. Altmann, Observational study of behavior: sampling methods, Behaviour, vol.49, pp.227-267, 1974.

S. M. Camus, C. Blois-heulin, Q. Li, M. Hausberger, and E. Bezard, Behavioural profiles in 1011 captive-bred cynomolgus macaques: towards monkey models of mental disorders? PLoS 1012 One, vol.8, p.62141, 2013.

M. Camus, Birth origin differentially affects depressive-like behaviours: are 1014 captive-born cynomolgus monkeys more vulnerable to depression than their wild-born 1015 counterparts?, PLoS One, vol.8, p.67711, 2013.

M. Camus, Depressive-like behavioral profiles in captive-bred single-and 1017 socially-housed rhesus and cynomolgus macaques: a species comparison. Front Behav 1018 Neurosci, vol.8, p.47, 2014.

F. N. Soria, Glucocerebrosidase deficiency in dopaminergic neurons induces 1020 microglial activation without neurodegeneration, Hum Mol Genet, vol.26, pp.2603-2615, 2017.

P. Chomczynski and N. Sacchi, Single-step method of RNA isolation by acid guanidinium 1022 thiocyanate-phenol-chloroform extraction, Anal Biochem, vol.162, pp.156-159, 1987.

S. A. Bustin, The MIQE guidelines: minimum information for publication of 1024 quantitative real-time PCR experiments, Clin Chem, vol.55, pp.611-622, 2009.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time 1026 quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, pp.402-408, 2001.

E. A. Waxman and B. I. Giasson, Specificity and regulation of casein kinase-mediated 1028 phosphorylation of alpha-synuclein, J Neuropathol Exp Neurol, vol.67, pp.402-416, 2008.

N. N. Vaikath, Generation and characterization of novel conformation-specific 1030 monoclonal antibodies for alpha-synuclein pathology, Neurobiol Dis, vol.79, pp.81-99, 2015.

M. Helwig, Brain propagation of transduced alpha-synuclein involves non-fibrillar 1032 protein species and is enhanced in alpha-synuclein null mice, Brain, vol.139, pp.856-870, 2016.

J. F. Mosselmans, I18--the microfocus spectroscopy beamline at the Diamond Light 1034

, Source. J Synchrotron Radiat, vol.16, pp.818-824, 2009.

, Cette étude met en avant le rôle des métaux dans les synucléinopathies

L. L. Edwards, E. M. Quigley, and R. F. Pfeiffer, Gastrointestinal dysfunction in Parkinson's disease: frequency and pathophysiology, Neurology, vol.42, pp.726-732, 1992.

K. Knudsen, Objective Colonic Dysfunction is Far more Prevalent than Subjective Constipation in Parkinson's Disease: A Colon Transit and Volume Study, J Parkinsons Dis, vol.7, pp.359-367, 2017.

T. G. Beach, Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders, Acta Neuropathol, vol.119, pp.689-702, 2010.

H. Braak, Staging of brain pathology related to sporadic Parkinson's disease, Neurobiol Aging, vol.24, pp.197-211, 2003.

H. Braak, R. A. De-vos, J. Bohl, and K. Del-tredici, Gastric alpha-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology, Neurosci Lett, vol.396, pp.67-72, 2006.

A. Ulusoy, Caudo-rostral brain spreading of alpha-synuclein through vagal connections, EMBO Mol Med, vol.5, pp.1119-1127, 2013.

A. Ulusoy, Brain-to-stomach transfer of alpha-synuclein via vagal preganglionic projections, Acta Neuropathol, vol.133, pp.381-393, 2017.

F. P. Manfredsson, Induction of alpha-synuclein pathology in the enteric nervous system of the rat and non-human primate results in gastrointestinal dysmotility and transient CNS pathology, Neurobiol Dis, vol.112, pp.106-118, 2018.

N. Uemura, Inoculation of alpha-synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve, Mol Neurodegener, vol.13, p.21, 2018.

S. Holmqvist, Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats, Acta Neuropathol, vol.128, pp.805-820, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01155404

A. Lionnet, Does Parkinson's disease start in the gut?, Acta Neuropathol, vol.135, pp.1-12, 2018.

M. Bourdenx, Machine learning reveals pathological signatures induced by patient-derived alpha-synuclein structures, 2019.

A. Recasens, Lewy body extracts from Parkinson disease brains trigger alphasynuclein pathology and neurodegeneration in mice and monkeys, Ann Neurol, vol.75, pp.351-362, 2014.

E. Bezard, Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson's disease, J Neurosci, vol.21, pp.6853-6861, 2001.

N. N. Vaikath, Generation and characterization of novel conformation-specific monoclonal antibodies for alpha-synuclein pathology, Neurobiol Dis, vol.79, pp.81-99, 2015.

J. T. Hinkle, Dopamine transporter availability reflects gastrointestinal dysautonomia in early Parkinson disease, Parkinsonism Relat Disord, vol.55, pp.8-14, 2018.

P. Borghammer, Is constipation in Parkinson's disease caused by gut or brain pathology?, Parkinsonism Relat Disord, vol.55, pp.6-7, 2018.

O. M. El-agnaf, Alpha-synuclein implicated in Parkinson's disease is present in extracellular biological fluids, including human plasma, FASEB J, vol.17, pp.1945-1947, 2003.

B. Dehay, Targeting ?-synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations, Lancet Neurol, vol.14, issue.8, pp.855-866, 2015.

R. Yan, Synergistic neuroprotection by coffee components eicosanoyl-5-hydroxytryptamide and caffeine in models of Parkinson's disease and DLB, Proc Natl Acad Sci USA, vol.115, issue.51, pp.12053-12062, 2018.

M. Bourdenx, E. Bezard, and B. Dehay, Lysosomes and ?-synuclein form a dangerous duet leading to neuronal cell death, Front Neuroanat, vol.8, p.83, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01215533

B. Dehay, Pathogenic lysosomal depletion in Parkinson's disease, J Neurosci, vol.30, issue.37, pp.12535-12544, 2010.

M. Xilouri and O. R. Brekk, Stefanis L. ?-Synuclein and protein degradation systems: a reciprocal relationship, Mol Neurobiol, vol.47, issue.2, pp.537-551, 2013.

C. T. Chu, J. Zhu, and R. Dagda, Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death, Autophagy, vol.3, issue.6, pp.663-666, 2007.

A. M. Cuervo, L. Stefanis, R. Fredenburg, P. T. Lansbury, and D. Sulzer, Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy, Science, vol.305, issue.5688, pp.1292-1295, 2004.

M. Martinez-vicente, Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy, J Clin Invest, vol.118, issue.2, pp.777-788, 2008.

T. Vogiatzi, M. Xilouri, K. Vekrellis, and L. Stefanis, Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells, J Biol Chem, vol.283, issue.35, pp.23542-23556, 2008.

A. Scrivo, M. Bourdenx, O. Pampliega, and A. M. Cuervo, Selective autophagy as a potential therapeutic target for neurodegenerative disorders, Lancet Neurol, vol.17, issue.9, pp.802-815, 2018.

D. Ebrahimi-fakhari, Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of ?-synuclein, J Neurosci, vol.31, issue.41, pp.14508-14520, 2011.

H. J. Lee, F. Khoshaghideh, S. Patel, and S. J. Lee, Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway, J Neurosci, vol.24, issue.8, pp.1888-1896, 2004.

P. O. Fernagut, Multiple system atrophy: a prototypical synucleinopathy for disease-modifying therapeutic strategies, Neurobiol Dis, vol.67, pp.133-139, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01217333

L. Schwarz, O. Goldbaum, M. Bergmann, S. Probst-cousin, and C. Richter-landsberg, Involvement of macroautophagy in multiple system atrophy and protein aggregate formation in oligodendrocytes, J Mol Neurosci, vol.47, issue.2, pp.256-266, 2012.

K. Tanji, Alteration of autophagosomal proteins in the brain of multiple system atrophy, Neurobiol Dis, vol.49, pp.190-198, 2013.

M. Compagnoni and G. , Mitochondrial Dysregulation and Impaired Autophagy in iPSC-Derived Dopaminergic Neurons of Multiple System Atrophy, Stem Cell Reports, vol.11, issue.5, pp.1185-1198, 2018.

W. Song, TFEB regulates lysosomal proteostasis, Hum Mol Genet, vol.22, issue.10, pp.1994-2009, 2013.

C. J. Cortes, L. Spada, and A. R. , TFEB dysregulation as a driver of autophagy dysfunction in neurodegenerative disease: Molecular mechanisms, cellular processes, and emerging therapeutic opportunities, Neurobiol Dis, vol.122, pp.83-93, 2019.

M. Palmieri, Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways, Hum Mol Genet, vol.20, pp.3852-3866, 2011.

H. Martini-stoica, Y. Xu, A. Ballabio, and H. Zheng, The Autophagy-Lysosomal Pathway in Neurodegeneration: A TFEB Perspective, Trends Neurosci, vol.39, issue.4, pp.221-234, 2016.

C. Settembre, TFEB links autophagy to lysosomal biogenesis, Science, vol.332, issue.6036, pp.1429-1433, 2011.

C. Settembre, A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB, EMBO J, vol.31, issue.5, pp.1095-1108, 2012.

M. Decressac, B. Mattsson, P. Weikop, M. Lundblad, J. Jakobsson et al., TFEB-mediated autophagy rescues midbrain dopamine neurons from ?-synuclein toxicity, Proc Natl Acad Sci, vol.110, pp.1817-1826, 2013.

K. Kilpatrick, Y. Zeng, T. Hancock, and L. Segatori, Genetic and chemical activation of TFEB mediates clearance of aggregated alpha-synuclein, PLoS One, vol.10, issue.3, p.120819, 2015.

W. Song, F. Wang, P. Lotfi, M. Sardiello, and L. Segatori, 2-Hydroxypropyl-?-cyclodextrin promotes transcription factor EB-mediated activation of autophagy: implications for therapy, J Biol Chem, vol.289, issue.14, pp.10211-10222, 2014.

A. Torra, Overexpression of TFEB Drives a Pleiotropic Neurotrophic Effect and Prevents Parkinson's Disease-Related Neurodegeneration, Mol Ther, vol.26, issue.6, pp.1552-1567, 2018.

M. Bourdenx, Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by ?-synuclein overexpression, Acta Neuropathol Commun, vol.3, p.46, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01193129

H. Wang, R. Wang, S. Xu, and M. K. Lakshmana, Transcription Factor EB Is Selectively Reduced in the Nuclear Fractions of Alzheimer's and Amyotrophic Lateral Sclerosis Brains, Neurosci J, p.4732837, 2016.

F. Bassil, Insulin resistance and exendin-4 treatment for multiple system atrophy, Brain, vol.140, issue.5, pp.1420-1436, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01537233

F. Bassil, Reducing C-terminal truncation mitigates synucleinopathy and neurodegeneration in a transgenic model of multiple system atrophy, Proc Natl Acad Sci, vol.113, issue.34, pp.9593-9598, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01370967

P. O. Fernagut, Age-related motor dysfunction and neuropathology in a transgenic mouse model of multiple system atrophy, Synapse, vol.68, issue.3, pp.98-106, 2014.

P. J. Kahle, Hyperphosphorylation and insolubility of alpha-synuclein in transgenic mouse oligodendrocytes, EMBO Rep, vol.3, issue.6, pp.583-588, 2002.

V. Refolo, Progressive striatonigral degeneration in a transgenic mouse model of multiple system atrophy: translational implications for interventional therapies, Acta Neuropathol Commun, vol.6, issue.1, p.2, 2018.

G. Napolitano, mTOR-dependent phosphorylation controls TFEB nuclear export, Nat Commun, vol.9, issue.1, p.3312, 2018.

R. Puertollano, S. M. Ferguson, J. Brugarolas, and A. Ballabio, The complex relationship between TFEB transcription factor phosphorylation and subcellular localization, EMBO J, vol.37, issue.11, p.98804, 2018.

R. Filograna, Analysis of the Catecholaminergic Phenotype in Human SH-SY5Y and BE(2)-M17 Neuroblastoma Cell Lines upon Differentiation, PLoS ONE, vol.10, issue.8, p.136769, 2015.

S. L. Hsuan, H. M. Klintworth, and Z. Xia, Basic fibroblast growth factor protects against rotenone-induced dopaminergic cell death through activation of extracellular signal-regulated kinases 1/2 and phosphatidylinositol-3 kinase pathways, J Neurosci, vol.26, issue.17, pp.4481-4491, 2006.

P. Boya and G. Kroemer, Lysosomal membrane permeabilization in cell death, Oncogene, vol.27, issue.50, pp.6434-6451, 2008.

M. Vila, J. Bove?, B. Dehay, N. Rodríguez-muela, and P. Boya, Lysosomal membrane permeabilization in Parkinson disease, Autophagy, vol.7, issue.1, pp.98-100, 2011.

M. Bourdenx and B. Dehay, What lysosomes actually tell us about Parkinson's disease?, Ageing Res Rev, vol.32, pp.140-149, 2016.

P. Lie and R. A. Nixon, Lysosome trafficking and signaling in health and neurodegenerative diseases, Neurobiol Dis, vol.122, pp.94-105, 2019.

M. Xilouri, Boosting chaperone-mediated autophagy in vivo mitigates ?-synuclein-induced neurodegeneration, Brain, vol.136, pp.2130-2146, 2013.

B. Spencer, Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases, J Neurosci, vol.29, issue.43, pp.13578-13588, 2009.

B. Boland, Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing, Nat Rev Drug Discov, vol.17, issue.9, pp.660-688, 2018.

E. Valera and E. Masliah, The neuropathology of multiple system atrophy and its therapeutic implications, Auton Neurosci, vol.211, pp.1-6, 2018.

D. Malta and C. , Transcriptional activation of RagD GTPase controls mTORC1 and promotes cancer growth, Science, vol.356, issue.6343, pp.1188-1192, 2017.

A. I. Flores, Constitutively active Akt induces enhanced myelination in the CNS, J Neurosci, vol.28, issue.28, pp.7174-7183, 2008.

M. Bradl and H. Lassmann, Oligodendrocytes: biology and pathology, Acta Neuropathol, vol.119, issue.1, pp.37-53, 2010.

J. M. Gaesser and S. L. Fyffe-maricich, Intracellular signaling pathway regulation of myelination and remyelination in the CNS, Exp Neurol, vol.283, pp.501-511, 2016.

L. Fellner, E. Buchinger, D. Brueck, R. Irschick, G. K. Wenning et al., Limited effects of dysfunctional macroautophagy on the accumulation of extracellularly derived ?-synuclein in oligodendroglia: implications for MSA pathogenesis, BMC Neurosci, vol.19, issue.1, p.32, 2018.

I. Carballo-carbajal, Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis, Nat Commun, vol.10, issue.1, p.973, 2019.

H. Martini-stoica, TFEB enhances astroglial uptake of extracellular tau species and reduces tau spreading, J Exp Med, vol.215, issue.9, pp.2355-2377, 2018.

C. Spampanato, Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease, EMBO Mol Med, vol.5, issue.5, pp.691-706, 2013.

Y. Liu, Neuronal-targeted TFEB rescues dysfunction of the autophagy-lysosomal pathway and alleviates ischemic injury in permanent cerebral ischemia, Autophagy, vol.15, issue.3, pp.493-509, 2019.

S. Bala and G. Szabo, TFEB, a master regulator of lysosome biogenesis and autophagy, is a new player in alcoholic liver disease, Dig Med Res, vol.1, p.16, 2018.

X. Chao, H. M. Ni, and W. X. Ding, Insufficient autophagy: a novel autophagic flux scenario uncovered by impaired liver TFEB-mediated lysosomal biogenesis from chronic alcohol-drinking mice, Autophagy, vol.14, issue.9, pp.1646-1648, 2018.

G. Zheng, TFEB, a potential therapeutic target for osteoarthritis via autophagy regulation, Cell Death Dis, vol.9, issue.9, p.858, 2018.

S. Tan, Pomegranate activates TFEB to promote autophagy-lysosomal fitness and mitophagy, Sci Rep, vol.9, issue.1, p.727, 2019.

S. Zolotukhin, Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield, Gene Ther, vol.6, issue.6, pp.973-985, 1999.

C. Aurnhammer, Universal real-time PCR for the detection and quantification of adeno-associated virus serotype 2-derived inverted terminal repeat sequences, Hum Gene Ther Methods, vol.23, issue.1, pp.18-28, 2012.

M. Engeln, Levodopa gains psychostimulant-like properties after nigral dopaminergic loss, Ann Neurol, vol.74, issue.1, pp.140-144, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01153692

P. Chomczynski and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Anal Biochem, vol.162, issue.1, pp.156-159, 1987.

S. A. Bustin, The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clin Chem, vol.55, issue.4, pp.611-622, 2009.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, issue.4, pp.402-408, 2001.

A. Recasens, Lewy body extracts from Parkinson disease brains trigger ?-synuclein pathology and neurodegeneration in mice and monkeys, Ann Neurol, vol.75, issue.3, pp.351-362, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01022197

J. D. Hunter, Matplotlib: A 2D Graphics Environment, 2007.

E. Jones, T. Oliphant, P. Peterson, and . Scipy, Open Source Scientific Tools for Python, 2001.

W. S. Van-der, S. C. Colbert, and G. Varoquaux, The NumPy Array: A Structure for Efficient Numerical Computation, Computing in Science and Engineering, vol.13, issue.2, pp.22-30, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00564007

T. Pringsheim, N. Jette, A. Frolkis, and T. Steeves, The prevalence of Parkinson's disease: a systematic review and meta-analysis

, Mov Disord, vol.29, issue.13, pp.1583-90, 2014.

H. Mccann, C. H. Stevens, H. Cartwright, and G. M. Halliday, Synucleinopathy phenotypes, vol.20, pp.70017-70025, 2014.

D. W. Colby, S. B. Prusiner, and . Prions, Cold Spring Harb Perspect Biol, vol.3, issue.1, p.6833, 2011.

H. Braak, D. Rüb, U. De-vos, J. Steur, R. A. Braak et al., Staging of brain pathology related to sporadic Parkinson's disease, Neurobiol Aging, vol.24, issue.2, pp.197-211, 2002.

K. A. Jellinger, A critical reappraisal of current staging of Lewyrelated pathology in human brain, Acta Neuropathol, vol.116, issue.1, pp.1-16, 2008.

I. G. Mckeith, B. F. Boeve, D. W. Dickson, G. Halliday, J. Taylor et al., Diagnosis and management of dementia with Lewy bodies. Fourth consensus report of the DLB Consortium, Neurology, vol.89, issue.1, pp.88-100, 2017.

K. A. Jellinger, K. Seppi, and G. K. Wenning, Grading of neuropathology in multiple system atrophy: proposal for a novel scale, Mov Disord, vol.20, issue.S12, pp.29-36, 2005.

