T. Aigner and J. Stöve, Collagens-major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair, Advanced Drug Delivery Reviews, vol.55, pp.1569-1593, 2003.

L. Marinova-mutafchieva, P. Taylor, K. Funa, R. N. Maini, and N. J. Zvaifler, Mesenchymal cells expressing bone morphogenetic protein receptors are present in the rheumatoid arthritis joint, Arthritis and Rheumatism, vol.43, pp.2046-2055, 2000.

K. Nishimura, L. A. Solchaga, A. I. Caplan, J. U. Yoo, V. M. Goldberg et al., Chondroprogenitor cells of synovial tissue, Arthritis and Rheumatism, vol.42, pp.2631-2637, 1999.

M. Demoor, D. Ollitrault, T. Gomez-leduc, M. Bouyoucef, M. Hervieu et al., Cartilage tissue engineering: Molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction, Biochimica et Biophysica Acta, vol.1840, pp.2414-2440, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02132064

A. Chamberland, E. Wang, A. R. Jones, L. A. Collins-racie, E. R. Lavallie et al., Identification of a novel HtrA1-susceptible cleavage site in human aggrecan: Evidence for the involvement of HtrA1 in aggrecan proteolysis in vivo, Journal of Biological Chemistry, vol.284, pp.27352-27359, 2009.

C. Oka, R. Tsujimoto, M. Kajikawa, K. Koshiba-takeuchi, J. Ina et al., HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins, Development, vol.131, pp.1041-1053, 2004.

P. D. Benya, S. R. Padilla, and M. E. Nimni, Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture, Cell, vol.15, pp.1313-1321, 1978.

R. C. Lee, R. L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, vol.75, pp.843-854, 1993.
URL : https://hal.archives-ouvertes.fr/in2p3-00597159

, Stem Cell Rev and Rep

G. Filardo, E. Kon, U. G. Longo, H. Madry, P. Marchettini et al., Non-surgical treatments for the management of early osteoarthritis, Knee Surgery, Sports Traumatology, Arthroscopy, vol.24, pp.1775-1785, 2016.

J. N. Katz, E. Losina, and L. S. Lohmander, OARSI clinical trials recommendations: Design and conduct of clinical trials of surgical interventions for osteoarthritis, Osteoarthritis and Cartilage, vol.23, pp.798-802, 2015.

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson et al., Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation, New England Journal of Medicine, vol.331, pp.889-895, 1994.

M. Brittberg, Autologous chondrocyte transplantation, Clinical Orthopaedics and Related Research, vol.367, pp.147-155, 1999.

L. Dani?ovi?, M. B-o-h-Á-?, R. Z-a-m-b-o-r-s-k-Ý, L. O-r-a-v-c-o-v-Á, Z. Provazníková et al., Comparative analysis of mesenchymal stromal cells from different tissue sources in respect to articular cartilage tissue engineering, General Physiology and Biophysics, vol.35, pp.207-214, 2016.

S. Marlovits, S. Aldrian, B. Tichy, C. Albrecht, and S. Nürnberger, Biomaterial for autologous chondrocyte transplantation, Orthopade, vol.38, pp.1045-1052, 2009.

F. Legendre, D. Ollitrault, M. Hervieu, C. Baugé, L. Maneix et al., Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia, Tissue Engineering Part C: Methods, vol.19, pp.550-567, 2013.

M. K. Murphy, D. J. Huey, J. C. Hu, and K. A. Athanasiou, , 2015.

. Tgf-?1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells, Stem Cells, vol.33, pp.762-773

W. Kafienah, S. Mistry, S. C. Dickinson, T. J. Sims, I. Learmonth et al., Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients, Arthritis & Rheumatology, vol.56, pp.177-187, 2007.

Y. Liu, L. He, and J. Tian, Effect of basic fibroblast growth factor and parathyroid hormone-related protein on early and late chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells induced by transforming growth factor beta 1, Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, vol.27, pp.199-206, 2013.

M. C. Ronzière, E. E. Perrier, F. F. Mallein-gerin, and A. A. Freyria, Chondrogenic potential of bone marrow-and adipose tissue-derived adult human mesenchymal stem cells, Biomedical Materials and Engineering, vol.20, pp.145-158, 2010.

E. Duval, S. Leclercq, J. Elissalde, M. Demoor, P. Galera et al., Hypoxia-inducible factor 1alpha inhibits the fibroblast-like markers type I and type III collagen during hypoxia-induced chondrocyte redifferentiation: Hypoxia not only induces type II collagen and aggrecan, but it also inhibits type I and type III collagen in the hypoxia-inducible factor 1alpha-dependent redifferentiation of chondrocytes, Arthritis & Rheumatology, vol.60, pp.3038-3048, 2009.

D. Ollitrault, F. Legendre, C. Drougard, M. Briand, H. Benateau et al., BMP-2, hypoxia, and COL1A1/HtrA1 siRNAs favor neo-cartilage hyaline matrix formation in chondrocytes, Tissue Engineering. Part C, Methods, vol.21, pp.133-147, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01804715

Y. Tian, R. Guo, B. Shi, L. Chen, L. Yang et al., , 2016.

, MicroRNA-30a promotes chondrogenic differentiation of mesenchymal stem cells through inhibiting Delta-like 4 expression, Life Sciences, vol.148, pp.220-228

T. Gomez-leduc, M. Hervieu, F. Legendre, M. Bouyoucef, N. Gruchy et al., Chondrogenic commitment of human umbilical cord blood-derived mesenchymal stem cells in collagen matrices for cartilage engineering, Scientific Reports, vol.6, p.32786, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02304812

F. Legendre, D. Ollitrault, . G-o-m-e-z--l-e-d-u-ct, . B-o-u-y-o-u-c-e-fm, M. Hervieu et al., Enhanced chondrogenesis of bone marrow derived-stem cells by using a combinatory cell therapy strategy with BMP-2/TGF-ß1, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02285453

T. Aigner, J. L. Cook, N. Gerwin, S. S. Glasson, S. Laverty et al., , 2010.

, Histopathology atlas of animal model systems -overview of guiding principles, Osteoarthritis and Cartilage, vol.18, pp.2-6

J. Malda, K. E. Benders, T. J. Klein, J. C. De-grauw, M. J. Kik et al., Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles, Osteoarthritis and Cartilage, vol.20, pp.1147-1151, 2012.

G. R. Callender and R. A. Kelser, Degenerative arthritis: A comparison of the pathological changes in man and equines, American Journal of Pathology, vol.14, pp.253-272, 1938.

J. Olive, M. A. D'anjour, C. Girard, S. Laverty, and C. L. Theoret, Imaging and histological features of central subchondral osteophytes in racehorses with metacarpophalangeal joint osteoarthritis, Equine Veterinary Journal, vol.41, pp.859-864, 2009.

M. Dominici, K. Le-blanc, I. Mueller, I. Slaper-cortenbach, F. Marini et al., Minimal criteria for defining multipotent mesenchymal stromal cells The International Society for Cellular Therapy position statement, Cytotherapy, vol.8, pp.315-317, 2006.

H. Castro-malaspina, R. E. Gay, G. Resnick, N. Kapoor, P. Meyers et al., Characterization of human bone marrow fibroblast colonyforming cells (CFU-F) and their progeny, Blood, vol.56, pp.289-301, 1980.

S. Kern, H. Eichler, J. Stoeve, H. Klüter, and K. Bieback, Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue, Stem Cells, vol.24, pp.1294-1301, 2006.

T. M. Campbell, S. M. Churchman, A. Gomez, D. Mcgonagle, P. G. Conaghan et al., Mesenchymal stem cell alterations in bone marrow lesions with hip osteoarthritis, Arthritis & Rheumatology, vol.68, pp.1648-1659, 2016.

K. Borchers, U. Wolfinger, M. Goltz, H. Broll, and H. Ludwig, Distribution and relevance of equine herpesvirus type 2 (EHV-2) infections, Archives of Virology, vol.142, pp.917-928, 1997.

L. Sensebé, P. Bourin, and K. Tarte, Good manufacturing practices production of mesenchymal stem/stromal cells, Human Gene Therapy, vol.22, pp.19-26, 2011.

J. Kim, J. W. Kang, J. H. Park, Y. Choi, K. S. Choi et al., Biological characterization of long-term cultured human mesenchymal stem cells, Archives of Pharmacal Research, vol.32, pp.1-17, 2009.

W. Wagner, P. Horn, M. Castoldi, A. Diehlmann, S. Bork et al., Replicative senescence of mesenchymal stem cells: A continuous and organized process, PloS One, vol.3, p.2213, 2008.

M. A. Vidal, N. J. Walker, E. Napoli, and D. L. Borjesson, Evaluation of senescence in mesenchymal stem cells isolated from equine bone marrow, adipose tissue, and umbilical cord tissue, Stem Cells and Development, vol.21, pp.273-283, 2012.

A. A. Stewart, C. R. Byron, H. Pondenis, and M. C. Stewart, Effect of fibroblast growth factor-2 on equine mesenchymal, 2007.

T. Aigner and J. Stöve, Collagens-Major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair, Adv. Drug Deliv. Rev, vol.55, pp.1569-1593, 2003.

L. J. Sandell, N. Morris, J. R. Robbins, and M. B. Goldring, Alternatively spliced type II procollagen mRNAs define distinct populations of cells during vertebral development: Differential expression of the amino-propeptide, J. Cell Biol, vol.114, pp.1307-1319, 1991.

L. J. Sandell, A. M. Nalin, and R. A. Reife, Alternative splice form of type II procollagen mRNA (IIA) is predominant in skeletal precursors and non-cartilaginous tissues during early mouse development, Dev. Dyn, vol.199, pp.129-140, 1994.

E. Perrier, M. Ronzière, R. Bareille, A. Pinzano, F. Mallein-gerin et al., Analysis of collagen expression during chondrogenic induction of human bone marrow mesenchymal stem cells, Biotechnol. Lett, vol.33, pp.2091-2101, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02200278

J. Heinonen, H. Taipaleenmäki, P. Roering, M. Takatalo, L. Harkness et al., Snorc is a novel cartilage specific small membrane proteoglycan expressed in differentiating and articular chondrocytes, Osteoarthr. Cartil, vol.19, pp.1026-1035, 2011.

