from a different point of view. The latter is 

strongly motivated by the specifics of the domain. A neuroscientist indeed may not see things 

the same way as a geologist specially when designing a software. Moreover, if we cannot find 
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reasons for differences may be various teams could merge efforts and thus move quicker to what 

they are hoping to achieve. Therefore, such an activity will involve discussions into 

representations mapping between tools through CoRR. This will be fueled by our proposals. 

Additionally, we will have a common ground understanding on things in which no team can 

compromise on and build groups of tools per similarities. Teams could then work together in 

learning from each other after presentations from each team. The third activity involves hands 

on hackathons in which tools developers can show scientists how to use their tools with CoRR. 

More generally we are looking to make our mission to democratize tools and platforms in service 

of improving reproducibility to all scientists at large. All our activities will be set at an 

International scale and thus be open to anyone through public publications sources for our 

content and streaming services for our meetings. 
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