J. H. Kordower, Y. Chu, R. A. Hauser, T. B. Freeman, and C. W. Olanow, Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease, Nat Med, vol.14, issue.5, pp.504-510, 2008.

J. Y. Li, E. Englund, J. L. Holton, D. Soulet, P. Hagell et al., Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation, Nat Med, vol.14, issue.5, pp.501-504, 2008.

I. Mendez, A. Viñuela, A. Astradsson, K. Mukhida, P. Hallett et al., Dopamine neurons implanted into people with Parkinson's disease survive without pathology for 14 years, Nat Med, vol.14, issue.5, pp.507-516, 2008.

H. Braak, R. A. De-vos, J. Bohl, D. Tredici, and K. , Gastric alphasynuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology, Neurosci Lett, vol.396, issue.1, pp.67-72, 2006.

A. Sanchez-ferro, A. Rabano, M. J. Catalan, F. C. Rodriguez-valcarcel, F. Diez et al., In vivo gastric detection of alpha-synuclein inclusions in Parkinson's disease, Mov Disord, vol.30, issue.4, pp.517-541, 2015.

A. G. Corbille, F. Letournel, J. H. Kordower, J. Lee, E. Shanes et al., Evaluation of alpha-synuclein immunohistochemical methods for the detection of Lewy-type synucleinopathy in gastrointestinal biopsies, Acta Neuropathol Commun, vol.4, p.35, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01392426

B. F. Liu, F. Pedersen, N. L. Tillander, A. Ludvigsson, J. F. Ekbom et al., Vagotomy and Parkinson disease. A Swedish register-based matched-cohort study, Neurology, vol.88, pp.1-7, 2017.

E. Svensson, E. Horváth-puhó, R. W. Thomsen, J. C. Djurhuus, L. Pedersen et al., Vagotomy and subsequent risk of Parkinson's disease, Ann Neurol, vol.78, issue.4, pp.522-531, 2015.

B. I. Giasson, I. V. Murray, J. Q. Trojanowski, and V. M. Lee, A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly, J Biol Chem, vol.276, issue.4, pp.2380-2386, 2001.

M. Iljinaa, G. A. Garcia, M. H. Horrocks, L. Tosatto, M. L. Choi et al., Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading, Proc Natl Acad Sci, vol.113, issue.9, pp.1206-1221, 2016.

P. Desplats, H. J. Lee, E. J. Bae, C. Patrick, E. Rockenstein et al., Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein, Proc Natl Acad Sci U S A, vol.106, issue.31, pp.13010-13015, 2009.

J. H. Kordower, H. B. Dodiya, A. M. Kordower, B. Terpstra, K. Paumier et al., Transfer of host-derived alpha synuclein to grafted dopaminergic neurons in rat, Neurobiol Dis, vol.43, issue.3, pp.552-559, 2011.

K. C. Luk, V. Kehm, J. Carroll, B. Zhang, P. O'brien et al., Pathological alpha-synuclein transmission initiates Parkinsonlike neurodegeneration in nontransgenic mice, Science, vol.338, issue.6109, pp.949-53, 2012.

A. Recasens, B. Dehay, J. Bove, I. Carballo-carbajal, S. Dovero et al., Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys, Ann Neurol, vol.75, issue.3, pp.351-62, 2014.

A. Ulusoy, R. J. Phillips, M. Helwig, M. Klinkenberg, T. L. Powley et al., Brain-to-stomach transfer of alpha-synuclein via vagal preganglionic projections, Acta Neuropathol, vol.133, issue.3, pp.381-93, 2017.

A. Ulusoy, R. Rusconi, B. I. Perez-revuelta, R. E. Musgrove, M. Helwig et al., Caudo-rostral brain spreading of alpha-synuclein through vagal connections, EMBO Mol Med, vol.5, issue.7, pp.1119-1146, 2013.

L. A. Volpicelli-daley, K. C. Luk, T. P. Patel, S. A. Tanik, D. M. Riddle et al., Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death, Neuron, vol.72, issue.1, pp.57-71, 2011.

M. Masuda-suzukake, T. Nonaka, M. Hosokawa, T. Oikawa, T. Arai et al., Prion-like spreading of pathological alphasynuclein in brain, Brain, vol.136, pp.1128-1166, 2013.

J. C. Watts, K. Giles, A. Oehler, L. Middleton, D. T. Dexter et al., Transmission of multiple system atrophy prions to transgenic mice, Proc Natl Acad Sci, vol.110, issue.48, pp.19555-60, 2013.

D. J. Irwin, J. Y. Abrams, L. B. Schonberger, E. W. Leschek, J. L. Mills et al., Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone, JAMA Neurol, vol.70, issue.4, pp.462-470, 2013.

, Les synucléinopathies sont-elles des maladies à prions ? Maladies neurodégénératives

T. Pringsheim, N. Jette, A. Frolkis, and T. D. Steeves, The prevalence of Parkinson's disease: A systematic review and meta-analysis, Mov. Disord, vol.29, pp.1583-1590, 2014.

H. Mccann, C. H. Stevens, H. Cartwright, and G. Halliday, Synucleinopathy phenotypes, vol.20, pp.62-67, 2014.

F. N. Emamzadeh and A. Surguchov, Parkinson's Disease: Biomarkers, Treatment, and Risk Factors, Front. Neurosci, vol.12, p.612, 2018.

H. Snyder, K. Mensah, C. Hsu, M. Hashimoto, I. G. Surgucheva et al., beta-Synuclein reduces proteasomal inhibition by alpha-synuclein but not gamma-synuclein, J. Biol. Chem, vol.280, pp.7562-7569, 2005.

P. Rivero-rios, J. Madero-perez, B. Fernandez, and S. Hilfiker, Targeting the Autophagy/Lysosomal Degradation Pathway in Parkinson's Disease, Curr. Neuropharmacol, vol.14, pp.238-249, 2016.

A. Scrivo, M. Bourdenx, O. Pampliega, and A. M. Cuervo, Selective autophagy as a potential therapeutic target for neurodegenerative disorders, Lancet Neurol, vol.17, pp.802-815, 2018.

M. H. Polymeropoulos, C. Lavedan, E. Leroy, S. E. Ide, A. Dehejia et al., Mutation in the alpha-synuclein gene identified in families with Parkinson's disease, Science, vol.276, pp.2045-2047, 1997.

R. Kruger, W. Kuhn, T. Muller, D. Woitalla, M. Graeber et al., Riess, O. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease, Nat. Genet, vol.18, pp.106-108, 1998.

J. J. Zarranz, J. Alegre, J. C. Gomez-esteban, E. Lezcano, R. Ros et al., The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia, Ann. Neurol, vol.55, pp.164-173, 2004.

J. Q. 1yan, Y. H. Yuan, S. F. Chu, G. H. Li, and N. H. Chen, E46K Mutant alpha-Synuclein Is Degraded by Both Proteasome and Macroautophagy Pathway, Molecules, vol.23, 2018.

Z. 1lei, G. Cao, and G. Wei, A30P mutant alpha-synuclein impairs autophagic flux by inactivating JNK signaling to enhance ZKSCAN3 activity in midbrain dopaminergic neurons, Cell Death Dis, vol.10, p.133, 2019.

V. Choubey, D. Safiulina, A. Vaarmann, M. Cagalinec, P. Wareski et al., Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy, J. Biol. Chem, vol.286, pp.10814-10824, 2011.

A. Zimprich, S. Biskup, P. Leitner, P. Lichtner, M. Farrer et al., Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology, Neuron, vol.44, pp.601-607, 2004.

I. Martin, J. W. Kim, V. L. Dawson, and T. M. Dawson, LRRK2 pathobiology in Parkinson's disease, J. Neurochem, vol.131, pp.554-565, 2014.

S. Lesage, A. Dürr, M. Tazir, E. Lohmann, A. Leutenegger et al., LRRK2 G2019S as a Cause of Parkinson's Disease in North African Arabs, N. Engl. J. Med, vol.354, pp.422-423, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00221453

A. Ramirez, A. Heimbach, J. Grundemann, B. Stiller, D. Hampshire et al., Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase, Nat. Genet, vol.38, pp.1184-1191, 2006.

S. Edvardson, Y. Cinnamon, A. Ta-shma, A. Shaag, Y. I. Yim et al., A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism, PLoS ONE, vol.7, 2012.

H. Deng, P. Wang, and J. Jankovic, The genetics of Parkinson disease, Ageing Res. Rev, vol.42, pp.72-85, 2018.

E. K. Gustavsson, J. Trinh, I. Guella, C. Vilarino-guell, S. Appel-cresswell et al., Mov. Disord, vol.30, pp.273-278, 2015.

N. Hattori, T. Kitada, H. Matsumine, S. Asakawa, Y. Yamamura et al., Molecular genetic analysis of a novel Parkin gene in Japanese families with autosomal recessive juvenile parkinsonism: Evidence for variable homozygous deletions in the Parkin gene in affected individuals, Ann. Neurol, vol.44, pp.935-941, 1998.

N. Hattori, H. Matsumine, S. Asakawa, T. Kitada, H. Yoshino et al., Point Mutations (Thr240Arg and Ala311Stop) in theParkinGene, Biochem. Biophys. Res. Commun, vol.249, pp.754-758, 1998.

T. Kitada, S. Asakawa, N. Hattori, H. Matsumine, Y. Yamamura et al., Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism, Nature, vol.392, pp.605-608, 1998.

E. Leroy, D. Anastasopoulos, S. Konitsiotis, C. Lavedan, and M. H. Polymeropoulos, Deletions in the Parkin gene and genetic heterogeneity in a Greek family with early onset Parkinson's disease, Hum. Genet, vol.103, pp.424-427, 1998.

C. B. Lücking, N. Abbas, A. Dürr, V. Bonifati, A. M. Bonnet et al., Homozygous deletions in parkin gene in European and North African families with autosomal recessive juvenile parkinsonism, Lancet, vol.352, pp.1355-1356, 1998.

H. Matsumine, M. Saito, S. Shimoda-matsubayashi, H. Tanaka, A. Ishikawa et al., Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27, Am. J. Hum. Genet, vol.60, pp.588-596, 1997.

E. M. Valente, A. R. Bentivoglio, P. H. Dixon, A. Ferraris, T. Ialongo et al., Localization of a Novel Locus for Autosomal Recessive Early-Onset Parkinsonism, PARK6, on Human Chromosome 1p35-p36, Am. J. Hum. Genet, vol.68, pp.895-900, 2001.

E. M. Valente, F. Brancati, V. Caputo, E. A. Graham, M. B. Davis et al., PARK6 is a common cause of familial parkinsonism, Neurol. Sci, vol.23, pp.117-118, 2002.

E. M. Valente, F. Brancati, A. Ferraris, E. A. Graham, M. B. Davis et al., Park6-linked parkinsonism occurs in several european families, Ann. Neurol, vol.51, pp.14-18, 2002.

V. Bonifati, P. Rizzu, M. J. Van-baren, O. Schaap, G. J. Breedveld et al., Mutations in the DJ-1 Gene Associated with Autosomal Recessive Early-Onset Parkinsonism, vol.299, pp.256-259, 2003.

C. M. Van-duijn, M. C. Dekker, V. Bonifati, R. J. Galjaard, J. J. Houwing-duistermaat et al., Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36, Am. J. Hum. Genet, vol.69, pp.629-634, 2001.

K. S. Hruska, M. E. Lamarca, C. R. Scott, and E. Sidransky, Gaucher disease: Mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA), Hum. Mutat, vol.29, pp.567-583, 2008.

J. Neumann, J. Bras, E. Deas, S. S. O'sullivan, L. Parkkinen et al., Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease, Brain, vol.132, pp.1783-1794, 2009.

E. Sidransky, M. A. Nalls, J. O. Aasly, J. Aharon-peretz, G. Annesi et al., Multicenter Analysis of Glucocerebrosidase Mutations in Parkinson's Disease, N. Engl. J. Med, vol.361, pp.1651-1661, 2009.

L. A. Robak, I. E. Jansen, J. Van-rooij, A. G. Uitterlinden, R. Kraaij et al., Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease, vol.140, pp.3191-3203, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01690979

P. Anglade, S. Vyas, F. Javoy-agid, M. Herrero, P. Michel et al., Apoptosis and Autophagy in Nigral Neurons of Patients with Parkinson's Disease, Histol. Histopathol, vol.12, pp.25-31, 1997.

L. Alvarez-erviti, M. C. Rodriguez-oroz, J. M. Cooper, C. Caballero, I. Ferrer et al., Chaperone-mediated autophagy markers in Parkinson disease brains, Arch. Neurol, vol.67, pp.1464-1472, 2010.

K. Tanji, F. Mori, A. Kakita, H. Takahashi, and K. Wakabayashi, Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in Lewy body disease, Neurobiol. Dis, vol.43, pp.690-697, 2011.

B. Dehay, J. Bove, N. Rodriguez-muela, C. Perier, A. Recasens et al., Pathogenic lysosomal depletion in Parkinson's disease, J. Neurosci, vol.30, pp.12535-12544, 2010.

S. Higashi, D. J. Moore, M. Minegishi, K. Kasanuki, H. Fujishiro et al., Localization of MAP1-LC3 in Vulnerable Neurons and Lewy Bodies in Brains of Patients With Dementia With Lewy Bodies, J. Neuropathol. Exp. Neurol, vol.70, pp.264-280, 2011.

L. Crews, B. Spencer, P. Desplats, C. Patrick, A. Paulino et al., Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy, PLoS ONE, vol.5, 2010.

K. Tanji, S. Odagiri, A. Maruyama, F. Mori, A. Kakita et al., Alteration of autophagosomal proteins in the brain of multiple system atrophy, Neurobiol. Dis, vol.49, pp.190-198, 2013.

L. Schwarz, O. Goldbaum, M. Bergmann, S. Probst-cousin, and C. Richter-landsberg, Involvement of macroautophagy in multiple system atrophy and protein aggregate formation in oligodendrocytes, J. Mol. Neurosci, vol.47, pp.256-266, 2012.

B. Dehay, A. Ramirez, M. Martinez-vicente, C. Perier, M. H. Canron et al., Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration, Proc. Natl. Acad. Sci, vol.109, pp.9611-9616, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01290058

T. T. Rohn and L. W. Catlin, Immunolocalization of influenza A virus and markers of inflammation in the human Parkinson's disease brain, PLoS ONE, vol.6, 2011.

N. Papagiannakis, M. Xilouri, C. Koros, A. M. Simitsi, M. Stamelou et al., Autophagy dysfunction in peripheral blood mononuclear cells of Parkinson's disease patients, Neurosci. Lett, vol.704, pp.112-115, 2019.

A. Laguna, N. Schintu, A. Nobre, A. Alvarsson, N. Volakakis et al., Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson's disease, Nat. Neurosci, vol.18, pp.826-835, 2015.

Y. Chu, H. Dodiya, P. Aebischer, C. W. Olanow, and J. H. Kordower, Alterations in lysosomal and proteasomal markers in Parkinson's disease: Relationship to alpha-synuclein inclusions, Neurobiol. Dis, vol.35, pp.385-398, 2009.

K. E. Murphy, L. Cottle, A. M. Gysbers, A. A. Cooper, and G. M. Halliday, ATP13A2 (PARK9) protein levels are reduced in brain tissue of cases with Lewy bodies, Acta Neuropathol. Commun, 2011.

K. Makioka, T. Yamazaki, M. Takatama, Y. Nakazato, and K. Okamoto, Activation and alteration of lysosomes in multiple system atrophy, Neuroreport, vol.23, pp.270-276, 2012.

G. Monzio-compagnoni, G. Kleiner, M. Samarani, M. Aureli, G. Faustini et al., Mitochondrial Dysregulation and Impaired Autophagy in iPSC-Derived Dopaminergic Neurons of Multiple System Atrophy, Stem Cell Rep, vol.11, pp.1185-1198, 2018.

K. E. Murphy, A. M. Gysbers, S. K. Abbott, A. S. Spiro, A. Furuta et al., Lysosomal-associated membrane protein 2 isoforms are differentially affected in early Parkinson's disease, Mov. Disord, vol.30, pp.1639-1647, 2015.

Y. Chiba, S. Takei, N. Kawamura, Y. Kawaguchi, K. Sasaki et al., Immunohistochemical localization of aggresomal proteins in glial cytoplasmic inclusions in multiple system atrophy, Neuropathol. Appl. Neurobiol, vol.38, pp.559-571, 2012.

M. E. Gegg, D. Burke, S. J. Heales, J. M. Cooper, J. Hardy et al., Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains, Ann. Neurol, vol.72, pp.455-463, 2012.

D. Chiasserini, S. Paciotti, P. Eusebi, E. Persichetti, A. Tasegian et al., Selective loss of glucocerebrosidase activity in sporadic Parkinson's disease and dementia with Lewy bodies, Mol. Neurodegener, vol.10, 2015.

K. E. Murphy, A. M. Gysbers, S. K. Abbott, N. Tayebi, W. S. Kim et al., Reduced glucocerebrosidase is associated with increased alpha-synuclein in sporadic Parkinson's disease, Brain, vol.137, pp.834-848, 2014.

C. Balducci, L. Pierguidi, E. Persichetti, L. Parnetti, M. Sbaragli et al., Lysosomal hydrolases in cerebrospinal fluid from subjects with Parkinson's disease, Mov. Disord, vol.22, pp.1481-1484, 2007.

L. Parnetti, D. Chiasserini, E. Persichetti, P. Eusebi, S. Varghese et al., Cerebrospinal fluid lysosomal enzymes and alpha-synuclein in Parkinson's disease, Mov. Disord, vol.29, pp.1019-1027, 2014.

K. D. Van-dijk, E. Persichetti, D. Chiasserini, P. Eusebi, T. Beccari et al., Changes in endolysosomal enzyme activities in cerebrospinal fluid of patients with Parkinson's disease, Mov. Disord, vol.28, pp.747-754, 2013.

J. Klucken, A. M. Poehler, D. Ebrahimi-fakhari, J. Schneider, S. Nuber et al., Alpha-synuclein aggregation involves a bafilomycin A 1-sensitive autophagy pathway, Autophagy, vol.8, pp.754-766, 2012.

M. Usenovic, E. Tresse, J. R. Mazzulli, J. P. Taylor, and D. Krainc, Deficiency of ATP13A2 leads to lysosomal dysfunction, alpha-synuclein accumulation, and neurotoxicity, J. Neurosci, vol.32, pp.4240-4246, 2012.

T. Tsunemi, T. Perez-rosello, Y. Ishiguro, A. Yoroisaka, S. Jeon et al., Increased lysosomal exocytosis induced by lysosomal Ca(2+) channel agonists protects human dopaminergic neurons from alpha-synuclein toxicity, J. Neurosci, 2019.