P. D. Benya, S. R. Padilla, and M. E. Nimni, Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture, Cell, vol.15, pp.1313-1321, 1978.

D. A. Lee, G. Bentley, and C. W. Archer, The control of cell division in articular chondrocytes, Osteoarthr. Cartil, vol.1, pp.137-146, 1993.

K. Gelse, Collagens-Structure, function, and biosynthesis, Adv. Drug Deliv. Rev, vol.55, pp.1531-1546, 2003.

, Int. J. Mol. Sci, vol.19, p.435, 2018.

A. Chamberland, E. Wang, A. R. Jones, L. A. Collins-racie, E. R. Lavallie et al., Identification of a novel HtrA1-susceptible cleavage site in human aggrecan: Evidence for the involvement of HtrA1 in aggrecan proteolysis in vivo, J. Biol. Chem, vol.284, pp.27352-27359, 2009.

C. Oka, R. Tsujimoto, M. Kajikawa, K. Koshiba-takeuchi, J. Ina et al., HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins, Development, vol.131, pp.1041-1053, 2004.

M. Demoor, D. Ollitrault, T. Gomez-leduc, M. Bouyoucef, M. Hervieu et al., Cartilage tissue engineering: Molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction, Biochim. Biophys. Acta, vol.1840, pp.2414-2440, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02132064

T. Aigner, J. L. Cook, N. Gerwin, S. S. Glasson, S. Laverty et al., Histopathology atlas of animal model systems-Overview of guiding principles, Osteoarthr. Cartil, vol.18, 2010.

J. Malda, K. E. Benders, T. J. Klein, J. C. De-grauw, M. J. Kik et al., Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles, Osteoarthr. Cartil, vol.20, pp.1147-1151, 2012.

N. R. Perkins, S. Reid, and R. S. Morris, Profiling the New Zealand thoroughbred racing industry. 2. Conditions interfering with training and racing, N. Z. Vet. J, vol.53, pp.69-76, 2005.

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson et al., Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation, N. Engl. J. Med, vol.331, pp.889-895, 1994.

M. Brittberg, Autologous chondrocyte transplantation, Clin. Orthop. Relat. Res, vol.367, pp.147-155, 1999.

L. Dani?ovi?, M. Bohá?, R. Zamborský, L. Oravcová, Z. Provazníková et al., Comparative analysis of mesenchymal stromal cells from different tissue sources in respect to articular cartilage tissue engineering, Gen. Physiol. Biophys, vol.35, pp.207-214, 2016.

B. Delorme, J. Ringe, C. Pontikoglou, J. Gaillard, A. Langonné et al., Specific lineage-priming of bone marrow mesenchymal stem cells provides the molecular framework for their plasticity, Stem Cells, vol.27, pp.1142-1151, 2009.

I. Chambers and A. Smith, Self-renewal of teratocarcinoma and embryonic stem cells, Oncogene, vol.23, pp.7150-7160, 2004.

S. Marlovits, S. Aldrian, B. Tichy, C. Albrecht, and S. Nürnberger, Biomaterial for autologous chondrocyte transplantation, Orthopäde, vol.38, pp.1045-1052, 2009.

M. K. Murphy, D. J. Huey, J. C. Hu, and K. A. Athanasiou, TGF-?1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells, Stem Cells, vol.33, pp.762-773, 2015.

W. Kafienah, S. Mistry, S. C. Dickinson, T. J. Sims, I. Learmonth et al., Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheumatol, vol.56, pp.177-187, 2007.

M. C. Ronzière, E. E. Perrier, F. F. Mallein-gerin, and A. Freyria, Chondrogenic potential of bone marrowand adipose tissue-derived adult human mesenchymal stem cells, Biomed. Mater. Eng, vol.20, pp.145-158, 2010.

F. Legendre, D. Ollitrault, M. Hervieu, C. Baugé, L. Maneix et al., Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia, Tissue Eng. Part C Methods, vol.19, pp.550-567, 2013.

F. Legendre, D. Ollitrault, T. Gomez-leduc, M. Bouyoucef, M. Hervieu et al., Enhanced chondrogenesis of bone marrow derived-stem cells by using a combinatory cell therapy strategy with BMP-2/TGF-?1, hypoxia and COL1A1/HtrA1 siRNAs, vol.13, p.3406, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02285453

, Int. J. Mol. Sci, vol.19, pp.435-461, 2018.

D. Ollitrault, F. Legendre, C. Drougard, M. Briand, H. Benateau et al., BMP-2, Hypoxia, and COL1A1/HtrA1 siRNAs favor neo-cartilage hyaline matrix formation in chondrocytes, Tissue Eng. Part C Methods, vol.21, pp.133-147, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01804715

T. Branly, L. Bertoni, R. Contentin, R. Rakic, T. Gomez-leduc et al., Characterization and use of equine bone marrow mesenchymal stem cells in equine cartilage engineering. Study of their hyaline cartilage forming potential when cultured under hypoxia within a biomaterial in the presence of BMP-2 and TGF-?1, Stem Cell Rev. Rep, vol.13, pp.611-630, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02186824

R. L. Dahlin, M. Ni, V. V. Meretoja, F. K. Kasper, and A. G. Mikos, TGF-?3-induced chondrogenesis in co-cultures of chondrocytes and mesenchymal stem cells on biodegradable scaffolds, Biomaterials, vol.35, pp.123-132, 2014.

R. D. Abbott, E. P. Kimmerling, D. M. Cairns, and D. L. Kaplan, Silk as a biomaterial to support long-term three-dimensional tissue cultures, ACS Appl. Mater. Interfaces, vol.8, pp.21861-21868, 2016.

E. D. Adamson and S. E. Ayers, The localization and synthesis of some collagen types in developing mouse embryos, Cell, vol.16, pp.953-965, 1979.

G. S. Barsh and P. H. Byers, Reduced secretion of structurally abnormal type I procollagen in a form of osteogenesis imperfecta, Proc. Natl. Acad. Sci, vol.78, pp.5142-5146, 1981.

W. J. De-wet, M. L. Chu, and D. J. Prockop, The mRNAs for the pro-alpha 1(I) and pro-alpha 2(I) chains of type I. procollagen are translated at the same rate in normal human fibroblasts and in fibroblasts from two variants of osteogenesis imperfecta with altered steady state ratios of the two mRNAs, J. Biol. Chem, vol.258, pp.14385-14389, 1983.

P. Galéra, R. W. Park, P. Ducy, M. G. Mattéi, and G. Karsenty, c-Krox binds to several sites in the promoter of both mouse type, I. Collagen genes. Structure/function study and developmental expression analysis, J. Biol. Chem, vol.271, pp.21331-21339, 1996.

I. Rosová, M. Dao, B. Capoccia, D. Link, and J. A. Nolta, Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells, Stem Cells, vol.26, pp.2173-2182, 2008.

W. L. Grayson, F. Zhao, B. Bunnell, and T. Ma, Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells, Biochem. Biophys. Res. Commun, vol.358, pp.948-953, 2007.

M. Kanichai, D. Ferguson, P. J. Prendergast, and V. A. Campbell, Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: A role for AKT and hypoxia-inducible factor (HIF)-1?, J. Cell. Physiol, vol.216, pp.708-715, 2008.

E. Schipani, H. E. Ryan, S. Didrickson, T. Kobayashi, M. Knight et al., Hypoxia in cartilage: HIF-1? is essential for chondrocyte growth arrest and survival, Genes Dev, vol.15, pp.2865-2876, 2001.

B. D. Markway, H. Cho, and B. Johnstone, Hypoxia promotes redifferentiation and suppresses markers of hypertrophy and degeneration in both healthy and osteoarthritic chondrocytes, Arthritis Res. Ther, vol.15, 2013.

M. Brittberg, Cell carriers as the next generation of cell therapy for cartilage repair: A review of the matrix-induced autologous chondrocyte implantation procedure, Am. J. Sports Med, vol.38, pp.1259-1271, 2010.

M. C. Ciuffreda, G. Malpasso, P. Musarò, V. Turco, and M. Gnecchi, Protocols for in vitro differentiation of human mesenchymal stem cells into osteogenic, chondrogenic and adipogenic lineages, Methods Mol. Biol, pp.149-158, 1416.

W. Yang, S. K. Both, G. J. Van-osch, Y. Wang, J. A. Jansen et al., Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation, Acta Biomater, vol.13, pp.254-265, 2015.

M. J. Farrell, M. B. Fisher, A. H. Huang, J. I. Shin, K. M. Farrell et al., Functional properties of bone marrow-derived MSC-based engineered cartilage are unstable with very long-term in vitro culture, J. Biomech, vol.47, pp.2173-2182, 2014.

Y. I. Kim, J. Ryu, J. E. Yeo, Y. J. Choi, Y. S. Kim et al., Overexpression of TGF-?1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells, Biochem. Biophys. Res. Commun, vol.450, pp.1593-1599, 2014.

C. W. Mcilwraith, D. D. Frisbie, and C. E. Kawcak, The horse as a model of naturally occurring osteoarthritis, Bone Jt. Res, vol.1, pp.297-309, 2012.

T. E. Hardingham, Fell-Muir lecture: Cartilage 2010-The known unknowns, Int. J. Exp. Pathol, vol.91, pp.203-209, 2010.

T. Aigner and J. Stöve, Collagens-Major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair, Adv. Drug Deliv. Rev, vol.55, pp.1569-1593, 2003.

N. Perkins, S. Reid, and R. Morris, Profiling the New Zealand Thoroughbred racing industry. 2. Conditions interfering with training and racing, N. Z. Vet. J, vol.53, pp.59-68, 2005.

T. Aigner, J. Cook, N. Gerwin, S. Glasson, S. Laverty et al., Histopathology atlas of animal model systems-Overview of guiding principles, Osteoarthr. Cartil, vol.18, pp.2-6, 2010.

C. W. Mcilwraith, L. A. Fortier, D. D. Frisbie, and A. J. Nixon, Equine models of articular cartilage repair, Cartilage, vol.2, pp.317-326, 2011.

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson et al., Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation, N. Engl. J. Med, vol.331, pp.889-895, 1994.

A. J. Nixon, L. Begum, H. O. Mohammed, B. Huibregtse, M. M. O'callaghan et al., Autologous chondrocyte implantation drives early chondrogenesis and organized repair in extensive full-and partial-thickness cartilage defects in an equine model, J. Orthop. Res, vol.29, 2011.