S. Sato, T. Uchihara, T. Fukuda, S. Noda, H. Kondo et al., Loss of autophagy in dopaminergic neurons causes Lewy pathology and motor dysfunction in aged mice, Sci. Rep, 2018.

J. L. Webb, B. Ravikumar, J. Atkins, and J. N. Skepper, Rubinsztein, D.C. ?-Synuclein Is Degraded by Both Autophagy and the Proteasome, J. Biol. Chem, vol.278, pp.25009-25013, 2003.

H. Lee, F. Khoshaghideh, S. Patel, and S. Lee, Clearance of ?-Synuclein Oligomeric Intermediates via the Lysosomal Degradation Pathway, J. Neurosci, vol.24, 1888.

B. Spencer, R. Potkar, M. Trejo, E. Rockenstein, C. Patrick et al., Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases, J. Neurosci, vol.29, pp.13578-13588, 2009.

W. H. Yu, B. Dorado, H. Y. Figueroa, L. Wang, E. Planel et al., Metabolic activity determines efficacy of macroautophagic clearance of pathological oligomeric alpha-synuclein, Am. J. Pathol, vol.175, pp.736-747, 2009.

A. M. Cuervo, L. Stefanis, R. Fredenburg, P. T. Lansbury, and D. Sulzer, Impaired Degradation of Mutant ?-Synuclein by Chaperone-Mediated Autophagy, Science, vol.305, p.1292, 2004.

S. K. Mak, A. L. Mccormack, A. B. Manning-bog, A. M. Cuervo, and D. A. Di-monte, Lysosomal degradation of alpha-synuclein in vivo, J. Biol. Chem, vol.285, pp.13621-13629, 2010.

T. Vogiatzi, M. Xilouri, K. Vekrellis, and L. Stefanis, Wild type alpha-synuclein is degraded by chaperonemediated autophagy and macroautophagy in neuronal cells, J. Biol. Chem, vol.283, pp.23542-23556, 2008.

M. Xilouri, O. R. Brekk, A. Polissidis, M. Chrysanthou-piterou, I. Kloukina et al., Impairment of chaperone-mediated autophagy induces dopaminergic neurodegeneration in rats, Autophagy, vol.12, pp.2230-2247, 2016.

L. Alvarez-erviti, Y. Seow, A. H. Schapira, M. C. Rodriguez-oroz, J. A. Obeso et al., Influence of microRNA deregulation on chaperone-mediated autophagy and alpha-synuclein pathology in Parkinson's disease, Cell Death Dis, 2013.

G. Li, H. Yang, D. Zhu, H. Huang, G. Liu et al., Targeted suppression of chaperone-mediated autophagy by miR-320a promotes alpha-synuclein aggregation, Int. J. Mol. Sci, vol.15, pp.15845-15857, 2014.

S. Shendelman, A. Jonason, C. Martinat, T. Leete, and A. Abeliovich, DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation, PLoS Biol, 2004.

C. Y. Xu, W. Y. Kang, Y. M. Chen, T. F. Jiang, J. Zhang et al., DJ-1 Inhibits alpha-Synuclein Aggregation by Regulating Chaperone-Mediated Autophagy, Front. Aging Neurosci, vol.9, 2017.

E. J. Bae, N. Y. Yang, C. Lee, H. J. Lee, S. Kim et al., Loss of glucocerebrosidase 1 activity causes lysosomal dysfunction and alpha-synuclein aggregation, Exp. Mol. Med, vol.47, 2015.

V. Cullen, S. P. Sardi, J. Ng, Y. H. Xu, Y. Sun et al., Acid beta-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter alpha-synuclein processing, Ann. Neurol, vol.69, pp.940-953, 2011.

J. R. Mazzulli, Y. H. Xu, Y. Sun, A. L. Knight, P. J. Mclean et al., Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies, Cell, vol.146, pp.37-52, 2011.

M. W. Cleeter, K. Y. Chau, C. Gluck, A. Mehta, D. A. Hughes et al., Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage, Neurochem. Int, vol.62, pp.1-7, 2013.

Y. H. Xu, Y. Sun, H. Ran, B. Quinn, D. Witte et al., Accumulation and distribution of alpha-synuclein and ubiquitin in the CNS of Gaucher disease mouse models, Mol. Genet. Metab, vol.102, pp.436-447, 2011.

H. Braak, K. Del-tredici, U. Rüb, R. A. De-vos, E. N. Jansen-steur et al., Staging of brain pathology related to sporadic Parkinson's disease, Neurobiol. Aging, vol.24, pp.197-211, 2002.

J. H. Kordower, Y. Chu, R. A. Hauser, C. W. Olanow, and T. B. Freeman, Transplanted dopaminergic neurons develop PD pathologic changes: A second case report, Mov. Disord, vol.23, pp.2303-2306, 2008.

J. Y. Li, E. Englund, J. L. Holton, D. Soulet, P. Hagell et al., Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation, Nat. Med, vol.14, pp.501-503, 2008.

I. Mendez, A. Viñuela, A. Astradsson, K. Mukhida, P. Hallett et al., Dopamine neurons implanted into people with Parkinson's disease survive without pathology for 14 years, Nat. Med, vol.14, pp.507-509, 2008.

P. Desplats, H. J. Lee, E. J. Bae, C. Patrick, E. Rockenstein et al., Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein

, Proc. Natl Acad Sci, vol.106, p.24, 2009.

A. Recasens, B. Dehay, J. Bove, I. Carballo-carbajal, S. Dovero et al., Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys, Ann. Neurol, vol.75, pp.351-362, 2014.

F. N. Soria, O. Pampliega, M. Bourdenx, W. G. Meissner, E. Bezard et al., Exosomes, an Unmasked Culprit in Neurodegenerative Diseases, Front. Neurosci, vol.11, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01490842

G. Minakaki, S. Menges, A. Kittel, E. Emmanouilidou, I. Schaeffner et al., Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype, Autophagy, vol.14, pp.98-119, 2018.

L. Alvarez-erviti, Y. Seow, A. H. Schapira, C. Gardiner, I. L. Sargent et al., Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission, Neurobiol. Dis, vol.42, pp.360-367, 2011.

K. M. Danzer, L. R. Kranich, W. P. Ruf, O. Cagsal-getkin, A. R. Winslow et al., Exosomal cell-to-cell transmission of alpha synuclein oligomers, Mol. Neurodegener, vol.7, p.42, 2012.

H. J. Lee, E. D. Cho, K. W. Lee, J. H. Kim, S. G. Cho et al., Autophagic failure promotes the exocytosis and intercellular transfer of alpha-synuclein, Exp. Mol. Med, vol.45, 2013.

A. M. Poehler, W. Xiang, P. Spitzer, V. E. May, H. Meixner et al., Autophagy modulates SNCA/alpha-synuclein release, thereby generating a hostile microenvironment, Autophagy, vol.10, pp.2171-2192, 2014.

T. Tsunemi, K. Hamada, and D. Krainc, ATP13A2/PARK9 regulates secretion of exosomes and alpha-synuclein, J. Neurosci, vol.34, pp.15281-15287, 2014.

S. M. Kong, B. K. Chan, J. S. Park, K. J. Hill, J. B. Aitken et al., Parkinson's disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes alpha-Synuclein externalization via exosomes, Hum. Mol. Genet, vol.23, pp.2816-2833, 2014.

E. J. Bae, N. Y. Yang, M. Song, C. S. Lee, J. S. Lee et al., Glucocerebrosidase depletion enhances cell-to-cell transmission of alpha-synuclein, Nat. Commun, vol.5, 2014.

L. Stefanis, K. E. Larsen, H. J. Rideout, D. Sulzer, and L. A. Greene, Expression of A53T Mutant But Not Wild-Type ?-Synuclein in PC12 Cells Induces Alterations of the Ubiquitin-Dependent Degradation System, Loss of Dopamine Release, and Autophagic Cell Death, J. Neurosci, vol.21, pp.9549-9560, 2001.

J. X. Song, J. H. Lu, L. F. Liu, L. L. Chen, S. S. Durairajan et al., HMGB1 is involved in autophagy inhibition caused by SNCA/alpha-synuclein overexpression: A process modulated by the natural autophagy inducer corynoxine B, Autophagy, vol.10, pp.144-154, 2014.

A. R. Winslow, C. W. Chen, S. Corrochano, A. Acevedo-arozena, D. E. Gordon et al., alpha-Synuclein impairs macroautophagy: Implications for Parkinson's disease, J. Cell Biol, vol.190, pp.1023-1037, 2010.

M. Xilouri, T. Vogiatzi, K. Vekrellis, D. Park, and L. Stefanis, Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy, PLoS ONE, vol.4, p.5515, 2009.

M. Martinez-vicente, Z. Talloczy, S. Kaushik, A. C. Massey, J. Mazzulli et al., Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy, J. Clin. Invest, vol.118, pp.777-788, 2008.

A. C. Hoffmann, G. Minakaki, S. Menges, R. Salvi, S. Savitskiy et al., Extracellular aggregated alpha synuclein primarily triggers lysosomal dysfunction in neural cells prevented by trehalose

Q. Yang, H. She, M. Gearing, E. Colla, M. Lee et al., Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy, Science, vol.323, pp.124-127, 2009.

J. Yan, Y. Yuan, Y. Gao, J. Huang, K. Ma et al., Overexpression of Human E46K Mutant ?-Synuclein Impairs Macroautophagy via Inactivation of JNK1-Bcl-2 Pathway, Mol. Neurobiol, vol.50, pp.685-701, 2014.

S. A. Tanik, C. E. Schultheiss, L. A. Volpicelli-daley, K. R. Brunden, and V. M. Lee, Lewy body-like alpha-synuclein aggregates resist degradation and impair macroautophagy, J. Biol. Chem, vol.288, pp.15194-15210, 2013.

D. Freeman, R. Cedillos, S. Choyke, Z. Lukic, K. Mcguire et al., Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis, PLoS ONE, vol.8, 2013.

A. N. Stefanovic, M. T. Stockl, M. M. Claessens, and V. Subramaniam, Synuclein oligomers distinctively permeabilize complex model membranes, FEBS J, vol.281, pp.2838-2850, 2014.

J. R. Mazzulli, F. Zunke, O. Isacson, and L. Studer, Krainc, D. alpha-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models, Proc. Natl. Acad. Sci, vol.113, pp.1931-1936, 2016.

T. L. Yap, J. M. Gruschus, A. Velayati, W. Westbroek, E. Goldin et al., Alpha-synuclein interacts with Glucocerebrosidase providing a molecular link between Parkinson and Gaucher diseases, J. Biol. Chem, vol.286, pp.28080-28088, 2011.

T. Hara, K. Nakamura, M. Matsui, A. Yamamoto, Y. Nakahara et al., Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice, Nature, vol.441, pp.885-889, 2006.

M. Komatsu, S. Waguri, T. Chiba, S. Murata, J. Iwata et al., Loss of autophagy in the central nervous system causes neurodegeneration in mice, Nature, vol.441, pp.880-884, 2006.

M. Komatsu, Q. J. Wang, G. R. Holstein, V. L. Friedrich, . Jr et al., Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration, Proc. Natl. Acad. Sci, vol.104, pp.14489-14494, 2007.

S. M. Ferguson, Neuronal lysosomes, Neurosci. Lett, vol.697, pp.1-9, 2019.

S. Jäger, C. Bucci, I. Tanida, T. Ueno, E. Kominami et al., Role for Rab7 in maturation of late autophagic vacuoles, J. Cell. Sci, vol.117, pp.4837-4848, 2004.

M. Bourdenx, J. Daniel, E. Genin, F. N. Soria, M. Blanchard-desce et al., Nanoparticles restore lysosomal acidification defects: Implications for Parkinson and other lysosomal-related diseases, Autophagy, vol.12, pp.472-483, 2016.

L. R. Kett, B. Stiller, M. M. Bernath, I. Tasset, J. Blesa et al., alpha-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2, J. Neurosci, vol.35, pp.5724-5742, 2015.

A. G. Henry, S. Aghamohammadzadeh, H. Samaroo, Y. Chen, K. Mou et al., Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression, Hum. Mol. Genet, vol.24, pp.6013-6028, 2015.

Y. Tong, H. Yamaguchi, E. Giaime, S. Boyle, R. Kopan et al., Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice, Proc. Natl. Acad. Sci, vol.107, pp.9879-9884, 2010.

E. Giaime, Y. Tong, L. K. Wagner, Y. Yuan, G. Huang et al., Age-Dependent Dopaminergic Neurodegeneration and Impairment of the Autophagy-Lysosomal Pathway in LRRK-Deficient Mice, vol.96, pp.796-807, 2017.

L. Qiao, S. Hamamichi, K. A. Caldwell, G. A. Caldwell, T. A. Yacoubian et al., Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity, Mol. Brain, vol.1, p.17, 2008.

S. P. Sardi, J. Clarke, C. Kinnecom, T. J. Tamsett, L. Li et al., CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy, Proc. Natl. Acad. Sci, vol.108, pp.12101-12106, 2011.

M. R. Lewis and W. H. Lewis, Mitochondria in tissue culture, Science, vol.39, pp.330-333, 1914.

J. C. Greene, A. J. Whitworth, I. Kuo, L. A. Andrews, M. B. Feany et al., Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants, Proc. Natl. Acad. Sci, vol.100, pp.4078-4083, 2003.

J. Park, S. B. Lee, S. Lee, Y. Kim, S. Song et al., Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin, Nature, vol.441, pp.1157-1161, 2006.

A. C. Poole, R. E. Thomas, L. A. Andrews, H. M. Mcbride, A. J. Whitworth et al., The PINK1/Parkin pathway regulates mitochondrial morphology, Proc. Natl. Acad. Sci, vol.105, pp.1638-1643, 2008.

J. Brooks, J. Ding, J. Simon-sanchez, C. Paisan-ruiz, A. B. Singleton et al., Parkin and PINK1 mutations in early-onset Parkinson's disease: Comprehensive screening in publicly available cases and control, J. Med. Genet, vol.46, pp.375-381, 2009.

R. J. Youle and D. P. Narendra, Mechanisms of mitophagy, Nat. Rev. Mol. Cell Biol, vol.12, pp.9-14, 2011.

D. A. Stevens, Y. Lee, H. C. Kang, B. D. Lee, Y. I. Lee et al., Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration, Proc. Natl. Acad. Sci, vol.112, pp.11696-11701, 2015.

D. A. Sliter, J. Martinez, L. Hao, X. Chen, N. Sun et al., Parkin and PINK1 mitigate STING-induced inflammation, Nature, vol.561, pp.258-262, 2018.

O. Corti and . Mitophagy, Lessons from a Pathway Linked to Parkinson's Disease, Neurotox. Res, 2019.

C. Van-der-merwe, Z. Jalali-sefid-dashti, A. Christoffels, B. Loos, and S. Bardien, Evidence for a common biological pathway linking three Parkinson's disease-causing genes: Parkin, PINK1 and DJ-1, Eur. J. Neurosci, vol.41, pp.1113-1125, 2015.

L. Zondler, L. Miller-fleming, M. Repici, S. Goncalves, S. Tenreiro et al., DJ-1 interactions with alpha-synuclein attenuate aggregation and cellular toxicity in models of Parkinson's disease

K. J. Thomas, M. K. Mccoy, J. Blackinton, A. Beilina, M. Van-der-brug et al., DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy, Hum. Mol. Genet, vol.20, pp.40-50, 2011.

B. Wang, Z. Cai, K. Tao, W. Zeng, F. Lu et al., Essential control of mitochondrial morphology and function by chaperone-mediated autophagy through degradation of PARK7, Autophagy, vol.12, pp.1215-1228, 2016.

H. Li, A. Ham, T. C. Ma, S. H. Kuo, E. Kanter et al., Mitochondrial dysfunction and mitophagy defect triggered by heterozygous GBA mutations, Autophagy, vol.15, pp.113-130, 2019.

A. Zimprich, A. Benet-pages, W. Struhal, E. Graf, S. H. Eck et al., A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease, Am. J. Hum. Genet, vol.89, pp.168-175, 2011.

E. Zavodszky, M. N. Seaman, K. Moreau, M. Jimenez-sanchez, S. Y. Breusegem et al., Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy, Nat. Commun, vol.5, 2014.

E. T. Williams, L. Glauser, E. Tsika, H. Jiang, S. Islam et al., Parkin mediates the ubiquitination of VPS35 and modulates retromer-dependent endosomal sorting, Hum. Mol. Genet, vol.27, pp.3189-3205, 2018.

J. Huang, J. Yang, Y. Shen, H. Jiang, C. Han et al., HMGB1 Mediates Autophagy Dysfunction via Perturbing Beclin1-Vps34 Complex in Dopaminergic Cell Model, Front. Mol. Neurosci, vol.10, 2017.

P. Garcia-sanz, L. Orgaz, J. M. Fuentes, C. Vicario, and R. Moratalla, Cholesterol and multilamellar bodies: Lysosomal dysfunction in GBA-Parkinson disease, Autophagy, vol.14, pp.717-718, 2018.

M. J. Kim, S. Jeon, L. F. Burbulla, and D. Krainc, Acid ceramidase inhibition ameliorates alpha-synuclein accumulation upon loss of GBA1 function, Hum. Mol. Genet, vol.27, 1972.

J. H. Park and E. H. Schuchman, Acid ceramidase and human disease, Biochim. Biophys. Acta, vol.1758, pp.2133-2138, 2006.

P. P. Lie and R. A. Nixon, Lysosome trafficking and signaling in health and neurodegenerative diseases, Neurobiol. Dis, vol.122, p.24, 2019.

T. Pan, P. Rawal, Y. Wu, W. Xie, J. Jankovic et al., Rapamycin protects against rotenone-induced apoptosis through autophagy induction, Neuroscience, vol.164, pp.541-551, 2009.

X. Bai, M. C. Wey, E. Fernandez, M. J. Hart, J. Gelfond et al., Rapamycin improves motor function, reduces 4-hydroxynonenal adducted protein in brain, and attenuates synaptic injury in a mouse model of synucleinopathy, Pathobiol. Aging Age Relat. Dis, vol.5, 2015.

C. Malagelada, Z. H. Jin, V. Jackson-lewis, S. Przedborski, and L. A. Greene, Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease, J. Neurosci, vol.30, pp.1166-1175, 2010.

G. Napolitano and A. Ballabio, TFEB at a glance, J. Cell Sci, vol.129, pp.2475-2481, 2016.

K. Kilpatrick, Y. Zeng, T. Hancock, and L. Segatori, Genetic and chemical activation of TFEB mediates clearance of aggregated alpha-synuclein, PLoS ONE, vol.10, 2015.

M. Decressac, B. Mattsson, P. Weikop, M. Lundblad, J. Jakobsson et al., TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity, Proc. Natl. Acad. Sci, vol.110, pp.1817-1826, 2013.

S. Tan, C. Y. Yu, Z. W. Sim, Z. S. Low, B. Lee et al., Pomegranate activates TFEB to promote autophagy-lysosomal fitness and mitophagy, Sci. Rep, vol.9, 2019.

C. Kim, E. Rockenstein, B. Spencer, H. K. Kim, A. Adame et al., Antagonizing Neuronal Toll-like Receptor 2 Prevents Synucleinopathy by Activating Autophagy, Cell Rep, vol.13, pp.771-782, 2015.

C. Kim, D. H. Ho, J. E. Suk, S. You, S. Michael et al., Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia, Nat. Commun, 1562.

J. A. Rodríguez-navarro, L. Rodríguez, M. J. Casarejos, R. M. Solano, A. Gómez et al., Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation, Neurobiol. Dis, vol.39, pp.423-438, 2010.

S. Sarkar, J. E. Davies, Z. Huang, A. Tunnacliffe, and D. C. Rubinsztein, Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein, J. Biol. Chem, vol.282, pp.5641-5652, 2007.

Y. Luan, X. Ren, W. Zheng, Z. Zeng, Y. Guo et al., Chronic Caffeine Treatment Protects Against alpha-Synucleinopathy by Reestablishing Autophagy Activity in the Mouse Striatum, Front. Neurosci, vol.12, 2018.

L. Hou, N. Xiong, L. Liu, J. Huang, C. Han et al., Lithium protects dopaminergic cells from rotenone toxicity via autophagy enhancement, BMC Neurosci, vol.16, 2015.

X. Z. Li, X. P. Chen, K. Zhao, L. M. Bai, H. Zhang et al., Therapeutic effects of valproate combined with lithium carbonate on MPTP-induced parkinsonism in mice: Possible mediation through enhanced autophagy, Int. J. Neurosci, vol.123, pp.73-79, 2013.

A. Williams, S. Sarkar, P. Cuddon, E. K. Ttofi, S. Saiki et al., Novel targets for Huntington's disease in an mTOR-independent autophagy pathway, Nat. Chem. Biol, vol.4, pp.295-305, 2008.

F. Pagan, M. Hebron, E. H. Valadez, Y. Torres-yaghi, X. Huang et al., Nilotinib Effects in Parkinson's disease and Dementia with Lewy bodies, J. Parkinsons Dis, vol.6, pp.503-517, 2016.

F. L. Pagan, M. L. Hebron, B. Wilmarth, Y. Torres-yaghi, A. Lawler et al., Pharmacokinetics and pharmacodynamics of a single dose Nilotinib in individuals with Parkinson's disease, Pharm. Res

J. Lee, M. K. Mcbrayer, D. M. Wolfe, L. J. Haslett, A. Kumar et al., Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification, Cell Rep, vol.12, pp.1430-1444, 2015.

G. Prévot, F. N. Soria, M. Thiolat, J. Daniel, J. B. Verlhac et al., Harnessing Lysosomal pH through PLGA Nanoemulsion as a Treatment of Lysosomal-Related Neurodegenerative Diseases, Bioconjugate Chem, vol.29, pp.4083-4089, 2018.

J. Koh, H. N. Kim, J. J. Hwang, Y. Kim, and S. E. Park, Lysosomal dysfunction in proteinopathic neurodegenerative disorders: Possible therapeutic roles of cAMP and zinc, Mol. Brain, vol.12, 2019.

G. Ambrosi, C. Ghezzi, R. Zangaglia, G. Levandis, C. Pacchetti et al., Ambroxol-induced rescue of defective glucocerebrosidase is associated with increased LIMP-2 and saposin C levels in GBA1 mutant Parkinson's disease cells, Neurobiol. Dis, vol.82, pp.235-242, 2015.

A. Mcneill, J. Magalhaes, C. Shen, K. Y. Chau, D. Hughes et al., Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells, Brain, vol.137, pp.1481-1495, 2014.

C. R. Silveira, J. Mackinley, K. Coleman, Z. Li, E. Finger et al., Ambroxol as a novel disease-modifying treatment for Parkinson's disease dementia: Protocol for a single-centre, randomized, double-blind, placebo-controlled trial, BMC Neurol, 1920.

J. H. Lu, J. Q. Tan, S. S. Durairajan, L. F. Liu, Z. H. Zhang et al., Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy, Autophagy, vol.8, pp.98-108, 2012.

K. Wang, J. Huang, W. Xie, L. Huang, C. Zhong et al., Beclin1 and HMGB1 ameliorate the alphasynuclein-mediated autophagy inhibition in PC12 cells, Diagn. Pathol, vol.11, 2016.

M. Xilouri, O. R. Brekk, N. Landeck, P. M. Pitychoutis, T. Papasilekas et al., Boosting chaperone-mediated autophagy in vivo mitigates alpha-synuclein-induced neurodegeneration, Brain, vol.136, pp.2130-2146, 2013.

J. Anguiano, T. P. Garner, M. Mahalingam, B. C. Das, E. Gavathiotis et al., Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives, Nat. Chem. Biol, vol.9, pp.374-382, 2013.

S. J. Mullett, R. Di-maio, J. T. Greenamyre, and D. A. Hinkle, DJ-1 expression modulates astrocyte-mediated protection against neuronal oxidative stress, J. Mol. Neurosci, vol.49, pp.507-511, 2013.

S. J. Mullett and D. A. Hinkle, DJ-1 knock-down in astrocytes impairs astrocyte-mediated neuroprotection against rotenone, Neurobiol. Dis, vol.33, pp.28-36, 2009.

S. J. Mullett and D. A. Hinkle, DJ-1 deficiency in astrocytes selectively enhances mitochondrial Complex I inhibitor-induced neurotoxicity, J. Neurochem, vol.117, pp.375-387, 2011.

B. R. De-miranda, E. M. Rocha, Q. Bai, A. El-ayadi, D. Hinkle et al., Astrocyte-specific DJ-1 overexpression protects against rotenone-induced neurotoxicity in a rat model of Parkinson's disease, Neurobiol. Dis, vol.115, pp.101-114, 2018.

A. B. Pupyshev, M. A. Tikhonova, A. A. Akopyan, M. V. Tenditnik, N. I. Dubrovina et al., Therapeutic activation of autophagy by combined treatment with rapamycin and trehalose in a mouse MPTP-induced model of Parkinson's disease, Pharm. Biochem. Behav, vol.177, pp.1-11, 2019.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI

, Références bibliographiques

Y. Aguib, A. Heiseke, S. Gilch, C. Riemer, M. Baier et al., Autophagy induction by trehalose counter-acts cellular prion-infection, Autophagy, vol.5, pp.361-369, 2009.

Z. Ahmed, Y. T. Asi, A. Sailer, A. J. Lees, H. Houlden et al., The neuropathology, pathophysiology and genetics of multiple system atrophy, Neuropathology and Applied Neurobiology, vol.38, pp.4-24, 2012.

L. Alvarez-erviti, M. C. Rodriguez-oroz, J. M. Cooper, C. Caballero, I. Ferrer et al., Chaperone-mediated autophagy markers in Parkinson disease brains, Arch Neurol, vol.67, pp.1464-72, 2010.

L. Alvarez-erviti, Y. Seow, A. H. Schapira, C. Gardiner, I. L. Sargent et al., Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission, Neurobiol Dis, vol.42, pp.360-367, 2011.

L. Alvarez-erviti, Y. Seow, A. H. Schapira, M. C. Rodriguez-oroz, J. A. Obeso et al., Influence of microRNA deregulation on chaperone-mediated autophagy and alpha-synuclein pathology in Parkinson's disease, Cell Death Dis, vol.4, p.545, 2013.

G. Alves, B. Müller, K. Herlofson, I. Hogenesch, W. Telstad et al., Incidence of Parkinson's disease in Norway: the Norwegian ParkWest study, Journal of Neurology, vol.80, pp.851-857, 2009.

G. Ambrosi, C. Ghezzi, R. Zangaglia, G. Levandis, C. Pacchetti et al., Ambroxol-induced rescue of defective glucocerebrosidase is associated with increased LIMP-2 and saposin C levels in GBA1 mutant Parkinson's disease cells, Neurobiology of Disease, vol.82, pp.235-242, 2015.

P. Anglade, S. Vyas, F. Javoy-agid, M. Herrero, P. Michel et al., Apoptosis and Autophagy in Nigral Neurons of Patients with Parkinson's Disease, 1997.

S. Appel-cresswell, C. Vilarino-guell, M. Encarnacion, H. Sherman, I. Yu et al., Alphasynuclein p.H50Q, a novel pathogenic mutation for Parkinson's disease, Movement Disorders, vol.28, pp.811-813, 2013.

J. Argüelles, Why Can't Vertebrates Synthesize Trehalose?, Journal of Molecular Evolution, vol.79, pp.111-116, 2014.

A. Badin, R. Vadori, M. Cozzi, E. Hantraye, and P. , Translational research for Parkinson ??? s disease: The value of pre-clinical primate models, European Journal of Pharmacology, vol.759, pp.118-126, 2015.

M. L. Arotçarena and B. Dehay, Les synucléinopathies sont-elles des maladies à prions ?, Pratique Neurologique FMC Arotcarena ML, Teil M, Dehay B (2019) Autophagy in Synucleinopathy: The Overwhelmed and Defective Machinery, vol.8, 2018.

F. Atashrazm, D. Hammond, G. Perera, C. Dobson-stone, N. Mueller et al., Reduced glucocerebrosidase activity in monocytes from patients with Parkinson's disease, Scientific reports, vol.8, pp.15446-15446, 2018.

E. J. Bae, N. Y. Yang, M. Song, C. S. Lee, J. S. Lee et al., Glucocerebrosidase depletion enhances cell-to-cell transmission of alpha-synuclein, Nat Commun, vol.5, p.4755, 2014.

X. Bai, M. Wey, E. Fernandez, M. J. Hart, J. Gelfond et al., Rapamycin improves motor function, reduces 4-hydroxynonenal adducted protein in brain, and attenuates synaptic injury in a mouse model of synucleinopathy, Pathobiology of Aging & Age-related Diseases, vol.5, p.28743, 2015.

C. Balducci, L. Pierguidi, E. Persichetti, L. Parnetti, M. Sbaragli et al., Lysosomal hydrolases in cerebrospinal fluid from subjects with Parkinson's disease, Movement Disorders, vol.22, pp.1481-1484, 2007.

R. Barbour, K. Kling, J. P. Anderson, K. Banducci, T. Cole et al., Red Blood Cells Are the Major Source of Alpha-Synuclein in Blood, Neurodegenerative Diseases, vol.5, pp.55-59, 2008.

T. Bartels, J. G. Choi, and D. J. Selkoe, ) ?-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation, Nature, vol.477, p.107, 2011.

F. Bassil, P. A. Guerin, N. Dutheil, Q. Li, M. Klugmann et al., Viralmediated oligodendroglial alpha-synuclein expression models multiple system atrophy, vol.32, pp.1230-1239, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01537940

T. G. Beach, C. H. Adler, L. I. Sue, L. Vedders, L. Lue et al., Arizona Parkinson's Disease C (2010) Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders, Acta Neuropathol, vol.119, pp.689-702

Y. Ben-shlomo, G. K. Wenning, F. Tison, and N. P. Quinn, Survival of patients with pathologically proven multiple system atrophy, A meta-analysis, vol.48, pp.384-393, 1997.

A. Benazzouz, C. Gross, J. Féger, T. Boraud, and B. Bioulac, Reversal of Rigidity and Improvement in Motor Performance by Subthalamic High-frequency Stimulation in MPTP-treated Monkeys, european Journal of Neuroscience, vol.5, pp.382-389, 1993.

M. C. Bennett, J. F. Bishop, Y. Leng, P. B. Chock, T. N. Chase et al., Degradation of ?-Synuclein by Proteasome, Journal of Biological Chemistry, vol.274, pp.33855-33858, 1999.

G. Bieri, A. D. Gitler, M. Brahic, R. M. Rasia, C. W. Bertoncini et al., Interaction of ?-Synuclein with Divalent Metal Ions Reveals Key Differences: A Link between Structure, Binding Specificity and Fibrillation Enhancement, Journal of the American Chemical Society, vol.128, pp.9893-9901, 2006.

W. Birkmayer and O. Hornykiewicz, The L-3,4-dioxyphenylalanine (DOPA)-effect in Parkinsonakinesia, Wiener klinische Wochenschrift, vol.73, pp.787-795, 1961.

J. M. Bleasel, G. M. Halliday, and W. S. Kim, Animal modeling an oligodendrogliopathy--multiple system atrophy, Acta neuropathologica communications, vol.4, pp.12-12, 2016.

J. Blesa and M. Vila, Parkinson disease, substantia nigra vulnerability, and calbindin expression: Enlightening the darkness?, Movement Disorders, vol.34, pp.161-163, 2019.

S. Bohic, K. Murphy, W. Paulus, P. Cloetens, M. Salomé et al., Intracellular Chemical Imaging of the Developmental Phases of Human Neuromelanin Using Synchrotron X-ray Microspectroscopy, Analytical Chemistry, vol.80, pp.9557-9566, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00410454

F. Bonello, S. Hassoun, F. Mouton-liger, Y. S. Shin, A. Muscat et al., LRRK2 impairs PINK1/Parkin-dependent mitophagy via its kinase activity: pathologic insights into Parkinson's disease, Human Molecular Genetics, vol.28, pp.1645-1660, 2019.

V. Bonifati, P. Rizzu, M. J. Van-baren, O. Schaap, G. J. Breedveld et al., Mutations in the <em>DJ-1</em> Gene Associated with Autosomal Recessive Early-Onset Parkinsonism, vol.299, pp.256-259, 2003.

M. Bourdenx, J. Daniel, E. Genin, F. N. Soria, M. Blanchard-desce et al., Nanoparticles restore lysosomal acidification defects: Implications for Parkinson and other lysosomal-related diseases, Autophagy, vol.12, pp.472-483, 2016.

M. Bourdenx, S. Dovero, M. Engeln, S. Bido, M. F. Bastide et al., Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by ?-synuclein overexpression, Acta neuropathologica communications, vol.3, pp.46-46, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01193129

L. Bousset, L. Pieri, G. Ruiz-arlandis, J. Gath, P. H. Jensen et al., Structural and functional characterization of two alpha-synuclein strains, Nature communications, vol.4, pp.2575-2575, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01183047

J. H. Bower, D. M. Maraganore, S. K. Mcdonnell, and W. A. Rocca, Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Neurology, vol.49, pp.1284-1288, 1976.

H. Braak, R. A. De-vos, J. Bohl, and D. Tredici, Gastric alpha-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology, Neurosci Lett, vol.396, pp.67-72, 2006.

H. Braak and D. Tredici, Neuropathological Staging of Brain Pathology in Sporadic Parkinson's disease: Separating the Wheat from the Chaff, Journal of Parkinson's disease, vol.7, pp.71-85, 2017.

H. Braak, D. Tredici, K. Rub, U. De-vos, R. A. et al., Staging of brain pathology related to sporadic Parkinson's disease, Neurobiol Aging, vol.24, pp.197-211, 2003.

H. Braak, . Dtk, U. Rüb, R. A. De-vos, J. Steur et al., Staging of brain pathology related to sporadic Parkinson's disease, Neurobiology of Aging, vol.24, pp.197-211, 2002.

M. Bradl and H. Lassmann, Oligodendrocytes: biology and pathology, Acta neuropathologica, vol.119, pp.37-53, 2010.

J. M. Bronstein, M. Tagliati, R. L. Alterman, A. M. Lozano, J. Volkmann et al., Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues, Archives of neurology, vol.68, pp.165-165, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00593616

R. C. Brown, A. H. Lockwood, and B. R. Sonawane, Neurodegenerative diseases: an overview of environmental risk factors, Environ Health Perspect, vol.113, pp.1250-1256, 2005.

C. R. Burkhardt, C. Filley, B. K. Kleinschmidt-demasters, S. De-la-monte, M. D. Norenberg et al., Diffuse Lewy body disease and progressive dementia, vol.38, pp.1520-1520, 1988.

J. Burré, M. Sharma, T. Tsetsenis, V. Buchman, M. R. Etherton et al., Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro, Science, vol.329, pp.1663-1667, 2010.

I. Carballo-carbajal, A. Laguna, J. Romero-giménez, T. Cuadros, J. Bové et al., Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis, Nature communications, vol.10, pp.973-973, 2019.

S. S. Carlson and R. B. Kelly, An antiserum specific for cholinergic synaptic vesicles from electric organ, The Journal of cell biology, vol.87, pp.98-103, 1980.

K. Castillo, M. Nassif, V. Valenzuela, F. Rojas, S. Matus et al., Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons, Autophagy, vol.9, pp.1308-1320, 2013.

F. Cavaliere, L. Cerf, B. Dehay, P. Ramos-gonzalez, D. Giorgi et al., In vitro ?-synuclein neurotoxicity and spreading among neurons and astrocytes using Lewy body extracts from Parkinson disease brains, Neurobiology of Disease, vol.103, pp.101-112, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01537460

J. Charcot, De la paralyse agitante. Oeuvres complètes -Leçons sur les maladie du système nerveux Chaudhuri KR, Healy DG, Schapira AHV (2006) Non-motor symptoms of Parkinson's disease: diagnosis and management, The Lancet Neurology, vol.5, pp.235-245, 1872.

S. G. Chen, V. Stribinskis, M. J. Rane, D. R. Demuth, E. Gozal et al., Exposure to the Functional Bacterial Amyloid Protein Curli Enhances Alpha-Synuclein Aggregation in Aged Fischer 344 Rats and Caenorhabditis elegans, Scientific reports, vol.6, pp.34477-34477, 2016.

D. Chiasserini, S. Paciotti, P. Eusebi, E. Persichetti, A. Tasegian et al., Selective loss of glucocerebrosidase activity in sporadic Parkinson's disease and dementia with Lewy bodies, Mol Neurodegener, vol.10, p.15, 2015.

Y. Chiba, S. Takei, N. Kawamura, Y. Kawaguchi, K. Sasaki et al., Immunohistochemical localization of aggresomal proteins in glial cytoplasmic inclusions in multiple system atrophy, Neuropathol Appl Neurobiol, vol.38, pp.559-71, 2012.

B. Choi, M. Choi, J. Kim, Y. Yang, Y. Lai et al., Large ?-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.4087-4092, 2013.

V. Choubey, D. Safiulina, A. Vaarmann, M. Cagalinec, P. Wareski et al., Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy, J Biol Chem, vol.286, pp.10814-10838, 2011.

Y. Chu, H. Dodiya, P. Aebischer, C. W. Olanow, and J. H. Kordower, Alterations in lysosomal and proteasomal markers in Parkinson's disease: relationship to alpha-synuclein inclusions, Neurobiol Dis, vol.35, pp.385-98, 2009.