P. D. Benya, S. R. Padilla, and M. E. Nimni, Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture, Cell, vol.15, pp.1313-1321, 1978.

, Int. J. Mol. Sci, vol.19, p.33, 2018.

A. J. Friedenstein, J. F. Gorskaja, and N. N. Kulagina, Fibroblast precursors in normal and irradiated mouse hematopoietic organs, Exp. Hematol, vol.4, pp.267-274, 1976.

J. Kobolak, A. Dinnyes, A. Memic, A. Khademhosseini, and A. Mobasheri, Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro engineering of their niche, 2015.

C. Zhou, B. Yang, Y. Tian, H. Jiao, W. Zheng et al., Immunomodulatory effect of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on lymphocytes, Cell. Immunol, vol.272, pp.33-38, 2011.

D. Murata, D. Miyakoshi, T. Hatazoe, N. Miura, S. Tokunaga et al., Multipotency of equine mesenchymal stem cells derived from synovial fluid, Vet. J, pp.53-61, 0202.

K. F. Ortved and A. J. Nixon, Cell-based cartilage repair strategies in the horse, Vet. J, vol.208, pp.1-12, 2016.

M. Dominici, K. Le-blanc, I. Mueller, I. Slaper-cortenbach, F. Marini et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, vol.8, pp.315-317, 2006.

L. Tessier, D. Bienzle, L. B. Williams, and T. G. Koch, Phenotypic and Immunomodulatory Properties of Equine Cord Blood-Derived Mesenchymal Stromal Cells, PLoS ONE, vol.10, 2015.

C. De-schauwer, K. Goossens, S. Piepers, M. K. Hoogewijs, J. L. Govaere et al., Characterization and profiling of immunomodulatory genes of equine mesenchymal stromal cells from non-invasive sources, Stem Cell Res. Ther, vol.5, issue.6, 2014.

K. Stenderup, J. Justesen, C. Clausen, and M. Kassem, Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells, vol.33, pp.919-926, 2003.

S. Kern, H. Eichler, J. Stoeve, H. Klüter, and K. Bieback, Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue, Stem Cells, vol.24, pp.1294-1301, 2006.

H. J. Jin, Y. K. Bae, M. Kim, S. Kwon, H. B. Jeon et al., Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy, Int. J. Mol. Sci, vol.14, pp.17986-18001, 2013.

E. Perrier, M. Ronzière, R. Bareille, A. Pinzano, F. Mallein-gerin et al., Analysis of collagen expression during chondrogenic induction of human bone marrow mesenchymal stem cells, Biotechnol. Lett, vol.33, pp.2091-2101, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02200278

A. M. Handorf and W. Li, Fibroblast growth factor-2 primes human mesenchymal stem cells for enhanced chondrogenesis, PLoS ONE, vol.6, 2011.

X. Chen, F. Zhang, X. He, Y. Xu, Z. Yang et al., Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering, Injury, vol.44, pp.540-549, 2013.

R. L. Mauck, X. Yuan, and R. S. Tuan, Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture, Osteoarthr. Cartil, vol.14, pp.179-189, 2006.

A. Freyria and F. Mallein-gerin, Chondrocytes or adult stem cells for cartilage repair: The indisputable role of growth factors, Injury, vol.43, pp.259-265, 2012.

J. D. Kisiday, P. W. Kopesky, C. H. Evans, A. J. Grodzinsky, C. W. Mcilwraith et al., Evaluation of adult equine bone marrow-and adipose-derived progenitor cell chondrogenesis in hydrogel cultures, J. Orthop. Res, vol.26, pp.322-331, 2008.

N. Indrawattana, G. Chen, M. Tadokoro, L. H. Shann, H. Ohgushi et al., Growth factor combination for chondrogenic induction from human mesenchymal stem cell, Biochem. Biophys. Res. Commun, vol.320, pp.914-919, 2004.

M. C. Ronzière, E. Perrier, F. Mallein-gerin, and A. Freyria, Chondrogenic potential of bone marrow-and adipose tissue-derived adult human mesenchymal stem cells, Biomed. Mater. Eng, vol.20, pp.145-158, 2010.

M. K. Murphy, D. J. Huey, J. C. Hu, and K. A. Athanasiou, TGF-?1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells, Stem Cells, vol.33, pp.762-773, 2014.

T. Gomez-leduc, M. Hervieu, F. Legendre, M. Bouyoucef, N. Gruchy et al.,

, Int. J. Mol. Sci, vol.19, p.537, 2018.

, mesenchymal stem cells in collagen matrices for cartilage engineering. Sci. Rep, 2016.

W. Kafienah, S. Mistry, S. C. Dickinson, T. J. Sims, I. Learmonth et al., Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheumatol, vol.56, pp.177-187, 2007.

O. F. Gardner, C. W. Archer, M. Alini, and M. J. Stoddart, Chondrogenesis of mesenchymal stem cells for cartilage tissue engineering, Histol. Histopathol, vol.28, pp.23-42, 2013.

M. E. Cooke, A. A. Allon, T. Cheng, A. C. Kuo, H. T. Kim et al., Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy, Osteoarthr. Cartil, vol.19, pp.1210-1218, 2011.

J. Kang, S. Park, M. Seo, H. Kim, J. Chae et al., Characterization and clinical application of mesenchymal stem cells from equine umbilical cord blood, J. Vet. Sci, vol.14, pp.367-371, 2013.

C. W. Mcilwraith, D. D. Frisbie, W. G. Rodkey, J. D. Kisiday, N. M. Werpy et al., Evaluation of intra-articular mesenchymal stem cells to augment healing of microfractured chondral defects, Arthrosc. J. Arthrosc. Relat. Surg, vol.27, pp.1552-1561, 2011.

J. H. Pigott, A. Ishihara, M. L. Wellman, D. S. Russell, and A. L. Bertone, Investigation of the immune response to autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses, Vet. Immunol. Immunopathol, vol.156, pp.99-106, 2013.

L. B. Williams, J. B. Koenig, B. Black, T. W. Gibson, S. Sharif et al., Equine allogeneic umbilical cord blood derived mesenchymal stromal cells reduce synovial fluid nucleated cell count and induce mild self-limiting inflammation when evaluated in an LPS induced synovitis model, Equine Vet. J, vol.48, pp.619-625, 2016.

M. M. Wilke, D. V. Nydam, and A. J. Nixon, Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model, J. Orthop. Res, vol.25, pp.913-925, 2007.

A. Hillmann, A. B. Ahrberg, W. Brehm, S. Heller, C. Josten et al., Comparative characterization of human and equine mesenchymal stromal cells: A basis for translational studies in the equine model, Cell Transplant, vol.25, pp.109-124, 2016.

T. G. Koch, T. Heerkens, P. D. Thomsen, and D. H. Betts, Isolation of mesenchymal stem cells from equine umbilical cord blood, BMC Biotechnol, 2007.

T. G. Koch, P. D. Thomsen, and D. H. Betts, Improved isolation protocol for equine cord blood-derived mesenchymal stromal cells, Cytotherapy, vol.11, pp.443-447, 2009.

K. Bieback, S. Kern, H. Klüter, and H. Eichler, Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood, Stem Cells, vol.22, pp.625-634, 2004.

X. Zhang, M. Hirai, S. Cantero, R. Ciubotariu, L. Dobrila et al., Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: Reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue, J. Cell. Biochem, vol.112, pp.1206-1218, 2011.

L. A. Solchaga, K. Penick, V. M. Goldberg, A. I. Caplan, and J. F. Welter, Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells, Tissue Eng. Part A, vol.16, pp.1009-1019, 2010.

W. Wagner, P. Horn, M. Castoldi, A. Diehlmann, S. Bork et al., Replicative senescence of mesenchymal stem cells: A continuous and organized process, PLoS ONE, vol.3, 2008.

M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas et al., Multilineage potential of adult human mesenchymal stem cells, Science, vol.284, pp.143-147, 1999.

D. J. Barberini, N. P. Freitas, M. S. Magnoni, L. Maia, A. J. Listoni et al., Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: Immunophenotypic characterization and differentiation potential, Stem Cell Res. Ther, vol.5, p.25, 2014.

C. De-schauwer, S. Piepers, G. R. Van-de-walle, K. Demeyere, M. K. Hoogewijs et al., In search for cross-reactivity to immunophenotype equine mesenchymal stromal cells by multicolor flow cytometry, Cytom. Part A, vol.81, pp.312-323, 2012.

N. M. Vieira, V. Brandalise, E. Zucconi, M. Secco, B. E. Strauss et al., Isolation, characterization, and differentiation potential of canine adipose-derived stem cells, Cell Transplant, vol.19, pp.279-289, 2010.

J. Braun, A. Hack, M. Weis-klemm, S. Conrad, S. Treml et al., Evaluation of the osteogenic and chondrogenic differentiation capacities of equine adipose tissue-derived mesenchymal stem cells, Am. J. Vet. Res, vol.71, pp.1228-1236, 2010.

C. H. Hackett, M. J. Flaminio, and L. A. Fortier, Analysis of CD14 Expression levels in putative mesenchymal progenitor cells isolated from equine bone marrow, Stem Cells Dev, vol.20, pp.721-735, 2011.

E. Iacono, B. Merlo, N. Romagnoli, B. Rossi, F. Ricci et al., Equine bone marrow and adipose tissue mesenchymal stem cells: cytofluorimetric characterization, in vitro differentiation, and clinical application, J. Equine Vet. Sci, vol.35, pp.130-140, 2015.

P. W. Kopesky, H. Y. Lee, E. J. Vanderploeg, J. D. Kisiday, D. D. Frisbie et al., Adult equine bone-marrow stromal cells produce a cartilage-like ECM mechanically superior to animal-matched adult chondrocytes, Matrix Biol, vol.29, pp.427-438, 2010.

C. Co, M. K. Vickaryous, and T. G. Koch, Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro, Osteoarthr. Cartil, vol.22, pp.472-480, 2014.

B. Ranera, A. R. Remacha, S. Álvarez-arguedas, T. Castiella, F. J. Vázquez et al., Expansion under hypoxic conditions enhances the chondrogenic potential of equine bone marrow-derived mesenchymal stem cells, Vet. J, vol.195, pp.248-251, 2013.