M. W. Cleeter, K. Y. Chau, C. Gluck, A. Mehta, D. A. Hughes et al., Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage, Neurochem Int, vol.62, pp.1-7, 2013.

D. W. Colby and S. B. Prusiner, Prions. Cold Spring Harb Perspect Biol, vol.3, p.6833, 2011.

E. Colla, P. Coune, Y. Liu, O. Pletnikova, J. C. Troncoso et al., Endoplasmic reticulum stress is important for the manifestations of ?-synucleinopathy in vivo, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.32, pp.3306-3320, 2012.

A. A. Cooper, A. D. Gitler, A. Cashikar, C. M. Haynes, K. J. Hill et al., Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models, Science, vol.313, pp.324-328, 2006.

G. C. Cotzias, P. S. Papavasiliou, and R. Gellene, Modification of Parkinsonism -Chronic Treatment with L-Dopa, The New England Journal of Medicine, vol.280, pp.337-345, 1969.

N. Cremades, S. Cohen, E. Deas, A. Y. Abramov, A. Y. Chen et al., Direct observation of the interconversion of normal and toxic forms of ?-synuclein, Cell, vol.149, pp.1048-1059, 2012.

L. Crews, B. Spencer, P. Desplats, C. Patrick, A. Paulino et al., Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy, PLoS One, vol.5, p.9313, 2010.

L. Crews, B. Spencer, P. Desplats, C. Patrick, A. Paulino et al., Selective Molecular Alterations in the Autophagy Pathway in Patients with Lewy Body Disease and in Models of ?-Synucleinopathy, PLOS ONE, vol.5, p.9313, 2010.

A. M. Cuervo, L. Stefanis, R. Fredenburg, P. T. Lansbury, and D. Sulzer, Impaired Degradation of Mutant ?-Synuclein by Chaperone-Mediated Autophagy, Science, vol.305, p.1292, 2004.

A. M. Cuervo and E. Wong, Chaperone-mediated autophagy: roles in disease and aging, Cell Research, vol.24, p.92, 2013.

V. Cullen, S. P. Sardi, J. Ng, Y. H. Xu, Y. Sun et al., Acid beta-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter alpha-synuclein processing, Ann Neurol, vol.69, pp.940-53, 2011.

K. M. Danzer, L. R. Kranich, W. P. Ruf, O. Cagsal-getkin, A. R. Winslow et al., Exosomal cell-to-cell transmission of alpha synuclein oligomers, Molecular Neurodegeneration, vol.7, p.42, 2012.

W. Dauer and S. Przedborski, Parkinson's Disease: Mechanisms and Models, Neuron, vol.39, pp.889-909, 2003.

L. De-lau and M. Breteler, Epidemiology of Parkinson's disease, The Lancet Neurology, vol.5, pp.525-535, 2006.

B. J. Debosch, M. R. Heitmeier, A. L. Mayer, C. B. Higgins, J. R. Crowley et al., Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis, Science signaling, vol.9, pp.21-21, 2016.

M. Decressac, B. Mattsson, P. Weikop, M. Lundblad, J. Jakobsson et al., TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity, Proc Natl Acad Sci U S A, vol.110, pp.1817-1843, 2013.

B. Dehay, M. Bourdenx, P. Gorry, S. Przedborski, M. Vila et al., Targeting ?-synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations, The Lancet Neurology, vol.14, pp.855-866, 2015.

B. Dehay, J. Bove, N. Rodriguez-muela, C. Perier, A. Recasens et al., Pathogenic lysosomal depletion in Parkinson's disease, J Neurosci, vol.30, pp.12535-12579, 2010.

B. Dehay, A. Ramirez, M. Martinez-vicente, C. Perier, M. H. Canron et al., Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration, Proc Natl Acad Sci U S A, vol.109, pp.9611-9617, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01290058

P. Desplats, H. J. Lee, E. J. Bae, C. Patrick, E. Rockenstein et al., Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alphasynuclein, Proc Natl Acad Sci U S A, vol.106, pp.13010-13015, 2009.

M. Djelloul, S. Holmqvist, A. Boza-serrano, C. Azevedo, M. S. Yeung et al., Alpha-Synuclein Expression in the Oligodendrocyte Lineage: an In Vitro and In Vivo Study Using Rodent and Human Models, Stem cell reports, vol.5, pp.174-184, 2015.

E. R. Dorsey, A. Elbaz, E. Nichols, F. Abd-allah, A. Abdelalim et al., Global, regional, and national burden of Parkinson's disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study, The Lancet Neurology, vol.17, pp.939-953, 2016.

J. Du, Y. Liang, F. Xu, B. Sun, and Z. Wang, Trehalose rescues Alzheimer's disease phenotypes in APP/PS1 transgenic mice, Journal of Pharmacy and Pharmacology, vol.65, pp.1753-1756, 2013.

S. Edvardson, Y. Cinnamon, A. Ta-shma, A. Shaag, Y. I. Yim et al., A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism, PLoS One, vol.7, p.36458, 2012.

L. L. Edwards, E. M. Quigley, and R. F. Pfeiffer, Gastrointestinal dysfunction in Parkinson's disease: frequency and pathophysiology, Neurology, vol.42, pp.726-758, 1992.

O. El-agnaf, R. Jakes, M. D. Curran, D. Middleton, R. Ingenito et al., Aggregates from mutant and wild-type ?-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of ?-sheet and amyloid-like filaments, FEBS Letters, vol.440, pp.71-75, 1998.

A. Eslamboli, M. Romero-ramos, C. Burger, T. Bjorklund, N. Muzyczka et al., Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain, Brain, vol.130, pp.799-815, 2007.

A. Ferretta, A. Gaballo, P. Tanzarella, C. Piccoli, N. Capitanio et al., Effect of resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson's disease, Biochimica et Biophysica Acta, vol.1842, pp.902-915, 2014.

J. P. Finberg, M. Tenne, and M. B. Youdim, Tyramine antagonistic properties of AGN 1135, an irreversible inhibitor of monoamine oxidase type B, British journal of pharmacology, vol.73, pp.65-74, 1981.

C. E. Finch and S. N. Austad, Primate aging in the mammalian scheme: the puzzle of extreme variation in brain aging, Age, vol.34, pp.1075-1091, 2012.

R. C. Foehring, X. F. Zhang, J. Lee, and J. C. Callaway, Endogenous calcium buffering capacity of substantia nigral dopamine neurons, Journal of neurophysiology, vol.102, pp.2326-2333, 2009.

D. Freeman, R. Cedillos, S. Choyke, Z. Lukic, K. Mcguire et al., Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis, PloS one, vol.8, pp.62143-62143, 2013.

A. Friedman, J. Galazka-friedman, E. R. Bauminger, J. R. Friedman, L. L. Lackner et al., Iron as a trigger of neurodegeneration in Parkinson's disease, Handbook of Clinical Neurology, vol.334, pp.358-362, 2007.

H. Fujiwara, M. Hasegawa, N. Dohmae, A. Kawashima, E. Masliah et al., ) ?-Synuclein is phosphorylated in synucleinopathy lesions, Nature Cell Biology, vol.4, pp.160-164, 2002.

M. E. Fullard, J. F. Morley, and J. E. Duda, Olfactory Dysfunction as an Early Biomarker in Parkinson's Disease, Neuroscience bulletin, vol.33, pp.515-525, 2017.

G. Fusco, S. W. Chen, P. Williamson, R. Cascella, M. Perni et al., Structural basis of membrane disruption and cellular toxicity by ?-synuclein oligomers, Science, vol.358, pp.1440-1443, 2017.

Z. Gan-or, P. A. Dion, and G. A. Rouleau, Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease, Autophagy, vol.11, pp.1443-1457, 2015.

P. García-sanz, L. Orgaz, J. M. Fuentes, C. Vicario, and R. Moratalla, Cholesterol and multilamellar bodies: Lysosomal dysfunction in GBA-Parkinson disease, Autophagy, vol.14, pp.717-718, 2018.

M. E. Gegg, D. Burke, S. J. Heales, J. M. Cooper, J. Hardy et al., Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains, Ann Neurol, vol.72, pp.455-63, 2012.

X. Geng, H. Lou, J. Wang, L. Li, A. L. Swanson et al., Drain P (2011) ?-Synuclein binds the K(ATP) channel at insulin-secretory granules and inhibits insulin secretion, American journal of physiology Endocrinology and metabolism, vol.300, pp.276-286

D. Ghosh, S. Sahay, P. Ranjan, S. Salot, G. M. Mohite et al., The Newly Discovered Parkinson's Disease Associated Finnish Mutation (A53E) Attenuates ?-Synuclein Aggregation and Membrane Binding, Biochemistry, vol.53, pp.6419-6421, 2014.

B. I. Giasson, J. E. Duda, I. Murray, Q. Chen, J. M. Souza et al.,

V. M. Lee, Oxidative Damage Linked to Neurodegeneration by Selective ?-Synuclein Nitration in Synucleinopathy Lesions, Science, vol.290, pp.985-989, 2000.

B. I. Giasson, I. V. Murray, [. Trojan, and G. Desplats, , 20019.

;. Iljinaa, J. Q. #34]owski, and V. M. Lee, A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly, J Biol Chem, vol.276, pp.2380-2386, 2001.

N. Giguère, B. Nanni, S. Trudeau, and L. , On Cell Loss and Selective Vulnerability of Neuronal Populations in Parkinson's Disease, Frontiers in neurology, vol.9, pp.455-455, 2018.

S. Gilman, G. K. Wenning, P. A. Low, D. J. Brooks, C. J. Mathias et al., Second consensus statement on the diagnosis of multiple system atrophy, Neurology, vol.71, pp.670-676, 2008.

C. G. Goetz, The history of Parkinson's disease: early clinical descriptions and neurological therapies, Cold Spring Harb Perspect Med, vol.1, p.8862, 2011.

A. Gonzalez-horta, B. G. Hernandez, and A. Chavez-montes, Fluorescence as a Tool to Study Lipid-Protein Interactions: The Case of ?-Synuclein, Open Journal of Biophysics, vol.03, pp.112-119, 2013.

N. Gould, D. E. Mor, R. Lightfoot, K. Malkus, B. Giasson et al., Evidence of native ?synuclein conformers in the human brain, The Journal of biological chemistry, vol.289, pp.7929-7934, 2014.

J. C. Greene, A. J. Whitworth, I. Kuo, L. A. Andrews, M. B. Feany et al., Mitochondrial pathology and apoptotic muscle degeneration in <em>Drosophila parkin</em> mutants, Proceedings of the National Academy of Sciences, vol.100, pp.4078-4083, 2003.

J. G. Greenfield and F. D. Bosanquet, The brain-stem lesions in Parkinsonism, Journal of neurology, vol.16, pp.213-226, 1953.

C. Guardia-laguarta, E. Area-gomez, C. Rüb, Y. Liu, J. Magrané et al., ?-Synuclein is localized to mitochondria-associated ER membranes, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.34, pp.249-259, 2014.

A. L. Gündner, G. Duran-pacheco, S. Zimmermann, I. Ruf, T. Moors et al., Path mediation analysis reveals GBA impacts Lewy body disease status by increasing ?-synuclein levels, Neurobiology of Disease, vol.121, pp.205-213, 2019.

E. K. Gustavsson, J. Trinh, I. Guella, C. Vilarino-guell, S. Appel-cresswell et al., DNAJC13 genetic variants in parkinsonism, vol.30, pp.273-281, 2015.

J. N. Guzman, J. Sánchez-padilla, C. S. Chan, and D. J. Surmeier, Robust pacemaking in substantia nigra dopaminergic neurons, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.29, pp.11011-11019, 2009.

G. Halliday, H. Mccann, and C. Shepherd, Evaluation of the Braak hypothesis: how far can it explain the pathogenesis of Parkinson's disease?, Expert Review of Neurotherapeutics, vol.12, pp.673-686, 2012.

G. M. Halliday, J. L. Holton, T. Revesz, and D. W. Dickson, Neuropathology underlying clinical variability in patients with synucleinopathies, Acta Neuropathologica, vol.122, pp.187-204, 2011.

M. Hamasaki, N. Furuta, A. Matsuda, A. Nezu, A. Yamamoto et al., Autophagosomes form at ER-mitochondria contact sites, Nature, vol.495, p.389, 2013.

K. Hara, Y. Momose, S. Tokiguchi, M. Shimohata, K. Terajima et al., Multiplex Families With Multiple System Atrophy, JAMA Neurology, vol.64, pp.545-551, 2007.

T. Hara, K. Nakamura, M. Matsui, A. Yamamoto, Y. Nakahara et al., Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice, Nature, vol.441, pp.885-889, 2006.

J. D. Harding, Nonhuman Primates and Translational Research: Progress, Opportunities, and Challenges. ILAR Journal, vol.58, pp.141-150, 2017.

S. Hasegawa, S. Goto, H. Tsuji, T. Okuno, T. Asahara et al., Intestinal Dysbiosis and Lowered Serum Lipopolysaccharide-Binding Protein in Parkinson's Disease, PLOS ONE, vol.10, p.142164, 2015.

N. Hattori, T. Kitada, H. Matsumine, S. Asakawa, Y. Yamamura et al., Molecular genetic analysis of a novel Parkin gene in Japanese families with autosomal recessive juvenile parkinsonism: Evidence for variable homozygous deletions in the Parkin gene in affected individuals, Annals of Neurology, vol.44, pp.935-941, 1998.

N. Hattori, H. Matsumine, S. Asakawa, T. Kitada, H. Yoshino et al., Point Mutations (Thr240Arg and Ala311Stop) in theParkinGene, Biochemical and Biophysical Research Communications, vol.249, pp.754-758, 1998.

Q. He, J. B. Koprich, Y. Wang, W. Yu, X. Brotchie et al., Treatment with Trehalose Prevents Behavioral and Neurochemical Deficits Produced in an AAV ?-Synuclein Rat Model of Parkinson's Disease, Molecular Neurobiology, vol.53, pp.2258-2268, 2016.

S. Herculano-houzel, The human brain in numbers: a linearly scaled-up primate brain, 2009.

S. Higashi, D. J. Moore, M. Minegishi, K. Kasanuki, H. Fujishiro et al., Localization of MAP1-LC3 in Vulnerable Neurons and Lewy Bodies in Brains of Patients With Dementia With Lewy Bodies, Journal of Neuropathology & Experimental Neurology, vol.70, pp.264-280, 2011.

E. C. Hirsch, Why are nigral catecholaminergic neurons more vulnerable than other cells in Parkinson's disease?, Ann Neurol, vol.32, pp.88-93, 1992.

A. C. Hoffmann, G. Minakaki, S. Menges, R. Salvi, S. Savitskiy et al., Extracellular aggregated alpha synuclein primarily triggers lysosomal dysfunction in neural cells prevented by trehalose, Sci Rep, vol.9, p.544, 2019.

A. D. Hohler and V. J. Singh, Probable hereditary multiple system atrophy&#x2013;autonomic (MSA&#x2013;A) in a family in the United States, Journal of Clinical Neuroscience, vol.19, pp.479-480, 2012.

C. J. Holler, G. Taylor, Z. T. Mceachin, Q. Deng, W. J. Watkins et al., Trehalose upregulates progranulin expression in human and mouse models of GRN haploinsufficiency: a novel therapeutic lead to treat frontotemporal dementia, Molecular neurodegeneration, vol.11, pp.46-46, 2016.

S. Holmqvist, O. Chutna, L. Bousset, P. Aldrin-kirk, W. Li et al., Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats, Acta Neuropathol, vol.128, pp.805-825, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01155404

J. Hoozemans, E. S. Van-haastert, P. Eikelenboom, R. De-vos, J. M. Rozemuller et al., Activation of the unfolded protein response in Parkinson's disease, Biochemical and Biophysical Research Communications, vol.354, pp.707-711, 2007.

L. Hou, N. Xiong, L. Liu, J. Huang, C. Han et al., Lithium protects dopaminergic cells from rotenone toxicity via autophagy enhancement, BMC neuroscience, vol.16, pp.82-82, 2015.

K. S. Hruska, M. E. Lamarca, C. R. Scott, and E. Sidransky, Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA), Hum Mutat, vol.29, pp.567-83, 2008.

P. Ibáñez, S. Lesage, S. Janin, E. Lohmann, F. Durif et al., Group FPsDGS (2009) ?-Synuclein Gene Rearrangements in Dominantly Inherited Parkinsonism: Frequency, Phenotype, and Mechanisms, JAMA Neurology, vol.66, pp.102-108

. Inoue-k-i, S. Miyachi, K. Nishi, H. Okado, Y. Nagai et al., Recruitment of calbindin into nigral dopamine neurons protects against MPTP-Induced parkinsonism, Movement Disorders, vol.34, pp.200-209, 2019.

D. J. Irwin, J. Y. Abrams, L. B. Schonberger, E. W. Leschek, J. L. Mills et al., Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaverderived human growth hormone, JAMA Neurol, vol.70, pp.462-470, 2013.

K. Ishizawa, T. Komori, N. Arai, T. Mizutani, and T. Hirose, Glial cytoplasmic inclusions and tissue injury in multiple system atrophy: A quantitative study in white matter (olivopontocerebellar system) and gray matter (nigrostriatal system), Neuropathology, vol.28, pp.249-257, 2008.

K. Itoh, T. Kasai, Y. Tsuji, K. Saito, I. Mizuta et al., Definite familial multiple system atrophy with unknown genetics, Neuropathology, vol.34, pp.309-313, 2014.

A. Iwai, E. Masliah, M. Yoshimoto, N. Ge, L. Flanagan et al., The precursor protein of non-A?? component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system, 1995.

R. Iwasawa, A. Mahul-mellier, C. Datler, E. Pazarentzos, and S. Grimm, Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction, The EMBO journal, vol.30, pp.556-568, 2011.

S. Jäger, C. Bucci, I. Tanida, T. Ueno, E. Kominami et al., Role for Rab7 in maturation of late autophagic vacuoles, Journal of Cell Science, vol.117, pp.4837-4848, 2004.

R. Jakes, M. G. Spillantini, and M. Goedert, Identification of two distinct synucleins from human brain, FEBS Letters, vol.345, pp.27-32, 1994.

J. Parkinson, Member of the Royal College of Surgeons (2002) An Essay on the Shaking Palsy, The Journal of Neuropsychiatry and Clinical Neurosciences, vol.14, pp.223-236

J. Jankovic, Parkinson's disease: clinical features and diagnosis, J Neurol Neurosurg Psychiatry, vol.79, pp.368-76, 2008.

K. A. Jellinger, A critical reappraisal of current staging of Lewy-related pathology in human brain, Acta Neuropathol, vol.116, pp.1-16, 2008.

K. A. Jellinger, Multiple System Atrophy: An Oligodendroglioneural Synucleinopathy1, J Alzheimers Dis, vol.62, pp.1141-1179, 2018.