J. D. Kisiday, L. R. Goodrich, C. W. Mcilwraith, and D. D. Frisbie, Effects of equine bone marrow aspirate volume on isolation, proliferation, and differentiation potential of mesenchymal stem cells, Am. J. Vet. Res, vol.74, pp.801-807, 2013.

E. Duval, S. Leclercq, J. Elissalde, M. Demoor, P. Galera et al., Hypoxia-inducible factor 1? inhibits the fibroblast-like markers type I and type III collagen during hypoxia-induced chondrocyte redifferentiation, Arthritis Rheumatol, vol.60, pp.3038-3048, 2009.

P. Galera, F. Rédini, D. Vivien, J. Bonaventure, H. Penfornis et al., Effect of transforming growth factor-beta 1 (TGF-beta 1) on matrix synthesis by monolayer cultures of rabbit articular chondrocytes during the dedifferentiation process, Exp. Cell Res, pp.379-392, 0200.

B. Yang, H. Guo, Y. Zhang, L. Chen, D. Ying et al., MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting SOX9, PLoS ONE, vol.6, 2011.

F. Legendre, D. Ollitrault, M. Hervieu, C. Baugé, L. Maneix et al., Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia, Tissue Eng. Part C Methods, vol.19, pp.550-557, 2013.

E. Aubert-foucher, N. Mayer, M. Pasdeloup, A. Pagnon, D. Hartmann et al., A unique tool to selectively detect the chondrogenic IIB form of human type II procollagen protein, Matrix Biol, vol.34, pp.80-88, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01808038

T. Branly, R. Contentin, M. Desancé, T. Jacquel, L. Bertoni et al., Improvement of the chondrocyte-specific phenotype upon equine bone marrow mesenchymal stem cell differentiation. Influence of culture time, transforming growth factors and type I collagen siRNAs on the differentiation index, Int. J. Mol. Sci, vol.19, p.435, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02132045

. Normandie-univ, . Unicaen, . Biotargen, and F. Caen, * Contributed equally ? Corresponding author: philippe.galera@unicaen.fr, magali.demoor@unicaen.fr 1, 14430.

, Clinique Vétérinaire Equine de Méheudin

. Efs-caen, , 14000.

D. Brandt, P. Dieppe, and E. L. Radin, , 2008.

, Dis. Clin. N. Am, vol.34, pp.5531-559

A. Mobasheri, G. Kalamegame, G. Musumecif, and M. E. Battb, Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions, Maturitas, vol.78, pp.188-198, 2014.

P. M. Brooks, The burden of musculoskeletal disease-a global perspective, Clin. Rheumatol, vol.25, pp.778-781, 2006.

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson et al., Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation, N. Engl. J. Med, vol.331, pp.889-895, 1994.

P. D. Benya, S. R. Padilla, and M. E. Nimni, Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture, Cell, vol.15, pp.1313-1321, 1978.

M. Demoor, D. Ollitrault, T. Gomez-leduc, M. Bouyoucef, M. Hervieu et al., Cartilage tissue engineering : Molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction, Biochim. Biophys. Acta, vol.1840, pp.2414-2440, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02132064

A. K. Dewan, M. A. Gibson, J. H. Elisseeff, and M. E. Trice, Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques, Biomed. Res. Int, vol.2014, pp.1-11, 2014.

M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas et al., Multilineage potential of adult human mesenchymal stem cells, Science, vol.284, pp.143-147, 1999.

R. Hass, C. Kasper, S. Böhm, and R. Jacobs, Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC, 2011.

, Cell Commun. Signal, vol.9, p.12

H. E. Mccarthy, J. J. Bara, K. Brakspear, S. K. Singhrao, and C. W. Archer, The comparison of equine articular cartilage progenitor cells and bone marrow-derived stromal cells as potential cell sources for cartilage repair in the horse, Vet. J, vol.192, pp.345-351, 2012.

M. Kanawa, A. Igarashi, V. S. Ronald, Y. Higashi, H. Kurihara et al., Agedependent decrease in the chondrogenic potential of human bone marrow mesenchymal stromal cells expanded with fibroblast growth factor-2, Cytotherapy, vol.15, pp.1062-1072, 2013.

S. Kern, H. Eichler, J. Stoeve, H. Klüter, and K. Bieback, Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Umbilical Cord Blood, or Adipose Tissue, Stem Cells, vol.24, pp.1294-1301, 2006.

W. C. Lo, W. H. Chen, T. C. Lin, S. M. Hwang, R. Zeng et al., Preferential therapy for osteoarthritis by cord blood MSCs through regulation of chondrogenic cytokines, Biomaterials, vol.34, pp.4739-4748, 2013.

T. Branly, L. Bertoni, R. Contentin, R. Rakic, T. Gomez-leduc et al., Characterization and use of equine bone marrow mesenchymal stem cells in equine cartilage engineering. Study of their hyaline cartilage forming potential when cultured under hypoxia within a biomaterial in the presence of BMP-2 and TGF-ß1, Stem Cell Rev. and Rep, vol.5, pp.611-630, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02186824

M. Desancé, R. Contentin, L. Bertoni, T. Gomez-leduc, T. Branly et al., Chondrogenic Differentiation of Defined Equine Mesenchymal Stem Cells Derived from Umbilical Cord Blood for Use in Cartilage Repair Therapy, Int. J. Mol. Sci, vol.19, p.537, 2018.

R. Rakic, B. Bourdon, M. Demoor, S. Maddens, N. Saulnier et al., Differences in the intrinsic chondrogenic potential of equine umbilical cord matrix and cord blood mesenchymal stromal/stem cells for cartilage regeneration, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01875473

M. Dominici, L. Blanc, K. Mueller, I. Slaper-cortenbach, I. Marini et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, vol.8, pp.315-317, 2006.

V. Pérez-silos, A. Camacho-morales, and L. Fuentes-mera, Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine, Stem Cells Int, p.318749, 2016.

C. M. Mcleod and R. L. Mauck, On the origin and impact of mesenchymal stem cell heterogeneity: new insights and emerging tools for single cell analysis, Eur. Cell. Mater, vol.34, pp.217-231, 2017.

H. Li, R. Ghazanfari, D. Zacharaki, C. Lim, H. Scheding et al., Isolation and characterization of primary bone marrow mesenchymal stromal cells, Ann. N.Y. Acad. Sci, 2016.

M. Abumaree, A. Jumah, M. Pace, R. A. Kalionis, and B. , The immunosuppressive properties of mesenchymal stem cells, Stem Cell Rev, vol.8, pp.375-392, 2012.

A. Adatia, K. D. Rainsfordb, and W. F. Keana, Osteoarthritis of the knee and hip. Part I: aetiology and pathogenesis as a basis for pharmacotherapy, J. Pharm. Pharmacol, vol.64, p.617, 2011.

A. Ahmed, M. Sheng, S. Wasnik, D. J. Baylink, and K. Lau, Effect of aging on stem cells, World J. Exp. Med, vol.7, pp.1-10, 2017.

T. Aigner and J. Stöve, Collagens-major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair, Adv. Drug Deliv. Rev, vol.55, pp.1569-1593, 2003.

T. Aigner and J. Dudhia, Phenotypic modulation of chondrocytes as a potential therapeutic target in osteoarthritis: a hypothesis, Ann Rheum Dis, vol.56, pp.287-291, 1997.

S. H. Al-saqi, M. Saliem, H. C. Quezada, A. Ekblad, A. F. Jonasson et al., Defined serum-and xeno-free cryopreservation of mesenchymal stem cells, Cell Tissue Bank, vol.2, pp.181-193, 2015.

S. J. Archer, A. Bax, A. B. Roberts, M. B. Sporn, Y. Ogawa et al.,

R. Lucas, B. Zheng, J. Wenker, and D. A. Torchia, Transforming Growth Factor beta l : Secondary Structure As Determined by Heteronuclear Magnetic Resonance Spectroscopy, pp.1164-1171, 1993.

C. Archer and P. Francis-west, The chondrocyte, Int. J. Biochem. Cell Biol, vol.35, pp.401-404, 2003.

S. Alsalameh, R. Amin, T. Gemba, and M. Lotz, Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage, Arthritis Rheum, vol.50, pp.1522-1532, 2004.

E. Aubert-foucher, N. Mayer, M. Pasdeloup, A. Pagnon, D. Hartmann et al., A unique tool to selectively detect the chondrogenic IIB form of human type II procollagen protein, Matrix Biol, vol.34, pp.80-88, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01808038

A. Augello and C. Bari, The Regulation of Differentiation in Mesenchymal Stem Cells, 2010.

G. Hum and . Ther, , vol.21, pp.1226-1238

E. Ayhan, H. Kesmezacar, and I. Akgun, Intraarticular injections (corticosteroid, hyaluronic acid, platelet rich plasma) for the knee osteoarthritis, World J. Orthop, vol.5, pp.351-361, 2014.

P. D. Benya, S. R. Padilla, and M. E. Nimni, Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture, Cell, vol.15, pp.1313-1321, 1978.

L. Bian, D. Y. Zhai, R. L. Mauck, and J. A. Burdick, Coculture of Human Mesenchymal Stem Cells and Articular Chondrocytes Reduces Hypertrophy and Enhances Functional Properties of Engineered Cartilage, Tissue Eng. Part A, vol.17, pp.1137-1145, 2011.

K. Bieback, S. Kern, H. Klüter, and H. Eichler, Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood, Stem Cells, vol.22, pp.625-634, 2004.

O. Blumenfeld, F. M. Williams, D. J. Hart, T. D. Spector, A. N. Livshits et al., Association between cartilage and bone biomarkers and incidence of radiographic knee osteoarthritis (RKOA) in UK females: a prospective study, Osteoarthritis Cartilage, vol.21, pp.923-929, 2013.

T. Branly, L. Bertoni, R. Contentin, R. Rakic, T. Gomez-leduc et al., Characterization and use of BMP-2 and TGF-ß1, Stem Cell Rev. and Rep, vol.5, pp.611-630, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02186824

J. Braun and G. E. Gold, Diagnosis of Osteoarthritis : Imaging, Bone, vol.51, pp.278-288, 2012.

A. Breton, R. Sharma, A. C. Diaz, A. G. Parham, A. Graham et al., Derivation and characterization of induced pluripotent stem cells from equine fibroblasts, Stem Cells Dev, vol.22, pp.611-621, 2013.

M. Brittberg, A. Nilsson, A. Lindahl, C. Ohlsson, and L. Peterson, Rabbit articular cartilage defects treated with autologous cultured chondrocytes, Clin. Orthop. Relat. Res, vol.326, p.270, 1996.

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson et al., Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation, N. Engl. J, 1994.

. Med, , vol.331, pp.889-895

M. Brittberg and C. S. Winalski, Evaluation of cartilage injuries and repair, J. Bone Joint Surg. Am 85-A Suppl, vol.2, pp.58-69, 2003.

Z. Cao, C. Dou, and S. Dong, Scaffolding biomaterials for cartilage regeneration, J. Nanomater, p.4, 2014.

A. C. Carreira, G. G. Alves, W. F. Zambuzzi, M. C. Sogayar, and J. M. Granjeiro, Bone Morphogenetic Proteins : Structure, biological function and therapeutic applications, Arch. Biochem. Biophys, vol.561, pp.64-73, 2014.

H. Castro-malaspina, R. E. Gay, G. Resnick, N. Kapoor, P. Meyers et al., Characterization of human bone marrow fibroblast colonyforming cells (CFU-F) and their progeny, Blood, vol.56, pp.289-301, 1980.

L. G. Chase, U. Lakshmipathy, L. A. Solchaga, M. S. Rao, and M. C. Vemuri, A novel serum-free medium for the expansion of human mesenchymal stem cells, Stem cell Res. Ther, vol.1, issue.8, 2010.

G. Chen, C. Deng, and Y. P. Li, TGF-? and BMP Signaling in Osteoblast Differentiation and Bone Formation, Int. J. Biol. Sci, vol.8, pp.272-288, 2012.

S. Chubinskaya, L. Otten, S. Soeder, J. A. Borgia, T. Aigner et al., Regulation of chondrocyte gene expression by osteogenic protein-1, Arthritis. Res. Ther, vol.13, p.55, 2011.

A. Cochis, S. Grad, M. J. Stoddart, S. Farè, L. Altomare et al., ) thermo-reversible methylcellulose-based hydrogel, Sci. Rep, vol.7, p.45018, 2017.

M. Costantini, J. Idaszek, K. Szöke, J. Jaroszewicz, M. Dentini et al., 3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation, vol.8, p.35002, 2016.

M. Cucchiarini, L. De-girolamo, G. Filardo, J. M. Oliveira, P. Orth et al., , 2016.

L. Danisovic, I. Varga, and S. Polak, Growth factors and chondrogenic differentiation of mesenchymal stem cells, Tissue Cell, vol.44, pp.69-73, 2012.

D. D. Dean, J. Martel-pelletier, J. P. Pelletier, D. S. Howell, and J. F. Woessner, Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage, J. Clin. Invest, vol.84, pp.678-685, 1989.

B. De-crombrugghe, V. Lefebvre, R. R. Behringer, W. Bi, S. Murakami et al., Transcriptional mechanisms of chondrocyte differentiation, Matrix Biol, vol.5, pp.389-94, 2000.

M. Desancé, R. Contentin, L. Bertoni, T. Gomez-leduc, T. Branly et al., Chondrogenic Differentiation of Defined Equine Mesenchymal Stem Cells Derived from Umbilical Cord Blood for Use in Cartilage Repair Therapy, Int. J. Mol. Sci, vol.19, p.537, 2018.

F. Dell'accio, J. Vanlauwe, J. Bellemans, J. Neys, D. Bari et al., , 2003.

, J. Orthop. Res, vol.21, pp.123-154

U. Delling, K. Lindner, I. Ribitsch, H. Jülke, and W. Brehm, Comparison of bone marrow aspiration at the sternum and the tuber coxae in middle-aged horses, Can. J. Vet. Res, vol.76, pp.52-56, 2012.

M. Demoor, D. Ollitrault, T. Gomez-leduc, M. Bouyoucef, M. Hervieu et al., Cartilage tissue engineering : Molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction, Biochim. Biophys. Acta, vol.1840, pp.2414-2440, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02132064

J. Denoix, The equine distal limb : atlas of clinical anatomy and comparative imaging, 2000.

A. K. Dewan, M. A. Gibson, J. H. Elisseeff, and M. E. Trice, Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques, Biomed. Res. Int, vol.2014, pp.1-11, 2014.

M. Diab, J. J. Wu, and D. R. Eyre, Collagen type IX from human cartilage : a structural profile of intermolecular cross-linking sites, Biochem. J, vol.314, pp.327-332, 1996.

D. Leva, G. Garofalo, M. Croce, and C. M. , MicroRNAs in Cancer, Annu. Rev. Pathol. Mech, vol.9, pp.287-314, 2014.

M. Dominici, L. Blanc, K. Mueller, I. Slaper-cortenbach, I. Marini et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, vol.8, pp.315-317, 2006.

F. Duttenhoefer, R. L. De-freitas, M. Loibl, G. Bittermann, R. G. Richards et al., Endothelial Progenitor Cell Fraction Contained in Bone Marrow-Derived Mesenchymal Stem Cell Populations Impairs Osteogenic Differentiation, 2015.

E. Duval, S. Leclercq, J. Elissalde, M. Demoor, P. Galéra et al., Hypoxiainducible factor 1alpha inhibits the fibroblast-like markers type I and type III collagen during hypoxia-induced chondrocyte redifferentiation : hypoxia not only induces type II collagen and aggrecan, but it also inhibits type I and type III collagen in the hypoxia-inducible factor 1alpha-dependent redifferentiation of chondrocytes, Crit. Rev. Biotechnol, vol.23, pp.3038-3048, 2009.

J. R. Edgar, Q&A : What are exosomes, exactly?, BMC Biol, vol.14, pp.46-53, 2017.

M. B. Ellman, D. Yan, K. Ahmadinia, D. Chen, H. S. An et al., Fibroblast Growth Factor Control of Cartilage Homeostasis, The Basic Science of Articular Cartilage: Structure, Composition, and Function, vol.114, pp.461-468, 2009.

M. François, I. B. Copland, S. Yuan, R. Romieu-mourez, E. K. Waller et al., , 2012.

J. Fraser, T. C. Laurent, and U. Laurent, Hyaluronan : its nature, distribution, functions and turnover, J. Intern. Med, vol.242, pp.27-33, 1997.

A. J. Freemont, The pathophysiology of cartilage and synovium, Br. J. Rheumatol, vol.35, pp.10-13, 1996.

A. M. Freyria and F. Mallein-gerin, Chondrocytes or adult stem cells for cartilage repair: The indisputable role of growth factors, Injury, vol.43, pp.259-265, 2012.

A. J. Friedenstein, R. K. Chailakhjan, and K. S. Lalykina, The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells, Cell Tissue Kinet, vol.3, p.393, 1970.

R. Fujioka, T. Aoyama, and T. Takakuwa, The layered structure of the articular surface, 2013.

, Osteoarthr. Cartil, vol.21, pp.1092-1098

G. ,

P. Galéra, F. Redini, D. Vivien, J. Bonaventure, H. Penfornis et al., Effect of transforming growth factor-beta 1 (TGF-beta 1) on matrix synthesis by monolayer cultures of rabbit articular chondrocytes during the dedifferentiation process, Exp. Cell Res, vol.200, p.379, 1992.

P. Galéra, D. Vivien, S. Pronost, J. Bonaventure, F. Rédini et al., JP (1992) Transforming growth factor-?1 (TGF-?1) up-regulation of collagen type II in primary cultures of rabbit articular chondrocytes (RAC) involves increased mRNA levels without affecting mRNA stability and procollagen processing, J. Cell. Physiol, vol.153, pp.596-606

K. Gelse, E. Pöschl, and T. Aigner, Collagens -Structure, function, and biosynthesis, Adv. Drug Deliv. Rev, vol.55, pp.1531-1546, 2003.

M. B. Goldring and K. B. Marcu, Cartilage homeostasis in health and rheumatic diseases, 2009.

, Arthritis Res. Ther, vol.11, pp.224-224

M. B. Goldring, K. Tsuchimochi, and K. Ijiri, The control of chondrogenesis, J. Cell. Biochem, vol.97, pp.33-44, 2006.

S. R. Goldring and M. B. Goldring, Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk, Nat. Rev. Rheumatol, vol.12, pp.632-644, 2016.

T. Gomez-leduc, M. Desancé, M. Hervieu, F. Legendre, D. Ollitrault et al.,

M. Galéra, P. Demoor, and M. , Hypoxia Is a Critical Parameter for Chondrogenic Differentiation of Human Umbilical Cord Blood Mesenchymal Stem Cells in Type I/III, 2017.

, Collagen Sponges. Int. J. Mol. Sci, vol.18, pp.1-23

T. Gomez-leduc, M. Hervieu, F. Legendre, M. Bouyoucef, N. Gruchy et al., Chondrogenic commitment of human umbilical cord-blood derived mesenchymal stem cells in collagen matrices for cartilage engineering, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02304812

, Sci. Rep, vol.6, p.32786

D. A. Grande, M. I. Pitman, L. Peterson, D. Menche, and M. Klein, The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation, J. Orthop. Res, vol.7, pp.208-226, 1989.

E. Grimaud, D. Heymann, and F. Rédini, Recent advances in TGF-? effects on chondrocyte metabolism potential therapeutic roles of TGF-? in cartilage disorders, Cytokine Growth Factor Rev, vol.13, pp.241-257, 2002.

S. Gronthos, S. E. Graves, S. Ohta, and P. J. Simmons, The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors, Blood, vol.84, pp.4164-4173, 1994.

T. Gründer, C. Gaissmaier, J. Fritz, R. Stoop, P. Hortschansky et al., Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads, Osteoarthr. Cartil, vol.12, pp.559-567, 2004.

M. Grunke and H. Schulze-koops, Successful treatment of inflammatory knee osteoarthritis with tumour necrosis factor blockade, Ann. Rheum. Dis, vol.65, pp.555-556, 2006.

S. D. Gutierrez-nibeyro, Commercial Cell-based Therapies for Musculoskeletal Injuries in Horses, Vet. Clin. North Am. Equine Pract, vol.27, pp.363-371, 2011.