K. A. Jellinger, K. Seppi, and G. K. Wenning, Grading of neuropathology in multiple system atrophy: Proposal for a novel scale, Movement Disorders, vol.20, pp.29-36, 2005.

C. G. Jennings, R. Landman, Y. Zhou, J. Sharma, J. Hyman et al., Opportunities and challenges in modeling human brain disorders in transgenic primates, Nature Neuroscience, vol.19, p.1123, 2016.

H. Jin, A. Kanthasamy, A. Ghosh, Y. Yang, V. Anantharam et al., ) ?-Synuclein negatively regulates protein kinase C? expression to suppress apoptosis in dopaminergic neurons by reducing p300 histone acetyltransferase activity, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.31, pp.2035-2051, 2011.

M. E. Kalaitzakis, M. B. Graeber, S. M. Gentleman, and R. Pearce, The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson's disease: a critical analysis of ?-synuclein staging, Neuropathol Appl Neurobiol, vol.34, pp.284-295, 2008.

A. Kalir, A. Sabbagh, and M. B. Youdim, Selective acetylenic 'suicide' and reversible inhibitors of monoamine oxidase types A and B, British journal of pharmacology, vol.73, pp.55-64, 1981.

J. Kane, A. Surendranathan, A. Bentley, S. Barker, J. P. Taylor et al., Clinical prevalence of Lewy body dementia, Alzheimers Res Ther, vol.10, p.19, 2018.

O. Katsuse, E. Iseki, W. Marui, and K. Kosaka, Developmental stages of cortical Lewy bodies and their relation to axonal transport blockage in brains of patients with dementia with Lewy bodies, Journal of the Neurological Sciences, vol.211, pp.29-35, 2003.

J. F. Kellie, R. E. Higgs, J. W. Ryder, A. Major, T. G. Beach et al., Quantitative measurement of intact alpha-synuclein proteoforms from post-mortem control and Parkinson's disease brain tissue by intact protein mass spectrometry, Scientific reports, vol.4, pp.5797-5797, 2014.

B. A. Killinger, Z. Madaj, J. W. Sikora, N. Rey, A. J. Haas et al., The vermiform appendix impacts the risk of developing Parkinson's disease, Science Translational Medicine, vol.10, p.5280, 2018.

K. Kilpatrick, Y. Zeng, T. Hancock, and L. Segatori, Genetic and chemical activation of TFEB mediates clearance of aggregated alpha-synuclein, PLoS One, vol.10, p.120819, 2015.

M. J. Kim, S. Jeon, L. F. Burbulla, and D. Krainc, Acid ceramidase inhibition ameliorates ?-synuclein accumulation upon loss of GBA1 function, Human Molecular Genetics, vol.27, pp.1972-1988, 2018.

T. Kitada, S. Asakawa, N. Hattori, H. Matsumine, Y. Yamamura et al., Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism, Nature, vol.392, pp.605-608, 1998.

L. Klingelhoefer and H. Reichmann, Parkinson's disease as a multisystem disorder, Journal of Neural Transmission, vol.124, pp.709-713, 2017.

D. J. Klionsky and B. A. Schulman, Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins, Nature Structural &Amp, vol.21, p.336, 2014.

J. Klucken, A. M. Poehler, D. Ebrahimi-fakhari, J. Schneider, S. Nuber et al., Alpha-synuclein aggregation involves a bafilomycin A 1-sensitive autophagy pathway, Autophagy, vol.8, pp.754-66, 2012.

M. Komatsu, S. Waguri, T. Chiba, S. Murata, J. Iwata et al., Loss of autophagy in the central nervous system causes neurodegeneration in mice, Nature, vol.441, pp.880-884, 2006.

M. Komatsu, Q. J. Wang, G. R. Holstein, V. L. Friedrich, J. Iwata et al., Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration, Proceedings of the National Academy of Sciences, vol.104, pp.14489-14494, 2007.

S. M. Kong, B. K. Chan, J. S. Park, K. J. Hill, J. B. Aitken et al., Parkinson's disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes alpha-Synuclein externalization via exosomes, Hum Mol Genet, vol.23, pp.2816-2849, 2014.

J. H. Kordower, Y. Chu, R. A. Hauser, T. B. Freeman, and C. W. Olanow, Lewy body-like pathology in longterm embryonic nigral transplants in Parkinson's disease, Nat Med, vol.14, pp.504-510, 2008.

J. H. Kordower, H. B. Dodiya, A. M. Kordower, B. Terpstra, K. Paumier et al., Transfer of host-derived alpha synuclein to grafted dopaminergic neurons in rat, Neurobiol Dis, vol.43, pp.552-559, 2011.

K. Kosaka, Lewy bodies in cerebral cortex, Acta Neuropathologica, vol.42, pp.127-134, 1978.

K. Kosaka, S. Oyanagi, M. Matsushita, A. Hori, and S. Iwase, Presenile dementia with Alzheimer-, Pickand Lewy-body changes, Acta Neuropathologica, vol.36, pp.221-233, 1976.

M. Kostka, T. Högen, K. M. Danzer, J. Levin, M. Habeck et al., Single Particle Characterization of Iron-induced Pore-forming ?-Synuclein Oligomers, Journal of Biological Chemistry, vol.283, pp.10992-11003, 2008.

N. W. Kowall, P. Hantraye, E. Brouillet, M. F. Beal, A. C. Mckee et al., MPTP induces alphasynuclein aggregation in the substantia nigra of baboons, NeuroReport, vol.11, pp.211-213, 2000.

R. Krüger, W. Kuhn, T. Müller, D. Woitalla, M. Graeber et al., AlaSOPro mutation in the gene encoding ?-synuclein in Parkinson's disease, Nature Genetics, vol.18, pp.106-108, 1998.

S. Kumar and S. B. Hedges, A molecular timescale for vertebrate evolution, Nature, vol.392, pp.917-920, 1998.

D. Kuzdas-wood, N. Stefanova, K. A. Jellinger, K. Seppi, M. G. Schlossmacher et al., Towards translational therapies for multiple system atrophy, Progress in neurobiology, vol.118, pp.19-35, 2014.

A. Laguna, N. Schintu, A. Nobre, A. Alvarsson, N. Volakakis et al., Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson's disease, Nat Neurosci, vol.18, pp.826-861, 2015.

H. A. Lashuel, C. R. Overk, A. Oueslati, and E. Masliah, The many faces of ?-synuclein: from structure and toxicity to therapeutic target, Nature reviews Neuroscience, vol.14, pp.38-48, 2013.

D. F. Lázaro, M. C. Dias, A. Carija, S. Navarro, C. S. Madaleno et al., The effects of the novel A53E alpha-synuclein mutation on its oligomerization and aggregation, Acta Neuropathologica Communications, vol.4, p.128, 2016.

D. F. Lázaro, E. F. Rodrigues, R. Langohr, H. Shahpasandzadeh, T. Ribeiro et al., Systematic Comparison of the Effects of Alpha-synuclein Mutations on Its Oligomerization and Aggregation, PLOS Genetics, vol.10, p.1004741, 2014.

H. Lee, F. Khoshaghideh, S. Patel, and S. Lee, Clearance of ?-Synuclein Oligomeric Intermediates via the Lysosomal Degradation Pathway, The Journal of Neuroscience, vol.24, p.1888, 2004.

H. Lee, J. Suk, C. Patrick, E. Bae, J. Cho et al., Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies, The Journal of biological chemistry, vol.285, pp.9262-9272, 2010.

H. Lee, Y. Yoon, and S. Lee, Mechanism of neuroprotection by trehalose: controversy surrounding autophagy induction, Cell death & disease, vol.9, pp.712-712, 2018.

H. J. Lee, E. D. Cho, K. W. Lee, J. H. Kim, S. G. Cho et al., Autophagic failure promotes the exocytosis and intercellular transfer of alpha-synuclein, Exp Mol Med, vol.45, p.22, 2013.

J. Lee, M. K. Mcbrayer, D. M. Wolfe, L. J. Haslett, A. Kumar et al., Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification, Cell reports, vol.12, pp.1430-1444, 2015.

A. J. Lees, J. Hardy, and T. Revesz, Parkinson's disease, The Lancet, vol.373, pp.2055-2066, 2009.

Z. Lei, G. Cao, and G. Wei, A30P mutant ?-synuclein impairs autophagic flux by inactivating JNK signaling to enhance ZKSCAN3 activity in midbrain dopaminergic neurons, Cell Death & Disease, vol.10, p.133, 2019.

E. Leroy, D. Anastasopoulos, S. Konitsiotis, C. Lavedan, and M. H. Polymeropoulos, Deletions in the Parkin gene and genetic heterogeneity in a Greek family with early onset Parkinson's disease, Human Genetics, vol.103, pp.424-427, 1998.

S. Lesage, M. Anheim, F. Letournel, L. Bousset, A. Honoré et al., Group ftFPsDGS (2013) G51D ?-synuclein mutation causes a novel Parkinsonian-pyramidal syndrome, Annals of Neurology, vol.73, pp.459-471

S. Lesage, A. Dürr, M. Tazir, E. Lohmann, A. Leutenegger et al., LRRK2 G2019S as a Cause of Parkinson's Disease in North African Arabs, New England Journal of Medicine, vol.354, pp.422-423, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00221453

F. Lewy, G. Li, H. Yang, D. Zhu, H. Huang et al., Targeted suppression of chaperone-mediated autophagy by miR-320a promotes alpha-synuclein aggregation, Int J Mol Sci, vol.15, pp.15845-57, 1912.

J. Y. Li, E. Englund, J. L. Holton, D. Soulet, P. Hagell et al., Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation, Nat Med, vol.14, pp.501-504, 2008.

W. Li, J. Li, and J. Bao, Microautophagy: lesser-known self-eating, Cellular and Molecular Life Sciences, vol.69, pp.1125-1136, 2012.

X. Li, X. Chen, K. Zhao, L. Bai, H. Zhang et al., Therapeutic Effects of Valproate Combined With Lithium Carbonate on MPTP-Induced Parkinsonism in Mice: Possible Mediation Through Enhanced Autophagy, International Journal of Neuroscience, vol.123, pp.73-79, 2012.

P. Limousin, P. Krack, P. Pollak, A. Benazzouz, C. Ardouin et al., Electrical Stimulation of the Subthalamic Nucleus in Advanced Parkinson's Disease, The New England Journal of Medicine, vol.339, pp.1105-1111, 1998.

A. Lionnet, L. Leclair-visonneau, M. Neunlist, S. Murayama, M. Takao et al., Does Parkinson's disease start in the gut?, Acta Neuropathol, vol.135, pp.1-12, 2018.

J. Liou, M. Fivaz, T. Inoue, and T. Meyer, Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.9301-9306, 2007.

B. F. Liu, F. Pedersen, N. L. Tillander, A. Ludvigsson, J. F. Ekbom et al., Vagotomy and Parkinson disease A Swedish register-based matchedcohort study, Neurology, vol.88, pp.1-7, 2017.

R. Lowe, D. L. Pountney, P. H. Jensen, W. P. Gai, and N. H. Voelcker, Calcium(II) selectively induces alphasynuclein annular oligomers via interaction with the C-terminal domain, Protein science : a publication of the Protein Society, vol.13, pp.3245-3252, 2004.

C. B. Lücking, N. Abbas, A. Dürr, V. Bonifati, A. M. Bonnet et al., Homozygous deletions in parkin gene in European and North African families with autosomal recessive juvenile parkinsonism, The Lancet, vol.352, pp.1355-1356, 1998.

K. C. Luk, V. Kehm, J. Carroll, B. Zhang, P. O&apos;brien et al., Pathological alphasynuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice, Science, vol.338, pp.949-53, 2012.

S. K. Mak, A. L. Mccormack, A. B. Manning-bog, A. M. Cuervo, D. Monte et al., Lysosomal degradation of alpha-synuclein in vivo, J Biol Chem, vol.285, pp.13621-13630, 2010.

K. Makioka, T. Yamazaki, Y. Fujita, M. Takatama, Y. Nakazato et al., Involvement of endoplasmic reticulum stress defined by activated unfolded protein response in multiple system atrophy, Journal of the Neurological Sciences, vol.297, pp.60-65, 2010.

K. Makioka, T. Yamazaki, M. Takatama, Y. Nakazato, and K. Okamoto, Activation and alteration of lysosomes in multiple system atrophy, Neuroreport, vol.23, pp.270-276, 2012.

C. Malagelada, Z. H. Jin, J. , V. Przedborski, S. Greene et al., Rapamycin Protects against Neuron Death in <em>In Vitro</em> and<em>In Vivo</em> Models of Parkinson's Disease, The Journal of Neuroscience, vol.30, pp.1166-1175, 2010.

R. J. Mandel, D. J. Marmion, D. Kirik, Y. Chu, C. Heindel et al., Novel oligodendroglial alpha synuclein viral vector models of multiple system atrophy: studies in rodents and nonhuman primates, Acta neuropathologica communications, vol.5, pp.47-47, 2017.

F. P. Manfredsson, K. C. Luk, M. J. Benskey, A. Gezer, J. Garcia et al., Induction of alpha-synuclein pathology in the enteric nervous system of the rat and non-human primate results in gastrointestinal dysmotility and transient CNS pathology, Neurobiol Dis, vol.112, pp.106-118, 2018.

L. Maroteaux, J. Campanelli, and R. Scheller, Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal, The Journal of Neuroscience, vol.8, pp.2804-2815, 1988.

C. Marras, A. Lang, B. P. Van-de-warrenburg, C. M. Sue, S. J. Tabrizi et al., Nomenclature of genetic movement disorders: Recommendations of the international Parkinson and movement disorder society task force, Movement Disorders, vol.31, pp.436-457, 2016.

R. B. Mars and L. Verhagen, Book review: Foraging with a prefrontal cortex makes all the difference, Frontiers in Human Neuroscience, vol.7, p.164, 2013.

I. Martin, J. W. Kim, V. L. Dawson, and T. M. Dawson, LRRK2 pathobiology in Parkinson's disease, Journal of neurochemistry, vol.131, pp.554-565, 2014.

M. Martinez-vicente, Z. Talloczy, S. Kaushik, A. C. Massey, J. Mazzulli et al., Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy, J Clin Invest, vol.118, pp.777-88, 2008.

J. Martinez, I. Moeller, H. Erdjument-bromage, P. Tempst, and B. Lauring, Parkinson's Disease-associated ?-Synuclein Is a Calmodulin Substrate, Journal of Biological Chemistry, vol.278, pp.17379-17387, 2003.

M. Masuda-suzukake, T. Nonaka, M. Hosokawa, T. Oikawa, T. Arai et al., Prion-like spreading of pathological alpha-synuclein in brain, Brain, vol.136, pp.1128-1166, 2013.

W. Matsuda, T. Furuta, K. C. Nakamura, H. Hioki, F. Fujiyama et al., Single Nigrostriatal Dopaminergic Neurons Form Widely Spread and Highly Dense Axonal Arborizations in the Neostriatum, The Journal of Neuroscience, vol.29, pp.444-453, 2009.

H. Matsumine, M. Saito, S. Shimoda-matsubayashi, H. Tanaka, A. Ishikawa et al., Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27, American journal of human genetics, vol.60, pp.588-596, 1997.

A. Matsuo, I. Akiguchi, G. C. Lee, E. G. Mcgeer, P. L. Mcgeer et al., Myelin degeneration in multiple system atrophy detected by unique antibodies, The American journal of pathology, vol.153, pp.735-744, 1998.

J. R. Mazzulli, Y. H. Xu, Y. Sun, A. L. Knight, P. J. Mclean et al., Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies, Cell, vol.146, pp.37-52, 2011.

J. R. Mazzulli, F. Zunke, O. Isacson, L. Studer, and D. Krainc, alpha-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models, Proc Natl Acad Sci U S A, vol.113, pp.1931-1937, 2016.

H. Mccann, C. H. Stevens, H. Cartwright, and G. M. Halliday, Parkinsonism & Related Disorders, vol.20, pp.62-67, 2014.

R. P. Mcglinchey, S. M. Lacy, K. E. Huffer, N. Tayebi, E. Sidransky et al., C-terminal ?-synuclein truncations are linked to cysteine cathepsin activity in Parkinson's disease, Proceedings of the National Academy of Sciences of the United States of America, vol.112, pp.9322-9327, 2015.

I. G. Mckeith, B. F. Boeve, D. W. Dickson, G. Halliday, J. Taylor et al., Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium, Neurology, vol.89, pp.88-100, 2017.

A. Mcneill, J. Magalhaes, C. Shen, K. Chau, D. Hughes et al., Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells, Brain, vol.137, pp.1481-1495, 2014.

I. Mendez, A. Viñuela, A. Astradsson, K. Mukhida, P. Hallett et al., Dopamine neurons implanted into people with Parkinson's disease survive without pathology for 14 years, Nature Medicine, vol.14, pp.507-509, 2008.

G. Minakaki, S. Menges, A. Kittel, E. Emmanouilidou, I. Schaeffner et al., Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype, Autophagy, vol.14, pp.98-119, 2018.

J. Mitsui, T. Matsukawa, H. Sasaki, I. Yabe, M. Matsushima et al., Variants associated with Gaucher disease in multiple system atrophy, Annals of clinical and translational neurology, vol.2, pp.417-426, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01122349

M. Compagnoni, G. Kleiner, G. Samarani, M. Aureli, M. Faustini et al., Mitochondrial Dysregulation and Impaired Autophagy in iPSC-Derived Dopaminergic Neurons of Multiple System Atrophy, Stem Cell Reports, vol.11, pp.1185-1198, 2018.

T. Moors, S. Paciotti, D. Chiasserini, P. Calabresi, L. Parnetti et al., Lysosomal Dysfunction and ?-Synuclein Aggregation in Parkinson's Disease: Diagnostic Links, Movement Disorders, vol.31, pp.791-801, 2016.

T. E. Moors, J. Hoozemans, A. Ingrassia, T. Beccari, L. Parnetti et al., Therapeutic potential of autophagy-enhancing agents in Parkinson's disease, Molecular Neurodegeneration, vol.12, p.11, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01446327

T. E. Moors, S. Paciotti, A. Ingrassia, M. Quadri, G. Breedveld et al., Characterization of Brain Lysosomal Activities in GBA-Related and Sporadic Parkinson's Disease and Dementia with Lewy Bodies, Molecular neurobiology, vol.56, pp.1344-1355, 2019.

A. Mougenot, S. N. , A. B. , E. M. , J. V. et al., Prion-like acceleration of a synucleinopathy in a transgenic mouse model, Neurobiology of Aging, vol.33, pp.2225-2233, 2012.

A. Murley, L. L. Lackner, C. Osman, M. West, G. K. Voeltz et al., ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast, vol.2, pp.422-00422, 2013.

K. E. Murphy, L. Cottle, A. M. Gysbers, A. A. Cooper, and G. M. Halliday, ATP13A2 (PARK9) protein levels are reduced in brain tissue of cases with Lewy bodies, Acta neuropathologica communications, vol.1, pp.11-11, 2013.

K. E. Murphy, A. M. Gysbers, S. K. Abbott, A. S. Spiro, A. Furuta et al., Lysosomal-associated membrane protein 2 isoforms are differentially affected in early Parkinson's disease, Mov Disord, vol.30, pp.1639-1686, 2015.

K. E. Murphy, A. M. Gysbers, S. K. Abbott, N. Tayebi, W. S. Kim et al., Reduced glucocerebrosidase is associated with increased alpha-synuclein in sporadic Parkinson's disease, Brain, vol.137, pp.834-882, 2014.

T. Namba, F. Tian, K. Chu, S. Hwang, K. W. Yoon et al., CDIP1-BAP31 complex transduces apoptotic signals from endoplasmic reticulum to mitochondria under endoplasmic reticulum stress, Cell reports, vol.5, pp.331-339, 2013.

J. Neumann, J. Bras, E. Deas, S. S. O&apos;sullivan, L. Parkkinen et al., Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease, Brain, vol.132, pp.1783-94, 2009.

M. S. Nielsen, H. Vorum, E. Lindersson, and P. H. Jensen, Ca2+ Binding to ?-Synuclein Regulates Ligand Binding and Oligomerization, Journal of Biological Chemistry, vol.276, pp.22680-22684, 2001.

E. H. Norris, B. I. Giasson, R. Hodara, S. Xu, J. Q. Trojanowski et al., Reversible Inhibition of ?-Synuclein Fibrillization by Dopaminochrome-mediated Conformational Alterations, Journal of Biological Chemistry, vol.280, pp.21212-21219, 2005.

H. Okazaki, L. E. Lipkin, and S. M. Aronson, Diffuse Intracytoplasmic Ganglionic Inclusions (Lewy Type) Associated with Progressive Dementia and Quadriparesis in Flexion* ?, Journal of Neuropathology & Experimental Neurology, vol.20, pp.237-244, 1961.

V. R. Osterberg, K. J. Spinelli, L. J. Weston, K. C. Luk, R. L. Woltjer et al., Progressive aggregation of alpha-synuclein and selective degeneration of lewy inclusion-bearing neurons in a mouse model of parkinsonism, Cell reports, vol.10, pp.1252-1260, 2015.

N. Ostrerova, L. Petrucelli, M. Farrer, N. Mehta, P. Choi et al., ) ?-Synuclein Shares Physical and Functional Homology with 14-3-3 Proteins, The Journal of Neuroscience, vol.19, pp.5782-5791, 1999.

K. Ota, M. Obayashi, K. Ozaki, S. Ichinose, A. Kakita et al., Relocation of p25?/tubulin polymerization promoting protein from the nucleus to the perinuclear cytoplasm in the oligodendroglia of sporadic and COQ2 mutant multiple system atrophy, Acta neuropathologica communications, vol.2, pp.136-136, 2014.

C. Pacelli, N. Giguère, M. Bourque, M. Lévesque, S. Ruth et al., Elevated Mitochondrial Bioenergetics and Axonal Arborization Size Are Key Contributors to the Vulnerability of Dopamine Neurons, Current Biology, vol.25, pp.2349-2360, 2015.

F. Pagan, M. Hebron, E. H. Valadez, Y. Torres-yaghi, X. Huang et al., Nilotinib Effects in Parkinson's disease and Dementia with Lewy bodies, Journal of Parkinson's disease, vol.6, pp.503-517, 2016.

F. L. Pagan, M. L. Hebron, B. Wilmarth, Y. Torres-yaghi, A. Lawler et al., Pharmacokinetics and pharmacodynamics of a single dose Nilotinib in individuals with Parkinson's disease, Pharmacology Research & Perspectives, vol.7, p.470, 2019.

T. Pan, P. Rawal, Y. Wu, W. Xie, J. Jankovic et al., Rapamycin protects against rotenone-induced apoptosis through autophagy induction, Neuroscience, vol.164, pp.541-551, 2009.

N. Papagiannakis, M. Xilouri, C. Koros, A. M. Simitsi, M. Stamelou et al., Autophagy dysfunction in peripheral blood mononuclear cells of Parkinson's disease patients, Neurosci Lett, vol.704, pp.112-115, 2019.

M. I. Papp, J. E. Kahn, and P. L. Lantos, Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome), Journal of the Neurological Sciences, vol.94, pp.79-100, 1989.

J. Park, S. B. Lee, S. Lee, Y. Kim, S. Song et al., Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin, Nature, vol.441, pp.1157-1161, 2006.

S. M. Park, H. Y. Jung, T. D. Kim, J. H. Park, C. Yang et al., Distinct Roles of the N-terminal-binding Domain and the C-terminal-solubilizing Domain of ?-Synuclein, a Molecular Chaperone, Journal of Biological Chemistry, vol.277, pp.28512-28520, 2002.

L. Parnetti, D. Chiasserini, E. Persichetti, P. Eusebi, S. Varghese et al., Cerebrospinal fluid lysosomal enzymes and alphasynuclein in Parkinson's disease, Mov Disord, vol.29, pp.1019-1046, 2014.

P. Pasanen, L. Myllykangas, M. Siitonen, A. Raunio, S. Kaakkola et al., A novel ?-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson's disease-type pathology, Neurobiology of Aging, vol.35, 2014.

J. M. Pearce, Aspects of the history of Parkinson's disease, Journal of neurology, pp.6-10, 1989.

W. Peelaerts, L. Bousset, V. Baekelandt, R. Melki, and T. Research, ) ?-Synuclein strains and seeding in Parkinson's disease, incidental Lewy body disease, dementia with Lewy bodies and multiple system atrophy: similarities and differences, Cell & Tissue Research, vol.373, pp.195-212, 2018.

W. Peelaerts, L. Bousset, A. Van-der-perren, A. Moskalyuk, R. Pulizzi et al., ) ?-Synuclein strains cause distinct synucleinopathies after local and systemic administration, Nature, vol.522, p.340, 2015.

C. Peng, R. J. Gathagan, D. J. Covell, C. Medellin, A. Stieber et al., Cellular milieu imparts distinct pathological ?synuclein strains in ?-synucleinopathies, Nature, vol.557, pp.558-563, 2018.

X. M. Peng, R. Tehranian, P. Dietrich, L. Stefanis, and R. G. Perez, ) ?-Synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells, Journal of Cell Science, vol.118, pp.3523-3530, 2005.

B. I. Pérez-revuelta, M. M. Hettich, A. Ciociaro, C. Rotermund, P. J. Kahle et al., Metformin lowers Ser-129 phosphorylated ?-synuclein levels via mTOR-dependent protein phosphatase 2A activation, Cell death & disease, vol.5, pp.1209-1209, 2014.

A. Perez-villalba, M. S. Sirerol-piquer, G. Belenguer, R. Soriano-cantón, A. B. Muñoz-manchado et al., Synaptic Regulator ?-Synuclein in Dopaminergic Fibers Is Essentially Required for the Maintenance of Subependymal Neural Stem Cells, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.38, pp.814-825, 2018.

M. Periquet, T. Fulga, L. Myllykangas, M. G. Schlossmacher, and M. B. Feany, Aggregated ?-Synuclein Mediates Dopaminergic Neurotoxicity In Vivo, The Journal of Neuroscience, vol.27, pp.3338-3346, 2007.

F. Philippart, G. Destreel, P. Merino-sepúlveda, P. Henny, D. Engel et al., Differential Somatic Ca<sup>2+</sup> Channel Profile in Midbrain Dopaminergic Neurons, J Neurosci, vol.36, pp.7234-7245, 2016.

L. Pieri, K. Madiona, and R. Melki, Structural and functional properties of prefibrillar ?-synuclein oligomers, Scientific Reports, vol.6, p.24526, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01305490

A. M. Poehler, W. Xiang, P. Spitzer, V. E. May, H. Meixner et al., Autophagy modulates SNCA/alpha-synuclein release, thereby generating a hostile microenvironment, Autophagy, vol.10, pp.2171-92, 2014.

M. H. Polymeropoulos, C. Lavedan, E. Leroy, S. E. Ide, A. Dehejia et al., Mutation in the ?-Synuclein Gene Identified in Families with Parkinson's Disease, Science, vol.276, pp.2045-2047, 1997.

A. C. Poole, R. E. Thomas, L. A. Andrews, H. M. Mcbride, A. J. Whitworth et al., The PINK1/Parkin pathway regulates mitochondrial morphology, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.1638-1643, 2008.

R. B. Postuma and D. Berg, Prodromal Parkinson's Disease: The Decade Past, the Decade to Come, Movement disorders, vol.34, pp.665-675, 2019.

D. L. Pountney, N. H. Voelcker, and W. Gai, Annular alpha-synuclein oligomers are potentially toxic agents in alpha-synucleinopathy, Hypothesis, vol.7, pp.59-67, 2005.

G. Prévot, F. N. Soria, M. Thiolat, J. Daniel, J. B. Verlhac et al., Harnessing Lysosomal pH through PLGA Nanoemulsion as a Treatment of Lysosomal-Related Neurodegenerative Diseases, Bioconjugate Chemistry, vol.29, pp.4083-4089, 2018.

W. A. Prinz, Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics, The Journal of cell biology, vol.205, pp.759-769, 2014.

C. Proukakis, C. G. Dudzik, T. Brier, D. S. Mackay, J. M. Cooper et al., A novel ?-synuclein missense mutation in Parkinson disease, Neurology, vol.80, pp.1062-1064, 2013.

S. B. Prusiner, Korolchuk Viktor I (2017) mTORC1 as the main gateway to autophagy, Essays In Biochemistry, vol.216, pp.565-584, 1982.

A. Ramirez, A. Heimbach, J. Grundemann, B. Stiller, D. Hampshire et al., Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase, Nat Genet, vol.38, pp.1184-91, 2006.

A. Recasens, B. Dehay, J. Bove, I. Carballo-carbajal, S. Dovero et al., Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys, Ann Neurol, vol.75, pp.351-62, 2014.

A. Recasens, A. Ulusoy, P. J. Kahle, D. Monte, D. A. Dehay et al., In vivo models of alpha-synuclein transmission and propagation, Cell and Tissue Research, vol.373, pp.183-193, 2018.

N. L. Rey, J. A. Steiner, N. Maroof, K. C. Luk, Z. Madaj et al., Widespread transneuronal propagation of ?-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson's disease, The Journal of experimental medicine, vol.213, pp.1759-1778, 2016.

J. F. Reyes, N. L. Rey, L. Bousset, R. Melki, P. Brundin et al., Alpha-synuclein transfers from neurons to oligodendrocytes, Glia, vol.62, pp.387-398, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01181201

A. B. Richards, S. Krakowka, L. B. Dexter, H. Schmid, A. Wolterbeek et al., Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies, Food and Chemical Toxicology, vol.40, pp.871-898, 2002.

L. A. Robak, I. E. Jansen, J. Van-rooij, A. G. Uitterlinden, R. Kraaij et al., Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease, Brain, vol.140, pp.3191-3203, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01690979

G. Rodriguez-araujo, H. Nakagami, H. Hayashi, M. Mori, T. Shiuchi et al., Alpha-synuclein elicits glucose uptake and utilization in adipocytes through the Gab1/PI3K/Akt transduction pathway, Cellular and Molecular Life Sciences, vol.70, pp.1123-1133, 2013.

M. C. Rodriguez-oroz, J. A. Obeso, A. E. Lang, J. Houeto, P. Pollak et al., Bilateral deep brain stimulation in Parkinson's disease: a multicentre study with 4 years follow-up, Brain, vol.128, pp.2240-2249, 2005.

F. Rose, M. Hodak, and J. Bernholc, Mechanism of copper(II)-induced misfolding of Parkinson's disease protein, Scientific reports, vol.1, pp.11-11, 2011.

V. C. Ruf, G. S. Nübling, S. Willikens, S. Shi, F. Schmidt et al., Different Effects of ?-Synuclein Mutants on Lipid Binding and Aggregation Detected by Single Molecule Fluorescence Spectroscopy and ThT Fluorescence-Based Measurements, ACS Chemical Neuroscience, vol.10, pp.1649-1659, 2019.

V. Ruipérez, F. Darios, and B. Davletov, Alpha-synuclein, lipids and Parkinson's disease, Progress in Lipid Research, vol.49, pp.420-428, 2010.

P. Rusmini, C. K. Crippa, V. Cristofani, R. Cicardi, M. E. Ferrari et al., Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration, Autophagy, vol.15, pp.631-651, 2019.

M. Sakamoto, T. Uchihara, M. Hayashi, A. Nakamura, E. Kikuchi et al., Heterogeneity of Nigral and Cortical Lewy Bodies Differentiated by Amplified Triple-Labeling for Alpha-Synuclein, Experimental Neurology, vol.177, pp.88-94, 2002.

T. R. Sampson, J. W. Debelius, T. Thron, S. Janssen, G. G. Shastri et al., Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson&#x2019, Cell, vol.167, pp.1469-1480, 2016.

A. Sanchez-ferro, A. Rabano, M. J. Catalan, F. C. Rodriguez-valcarcel, F. Diez et al., In vivo gastric detection of alpha-synuclein inclusions in Parkinson's disease, Mov Disord, vol.30, pp.517-541, 2015.

S. F. Santos, H. L. De-oliveira, E. S. Yamada, B. C. Neves, and A. Pereira, The Gut and Parkinson's Disease-A Bidirectional Pathway, Frontiers in Neurology, vol.10, 2019.

M. Sardiello, M. Palmieri, A. Di-ronza, D. L. Medina, M. Valenza et al., A Gene Network Regulating Lysosomal Biogenesis and Function, Science, vol.325, pp.473-477, 2009.

S. Sarkar, S. Chigurupati, J. Raymick, D. Mann, J. F. Bowyer et al., Neuroprotective effect of the chemical chaperone, trehalose in a chronic MPTPinduced Parkinson's disease mouse model, NeuroToxicology, vol.44, pp.250-262, 2014.

S. Sarkar, J. E. Davies, Z. Huang, A. Tunnacliffe, and D. C. Rubinsztein, Trehalose, a Novel mTORindependent Autophagy Enhancer, Accelerates the Clearance of Mutant Huntingtin and ?-Synuclein, Journal of Biological Chemistry, vol.282, pp.5641-5652, 2007.

S. Sarkar, R. A. Floto, Z. Berger, S. Imarisio, A. Cordenier et al., Lithium induces autophagy by inhibiting inositol monophosphatase, The Journal of cell biology, vol.170, pp.1101-1111, 2005.

S. Sato, T. Uchihara, T. Fukuda, S. Noda, H. Kondo et al., Loss of autophagy in dopaminergic neurons causes Lewy pathology and motor dysfunction in aged mice, Sci Rep, vol.8, p.2813, 2018.

A. Schapira, C. W. Olanow, J. T. Greenamyre, and E. Bezard, Slowing of neurodegeneration in Parkinson's disease and Huntington's disease: future therapeutic perspectives, The Lancet, vol.384, pp.545-555, 2014.

A. Schrag, Y. Ben-shlomo, and N. P. Quinn, Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study, The Lancet, vol.354, pp.1771-1775, 1999.

L. Schwarz, O. Goldbaum, M. Bergmann, S. Probst-cousin, and C. Richter-landsberg, Involvement of macroautophagy in multiple system atrophy and protein aggregate formation in oligodendrocytes, J Mol Neurosci, vol.47, pp.256-66, 2012.

A. Scrivo, M. Bourdenx, O. Pampliega, and A. M. Cuervo, Selective autophagy as a potential therapeutic target for neurodegenerative disorders, The Lancet Neurology, vol.17, pp.802-815, 2018.

C. Settembre and A. Ballabio, TFEB regulates autophagy: an integrated coordination of cellular degradation and recycling processes, Autophagy, vol.7, pp.1379-81, 2011.

C. Settembre, D. Malta, C. Polito, V. A. , G. Arencibia et al., TFEB links autophagy to lysosomal biogenesis, vol.332, pp.1429-1433, 2011.

A. Shimozawa, M. Ono, D. Takahara, A. Tarutani, S. Imura et al., Propagation of pathological ?-synuclein in marmoset brain, Acta neuropathologica communications, vol.5, pp.12-12, 2017.

G. M. Shy and G. A. Drager, A Neurological Syndrome Associated with Orthostatic Hypotension: A Clinical-Pathologic Study, JAMA Neurology, vol.2, pp.511-527, 1960.

J. Sian-hülsmann, S. Mandel, M. Youdim, and P. Riederer, The relevance of iron in the pathogenesis of Parkinson's disease, Journal of Neurochemistry, vol.118, pp.939-957, 2011.

E. Sidransky, M. A. Nalls, J. O. Aasly, A. , J. Annesi et al., Multicenter Analysis of Glucocerebrosidase Mutations in Parkinson's Disease, New England Journal of Medicine, vol.361, pp.1651-1661, 2009.

C. Silveira, J. Mackinley, K. Coleman, Z. Li, E. Finger et al., Ambroxol as a novel disease-modifying treatment for Parkinson's disease dementia: protocol for a single-centre, randomized, double-blind, placebo-controlled trial, BMC Neurology, vol.19, p.20, 2019.

A. B. Singleton, M. Farrer, J. Johnson, A. Singleton, S. Hague et al., Synuclein Locus Triplication Causes Parkinson's Disease, vol.302, pp.841-841, 2003.

D. A. Sliter, J. Martinez, L. Hao, X. Chen, N. Sun et al., Parkin and PINK1 mitigate STING-induced inflammation, Nature, vol.561, pp.258-262, 2018.

H. Soma, I. Yabe, A. Takei, N. Fujiki, T. Yanagihara et al., Heredity in multiple system atrophy, Journal of the Neurological Sciences, vol.240, pp.107-110, 2006.

J. X. Song, J. H. Lu, L. F. Liu, L. L. Chen, S. S. Durairajan et al., HMGB1 is involved in autophagy inhibition caused by SNCA/alpha-synuclein overexpression: a process modulated by the natural autophagy inducer corynoxine B, Autophagy, vol.10, pp.144-54, 2014.

W. Song, F. Wang, P. Lotfi, M. Sardiello, and L. Segatori, 2-Hydroxypropyl-beta-cyclodextrin promotes transcription factor EB-mediated activation of autophagy: implications for therapy, J Biol Chem, vol.289, pp.10211-10233, 2014.

Y. Song, D. Lundvig, Y. Huang, W. P. Gai, P. C. Blumbergs et al., relocalizes in oligodendroglia from myelin to cytoplasmic inclusions in multiple system atrophy, The American journal of pathology, vol.171, pp.1291-1303, 2007.