H. ,

C. H. Hackett, M. Flaminio, and L. A. Fortier, Analysis of CD14 expression levels in putative mesenchymal progenitor cells isolated from equine bone marrow, Stem Cells Dev, vol.20, p.721, 2011.

J. Han, T. Yang, J. Gao, J. Wu, X. Qiu et al., Specific microRNA expression during chondrogenesis of human mesenchymal stem cells, Int. J. Mol. Med, vol.25, pp.377-384, 2010.

K. Halász, A. Kassner, M. Mörgelin, and D. Heinegård, COMP acts as a catalyst in collagen fibrillogenesis, J. Biol. Chem, vol.282, pp.31166-31173, 2007.

B. K. Hall and T. Miyake, All for one and one for all : condensations and the initiation of skeletal development, Bioessays, vol.22, pp.138-147, 2000.

D. Heinegård, Proteoglycans and more-from molecules to biology, Int. J. Exp. Pathol, vol.90, pp.575-586, 2009.

D. Heinegård and T. Saxne, The role of the cartilage matrix in osteoarthritis, Nat. Rev, 2011.

. Rheumatol, , vol.7, pp.50-56

J. Heinonen, H. Taipaleenmäki, P. Roering, M. Takatalo, L. Harkness et al., Snorc is a novel cartilage specific small membrane proteoglycan expressed in differentiating and articular chondrocytes, Osteoarthr. Cartil, vol.19, pp.1026-1035, 2011.

J. Heinonen, F. P. Zhang, C. Surmann-schmitt, S. Honkala, M. Stock et al., Defects in chondrocyte maturation and secondary ossification in mouse knee joint epiphyses due to Snorc deficiency, Osteoarthr. Cartil, vol.25, pp.1132-1142, 2017.

Y. Henrotin and J. Y. Reginster, Anabolic events in osteoarthritis, Osteoarthr. Cartil, vol.7, pp.310-312, 1998.

A. P. Hinck and T. Huang, TGF-? Antagonists : Same Knot but Different Hold, Structure, vol.21, pp.1-4, 2013.

H. Hofer and R. S. Tuan, Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies, Stem Cell Res. Ther, vol.7, pp.131-145, 2016.

C. P. Hofstetter, E. J. Schwarz, D. Hess, J. Widenfalk, E. Manira et al., , 2002.

, Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery

, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.2199-2204

S. M. Hoynowski, M. M. Fry, B. M. Gardner, M. T. Leming, J. R. Tucker et al., Characterization and differentiation of equine umbilical cord-derived matrix cells, 2007.

, Biochem. Biophys. Res. Commun, vol.362, pp.347-353

A. H. Hui, W. J. Mccarty, K. Masuda, G. S. Firestein, and L. H. Sah, System biology approach to synovial joint lubricant in health, injury, and disease, Wiley interdiscip. Rev. Syst. Biol. Med, 2012.

A. W. James, Y. Xu, J. K. Lee, R. Wang, and M. T. Longaker, Differential effects of TGF-beta1 and TGF-beta3 on chondrogenesis in posterofrontal cranial suture-derived mesenchymal cells in vitro, Plast. Reconstr. Surg, vol.123, pp.31-43, 2009.

E. Jones, A. English, S. M. Churchman, D. Kouroupis, S. A. Boxall et al., Large-scale extraction and characterization of CD271+ multipotential stromal cells from trabecular bone in health and osteoarthritis : implications for bone regeneration strategies based on uncultured or minimally cultured multipotential stromal cells, Arthritis Rheum, vol.62, pp.1944-1954, 2010.

M. E. Joyce, A. B. Roberts, M. B. Sporn, and M. E. Bolander, Transforming Growth Factor-? and the Initiation of Chondrogenesis and Osteogenesis in the Rat Femur, J. Cell Biol, vol.110, p.2195, 1990.

W. Kafienah, S. Mistry, S. C. Dickinson, T. J. Sims, I. Learmonth et al., Threedimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients, 2007.

, Arthritis Rheum, vol.56, pp.177-187

. Karsenty, The complexities of skeletal biology, Nature, vol.423, pp.316-318, 2003.

G. Karsenty, Genetics of skeletogenesis, Dev. Genet, vol.22, pp.301-314, 1998.

A. Karystinou, F. Dell'accio, T. B. Kurth, H. Wackerhage, I. M. Khan et al., Distinct mesenchymal progenitor cell subsets in the adult human synovium, Rheumatology (Oxford), vol.48, pp.1057-1064, 2009.

L. Keller, P. Schwinté, E. Gomez-barrena, M. Arruebo, and N. Benkirane-jessel, Smart Implants as a Novel Strategy to Regenerate Well-Founded Cartilage, Trends Biotechnol, vol.35, pp.8-11, 2017.

C. Kiani, L. Chen, Y. J. Wu, A. J. Yee, and B. B. Yang, Structure and function of aggrecan, Cell Res, vol.12, pp.19-32, 2002.

T. G. Koch, T. Heerkens, P. D. Thomsen, and D. H. Betts, , 2007.

T. G. Koch, P. D. Thomsen, and D. H. Betts, Improved isolation protocol for equine cord bloodderived mesenchymal stromal cells, Cytotherapy, vol.11, pp.443-447, 2009.

C. M. Kolf, E. Cho, and R. S. Tuan, Biology of adult mesenchymal stem cells : regulation of niche, self-renewal and differentiation, Arthritis Res. Ther, vol.9, p.204, 2007.

T. Kobayashi, J. Lu, B. S. Cobb, S. J. Rodda, A. P. Mcmahon et al., Dicer dependent pathways regulate chondrocyte proliferation and differentiation, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.1949-1954, 2008.

L. Kong, L. Z. Zheng, L. Qin, and K. Ho, Role of mesenchymal stem cells in osteoarthritis treatment, J. Orthop. Trans, vol.9, pp.89-103, 2017.

E. Kozhemyakina, A. B. Lassar, and E. Zelzer, A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation, Development, vol.142, pp.817-831, 2015.

E. L. Kuyinu, G. Narayanan, L. S. Nair, and C. T. Laurencin, Animal models of osteoarthritis : classification, update, and measurement of outcomes, J. Orthop. Surg. Res, vol.11, pp.1-27, 2016.

J. E. Lafont, Lack of oxygen in articular cartilage: consequences for chondrocyte biology, 2010.

, Int. J. Exp. Pathol, vol.91, pp.99-106

J. E. Lazarus, A. Hegde, A. C. Andrade, O. Nilsson, and J. Baron, Fibroblast growth factor expression in the postnatal growth plate, Bone, vol.40, pp.577-586, 2007.

K. Lee, J. Hui, I. C. Song, L. Ardany, and E. H. Lee, Injectable mesenchymal stem cell therapy for large cartilage defects-a porcine model, Stem Cells, vol.2511, pp.2964-2971, 2007.

V. Lefebvre, R. R. Behringer, and B. De-crombrugghe, L-Sox5, Sox6 and Sox 9 control essential steps of the chondrocyte differentiation pathway, Osteoarthr. Cartil. Suppl A, pp.69-75, 2001.

F. Legendre, D. Ollitrault, T. Gomez-leduc, M. Bouyoucef, M. Hervieu et al., Enhanced chondrogenesis of bone marrow-derived stem cells by using a combinatory cell therapy strategy with BMP-2/TGF-?1, hypoxia, and COL1A1/HtrA1 siRNAs, Sci. Rep, vol.7, p.3406, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02285453

F. Legendre, D. Ollitrault, M. Hervieu, C. Baugé, L. Maneix et al., Enhanced Hyaline Cartilage Matrix Synthesis in, 2013.

, Collagen Sponge Scaffolds by Using siRNA to Stabilize Chondrocytes Phenotype Cultured with Bone Morphogenetic Protein-2 Under Hypoxia, Tissue Eng. Part C. Methods, vol.19, p.550

E. J. Levorson, M. Santoro, F. K. Kasper, and A. G. Mikos, Direct and indirect co-culture of chondrocytes and mesenchymal stem cells for the generation of polymer/extracellular matrix hybrid constructs, Acta Biomater, vol.10, pp.1824-1835, 2014.

G. Li, J. Yin, J. Gao, T. S. Cheng, N. J. Pavlos et al., Subchondral bone in osteoarthritis : insight into risk factors and microstructural changes, Arthritis Res. Ther, vol.6, pp.15-223, 2013.

H. Li, R. Ghazanfari, D. Zacharaki, C. Lim, H. Scheding et al., Isolation and characterization of primary bone marrow mesenchymal stromal cells, Ann. N.Y. Acad. Sci, vol.1370, pp.109-118, 2016.

X. Li, L. Duan, Y. Liang, W. Zhu, J. Xiong et al., Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes, Biomed. Res. Int, vol.2016, pp.1-16, 2016.

Z. Li, C. Liu, Z. Xie, P. Song, R. Zhao et al., , 2011.

, Mesenchymal Stem Cell Aging and Spontaneous Differentiation, PLoS ONE, vol.6, p.20526

A. Litwic, M. Edwards, E. Dennison, and C. Cooper, Epidemiology and Burden of Osteoarthritis, Br. Med. Bull, vol.105, pp.185-199, 2013.

K. Liu, G. D. Zhou, W. Liu, W. J. Zhang, L. Cui et al., , pp.2183-2192, 200829.

S. Lohmander, Proteoglycans of joint cartilage. Structure, function, turnover and role as markers of joint disease, Baillieres Clin. Rheumatol, vol.2, pp.37-62, 1988.

Y. Luo, D. Sinkeviciute, Y. He, M. Karsdal, Y. Henrotin et al., The minor collagens in articular cartilage, Protein Cell, vol.8, pp.560-572, 2017.

V. Mandilaras, M. Vernon, M. Meryet-figuière, K. Karakasis, B. Lambert et al., Updates and current challenges in microRNA research for personalized medicine in ovarian cancer, Expert Opin. Biol. Ther, vol.8, pp.927-943, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02091422

E. A. Makris, A. H. Gomoll, K. N. Malizos, J. C. Hu, and K. A. Athanasiou, Repair and tissue engineering techniques for articular cartilage, Nat. Rev. Rheumatol, vol.11, pp.21-34, 2014.

G. S. Man and G. Mologhianu, Osteoarthritis pathogenesis -a complex process that involves the entire joint, J. Med. life, vol.7, pp.37-41, 2014.

B. D. Markway, H. Cho, and B. Johnstone, Hypoxia promotes redifferentiation and suppresses markers of hypertrophy and degeneration in both healthy and osteoarthritic chondrocytes, 2013.

, Arthritis Res. Ther, vol.15, p.92

S. Ma, N. Xie, W. Li, B. Yuan, Y. Shi et al., Immunobiology of mesenchymal stem cells, 2014.

, Cell Death and Differ, vol.21, pp.216-225

C. Manferdini, M. Maumus, E. Gabusi, A. Piacentini, G. Filardo et al., Adipose-Derived Mesenchymal Stem Cells Exert Antiinflammatory Effects on Chondrocytes and Synoviocytes From Osteoarthritis Patients Through Prostaglandin E2, Arthritis Rheum, vol.65, pp.1271-1281, 2013.

M. Maumus, C. Manferdini, K. Toupet, J. A. Peyrafitte, R. Ferreira et al., Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis, Stem Cell Res, vol.11, pp.834-844, 2013.

N. Mayer, S. Lopa, G. Talò, A. B. Lovati, M. Pasdeloup et al., Interstitial Perfusion Culture with Specific Soluble Factors Inhibits Type I Collagen Production from Human Osteoarthritic Chondrocytes in Clinical-Grade Collagen Sponges, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02132052

, PLoS One, vol.11, p.161479

A. Mcalinden, B. Johnstone, J. Kollar, N. Kazmi, and T. M. Hering, Expression of two novel alternatively spliced COL2A1 isoforms during chondrocyte differentiation, Matrix Biol, vol.27, pp.254-266, 2008.

A. M. Mccoy, Animal Models of Osteoarthritis : Comparisons and Key Considerations, 2015.

C. M. Mcleod and R. L. Mauck, On the origin and impact of mesenchymal stem cell heterogeneity: new insights and emerging tools for single cell analysis, Eur. Cell. Mater, vol.34, pp.217-231, 2017.

C. W. Mcilwraith and D. D. Frisbie, The horse as a model of naturally occurring osteoarthritis, Bone and Joint, vol.1, pp.297-309, 2012.

M. Mendler, S. G. Eich-bender, L. Vaughan, K. H. Winterhalter, and P. Bruckner, Cartilage contains mixed fibrils of collagen types II, IX, and XI, J. Cell Biol, vol.108, pp.191-197, 1989.

E. J. Miller and V. J. Matukas, Chick cartilage collagen : a new type of ?1 chain not present in bone or skin of the species, Proc. Natl. Acad. Sci, vol.64, pp.1264-1268, 1969.

A. Mobasheri, S. Richardson, R. Mobasheri, M. Shakibaei, and J. A. Hoyland, Hypoxia inducible factor-1 and facilitative glucose transporters GLUT1 and GLUT3 : putative molecular components of the oxygen and glucose sensing apparatus in articular chondrocytes, Histol. Histopathol, vol.20, pp.1327-1338, 2005.

G. Moll, J. J. Alm, L. C. Davies, V. Bahr, L. Heldring et al., Do Cryopreserved Mesenchymal Stromal Cells Display Impaired Immunomodulatory and Therapeutic Properties?, Stem Cells, vol.32, pp.2430-2442, 2014.

C. J. Moran, A. Ramesh, P. Brama, J. M. O'byrne, O. 'brien et al., The benefits and limitations of animal models for translational research in cartilage repair, 2016.

. Exp and . Orthop, , vol.3, pp.1-12

N. Moulharat, C. Lesur, M. Thomas, G. Rolland-valognes, P. Pastoureau et al., Effects of transforming growth factor-beta on aggrecanase production and proteoglycan degradation by human chondrocytes in vitro, Osteoarthr. Cartil, vol.12, p.296, 2004.

T. Mukaida, K. Urabe, K. Naruse, J. Aikawa, M. Katano et al., Influence of threedimensional culture in type II collagen sponge on primary cultured and ded ifferentiated chondrocytes, J. Orthop. Sci, vol.10, pp.521-528, 2005.

M. Nakashima and A. H. Reddi, The application of bone morphogenetic proteins to dental tissue engineering, Nat. Biotechnol, vol.21, pp.1025-1032, 2003.

L. Nelson, H. E. Mc-carthy, J. Fairclough, R. Williams, and C. W. Archer, Evidence of a viable pool of stem cells within human osteoarthritic cartilage, Cartilage, vol.5, pp.203-214, 2014.

R. Nishimura, M. Wakabayashi, K. Hata, T. Matsubara, S. Honma et al., , 2012.

A. Oikonomopoulos, W. K. Van-deen, A. R. Manansala, P. N. Lacey, T. A. Tomakili et al., Optimization of human mesenchymal stem cell manufacturing: the effects of animal/xeno-free media, Sci. Rep, vol.5, p.16570, 2015.

C. Oka, R. Tsujimoto, M. Kajikawa, K. Koshiba-takeuchi, J. Ina et al., HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins, Development, vol.131, pp.1041-1053, 2004.

S. L. Oke and C. W. Mcilwraith, Review of the economic impact of osteoarthritis and oral joint-health supplements in horses, Joints AAEP, vol.56, pp.12-16, 2010.

D. Ollitrault, F. Legendre, C. Drougard, M. Briand, H. Bénateau et al., BMP-2, hypoxia, and COL1A1/HtrA1 siRNAs favor neo-cartilage hyaline matrix formation in chondrocytes, Tissue Eng. Part C : Methods, vol.21, pp.133-147, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01804715

K. F. Ortved and A. J. Nixon, Cell-based cartilage repair strategies in the horse, Vet. J, pp.1-12, 2015.

K. Ourradi and M. Sharif, Biomarkers for Diagnosis of Osteoarthritis, JSM Bone and Joint Dis, vol.1, pp.1002-1007, 2017.

K. Pelttari, A. Winter, E. Steck, K. Goetzke, T. Hennig et al., Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice, Arthritis Rheum, vol.54, pp.3254-3266, 2006.

N. Perkins, S. Reid, and R. Morris, Profiling the New Zealand Thoroughbred racing industry, 2005.

, Conditions interfering with training and racing, vol.53, pp.59-68

J. Penny, P. Harris, K. Shakesheff, and A. Mobasheri, The biology of equine mesenchymal stem cells : phenotypic characterization, cell surface markers and multilineage differentiation, Front. Biosci, vol.17, pp.892-908, 2012.

T. Pham, Les injections intra-articulaires de hanche dans la coxarthrose : corticoïdes, hyaluronan, Rev. Rhum. Ed. Fr, vol.76, pp.356-360, 2009.

D. G. Phinney, Functional Heterogeneity of Mesenchymal Stem Cells : Implications for Cell Therapy, J. Cell. Biochem, vol.113, pp.2806-2812, 2012.

D. G. Phinney and M. F. Pittenger, Concise Review : MSC-Derived Exosomes for Cell-Free Therapy, Stem Cells, pp.1-8, 2017.

J. H. Pigott, A. Ishihara, M. L. Wellman, D. S. Russell, and A. L. Bertone, Inflammatory effects of autologous, genetically modified autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses, Vet. Comp. Orthopaed, vol.26, pp.453-460, 2013.

M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas et al.,

. Ma, D. W. Simonetti, S. Craig, and D. R. Marshak, Multilineage potential of adult human mesenchymal stem cells, Science, vol.284, pp.143-147, 1999.

A. R. Poole, T. Kojima, T. Yasuda, F. Mwale, M. Kobayashi et al., Composition and structure ofarticular cartilage: a template for tissue repair, Clin. Orthop. Relat. Res, pp.26-33, 2001.

S. A. Preston, T. N. Trumble, D. N. Zimmel, T. L. Chmielewski, M. P. Brown et al., , 2008.

, Lameness, athletic performance, and financial returns in yearling Thoroughbreds bought for the purpose of resale for profit, J. Am. Vet. Med. Assoc, vol.232, pp.85-90

D. Pretzel, S. Linss, S. Rochler, M. Endres, C. Kaps et al., Relative percentage and zonal distribution of mesenchymal progenitor cells in human osteoarthritic and normal cartilage, Arthritis Res. Ther, vol.13, p.64, 2011.

D. J. Prockop, A. L. Sieron, and L. Sw-;-c-proteinase, , 1998.

, Two unusual metalloproteinases that are essential for procollagen processing probably have important : Roles in development and cell signaling, Matrix Biol, vol.16, pp.399-408

R. Rakic, B. Bourdon, M. Demoor, S. Maddens, N. Saulnier et al., , 2018.

R. Rakic, B. Bourdon, M. Hervieu, T. Branly, F. Legendre et al., RNA Interference and BMP-2 Stimulation Allows Equine Chondrocytes Redifferentiation in 3D-Hypoxia Cell Culture Model: Application for Matrix-Induced Autologous Chondrocyte Implantation, Int. J. Mol. Sci, vol.18, pp.1-23, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02186507

J. A. Rand, R. T. Trousdale, D. M. Ilstrup, and W. S. Harmsen, Factors affecting the durability of primary total knee prostheses, J. Bone Joint Surg. Am, vol.85, pp.259-65, 2003.

E. Renard, B. Porée, C. Chadjichristos, M. Kypriotou, L. Maneix et al.,

D. , D. Crombrugghe, B. Mallein-gerin, F. Moslemi, S. Demoor et al.,

, Sox9/Sox6 and Sp1 are involved in the insulin-like growth factor-I-mediated upregulation of human type II collagen gene expression in articular chondrocytes, J. Mol

. Med, , vol.90, pp.649-666

Y. Rengel, C. Ospelt, and S. Gay, Proteinases in the joint : clinical relevance of proteinases in joint destruction, Arthritis Res. Ther, vol.9, p.221, 2007.

R. , The collagen family, Cold Spring Harb Perspect. Biol, vol.3, p.4978, 2011.

J. C. Robins, N. Akeno, A. Mukherjee, R. R. Dalal, B. J. Aronow et al., , 2005.

, Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9, Bone, vol.37, pp.313-322

M. T. Rojewski, N. Fekete, S. Baila, K. Nguyen, D. Fürst et al., GMP-compliant isolation and expansion of bone marrow-derived MSCs in the closed, automated device quantum cell expansion system, Cell Transplant, vol.22, 1981.