F. N. Soria, O. Pampliega, M. Bourdenx, W. G. Meissner, E. Bezard et al., Exosomes, an Unmasked Culprit in Neurodegenerative Diseases, Front Neurosci, vol.11, p.26, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01490842

B. Spencer, R. Potkar, M. Trejo, E. Rockenstein, C. Patrick et al., Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases, J Neurosci, vol.29, pp.13578-88, 2009.

M. G. Spillantini, M. L. Schmidt, V. Lee, J. Q. Trojanowski, R. Jakes et al., ) ?-Synuclein in Lewy bodies, Nature, vol.388, pp.839-840, 1997.

N. T. Sprenkle, S. G. Sims, C. L. Sánchez, and G. P. Meares, Endoplasmic reticulum stress and inflammation in the central nervous system, Molecular Neurodegeneration, vol.12, p.42, 2017.

P. B. Stathopulos, G. Li, M. J. Plevin, J. B. Ames, and M. Ikura, Stored Ca2+ Depletion-induced Oligomerization of Stromal Interaction Molecule 1 (STIM1) via the EF-SAM Region: AN INITIATION MECHANISM FOR CAPACITIVE Ca2+ ENTRY, Journal of Biological Chemistry, vol.281, pp.35855-35862, 2006.

L. Stefanis, K. E. Larsen, H. J. Rideout, D. Sulzer, and L. A. Greene, Expression of A53T Mutant But Not Wild-Type ?-Synuclein in PC12 Cells Induces Alterations of the Ubiquitin-Dependent Degradation System, Loss of Dopamine Release, and Autophagic Cell Death, The Journal of Neuroscience, vol.21, pp.9549-9560, 2001.

A. N. Stefanovic, M. T. Stockl, and M. M. Claessens, Subramaniam V (2014) alpha-Synuclein oligomers distinctively permeabilize complex model membranes, FEBS J, vol.281, pp.2838-50

D. A. Stevens, Y. Lee, H. C. Kang, B. D. Lee, Y. Lee et al., Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration, Proceedings of the National Academy of Sciences, vol.112, pp.11696-11701, 2015.

E. Stolzenberg, D. Berry, D. Yang, E. Y. Lee, A. Kroemer et al., A Role for Neuronal Alpha-Synuclein in Gastrointestinal Immunity, Journal of Innate Immunity, vol.9, pp.456-463, 2017.

D. J. Surmeier, J. N. Guzman, J. Sanchez, and P. T. Schumacker, Physiological phenotype and vulnerability in Parkinson's disease. Cold Spring Harbor perspectives in medicine, vol.2, pp.9290-009290, 2012.

D. J. Surmeier, J. A. Obeso, and G. M. Halliday, Selective neuronal vulnerability in Parkinson disease, Nature reviews Neuroscience, vol.18, pp.101-113, 2017.

E. Svensson, E. Horváth-puhó, R. W. Thomsen, J. C. Djurhuus, L. Pedersen et al., Vagotomy and subsequent risk of Parkinson's disease, Annals of Neurology, vol.78, pp.522-529, 2015.

S. Tan, C. Y. Yu, Z. W. Sim, Z. S. Low, B. Lee et al., Pomegranate activates TFEB to promote autophagy-lysosomal fitness and mitophagy, Sci Rep, vol.9, p.727, 2019.

M. Tanaka, Y. Machida, S. Niu, T. Ikeda, N. R. Jana et al., Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease, Nature Medicine, vol.10, pp.148-154, 2004.

S. A. Tanik, C. E. Schultheiss, L. A. Volpicelli-daley, K. R. Brunden, and V. M. Lee, Lewy body-like alphasynuclein aggregates resist degradation and impair macroautophagy, J Biol Chem, vol.288, pp.15194-210, 2013.

K. Tanji, Y. Miki, A. Maruyama, J. Mimura, T. Matsumiya et al., Trehalose intake induces chaperone molecules along with autophagy in a mouse model of Lewy body disease, Biochemical and Biophysical Research Communications, vol.465, pp.746-752, 2015.

K. Tanji, S. Odagiri, A. Maruyama, F. Mori, A. Kakita et al., Alteration of autophagosomal proteins in the brain of multiple system atrophy, Neurobiol Dis, vol.49, pp.190-198, 2013.

C. M. Tanner, R. Ottman, S. M. Goldman, J. Ellenberg, P. Chan et al., Parkinson Disease in TwinsAn Etiologic Study, vol.281, pp.341-346, 1999.

N. Thavanesan, M. Gillies, M. Farrell, A. L. Green, and T. Aziz, Deep brain stimulation in multiple system atrophy mimicking idiopathic Parkinson's disease, Case Rep Neurol, vol.6, pp.232-239, 2014.

F. Tison, F. Yekhlef, V. Chrysostome, and C. Sourgen, Prevalence of multiple system atrophy, The Lancet, vol.355, pp.495-496, 2000.

A. Torra, A. Parent, T. Cuadros, B. Rodriguez-galvan, E. Ruiz-bronchal et al., Overexpression of TFEB Drives a Pleiotropic Neurotrophic Effect and Prevents Parkinson's Disease-Related Neurodegeneration, Mol Ther, vol.26, pp.1552-1567, 2018.

C. Tretiakoff, Contribution a l'etude de l'Anatomie pathologique du Locus Niger de Soemmering avec quelques deduction relatives a la pathogenie des troubles du tonus musculaire et de la maladie de Parkinson. Theses de Paris Tsunemi T, Hamada K, Krainc D (2014) ATP13A2/PARK9 regulates secretion of exosomes and alphasynuclein, J Neurosci, vol.34, pp.15281-15288, 1919.

T. Tsunemi, T. Perez-rosello, Y. Ishiguro, A. Yoroisaka, S. Jeon et al., Increased lysosomal exocytosis induced by lysosomal Ca(2+) channel agonists protects human dopaminergic neurons from alpha-synuclein toxicity, J Neurosci Tysnes OB, Storstein A, vol.124, pp.901-905, 2017.

I. Ubeda-bañon, D. Saiz-sanchez, C. De-la-rosa-prieto, and A. Martinez-marcos, ?-Synuclein in the olfactory system in Parkinson's disease: role of neural connections on spreading pathology, Brain Structure and Function, vol.219, pp.1513-1526, 2014.

K. Ubhi, P. Low, and E. Masliah, Multiple system atrophy: a clinical and neuropathological perspective, Trends in Neurosciences, vol.34, pp.581-590, 2011.

T. Uchihara, A. Nakamura, Y. Mochizuki, M. Hayashi, S. Orimo et al., Silver stainings distinguish Lewy bodies and glial cytoplasmic inclusions: comparison between Gallyas-Braak and Campbell-Switzer methods, vol.110, pp.255-260, 2005.

K. Uéda, H. Fukushima, E. Masliah, Y. Xia, A. Iwai et al., Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease, Proceedings of the National Academy of Sciences of the United States of America, vol.90, pp.11282-11286, 1993.

N. Uemura, H. Yagi, M. T. Uemura, Y. Hatanaka, H. Yamakado et al., Inoculation of alphasynuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve, Mol Neurodegener, vol.13, p.21, 2018.

A. Ulusoy, R. J. Phillips, M. Helwig, M. Klinkenberg, T. L. Powley et al., Brain-to-stomach transfer of alpha-synuclein via vagal preganglionic projections, Acta Neuropathol, vol.133, pp.381-393, 2017.

A. Ulusoy, R. Rusconi, B. I. Perez-revuelta, R. E. Musgrove, M. Helwig et al., Caudo-rostral brain spreading of alpha-synuclein through vagal connections, EMBO Mol Med, vol.5, pp.1119-1146, 2013.

M. Usenovic, E. Tresse, J. R. Mazzulli, J. P. Taylor, and D. Krainc, Deficiency of ATP13A2 leads to lysosomal dysfunction, alpha-synuclein accumulation, and neurotoxicity, J Neurosci, vol.32, pp.4240-4246, 2012.

V. N. Uversky, J. Li, and A. L. Fink, Metal-triggered Structural Transformations, Aggregation, and Fibrillation of Human ?-Synuclein: A POSSIBLE MOLECULAR LINK BETWEEN PARKINSON?S DISEASE AND HEAVY METAL EXPOSURE, Journal of Biological Chemistry, vol.276, pp.44284-44296, 2001.

E. M. Valente, A. R. Bentivoglio, P. H. Dixon, A. Ferraris, T. Ialongo et al., Localization of a Novel Locus for Autosomal Recessive Early-Onset Parkinsonism, <em>PARK6,</em> on Human Chromosome 1p35-p36, vol.68, pp.895-900, 2001.

E. M. Valente, F. Brancati, V. Caputo, E. A. Graham, M. B. Davis et al., is a common cause of familial parkinsonism, Neurological Sciences, vol.23, pp.117-118, 2002.

E. M. Valente, F. Brancati, A. Ferraris, E. A. Graham, M. B. Davis et al., -linked parkinsonism occurs in several european families, Annals of Neurology, vol.51, pp.14-18, 2002.

E. Valera and E. Masliah, Combination therapies: The next logical Step for the treatment of synucleinopathies?, Movement disorders : official journal of the Movement Disorder Society, vol.31, pp.225-234, 2016.

E. Valera, K. Ubhi, M. Mante, E. Rockenstein, and E. Masliah, Antidepressants reduce neuroinflammatory responses and astroglial alpha-synuclein accumulation in a transgenic mouse model of multiple system atrophy, Glia, vol.62, pp.317-337, 2014.

A. A. Valiente-gabioud, V. Torres-monserrat, L. Molina-rubino, A. Binolfi, C. Griesinger et al., Structural basis behind the interaction of Zn2+ with the protein ?-synuclein and the A? peptide: A comparative analysis, Journal of Inorganic Biochemistry, vol.117, pp.334-341, 2012.

S. K. Van-den-eeden, C. M. Tanner, A. L. Bernstein, R. D. Fross, A. Leimpeter et al., Incidence of Parkinson's Disease: Variation by Age, Gender, and Race/Ethnicity, American Journal of Epidemiology, vol.157, pp.1015-1022, 2003.

A. Van-der-perren, C. Van-den-haute, V. Baekelandt, K. D. Van-dijk, E. Persichetti et al., Viral Vector-Based Models of Parkinson's Disease. In Behavioral Neurobiology of Huntington's Disease and Parkinson's Disease, Mov Disord, vol.28, pp.747-54, 2013.

C. M. Van-duijn, M. C. Dekker, V. Bonifati, R. J. Galjaard, J. J. Houwing-duistermaat et al., Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36, vol.69, pp.629-634, 2001.

M. Vila, Neuromelanin, aging, and neuronal vulnerability in Parkinson's disease, Movement Disorders, p.0, 2019.

N. P. Visanji, J. M. Brotchie, L. V. Kalia, J. B. Koprich, A. Tandon et al., ) ?-Synuclein-Based Animal Models of Parkinson's Disease: Challenges and Opportunities in a New Era, Trends in Neurosciences, vol.39, pp.750-762, 2016.

T. Vogiatzi, M. Xilouri, K. Vekrellis, and L. Stefanis, Wild type alpha-synuclein is degraded by chaperonemediated autophagy and macroautophagy in neuronal cells, The Journal of biological chemistry, vol.283, pp.23542-23556, 2008.

L. A. Volpicelli-daley, K. C. Luk, T. P. Patel, S. A. Tanik, D. M. Riddle et al., Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death, Neuron, vol.72, pp.57-71, 2011.

D. M. Walsh and D. J. Selkoe, A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration, Nature Reviews Neuroscience, vol.17, p.251, 2016.

G. Wang, C. Li, and G. J. Pielak, 19F NMR studies of ?-synuclein-membrane interactions, Protein science : a publication of the Protein Society, vol.19, pp.1686-1691, 2010.

H. Watanabe, Y. Saito, S. Terao, T. Ando, T. Kachi et al., Progression and prognosis in multiple system atrophy: An analysis of 230 Japanese patients, Brain, vol.125, pp.1070-1083, 2002.

J. C. Watts, K. Giles, A. Oehler, L. Middleton, D. T. Dexter et al., Transmission of multiple system atrophy prions to transgenic mice, Proc Natl Acad Sci U S A, vol.110, pp.19555-60, 2013.

J. L. Webb, B. Ravikumar, J. Atkins, J. N. Skepper, and D. C. Rubinsztein, ) ?-Synuclein Is Degraded by Both Autophagy and the Proteasome, Journal of Biological Chemistry, vol.278, pp.25009-25013, 2003.

G. K. Wenning, F. Geser, F. Krismer, K. Seppi, S. Duerr et al., The natural history of multiple system atrophy: a prospective European cohort study, The Lancet Neurology, vol.12, pp.264-274, 2013.

G. K. Wenning, Y. B. Shlomo, M. Magalhães, S. E. Danie, and N. P. Quinn, Clinical features and natural history of multiple system atrophy: An analysis of 100 cases, Brain, vol.117, pp.835-845, 1994.

G. K. Wenning, F. Tison, Y. Ben-shlomo, S. E. Daniel, and N. P. Quinn, Multiple system atrophy: A review of 203 pathologically proven cases, Movement Disorders, vol.12, pp.133-147, 1997.

E. T. Williams, L. Glauser, E. Tsika, H. Jiang, S. Islam et al., Parkin mediates the ubiquitination of VPS35 and modulates retromer-dependent endosomal sorting, Human Molecular Genetics, vol.27, pp.3189-3205, 2018.

B. Winner, R. Jappelli, S. K. Maji, P. A. Desplats, L. Boyer et al., In vivo demonstration that ?-synuclein oligomers are toxic, Proceedings of the National Academy of Sciences, vol.108, pp.4194-4199, 2011.

A. R. Winslow, C. W. Chen, S. Corrochano, A. Acevedo-arozena, D. E. Gordon et al., ) alpha-Synuclein impairs macroautophagy: implications for Parkinson's disease, J Cell Biol, vol.190, pp.1023-1060, 2010.

Y. Wu, X. Li, J. X. Zhu, W. Xie, W. Le et al., Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease, Neuro-Signals, vol.19, pp.163-174, 2011.

U. Wüllner, I. Schmitt, M. Kammal, H. A. Kretzschmar, and M. Neumann, Definite multiple system atrophy in a German family, Journal of Neurology, vol.80, pp.449-450, 2009.

M. Xilouri, O. R. Brekk, N. Landeck, P. M. Pitychoutis, T. Papasilekas et al., Boosting chaperone-mediated autophagy in vivo mitigates alpha-synucleininduced neurodegeneration, Brain, vol.136, pp.2130-2176, 2013.

M. Xilouri, O. R. Brekk, A. Polissidis, M. Chrysanthou-piterou, I. Kloukina et al., Impairment of chaperone-mediated autophagy induces dopaminergic neurodegeneration in rats, Autophagy, vol.12, pp.2230-2247, 2016.

M. Xilouri, T. Vogiatzi, K. Vekrellis, D. Park, and L. Stefanis, Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy, PLoS One, vol.4, p.5515, 2009.

N. Xiong, M. Jia, C. Chen, J. Xiong, Z. Zhang et al., Potential autophagy enhancers attenuate rotenone-induced toxicity in SH-SY5Y, Neuroscience, vol.199, pp.292-302, 2011.

Y. H. Xu, Y. Sun, H. Ran, B. Quinn, D. Witte et al., Accumulation and distribution of alphasynuclein and ubiquitin in the CNS of Gaucher disease mouse models, Mol Genet Metab, vol.102, pp.436-483, 2011.

F. Yan, Y. Chen, M. Li, Y. Wang, W. Zhang et al., Gastrointestinal nervous system ?synuclein as a potential biomarker of Parkinson disease, Medicine, vol.97, pp.11337-11337, 2018.

J. Yan, Y. Yuan, Y. Gao, J. Huang, K. Ma et al., Overexpression of Human E46K Mutant ?-Synuclein Impairs Macroautophagy via Inactivation of JNK1-Bcl-2 Pathway, Molecular Neurobiology, vol.50, pp.685-701, 2014.

Q. Yang, H. She, M. Gearing, E. Colla, M. Lee et al., Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy, Science, vol.323, pp.124-131, 2009.

T. L. Yap, J. M. Gruschus, A. Velayati, W. Westbroek, E. Goldin et al., Alphasynuclein interacts with Glucocerebrosidase providing a molecular link between Parkinson and Gaucher diseases, J Biol Chem, vol.286, pp.28080-28088, 2011.

Y. Yin, G. Sun, E. Li, K. Kiselyov, and D. Sun, ER stress and impaired autophagy flux in neuronal degeneration and brain injury, Ageing research reviews, vol.34, pp.3-14, 2017.

M. Youdim, A. Wadia, W. Tatton, and M. Weinstock, The Anti-Parkinson Drug Rasagiline and Its Cholinesterase Inhibitor Derivatives Exert Neuroprotection Unrelated to MAO Inhibition in Cell Culture and in Vivo, Annals of the New York Academy of Sciences, vol.939, pp.450-458, 2001.

R. J. Youle and D. P. Narendra, Mechanisms of mitophagy, Nature Reviews Molecular Cell Biology, vol.12, p.9, 2010.

G. Zaffagnini and S. Martens, Mechanisms of Selective Autophagy, Journal of molecular biology, vol.428, pp.1714-1724, 2016.

E. Zavodszky, M. Seaman, K. Moreau, M. Jimenez-sanchez, S. Y. Breusegem et al., Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy, Nature Communications, vol.5, p.3828, 2014.

B. Zhang, V. Kehm, R. Gathagan, S. N. Leight, J. Q. Trojanowski et al., Stereotaxic Targeting of Alpha-Synuclein Pathology in Mouse Brain Using Preformed Fibrils, Methods in molecular biology, pp.45-57, 1948.

Q. Zheng, T. Huang, L. Zhang, Y. Zhou, H. Luo et al., Dysregulation of Ubiquitin-Proteasome System in Neurodegenerative Diseases, Frontiers in Aging Neuroscience, vol.8, 2016.

M. Zhu, Z. Qin, D. Hu, L. A. Munishkina, and A. L. Fink, ) ?-Synuclein Can Function as an Antioxidant Preventing Oxidation of Unsaturated Lipid in Vesicles, Biochemistry, vol.45, pp.8135-8142, 2006.

A. Zimprich, A. Benet-pagès, W. Struhal, E. Graf, E. Sebastian et al., A Mutation in <em>VPS35</em>, Encoding a Subunit of the Retromer Complex, Causes Late-Onset Parkinson Disease, The American Journal of Human Genetics, vol.89, pp.168-175, 2011.

A. Zimprich, S. Biskup, P. Leitner, P. Lichtner, M. Farrer et al., Mutations in <em>LRRK2</em> Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology, Neuron, vol.44, pp.601-607, 2004.

L. Zondler, M. Kostka, P. Garidel, U. Heinzelmann, B. Hengerer et al., Proteasome impairment by ?-synuclein, PloS one, vol.12, pp.184040-0184040, 2017.