M. Ross and W. Pawlina, Histology A Text and Atlas, p.1, 2011.

M. C. Ryan and L. J. Sandell, Differential expression of a cysteine-rich domain in the aminoterminal propeptide of type II (cartilage) procollagen by alternative splicing of mRNA, J. Biol. Chem, vol.265, pp.10334-10339, 1990.

B. Sacchetti, A. Funari, S. Michienzi, D. Cesare, S. Piersanti et al., Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment, Cell, vol.131, pp.324-336, 2007.

L. J. Sandell, A. M. Nalin, and R. A. Reife, Alternative splice form of type II procollagen mRNA (IIA) is predominant in skeletal precursors and non-cartilaginous tissues during early mouse development, Dev. Dyn, vol.199, pp.129-140, 1994.

L. J. Sandell, N. Morris, J. R. Robbins, and M. B. Goldring, Alternatively spliced type II procollagen mRNAs define distinct populations of cells during vertebral development : differential expression of the aminopropeptide, J. Cell Biol, vol.114, pp.1307-1319, 1991.

M. B. Schmidt, E. H. Chen, and S. E. Lynch, A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair, Osteoarthr. Cartil, vol.14, pp.403-415, 2006.

R. Schofield, The relationship between the spleen colony-forming cell and the haemopoietic stem cell, Blood Cells, vol.4, pp.7-25, 1978.

F. H. Seeger, T. Tonn, N. Krzossok, A. M. Zeither, and S. Dimmeler, Cell isolation procedures matter: A comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction, Eur. Heart J, vol.28, pp.766-772, 2007.

L. Sensebé, P. Bourin, and K. Tarte, Good manufacturing practices production of mesenchymal stem/stromal cells, Hum. Gene Ther, vol.22, pp.19-26, 2011.

M. Sharif, J. Kirwan, N. Charni, L. J. Sandell, C. Whittles et al., A 5-yr longitudinal study of type IIA collagen synthesis and total type II collagen degradation in patients with knee osteoarthritis--association with disease progression, Rheumatology, vol.46, pp.938-943, 2007.

G. Shen, The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage, Orthod. Craniofac. Res, vol.8, pp.11-17, 2005.

S. Söder, L. Hambach, R. Lissner, T. Kirchner, and T. Aigner, Ultrastructural localization of type VI collagen in normal adult and osteoarthritic human articular cartilage, Osteoarthr. Cartil, vol.10, pp.464-470, 2002.

, Role of inflammation in the pathogenesis of osteoarthritis : latest findings and interpretations, Ther. Adv. Musculoskelet. Dis, vol.5, pp.77-94, 2013.

M. Shi, J. Zhu, R. Wang, X. Chen, L. Mi et al., Latent TGF-? structure and activation, Nature, vol.474, pp.343-349, 2011.

K. Stenderup, J. Justesen, C. Clausen, and M. Kassem, Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells, Bone, vol.33, pp.919-926, 2003.

A. A. Stewart, C. R. Byron, H. Pondenis, and M. C. Stewart, Effect of fibroblast growth factor-2 on equine mesenchymal stem cell monolayer expansion and chondrogenesis, Am. J. Vet. Res, 2007.

K. Takahashi and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, vol.126, pp.663-676, 2006.

S. Tavella, P. Raffo, . Tacchettic, R. Cancedda, and P. Castagnola, N-CAM and N-cadherin expression during in vitro chondrogenesis, Exp. Cell Res, vol.215, pp.354-62, 1994.

L. Tessier, D. Bienzle, L. B. Williams, and T. G. Koch, Phenotypic and Immunomodulatory Properties of Equine Cord Blood-Derived Mesenchymal Stromal Cells, PLoS One, vol.10, p.122954, 2015.

R. M. Thiede, Y. Lu, and M. D. Markel, A review of the treatment methods for cartilage defects, 2012.

, Vet. Comp. Orthop.Traumatol, vol.25, pp.263-272

B. L. Thoms, K. A. Dudek, J. E. Lafont, and C. L. Murphy, Hypoxia promotes the production and inhibits the destruction of human articular cartilage, Arthritis Rheum, vol.65, pp.1302-1312, 2013.

W. Toh, R. Lai, P. Hui, J. Lim, and S. , 1-22. V Van Wyk JJ & Smith EP (1999) Insulin-like growth factors and skeletal growth : possibilities for therapeutic interventions, J. Clin. Endocrinol. Metab, vol.84, pp.88-96, 2016.

V. Bahr, L. Batsis, I. Moll, G. Hägg, M. Szakos et al., Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation, Stem Cells, vol.30, pp.1575-1578, 2012.

M. A. Vidal, N. J. Walker, E. Napoli, and D. L. Borjesson, Evaluation of senescence in mesenchymal stem cells isolated from equine bone marrow, adipose tissue, and umbilical cord tissue, Stem Cells Dev, vol.21, pp.273-283, 2012.

C. Vinatier and J. Guicheux, Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments, Ann. Phys. Rehabil. Med, vol.59, pp.139-144, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01586938

F. J. Vizoso, N. Eiro, S. Cid, J. Schneider, and R. Perez-fernandez, Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine, Int. J. Mol, 2017.

. Sci, , vol.18, pp.1852-1876

Q. Wang, R. A. Lepus, C. Scanzello, C. Song, J. Larsen-d-larsen et al.,

M. , G. Sb, T. Wyss-coray, S. R. Goldring, N. K. Banda et al., Identification of a central role for complement in osteoarthritis, Nat Med, vol.17, pp.1674-1679, 2011.

F. M. Watt and R. R. Driskell, The therapeutic potential of stem cells, Phil. Trans. R. Soc. B, vol.365, pp.155-163, 2010.

T. Wells, C. Davidson, M. Mörgelin, J. Bird, M. T. Bayliss et al., Age-related changes in the composition, the molecular stoichiometry and the stability of proteoglycan aggregates extracted from human articular cartilage, Biochem. J, vol.370, pp.69-79, 2003.

R. Williams, I. M. Khan, K. Richardson, L. Nelson, H. E. Mccarthy et al.,

G. P. Dowthwaite, R. E. Jones, D. M. Baird, H. Lewis, S. Roberts et al., Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage, PLoS ONE, vol.5, p.13246, 2010.

W. Wu, B. Tian, X. Qu, F. Liu, T. Tang et al., MicroRNAs play a role in chondrogenesis and osteoarthritis (review), Int. J. Mol. Med, vol.34, pp.13-23, 2014.

B. Xia, D. Chen, J. Zhang, S. Hu, H. Jin et al., Osteoarthritis Pathogenesis: A Review of Molecular Mechanisms, Calcif. Tissue Int, vol.95, pp.495-505, 2014.

L. Xu, I. Golshirazian, B. J. Asbury, and Y. Li, Induction of high temperature requirement A1, a serine protease, by TGF-beta1 in articular chondrocytes of mouse models of OA, 2014.

. Histopathol, , vol.29, pp.609-618

H. N. Yang, J. S. Park, D. G. Woo, S. Y. Jeon, H. Do et al., Chondrogenesis of mesenchymal stem cells and dedifferentiated chondrocytes by transfection with SOX Trio genes, Biomaterials, vol.32, pp.7695-7704, 2011.

L. Yang, K. Y. Tsang, H. C. Tang, D. Chan, and K. Cheah, Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation, Proc. Natl. Acad. Sci. U, 2014.

S. , , vol.111, pp.12097-120102

E. Zelzer, D. J. Glotzer, C. Hartmann, D. Thomas, N. Fukai et al., Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2, Mech. Dev, vol.106, pp.97-106, 2001.

Z. Zhang, Y. Kang, Z. Zhang, H. Zhang, X. Duan et al., Expression of microRNAs during chondrogenesis of human adipose-derived stem cells, Osteoarthr. Cartil, vol.20, pp.1638-1646, 2012.

I. Annexes, Publications scientifiques

M. Desancé, R. Contentin, L. Bertoni, T. Gomez-leduc, T. Branly et al., Chondrogenic differentiation of defined equine mesenchymal stem cells derived from umbilical cord blood for use in cartilage repair therapy, Contribution équivalente des auteurs, vol.19, 2018.

T. Branly, R. Contentin, M. Desancé, M. Concari, T. Jacquel et al., Influence of culture time, transforming growth factors and type I collagen siRNAs on the differentiation index, Contribution équivalente des auteurs, vol.18, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02132045

T. Branly, L. Bertoni, R. Contentin, R. Rakic, T. Gomez-leduc et al., Characterization of BMP-2 and TGF-ß1, Contribution équivalente des auteurs, vol.13, pp.611-630, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02186824

, ) chondrocytes articulaires : Quelle est la meilleure stratégie ?, II. Communications orales -Communication orale lors des 45 ème Journées Annuelles de l'AVEF

R. Contentin, T. Branly, M. Desancé, M. Concari, T. Jacquel et al., Communication orale lors de la 2 ème Journée des doctorants de la filière équine, 2016.

R. Contentin, T. Branly, M. Desancé, M. Concari, T. Jacquel et al., Poster lors de la 19 ème Journée de l'école doctorale, 2016.

T. Branly, R. Contentin, M. Desancé, L. Bertoni, S. Jacquet et al., Poster lors des 18 ème Journées Française de la Biologie des Tissus Minéralisés, 2016.

M. Desancé, L. Bertoni, R. Contentin, T. Branly, T. Gomez-leduc et al.,

, IV. Encadrement de, 2018.

. -co-encadrement-d, un binôme de deux élèves (collégien et lycéen) dans le cadre Dispositif «Apprentis chercheurs» de l'association «Arbre des Connaissances

V. Enseignement, Enseignements de TD et TP au sein des modules de cultures cellulaires, 2016.

. Vi, Structure et fonctionnement de l'enseignement supérieur et la recherche » (3h), 2018.

, 2017 : -Formation aux missions d'enseignement organisée par l'ESPE de Caen (30h), Financement et management des projets de recherche, 2016.

, Fonctions avancées d'Excel » (6h)

, Règles de publication de documents scientifiques (thèses, posters, articles) » (12h)

, -« Initiation à la bibliométrie, archive ouverte, brevets et marques » (12h)

B. Laboratoire, Université de Caen Normandie-UFR santé-3 Rue Nelson Mandela-14280 Saint Contest Romain Contentin-romaincontentin@hotmail